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Abstract

This paper is concerned with the inverse problem of reconstructing a small object from
far field measurements by using the field interaction with a plasmonic particle which can be
viewed as a passive sensor. It is a follow-up of the work [H. Ammari et al., Reconstructing
fine details of small objects by using plasmonic spectroscopic data, SIAM J. Imag. Sci., to
appear], where the intermediate interaction regime was considered. In that regime, it was
shown that the presence of the target object induces small shifts to the resonant frequencies
of the plasmonic particle. These shifts, which can be determined from the far field data,
encodes the contracted generalized polarization tensors of the target object, from which
one can perform reconstruction beyond the usual resolution limit. The main argument is
based on perturbation theory. However, the same argument is no longer applicable in the
strong interaction regime as considered in this paper due to the large shift induced by strong
field interaction between the particles. We develop a novel technique based on conformal
mapping theory to overcome this difficulty. The key is to design a conformal mapping
which transforms the two particle system into a shell-core structure, in which the inner
dielectric core corresponds to the target object. We show that a perturbation argument can
be used to analyze the shift in the resonant frequencies due to the presence of the inner
dielectric core. This shift also encodes information of the contracted polarization tensors
of the core, from which one can reconstruct its shape, and hence the target object. Our
theoretical findings are supplemented by a variety of numerical results based on an efficient
optimal control algorithm. The results of this paper make the mathematical foundation for
plasmonic sensing complete.

Mathematics Subject Classification (MSC2000): 35R30, 35C20.
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1 Introduction

The inverse problem of reconstructing fine details of small objects by using far-field measure-
ments is severally ill-posed. There are two fundamental reasons for this: the diffraction limit
and the low signal to noise ratio in the measurements.
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Motivated by plasmonic sensing in molecular biology (see [30] and the references therein), we
developed a new methodology to overcome the ill-posedness of this inverse problem in [10]. The
key idea is to use a plasmonic particle to interact with the target object and to propagate its near
field information into far-field in terms of the shifts in the plasmonic resonant frequencies. This
plasmonic particle can be viewed as a passive sensor in the simplest form. For such a plasmonic-
particle sensor, one of the most important characterization is the plasmon resonant frequencies
associated with it. These resonant frequencies depend not only on the electromagnetic properties
of the particle and its size and shape [7, 9, 22, 28], but also on the electromagnetic properties
of the environment [7, 22, 23]. It is the last property which enables the sensing application of
plasmonic particles.

In [10], the target object is modeled by a dielectric particle whose size is much smaller
than that of the sensing plamsonic particle. The intermediate regime where the distance of
the two particles is comparable to the size of the plasmonic particle was investigated. it was
shown the shifts of the plasmonic resonant frequencies of the plasmonic particle is small and
a perturbation argument can be used to derive their asymptotic. Based on these asymptotic
formulas, one can obtain their explicit dependence on the generalized polarization tensors of
the target particle from which one can perform its reconstruction. However, when the distance
between the particles decreases, their interactions increases and the induced shifts increase in
magnitude as well. The perturbation argument will cease to work at certain threshold distance,
and the characterization for the shifts of resonant frequencies in terms of information of the
target particle becomes more complicated.

In this paper, we aim to extend the above investigation to the strong interaction regime
where the distance of between the two particles is comparable to the size of the small particle.
In this regime, the near field interactions are strong and the induced large shifts in plasmonic
resonant frequencies cannot be analyzed by a perturbation argument. In order to overcome
this difficulty, we develop a novel technique based on conforming mapping theory. The key
is to design a conformal mapping which transforms the two-particle system into a shell-core
structure, in which the inner dielectric core corresponds to the target object. We showed that
a perturbation argument can be used to analyze the shift in the resonance frequencies due to
the presence of the inner dielectric core. This shift also encodes information on the contracted
polarization tensors of the core, from which one can reconstruct its shape, and hence the target
object. The results of this paper make the mathematical foundation for plasmonic sensing
complete.

We remark that the above idea of plasmonic sensing is closely related to that of super-
resolution in resonant media, where the basic idea is to propagate the near field information
into the far field through certain near field coupling with subwavelength resonators. In a recent
series of papers [11, 12, 13], we have shown mathematically how to realize this idea by using
weakly coupled subwavelength resonators and achieve super-resolution and super-focusing. The
key is that the near field information of sources can be encoded in the subwavelength resonant
modes of the system of resonators through the near field coupling. These excited resonant modes
can propagate into the far-field and thus makes the super-resolution from far field measurements
possible.

This paper is organized as follows. In Section 2, we provide basic results on layer poten-
tials and then explain the concept of plasmonic resonances and the (contracted) generalized
polarization tensors. In Section 3, we consider the forward scattering problem of the incident
field interaction with a system composed of an dielectric particle and a plasmonic particle. We
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derive the asymptotic of the scattered field in the case of strong regime. In Section 4, we con-
sider the inverse problem of reconstructing the geometry of the dielectric particle. This is done
by constructing the contracted generalized polarization tensors of the target particle through
the resonance shifts induced to the plasmonic particle. We provide numerical examples to jus-
tify our theoretical results and to illustrate the performances of the proposed optimal control
reconstruction scheme.

