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Abstract

The aim of this paper is to provide a mathematical theory for understanding
the mechanism behind the double-negative refractive index phenomenon in chiral
materials. The design of double-negative metamaterials generally requires the use of
two different kinds of subwavelength resonators, which may limit the applicability of
double-negative metamaterials. Herein, we rely on media that consist of only a single
type of dielectric resonant element, and show how the chirality of the background
medium induces double-negative refractive index metamaterial, which refracts waves
negatively, hence acting as a superlens. Using plasmonic dielectric particles, it is
proved that both the effective electric permittivity and the magnetic permeability
can be negative near some resonant frequencies. A justification of the approximation
of a plasmonic particle in a chiral medium by the sum of a resonant electric dipole and
a resonant magnetic dipole, is provided. Moreover, the set of resonant frequencies
is characterized. For an appropriate volume fraction of plasmonic particles with
certain conditions on their configuration, a double-negative effective medium can be
obtained when the frequency is near one of the resonant frequencies.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. Plasmonic nanoparticles, sub-wavelength resonance, electric and mag-
netic resonant dipoles, chiral materials, effective medium theory, double-negative meta-
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1 Introduction

The resolving power of conventional imaging systems is generally limited by the operating
wavelength, which prevents imaging of subwavelength structures. However, systems
having a negative refractive index can produce sharp images, with a potential to resolve
subwavelength features [29]. Negative index materials were first considered in [34]. Their
recently added potential for subwavelength imaging led to an enormous interest in their
properties [32, 31, 33, 35].
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The negative sign of the refractive index arises in the description of electromagnetic
properties of materials with simultaneously negative values of dielectric permittivity and
magnetic permeability. A negative refractive index means that the phase velocity of a
propagating wave is opposite to the movement of the energy flux of the wave, represented
by the Poynting vector [35].

Negative refractive index materials are often referred to as double-negative meta-
materials. The design of double-negative metamaterials generally requires the use of
two different kinds of building blocks or specific subwavelength resonators presenting
overlapping resonances. The negative index is caused by simultaneous resonant electric
and magnetic responses. The resonant electric dipole modes in the background medium
contribute to the effective dielectric permittivity while the resonant magnetic dipole
modes contribute to the effective magnetic permeability. Such a requirement limits the
applicability of double-negative metamaterials.

Recently, it has been predicted and experimentally demonstrated that introducing a
single type of sub-wavelength resonant dielectric element into chiral materials leads to
double-negative metamaterials [30, 36, 37].

A material is defined to be chiral if it lacks any planes of mirror symmetry. In terms
of electromagnetic responses, chiral materials exhibit a different refractive index for each
polarization of the electromagnetic wave and are characterized by a cross coupling be-
tween the electric and magnetic dipoles along the same direction. The coupling strength
is given by the magnitude of a quantity known as the chirality admittance which deter-
mines the bulk electromagnetic properties of chiral materials. Wave propagation inside
chiral materials is investigated, for instance, in [5, 7, 9, 10, 17, 18, 19, 25].

Plasmonic nanoparticles are sub-wavelength resonant dielectric elements. They ex-
hibit quasi-static resonances, called plasmonic resonances. At or near these resonant
frequencies, the plasmonic particles behave as strong electric dipoles. The plasmonic
resonances are related to the spectra of the non-self adjoint Neumann-Poincaré type
operators associated with the particle shapes. We refer the reader to [1, 8, 11, 12, 15, 16]
for recent mathematical analysis of fundamental plasmonic resonance phenomena and
their implications in subwavelength imaging.

In this paper, we aim to understand the mechanism behind the double-negative re-
fractive index phenomenon in chiral media. Herein, we rely on media that consists of
plasmonic resonant particles, and show how to turn a chiral material into a negative
refractive index metamaterial. For this purpose, we first derive the leading-order per-
turbations in the electromagnetic fields in the far-field, which are caused by the presence
of a plasmonic nanoparticle. To our knowledge, these asymptotic expansions, which
are uniformly valid with respect to the frequency, have never been established. They
generalize those derived in [1, 6, 13] to chiral media. They show that the plasmonic
nanoparticle can be approximated by the sum of resonant electric and magnetic dipole
sources. Then, we completely characterize the set of resonant frequencies in terms of
the plasmonic resonances of the nanoparticle in free space and the chiral admittance of
the background medium. Finally, by using the point interaction approximation, we show
that double-negative electromagnetic materials can be obtained by embedding in a chiral
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medium a large number of regularly spaced, randomly oriented plasmonic particles, each
modeled as the sum of resonant electric and magnetic dipole sources. Near or at the
resonant frequencies, the effective electric and magnetic properties of the medium can
both be negative. We recall that the idea of point interaction approximation goes back
to Foldy’s paper [23]. It is a natural tool to analyze a variety of interesting problems in
the continuum limit. It was first applied to the analysis of boundary value problems in
regions with many small holes[26, 27], then in [22] to the heat conduction in material
with many small holes, and in [20] on sound propagation in bubbly fluid.

Our methodology in this paper follows the one introduced recently for achieving
double-negative acoustic media using bubbles [4]. In acoustics, it is known that the air
bubbles are subwavelength resonators [24]. Due to the high contrast between the air
density inside and outside an air bubble in a fluid, a quasi-static acoustic resonance
known as the Minnaert resonance occurs [2]. At or near this resonant frequency, the
size of a bubble can be up to three orders of magnitude smaller than the wavelength
of the incident wave, and the bubble behaves as a strong monopole scatterer of sound.
The Minnaert resonance phenomenon makes air bubbles good candidates for acoustic
subwavelength resonators. In [4], it is proved that, using bubble dimers, the effective
mass density and bulk modulus of the bubbly fluid can both be negative over a non empty
range of frequencies. A bubble dimer consists of two identical separated bubbles. It
features two slightly different subwavelength resonances, called the hybridized Minnaert
resonances. The hybridized Minnaert resonances are fundamentally different modes.
One mode is a monopole as in the case of a single bubble, while the other one is a
dipole. The resonance associated with the dipole mode is usually referred to as the anti-
resonance. For an appropriate volume fraction, when the excitation frequency is close
to the anti-resonance, a double-negative effective mass density and bulk modulus for
bubbly media consisting of a large number of bubble dimers with certain conditions on
their distribution are obtained. The dipole modes in the background medium contribute
to the effective mass density while the monopole modes contribute to the effective bulk
modulus.

The paper is organized as follows. In Section 2, we introduce some preliminaries on
electromagnetic wave propagation in chiral materials. In Section 3, we derive an asymp-
totic expansion of the scattered electric and magnetic fields by a plasmonic nanoparticles
in a chiral material. We prove that the plasmonic nanoparticle can be approximated as
a pair of electric and magnetic dipole sources. We also characterize the set of resonant
frequencies. In Section 4, we derive a double-negative effective medium theory for plas-
monic particles in chiral media near the resonant frequencies. In Appendix A, we provide
some explicit calculations for the case of spherical chiral inclusions. In Appendix B, we
review layer potential formulations for electromagnetic scattering in a chiral medium.

2 Electromagnetic scattering in a chiral material

In this section, we consider an infinite chiral material in R
3 with only one plasmonic

particle. Let the particle Ω ⊂ R
3 be an open bounded set, with smooth boundary ∂Ω.
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We assume that the particle Ω is centered at the origin and is of size O(δ), where δ > 0 is
small. Denote Ω = δB, |B| = O(1). Obviously, |Ω| = δ3|B| = O(δ3), where | · | denotes
the volume. The electric permittivity ǫ(x), permeability µ(x), and chiral admittance
β(x) in R

3 satisfy

β =

{
βm in R

3 \ Ω
0 in Ω

, ǫ =

{
ǫm in R

3 \ Ω
ǫc in Ω

, and µ(x) = µm for all x ∈ R
3.

