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Abstract

We estimate the expressive power of certain deep Neural Networks (DNNs for short) on a class
of countably-parametric, holomorphic maps u : U → R on the parameter domain U = [−1, 1]N.
Dimension-independent rates of best n-term truncations of generalized polynomial chaos (gpc
for short) approximations depend only on the summability exponent of the sequence of their gpc
expansion coefficients. So-called (b, ε)-holomorphic maps u, with b ∈ ℓp for some p ∈ (0, 1), are
known to allow gpc expansions with coefficient sequences in ℓp. Such maps arise for example as
response surfaces of parametric PDEs, with applications in PDE uncertainty quantification (UQ)
for many mathematical models in engineering and the sciences. Up to logarithmic terms, we
establish the dimension independent approximation rate s = 1/p−1 for these functions in terms
of the total numberN of units and weights in the DNN. It follows that certain DNN architectures
can overcome the curse of dimensionality when expressing possibly countably-parametric, real-
valued maps with a certain degree of sparsity in the sequences of their gpc expansion coefficients.
We also obtain rates of expressive power of DNNs for countably-parametric maps u : U → V ,
where V is the Banach space H1

0 ([0, 1]).
Key words: Generalized polynomial chaos, Deep networks, Sparse grids, Uncertainty quantifi-
cation
Subject Classification: 68Q32, 41A25, 41A46

1 Introduction

After foundational developments several decades ago in answering the question of universality of
neural networks (NNs for short) [17, 22, 21, 3, 4], in recent years so-called deep neural networks
have undergone rapid development and successful deployment in a wide range of applications.
Evidence for the benefit afforded by depth of NNs on their approximation properties respectively
on their expressive power has been documented in an increasing number of applications (see,
e.g. [24, 25, 35] and the references there for applications in Finite Element approximation of
parametrized problems). In particular, for response surfaces and classification tasks for “com-
plex” systems superiority of deep architectures in a number of applications has been asserted in
recent years.

The purpose of the present paper is to establish that DNNs can express certain solution
families of parametric PDEs which depend on a large (possibly infinite) number of variables.
Specifically, we show that DNNs afford an expression error of size δ > 0 with NN size of
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O(δ−1/s) units and weights, where O(·) and the rate s > 0 are independent of the number of
parameters activated in the approximating NN (thereby overcoming, in particular, the curse of
dimensionality). The rate s is comparable to convergence rates of the best n-term generalized
polynomial chaos approximation of the parametric solution, and depends only on a suitable
notion of sparsity in coefficient sequences of gpc expansions of the parametric solution. Our
analysis mainly focuses on ReLU NNs, as they are widely used currently. ReLU DNNs also
allow the exact expression of continuous, piecewise linear spline functions in intervals as they
appear in Courant Finite Elements as we show in Lemma 4.5 ahead. In passing, we additionally
discuss modifications in the proofs which result from employing smooth activation functions
instead of ReLU activations in the DNN expression of gpc expansions. We show that this leads
to slightly improved error vs. DNN size bounds on the corresponding expression rates (see
Thms. 3.9 and 3.10).

1.1 Recent mathematical results on expressive power of DNNs

The past year has seen significant efforts towards theoretical understanding of the benefits
on expressive power of NNs afforded by possibly large NN depth. Whereas density results
and approximation rate bounds for shallow NNs have been known for some time (see [29]),
recent theoretical results focused on approximation rate bounds of deep NNs for certain function
classes. We mention in particular [19] and [7]. There, it is shown that deep NNs with a particular
architecture allow the same approximation rate bounds as rather general multiresolution systems
when measured in terms of the number N of units in the DNN.

In [15], convolutional DNNs were proved to be able to express multivariate functions given
in so-called Hierarchic Tensor (HT) formats, a numerical representation inspired by electron
structure calculations in computational quantum chemistry.

Also, in [36, 26], it has been shown that DNNs can express general uni- and multivariate
polynomials on bounded domains with accuracy δ > 0, uniform with respect to the parameters,
with complexity (which we assume to comprise the number of NN layers and the number of NN
units and weights) which scales polylogarithmically with respect to δ. The results in [36, 26]
allow transferring approximation results from high order finite and spectral element methods,
in particular exponential convergence results, to certain types of DNNs.

Another type of result, closer to the present investigation, is the analysis of NN depth in
high-dimensional approximation. In [32], DNN expression rates for multivariate polynomials are
obtained which are explicit in the number of variables and the polynomial degree. The proofs in
[32] depend strongly on possibly a large number of derivatives of the activation function. In [27]
it was shown that multivariate functions which can be written as superpositions (being additive
but also compositional) of a possibly large number of “simpler” functions, depending only on
a few variables at a time, can be expressed with DNNs at complexity which is bounded by
the dimensionality of constituent functions in the composition and the size of the connectivity
graph, thereby alleviating the curse of dimensionality for this class.

1.2 Scope of the present results

In the present paper, we investigate the expressive power of DNNs for many-parametric response
functions of solutions of many-parametric operator equations, with holomorphic dependence on
the parameters. Such maps arise in a number of applications. We mention only elliptic PDEs
with uncertain, spatially heterogeneous, uncertain coefficients (see, e.g., [13, 2] and the refer-
ences there), PDEs posed in domains of uncertain geometry (see, e.g., [31, 23, 14, 24]), and
time-harmonic, electromagnetic scattering (see, e.g., [23]). Such models are ubiquitous in the
area of computational uncertainty quantification in engineering and in the sciences. Holomor-
phic parametric dependence of uncertain input data implies, for regular parametric operator
equations, holomorphic dependence of solutions on the parameters. As a consequence, response
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functions (and, in fact, manifolds of parametric solutions) admit sparse gpc expansions. This
sparsity in turn implies dimension independent approximation rates of various adaptive approx-
imation methods to approximate the parametric PDE solution manifold, and of the response
surfaces for so-called quantities of interest (QoIs for short). These are real-valued, linear or
non-linear solution functionals, i.e. superpositions of the data-to-solution map and of a QoI,
being a map from the (Banach) space accommodating the PDE solution into the real numbers.

While these remarks pertain to so-called forward problems described by parametric PDEs,
often also the corresponding inverse problems are of interest. The present results are also
relevant to these: in the Bayesian setting (see [34] and the references there), it has been shown
in [16, 33] that parametric holomorphy of the QoI is inherited by the Bayesian posterior density,
if it exists. The present results therefore imply that DNNs can also express these densities at
dimension-independent rates, opening a perspective of “deep Bayesian learning” in UQ. This
idea has been employed in the recent paper [35], which reports numerical experiments for a
Bayesian inverse problem (for a second order elliptic PDE with uncertain diffusion coefficient)
using DNNs.

1.3 Notation

We adopt standard notation, consistent with our previous works [37, 38]: N = {1, 2, . . . } and
N0 := N ∪ {0}. The symbol C will stand for a generic, positive constant that is independent of
any quantities determining the asymptotic behaviour of an estimate. It may change its value
even within the same equation.

Multiindices are denoted by ν = (νj)j∈N ∈ N
N
0 . The order of a multiindex ν is denoted by

|ν|1 :=
∑

j∈N
νj . For the countable set of “finitely supported” multiindices we write

F := {ν ∈ N
N

0 : |ν|1 <∞}.

The notation suppν stands for the support of the multiindex, i.e. suppν = {j ∈ N : νj 6= 0}.
The size of the support of ν ∈ F is |ν|0 = #(suppν). A subset Λ ⊆ F is called downward
closed, if ν = (νj)j∈N ∈ Λ implies µ = (µ)j∈N ∈ Λ for all µ ≤ ν. Here, the ordering “≤” on
F is defined as µj ≤ νj , for all j ∈ N. We write |Λ| to denote the finite cardinality of a set Λ.
For 0 < p <∞, denote by ℓp(F) the space of sequences t = (tν)ν∈F ⊂ R satisfying ‖t‖ℓp(F) :=

(
∑

ν∈F |tν |
p)1/p < ∞. As usual, ℓ∞(F) equipped with the norm ‖t‖ℓ∞(F) := sup

ν∈F |tν | < ∞
denotes the space of all uniformly bounded sequences.

We consider the set CN endowed with the product topology. Any subset such as [−1, 1]N is
then understood to be equipped with the subspace topology. For ε ∈ (0,∞) we write Bε := {z ∈
C : |z| < ε}. Furthermore BN

ε :=×j∈N
Bε⊂ C

N. Elements of CN will be denoted by boldface

characters such as y = (yj)j∈N ∈ [−1, 1]N. For ν ∈ F , standard notations yν :=
∏

j∈N
y
νj

j and
ν! =

∏

j∈N
νj ! will be employed (observing that these formally infinite products contain only a

finite number of nontrivial factors with the conventions 0! := 1 and 00 := 1).

1.4 Outline

The structure of this note is as follows: in Sec. 2, we introduce so-called (b, ε)-holomorphic
functions and review approximation rate bounds for their truncated gpc expansion. In Sec. 3, we
present the DNN approximation results. Sec. 3.1 introduces the architectures which are admitted
in our approximation results. Sec. 3.2 proves a basic result on the expressive power of ReLU
DNNs for the multiplication of n numbers. Sec. 3.3 indicates extension to smoother activation
functions. In Sec. 3.4 we establish the main results of this work, namely the approximation
of a real-valued (b, ε)-holomorphic parametric response map u to pointwise accuracy δ > 0, by
a DNN with (essentially, i.e. up to polylogarithmic factors) O(log δ) many hidden layers. The
total number of units in the NN is estimated using the sparsity of gpc expansions of u, which
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result from the property of (b, ε)-holomorphy of the parametric map u. Sec. 4 discusses some
consequences of our DNN expression results. We there also give an example of a parametric
one dimensional diffusion problem, which demands the approximation of a Banach space valued
response map via a NN. In Sec. 5 we give conclusions and possible further directions.

2 Generalized polynomial chaos approximation

To analyze the expressive power of deep NNs on countably-parametric, real-valued (or Banach
space-valued) maps, we shall draw upon results from [9, 10, 38] on sparse generalized polynomial
chaos approximation of such maps. To state these results in the required generality, with the
parameter domain U := [−1, 1]N and a real Banach space V , we consider maps u : U → V . We
are interested in separately holomorphic maps, i.e. maps which admit a holomorphic extension to
the complex domain with respect to each parameter yj ∈ [−1, 1], where y = (yj)j∈N ∈ U , with
quantitative control on the size of the domains holomorphy, as formalized in Def. 2.1 below.
Under certain assumptions, such maps allow a representation as a sparse Taylor generalized
polynomial chaos expansion. By this, we mean (formal, at this stage) expressions of the form

u(y) =
∑

ν∈F

tνy
ν , y ∈ U , (2.1)

with Taylor coefficients tν ∈ V for all ν ∈ F . The summability properties of the (norms of)
Taylor coefficients (‖tν‖V )ν∈F in (2.1) are crucial in assigning a meaning to gpc series like (2.1).
As for every y ∈ U and for every ν ∈ F it holds that |yν | ≤ 1, the summability (‖tν‖V )ν∈F ∈
ℓ1(F) implies the unconditional convergence in V of (2.1) for every y ∈ U . This summability is,
in turn, ensured by a suitable form of holomorphic continuation of the parametric map u : U →
V , which takes values in the complexification VC of V . By “complexification” we mean here the
space VC = V +iV with the so-called Taylor norm ‖v+iw‖VC

:= supt∈[0,2π) ‖ cos(t)v−sin(t)w‖V
for all v, w ∈ V , where i denotes the square root of −1 with arg(i) = π/2 (cp. [28]). We
recapitulate principal definitions and results from [13, 10, 9, 38] and the references there.

2.1 (b, ε)-holomorphy

The notion of (b, ε)-holomorphy, which is defined below, has been found to be a sufficient
condition on the parametric map U ∋ y 7→ u(y) ∈ V , in order that u possesses an expansion
of the type (2.1) with coefficients satisfying (‖tν‖V )ν∈F ∈ ℓp(F) for some p ∈ (0, 1). The fact
that the sequence of norms of the Taylor coefficients belongs to ℓp(F) is the crucial property
required to establish convergence rates of certain partial sums of the Taylor gpc expansion. We
briefly review this result and its implications in the present and the subsequent subsection.