2 Preliminaries

2.1 Layer potentials

We recall some basic of layer potential theory that are needed for subsequent analysis. We refer
to [4] for more details. We denote by G(x, y) the Green function for the Laplacian in the free
space R2, i.e.

G(x, y) =
1

2π
log |x− y|.

Let D be a domain R2 with C1,η boundary for some η > 0, and let ν(x) be the outward normal
for x ∈ ∂D.

The single layer potential SD associated with D is defined by

SD[ϕ](x) =

∫

∂D
G(x, y)ϕ(y)dσ(y), x ∈ R2,

and the Neumann-Poincaré (NP) operator K∗
D by:

K∗
D[ϕ](x) =

∫

∂D

∂G

∂ν(x)
(x, y)ϕ(y)dσ(y), x ∈ ∂D.

The following jump relations hold:

SD[ϕ]
∣∣
+
= SD[ϕ]

∣∣
−
, (2.1)

∂SD[ϕ]

∂ν

∣∣∣
±
= (±1

2
I +K∗

D)[ϕ]. (2.2)

Here, the subscripts + and − indiciate the limits from ouside and inside D, respectively.
Let H1/2(∂D) be the usual Sobolev space and let H−1/2(∂D) be its dual space with respect

to the duality pairing (·, ·)− 1

2
, 1
2

. We denote by H
−1/2
0 (∂D) the collection of all ϕ ∈ H−1/2(∂D)

such that (ϕ, 1)− 1

2
, 1
2

= 0.

The NP operator is bounded from H−1/2(∂D) to H−1/2(∂D). Moreover, the operator λI −
K∗

D : L2(∂D) → L2(∂D) is invertible for any |λ| > 1/2. Although the NP operator is not self-

adjoint on L2(∂D), it can be symmetrized on H
−1/2
0 (∂D) with a proper inner product [14, 7]. In

fact, let H∗(∂D) be the space H
−1/2
0 (∂D) equipped with the inner product (·, ·)H∗(∂D) defined

by
(ϕ, ψ)H∗(∂D) = −(ϕ,SD[ψ])− 1

2
, 1
2

,
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for ϕ, ψ ∈ H−1/2(∂D). Then using the Plemelj’s symmetrization principle,

SDK∗
D = KDSD,

it can be shown that the NP operator K∗
D is self-adjoint in H∗ with the inner product (·, ·)H∗(∂D).

Since K∗
D is also compact, it admits the following spectral decomposition in H∗,

K∗
D =

∞∑

j=1

λj(·, ϕj)H∗ϕj , (2.3)

where λj are the eigenvalues of K∗
D and ϕj are their associated eigenfunctions. Note that

|λj | < 1/2 for all j ≥ 1.

2.2 Plasmonic resonance

We are interested in the frequency regime where plasmonic resonances occur. In such a regime,
the wavelength of the incident field is much greater than the size of the plasmonic particle.
To further simplify the analysis and better illustrate the main idea, we use the quasi-static
approximation (by assuming the incident wavelength to be infinite) to model the interaction.
More precisely, let D represent a plasmonic particle with permittivity εD embedded in the
homogenous space R2 with permittivity εm. We consider the following transmission problem
with given incident field H which is harmonic:




∇ · (ε∇u) = 0 in R2,

u− ui = O(|x|−1) as |x| → ∞,
(2.4)

where ε = εDχ(D) + εmχ(R
2\D), and χ(D) and χ(R2\D) are the characteristic functions of D

and R2\D, respectively. The total field u outside of D can be represented by

u = ui + SD[ϕ] , (2.5)

where the density ϕ satisfies the boundary integral equation

(λI −K∗
D)[ϕ] =

∂ui

∂ν

∣∣∣
∂D
. (2.6)

Here, λ is given by

λ =
εD + εm

2(εD − εm)
. (2.7)

Contrary to ordinary dielectric particles, the permittivity εD of the plasmonic particle has
negative real parts. In fact, εD depends on the operating frequency ω and can be modeled by
the following Drude’s model

εD = εD(ω) = 1−
ω2
p

ω(ω + iγ)
, (2.8)

where ωp > 0 is called the plasma frequency and γ > 0 is the damping parameter. Since the
parameter γ is typically very small, εD(ω) has a small imaginary part.