(2.1)
Here, ǫm, µm, and βm are positive constants and ǫc depends on the operating frequency
ω and is assumed to be negative.

2.1 Drude-Born-Fedorov equations

The starting points of this paper are the Maxwell equations and the constitutive relations
for the chiral medium. Different expressions exist for the constitutive relations. The
Drude-Born-Fedorov constitutive equations are used hereinafter.

Optical activity of the chiral medium can be explained by the direct substitution of
the Drude-Born-Dedorov constitutive equations [9, 10]:

{
D = ǫ(x)(E + β(x)∇× E) in R

3,

B = µ(x)(H + β(x)∇×H) in R
3,

(2.2)

into Maxwell’s equations {
∇× E = iωB in R

3,

∇×H = −iωD in R
3,

(2.3)

which gives the constitutive relations





(1− (k(x)β(x))2)D = ǫ(x)E + i
β(x)

ω
(k(x))2H,

(1− (k(x)β(x))2)B = µ(x)H − i
β(x)

ω
(k(x))2E,

(2.4)

where
k(x) = ω

√
ǫ(x)µ(x).

Combining (2.3) and (2.4) leads to





∇× E = (γ(x))2β(x)E + iωµm(
γ(x)

k(x)
)2H in R

3,

∇×H = (γ(x))2β(x)H − iωǫ(x)(
γ(x)

k(x)
)2E in R

3,

(2.5)

where

γ(x)2 =
k(x)2

1− (k(x)β(x))2
.
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Let us denote

km = ω
√
ǫmµm, γm =

k2m
1− k2mβ

2
m

.

Throughout this paper, we assume kmβm < 1. Note that, k(x) = km and γ(x) = γm
when x is outside Ω.

Let 



γ1 =
ω
√
ǫmµm

1− ω
√
ǫmµmβm

, ω1 =
ω

1− ω
√
ǫmµmβm

,

γ2 =
ω
√
ǫmµm

1 + ω
√
ǫmµmβm

, ω2 =
ω

1 + ω
√
ǫmµmβm

.

(2.6)

Consider an incident plane wave given by





Ein(x) = q1e
iγ1p1·x + q2e

iγ2p2·x,

H in(x) = −i
√
ǫm
µm

(q1e
iγ1p1·x + q2e

iγ2p2·x),
(2.7)

where the complex vectors p1, p2, q1, and q2 satisfy the following relations:

p1 · q1 = 0, p1 × q1 = −iq1,
p2 · q2 = 0, p2 × q2 = iq2.

(2.8)

Note that, under assumption (2.8), we have

{
∇× (q1e

iγ1p1·x) = γ1q1e
iγ1p1·x,

∇× (q2e
iγ1p2·x) = −γ2q2eiγ1p2·x.

(2.9)

The incident field Ein is then a combination of a left-circularly polarized plane wave and
a right-circularly polarized one, and it satisfies the homogeneous Drude-Born-Fedorov
equations in R

3.

2.2 Radiation condition and Lippmann-Schwinger representation

Let Esc := E − Ein and Hsc := H −H in be the scattered electric and magnetic fields,
respectively. In [9], it is established that the classical Silver-Müller radiation condition,

∣∣Esc(x)−
√
µm
ǫm

Hsc(x)× x

|x|
∣∣ ≤ C

|x|2 for |x| → +∞,

uniformly in x/|x|, remains valid in chiral media. Moreover, there exists a unique solution
to the scattering problem. The uniqueness follows from the Bohren decomposition of
the electric and magnetic fields,

(
E
H

)
=

1

2

(
E(1)

H(1)

)
+

1

2

(
E(2)

H(2)

)
,
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where

(
E(1)

H(1)

)
=


 1 i

√
µm

ǫm

−i
√

ǫm
µm

1



(
E
H

)
and

(
E(2)

H(2)

)
=


 1 −i

√
µm

ǫm

i
√

ǫm
µm

1



(
E
H

)
.

The existence is established by using an integral equation approach; see [9, Theorem
5.6].

Let us introduce the fundamental solution to the isotropic Drude-Born-Fedorov chiral
medium. Let gk be the outgoing fundamental solution of ∆ + k2, i.e.,

gk(x) =
eik|x|

4π|x| for x 6= 0.

According to [9], the outgoing fundamental solution G of (2.5) is given by

G =
1

2


G1




1 i

√
µm
ǫm

−i
√

ǫm
µm

1


+ G2




1 −i
√
µm
ǫm

i
√

ǫm
µm

1





 ,

with

Gj =
γ2j
ωj




1 +
∇∇·
γ2j

i

√
µm
ǫm

1

γj
∇×

−i
√
ǫm
µm

1

γj
∇× 1 +

∇∇·
γ2j


 gγj .

In [9], it was proved that the following Lippmann-Schwinger representation formula
for Drude-Born-Fedorov equation (2.5) holds:

(
E(x)− Ein(x)
H(x)−H in(x)

)
= ω

∫

Ω
G(x− y)

(
ǫ̃(y) iω ˜̃µ(y)

−iω˜̃ǫ(y) µ̃(y)

)(
E(y)
H(y)

)
dy, (2.10)

where

ǫ̃(y) =
ǫ(y)

ǫm(1− ω2ǫ(y)µ(y)β2(y))
− 1

1− ω2ǫmµmβ2m
,

µ̃(y) =
µ(y)

µm(1− ω2ǫ(y)µ(y)β2(y))
− 1

1− ω2ǫmµmβ2m
,

˜̃ǫ(y) =
ǫ(y)µ(y)β(y)

µm(1− ω2ǫ(y)µ(y)β2(y))
− ǫmβm

1− ω2ǫmµmβ2m
,

˜̃µ(y) =
ǫ(y)µ(y)β(y)

ǫm(1− ω2ǫ(y)µ(y)β2(y))
− µmβm

1− ω2ǫmµmβ2m
.

3 Derivation of the dipole approximation

In this section, by the method of matched asymptotic expansions, we construct asymp-
totic expansions of the scattered electromagnetic fields by the particle Ω as its charac-
teristic size δ → 0. We prove that, as δ → 0, the particle can be approximated by a pair
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of electric and magnetic dipole sources. We then show that the sources can be resonant
for some negative permittivity ǫc. It is worth emphasizing that, in a non-chiral medium,
a dielectric plasmonic particle acts only as an electric dipole source [1, 13].

3.1 Matched asymptotic expansion

As in [6], to reveal the nature of the perturbations in the electric and magnetic fields, we
introduce the local variables ξ = x/δ and set the fields eδ(ξ) = E(δξ) and hδ(ξ) = H(δξ).
We expect that E(x) and H(x) will differ appreciably from Ein(x) and H in(x) for x close
to 0, but they will differ little from Ein(x) and H in(x) for x far from 0. Therefore, in
the spirit of matched asymptotic expansions, we shall represent each of the fields E and
H by two different expansions, an inner expansion for x near 0, and an outer expansion
for x far from 0. The outer expansions must begin with Ein and H in, so we write:

E(x) = Ein(x) + δα1E1(x) + δα2E2(x) + · · · , for |x| ≫ O(δ),

H(x) = H in(x) + δα1H1(x) + δα2H2(x) + · · · , for |x| ≫ O(δ),
(3.1)

where 0 < α1 < α2 < · · · , and (E1, H1), (E2, H2), · · · are to be found. Inserting this
series into equation (2.5) and observing that

ǫ(
x

δ
) ≡ ǫm, µ(

x

δ
) ≡ µm

for |x| ≫ O(δ), we find that the outer coefficients (Ej , Hj), j = 1, 2, · · · are solutions to





∇× Ej = γ2mβmEj + iωµm(
γm
km

)2Hj ,

∇×Hj = γ2mβmHj − iωǫm(
γm
km

)2Ej

for |x| ≫ O(δ). Moreover, all (Ej , Hj) satisfy the Silver-Müller radiation condition.
We write the inner expansion as

E(δξ) = eδ(ξ) = e0(ξ) + δe1(ξ) + · · · for |ξ| = O(1),

H(δξ) = hδ(ξ) = h0(ξ) + δh1(ξ) + · · · for |ξ| = O(1),
(3.2)

where (e0, h0), (e1, h1), (e2, h2), · · · are to be found. The functions ej(ξ) and hj(ξ) are
defined everywhere in R

3.
In order to determine Ej(x), Hj(x), ej(ξ), and hj(ξ), we need to equate the inner and

the outer expansions in some overlap domain within which the stretched variable ξ is
large and x is small. In this domain the matching conditions are

Ein(x) + δα1E1(x) + · · · ∼ e0(ξ) + δe1(ξ) + · · · ,
H in(x) + δα1H1(x) + · · · ∼ h0(ξ) + δh1(ξ) + · · · .