Definition 2.1 ((b, ε)-Holomorphy). Let V be a Banach space. Assume given a monotonically
decreasing sequence b = (bj)j∈N of positive reals bj such that b ∈ ℓp(N) for some p ∈ (0, 1]. A
poly-radius ρ ∈ [1,∞)N is called (b, ε)-admissible for some ε > 0 if

∑

j∈N

bj(ρj − 1) ≤ ε . (2.2)

A continuous function u : U → V is called (b, ε)-holomorphic if there exists a constant Cu <∞
such that the following holds:

For every (b, ε)-admissible ρ, there exists an extension ũ : Bρ → VC of u, i.e. ũ(y) = u(y)
for all y ∈ U , such that z 7→ ũ(z) : Bρ → VC is holomorphic as a function of each zj ∈ Bρj ,
j ∈ N, and such that sup

z∈Bρ
‖u(z)‖VC

≤ Cu.
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We remind that continuity in Def. 2.1 means continuity with respect to the subspace topology
on U ⊂ C

N, where C
N is equipped with the product topology.

Definition 2.1 has been similarly stated in [10]. The sequence b in Definition 2.1 controls the
size of the domains of analytic continuation of the parametric map with respect to the parameters
yj ∈ y: the stronger the decrease of b, the faster the radii ρj of (b, ε)-admissible sequences ρ

may increase. Whereas the sequence b (or, more precisely, the summability exponent p such
that b ∈ ℓp(N)) will determine the algebraic rate at which the Taylor coefficients tend to 0
(see Thm. 2.7 ahead), the parameter ε > 0 merely influences certain constants and can be
considered to be of minor importance. To illustrate the notion of (b, ε)-holomorphy, we present
as a standard example the solution to an affine-parametric, linear elliptic PDE; we hasten to
add that (b, ε)-holomorphy applies considerably larger classes of equations [10, 37].

Example 2.2. In a bounded Lipschitz domain D ⊂ R
d, d ∈ N, we consider the elliptic diffusion

equation
−div(a∇u) = f, (2.3)

with homogeneous Dirichlet boundary conditions u|∂D = 0. In (2.3), the scalar diffusion coeffi-
cient a ∈ L∞(D) is assumed to satisfy 0 < r < a < R < ∞ almost everywhere in D. Denoting
V = H1

0 (D) and V ′ = H−1(D), for any f ∈ V ′, the weak formulation of (2.3): find

u ∈ V such that

∫

D

a∇u · ∇v = f(v), ∀ v ∈ V, (2.4)

admits a unique solution u ∈ V .
We consider affine-parametric diffusion coefficients a = a(y), where y = (yj)j∈N is a se-

quence of real-valued parameters ranging in U = [−1, 1]N. For a ∈ L∞(D) and a sequence
of fluctuations (ψj)j∈N ⊂ L∞(D,R) define bj := ‖ψj‖L∞(D) for all j ∈ N. Assuming that
b = (bj)j∈N ∈ ℓ1(N), the affine parametric diffusion coefficient

∀y ∈ U : a(y, ·) = ā(·) +
∑

j∈N

yjψj(·) ∈ L∞(D), (2.5)

is well-defined. Expansions (2.5) arise for example, from Fourier-, Karhunen-Loève-, spline- or
wavelet series representations of a.

Assume that a ≡ 1 and b ∈ ℓp(N) for some p ∈ (0, 1) and additionally that ‖b‖ℓ1(N) < 1.
Then, we claim that the solution u(y) of (2.4) with the y-dependent diffusion coefficient a(y, ·)
in (2.5) is then well-defined for all y ∈ U and (b, ε)-holomorphic as long as ε > 0 is small
enough: for ρ ∈ [1,∞)N being (b, ε)-admissible, and for every z ∈ Bρ,

ess inf
x∈D

ℜ(a(z, x)) = ess inf
x∈D



1 + ℜ
∑

j∈N

zjψj(x)



 ≥ 1−
∑

j∈N

ρjbj

= 1−
∑

j∈N

bj −
∑

j∈N

(ρj − 1)bj ≥ 1− ‖b‖ℓ1(N) − ε > 0

provided that 0 < ε < 1−‖b‖ℓ1(N). The fact that the real part of the diffusion coefficient a(z, x)
is strictly positive implies that for all z ∈ Bρ (in particular for y ∈ U ⊂ Bρ) there is a unique
solution u(z) ∈ VC ≃ H1

0 (D,C) of the variational problem (2.4) (this follows by a complex
version of the Lax-Milgram Lemma, see for example [8, Lemma 2.6]). Since ℜ(a(z, x)) ≥
1 − ‖b‖ℓ1(N) − ε > 0 independent of of ρ, z and x, one can show that there is an upper bound
Cu on sup

z∈Bρ
‖u(z)‖VC

independent of the (b, ε)-admissible ρ. Continuity of y 7→ u(y) :
U → V follows from continuity of y 7→ a(y, ·) : U → L∞([0, 1]). This, in turn, follows from
(‖ψj(·)‖L∞(D))j∈N = b ∈ ℓ1(N). Finally, holomorphy of u(z) ∈ VC as a function of each zj ∈ Bρj

can either be deduced directly considering the difference quotient, or by a holomorphic version of
the implicit function theorem. For more details, we refer to [10, 11] and to the references there.
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We next recall a proposition, which provides estimates on the norm of the Taylor coefficients

tν :=
1

ν!
(∂ν

y
u)(y)

∣
∣
∣
y=0

∈ V, ν ∈ F , (2.6)

of a (b, ε)-holomorphic function u : U → V , and thus lays the groundwork for showing (‖tν‖X)ν∈F ∈
ℓp(F).

Proposition 2.3. Suppose that u : U → V is (b, ε)-holomorphic.
Then tν ∈ V in (2.6) is well-defined for every ν ∈ F and u admits the Taylor gpc expansion

u(y) =
∑

ν∈F

tνy
ν , (2.7)

which is unconditionally convergent for all y ∈ U . With Cu > 0 as in Def. 2.1, for every ν ∈ F
and for every (b, ε)-admissible poly-radius ρ (i.e., (2.2) holds) we have

‖tν‖V ≤ Cuρ
−ν . (2.8)

The bound (2.8) is a consequence of the separate holomorphy of u on the poly-disc Bρ (as
stated in Def. 2.1) and of the Cauchy integral theorem [20, Thm. 2.1.2], see the proof of [12,
Lemma 2.4]. The unconditional convergence of the series (2.7) on U is for example discussed in
[12], also see [20, Sec. 2.1] for convergence in the finite dimensional case.

For future reference we state three lemmata required for proving summability of sequences
allowing bounds of the type (2.8). Let in the following α = (αj)j∈N denote a sequence (not
necessarily monotonic) of nonnegative real numbers.

Lemma 2.4 ([12, Lemma 7.1]). Let p ∈ (0,∞). The sequence (αν)ν∈F belongs to ℓp(F), iff
‖α‖ℓp(N) <∞ and ‖α‖ℓ∞(N) < 1.

Lemma 2.5 ([12, Thm. 7.2]). Let p ∈ (0, 1]. The sequence (αν |ν|!/ν!)ν∈F belongs to ℓp(F) iff
‖α‖ℓp <∞ and ‖α‖ℓ1 < 1.

Lemma 2.6 ([38, Lemma 2.9]). Let x = (xj)j∈N ∈ ℓp(N) be a monotonically decreasing sequence
of nonnegative numbers for some p > 0. Then xj ≤ ‖x‖ℓp(N)j

−1/p for all j ∈ N.

2.2 Summability of Taylor coefficients

As has been observed in several references (see, e.g., [37, 10]), (b, ε)-holomorphic functions taking
values in a Banach space V with b ∈ ℓp(N) for some 0 < p < 1 admit sequences (tν)ν∈F of
Taylor coefficients whose ‖◦‖V -norms belong to ℓp(F). This “p-summability” implies dimension-
independent n-term gpc approximation rate bounds. Our analysis of the expressive power of
DNNs on such parametric solutions families will be based on a version of these results as stated
in the next theorem. In the following, we denote by ej ∈ F the jth unit multiindex, i.e. (ej)i = 1
if i = j and (ej)i = 0 otherwise.

Theorem 2.7. Let u be (b, ε)-holomorphic for some b ∈ ℓp(N), p ∈ (0, 1) and, for ν ∈ F let
tν ∈ V denote the Taylor coefficient defined in (2.6). Then (‖tν‖V )ν∈F ∈ ℓp(F). Furthermore,
there exists a finite constant C > 0 as well as a sequence of nested, finite and downward closed
index sets Λn ⊂ F such that for all n ∈ N it holds |Λn| = n and

(i)
∑

ν /∈Λn
‖tν‖V ≤ Cn−1/p+1,

(ii) sup
ν∈Λn

|ν|1 ≤ C(1 + log(n)).

Moreover, ej ∈ Λn implies ei ∈ Λn for all i ≤ j.
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Since it will allow us to discuss results based on related but different hypotheses than the
ones of Def. 2.1 (see. Sec. 4 ahead), we provide part of the above theorem as a separate Lemma,
before proceeding to the proof of Thm. 2.7.

Lemma 2.8. Let r ∈ [1,∞) and p ∈ (0, 1). Let (tν)ν∈F ∈ (0,∞)F and assume that β =
(βj)j∈N ∈ ℓpr/(r−p)(N) is monotonically decreasing with βj ∈ (0, 1) for all j ∈ N, and such that
∑

ν∈F (β
−νtν)

r <∞.
Then (tν)ν∈F ∈ ℓp(F). Moreover, there exists a constant C > 0 such that for every n ∈ N

there exists a downward closed index set Λn ⊂ F with |Λn| = n and such that (i)
∑

ν /∈Λn
tν ≤

Cn−1/p+1 and (ii) sup
ν∈Λn

|ν|1 ≤ C(1 + log(n)). Moreover, ej ∈ Λn implies ei ∈ Λn for all
i ≤ j.

Proof. First we show (tν)ν∈F ∈ ℓp(F). This follows with Hölder’s inequality, since it holds

∑

ν∈F

tν
p =

∑

ν∈F

tν
pβ−pνβpν ≤

(
∑

ν∈F

(tνβ
−ν)r

) p
r
(
∑

ν∈F

βν
pr

r−p

) r−p
r

<∞, (2.9)

where the last sum is finite since (βν)ν∈F ∈ ℓpr/(r−p)(F) according to Lemma 2.4 and because
β ∈ ℓpr/(r−p)(N) as well as ‖β‖ℓ∞ = maxj∈N βj < 1 (here we have used βj → 0 which follows
by β ∈ ℓpr/(r−p)(N)).

Next fix 0 < q <∞ such that pr/(r − p) > q and set for ν ∈ F

αν :=

{

j−1/q if ν = ej ,

0 otherwise.
(2.10)

Now define ζν := max{βν , αν}. Then (ζν)ν∈F ∈ ℓpr/(r−p)(F) since (αej
)j∈N ∈ ℓpr/(r−p)(N) and

(βν)ν∈F ∈ ℓpr/(r−p)(F). Moreover

C0 :=
∑

ν∈F

(ζ−1
ν
tν)

r ≤
∑

ν∈F

(β−νtν)
r <∞,

by assumption.
Let π : N → F be a bijection such that the sequence (ζπ(j))j∈N is monotonically decreasing

in j, and such that {π(1), . . . , π(n)} ⊂ F is downward closed for any n ∈ N. This is possible,
because ζν is monotonically decreasing in the sense that ν ≤ µ implies ζν ≥ ζµ. Define
Λn := {π(j) : 1 ≤ j ≤ n} and Λc

n := F\Λn. Since (βj)j∈N is monotonically decreasing, both
(αej

)j∈N and (βej )j∈N are monotonically decreasing in j. Thus the same is true for (ζej
)j∈N.

