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Abstract

We estimate the expressive power of a class of deep Neural Networks (DNNs for short) on
a class of countably-parametric maps u : U → R on the parameter domain U = [−1, 1]N. Such
maps arise for example as response surfaces of parametric PDEs with distributed uncertain
inputs, i.e., input data from function spaces. Equipping these spaces with suitable bases, in-
stances of uncertain inputs become sequences of (coefficient) parameters of representations in
these bases.

Dimension-independent approximation rates of generalized polynomial chaos (gpc for short)
approximations of countably-parametric maps u : U → R depend only on the degree of sparsity
of the gpc expansion of u as quantified by the summability exponent of the sequence of their
gpc expansion coefficients: for parametric maps which are p-sparse with some 0 < p < 1, we
show that a certain architecture of DNNs afford the same convergence rates in terms of N , the
total number of units in the DNN.

So-called (b, ε)-holomorphic maps u with b ∈ ℓp for some p ∈ (0, 1) arise in a number of
applications from computational uncertainty quantification. For this class of functions, up to
logarithmic factors we prove the dimension independent approximation rate s = 1/p − 1 in
terms of the total number N of units in the DNN. This shows that the DNN architectures can
overcome the curse of dimensionality when expressing possibly infinite-parametric, real-valued
maps with a certain sparsity. Examples of such maps comprise response maps of parametric
and stochastic PDEs models with distributed uncertain input data.
Key words: generalized polynomial chaos, deep learning, sparsity, Uncertainty Quantification

1 Introduction

After foundational developments several decades ago in answering the question of universality
of NNs [16, 21, 20, 2, 3], in recent years so-called deep neural networks (DNN for short) have
undergone rapid development and successful deployment in a wide range of applications.

Recent years have shown in a broad range of applications the benefit afforded by depth of
NNs on their approximation properties respectively on their expressive power. In particular, for
response surfaces and classification tasks for “complex” systems superiority of deep architectures
in a number of applications has been asserted in recent years.

The purpose of the present paper is to establish that certain architectures of DNNs can
express functions of a large number of variables as arise as response surfaces of countably-
parametric PDE models. Specifically, we show for a broad range of such many-parametric
functions which arise as solutions of parametric operator equations with holomorphic parameter
dependence, that DNNs afford an ε-error with complexity of N = O(ε−1/s) units where O(·) and
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the rate s > 0 is independent of the number of parameters (thereby overcoming, in particular,
the curse of dimensionality), and comparable to convergence rates of the best N -term gener-
alized polynomial chaos (gpc for short) approximation of the parametric solution. As shown,
the parameter s depends only on a suitable notion of sparsity in coefficient sequences of gpc
expansions of the parametric solution.

1.1 Recent mathematical results on expressive power of DNNs

Being mostly based on empirical observations, the past year has seen significant efforts towards
theoretical understanding of the benefits on expressive power of NNs afforded by NN depth.
Theoretical results focused on approximation rate bounds for particular function classes rather
than mere density as in the earlier results.

We mention in particular [17] and [6] where it is shown that deep NNs with a particular
architecture allow the same approximation rate bounds as rather general multiresolution systems
(such as, for example, wavelet, ridglet and shearlet systems which are widely used in image
processing and data compression) when measured in terms of the number N of units in the deep
NN.

In [13], convolutional DNNs were proved to be able to express multivariate functions given
in so-called Hierarchic Tensor (HT) formats, a numerical representation which is inspired by
electron structure calculations in computational quantum chemistry.

Also, in [28, 23], it has been shown that DNNs can express general uni- and multivari-
ate polynomials on bounded domains with pointwise accuracy ε > 0 with internal complexity
(which we assume to comprise the number of NN layers and the number of NN units) which
scales polylogarithmically with respect to ε. The results in [28, 23] allow transferring approxi-
mation results from high order finite and spectral element approximation results, in particular
exponential convergence results, to certain types of DNNs.

Another type of result, closer to the present investigation, is the analysis of NN depth in
high-dimensional approximation. In [24] it was shown that multivariate functions which can be
written as superpositions (being additive but also compositional) of a possibly large number of
“simpler” functions, depending only on a few variables at a time, can be expressed with DNNs at
complexity which is bounded by the dimensionality of constituent functions in the composition
and the size of the connectivity graph, thereby alleviating the curse of dimensionality for this
class.

1.2 Scope of the present results

In the present paper, we investigate the expressive power of DNNs for many-parametric response
functions of solutions of many-parametric operator equations, with holomorphic dependence on
the parameters. Countably-parametric operator equations with a certain holomorphic depen-
dence of the operator on the parameters arise in a number of applications. We mention only
elliptic PDEs with uncertain, spatially heterogeneous, uncertain coefficients (see, e.g., [9, 1] and
the references there), and PDEs posed in domains of uncertain geometry (see, e.g., [25, 22, 12]),
and time-harmonic, electromagnetic scattering (see, e.g. [22]). Such models are ubiquitous in
the area of computational uncertainty quantification in engineering and in the sciences. Holo-
morphic parametric dependence implies holomorphic dependence of solutions on the parameters,
and in particular that response functions (and, in fact, manifolds of parametric solutions) admit
sparse gpc expansions. This sparsity in turn implies dimension independent approximation rates
of various adaptive approximation methods to approximate the parametric PDE solution man-
ifold, and of the response surfaces for so-called quantities of interest (QoIs for short), which are
real-valued, linear or non-linear solution functionals, i.e. superpositions of the data-to-solution
map and of a QoI, being a map from the (Hilbert or Banach) space accomodation the solution
into the real numbers. The present DNN approximation results show that response surfaces (or
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data-to-QoI maps) which depend holmorphically on the high-dimensional parameter vector can
be ‘expressed’ by DNNs at dimension independent rates being the depth of the DNN and the
size of its hidden layers.

While these remarks pertain to so-called forward problems described by parametric PDEs,
often also the corresponding inverse problems are of interest. The present results are also
relevant to these: in the Bayesian setting (see [27] and the references there), it has been shown
in [15, 26] that parametric holomorphy of the QoI is inherited by the bayesian posterior density,
if it exists. The present results therefore imply that DNNs can also express these densities at
dimension-independent rates, opening a perspective of “deep bayesian learning” in UQ.