(3.3)

These matching conditions will be made more precise later on.
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Inserting the inner expansions into the Lippmann-Schwinger representation formula
(2.10), we arrive at

(
δα1E1(x) + · · ·
δα1H1(x) + · · ·

)
= ωδ3

∫

Ω
G(x− δξ)

(
ǫ̃(δξ) iω ˜̃µ(δξ)

−iω˜̃ǫ(δξ) µ̃(δξ)

)(
e0(ξ) + δe1(ξ) + · · ·
h0(ξ) + δh1(ξ) + · · ·

)
dξ

(3.4)
for |x| ≫ O(δ). Therefore, the matching conditions (3.3) imply that

αi = 2 + i, i = 1, 2, · · · .

If we substitute the inner expansion (3.2) into (2.5) and equate coefficients of δ−1,
then we get the following equations:





∇× e0 = 0 in R
3,

∇ ·
(
ǫ(1 + γ2β2)e0 + iωǫµβ

(γ
k

)2
h0

)
= 0 in R

3,

∇× h0 = 0 in R
3,

∇ ·
(
µ(1 + γ2β2)h0 − iωǫµβ

(γ
k

)2
e0

)
= 0 in R

3,

e0(ξ) → Ein(0) as |ξ| → +∞,

h0(ξ) → H in(0) as |ξ| → +∞.

(3.5)

Here, the derivatives are taken with respect to ξ.
Since the curl of e0(ξ) and h0(ξ) are both zero, there exists scalar functions V (ξ) and

W (ξ) satisfying
e0(ξ) = ∇V (ξ), h0(ξ) = ∇W (ξ), ξ ∈ R

3.

Then (3.5) becomes





∇ ·
(
ǫ(1 + γ2β2)∇V + iωǫµβ

(γ
k

)2
∇W

)
= 0 in R

3,

∇ ·
(
µ(1 + γ2β2)∇W − iωǫµβ

(γ
k

)2
∇V

)
= 0 in R

3,

V (ξ)− Ein(0) · ξ → 0 as |ξ| → +∞,

W (ξ)−H in(0) · ξ → 0 as |ξ| → +∞.

(3.6)

The first two equations in (3.6) imply that the normal components of

ǫ(1 + γ2β2)∇V + iωǫµβ
(γ
k

)2
∇W,

and

µ(1 + γ2β2)∇W − iωǫµβ
(γ
k

)2
∇V,
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are continuous on ∂B. Therefore, (3.6) is equivalent to




∆V = ∆W = 0 in B ∪ (R3\B̄),

V |− = V |+, W |− =W |+ on ∂B,

ǫc
∂V

∂ν

∣∣∣∣
−

= ǫm(1 + γ2mβ
2
m)

∂V

∂ν

∣∣∣∣
+

+ iωǫmµmβm

(
γm
km

)2 ∂W

∂ν

∣∣∣∣
+

on ∂B,

µc
∂W

∂ν

∣∣∣∣
−

= µm(1 + γ2mβ
2
m)

∂W

∂ν

∣∣∣∣
+

− iωǫmµmβm

(
γm
km

)2 ∂V

∂ν

∣∣∣∣
+

on ∂B,

(V − V in)(ξ) → 0 as |ξ| → ∞,

(W −W in)(ξ) → 0 as |ξ| → ∞.

(3.7)

Here, ∂
∂ν denotes the normal derivative on ∂B, and the subscripts + and − indicate the

limits from outside and inside B, respectively.

3.2 Small volume expansion and its resonant behavior

In this subsection, we formally derive a small volume expansion of (E,H) by solving
(e0, h0) and using the Lippmann-Schwinger equation. We emphasize that the expansion
can be rigorously proved. To solve e0 = ∇V and h0 = ∇W , we make use of boundary
layer potentials. We also discuss the resonant behavior of the expansion due to the
negative permittivity of the plasmonic particle.

We define the single-layer potential SB as

SB[ψ](x) := − 1

4π

∫

∂B

1

|x− y|ψ(y)dσ(y), x ∈ R
3,

for ψ ∈ H−1/2(∂B). We also define the Neumann-Poincaré operator K∗
B by

K∗
B[ψ](x) =

∫

∂B

(x− y) · ν(x)
4π|x− y|3 ψ(y)dσ(y), x ∈ ∂B

with ν(x) being the outward normal at x ∈ ∂B. It is well-known that the following jump
relation holds:

∂SB

∂ν

∣∣∣∣
±

∂B

[ψ] = (±1

2
+K∗

B)[ψ]. (3.8)

The functions V and W can be represented by using the single layer potential as

V = V in + SB[ψE ],

W =W in + SB[ψH ].
(3.9)

Using the transmission conditions on ∂B in (3.7) and the jump relation (3.8), it can be
shown that the pair (ψE , ψH) is the solution to the boundary integral equation

A(ǫc)

(
ψE

ψH

)
=

(
fE
fH

)
, (3.10)
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where

A =

(
λǫI −K∗

B iωdǫ(
1
2 +K∗

B)
−iωdµ(12 +K∗

B) λµI −K∗
B

)
,

and
(
fE
fH

)
:=

(
1 −iωdǫ

iωdµ 1

)(
Ein(0) · ν
H in(0) · ν

) ∣∣∣∣
∂B

. (3.11)

Here, the parameters λǫ, λµ, dǫ and dµ are given by

λǫ =
ǫc + ǫm(1 + γ2mβ

2
m)

2(ǫc − ǫm(1 + γ2mβ
2
m))

,

λµ =
µm + µm(1 + γ2mβ

2
m)

2(µm − µm(1 + γ2mβ
2
m))

,

dǫ =
ǫmµmβm(γm/km)2

ǫc − ǫm(1 + γ2mβ
2
m)
,

dµ =
ǫmµmβm(γm/km)2

µm − µm(1 + γ2mβ
2
m)
.

It is known that the operator K∗
B can be symmetrized using Calderón identity and

hence becomes self-adjoint [3, 15]. Let H
−1/2
0 (∂B) be the subspace of H−1/2(∂B) with

zero mean value. Let H∗(∂B) be the space H
−1/2
0 (∂B) equipped with inner product

〈ϕ1, ϕ2〉∗ = −〈SB[ϕ2], ϕ1〉 1

2
,− 1

2

,

and (λj , φj), j = 1, 2, · · · be the pair of eigenvalue and normalized eigenfunction of K∗
B

in H∗(∂B). For any ϕ ∈ H∗(∂B), the following spectral representation formula holds:

K∗
B[ϕ] =

∞∑

j=1

λjφj〈φj , ϕ〉∗.