Consequently, if ej ∈ Λn and i ≤ j, then ζei ≥ ζej and we can choose π such that ej ∈ Λn

necessarily implies ei ∈ Λn for all i ≤ j.
With r′ ∈ (1,∞] denoting the Hölder conjugate of r we get

∑

ν∈Λc
n

tν =
∑

ν∈Λc
n

ζνζ
−1
ν
tν ≤ ‖(ζν)ν∈Λc

n
‖ℓr′ (Λc

n)
‖(ζ−1

ν
tν)ν∈Λc

n
‖ℓr(Λc

n)
≤ C

1/r
0 ‖(ζν)ν∈Λc

n
‖ℓr′ (Λc

n)
.

(2.11)
With Lemma 2.6 we conclude that there exists a constant C such that ζπ(j) ≤ Cj−(r−p)/(pr) for
all j ∈ N. Hence, the last quantity in (2.11) can be bounded for r > 1, i.e. r′ = r/(r − 1) <∞,
by

‖(ζν)ν∈Λc
n
‖ℓr′ (Λc

n)
≤



C
∑

j>n

j−
r

r−1
r−p
pr





r−1
r

≤ C
(

n1− r
r−1

r−p
rp

) r−1
r

≤ Cn
r−1
r − r−p

rp = Cn−1/p+1,
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where we have used (r(r−p))/((r−1)pr) > 1 which follows by p ∈ (0, 1). For r = 1, i.e. r′ = ∞,
we use ‖(ζν)ν∈Λc

n
‖ℓr′ (Λc

n)
≤ C supj>n j

1−1/p ≤ Cn−1/p+1 instead (where we have again employed

Lemma 2.6). This shows (i).
To show (ii) note that by definition of (αν)ν∈F (cp. (2.10)) and (ζν)ν∈F , it holds min{ζν :

ν ∈ Λn} ≥ n−1/q. On the other hand, with c := supj∈N βj < 1 we have sup{ζν : ν ∈ F , |ν|1 =

d} ≥ sup{βν : ν ∈ F , |ν|1 = d} ≥ cd. Now, if n−1/q > cd0 for some d0 ∈ N, then it must hold
maxν∈Λn |ν|1 < d0. Hence with f(d) := cd and f−1(x) = log(x)/ log(c),

max
ν∈Λn

|ν|1 ≤ f−1(n−1/q) = O(log(n)) as n→ ∞,

which concludes the proof.

Proof of Thm. 2.7. The Taylor coefficients of (b, ε)-holomorphic maps admit bounds of the fol-
lowing type (see [12, 13] and in particular the proof of [10, Thm. 2.2])

‖tν‖V ≤ Cκ|νE | |νF |!

νF !
γνF , ν ∈ F . (2.12)

Here, J ∈ N, κ ∈ (0, 1) as well as γ ∈ ℓp(N) (monotonically decreasing) with ‖γ‖ℓp(N) < 1 are

fixed, and νE := (ν1, . . . , νJ) ∈ N
J
0 as well as νF := (νJ+1, νJ+2, . . . ) ∈ N

N
0 . This is a consequence

of Prop. 2.3, and we refer again to [12, 13, 10] for proofs of such statements. There, it is also
shown that (2.12) implies (‖tν‖V )ν∈F ∈ ℓp(F). Moreover, since supj∈N γj ≤ ‖γ‖ℓ1(N) < 1, by
increasing κ if necessary, there is no loss of generality in assuming that κ ∈ (0, 1) and

2κ

1 + κ
> sup

j∈N

γ1−p
j . (2.13)

We now choose a particular sequence β = (βj)j∈N ∈ ℓp/(1−p)(N) with ‖β‖ℓ∞(N) < 1. It is defined
as follows

βj :=

{
2κ
1+κ if j ≤ J,

γ1−p
j−J if j > J.

Evidently, (βj)j∈N is monotonically decreasing, because of (2.13) and because γ is monotonically

decreasing. Then for δ= (δj)j∈N with δj := γjβ
−1
J+j = γ

1−(1−p)
j we have

‖δ‖ℓ1(N) =
∑

j∈N

γ
1−(1−p)
j =

∑

j∈N

γpj = ‖γ‖pℓp(N) < 1. (2.14)

Now, with (2.12),

∑

ν∈F

β−ν‖tν‖V ≤ C
∑

ν∈F

κ|νE | |νF |!

νF !
γνF

(
1 + κ

2κ

)|νE | ∏

j>J

β
−νj

j

= C
∑

ν∈F

κ|νE |

(
1 + κ

2κ

)|νE |
|νF |!

νF !

∏

j∈N

γ
νJ+j

j β
−νJ+j

J+j

= C
∑

ν∈NJ
0

(
1 + κ

2

)|ν| ∑

µ∈F

|µ|!

µ!
δµ.

By Lemma 2.4 and Lemma 2.5 the last two sums are finite, since (1 + κ)/2 < 1 and because
of (2.14). This proves

∑

ν∈F β−ν‖tν‖V < ∞. Furthermore, Lemma 2.4 gives (βν)ν∈F ∈

ℓp/(1−p)(F). We may thus employ Lemma 2.8 with r = 1, and use that β = (βj)j∈N is a
monotonically decreasing sequence by construction which concludes the proof.
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3 Deep neural network approximations

3.1 DNN architecture

We consider so-called feedforward NNs (FFNNs for short). They are composed of layers of
computational nodes and define a function f : Rn → R. We denote by L the number of hidden
layers in the NN, by Nℓ the number of compute nodes in layer ℓ for ℓ ∈ {1, . . . , L}.

The vector x = (x1, ..., xn) ∈ R
n will denote the input of the DNN, and we set N0 := n.

Next, zℓj denotes the output of unit j in layer ℓ, bℓj denotes the bias of unit j in layer ℓ, and

wℓ
i,j is the weight connecting the ith unit in layer ℓ − 1 with the jth unit in layer ℓ. For an

activation function σ : R → R, outputs between layers of the FFNN are then characterized by
the following maps: the first hidden layer

z1j := σ

(
n∑

i=1

w1
i,jxi + b1j

)

, j ∈ {1, . . . , N1} , (3.1)

the L− 1 remaining hidden layers

zℓ+1
j := σ

(
Nℓ∑

i=1

wℓ+1
i,j zℓi + bℓ+1

j

)

, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} , (3.2)

and the output layer

f(x) :=

NL∑

i=1

wL+1
i,1 zLi + bL+1

1 . (3.3)

As an activation function σ(·) in (3.1) - (3.2) we either consider the so-called rectified linear
unit (ReLU) given by σ(x) = max{0, x} for x ∈ R or general, smooth, nonlinear activation
functions. We refer to Prop. 3.7 ahead for the precise statement of the term “nonlinear”
activation function. As is customary in the theory of NNs, the number of hidden layers L of a
NN is referred to as depth and the total number of nodes and nonzero weights is referred to as
size of the NN. Similarly, by the number of weights of a network, we always mean the number
of nonzero weights. With a DNN f as in (3.1)-(3.3), we define

size(f) := |{(i, j, ℓ) : wℓ
i,j 6= 0}|+

L∑

ℓ=0

Nℓ and depth(f) := L.

The weights wℓ
i,j for ℓ ∈ {1, . . . , L+ 1}, i ∈ {1, . . . , Nℓ−1} and j ∈ {1, . . . , Nℓ}, are assumed to

take values in R, i.e. we do not consider quantization as e.g. in [7].

3.2 Expressive power of ReLU DNNs

To prove complexity bounds on the expressive power of DNNs for high dimensional parametric
maps, we exploit the (b, ε)-holomorphy and the resulting sparsity of their Taylor gpc representa-
tions (2.7). Our point of departure will be the n-term truncation of the Taylor polynomial chaos
expansion of the parametric map u(y) : U → R, which is obtained via the gpc approximation
result Theorem 2.7. In particular, we shall use recent, quantitative bounds on expressing mul-
tivariate polynomials by DNNs, from [36]. There it was observed, that deep NNs allow efficient
approximation of x 7→ x2, in the sense that the number of required layers, units and weights
only depends logarithmically on the absolute accuracy δ > 0, up to which this function is to
be approximated. This yields efficient approximation of multiplication, and ultimately entails
corresponding results on the approximation of polynomials. We now recall and present some
core statements from [36] in a form required in our subsequent analysis.
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...

x

f0g1

f1g2

fm−2gm−1

fm−1gm

fm

(a) Approximation of x2

x y

fm(|x|) fm(|y|) fm(|x+ y|)

×̃(x, y) = 16fm(|x+y|/4)−4fm(|x|/2)−4fm(|y|/2)
2

(b) Approximation of xy

x1 x2 x3 x4

×̃(x1, x2) ×̃(x3, x4)

×̃(.., ..)

∏̃4
j=1xj = ×̃(×̃(x1, x2), ×̃(x3, x4))

(c) Approximation of
∏n

j=1 xj

Figure 1: Subfigure (a) shows the network approximating [0, 1] ∋ x 7→ x2 via fj(x) = fj−1(x) −
gj(x)/2

2j , cp. (3.5). Subfigure (b) shows the network approximating [0, 2]2 ∋ (x, y) 7→ xy. The
boxes contain the network from subfigure (a) e.g. applied to |x|/2 = σ(x/2) + σ(−x/2). Subfigure
(c) shows the network approximating

∏n
j=1

xj for n = 4 where |xj | ≤ 1 for all j. The boxes contain

the approximate multiplication ×̃ from (b).

As mentioned above, the main task is to approximate x 7→ x2 for x ∈ [0, 1]. This is achieved in
[36] through the functions fm which denote the continuous, piecewise linear spline interpolation
of x2 at the equispaced nodes j2−m for j = 0, . . . , 2m. The pointwise error of this approximation
is

sup
x∈[0,1]

|x2 − fm(x)| = 2−2m−2. (3.4)

Denote again by σ(x) = max{0, x} the ReLU activation function. With f0(x) := x = σ(x) for
x ∈ [0, 1], the function fm can be exactly expressed by a NN via

fm(x) = fm−1(x)−
gm(x)

22m
∀ m ≥ 1, (3.5a)

where gm = g ◦ · · · ◦ g is the m-fold composition of g (gm is a “sawtooth function”), and

g(x) = 2σ(x)− 4σ(x− 1/2) + 2σ(x− 1) =

{

2x if x < 1
2 ,

2(1− x) if x ≥ 1
2 ,

(3.5b)

is the linear combination of 3 ReLUs. This shows that fm is the output of a DNN with m hidden
layers, each exhibiting 4 ReLUs as displayed in Fig. 1 (a). For some fixed M > 0 and a, b ∈ R

with |a|, |b| ≤M , one can write ab = 2M2((|a+ b|/(2M))2 − (|a|/(2M))2 − (|b|/(2M))2) where
|a+ b|/(2M), |a|/(2M) and |b|/(2M) are all in the interval [0, 1]. Replacing the squared terms
with the NN yields a NN approximating the multiplication of two numbers in [−M,M ]. This
argument, presented in more detail in [36, Prop. 3], allows to approximate the multiplication
of two numbers in [−M,M ] with accuracy δ > 0 by a network ×̃ : M ×M → R of size and
depth O(log(1/δ)). We next generalize this result, by additionally taking into account the
approximation of the gradient of the multiplication (a, b) 7→ ab.
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Proposition 3.1. Let M > 0 and δ ∈ (0, 1). There exists a ReLU NN ×̃ with two input units
such that

sup
|a|,|b|≤M

|ab− ×̃(a, b)| ≤ δ and ess sup
|a|,|b|≤M

max

{∣
∣
∣
∣
b−

d

da
×̃(a, b)

∣
∣
∣
∣
,

∣
∣
∣
∣
a−

d

db
×̃(a, b)

∣
∣
∣
∣

}

≤ δ,

(3.6)
where d

da ×̃(a, b) and d
db ×̃(a, b) denote weak derivatives. It holds size(×̃) = O(log(1/δ)) and

depth(×̃) = O(log(1/δ)) as δ ↓ 0. Moreover, for every a ∈ M , there exists a finite set Na ⊆ M
such that b 7→ ×̃(a, b) is strongly differentiable at all b ∈ (−M,M)\Na.