1.3 Notation and preliminaries

We adopt notation from our previous works [14, 29]: N = {1, 2, . . .} and N0 := N ∪ {0}.
The symbol C will stand for a generic, positive constant that is independent of any quantities
determining the asymptotic behaviour of an estimate.

Multiindices are denoted by ν = (νj)
M
j=1 ∈ NM

0 where either M ∈ N or M = ∞. The order

of a multiindex ν is denoted by |ν|1 :=
∑M

j=1 νj . The set of “finitely supported” multiindices is
denoted by

F := {ν ∈ N
N

0 : |ν| <∞}. (1.1)

The notation suppν stands for the support of the multiindex, i.e. the set {j ∈ {1, . . . ,M} :
νj 6= 0}. The size of the support of ν ∈ F is |ν|0 = #(suppν). A subset Λ ⊆ F is downward
closed, if ν = (νj)j≥1 ∈ Λ implies µ = (µ)j≥1 ∈ Λ for all µ ≤ ν. Here, the ordering “≤” on F is
defined as µj ≤ νj , for all j ≥ 1. We also write µ < ν if µ ≤ ν and strict inequality holds for at
least one dimension j. For 0 < p <∞, denote by ℓp(F) the space of sequences t = (tν)ν∈F ⊂ R

satisfying ‖t‖ℓp(F) := (
∑

ν∈F |tν |
p)1/p <∞.

For M ∈ N∪{∞}, we consider CM endowed with the product topology. Any subset such as
[−1, 1]M is then equipped with the subspace topology. For a ball of radius ε > 0 in C we write

Bε ⊆ C, and clos(Bε) ⊆ C for its closure. Furthermore BM
ε :=×M

j=1
Bε ⊆ CM . Elements of

CM are denoted by boldface characters such as y = (yj)
M
j=1 ∈ [−1, 1]M . For ν ∈ F , standard

notations yν :=
∏

j≥1 y
νj
j and ν! =

∏

j≥1 νj ! will be employed (observing that these formally
infinite products contain only a finite number of nontrivial factors with the conventions 0! := 1
and 00 := 1).

1.4 Outline

The structure of this note is as follows: in Section 2, we review gpc approximation rate bounds
for so-called (b, ε)-holomorphic functions of an infinite sequence y = (yj)j≥1 of arguments.
Such functions arise as response surfaces of holomorphic-parametric operator equations with
many-parametric inputs, e.g., through a linear functional G(·) ∈ X∗ of the parametric solution
u : U → X taking values in some Banach spaceX . These functions allow holomorphic extensions
w.r. to each argument yj to the complex domain, with quantitative control of the size of the
domain of holomorphy w.r. to the dimension index j.

In Section 3, we present the DNN approximation results. Section 3.1 introduces the ar-
chitectures which are admitted in our approximation results. Section 3.2 proves a basic result
on the expressive power of DNNs for univariate polynomials. This will be used in Section 3.3
to establish the main results of this work, namely the ε-approximation of a (b, ε)-holomorphic
parametric response map with b ∈ ℓp(N) by a DNN with O(log ε) layers and nodes.

Section 4 presents some conclusions in particular addressing the scope of results.
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2 Generalized Polynomial Chaos Approximation

To analyze the expressive power of deep NNs on countably-parametric, real-valued maps, we
shall draw upon results from [7, 8, 29] on sparse generalized polynomial chaos approximation
of such maps. To state these results, with the parameter domain U := [−1, 1]N, we consider
maps u : U → R. We are interested in holomorphic maps which admit, with respect to each
parameter yj ∈ y, a holomorphic extension to the complex domain. Crucial in the present
paper are approximation results for the parametric maps u : U → R. We shall use results
from [9, 8, 7, 29] and the references there on sparse Taylor generalized polynomial chaos (gpc)
expansions. These are (formal, at this stage) expressions of the form

u(y) =
∑

ν∈F

uνy
ν , y ∈ U . (2.1)

The summability properties of the Taylor coefficients (|uν |)ν∈F in (2.1) are crucial in assigning
a meaning to gpc series like (2.1). As for every y ∈ U and for every ν ∈ F it holds that
|yν | ≤ 1, the summability (|uν |)ν∈F ∈ ℓ1(F) implies the unconditional convergence of (2.1) for
every y ∈ U . This summability is, in turn, ensured by a suitable form of analytic continuation
of the parametric map u : U → R; we recapitulate principal definitions and results from [29]
and the references there.

2.1 (b, ε)-Holomorphy

To establish convergence rates of partial sums of the Taylor gpc expansion (2.1), p-summability
of the sequence of (norms of) the Taylor coefficients {uν}ν∈F ⊂ X is required for some 0 < p < 1.
A sufficient condition on the parametric map U ∋ y 7→ u(y) ∈ R is the following assumption,
which has similarly been stated in [8].

Assumption 2.1 ((b, ε)-Holomorphy). Assume given a sequence b = (bj)j∈N of positive reals
bj such that b ∈ ℓp(N) for some p ∈ (0, 1], and such that bj is monotonically decreasing.

A poly-radius ρ ∈ [1,∞)N is called (b, ε)-admissible for some ε > 0 if

∑

j∈N

bj(ρj − 1) ≤ ε . (2.2)

With
Ob :=

⋃

{ρ :ρ is (b, ε)-admissible}

clos(Bρ) ⊆ C
N , (2.3)

the function u : Ob → C is continuous. Moreover u is separately holomorphic on an open
superset of Ob as a function of each zj. Additionally, there exists a constant Cu <∞ such that
supz∈Ob

‖u(z)‖XC
≤ Cu.

In case u satisfies Assumption 2.1, we will also say that u is (b, ε)-holomorphic. Note that by
continuity in the above assumption we mean continuity with respect to the subspace topology
on Ob ⊆ CN, where CN is equipped with the product topology.

We recall the well-known fact, that the Taylor expansion in (2.1) converges on finite di-
mensional polydiscs in C

M , M ∈ N. In the following, by an absolutely convergent series
(tν)ν∈F ∈ Y S , with Y some Banach space and S some countable set such as F , we mean a se-
quence for which there exists a bijection π : N → S such that the sum

∑

j∈N
‖tπ(j)‖Y converges.