It is then easy to see that the operator A has a block matrix structure. Indeed, we have

A
(
aφn
bφn

)
=

(
λǫ(ǫc)− λn iωdǫ(ǫc)(

1
2 + λn)

−iωdµ(12 + λn) λµ − λn

)(
aφn
bφn

)

:= An

(
aφn
bφn

)
. (3.12)

Since {φj}∞j=1 forms a complete and orthonormal basis, we can write

ψE =

∞∑

n=1

ψn
Eφn, ψH =

∞∑

n=1

ψn
Hφn,

fE =

∞∑

n=1

fnEφn, fH =

∞∑

n=1

fnHφn,
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with the coefficients

ψn
E = 〈ψE , φn〉∗, ψn

H = 〈ψH , φn〉∗,
fnE = 〈fE , φn〉∗, fnH = 〈fH , φn〉∗.

Then, from (3.12), we have
(
ψn
E

ψn
H

)
= A−1

n

(
fnE
fnH

)
= A−1

n

(
1 −iωdǫ

iωdµ 1

)(
〈Ein(0) · ν, φn〉∗
〈H in(0) · ν, φn〉∗

) ∣∣∣∣
∂B

. (3.13)

Therefore, we obtain the solution V and W in terms of the eigenvalue λn and eigenfunc-
tions φn of the Neumann-Poincaré operator K∗

B.
Now, we derive a small volume expansion of (E,H) using the Lippmann-Schwinger

equation. Since Ω = δB and δ ≪ 1, by Taylor’s expansion, (2.10) leads to
(
E − Ein

H −H in

)
(x) = ω

∫

Ω
(G(x) +O(δ))

(
ǫ̃(0) iω ˜̃µ(0)

−iω˜̃ǫ(0) µ̃(0)

)(
E(y)
H(y)

)
dy

≈ ωG(x)K0

∫

Ω

(
E(y)
H(y)

)
dy

≈ ωG(x)K0δ
3

∫

B

(
e0
h0

)
,

(3.14)

where K0 is defined by

K0 =




ǫc
ǫm

− 1

1− ω2ǫmµmβ2m
−iω µmβm

1− ω2ǫmµmβ2m

iω
ǫmβm

1− ω2ǫmµmβ2m
1− 1

1− ω2ǫmµmβ2m


 .

Since (
e0
h0

)
=

(
Ein(0)
H in(0)

)
+

(
∇SB[ψE ]
∇SB[ψH ]

)
, (3.15)

we get (
E − Ein

H −H in

)
(x) ≈ ωG(x)K0(ǫc)δ

3

∫

B

(
Ein(0) +∇SB[ψE ]
H in(0) +∇SB[ψH ]

)
. (3.16)

Hence, we need to analyze the integral
∫

B

(
∇SB[ψE ]
∇SB[ψH ]

)
.

Let us define (
MEE

n MEH
n

MHE
n MHH

n

)
= (−1)A−1

n

(
1 −iωdǫ

iωdµ 1

)
. (3.17)

Then (3.13) can be written as

ψn
E = −MEE

n 〈Ein(0) · ν, φn〉∗ −MEH
n 〈H in(0) · ν, φn〉∗,

ψn
H = −MHE

n 〈Ein(0) · ν, φn〉∗ −MHH
n 〈H in(0) · ν, φn〉∗.
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For convenience of notation, here we slightly generalize the definition of the inner product
〈ϕ1, ϕ2〉∗ to the case when ϕ1 ∈ (H∗(∂B))k, k ∈ N by

〈ϕ1, ϕ2〉∗ =




〈ϕ1
1, ϕ2〉∗

〈ϕ2
1, ϕ2〉∗
...

〈ϕk
1, ϕ2〉∗


 .

With this notation, we get

ψn
E = −MEE

n 〈ν, φn〉⊤∗ Ein(0)−MEH
n 〈ν, φn〉⊤∗ H in(0),

ψn
H = −MHE

n 〈ν, φn〉⊤∗ Ein(0)−MHH
n 〈ν, φn〉⊤∗ H in(0),

where the superscript ⊤ denotes the Hermitian conjugate. By using the integration by
parts, it follows that

∫

B
∇SB[ψE ]dx =

∞∑

n=1

ψn
E

∫

B
∇SB[φn]dx

=

∞∑

n=1

(−1)ψn
E〈ν, φn〉∗

=
∞∑

n=1

MEE
n 〈ν, φn〉∗〈ν, φn〉⊤∗ Ein(0) +

∞∑

n=1

MEH
n 〈ν, φn〉∗〈ν, φn〉⊤∗ H in(0),

(3.18)
and similarly for ψH ,

∫

B
∇SB[ψH ]dx =

∞∑

n=1

MHE
n 〈ν, φn〉∗〈ν, φn〉⊤∗ Ein(0) +

∞∑

n=1

MHH
n 〈ν, φn〉∗〈ν, φn〉⊤∗ H in(0).

(3.19)
Now, if we define the polarization tensor by

M =M(ǫc, B) =

(
MEE MEH

MHE MHH

)
, (3.20)

where

MEE =

∞∑

n=1

MEE
n 〈ν, φn〉∗〈ν, φn〉⊤∗ ,

MEH =
∞∑

n=1

MEH
n 〈ν, φn〉∗〈ν, φn〉⊤∗ ,

MHE =
∞∑

n=1

MHE
n 〈ν, φn〉∗〈ν, φn〉⊤∗ ,

MHH =

∞∑

n=1

MHH
n 〈ν, φn〉∗〈ν, φn〉⊤∗ ,

(3.21)
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then (3.18) and (3.19) can be rewritten as

∫

B

(
∇SB[ψE ]
∇SB[ψH ]

)
dx =M(ǫc, B)

(
Ein(0)
H in(0)

)
. (3.22)

Finally, from (3.16) and (3.22), we obtain a small volume expansion

(
E − Ein

H −H in

)
(x) ≈ ωG(x)K0(ǫc)δ

3M̃(ǫc, B)

(
Ein(0)
H in(0)

)
, |x| ≫ O(δ), (3.23)

where M̃ := |B|I +M .
Now, let us discuss a resonant behavior of the polarization tensorM . Straightforward

computation shows that

detAn(ǫc) = (−1)
(1/2− λn)(1− k2mβ

2
m(1/2− λn))(1− k2mβ

2
m)

k2mβ
2
m

ǫc − ǫ∗c,n
(1− k2mβ

2
m)ǫc − ǫm

,

where

ǫ∗c,n = −ǫm
1/2 + λn
1/2− λn

(
1− k2mβ

2
m

(
1/2− λn

))−1
.

It is clear that ǫ∗c,n < 0. Therefore, when the particle is plasmonic, i.e., Re{ǫc} < 0, the
polarization tensor can be very large if ǫc is close to ǫ∗c,n < 0 for some n.

Regarding the permittivity ǫc, We make the following assumptions.

Assumption 3.1. Suppose that

(i) There exists n ∈ N such that 〈ν, φn〉∗ 6= 0;

(ii) The permittivity ǫc of the plasmonic particle is close to ǫ∗c,n < 0.

It is worth mentioning that, when Ω is a ball, then the above assumption is satisfied
with n = 1 (see Appendix A). Under the above assumption, An(ǫc)

−1 is nearly singular.
In view of (3.17), it follows that

M̃(ǫc, B) =Mn(ǫc, B) +O(1) = O
( 1

detAn(ǫc)

)
.

Therefore, from (3.23), we arrive at

(
E(x)− Ein(x)
H(x)−H in(x)

)
≈ δ3ωG(x)K0Mn(ǫc, B)〈ν, φn〉∗〈ν, φn〉⊤∗

(
Ein(0)
H in(0)

)
. (3.24)

Theorem 1. For |x| ≫ O(δ), the following asymptotic expansion holds:

(
E(x)− Ein(x)
H(x)−H in(x)

)
= δ3ωG(x)K0Mn(ǫc, B)〈ν, φn〉∗〈ν, φn〉⊤∗

(
Ein(0)
H in(0)

)
+O(

δ4

|detAn|
).