Proof. Set

×̃(a, b) = 2M2

(

fm

( |a+ b|

2M

)

− fm

( |a|

2M

)

− fm

( |b|

2M

))

, (3.7)

where fm is the piecewise linear interpolant of x2 at the nodes xj = 2−mj, j = 0, . . . , 2m. Then

ess sup
x∈[0,1]

|2x− f ′m(x)| = sup
j=0,...,2m−1

sup
x∈[xj ,xj+1]

|2x− f ′m(x)| = sup
j=0,...,2m−1

sup
x∈[xj ,xj+1]

∣
∣
∣
∣
∣
2x−

x2j+1 − x2j
xj+1 − xj

∣
∣
∣
∣
∣

= sup
j=0,...,2m−1

sup
x∈[xj ,xj+1]

|2x− (xj+1 + xj)| = sup
j=0,...,2m−1

|xj+1 − xj | = 2−m. (3.8)

For every a, b ∈ [0,M ]\{2Mxj : j = 0, . . . , 2m} such that a+ b /∈ {2Mxj : j = 0, . . . , 2m},

∣
∣
∣
∣
b−

d

da
×̃(a, b)

∣
∣
∣
∣
=M

∣
∣
∣
∣

2(a+ b)

2M
−

2a

2M
− f ′m

(a+ b

2M

)

+ f ′m

( a

2M

)
∣
∣
∣
∣
≤ 2M2−m.

Choosing m = ⌈− log2(δ/(2M))⌉ = O(log(1/δ)) gives ess sup0≤a,b≤M |b− d
da ×̃(a, b)| ≤ δ. Due to

the symmetry in a and b, and by distinguishing between all cases where a, b and a+ b are either
negative or positive, we obtain the second inequality in (3.6). The proof of the first inequality
is similar by using supx∈[0,1] |x

2− fm(x)| ≤ 2−2m instead of (3.8). Finally, as depicted in Fig. 1,
the network fm has m hidden layers and a total size of O(m) = O(log(1/δ)), which gives the
statement about the size and depth of ×̃ in (3.7).

The existence of Na follows by the fact that fm is a piecewise linear interpolant of x2 in
2m + 1 nodes and by the definition of ×̃ in (3.7).

Proposition 3.1 allows to approximate the multiplication
∏n

j=1 xj of n numbers with n ∈ N

arbitrary. We next provide a proof of this result, which slightly deviates from the constructions
employed in [36] (see Rmk. 3.4). The following short Lemma will be required in the proof.

Lemma 3.2. Let a0 = 1, ε ≥ 0 fixed and aj+1 := a2j + ε, j ∈ N0. Then aj ≤ (1 + 2ε)2
j

for all
j ∈ N.

Proof. We prove by induction that aj ≤ (1+ 2ε)2
j

− ε. This is true for j = 1 since a1 = 1+ ε ≤
(1 + 2ε)2 − ε. For the induction step we obtain

aj+1 = a2j + ε ≤ ((1 + 2ε)2
j

− ε)2 + ε = (1 + 2ε)2
j+1

− 2(1 + 2ε)2
j

ε+ ε2 + ε

≤ (1 + 2ε)2
j+1

− 2ε− 4ε2 + ε2 + ε ≤ (1 + 2ε)2
j+1

− ε,

which shows the claim.

Proposition 3.3. Let δ ∈ (0, 1). There exists a ReLU NN ˜∏ with n input units such that for

x1, . . . , xn with |xi| ≤ 1 for all i, it holds |
∏n

j=1 xj −
˜∏(x1, . . . , xn)| ≤ δ.

There exists a constant C such that for every n ∈ N and for every accuracy 0 < δ < 1 it
holds size( ˜

∏
) ≤ C(1 + n log(n/δ)) and depth( ˜

∏
) ≤ C(1 + log(n) log(n/δ)).
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Proof. Step 1: We construct the network. With A := {2j : j ∈ N} let ñ = min{x ≥ n : x ∈ A}
and define xj := 1 for every j ∈ {n+ 1, . . . , ñ}. We note that ñ ≤ 2n. We introduce ×̃ similar
as in Prop. 3.1:

×̃(x, y) :=
16fm(|x+ y|/4)− 4fm(|x|/2)− 4fm(|y|/2)

2
,

where m = C1 log(ñ/δ) and the constant C1 ≥ 1/ log(2) is to be chosen subsequently indepen-
dent of ñ and δ. Then ×̃ is a NN approximating the multiplication of two numbers in [−2, 2]
such that

(i) the number of layers, weights and units is bounded by O(m) = O(C1 log(ñ/δ)) (see Fig. 1
(a)),

(ii) for all |x|, |y| ≤ 2 it holds

|×̃(x, y)− xy| =

∣
∣
∣
∣
×̃(x, y)−

16(|x+ y|/4)2 − 4(x/2)2 − 4(y/2)2

2

∣
∣
∣
∣

≤
16|fm(|x+ y|/4)− (|x+ y|/4)2|+ 4|fm(|x|/2)− (|x|/2)2|+ 4|fm(|y|/2)− (|y|/2)2|

2

≤
(16 + 4 + 4)2−2m−2

2
= 3 · 2−2m,

where we have used (3.4),

(iii) for all |x|, |y| ≤ 2 it holds |×̃(x, y)| ≤ |xy|+ 3 · 2−2m.

For any even positive integer k we define

R(y1, . . . , yk) := (×̃(y1, y2), . . . , ×̃(yk−1, yk)) ∈ R
k/2

and (cp. Fig. 1 (c))
∏̃

(x1, . . . , xn) := R ◦ · · · ◦R
︸ ︷︷ ︸

log2(ñ)

(x1, . . . , xñ) ∈ R. (3.9)

In the following, we use the notation Rlog2(ñ) instead which records in the exponent the number
of compositions.

Step 2: We now show that, upon choosing C1 large enough, it holds Rj(x1, . . . , xñ) ∈

[−2, 2]ñ/2
j

for all j = 1, . . . , log2(ñ). Define ε := 3 · 2−2m where as above m = C1 log(ñ/δ),
i.e. ε = ε(ñ). By item (iii) and since |xj | ≤ 1 for all j, we get R(x1, . . . , xñ) ∈ [−1− ε, 1 + ε]ñ/2

and inductively with a0 := 1, aj+1 := a2j + ε it holds Rj(x1, . . . , xñ) ∈ [−aj , aj ]
ñ/2j for j =

1, . . . , log2(ñ). Using Lemma 3.2, it suffices to show that (1 + 2ε(ñ))2
log2(ñ)

= (1 + 2ε(ñ))ñ ≤ 2
for all ñ ∈ N. We have for 0 < δ ≤ 1

(1 + 2ε(ñ))ñ = (1 + 2(3 · 2−2C1 log(ñ/δ)))ñ

≤ (1 + 6 · 2−2C1 log(ñ))ñ = (1 + 6ñ−2 log(2)C1)ñ

= exp
(

ñ log(1 + 6ñ−2 log(2)C1)
)

. (3.10)

Since log(1 + x) = x+O(x2) asymptotically as x→ 0, the exponent behaves like

6ñ1−2 log(2)C1 → 0

as either (C1 > 1/(2 log(2)) and) ñ→ ∞ or (ñ ≥ 2 and) C1 → ∞. Hence supñ∈N(1+2ε(ñ))ñ ≤ 2
provided that C1 > 0 is large enough.

Step 3: We estimate the error. By item (ii) it holds |×̃(x, y)− xy| ≤ ε = 3 · 2−2m for all |x|,

|y| ≤ 2. We claim that for all r ∈ N and all b1, . . . , b2r such that Rj(b1, . . . , b2r ) ∈ [−2, 2]ñ/2
j

for
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all j = 0, . . . , r, it holds that |Rr(b1, . . . , b2r )−
∏2r

j=1 bj | ≤ (4r−1)ε. Note that for C1 ≥ 1/ log(2)

our global choice m = C1 log(ñ/δ) ensures ε = 3 · 2−2m ≤ 3(δ/ñ)2 ≤ 3δ/ñ2. With r = log2(ñ)
and the statement from Step 2, this will prove the desired bound
∣
∣
∣
∣
∣
∣

n∏

j=1

xj −
∏̃

(x1, . . . , xn)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

ñ∏

j=1

xj −
∏̃

(x1, . . . , xñ)

∣
∣
∣
∣
∣
∣

≤ (ñ2 − 1)ε ≤ (ñ2 − 1)3δ/ñ2 ≤ 3δ .

To verify the above claim, we proceed by induction over r. The case r = 1 is trivial since by
assumption |R(b1, b2)− b1b2| = |×̃(b1, b2)− b1b2| ≤ ε ≤ (4r − 1)ε. For the induction step, note
that Rr(b1, . . . , b2r ) = ×̃(Rr−1(b1, . . . , b2r−1), Rr−1(b2r−1+1, . . . , b2r )). We get

∣
∣
∣
∣
∣
∣

2r∏

j=1

bj −Rr(b1, . . . , b2r )

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

2r−1
∏

j=1

bj

2r∏

i=2r−1+1

bi − ×̃(Rr−1(b1, . . . , b2r−1), Rr−1(b2r−1+1, . . . , b2r ))

∣
∣
∣
∣
∣
∣

≤
∣
∣×̃(Rr−1(b1, . . . , b2r−1), Rr−1(b2r−1+1, . . . , b2r ))−Rr−1(b1, . . . , b2r−1)Rr−1(b2r−1+1, . . . , b2r )

∣
∣

+

∣
∣
∣
∣
∣
∣

2r−1
∏

j=1

bj

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2r∏

i=2r−1+1

bi −Rr−1(b2r−1+1, . . . , b2r )

∣
∣
∣
∣
∣
∣

+
∣
∣Rr−1(b2r−1+1, . . . , b2r )

∣
∣

∣
∣
∣
∣
∣
∣

2r−1
∏

j=1

bj −Rr−1(b1, . . . , b2r−1)

∣
∣
∣
∣
∣
∣

.

We denote the last three terms by T1+T2+T3. To bound T1 we use that s1 := Rr−1(b1, . . . , b2r−1),
s2 := Rr−1(b2r−1+1, . . . , b2r ) ∈ [−2, 2] by assumption, which gives T1 = |×̃(s1, s2)− s1s2| ≤ ε by

(ii). For T2 we use |
∏2r−1

j=1 bj | ≤ 1 (since |bi| ≤ 1 for all i) and the induction hypothesis which

gives T2 ≤ (4r−1 − 1)ε. In the same way we obtain T3 ≤ 2(4r−1 − 1)ε, where we employed
|Rr−1(b2r−1+1, . . . , b2r )| ≤ 2. In all, T1 + T2 + T3 ≤ (1 + 4r−1 − 1 + 2(4r−1 − 1))ε ≤ (4r − 1)ε,
which proves the claim.

Step 4: Finally we sum up all layers, weights and units. The operator ˜∏ in (3.9) describes a
NN with O(log2(ñ) log(ñ/δ)) layers and with O(ñ log(ñ/δ)) weights and ReLUs: first note that
we may use one layer to create the values 1 = xn+1 = · · · = xñ as 1 = xj = σ(1 + 0 · x1) for
j = n + 1, . . . , ñ and write xj = σ(xj) − σ(−xj) for j = 1, . . . , n to copy the n input values
x1, . . . , xn to the first hidden layer. Next, the first application of R employs ñ/2 times the NN ×̃
with the inputs from the first hidden layer. Hence, by (i) this adds O(log(ñ/δ)) layers and in total
O(log(ñ/δ)ñ/2) weights and units. For the second application of R we employ the NN ×̃ exactly
ñ/4 times, which adds another O(log(ñ/δ)) layers and O(log(ñ/δ)ñ/4) weights and units. After
log2(ñ) applications of R we end up with O(log2(ñ) log(ñ/δ)) layers and O(log(ñ/δ)ñ) weights
and units. Since ñ ≤ 2n, this shows that the network uses the stated number of units, weights
and layers.