The sum is meaningful due to the countability of S, and due to the fact that the existence of one
such bijection ensures the series to converge for any bijection π : N → S. In the next proposition,
for ρ = (ρj)

M
j=1 we write clos(Bρ) to denote the closed polydisc×j≥1

clos(Bρj
) ⊆ CN.
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Proposition 2.2. Let ρ = (ρj)j≥1 ∈ (1,∞)N. Suppose that u : O → C is (b, ε)-holomorphic on
the open set O ⊇ clos(Bρ) and satisfies supz∈clos(Bρ) |u(z)| ≤ Cu <∞.

Then, for y ∈ [−1, 1]N, u admits the Taylor gpc expansion

u(y) =
∑

ν∈F

uνy
ν where uν =

1

ν!
(∂νyu)(y)

∣
∣
∣
y=0

, (2.4)

which is absolutely convergent in L∞(U ;R) and in L∞(Bρ;C). There exists a constant Cu > 0
such that for every ν ∈ F and for every (b, ε)-admissible poly-radius ρ (i.e., (2.2) holds) we
have

|uν | ≤ Cuρ
−ν . (2.5)

The bound (2.5) is a consequence of the (b, ε)-holomorphy on the poly-disc Bρ and of the
Cauchy integral theorem [19, Thm. 2.1.2], see the proof of [10, Lemma 2.4]. The unconditional
convergence of the series (2.4) is for example discussed in [19, Sec. 2.1].

For future reference we next recall three lemmata required for proving summability of se-
quences allowing bounds of the type (2.5). Let in the following α = (αj)j∈N denote a sequence
(not necessarily monotonic) of nonnegative real numbers.

Lemma 2.3 ([10, Lemma 7.1]). Let p ∈ (0,∞). The sequence (αν)ν∈F belongs to ℓp(F), iff
‖α‖ℓp(N) <∞ and ‖α‖ℓ∞(N) < 1.

Lemma 2.4 ([10, Thm. 7.2]). Let p ∈ (0, 1]. The sequence (αν |ν|!/ν!)ν∈F belongs to ℓp(F) iff
‖α‖ℓp <∞ and ‖α‖ℓ1 < 1.

Lemma 2.5 ([29, Lemma 3.11]). Let (xj)j∈N ∈ ℓp be a monotonically decreasing sequence of
nonnegative numbers for some p > 0. Then there exists a constant C such that xj ≤ Cj−1/p for
all j ∈ N.

2.2 gpc Approximation

As has been observed in several references (see, e.g., [14, 8]), (b, ε)-holomorphy implies dimension-
independent N -term gpc approximation rate bounds. Our analysis of the expressive power of
DNNs will be based on a version of these approximation rate bounds as stated in the following
theorem.

Theorem 2.6. Let u be (b, ε)-holomorphic for some b ∈ ℓp, p ∈ (0, 1), and let uν ∈ R denote
the Taylor gpc coefficient as defined in (2.4). Then there exists a finite constant C > 0 as well
as a sequence of nested, finite and downward closed index sets ΛN ⊂ F such that for all N ∈ N

it holds |ΛN | ≤ N and

(i)
∑

ν /∈ΛN
|uν | ≤ CN1−1/p,

(ii) supν∈ΛN
|ν|1 ≤ C(1 + log(N)).

Since it will allow us to discuss results based on related but different presumptions than the
ones of Assumption 2.1 (see. Sec. 4 ahead), we provide part of the above theorem as a separate
Lemma, before proceeding to the proof of Thm. 2.6.

Lemma 2.7. Let r ∈ [1,∞) and p ∈ (0, 1). Let (uν)ν∈F ∈ RF and assume that β = (βj)j∈N ∈
ℓpr/(r−p)(N) with βj ∈ (0, 1) for all j ∈ N, is such that

∑

ν∈F(β
−ν |uν |)

r <∞. Then there exists
a constant C and for every N ∈ N there exists a downward closed index set ΛN ⊆ F satisfying
|ΛN | ≤ N as well as (i) and (ii) of Thm. 2.6.

Proof. Denote in the following by ej ∈ F the jth unit multiindex, i.e. (ej)i = 1 if i = j
and (ej)i = 0 otherwise. Without loss of generality we’ll assume that |uej

| is monotonically
decreasing in j (otherwise we can reorder the dimensions).
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First we note that (uν)ν∈F ∈ ℓp(F), since with Hölders inequality it holds

∑

ν∈F

|uν |
p =

∑

ν∈F

|uν |
pβ−pνβpν ≤

(
∑

ν∈F

(|uν |β
−ν)r

) p
r
(
∑

ν∈F

βν
pr

r−p

) r−p
r

<∞, (2.6)

where the last sum is finite since (βν)ν∈F ∈ ℓpr/(r−p) according to Lemma 2.3 and because
β ∈ ℓpr/(r−p)(N).

Next fix 0 < q <∞ such that pr/(r − p) > q and set

αν :=

{

j−1/q if ν = ej ,

0 otherwise.
(2.7)

Now define ζν := max{βν , αν}. Then ζν ∈ ℓpr/(r−p) since (αej
)j∈N ∈ ℓpr/(r−p) and (βν)ν∈F ∈

ℓpr/(r−p). Moreover ∑

ν∈F

(ζ−1
ν |uν |)

r ≤
∑

ν∈F

(β−ν |uν |)
r <∞. (2.8)

Let π : N → F be bijection such that the sequence (ζπ(j))j≥1 is monotonically decreasing
in j, and such that {π(1), . . . , π(n)} is downward closed for any n ∈ N. This is possible,
because ζν is monotonically decreasing in the sense that ν ≤ µ implies ζν ≥ ζµ. Define
ΛN := {π(j) : 1 ≤ j ≤ N}. With r′ ∈ (1,∞] denoting the Hölder conjugate of r we get

∑

ν∈Λc
N

|uν | =
∑

ν∈Λc
N

ζνζ
−1
ν |uν | ≤ ‖(ζν)ν∈Λc

N
‖ℓr′‖(ζ

−1
ν |uν |)ν∈Λc

N
‖ℓr ≤ C‖(ζν)ν∈Λc

N
‖ℓr′ . (2.9)

With Lemma 2.5 we conclude that there exists a constant C such that ζπ(j) ≤ Cj−(r−p)/(pr).
Hence, the last part can be bounded for r < 1 with r′ = r/(r − 1) by

‖(ζν)ν∈Λc
N
‖ℓr′ ≤



C
∑

j>N

j−
r

r−1
r−p
pr





r−1
r

≤ C
(

N1− r
r−1

r−p
rp

) r−1
r

≤ CN
r−1
r

− r−p
rp = CN1−1/p,

(2.10)
where we have used (r(r−p))/((r−1)pr) > 1 which follows by p ∈ (0, 1). For r = 1, i.e. r′ = ∞,
we use ‖(ζν)ν∈Λc

N
‖ℓr′ ≤ C supj>N j1−1/p ≤ CN1−1/p instead (where we have again employed

Lemma 2.5). This shows (i).
To show (ii) note that by definition of (αν)ν∈F and (ζν)ν∈F , it holds min{ζν : ν ∈ ΛN} ≥

N−1/q. On the other hand, with c := supj∈N βj < 1 we have sup{ζν : |ν|1 = d} ≥ sup{βν :

|ν|1 = d} ≥ c|ν|1 . Hence with f(d) := cd

max
ν∈ΛN

|ν|1 ≤ f−1(N−1/q) = O(log(N)), (2.11)

which concludes the proof.