(3.25)
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Remark 3.1. Using the layer potential formulation (B.6) in Appendix B, Theorem 1
can be proved rigorusly by applying to (B.6) essentially the same method as the one in
[1].

Remark 3.2. Note that K0 = 0 if ǫc = ǫm. Moreover, from the definitions ofMEE
n ,MEH

n ,MHE
n ,MHH

n

and K0, we can conclude that Mn and K0 are independent of the position of particles.
Formula (3.25) shows that the scattered wave from a single particle behaves similarly
to a pair of resonant electric and magnetic dipole sources in the far-field. These dipole
sources resonate at the set of permittivities ǫc satisfying detAn(ǫc) ≈ 0.

4 Effective medium theory and double-negative materials

We are now ready to study when we could reach double-negative mode with multiple
dilute nanoparticles embedded into a chiral medium. We first derive an effective medium
theory for a large number nanoparticles embedded in a chiral medium. Some conditions
on the volume fraction and distribution of the nanoparticles are required. Then we prove
that both the effective electric permittivity and effective magnetic permeability can be
negative near the resonant frequencies.

Let Ω be a bounded smooth domain. We consider a collection of small identical
plasmonic particles {ΩN

j }N3

j=1 with size of order δ. Each particle can be represented by

ΩN
j = δB + zNj , where zNj is the center location of ΩN

j . Let

ΩN = Ω \ ∪N3

j=1Ω
N
j .

We assume that the following assumptions on the distribution of the plasmonic par-
ticles over the domain Ω hold.

Assumption 4.1. There exists a smooth function Ṽ such that for arbitrary smooth
functions f and g,

max
1≤j≤N3

∣∣∣∣
1

N3

∑

i 6=j

G(zNi − zNj )

(
f(zNi )
g(zNi )

)
−
∫

Ω
G(z − zNj )Ṽ (z)

(
f(z)
g(z)

)
dz

∣∣∣∣

0 asN → +∞.

(4.1)

The scattering problem of electromagnetic waves in a chiral media by the system of
plasmonic particles can be modeled as





∇× EN = iωµmH
N in ∪N3

j=1 Ω
N
j ,

∇×HN = −iωǫcEN in ∪N3

j=1 Ω
N
j ,

∇× EN = γ2mβmE
N + iωµm

(
γm
km

)2

HN in R
3 \ ∪N3

j=1Ω
N
j ,

∇×HN = γ2mβmH
N − iωǫm

(
γm
km

)2

EN in R
3 \ ∪N3

j=1Ω
N
j ,

EN × ν|− = EN × ν|+ on ∂ΩN
j , j = 1, ..., N3,

HN × ν|− = HN × ν|+ on ∂ΩN
j , j = 1, ..., N3.

(4.2)
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Moreover, the pair (EN −Ein, HN −H in) satisfies the Silver-Müller radiation condition.
Then, using the layer potential formulation in Appendix B, the solution (EN , HN )

can be represented as

EN = Ein +QE
ΩN

[
ϕN

ψN

]
, HN = H in +QH

ΩN

[
ϕN

ψN

]
,

where (ϕN , ψN ) is the solution to

(JΩN + CΩN )

[
ϕN

ψN

]
=

[
ν × Ein|∂ΩN

ν ×H in|∂ΩN

]
.

Here, we have used the notations

ϕN = (ϕN
1 , ..., ϕ

N
N3),

ψN = (ψN
1 , ..., ψ

N
N3),

and

FΩN

[
ϕN

ψN

]
=

N3∑

j=1

FΩN
j

[
ϕN
j

ψN
j

]

for F = QE ,QH ,J and C.
We further assume that all the particles are aligned in a dilute manner.

Assumption 4.2. There exists Λ > 0 and a > 0, such that

δ = Λ1/3N−1−a.

In this case, the total volume of all plasmonic particles is of order O(δ3N3) =
O(N−3a), which converges to 0 as N → ∞.

One of the most important reason that we align particles in dilute way is that, we
can approximate the scattered field (E−Ein, H−H in) by the sum of fields generated by
individual particles, i.e., the interaction between scattering fields from different particles
is negligible.

For simplicity, we also assume that the particle is symmetric so that the tensor
Mn(ǫc, RθjB)〈ν, φn〉∗〈ν, φn〉⊤∗ is proportional to the identity matrix I. More precisely,
we assume that

〈ν, φn〉∗〈ν, φn〉⊤∗ = cnI, (4.3)

for some cn > 0. A more general case can be considered in the same way by assuming that
the particles are randomly oriented and using averaging with respect to the orientation
of the particle (see Remark 4.1). When B is a unit ball, one can check that c1 =

4π
27 (see

Appendix A).
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For 1 ≤ j ≤ N3, we define

Ein,N
j = Ein +

∑

i 6=j

PΩN
i

[
ϕN
i

ψN
i

]
, H in,N

j = H in +
∑

i 6=j

QΩN

[
ϕN
i

ψN
i

]
.

For each 1 ≤ j ≤ N3 and x ∈ ΩN ,

EN (x) = Ein(x) +
N3∑

i=1

Esc,N
i (x)

= Ein,N
j (x) + Esc,N

j (x). (4.4)

Proposition 1. For each 1 ≤ j ≤ N3 and x ∈ ΩN ,
(
Esc,N

j (x)

Hsc,N
j (x)

)
= δ3ωG(x− zNj )K0Mn(ǫc, B)cn

(
Ein,N (zNj )

H in,N (zNj )

)
+ (

N3δ4

|detAn|
).

4.1 Derivation of the homogenized equation and analysis of effective

parameters

Let us assume that
N−3a|detAn|−1 = O(1), (4.5)

and define (
ǫ̃Neff iω ˜̃µNeff

−iω˜̃ǫNeff µ̃Neff

)
:= ΛN−3acnK0Mn(ǫc, B).

Then, from (4.4) and Proposition 1, we can see that

(
EN (x)
HN (x)

)
=

(
Ein(x)
H in(x)

)
+

1

N3

N3∑

j=1

ωG(x−zNj )

(
ǫ̃Neff iω ˜̃µNeff

−iω˜̃ǫNeff µ̃Neff

)(
EN (zNj )

HN (zNj )

)
+O(

N3δ4

| detAn|
)

(4.6)
for x ∈ Ω \ (∪N3

j=1z
N
j ). Assuming the homogenized limit (Eh, Hh) := limN→∞(EN , HN )

exists in some sense, we can easily expect that (Eh, Hh) satisfies
(
Eh

Hh

)
=

(
Ein

H in

)
+

∫

Ω
ωG(· − z)

(
ǫ̃eff(z) iω ˜̃µeff(z)

−iω˜̃ǫeff(z) µ̃eff(z)

)(
Eh(z)
Hh(z)

)
dz in Ω, (4.7)

where
(

ǫ̃eff iω ˜̃µeff
−iω˜̃ǫeff µ̃eff

)
:= Ṽ lim

N→∞

(
ǫ̃Neff iω ˜̃µNeff

−iω˜̃ǫNeff µ̃Neff

)
.