Remark 3.4. The proof in [36] uses ×̃(a1, ×̃(a2, . . . , ×̃(an−1, an))) to approximate
∏n

j=1 aj.
This would give O(n log(n/δ)) layers in Prop. 3.3. On the other hand, this construction has the
advantage of giving all products

∏n
j=l aj for l = 1, . . . , n in between, which is convenient when

approximating a polynomial
∑n

j=1 cjx
j where all values x, . . . , xn are needed.

Remark 3.5. Similar results in terms of the depth and number of units as we have cited here
were obtained in [26] using a NN composed of ReL and BiS (“binary step”) units.

Remark 3.6. Feedforward ReLU networks cannot exactly represent the multiplication of two (or
n ≥ 3) real numbers, since the output is necessarily a piecewise linear function. Other architec-
tures, such as the recently proposed “sum-product-networks” [30], make stronger assumptions:
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they stipulate availability of so-called “multiplication units”, i.e. of units returning the exact
product of two inputs. In deep sum-product-networks, multiplying n numbers becomes trivial.
Results analogous to the present ones will also hold for such sum-product-networks, with better
complexity bounds. As ReLU NNs are widely used currently, we do not elaborate.

3.3 Smoother activation functions

In [32], the authors show that for smooth (nonlinear) activation functions σs, the function
x 7→ x2 can in fact be approximated to arbitrary accuracy with a fixed number of units. The
idea is to assume that there exists x0 ∈ R such that σs(x0 + h) = c0 + c1h + c2h

2 + O(x3) as
h → 0, for c0 = σs(x0), c1 = σ′

s(x0) and c2 = σ′′
s (x0) 6= 0 (since σs is nonlinear, there must be

at least one point in R at which the second derivative is nonzero). Then

f(h) :=
σs(x0 + h) + σs(x0 − h)− 2c0

2c2
= h2 +O(h3) as h→ 0.

Introducing the scaling factor λ > 0, it holds

|λ2f(x/λ)− x2| = |λ2O(x3/λ3)| as x/λ→ 0.

This shows that for arbitrary M > 0, for sufficiently large λ > 0 the NN λ2f(x/λ) (which is
a one-layer network comprising two units) approximates x 7→ x2 for all x ∈ [−M,M ] at any
prescribed accuracy. With similar constructions as displayed in Fig. 1, one then obtains the
following result, which is a particular case of Thm. II.1 in [32].

Proposition 3.7. Let σs : R → R be three times continuously differentiable and asssume that
there exists x0 ∈ R with σ′′

s (x0) 6= 0. Let n ∈ N. Then, for every δ > 0 and every M > 0, there

exists a FFNN ˜∏ employing the activation function σs, such that ˜∏
s has n inputs and for all

x1, . . . , xn with |xi| ≤ 1 it holds |
∏n

j=1 xj −
˜∏

s(x1, . . . , xn)| ≤ δ.

There exists a constant C (independent of δ) such that for all n ∈ N it holds size( ˜
∏

s) ≤ Cn

and depth( ˜
∏

s) ≤ C(1 + log(n)).

3.4 DNN approximation of (b, ε)-holomorphic maps

We now give a result on the expressive power of NNs concerning (b, ε)-holomorphic functions.
It states that, up to logarithmic terms, DNNs are capable of approximating real-valued (b, ε)-
holomorphic maps at rates equivalent to those achieved by best n-term gpc approximation.
Here, the notion “rate” is understood in terms of the NN size, i.e., in terms of the total number
of units and weights in the DNN.

Lemma 3.8. Let (tν)ν∈F ∈ (0,∞)F , p ∈ (0, 1) and Λn ⊂ F for every n ∈ N be as in Lemma
2.8. Then there exists a sequence of ReLU NNs (fν)ν∈Λn

such that fν has | suppν| many input
variables (yj)j∈supp ν , and there exists a constant C depending on (tν)ν∈F and p such that for
every n ∈ N

sup
y∈U

∑

ν∈Λn

tν |y
ν − fν((yj)j∈supp ν)| ≤ Cn−1/p+1 (3.11)

and ∑

ν∈Λn

size(fν) ≤ C(1 + n log(n) log log(n)),

max
ν∈Λn

depth(fν) ≤ C(1 + log(n) log log(n)).
(3.12)

Moreover, for every n ∈ N holds sup
ν∈Λn

sup
y∈U |fν((yj)j∈supp ν)| ≤ 2.
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Proof. Let σ(ξ) = max{0, ξ}, ξ ∈ R. Fix n ∈ N and ν ∈ Λn. For every j ∈ suppν, we
may create νj copies of yj as an output of the first hidden layer in the network by setting
yj = σ(yj) − σ(−yj). This will require O(|ν|1) units and weights. We use these |ν|1 values
(which contain yj exactly νj times) as an input to the approximate multiplication of Prop. 3.3,
with accuracy δν := min{1, 1/(tνn

1/p)}. This results in a NN fν such that both depth and size
of fν are bounded by

C(1 + |ν|1 log(|ν|1/δν)) = C(1 + |ν|1(log(|ν|1) + log(max{1, tνn
1/p})), (3.13)

where C > 0 is independent of ν and of n. Since

sup
ν∈Λn

|ν|1 ≤ C(1 + log(n)) (3.14)

by (ii) of Lemma 2.8, and because sup
ν∈Λn

log(max{1, tνn
1/p}) ≤ C log(n) (here we used

(tν)ν∈F ∈ ℓp(F) →֒ ℓ∞(F)) we obtain the estimate on the depth in (3.12). For the NN size
estimate in (3.12), we get with (3.13), (3.14) and, because |Λn| = n,

∑

ν∈Λn

size(fν) ≤ C
∑

ν∈Λn

(1 + log(n) log log(n)) + C
∑

ν∈Λn

(1 + log(n) log(max{1, tνn
1/p}))

≤ C(1 + n log(n) log log(n)) + C(1 + log(n))
∑

ν∈Λn

log(max{1, tνn
1/p}).

For the sum in the upper bound, we obtain with log(x) ≤ x for x ≥ 1 the bound

∑

ν∈Λn

log(max{1, tνn
1/p}) =

1

p

∑

ν∈Λn

log(max{1, tp
ν
n}) ≤

n

p

∑

ν∈Λn

tp
ν
≤ Cn,

with C = ‖(tν)ν∈F‖
p
ℓp(F)/p <∞ independent of n. In all this proves (3.12).

Estimate (3.11) is obtained by

sup
y∈U

|yν − fν((yj)j∈supp ν)| = sup
y∈U

∣
∣
∣
∣
∣
∣

∏

j∈supp
ν

y
νj

j − fν((yj)j∈supp ν)

∣
∣
∣
∣
∣
∣

≤ δν = min{1, t−1
ν
n−1/p} .

(3.15)
This implies

sup
y∈U

∑

ν∈Λn

tν |y
ν − fν((yj)j∈supp ν)| ≤

∑

ν∈Λn

tν min{1, t−1
ν
n−1/p} ≤ |Λn|n

−1/p = n−1/p+1 .

The uniform boundedness of the NNs y 7→ fν((yj)j∈supp ν) with respect to y ∈ U and with
respect to ν ∈ Λn follows immediately by (3.15).

Theorem 3.9. Let u : U → R be (b, ε)-holomorphic for some b ∈ ℓp(N), and with some
p ∈ (0, 1).

Then, there exists a constant C and for every n ∈ N there exists a ReLU network ũn(y1, . . . , yn)
with n input units such that

size(ũn) ≤ C(1 + n log(n) log log(n)), depth(ũn) ≤ C(1 + log(n) log log(n))

and such that ũn satisfies the uniform error bound

sup
y∈U

|u(y)− ũn(y1, . . . , yn)| ≤ Cn1−1/p .
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Proof. According to Prop. 2.3 there exist coefficients (tν)ν∈F ∈ R
F such that u(y) =

∑

ν∈F tνy
ν

in the sense of unconditional convergence for every y ∈ U . By Thm. 2.7, for every n ∈ N there
exists a downward closed index set Λn⊂ F with |Λn| = n such that

sup
y∈U

∣
∣
∣
∣
∣
u(y)−

∑

ν∈Λn

tνy
ν

∣
∣
∣
∣
∣
≤
∑

ν∈Λc
n

|tν | ≤ Cn−1/p+1. (3.16)

It thus suffices to approximate
∑

ν∈Λn
tνy

ν with a DNN.

In the proof of Thm. 2.7 we constructed a monotonically decreasing sequence β ∈ ℓp/(1−p)(N)
of positive real numbers with ‖β‖ℓ∞(N) < 1, such that (‖tν‖V β

−ν)ν∈F ∈ ℓ1(F). The set Λn ⊂ F
was then chosen as in Lemma 2.8. Hence, by Lemma 3.8 there exists a sequence of DNNs
(fν)ν∈Λn

satisfying (3.12) and

sup
y∈U

∑

ν∈Λn

|tν ||y
ν − fν((yj)j∈supp ν)| ≤ Cn−1/p+1. (3.17)

Next, we claim that

S := {j ∈ N : ∃ν ∈ Λn s.t. j ∈ suppν} ⊆ {1, . . . , n}. (3.18)

To show it, we note that due to the downward closedness of Λn, for each j ∈ suppν for some
ν ∈ Λn, it must hold ej ∈ Λn. Therefore |S| ≤ |Λn| = n. Now suppose that r ∈ S for some
r > n. By Thm. 2.7 er ∈ Λn implies ej ∈ Λn for every j ≤ r. Thus |S| > n, which is a
contradiction and proves (3.18). Define

ũn((yj)j∈S) :=
∑

ν∈Λn

tνfν((yj)j∈supp ν). (3.19)

By (3.18) ũn does not depend on yj for j > n, so that we can take y1, . . . , yn as the input of
the NN ũn. Using (3.16) and (3.17), the NN ũn satisfies the error bound

sup
y∈U

|u(y)− ũn(y1, . . . , yn)| ≤ Cn−1/p+1 + sup
y∈U

∣
∣
∣
∣
∣

∑

ν∈Λn

tνy
ν −

∑

ν∈Λn

tνfν((yj)j∈supp ν)

∣
∣
∣
∣
∣

≤ Cn−1/p+1 + sup
y∈U

∑

ν∈Λn

|tν ||y
ν − fν((yj)j∈supp ν)| ≤ Cn−1/p+1.

It remains to estimate the size and depth of ũn in (3.19). With the input layer consist-
ing of the values y1, . . . , yn, starting from the second layer we can compute all the values
fν((yj)j∈supp ν) with the networks fν in parallel. To this end each yj needs to connect to all net-
works fν for which j ∈ suppν. The number of nonzero weights used to create these connections
can simply be bounded by

∑

ν∈Λn
|ν|1 ≤ C(1 + n log(n)), since sup

ν∈Λn
|ν|1 ≤ C(1 + log(n))

by (ii) of Thm. 2.7. In the output layer, the sum in (3.19) is computed. Thus, up to a constant,
the total depth of the NN ũn is bounded by maxν∈Λn depth(fν) ≤ C(1 + log(n) log log(n)) by
Lemma 3.8. The size can be bounded by

C(1 + n log(n)) +
∑

ν∈Λn

size(fν) ≤ C(1 + n log(n) log log(n)), (3.20)

where we again used Lemma 3.8. This concludes the proof.

Based on Prop. 3.7, we obtain the following improved result for NNs employing smooth
activation functions.
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Theorem 3.10. Let u : U → R be (b, ε)-holomorphic for some b ∈ ℓp(N), and with some
p ∈ (0, 1). Let further the activation σs : R → R be three times continuously differentiable and
nonlinear.