Proof of Thm. 2.6. It is by now well-established, see [10, 11] and in particular the proof of [8,
Thm. 2.2], that the Taylor coefficients of (b, ε)-holomorphic maps allow bounds of the following
type:

|uν | ≤ Cκ|νE | |νF |!

νF !
γνF , (2.12)

where for some fixed J ∈ N we employ the notation νE := (ν1, . . . , νJ), νF := (νJ+1, . . . ), and
κ ∈ (0, 1) as well as γ ∈ ℓp(N) with ‖γ‖ℓp < 1 are also fixed. This is a consequence of Prop. 2.2,
and we refer to [10, 11, 8] for proofs of such statements, where it is also shown that (2.12) implies
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(|uν |)ν∈F ∈ ℓp(F). We now choose a sequence β = (βj)j∈N ∈ ℓp/(1−p)(N) such that ‖β‖ℓ∞ < 1
as follows

βj :=

{
2κ
1+κ if j ≤ J,

γ1−p
j if j > J.

(2.13)

Then for δ with δj := γjβ
−1
J+j for j > J we have

‖δ‖ℓ1 =
∑

j∈N

γ
1−(1−p)
j = ‖γ‖pℓp < 1. (2.14)

Now,

∑

ν∈F

β−ν |uν | ≤ C
∑

ν∈F

κ|νE|

(
1 + κ

2κ

)|νE|
|νF |!

νF !
γνF β−νF

= C
∑

ν∈NJ
0

(
1 + κ

2

)|ν| ∑

µ∈F

|µ|!

µ!
δµ. (2.15)

By Lemma 2.3 and Lemma 2.4 the last two sums are finite, since (1 + κ)/2 < 1 and because of
(2.14). This proves

∑

ν∈F β−ν |uν | < ∞. Furthermore, Lemma 2.3 gives (βν)ν∈F ∈ ℓp/(1−p).
We may thus employ Lemma 2.7 with r = 1, which concludes the proof.

3 Deep Neural Network Approximations

3.1 DNN Architecture

We consider so-called feedforward NNs (FFNNs for short). They are composed of layers of
computational nodes and define a function f : Rn → R. We denote by L the number of hidden
layers in the NN, by Nℓ the number of compute nodes in layer ℓ. The number N =

∑L
ℓ=1Nℓ

denotes the total number of nodes in the NN and we shall adopt it as a measure of the “number
of degrees of freedom” in the NN. In the NN literature, N is also referred to as the size of the
DNN.

The vector x = (x1, ..., xn) ∈ R
n will denote the input of the DNN, zℓj denotes the output

of unit j in layer ℓ+ 1, bℓj denotes the “bias” of unit j in layer ℓ. Output between layers of the
FFNN are then characterized by the following maps:

zℓ+1
j := σ

(
Nℓ∑

i=1

wℓ
i,jz

ℓ
i + bℓ+1

j

)

, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} , (3.1)

with the input layer

z1j := σ

(
d∑

i=1

w0
i,jxi + b1j

)

, j ∈ {1, . . . , N1} , (3.2)

and the output layer

f(x) :=

NL∑

i=1

wL
i,1z

L
i + bL+1

1 . (3.3)

In (3.1) - (3.2), the function σ(·) denotes the activation function, which here and in the following
is the so-called Rectifier Linear Unit (ReLU) σ(x) = max{0, x}. As customary in the theory
of NNs, the number of layers of a NN is referred to as depth and the total number of nodes is
referred to as size of the NN.

7



3.2 Expressive Power of DNNs

To prove complexity bounds on the expressive power of DNNs for high dimensional parametric
maps, we exploit the (b, ε)-holomorphy and the resulting sparsity of their Taylor gpc represen-
tations (2.4). The point of departure will be the N -term truncated Taylor polynomial of the
parametric map u(y) : U → R, which is obtained via the gpc approximation result Theorem 2.6.
In particular, we shall use recent, quantitative bounds on expressing multivariate polynomials by
DNNs, from [28]. There it was observed, that deep NNs allow efficient approximation of x 7→ x2,
in the sense that the number of required layers, units and weights only depends logarithmically
on the absolute accuracy ε > 0, up to which this function is to be approximated. This yields
efficient approximation of multiplication, and ultimately entails corresponding results on the
approximation of polynomials. We now recall and present some core statements from [28] in a
form required in our subsequent analysis.

As mentioned above, the main task is to approximate x 7→ x2 for x ∈ [0, 1]. This is achieved
in [28] through the functions fm which denote the piecewise linear spline interpolation of x2 at
the equispaced nodes j2−m for j = 0, . . . , 2m. The error of this approximation is

sup
x∈[0,1]

|x2 − fm(x)| = 2−2m−2. (3.4)

Denote again by σ(x) = max{0, x} the ReLU activation function. With f0(x) := x = σ(x) for
x ∈ [0, 1], the function fm can be exactly expressed by a NN via

fm(x) = fm−1(x)−
gm(x)