Straightforward but tedious computations show that the following compatibility condi-
tion holds:

˜̃ǫeff +
ǫmβm

1− ω2ǫmµmβ2m

˜̃µeff +
µmβm

1− ω2ǫmµmβ2m

=
ǫm
µm

. (4.8)
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We can conclude by comparing (4.7) with the Lippmann-Schwinger equation (2.10),
that the effective electric permittivity ǫeff and magnetic permeability µeff are determined
by solving the system of three equations

ǫ̃eff =
ǫeff

ǫm(1− ω2ǫeffµeffβ
2
eff)

− 1

1− ω2ǫmµmβ2m
,

µ̃eff =
µeff

µm(1− ω2ǫeffµeffβ
2
eff)

− 1

1− ω2ǫmµmβ2m
,

˜̃ǫeff =
ǫeffµeffβeff

µm(1− ω2ǫeffµeffβ
2
eff)

− ǫmβm
1− ω2ǫmµmβ2m

. (4.9)

Here, βeff is the effective chiral admittance. Note that, due to the compatibility condition
(4.8), the following relation immediately holds:

˜̃µeff =
ǫeffµeffβeff

ǫm(1− ω2ǫeffµeffβ
2
eff)

− µmβm
1− ω2ǫmµmβ2m

.

In fact, the equation (4.9) is uniquely solvable. One can easily check that

ǫeff = ǫm

(
(ǫ̃eff + γ̃m)− ω2(˜̃ǫeff + ǫmβmγ̃m)

˜̃µeff + µmβmγ̃m
µ̃eff + γ̃m

)
,

µeff = µm

(
(µ̃eff + γ̃m)− ω2(˜̃µeff + µmβmγ̃m)

˜̃ǫeff + ǫmβmγ̃m
ǫ̃eff + γ̃m

)
, (4.10)

where

γ̃m =
1

1− k2mβ
2
m

.

Therefore, (Eh, Hh) satisfies





∇× Eh = γ2hβhE
h + iωµh

(
γh
kh

)2

Hh in Ω,

∇×Hh = γ2hβhH
h − iωǫh

(
γh
kh

)2

Eh in Ω,

(4.11)

with the homogenized material parameters

ǫh =

{
ǫeff , in Ω

ǫm, in R
3 \ Ω

, µh =

{
µeff , in Ω

µm, in R
3 \ Ω

.

The other parameters βh, γh, and kh are defined similarly.

4.2 Double-negative effective properties

Here, we show that the effective properties ǫeff and µeff can be both negative.

17



Let us first consider the resonant behavior of the matrix(
ǫ̃Neff iω ˜̃µNeff

−iω˜̃ǫNeff µ̃Neff

)
,

when ǫc is close to ǫ∗c,n. Straightforward but tedious computations show that each of
components has the following behavior with respect to ǫc:

ǫ̃Neff =
ΛN−3αcnǫm

(1/2− λn)3(1− β2mk
2
m(1/2− λn))2

( −1

ǫc − ǫ∗c,n
+O(1)

)
,

µ̃Neff =
ΛN−3αcnǫmk

2
mβ

2
m

(1/2− λn)(1− β2mk
2
m(1/2− λn))2

( −1

ǫc − ǫ∗c,n
+O(1)

)
,

˜̃ǫNeff =
ΛN−3αcnǫ

2
mβm

(1/2− λn)2(1− β2mk
2
m(1/2− λn))2

( −1

ǫc − ǫ∗c,n
+O(1)

)
,

˜̃µNeff =
ΛN−3αcnǫmµmβm

(1/2− λn)2(1− β2mk
2
m(1/2− λn))2

( −1

ǫc − ǫ∗c,n
+O(1)

)
. (4.12)

Here O(1) means that the remainder does not diverge for any ǫc.
Now we turn to the effective properties ǫeff(y) and µeff(y) for y ∈ Ω. For the sake of

simplicity of presentation, we assume that at y, Ṽ (y) = 1. By applying the asymptotics
(4.12) to (4.10), one can check that each of ǫeff and µeff has a removable singularity at
ǫc = ǫ∗c,n. In fact, ǫeff (or µeff) diverges only when ǫc satisfies µ̃eff + γ̃m = 0 (respectively
ǫ̃eff + γ̃m = 0). Let ǫ∗c,n[ǫeff ] (and ǫ

∗
c,n[µeff ]) be the value of ǫc at which ǫeff (respectively

µeff) diverges. Then, it can be easily checked that, for large N ,

ǫ∗c,n[ǫeff ] ≈ ǫ∗c,n +
ǫmk

2
mβ

2
m

(1/2− λn)(1− β2mk
2
m(1/2− λn))2

γ̃−1
m cnΛN

−3α (4.13)

ǫ∗c,n[µeff ] ≈ ǫ∗c,n +
ǫm

(1/2− λn)3(1− β2mk
2
m(1/2− λn))2

γ̃−1
m cnΛN

−3α (4.14)

Note that
ǫ∗c,n[µeff ] > ǫ∗c,n[ǫeff ].

Now we choose ǫc such that ǫc is slightly above the two resonant permittivities. More
precisely, we assume the following.

Assumption 4.3. Let 0 < s < 1 be given and assume that

ǫc = ǫ∗c,n + s−1 ΛN−3αcnǫm
(1/2− λn)3(1− β2mk

2
m(1/2− λn))2

γ̃−1
m . (4.15)

If s is very close to one, ǫc is slightly above the resonant permittivity ǫ∗c,n[µeff ].

By substituting (4.15) into (4.12) and then taking limit N → ∞, we have

ǫ̃eff = −sγ̃m,
µ̃eff = −sγ̃m(kmβm)2(1/2− λn)

2,

˜̃ǫeff = −sγ̃mǫmβm(1/2− λn),

˜̃µeff = −sγ̃mµmβm(1/2− λn).
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So, using (4.10), we finally get the formulas for the effective material parameters as
follows:

ǫeff = ǫmγ̃m

(
(1− s)− ω2

(
1− s(1/2− λn)

) µmβm(1− s(1/2− λn))

1− s(kmβm)2(1/2− λn)2

)
,

µeff = µmγ̃m

(
1− s(kmβm)2(1/2− λn)

2 − 1

1− s
(kmβm)2

(
1− s(1/2− λn))

2
)
. (4.16)

Now we can prove that the above effective parameters are both negative as shown in
the following theorem.

Theorem 2. (Double-negative property) Suppose that the permittivity ǫc of the plas-
monic particle is given as in Assumption 4.3. Then, the effective parameters ǫeff and
µeff of the homogenized equation are both negative provided s is sufficiently close to one.

Proof. Since 0 < s < 1, |λn| < 1/2 and kmβm < 1, the conclusion immediately follows
from (4.16).

Remark 4.1. Although we assume the shape of the particle is symmetric, our result
can be extended to the case of arbitrary shaped particles. Suppose that the particles
are randomly oriented. Then the average of 〈ν, φn〉∗〈ν, φn〉⊤∗ over the orientation of
the particle becomes a diagonal matrix as in the symmetric case (4.3). Therefore, we
obtain in exactly the same manner negative effective permittivity and negative effective
permeability for frequencies near the resonant permittivity ǫ∗c,n.

Remark 4.2. We provide a numerical example in Figure 1. We plot the effective param-
eters ǫeff and µeff as functions of ǫc. We set ω = 1, ǫm = 1, µm = 1 Λ = 3, N = 125 and
a = 0.965. In the left figure, we use βm = 1.09. Clearly, both the effective parameters are
negative near ǫc = −2.94455. In the right figure, we change βm as βm = 0, which means
that there is no chirality. In this case, only ǫeff is resonant but µeff remains as one. This
shows the importance of the chirality to achieve the double-negative metamaterial.

Remark 4.3. The resonance frequency can be determined by the Drude model

ǫc(ω) = 1−
ω2
p

ω2 + iτω
,

where ωp and τ are two given positive constants.

Remark 4.4. For simplicity, we assume that ǫc is real. The analysis in this section
applies to the case where Imǫc is sufficiently small.

Remark 4.5. By using the same approach as in [14, 22, 28], we provide under some
assumptions on the distribution of the plasmonic particles a justification of the derivation
of the effective medium parameters. See Appendix C.
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Figure 1: The effective properties of the homogenized media. A chiral media βm 6= 0
(left), a non-chiral media βm = 0 (right).