Then, there exists a constant C > 0 such that for every n ∈ N there exists a FFNN ũn
using σs as activation function, where ũn has n input units, size(ũn) ≤ C(1 + n log(n)) and
depth(ũn) ≤ C(1 + log log(n)) so that the expression error is bounded as

sup
y∈U

|u(y)− ũn(y1, . . . , yn)| ≤ Cn1−1/p . (3.21)

Proof. The proof is analogous to the one of Lemma 3.8 and Thm. 3.9, employing Prop. 3.7
instead of Prop. 3.3. Therefore we only sketch the argument. Define ũn as in (3.19), but replace

fν((yj)j∈supp ν) with fs;ν((yj)j∈supp ν) = ˜∏
s(yi1 , . . . , yi|ν|1

), where ˜∏
s denotes the approximate

multiplication of Prop. 3.7 and (ij)
|ν|1
j=1 ∈ N

|ν|1 is such that each j ∈ suppν occurs exactly νj
times. By Prop. 3.7, the NN fs;ν(y) can approximate yν to any precision uniformly with respect
to y ∈ U using O(log(|ν|1)) layers and O(|ν|1) weights and units. In particular, we may assume
that (3.17) still holds if fν is replaced by fs;ν . Consequently, the same calculations as in the proof
of Thm. 3.9 imply the bound (3.21). The depth of ũn is then, up to a constant, the maximum
depth of one of the subnetworks fs;ν , ν ∈ Λn, and thus bounded by maxν∈Λn

C(1 + log(|ν|1)).
According to item (ii) of Thm. 2.7, this can be further estimated by C(1+log log(n)). The total
number of weights and units can be bounded by n, which is the number of inputs (y1, . . . , yn),
and by

∑

ν∈Λn
size(fs;ν) ≤ C

∑

ν∈Λn
|ν|1. With item (ii) of Thm. 2.7, this gives

size(ũn) ≤ n+
∑

ν∈Λn

C(1 + |ν|1) ≤ C(1 + n log(n))

as an upper bound on the total number of units and weights.

We remark that for every n ∈ N, the network size N(n) in Thms. 3.9 and 3.10 is bounded
by Cγn

1+γ for arbitrarily small γ > 0, in terms of the number n of input parameters. Thus
Thms. 3.9 and 3.10 imply the convergence rate −1/p + 1 + γ with γ > 0 arbitrary in terms of
the NN size N .

4 Examples and generalizations

4.1 Response surfaces of parametric PDEs

In Ex. 2.2 we considered the parametric weak variational formulation: find u(y) ∈ V = H1
0 (D)

such that ∫

D

a(y, x)∇u(y, x) · ∇v(x) dx = V ′〈f, v〉V , ∀ v ∈ H1
0 (D), (4.1)

with the parametric diffusion coefficient

a(y, x) = a(x) +
∑

j∈N

yjψj(x), x ∈ D, (4.2)

where D ⊆ R
d, d ≥ 1, is a bounded Lipschitz domain, f ∈ V ′ and (‖ψj‖L∞(D)) ∈ ℓp(N) for

some p ∈ (0, 1). In the following, we occasionally omit the x argument, and write e.g. u(y) ∈ V
instead of u(y, ·) ∈ V . In Ex. 2.2, we argued that the solution u(y) ∈ V is (b, ε)-holomorphic
under certain assumptions (which we recall in the theorem below). In order to apply Thms. 3.9
and 3.10 (which were formulated for real-valued functions), let G ∈ V ′ be a bounded linear
functional. It is straightforward to verify that G ◦ u : U → R is then also (b, ε)-holomorphic.
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Furthermore, with the unconditionally convergent expansion u(y) =
∑

y∈U tνy
ν ∈ V as in

(2.7), it holds G(u(y)) =
∑

ν∈F G(tν)y
ν ∈ R for y ∈ U . Since |G(tν)| ≤ ‖G‖V ′‖tν‖V for all

ν ∈ F , we immediately get
∥
∥(|G(tν)|)ν∈F

∥
∥
ℓp(F)

≤ ‖G‖V ′

∥
∥(‖tν‖V )ν∈F

∥
∥
ℓp(F)

.

We arrive at the following result.

Corollary 4.1. Let p ∈ (0, 1), let a = 1 and assume that (ψj)j∈N ⊂ L∞(D) is such that with
bj := ‖ψj‖L∞(D) the sequence b = (bj)j∈N is monotonically decreasing and it holds ‖b‖ℓ1(N) <
1 and ‖b‖ℓp(N) < ∞. Then the weak solution u(y) ∈ V = H1

0 (D) of (4.1)-(4.2) is (b, ε)-
holomorphic. Moreover, there exists a constant C such that for every G ∈ V ′ and for every
n ∈ N there exists a ReLU network g̃n(y1, . . . , yn) with n input units such that size(g̃n) ≤
C(1 + n log(n) log log(n)), depth(g̃n) ≤ C(1 + log(n) log log(n)) and

sup
y∈U

|G(u(y))− g̃n(y1, . . . , yn)| ≤ C‖G‖V ′n−1/p+1 .

In case the expansion functions ψj ∈ L∞(D) in (4.2) have local supports, the convergence
rate can be slightly improved. We discuss our result in this setting, based on [1].

Theorem 4.2 ([1, Thm. 1.1]). Let 0 < q < ∞ and 0 < p < 2 be such that 1/p = 1/q +
1/2. Assume that ā ∈ L∞(D) is such that ess inf ā > 0, and that there exists a monotonically
decreasing sequence β = (βj)j∈N of positive numbers strictly smaller than 1 such that β ∈ ℓq(N)
and such that,

θ :=

∥
∥
∥
∥
∥

∑

j∈N
β−1
j |ψj(·)|

ā(·)

∥
∥
∥
∥
∥
L∞(D)

< 1 . (4.3)

Then with tν as in (2.6) it holds
∑

ν∈F (β
−ν‖tν‖V )

2 <∞, and in particular (‖tν‖V )ν∈F ∈
ℓp(F).

We remark that the proof of Theorem 4.2 is not based on holomorphy, but rather on real
variable arguments combined with induction w.r. to the total differentiation order |ν|1 of the
Taylor coefficient tν .

As in the case of (b, ε)-holomorphy, if b ∈ ℓp(N) for some p ∈ (0, 1), one can show that the
Taylor gpc expansion

u(y) =
∑

ν∈F

tνy
ν , (4.4)

converges unconditionally for all y ∈ U for the parametric solution u(y) in Thm. 4.2. Using
Lemma 2.8 with r = 2, a proof completely analogous to the one of Thm. 3.9 then yields:

Corollary 4.3. Let p ∈ (0, 1) and q = 2p/(2 − p), i.e. 1/p = 1/q + 1/2. Then, under the
assumptions of Thm. 4.2, there exists a constant C such that for every G ∈ V ′ and for every
n ∈ N there exists a ReLU network g̃n(y1, . . . , yn) with n input units such that size(g̃n) ≤
C(1 + n log(n) log log(n)), depth(g̃n) ≤ C(1 + log(n) log log(n)) and there hold the uniform
error bounds

sup
y∈U

|G(u(y))− g̃n(y1, . . . , yn)| ≤ C‖G‖V ′n−1/p+1 .

We conclude that Thm. 3.9 shows that response functions of many-parametric operator
equations can, in principle, be expressed by deep ReLU NNs with error vs. network size N at an
approximation rate which is free from the curse of dimensionality. Moreover, this approximation
rate is only limited by the sparsity of the parametric solutions’ gpc expansion. Using Thm. 3.10
instead of Thm. 3.9 one can infer variants of Corollaries 4.1 and 4.3 for NNs based on a smooth
activation function σs as in Thm. 3.10.
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4.2 Solution manifolds of parametric PDEs

For the results of Sec. 4.1, we considered only real-valued countably parametric maps. Often,
however, rather than linear functionals G ∈ V ′ of the parametric solution, also the approx-
imation of the parametric solution manifold U ∋ y 7→ u(y) ∈ V itself is of interest. Here,
also a “spacial approximation” of u(y) ∈ V is sought, where V is a Banach space. The re-
sults proved imply in particular that DNNs can express such solution manifolds. Rather than
developing this in the most general setting and in order to keep technicalities to a minimum,
we illustrate this for the physical domain D = (0, 1) in space dimension d = 1. To present
the setting, we assume further in the parametric weak formulation (4.1) that f ∈ L2(D), and
that U ∋ y 7→ a(y) ∈ W 1,∞(D). Standard regularity results then imply that for every y ∈ U ,
u(y) ∈ X := (H2 ∩ H1

0 )(D). Furthermore, the sequence of H2(D)-norms of the Taylor gpc
coefficients tν in (4.4) of u(y) is sparse as expressed in the following gpc summability result
from [1, Thm. 2.1].

Theorem 4.4. Let 0 < q <∞ and 0 < p < 2 be such that 1
p = 1

q +
1
2 . Assume that ā ∈ L∞(D)

is such that ess inf ā > 0, and that there exists a sequence β = (βj)j∈N ∈ (0, 1)N such that
β ∈ ℓq(N) and such that

θ :=

∥
∥
∥
∥
∥

∑

j∈N
β−1
j |ψj(·)|

ā(·)

∥
∥
∥
∥
∥
L∞(D)

< 1 . (4.5a)

Assume in addition that f ∈ L2(D) and that ā and all functions ψj belong to W 1,∞(D) and that

∥
∥
∥
∥
∥
∥

∑

j∈N

β−1
j |ψ′

j(·)|

∥
∥
∥
∥
∥
∥
L∞(D)

<∞ . (4.5b)

Denote by u(y) the solution of (4.1)-(4.2). Then, with tν as in (2.6),
∑

ν∈F (β
−ν‖tν‖H2(D))

2 <
∞ and in particular (‖tν‖H2(D))ν∈F ∈ ℓp(F).

The p-summability of theH2(D)-norms of the Taylor gpc coefficients tν is key for the analysis
of FE approximations of tν in D. Given y ∈ U , we consider an approximation of u(y) ∈ X by
continuous, piecewise linear finite elements in D: for a (uniform) meshwidth h = 1/mh with
1 < mh ∈ N, we denote by Th the mesh of mh subintervals Kh

j = (xhj−1, x
h
j ) ⊂ D, with the

(equispaced) nodes xhj = jh, j = 0, 1, ...,mh. We denote by

R ∋ ξ 7→ ϕ̂(ξ) :=

{
1− |ξ| if |ξ| < 1 ,
0 else ,

(4.6)

the standard “hat” continuous, piecewise linear function. With g as in (3.5b), observe that ϕ̂
can be exactly represented by a one-layer ReLU NN via

ϕ̂(ξ) = g((ξ + 1)/2) = 2σ(ξ/2 + 1/2)− 4σ(ξ/2) + 2σ(ξ/2− 1/2) , ξ ∈ R . (4.7)

Alternatively, the following two-layer network, which also uses 3 ReLUs, achieves the same

ϕ̂(ξ) = σ(1− [σ(ξ) + σ(−ξ)]) , ξ ∈ R . (4.8)

The Courant FE basis functions ϕh
j in V are then defined by translating and scaling ϕ̂:

ϕh
j (x) := ϕ̂(h−1(x− xhj )) = σ(1− h−1[σ(x− xhj ) + σ(−x+ xhj )]) , j = 1, ...,mh − 1 . (4.9)

The FE space Vh ⊂ V is their span, i.e.,

Vh := span{ϕh
j : j = 1, ...,mh − 1} . (4.10)
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Evidently, Vh is a subspace of V = H1
0 (D) of finite dimension dim(Vh) = mh − 1. For w ∈ X =

(H2 ∩ H1
0 )(D) ⊂ C1(D), we denote by Ihw ∈ Vh the continuous, piecewise linear function on

Th which interpolates w in the nodes xhj , j = 0, 1, ...,mh. There holds the approximation error
bound

‖w − Ihw‖L2(D) + h‖w′ − (Ihw)
′‖L2(D) ≤ CXh

2‖w′′‖L2(D) . (4.11)

Using the approximate multiplication from Prop. 3.1 and ϕ̂ as in (4.7) or (4.8), up to a cer-
tain error one can express tensorized translated and scaled hat functions. Together with well-
established FEM theory, this yields results about the approximation of Sobolev functions in
higher dimensional spaces via NNs (also sparse grids, and as we saw in Sec. 3.2, higher order
polynomials could be used). As mentioned above, for ease of exposition we prove this in the one
dimensional case and for continuous, piecewise linear Finite Elements only.