22m
∀ m ≥ 1, (3.5a)

where gm = g ◦ · · · ◦ g is the m-fold composition of g (gm is a “sawtooth function”), and

g(x) = 2σ(x)− 4σ(x − 1/2) + 2σ(x− 1) =

{

2x if x < 1
2 ,

2(1− x) if x ≥ 1
2 ,

(3.5b)

is the linear combination of 3 ReLUs. Since fm is the continuous, piecewise linear interpolant
of x2, we have fm(x) ≥ 0 for all x ∈ [0, 1] and thus fm(x) = σ(fm−1(x) − gm(x)2−2m). This
shows that fm is the output of a DNN with m hidden layers, each exhibiting 4 ReLUs as
displayed in Fig. 1 (a). For some fixed M > 0 and a, b ∈ R with |a|, |b| ≤ M , one can write
ab = M2((|a + b|/(2M))2 − (|a|/(2M))2 − (|b|/(2M))2)/8 where |a + b|/(2M), |a|/(2M) and
|b|/(2M) are all in the interval [0, 1]. Replacing the squared terms with the NN yields a NN
approximating the multiplication of two numbers in [−M,M ]. This argument, presented in
more detail in [28], gives the following proposition:

Proposition 3.1 ([28, Prop. 3]). Given M > 0 and ε ∈ (0, 1) there exists a ReLU network ×̃
with two input units such that for all |a|, |b| ≤ M , it holds |×̃(a, b) − a · b| ≤ ε. The depth,
number of weights and number of computation units in this network behaves as O(log(1/ε)) as
ε→ 0.

Proposition 3.1 allows to approximate the multiplication
∏n

j=1 xj of n numbers with n ∈ N

arbitrary. We next provide a proof of this result, which slightly deviates from the constructions
employed in [28] (see Rmk. 3.4). The following short Lemma will be required in the proof.

Lemma 3.2. Let a0 = 1, ε ≥ 0 fixed and aj+1 := a2j + ε, j ∈ N0. Then aj ≤ (1 + 2ε)2
j

for all
j ∈ N.

Proof. We prove by induction that aj ≤ (1+ 2ε)2
j

− ε. This is true for j = 1 since a1 = 1+ ε ≤
(1 + 2ε)2 − ε. For the induction step we obtain

aj+1 = a2j + ε ≤ ((1 + 2ε)2
j

− ε)2 + ε = (1 + 2ε)2
j+1

− 2(1 + 2ε)2
j

ε+ ε2 + ε

≤ (1 + 2ε)2
j+1

− 2ε− 4ε2 + ε2 + ε ≤ (1 + 2ε)2
j+1

− ε, (3.6)
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...

x

f0g1

f1g2

fm−2gm−1

fm−1gm

fm

(a) Approximation of x2

x y

fm(|x|) fm(|y|) fm(|x+ y|)

×̃(x, y) = 16fm(|x+y|/4)−4fm(|x|/2)−4fm(|y|/2)
2

(b) Approximation of xy

x1 x2 x3 x4

×̃(x1, x2) ×̃(x3, x4)

×̃(.., ..)

∏̃4
j=1xj = ×̃(×̃(x1, x2), ×̃(x3, x4))

(c) Approximation of
∏n

j=1 xj

Figure 1: Subfigure (a) shows the network approximating [0, 1] ∋ x 7→ x2 via fj(x) = σ(fj−1(x)−
gj(x)/2

2j), cp. (3.5). Subfigure (b) shows the network approximating [0, 2]2 ∋ (x, y) 7→ xy. The
boxes contain the network from subfigure (a) e.g. applied to |x|/2 = σ(x/2) + σ(−x/2). Subfigure
(c) shows the network approximating

∏n
j=1

xj for n = 4 where |xj | ≤ 1 for all j. The boxes contain

the approximate multiplication ×̃ from (b).

which shows the claim.

Corollary 3.3. Let δ ∈ (0, 1). There exists a NN ˜∏ with n input units such that for x1, . . . , xn
with |xi| ≤ 1 for all i, it holds |

∏n
j=1 xj −

˜∏(x1, . . . , xn)| ≤ δ.
There exists a constant C such that for every n ∈ N and for every accuracy 0 < δ < 1, the

number of ReLUs and weights in NN ˜∏ is bounded by C(1 + n log(n/δ)) and the depth of the

network ˜∏ is bounded by C(1 + log(n) log(n/δ)).

Proof. Step 1: We construct the network. If n /∈ {2j : j ∈ N} =: A, let N = min{x ≥ n :
x ∈ A} and define xj := 1 for all j ∈ {n + 1, . . . , N}. We note that N ≤ 2n. We let ×̃ as in
Prop. 3.1: more precisely, for x, y with |x|, |y| ≤ 1 define (see Fig. 1 (b))

×̃(x, y) :=
16fm(|x+ y|/4)− 4fm(|x|/2)− 4fm(|y|/2)

2
, (3.7)

where m = C1 log(N/δ) and the constant C1 ≥ 1/ log(2) is to be chosen subsequently indepen-
dent of N and δ. Then ×̃ is a neural network approximating the multiplication of two numbers
in [−2, 2] such that

(i) the number of layers, weights and units is bounded by O(m) = O(C1 log(N/δ)) (see Fig. 1
(a)),

(ii) for all |x|, |y| ≤ 2 it holds

|×̃(x, y)− xy| =

∣
∣
∣
∣
×̃(x, y)−

16(|x+ y|/4)2 − 4(x/2)2 − 4(y/2)2

2

∣
∣
∣
∣

≤
16|fm(|x + y|/4)− (|x+ y|/4)2|+ 4|fm(|x|/2)− (|x|/2)2|+ 4|fm(|y|/2)− (|y|/2)2|

2

≤
(16 + 4 + 4)2−2m−2

2
= 3 · 2−2m, (3.8)
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where we have used (3.4),

(iii) for all |x|, |y| ≤ 2 it holds |×̃(x, y)| ≤ |xy|+ 3 · 2−2m.

For any even positive integer k we define

R(y1, . . . , yk) := (×̃(y1, y2), . . . , ×̃(yN−1, yN)) ∈ R
k/2 (3.9)

and (cp. Fig. 1 (c))
∏̃

(x1, . . . , xn) := R ◦ · · · ◦R
︸ ︷︷ ︸

log2(N)

(x1, . . . , xN ) ∈ R. (3.10)

In the following, we use the notation Rlog2(N) instead which records in the exponent the number
of compositions.