5 Concluding remarks

In this paper, we have first derived an asymptotic expansion of the scattered electro-
magnetic fields by a small plasmonic dielectric nanoparticle in a chiral medium. We
have shown that the plasmonic particle can be approximated by the sum of a resonant
electric dipole and a resonant magnetic dipole. We have also characterized these reso-
nant frequencies in terms of the chirality admittance of the background medium and the
material parameters and the shape of the particle. Then we have obtained an effective
medium theory for materials consisting of a large number of plasmonic nanoparticles
embedded in a chiral background medium. We have shown that the dielectric plasmonic
particles contribute to both the effective electric permittivity and the effective magnetic
permeability. Finally, we have proved that both the effective electric permittivity and
magnetic permeability can be negative near some resonant frequencies.

A Explicit computation for a ball

Suppose that B is the unit ball. In this case, we are able to write out its polarization
tensor M(ǫc, B) defined in (3.20) explicitly. In order to do so, we compute the tensor
1∑

l=−1

〈ν, Y l
1 〉∗〈ν, Y l

1 〉⊤∗ . The following lemma from [3] will be required.

Lemma 1. For n = 0, 1, · · · , we have

K∗
B[Y

l
n] =

1

2(2n+ 1)
Y l
n(x̂), |x| = 1, l = −n, · · · , n,

where x̂ = x/|x| and (Y l
n)l=−n,··· ,n are the orthonormal spherical harmonics of degree n
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and order l. Moreover,

〈ν, Y l
n〉∗ = −

∫

∂Ω
SB[Y

l
n]νdσ(x)

= −
∫

∂B
− 1

2n+ 1
Y l
n(x̂)x̂dσ(x)

=
1

2n+ 1

∫

∂B
Y l
n(x̂)x̂dσ(x̂).

Since x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), and by definition of the spherical harmonic
functions,

Y l
n(θ, ϕ) :=

√
2n+ 1

4π

(n− |l|)!
(n+ |l|)!P

|l|
n (cos θ)eilϕ,

with P
|l|
n being the associated Legendre polynomial of degree n and order |l|, we have

Y −1
1 (θ, ϕ) =

1

2

√
3

2π
P 1
1 (cos θ)e

−iϕ =
1

2

√
3

2π
sin θe−iϕ,

Y 1
1 (θ, ϕ) =

1

2

√
3

2π
P 1
1 (cos θ)e

iϕ =
1

2

√
3

2π
sin θeiϕ,

Y 0
1 (θ, ϕ) =

1

2

√
3

π
P 0
1 (cos θ) =

1

2

√
3

π
cos θ.

Consequently,

sin θ cosϕ =

√
2π

3
(Ȳ −1

1 + Ȳ 1
1 ),

sin θ sinϕ = i

√
2π

3
(Ȳ 1

1 − Ȳ −1
1 ),

cos θ = 2

√
π

3
Ȳ 0
1 ,

where Ȳ l
n is the complex conjugate of Y l

n. Since {Y l
n} is an orthogonal basis of L2(∂B),

the infinite sum in (3.20) is actually finite, and among all the terms only 〈ν, Y −1
1 〉∗,
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〈ν, Y 0
1 〉∗, and 〈ν, Y 1

1 〉∗ are nonzero. We can calculate that

∑

l,n

〈ν, Y l
n〉∗〈ν, Y l

n〉⊤∗ =

1∑

l=−1

〈ν, Y l
1 〉∗〈ν, Y l

1 〉⊤∗

=
1

9






−
√

2π
3

i
√

2π
3

0



(
−
√

2π
3 −i

√
2π
3 0

)
+




0
0

2
√

π
3


(0 0 2

√
π
3

)



+
1

9







−
√

2π
3

−i
√

2π
3

0



(
−
√

2π
3 i

√
2π
3 0

)



=
4π
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I.

B Layer potentials for electromagnetic waves in a chiral

medium

In this appendix, we briefly review the results in [17] concerning the layer potential
techniques for electromagnetic scattering by the particle Ω in a chiral medium.

For s = ±1/2, let Hs(∂Ω) denote the usual Sobolev space of order s on ∂Ω and let

Hs
T (∂Ω) =

{
ϕ ∈

(
Hs(∂Ω)

)3
, ν · ϕ = 0

}
.

Let ∇∂Ω, ∇∂Ω· and ∆∂Ω denote the surface gradient, surface divergence and Laplace-
Beltrami operator respectively and define the vectorial and scalar surface curl by ~curl∂Ωϕ =

−ν×∇∂Ωϕ for ϕ ∈ H
1

2 (∂Ω) and curl∂Ωϕ = −ν ·(∇∂Ω×ϕ) for ϕ ∈ H
− 1

2

T (∂Ω), respectively.
We introduce the following functional space:

H
− 1

2

T (div, ∂Ω) =

{
ϕ ∈ H

− 1

2

T (∂Ω),∇∂Ω · ϕ ∈ H− 1

2 (∂Ω)

}
.

We introduce the boundary layer potentials by

~Sk
Ω[ϕ](x) =

∫

∂Ω
gk(x− y)ϕ(y)dσ(y), x ∈ R

3,

Sk
Ω[ψ](x) =

∫

∂Ω
gk(x− y)ψ(y)dσ(y) for a scalar function ψ ∈ H− 1

2 (∂Ω) and x ∈ R
3,

Mk
Ω[ϕ](x) =

∫

∂Ω
ν(x)×∇x × gk(x− y)ϕ(y)dσ(y), x ∈ ∂Ω,

Lk
Ω[ϕ](x) = ν(x)×

(
k2 ~Sk

Ω[ϕ](x) +∇Sk
Ω[∇∂Ω · ϕ](x)

)
, x ∈ ∂Ω.
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We also introduce the notations

α1,c =
1

iτc
, α2,c = −iτc, α1,m =

1

iτm
, α2,m = −iτm,

where τc =
√
µm/ǫc and τm =

√
µm/ǫm.

We consider the Bohren decomposition of (E,H) into Beltrami fields,i.e.,

E = Q1 + α2,cQ2, H = α1,cQ1 +Q2 in Ω. (B.1)

Similarly,
Esc = Q1 + α2,mQ2, Hsc = α1,mQ1 +Q2 in R

3 \ Ω. (B.2)

We can see that they satisfy the vector Helmholtz equations as
{
(∆ + γ2j,c)Qj = 0, in Ω,

(∆ + γ2j,m)Qj = 0, in R
3 \ Ω,

where

γj,m =
km

1 + (−1)jkmβm
, γj,c = ω

√
ǫcµm, j = 1, 2.

We define the operator Qj , for (ϕ1, ϕ2) ∈ H
− 1

2

T (div, ∂Ω), by

QΩ,j

[
ϕ1

ϕ2

]
=





(
(−1)j+1γj,c∇× ~Sγj,c

Ω +∇×∇× ~Sγj,c
Ω

)
[ϕj ] in Ω,

(
(−1)j+1γj,c∇× ~Sγj,m

Ω +∇×∇× ~Sγj,m
Ω

)
[ζj1ϕ1 + ζj2ϕ2] in R

3 \ Ω
with ζij , i, j = 1, 2, given by

ζ11 =
1

2
(1 +

τm
τc

), ζ12 =
i

2
(τc − τm), (B.3)

ζ21 =
i

2
(
1

τm
− 1

τc
), ζ22 =

i

2
(1 +

τc
τm

). (B.4)

Then the solution Qj , for j = 1, 2, can be represented as

Qj = QΩ,j

[
ψ1

ψ2

]
, (B.5)

where (ψ1, ψ2) is the solution of the integral equation

(JΩ + CΩ)
(
ψ1

ψ2

)
=

(
ν × Ein|∂Ω
ν ×H in|∂Ω

)
. (B.6)