Lemma 4.5. For every 2 ≤ mh ∈ N, every continuous, piecewise linear function w ∈ Vh on
the uniform partition Th of D = (0, 1) into mh intervals of length h = 1/mh can be exactly
expressed by a one layer network using mh ReLU units. More precisely

w(x) =

mh−1∑

j=0

cjσ(x− xhj ), x ∈ [0, 1], (4.12)

where

c0 :=
w(xh1 )

h
and cj :=

w(xhj+1)− w(xhj )

h
−

j−1
∑

i=0

ci ∀ j = 1, . . . ,mh − 1.

Proof. Denote in the following the right-hand side of (4.12) by w̃. We show by induction over
j that w̃|[0,xh

j ]
= w|[0,xh

j ]
for all j = 1, . . . ,mh. First let j = 1 and note that xh0 = 0 and xh1 = h.

Since for all i = 0, . . . ,mh − 1
suppσ(· − xhi ) = [xhi ,∞), (4.13)

for x ∈ [0, xh1 ] it holds w̃(x) = (w(xh1 )/h)σ(x− xh0 ) = (w(xh1 )/h)x so w̃|[0,xh
1 ]

is a linear function

with w̃(0) = 0 and w̃(xh1 ) = w(xh1 ), and thus w̃|[0,xh
1 ]

= w|[0,xh
1 ]
. For the induction step,

assume that w̃|[0,xh
j ]

= w|[0,xh
j ]

for some j < n, so that in particular w̃(xhj ) = w(xhj ). It then

suffices to show that w̃|[xh
j ,x

h
j+1]

is affine with derivative (w(xhj+1)−w(xhj ))/h, since this implies

w̃(xhj+1) = w(xhj ) +
∫ xh

j+1

xh
j

w̃′(x)ds = w(xhj+1). Because of (4.13), for x ∈ [xhj , x
h
j+1]

w̃(x) =

j−1
∑

i=0

ciσ(x− xhi ) +

(

w(xhj+1)− w(xhj )

h
−

j−1
∑

i=0

ci

)

σ(x− xhj )

=

j−1
∑

i=0

ci(x− xhi ) +

(

w(xhj+1)− w(xhj )

h
−

j−1
∑

i=0

ci

)

(x− xhj ).

This shows that w̃|[xh
j ,x

h
j+1]

is affine with derivative (w(xhj+1) − w(xhj ))/h, which concludes the

proof.

Remark 4.6. By definition of cj−1 it holds
∑j−1

i=0 ci = cj−1 +
∑j−2

i=0 ci = (w(xhj )− w(xhj−1))/h
for all j ≥ 1 and thus

cj =
w(xhj+1)− 2w(xhj ) + w(xhj−1)

h

for all j = 1, . . . ,mh − 1 in Lemma 4.5.
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A dimension-independent convergence rate for the DNN expression rate of the parameter-
to-solution map

U ∋ y 7→ u(y) ∈ V

can now be obtained from the following result, which is a particular case of [1, Thm. 3.1],
specialized to the present assumptions. We state it in slightly greater generality than required
subsequently, with the parameter γ > 0 denoting the rate of convergence in V of the FE
discretization in the physical domain D; based on (4.11), we will choose γ = 1.

Lemma 4.7. Let (aν)ν∈F , (bν)ν∈F ∈ (0,∞)F and β ∈ (0, 1)N be such that (aν)ν∈F ∈ ℓpa(F),
(bνβ

−ν)ν∈F ∈ ℓ2(F) and β ∈ ℓ2pb/(2−pb)(N) for some 0 < pb ≤ pa < 1. Assume additionally
that β is monotonically decreasing. For every n ∈ N, let Λn ⊂ F be as in Lemma 2.8 for the
sequence (bνβ

−ν)ν∈F ∈ ℓ2(F) and let γ > 0 be given.
Then there exists a constant C > 0 and, for every n ∈ N, there exists a sequence (mn;ν)ν∈Λn ∈

N
Λn such that with Nn :=

∑

ν∈Λn
mn;ν ≥ n it holds

n−1/pb+1 +
∑

ν∈Λn

aνm
−γ
n;ν +

∑

ν∈Λc
n

bν ≤ CN−r
n

where the constant C > 0 is independent of n and where

r = γmin

{

1,
1/pb − 1

γ + 1/pb − 1/pa

}

. (4.14)

Proof. We proceed similarly as in [1, Sec. 3], see also [18, Sec. 2].
Fix n ∈ N and choose Λn ⊂ F , |Λn| = n, as in Lemma 2.8 with the sequence (β−νbν)ν∈F ∈

ℓ2(F) (i.e. r = 2 in Lemma 2.8). Then Λn satisfies all properties stated in Lemma 2.8 and
in particular

∑

ν∈Λc
n
bν ≤ Cn−1/pb+1. To choose mn;ν , we minimize

∑

ν∈Λn
mn;ν under the

constraint
∑

ν∈Λn
aνm

−γ
n;ν ≤ n−1/pb+1. Allowing for now mn;ν to take positive real values

this can be solved using a Lagrange multiplier λ. To this end, we define F ((m̃n;ν)ν∈Λn , λ) :=∑

ν∈Λn
m̃n;ν+λ(

∑

ν∈Λn
aνm̃

−γ
n;ν−n

−1/pb+1). The first order necessary condition ∇F = 0 results
in

m̃n;ν = n(1/pb−1)/γa1/(1+γ)
ν

(
∑

ν∈Λn

a1/(1+γ)
ν

)1/γ

.

Define
mn;ν := ⌈m̃n;ν⌉ ∈ N, ∀ν ∈ Λn, n ∈ N.

By construction
∑

ν∈Λn
aνm̃

−γ
n;ν = n−1/pb+1 and thus

∑

ν∈Λn
aνm

−γ
n;ν ≤ n−1/pb+1. This implies

that there exists C > 0 such that for every n ∈ N

n−1/pb+1 +
∑

ν∈Λn

aνm
−γ
n;ν +

∑

ν∈Λc
n

bν ≤ Cn−1/pb+1. (4.15)

To complete the proof, we show that there exists a constant C > 0 such that for every
n ∈ N holds n−1/pb+1 ≤ CN−r

n . We observe that mn;ν ≥ 1 by construction. Hence, it holds
Nn ≥

∑

ν∈Λn
1 = n. To give an upper bound for Nn we first note

Nn =
∑

ν∈Λn

mn;ν ≤
∑

ν∈Λn

(1 + m̃n;ν) = n+ n(1/pb−1)/γ

(
∑

ν∈Λn

a1/(1+γ)
ν

)(1+γ)/γ

. (4.16)

In the following, we distinguish between the two cases

pa ≤
1

1 + γ
and pa >

1

1 + γ
. (4.17)
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In the first case in (4.17), by (4.16)

Nn ≤ n+ n(1/pb−1)/γ‖(aν)ν∈F‖
1/γ

ℓ1/(1+γ)(F)
≤ n+ n(1/pb−1)/γ‖(aν)ν∈F‖

1/γ
ℓpa (F).

Thus
n−1/pb+1 ≤ C

(

N−1/pb+1
n +N−γ

n

)

≤ CN−r
n ,

since r ≤ 1/pb − 1 due to 1/pb − 1/pa ≥ 0.
In the second case, by Hölder’s inequality and using (aν)ν∈F ∈ ℓpa(F), there exists a constant

C > 0 such that for every n ∈ N holds

Nn ≤ n+n(1/pb−1)/γ





(
∑

ν∈Λn

apa
ν

)1/(pa(1+γ))

n1−1/(pa(1+γ))





(1+γ)/γ

≤ n+Cn(1/pb+γ−1/pa)/γ .

Therefore

n−1/pb+1 ≤ C

(

N−1/pb+1
n +N

−1/pb+1

(1/pb+γ−1/pa)/γ

n

)

. (4.18)

This is again bounded by CN−r
n , since as before 1/pb − 1 ≤ r, and the second exponent on

the right-hand side of (4.18) is (up to its sign) exactly the second term in the minimum in
(4.14).

Theorem 4.8. Let 0 < qV ≤ qX < 2 and denote pV := (1/qV + 1/2)−1 ∈ (0, 1) and pX :=
(1/qX + 1/2)−1 ∈ (0, 1). Let βV = (βV ;j)j∈N ∈ (0, 1)N and βX = (βX;j)j∈N ∈ (0, 1)N be two
monotonically decreasing sequences such that βV ∈ ℓqV (N) and βX ∈ ℓqX (N), and such that the
parametric diffusion coefficient satisfies (4.3) with β = βV and (4.5) with β = βX . Assume
that f ∈ L2(D) in (4.1). Denote for every y ∈ U by u(y, ·) ∈ V the solution of (4.1) for the
affine-parametric diffusion coefficient in (4.2). Then, there exists a constant C > 0 such that
for every n ∈ N there exists a ReLU network ũn(y1, . . . , yn, x) with n+ 1 input units and for a
number Nn ≥ n with r = min{1, (1 + p−1

V )/(1 + p−1
V − p−1

X )} there holds the bound

sup
y∈U

‖u(y, ·)− ũn(y1, . . . , yn, ·)‖V ≤ CN−r
n . (4.19)

Moreover, for every n ∈ N,

size(ũn) ≤ C(1 +Nn log(Nn) log log(Nn)) , depth(ũn) ≤ C(1 + log(Nn) log log(Nn)).

Proof. Step 1: For every n ∈ N, define Λn ⊂ F and (mn;ν)ν∈Λn
∈ N

Λn .
For ν ∈ F denote by tν ∈ V = H1

0 (D) the Taylor coefficient of u(y) defined in (2.6).
Additionally, we define aν := ‖tν‖H2(D) and bν := ‖tν‖V (in fact tν ∈ H2(D) by Thm. 4.4). By

Thm. 4.2, we have (bνβ
−ν

V )ν∈F ∈ ℓ2(F) and by Thm. 4.4 it holds (aν)ν∈F ∈ ℓpX (F).
For every n ∈ N, let Λn and (mn;ν)ν∈Λn

be as in Lemma 4.7. Then, by Lemma 4.7, there
exists a constant C > 0 such that for every n ∈ N holds

n−1/pV +1 +
∑

ν∈Λn

‖tν‖Xm
−1
n;ν +

∑

ν∈Λc
n

‖tν‖V ≤ CN−r
n , (4.20)

with r = min{1, (1+ p−1
V )/(1+ p−1

V − p−1
X )}. Hence, by (4.11), there exists C > 0 such that for

all n ∈ N holds, with hn;ν := 1/mn;ν , the bound

∑

ν∈Λn

‖tν − Ihn;ν tν‖V ≤ C
∑

ν∈Λn

hn;ν‖tν‖X ≤ CN−r
n . (4.21)
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Step 2: We construct the network.
By Lemma 4.7 and Lemma 2.8 the sets Λn satisfy sup

ν∈Λn
|ν|1 ≤ C(1 + log(n)). Applying

Lemma 3.8 again with the sequence (bνβ
−ν

V )ν∈F ∈ ℓ2(F), there exists a sequence of ReLU NNs
(fν)ν∈Λn

, such that fν only depends on (yj)j∈supp ν , and such that

sup
y∈U

|fν((yj)j∈supp ν)| ≤ 2. (4.22)

Moreover, by Lemma 3.8, for some constant C > 0 that is independent of n there holds

sup
y∈U

∑

ν∈Λn

‖tν‖V |y
ν − fν((yj)j∈supp ν)| = sup

y∈U

∑

ν∈Λn

bν |y
ν − fν((yj)j∈supp ν)| ≤ Cn−1/pV +1.