Step 2: We now show that, upon choosing C1 large enough, it holds Rj(x1, . . . , xN ) ∈

[−2, 2]N/2j for all j = 1, . . . , log2(N). Define ε := 3 · 2−2m where as above m = C1 log(N/δ),
i.e. ε = ε(N). By item (iii) and since |xj | ≤ 1 for all j, we get R(x1, . . . , xN ) ∈ [−1− ε, 1+ ε]N/2

and inductively with a0 := 1, aj+1 := a2j + ε it holds Rj(x1, . . . , xN ) ∈ [−aj , aj]
N/2j for j =

1, . . . , log2(N). Using Lemma 3.2, it suffices to show that (1+2ε(N))2
log2(N)

= (1+2ε(N))N ≤ 2
for all N ∈ N. We have for δ ≤ 1

(1 + 2ε(N))N = (1 + 2(3 · 2−2C1 log(N/δ)))N

≤ (1 + 6 · 2−2C1 log(N))N = (1 + 6N−2 log(2)C1)N

= exp
(

N log(1 + 6N−2 log(2)C1)
)

. (3.11)

Since log(1 + x) = x+O(x2) asymptotically as x→ 0, the exponent behaves like

6N1−2 log(2)C1 → 0

as either (C1 > 1/(2 log(2)) and) N → ∞ or (N ≥ 2 and) C1 → ∞. Hence supN∈N
(1 +

2ε(N))N ≤ 2 provided that C1 > 0 is large enough.
Step 3: We estimate the error. By item (ii) it holds |×̃(x, y)− xy| ≤ ε = 3 · 2−2m for all |x|,

|y| ≤ 2. We claim that for all r ∈ N and all b1, . . . , b2r such that Rj(b1, . . . , b2r ) ∈ [−2, 2]N/2j for

all j = 0, . . . , r, it holds that |Rr(b1, . . . , b2r)−
∏2r

j=1 bj| ≤ (4r−1)ε. Note that for C1 ≥ 1/ log(2)

our global choice m = C1 log(N/δ) ensures ε = 3 · 2−2m ≤ 3(δ/N)2 ≤ 3δ/N2. With r = log2(N)
and the statement from Step 2, this will prove the desired bound

∣
∣
∣
∣
∣
∣

n∏

j=1

xj −
∏̃

(x1, . . . , xn)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N∏

j=1

xj −
∏̃

(x1, . . . , xN )

∣
∣
∣
∣
∣
∣

≤ (N2 − 1)ε ≤ (N2 − 1)3δ/N2 ≤ 3δ .

(3.12)
We proceed by induction over r to verify the above claim. The case r = 1 is trivial since by
assumption |R(b1, b2) − b1b2| = |×̃(b1, b2) − b1b2| ≤ ε ≤ (4r − 1)ε. For the induction step, note
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that Rr(b1, . . . , b2r ) = ×̃(Rr−1(b1, . . . , b2r−1), Rr−1(b2r−1+1, . . . , b2r)). We get

∣
∣
∣
∣
∣
∣

2r∏

j=1

bj −Rr(b1, . . . , b2r)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

2r−1
∏

j=1

bj

2r∏

i=2r−1+1

bi − ×̃(Rr−1(b1, . . . , b2r−1), Rr−1(b2r−1+1, . . . , b2r))

∣
∣
∣
∣
∣
∣

≤
∣
∣×̃(Rr−1(b1, . . . , b2r−1), Rr−1(b2r−1+1, . . . , b2r)) −Rr−1(b1, . . . , b2r−1) ·Rr−1(b2r−1+1, . . . , b2r )

∣
∣

+

∣
∣
∣
∣
∣
∣

2r−1
∏

j=1

bj

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2r∏

i=2r−1+1

bi −Rr−1(b2r−1+1, . . . , b2r)

∣
∣
∣
∣
∣
∣

+
∣
∣Rr−1(b2r−1+1, . . . , b2r )

∣
∣

∣
∣
∣
∣
∣
∣

2r−1
∏

j=1

bj −Rr−1(b1, . . . , b2r−1)

∣
∣
∣
∣
∣
∣

. (3.13)

We denote the last three terms by T1 + T2 + T3. To bound the first term we use s1 :=
Rr−1(b1, . . . , b2r−1), s2 := Rr−1(b2r−1+1, . . . , b2r) ∈ [−2, 2] by assumption, which gives T1 =

|×̃(s1, s2)−s1 ·s2| ≤ ε by (ii). For T2 we use |
∏2r−1

j=1 bj | ≤ 1 (since |bi| ≤ 1 for all i) and the induc-

tion hypothesis which gives T2 ≤ (4r−1−1)ε. In the same way we obtain T3 ≤ 2(4r−1−1)ε, where
we employed |Rr−1(b2r−1+1, . . . , b2r)| ≤ 2. Overall T1+T2+T3 ≤ (1+4r−1−1+2(4r−1−1))ε ≤
(4r − 1)ε, which proves the claim.

Step 4: Finally we sum up all layers, weights and units. The operator ˜∏ in (3.10) describes
a NN with O(log2(N) log(N/δ)) layers and with O(N log(N/δ)) weights and ReLUs: first note
that we may use one layer to create the values 1 = xn+1 = · · · = xN as 1 = xj = σ(1 + 0 · x1)
for j = n+ 1, . . . , N and write xj = σ(xj)− σ(−xj) for j = 1, . . . , n to copy the n input values
x1, . . . , xn to the second layer (which is the first hidden layer). Next, the first application of R
employs N/2 times the neural network ×̃ with the inputs from the first hidden layer. Hence,
by (i) this adds O(log(N/δ)) layers and in total O(log(N/δ)N/2) weights and units. For the
second application of R we employ the neural network ×̃ exactly N/4 times, which adds another
O(log(N/δ)) layers and O(log(N/δ)N/4) weights and units. After log2(N) steps we end up with
O(log2(N) log(N/δ)) layers and O(log(N/δ)N) weights and units. Since N ≤ 2n, this shows
that the network uses the stated number of units, weights and layers.

Remark 3.4. The proof in [28] uses ×̃(a1, ×̃(a2, . . . , ×̃(an−1, an))) to approximate
∏n

j=1 aj.
This would give O(n log(n/δ)) layers in Cor. 3.3. On the other hand, this construction has the
advantage of giving all products

∏n
j=l aj for l = 1, . . . , n in between, which is convenient when

approximating a polynomial
∑n

j=1 cjx
j where all values x, . . . , xn are needed.

Remark 3.5. Similar results in terms of the depth and number of units as we have cited here
were obtained in [23] using a NN composed of ReL and BiS (“binary step”) units.