Here, the operator JΩ is given by

(JΩ)11 = −ζ11Lγ1,m
Ω + Lγ1,c

Ω − ζ21α2,mLγ2,m
Ω − 1

2
(ζ11γ1,m + γ1,c − ζ21α2,mγ2,m)I,

(JΩ)12 = −ζ11Lγ1,m
Ω + α2,mLγ2,m

Ω − ζ22α2,mLγ2,m
Ω − 1

2
(ζ12γ1,m − α2,cγ2,c − ζ22α2,mγ2,m)I,

(JΩ)21 = −ζ21Lγ2,m
Ω + α1,mLγ1,m

Ω − ζ11α1,mLγ1,m
Ω − 1

2
(−ζ21γ2,m + α1,cγ1,c + ζ11α1,mγ1,m)I,

(JΩ)22 = −ζ22Lγ2,m
Ω + Lγ2,c

Ω − ζ12α1,mLγ1,m
Ω − 1

2
(ζ22γ2,m − γ2,c + ζ12α1,mγ1,m)I,
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and the operator CΩ is given by

(CΩ)11 = −ζ11γ1,mMγ1,m
Ω − γ1,cMγ1,c

Ω + ζ21α2,mγ2,mMγ2,m
Ω ,

(CΩ)12 = −ζ12γ1,mMγ1,m
Ω + α2,cγ2,cMγ2,c

Ω + ζ22α2,mγ2,mMγ2,m
Ω ,

(CΩ)21 = ζ21γ2,mMγ2,m
Ω − α1,cγ1,cMγ1,c

Ω − ζ11α1,mγ1,mMγ1,m
Ω ,

(CΩ)22 = −ζ22γ2,mMγ2,m
Ω + γ2,cMγ2,c

Ω − ζ12α1,mγ1,mMγ1,m
Ω .

The operator CΩ : H
− 1

2

T (div, ∂Ω) → H
− 1

2

T (div, ∂Ω) is compact.
Let

QE
Ω = QΩ,1 + α2,cQΩ,2, QH

Ω = α1,cQΩ,1 +QΩ,2.

In view of (B.1), (B.2) and (B.5), the operator QE
Ω (or QH

Ω ) maps density functions on
∂Ω to the corresponding electric field (respectively, the magnetic field).

C Justification of the homogenization procedure

In this appendix, we provide a justification of the point interaction approximation for
deriving the effective medium parameters. We make the following assumptions.

Assumption C.1. (i) The function Ṽ defined in Assumption 4.1 belongs to C2
0(Ω).

(ii) (4.1) holds for functions (f, g) ∈ X, where X := C0,α(Ω)3×C0,α(Ω)3 with 0 < α ≤
1.

We define the operator T : X → X by

T
(
u
v

)
= ω

∫

Ω
G(· − z)

(
ǫ̃eff(z) iω ˜̃µeff(z)

−iω˜̃ǫeff(z) µ̃eff(z)

)(
u(z)
v(z)

)
dz. (C.1)

Then, the Lippmann-Schwinger equation can be written as

(I − T )

(
Eh

Hh

)
=

(
Ein

H in

)
.

We assume that the homogenized problem (4.11) is well-posed. More precisely, we
make the following assumption.

Assumption C.2. For given material parameters ǫeff and µeff with negative real parts
and an incident field (Ein, H in), there exists a unique solution to (4.11) such that (E −
Ein, H −H in) satisfies the Silver-Müller radiation condition at infinity.

Lemma 2. The following statements are equivalent:

(i) There exists a unique solution to the differential equation (4.11) such that (E −
Ein, H −H in) satisfies the Silver-Müller radiation condition at infinity;
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(ii) There exists a unique solution (E,H) ∈ X to the Lippmann-Schwinger equation

(I − T )

(
E
H

)
=

(
Ein

H in

)
,

where T is given by (C.1).

Note that, under Assumptions C.1 (i) and C.2, the operator T is Fredholm of index
zero on the set of functions (u, v) ∈ X such that [21]

∇·
([(

ǫ̃eff(z) iω ˜̃µeff(z)

−iω˜̃ǫeff(z) µ̃eff(z)

)
+

(
1

1−ω2ǫmµmβ2
m

iω µmβm

1−ω2ǫmµmβ2
m

−iω ǫmβm

1−ω2ǫmµmβ2
m

1
1−ω2ǫmµmβ2

m

)](
u(z)
v(z)

))
= 0 for z ∈ Ω.

Let us introduce a regularized operator Tη of T by replacing gk with

gkη(x, y) =
eik|x−y|

4π|x− y|+ η
, η > 0.

It is clear that the operator Tη is compact in X. Using Fredholm’s theory, we have the
following lemma.

Lemma 3. The operator I − Tη is invertible with a bounded inverse in X.

Let (Eh
η , H

h
η ) be the solution to

(I − Tη)
(
Eh

η

Hh
η

)
=

(
Ein

H in

)
.

Next, assume for simplicity that ǫ̃Neff , µ̃
N
eff ,

˜̃ǫNeff , and
˜̃µNeff are replaced with their limits as

N → +∞ and consider the regularized form of (4.6), that is,

(
EN

η (x)

HN
η (x)

)
=

(
Ein(x)
H in(x)

)
+

1

N3

N3∑

j=1

ωGη(x− zNj )

(
ǫ̃eff iω ˜̃µeff

−iω˜̃ǫeff µ̃eff

)(
EN

η (zNj )

HN
η (zNj )

)
(C.2)

for x ∈ Ω̃. Here, Gη is obtained from G by replacing gk with gkη , and (EN
η (zNj ), HN

η (zNj ))
is obtained by solving the linear system

(
EN

η (zNi )

HN
η (zNi )

)
=

(
Ein(zNi )
H in(zNi )

)
+

1

N3

N3∑

j=1,j 6=i

ωGη(z
N
i − zNj )

(
ǫ̃eff iω ˜̃µeff

−iω˜̃ǫeff µ̃eff

)(
EN

η (zNj )

HN
η (zNj )

)
,

(C.3)
for i = 1, . . . , N3.

To insure the uniform invertibility of (C.3) with respect to N and η (at least for ω
small enough), we need some more assumptions regarding {zNj } in addition to Assump-
tion 4.2. We assume that

1

N6

N3∑

i,j=1,i 6=j

‖G(zNi − zNl )‖2 ≤ CN−6a,
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for some positive constant C.
Define ẽNη and h̃Nη by ẽNη := Eh

η − EN
η and h̃Nη := Hh

η −HN
η . Then, we have

(
ẽNη (x)

h̃Nη (x)

)
− 1

N3

N3∑

j=1

ωGη(x− zNj )

(
ǫ̃eff iω ˜̃µeff

−iω˜̃ǫeff µ̃eff

)(
ẽNη (zNj )

h̃Nη (zNj )

)

= ω

∫

Ω
Gη(x− y)

(
ǫ̃eff iω ˜̃µeff

−iω˜̃ǫeff µ̃eff

)(
Eh

η (y)

Hh
η (y)

)
dy − 1

N3

N3∑

j=1

ωGη(x− zNj )

(
ǫ̃eff iω ˜̃µeff

−iω˜̃ǫeff µ̃eff

)(
Eh

η (z
N
j )

Hh
η (z

N
j )

)
.

Therefore, by the same arguments as those in [4, 14], one can prove that

‖EN
η − Eh

η ‖C0,α(Ω)3 + ‖HN
η −Hh

η ‖C0,α(Ω)3 → 0 as N → +∞,

uniformly in η. Then, since on one hand, EN
η → EN and HN

η → HN in Ω \ ∪(zj)N
3

j=1 as

η → 0 and on the other hand, Eh
η → Eh and Hh

η → Hh in Ω as η → 0, we obtain the
desired justification of the homogenization procedure.
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