(4.23)
The size and depth of the NNs (fν)ν∈F are bounded according to (3.12). Due to the continuous
embedding V = H1

0 (D) →֒ L∞(D), we have

M := max

{

2, sup
ν∈F

‖tν‖L∞(D)

}

≤ Cmax

{

2, sup
ν∈F

‖tν‖V

}

≤ Cmax






2,

(
∑

ν∈F

(β−ν

V ‖tν‖V )
2

)1/2





<∞, (4.24)

where we used β−ν > 1 for all ν ∈ F since β ∈ (0, 1)N. Here the factor 2 in the definition
of M ensures by (4.22) that |fν((yj)j∈supp ν)| ≤ M for all ν ∈ F and all y ∈ U . Denote by
(a, b) 7→ ×̃(a, b) the approximate multiplication from Prop. 3.1, with M in (4.24) and with
accuracy

δn := N−r−1
n . (4.25)

Define ũn as

ũn(y1, . . . , yn, x) :=
∑

ν∈Λn

×̃
(
fν((yj)j∈supp ν), (Ihn;ν tν)(x)

)
, x ∈ D, y ∈ U . (4.26)

By Lemma 4.5, each Ihn;ν tν is a NN with one hidden layer and of size O(mn;ν). Hence, ũn in
(4.26) is a NN with n+ 1 input units.

Step 3: We now estimate the approximation error of the network. Since Ihn;ν
is a nodal

interpolant, it holds (with the constant M as in (4.24)) ‖Ihn;ν
tν‖L∞(D) ≤ ‖tν‖L∞(D) ≤ M .

Therefore, with ×̃ as in Prop. 3.1, the choice of M (4.24) implies that the error bound (3.6)
holds, i.e. with δn in (4.25)

|×̃(fν((yj)j∈supp ν), (Ihn;ν
tν)(x))− fν((yj)j∈supp ν)(Ihn;ν

tν)(x)| ≤ δn, x ∈ D, y ∈ U . (4.27)

Fix y ∈ U and ν ∈ F . To bound the error in the norm of V it suffices to bound the
H1(D)-seminorm of it. To this end, we claim that for almost every x ∈ D there holds

∣
∣
∣
∣

d

dx

(
×̃(fν((yj)j∈supp ν), (Ihn;ν

tν)(x))
)
−

d

dx
fν((yj)j∈supp ν)(Ihn;ν

tν)(x)

∣
∣
∣
∣
≤ δn

∣
∣
∣
∣

d

dx
(Ihn;ν

tν)(x)

∣
∣
∣
∣
.

(4.28)

To prove this, we observe that by Prop. 3.1, there exists a finite set Ny,ν ⊂ [−M,M ] such that
for all b ∈ [−M,M ]\Ny,ν there exists the strong derivative

d

db
×̃
(

fν((yj)j∈supp ν), b
)

23



of (a, b) 7→ ×̃(a, b) w.r.t. the second argument. Thus, by Prop. 3.1, for every x ∈ D such that
Ihn;ν

tν(x) /∈ Ny,ν , the left-hand side of (4.28) is bounded by

∣
∣
∣
d
db ×̃

(

fν((yj)j∈supp ν), (Ihn;ν
tν)(x)

)
d
dx (Ihn;ν

tν)(x)− fν((yj)j∈supp ν)
d
dx (Ihn;ν

tν)(x)
∣
∣
∣

≤ δn
∣
∣ d
dx (Ihn;ν tν)(x)

∣
∣ .

Here, the derivative of the continuous, piecewise linear function x 7→ Ihn;ν
tν(x) is understood in

the weak sense. On the other hand define Sy,ν := {x ∈ D : Ihn;ν
tν(x) ∈ Ny,ν}. Since Ihn;ν

tν
is piecewise linear and because Ny,ν is finite, Sy,ν is the union of a finite number of distinct
points in D and possibly a finite number of intervals [xj , xj+1] such that Ihn;ν tν |[xj ,xj+1] takes
a constant value in Ny,ν . If such an interval exists, for all y ∈ U and for all x ∈ (xj , xj+1)

d

dx
×̃
(

fν((yj)j∈supp ν), (Ihn;ν
tν)(x)

)

=
d

dx
fν((yj)j∈supp ν)(Ihn;ν

tν)(x) = 0

so that for every x ∈ (xj , xj+1)

∣
∣
∣
∣

d

dx

(

×̃(fν((yj)j∈supp ν), (Ihn;ν
tν)(x))

)

−
d

dx
fν((yj)j∈supp ν)(Ihn;ν

tν)(x)

∣
∣
∣
∣
≤ δn

∣
∣
∣
∣

d

dx
(Ihn;ν

tν)(x)

∣
∣
∣
∣
.

In all, for every y ∈ U and for every ν ∈ F there exists a finite set of points Py,ν , such that (4.28)
holds in the classical sense for all x /∈ Py,ν . Since F is countable, the set Ny =

⋃

ν∈F Py,ν ⊂ D
has Lebesgue measure zero. Hence, for every fixed y ∈ U , (4.28) holds for all ν ∈ F almost
everywhere in D. The NN’s expression error is then bounded by

sup
y∈U

‖u(y, ·)− ũn(y1, . . . , yn, ·)‖V ≤ sup
y∈U

∥
∥
∥
∥
∥

∑

ν∈F

yνtν(·)−
∑

ν∈Λn

yνtν(·)

∥
∥
∥
∥
∥
V

+ sup
y∈U

∥
∥
∥
∥
∥

∑

ν∈Λn

yνtν(·)−
∑

ν∈Λn

fν((yj)j∈supp ν)tν(·)

∥
∥
∥
∥
∥
V

+ sup
y∈U

∥
∥
∥
∥
∥

∑

ν∈Λn

fν((yj)j∈supp ν)tν(·)−
∑

ν∈Λn

fν((yj)j∈supp ν)(Ihn;ν
tν)(·)

∥
∥
∥
∥
∥
V

+ sup
y∈U

∥
∥
∥
∥
∥

∑

ν∈Λn

fν((yj)j∈supp ν)(Ihn;ν tν)(·)−
∑

ν∈Λn

×̃
(
fν((yj)j∈supp ν), (Ihn;ν tν)(·)

)

∥
∥
∥
∥
∥
V

≤ C
(

N−r
n + n−1/pV +1 +N−r

n + |Λn|δn
)

. (4.29)

Here the first term was estimated by (4.20), the second by (4.23), the third by (4.21) and (4.22)
and finally the fourth via (4.27) by

sup
y∈U

∑

ν∈Λn

(

‖×̃(fν((yj)j∈supp ν), Ihn;ν
tν)− fν((yj)j∈supp ν)Ihn;ν

tν‖L2(D)

+

∥
∥
∥
∥

d

dx
×̃(fν((yj)j∈supp ν), Ihn;ν

tν)−
d

dx
fν((yj)j∈supp ν)Ihn;ν

tν

∥
∥
∥
∥
L2(D)

)

≤ (1 + sup
ν∈F

‖Ihn;ν
tν‖V )|Λn|δn ≤ C|Λn|δn.

Using Lemma 4.7 we have |Λn| = n ≤ Nn, and with (4.20) as well as δn = N−r−1
n we may

further estimate (4.29) by C(N−r
n +NnN

−r−1
n ) ≤ CN−r

n .
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Step 4: It remains to bound the size and depth of the NN (4.26). First, by Prop. 3.1 and
because δn = N−r−1

n , each of the |Λn| = n applications of ×̃ in (4.26) requires C(1+log(1/δn)) ≤
C(1 + log(Nn)) ReLUs and a depth of C(1 + log(Nn)). By (3.12), we find the bounds

max
ν∈Λn

depthfν ≤ C(1 + log(n) log log(n)) and
∑

ν∈Λn

size(fν) ≤ C(1 + n log(n) log log(n)).

Finally, expressing (exactly, with ReLU activations) the continuous, piecewise linear interpolant
Ihn;ν

tν requires a NN of depth one with mn;ν ReLUs by Lemma 4.5. Except for summing over
all ν ∈ Λn in (4.26) in the output layer, there are no connections between the subnetworks
×̃(fν((yj)j∈supp ν), Ihn;ν

tν). By definition of Nn in Lemma 4.7, Nn =
∑

ν∈Λn
mn;ν . Hence, ũn

is a DNN of total size

C
∑

ν∈Λn

(

1+size(Ihn;νtν )
︸ ︷︷ ︸

≤Cmn;ν

+size(fν)+ size(×̃)
︸ ︷︷ ︸

≤C(1+log(Nn))

)

≤ C
(

n+Nn+n log(n) log log(n)+n log(Nn)
)

and the NN ũn has total depth C(1 + log(Nn) + log(n) log log(n)). We conclude the proof by
recalling that n ≤ Nn according to Lemma 4.7.

5 Conclusions and further directions

We have established bounds on the rate of expression by a class of certain DNNs for many-
variate, real-valued functions f which depend holomorphically on a sequence y = (yj)j∈N of
(possibly infinitely many) parameters. Specifically, we considered functions of countably many
parameters yj which are (b, ε)-holomorphic for b ∈ ℓp and some p ∈ (0, 1). This implies that
they admit Taylor gpc expansions (2.7) that are sparse in the sense that the sequence (tν)ν∈F

of Taylor gpc coefficients is p-summable. The relevance of such functions stems from the fact
that they arise as response surfaces of operator equations with distributed, uncertain input
data in function spaces (see [13, 9] and the references there). Our main results, Theorems
3.9 and 3.10, imply that such real-valued response surfaces can be expressed with arbitrary
prescribed accuracy δ > 0 (uniform w.r. to the parameter vector y) by DNNs of size bounded
(up to logarithmic factors) by Cδ−1/s where s = 1/p − 1 and with a constant C > 0 that
is independent of the dimension of the input data (3.16). We thus prove expression rates for
deep ReLU NNs which are essentially equal to the gpc n-term approximation rates obtained
in [13, 9]. In the case of one spacial dimension, we have shown for a model problem that the
parametric solution, taking values in the Banach space H1

0 ([0, 1]), can be expressed by deep
ReLU NNs. The expressive power bounds in terms of the NN size are essentially the same as
known convergence rates for approximation by multilevel stochastic collocation. Since the error
bound (4.11) is also valid in Lt([0, 1]) for t ∈ (1,∞)\{2}, results similar to those of Thm. 4.8
hold also in the Banach spaces V = W 1,t

0 ([0, 1]) and X = V ∩W 2,t([0, 1]). Analogous results
will hold also for other types of gpc expansions, where yν is replaced by tensor products of
other systems of polynomials such as, for example, Tschebyscheff or Jacobi polynomials [1, 2].
Also, when higher convergence rates of n-term gpc approximations are available, these can be
expected to translate into improved rates of expressive power of DNNs with N units.

We address further possible directions and applications of the present results. In the Bayesian
Inversion of many-parametric PDE models in the presence of noisy data (see, e.g., [34] for
the mathematical formulation), the expectations of quantities of interest conditional on the
observation data, can be expressed as high dimensional integrals w.r. to a posterior Bayesian
density which is (b, ε)-holomorphic when the assumptions of the abstract theory in [34] are
satisfied. We refer to [33] for a verification in the above, affine-parametric setting. The present
results therefore open the perspective of deep learning of Bayesian posteriors for PDEs.
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This opens a new direction in the approximation of responses of complex PDE models in the
sciences and in engineering, by machine learning methodologies combined with suitable DNN
architectures as has recently been proposed in a number of applications; we refer to [35] and
the references there. Let us also mention that DNN approximations with unsupervised training
by stochastic gradient descent have recently been reported to be effective in the valuation of
financial derivatives on large baskets of risky assets [5]. The structure of the value function
of such contracts does not readily fit into the class of (b, ε)-holomorphic, many-parametric
functions, so that the present results do not imply corresponding approximation results.

We emphasize in closing that although the present results quantifying the “expressive power”
of DNNs are approximation results, the proof of Theorem 3.9 is constructive. In principle, when
combined with results from [38] on the localization of the sets Λn of active Taylor gpc coefficients
of (b, ε)-holomorphic maps, this information could be used in so-called “supervised learning”
approaches for training the corresponding DNNs. In practice, however, “non-supervised” train-
ing methodologies are often preferred. The present results, together with the (empirically)
observed performance of widely used training algorithms for DNNs such as stochastic gradient
descent (see, e.g. [6] and the references there) imply also new perspectives on the numerical
solution of forward and inverse problems of parametric and stochastic PDEs. This aspect will
be mathematically developed elsewhere.
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