3.3 DNN Approximation of (b, ε)-holomorphic maps

We now give a result on the expressive power of neural networks concerning (b, ε)-holomorphic
functions. It states that, up to logarithmic terms, neural networks based on ReL units are
capable of approximating (b, ε)-holomorphic maps at rates equivalent to those achieved by best
N -term approximation. By “rate” we mean here the error in terms of the used number of units,
weights and layers.

Theorem 3.6. Let u : U → R be (b, ε)-holomorphic for some b ∈ ℓp(N), and with some
p ∈ (0, 1).

Then, there exists a constant C and for every N ∈ N there exists a ReLU network ũ(y1, . . . , yN )
with N input units whose number of units and weights is bounded by C(1+N log(N) log log(N)),
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and its depth is bounded by C(1 + log(N) log log(N)) which satisfies the uniform error bounds

sup
y∈U

|u(y)− ũ(y1, . . . , yN)| ≤ CN1−1/p .

Proof. According to Thm. 2.6 there exist downward closed index sets ΛN with |ΛN | ≤ N such
that

sup
y∈U

∣
∣
∣
∣
∣
u(y)−

∑

ν∈ΛN

uνy
ν

∣
∣
∣
∣
∣
≤ CN−1/p+1. (3.14)

It thus suffices to approximate uN :=
∑

ν∈ΛN
uνy

ν with a DNN. Fix N and let π : {1, . . . , N} →
ΛN be such that |uπ(j)| is monotonically decreasing in j. By Thm. 2.6, (uν)ν∈F ∈ ℓp(F) so that

by Lemma 2.5 we obtain |uπ(j)| ≤ Cj−1/p. Note that C does not depend on N here. Define

εj := (j/N)1/p. Below we shall construct a NN which yields, for every y ∈ U , the output

U ∋ y 7→
∑

ν∈ΛN

uνfν(y) (3.15)

where supy∈U |yπ(j) − fπ(j)(y)| ≤ εj for all j ∈ {1, . . . , N}. Then by (3.14) the total error is
bounded by

sup
y∈U

∣
∣
∣
∣
∣
u(y)−

∑

ν∈ΛN

uνfν(y)

∣
∣
∣
∣
∣
≤ CN−1/p+1 +

N∑

j=1

|uπ(j)| sup
y∈U

|yπ(j) − fπ(j)(y)|

≤ CN−1/p+1 +

N∑

j=1

Cj−1/p

(
j

N

)1/p

≤ CN−1/p+1. (3.16)

It remains to construct the NN as stated above. First observe that uN depends on at most
N variables, since |ΛN | ≤ N and ΛN is downward closed: for each j ∈ suppν for some ν ∈ ΛN ,
it must hold ej ∈ ΛN which implies

|{j : j ∈ suppν ∧ ν ∈ ΛN}| ≤ |ΛN | ≤ N. (3.17)

We use y1, . . . , yN as the input of our NN. Next, writing yj = max{0, yj} − max{0,−yj}, we
observe that it is possible to obtain

∑

ν∈Λ νj copies of yj for each j = 1, . . . , N , by using one
layer with 2

∑

ν∈ΛN
|ν|1 ReLUs and weights. By item (ii) of Thm. 2.6, it holds 2

∑

ν∈ΛN
|ν|1 ≤

C(1 + N log(N)). Next, we fix ν = π(j) ∈ ΛN and invoke Cor. 3.3 to approximate yν : Wlog
let yν =

∏n
i=1 yi (in the general case some yi may occur multiple times and suppν can be any

subset of {1, . . . , N}). Define fν(y) := ˜∏(y1, . . . , yn) as in Cor. 3.3 with δ = εj . Then Cor. 3.3
gives supy∈U |yν − fν(y)| ≤ εj. By this corollary, the number of layers required by the NN fν
is bounded by C(1 + log(|ν|1) log(|ν|1/εj)) which is bounded by C(1 + log(N) log log(N)) since
|ν|1 ≤ C(1 + log(N)) according to Thm. 2.6, and N−1/p ≤ εj ≤ 1 for ν ∈ ΛN by definition.
Since ν ∈ ΛN was arbitrary, this gives the upper bound O(log(N) log log(N)) on the depth of
the NN (3.15). Finally, employing again Cor. 3.3 and |π(j)|1 ≤ C log(N) for j = 1, . . . , N , we
sum up the number of weights and units as

N∑

j=1

C

(

1 + |π(j)|1

∣
∣
∣
∣
log

(

C + C
|π(j)|1
εj

)∣
∣
∣
∣

)

≤ CN + C
N∑

j=1

log(N) log

(

C log(N)

(
N

j

)1/p
)

≤ CN + CN log(N) log log(N) + C log(N)

N∑

j=1

log(N/j). (3.18)
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The last sum can be estimated by

N∑

j=1

log(N/j) ≤ log(N) +

∫ N

1

log(N/x)dx = log(N)−N

∫ 1

1/N

log(y)dy

= log(N)−N

(

−1−
1

N
log

(
1

N

)

+
1

N

)

= O(N), (3.19)

which concludes the proof.

4 Examples, Generalizations and Conclusions

We present a brief summary of our main results, illustrate their relevance to parametric PDEs
with a simple example (a linear elliptic PDE with uncertain, parametric coefficient) and indicate
several generalizations which can be obtained by combining known gpc approximation rate
results with the presently proposed NN approximations of polynomials.

We have proved convergence rate bounds for a class of DNNs for a class of real-valued
functions f which depend holomorphically on a sequence y = (yj)≥1 of (possibly infinitely
many) parameters, and which allow for a sparse gpc expansion with respect to these parameters.
Their relevance stems from the fact that functions of this type are obtained as response surfaces
of operator equations with distributed, uncertain input data in function spaces. Specifically, we
considered functions of countably many parameters yj which admit Taylor gpc expansions (2.4)
that are sparse in the sense that the sequence (uν)ν∈F of Taylor gpc coefficients is p-summable
for some 0 < p < 1. Such functions arise as response surfaces of broad classes of countably-
parametric PDEs which model systems with distributed uncertain inputs in engineering and in
the sciences. Our main result, Theorem 3.6, implies that such response surfaces can be learned
by DNNs with (uniform w.r. to the parameter vector y) accuracy ε with a number of nodes
which is bounded (up to logarithmic factors) by Cε−1/s where s = 1/p− 1 and with a constant
C > 0 that is independent of the dimension of the input data (3.14). For b ∈ ℓp(N) with
0 < p < 1, the DNN approximation essentially reproduces the gpc N -term approximation rates.

The argument in the proof of Theorem 3.6 consisted in reapproximating N -term truncated
gpc expansions of the response surface by DNNs, and in showing that this reapproximation
could be achieved by DNNs with O(log ε) many nodes for each monomial term. The curse of
dimensionality was overcome by exploiting the separability of the gpc bases (here yν).

Analogous results will hold also for other types of gpc expansions, where yν is replaced by
tensor products of other systems of polynomials such as, for example, Tschebyscheff or Jacobi
polynomials. Also, when higher convergence rates of N -term gpc approximations are available,
these can be expected to translate into improved rates of expressive power of DNNs with N
units.

Finally, let us present one example of a parametric partial differential equation where the
foregoing theory can be applied. It also serves to indicate that the preceding statements admit
certain refinements, and analogous proofs in the nonanalytic case.

In a bounded domain D ⊂ Rd, consider the elliptic diffusion equation

−div(a∇u) = f, (4.1)

for a given right-hand side f ∈ L2(D), with homogeneous Dirichlet boundary conditions u|∂D =
0. The scalar diffusion coefficient a is assumed to be spatially variable. Using the notation
V = H1

0 (D) and V ′ = H−1(D), for any f ∈ V ′, the weak formulation of (4.1) in V ,

∫

D

a∇u · ∇v = 〈f, v〉V ′,V , v ∈ H1
0 (D), (4.2)
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admits a unique solution u ∈ V provided the diffusion coefficient a satisfies 0 < r < a < R <∞.
We consider diffusion coefficients having a parametrized form a = a(y), where the parameter

sequence y = (yj)j≥1 is a sequence of real-valued parameters ranging in U = [−1, 1]N. The
resulting solution map

y 7→ u(y), (4.3)

acts from the parameter domain U to the solution space V . Affine-parametric input representa-
tions arise, for example, from Fourier-, Karhunen-Loève-, spline- or wavelet series representations
of a:

a = a(y) = ā+
∑

j≥1

yjψj . (4.4)

Here, ā and (ψj)j≥1 are known functions in L∞(D), and the parameters yj are assumed to range
in [−1, 1]. The parameter domain is U . Under the so-called uniform ellipticity assumption

∑

j≥1

|ψj | ≤ ā− r, a.e. on D, (4.5)

for some r > 0, the parametric solution U ∋ y 7→ u(y) ∈ V is well-defined.
The parametric solution U ∋ y 7→ u(y) ∈ V , admits the Taylor gpc expansion

u(y) =
∑

ν∈F

uνy
ν , y ∈ U , (4.6)

with unconditional convergence in the norm of V at every y ∈ U . Here, the affine-parametric
nature of the parametric coefficient a(y) allows for the following improved summability result
for the V -norms of the Taylor gpc coefficients uν .

Theorem 4.1 ([1, Thm. 2.1 and Cor. 2.1]). Let 0 < q < ∞ and 0 < p < 2 be such that
1/p = 1/q + 1/2. Assume that ā ∈ L∞(D) is such that ess inf ā > 0, and that there exists a
sequence β = (βj)j∈N of positive numbers strictly smaller than 1 such that β ∈ ℓq(N) and such
that

θ :=

∥
∥
∥
∥
∥

∑

j≥1 β
−1
j |ψj |

ā

∥
∥
∥
∥
∥
L∞

< 1 . (4.7)

Then
∑

ν∈F(β
−ν |uν |)

2 <∞, and in particular (uν)ν∈F ∈ ℓp(F).

We remark that the proof of Theorem 4.1 is not based on holomorphy, but rather on real
variable arguments combined with induction w.r. to the total differentiation order |ν| of the
Taylor coefficient uν . Using Lemma 2.7 with r = 2, a proof completely analogous to the one of
Thm. 3.6 yields:

Corollary 4.2. Let p ∈ (0, 1) and q = 2p/(2 − p), i.e. 1/p = 1/q + 1/2. Then, under the
assumptions of Thm. 4.1, there exists a constant C and for every N ∈ N there exists a ReLU
network ũ(y1, . . . , yN ) with N input units whose number of units and weights is bounded by
C(1+N log(N) log log(N)), and its depth is bounded by C(1+log(N) log log(N)) which satisfies
the uniform error bounds

sup
y∈U

|u(y)− ũ(y1, . . . , yN)| ≤ CN1−1/p .

We conclude that Theorem 3.6 shows that response functions of many-parametric operator
equations can, in principle, be expressed by deep ReLU NNs with error vs. network size N at an
approximation rate which is free from the curse of dimensionality. Moreover, it is only limited
by the sparsity of the parametric solutions’ gpc expansion.

We also mention that in the Bayesian Inversion of many-parametric PDE models in the
presence of noisy data (see, e.g., [27] for the mathematical formulation), the expectations of
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quantities of interest conditional on the observation data, can be expressed as high dimensional
integrals w.r. to a posterior Bayesian density which is (b, ε)-holomorphic when the inversion of
the abstract theory in [27] is satisfied, see [26] for a verification in the above, affine-parametric
setting. The present results therefore open the perspective of deep learning of Bayesian posteriors
for PDEs.

This opens a new direction in the approximation of responses of complex PDE models in
the sciences and in engineering, by machine learning methodologies combined with suitable
DNN architectures. Let us mention that DNN approximations with unsupervised training by
stochastic gradient descent have recently been reported to be effective in the valuation of financial
derivatives on large baskets of risky assets [4, 18]. The structure of the value function of such
contracts does not readily fit into the class of (b, ε)-holomorphic, many-parametric functions, so
that the present results do not imply corresponding approximation results.

We emphasize in closing that the present results quantifying the expressive power of DNNs
are approximation results. However, we remark that the proof of Theorem 3.6 is constructive,
in principle, when combined with results from [29] on the localization of the sets ΛN of active
gpc coefficients which information could be used in so-called “supervised learning” approaches
for training the corresponding DNNs.

In practice, however, “non-supervised” training methodologies are often preferred. The
present results, together with the (empirically) observed good performance of widely used train-
ing algorithms for DNNs such as stochastic gradient descent (see, e.g. [5] and the references
there) imply also new perspectives on the numerical solution of forward and inverse problems
of parametric and stochastic PDEs. This aspect will be developed elsewhere.
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