Now we discuss the plasmonic resonances. By applying the spectral decomposition (2.3) of
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K∗
D to the integral equation (2.6), we obtain

ϕ =

∞∑

j=1

(∂u
i

∂ν , ϕj)H∗(∂D)

λD − λj
ϕj . (2.9)

Recall that λj are eigenvalues K∗
D and they satisfy the condition that |λj | < 1/2. For ω < ωp,

Re{εD(ω)} can take negative values. Then it holds that |Re{λ(ω)}| < 1/2. If there exists a
frequency, say ωj , such that λ(ωj) is close to an eigenvalue λj of the NP operator and their

difference is locally minimized. Provided that (∂u
i

∂ν , ϕj)H∗(∂D) 6= 0 , the eigenmode ϕj in (2.9)
will be fully excited and it dominates over other modes. As a result, the scattered field u − ui

will show a pronounced peak at the frequency ωj . This phenomenon is called the plasmonic
resonance and ωj is called the plasmonic resonant frequency.

When D is an ellipse of the form

D =
{
(x, y) ∈ R2 :

x2

a2
+
y2

b2
≤ 1
}
, (2.10)

for some constants a, b with a < b, we can compute the eigenvalues of the NP operator K∗
D

explicitly. In fact, they are given by

±1

2

(b− a

b+ a

)j
, j = 1, 2, 3, · · · .

If a = b, then D is a circular disk of radius a. In this case, zero is the only eigenvalue.

2.3 Contracted generalized polarization tensors

In this subsection, we explain the concept of the generalized polarization tensors (GPTs). The
scattered field u− ui has the following far-field behavior [4, p. 77]

(u− ui)(x) =
∑

|α|,|β|≤1

1

α!β!
∂αui(0)Mαβ(λ,D)∂βG(x), |x| → +∞, (2.11)

where Mαβ(λ,D) is given by

Mαβ(λ,D) :=

∫

∂D
yβ(λI −K∗

D)
−1[

∂xα

∂ν
](y) dσ(y), α, β ∈ N2.

Here, the coefficient Mαβ(λ,D) is called the generalized polarization tensor [4].
For a positive integer m, let Pm(x) be the complex-valued polynomial

Pm(x) = (x1 + ix2)
m = rm cosmθ + irm sinmθ, (2.12)

where we have used the polar coordinates x = reiθ.
We define the contracted generalized polarization tensors (CGPTs) to be the following linear
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combinations of generalized polarization tensors using the polynomials in (2.12):

M cc
m,n(λ,D) =

∫
∂D Re{Pn}(λI −K∗

D)
−1[∂Re{Pm}

∂ν ] dσ,

M cs
m,n(λ,D) =

∫
∂D Im{Pn}(λI −K∗

D)
−1[∂Re{Pm}

∂ν ] dσ,

M sc
m,n(λ,D) =

∫
∂D Re{Pn}(λI −K∗

D)
−1[∂ Im{Pm}

∂ν ] dσ,

M ss
m,n(λ,D) =

∫
∂D Im{Pn}(λI −K∗

D)
−1[∂ Im{Pm}

∂ν ] dσ.

(2.13)

We remark that CGPTs defined above encodes useful information about the shape of the particle
D and can be used for its reconstruction. See [4, 3, 5, 6] for more details.

For convenience, we introduce the following notation. We denote

Mm,n(λ,D) =

(
M cc

m,n(λ,D) M cs
m,n(λ,D)

M sc
m,n(λ,D) M ss

m,n(λ,D)

)
.

When m = n = 1, the matrixM(λ,D) :=M1,1(λ,D) is called the first order polarization tensor.
Specifically, we have

M(λ,D)lm =

∫

∂D
yj(λI −K∗

D)
−1[νi](y) dσ(y), l,m = 1, 2.

It is worth mentioning that the following symmetry holds (see [4]):

Mmn =MT
nm.

Since, from (2.11), we have

(u− ui)(x) =
∇ui ·M(λ,D)x

|x|2 +O(|x|−2), as |x| → ∞,

the first order polarization tensor M(λ,D) determines the dominant term in the far-field expan-
sion of the scattered field u− ui.

To see the plasmonic resonance in the far field, we represent M(λ,D) in a spectral form. By
(2.3), we have

M(λ,D)lm =

∞∑

j=1

(ym, ϕj)− 1

2
, 1
2

(ϕj , νl)H∗(∂D)

λ− λj
.

If D is the ellipse given by (2.10), then we have the explicit formula

M(λ,D) =




πab
λ− 1

2

a−b
a+b

0

0 πab
λ+ 1

2

a−b
a+b


 . (2.14)

Formula (2.14) indicates that the plasmonic resonance occurs only if λ is close to 1
2
a−b
a+b or −1

2
a−b
a+b .
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3 The forward problem

We consider a system composed of a dielectric particle and a plasmonic particle embedded in
a homogeneous medium. The target dielectric particle and the plasmonic particle occupy a
bounded and simply connected domain D1 ⊂ R2 and D2 ⊂ R2 of class C1,α for some 0 < α < 1,
respectively. We further assume that D1 contains the origin. We denote the permittivity of the
dielectric particle D1 and the plasmonic particle D2 by ε1 and ε2, respectively. The permittivity
of the background medium is denoted by εm. In other words, the permittivity distribution ε is
given by

ε := ε1χ(D1) + ε2χ(D2) + εmχ(R
2\(D1 ∪D2)).

As in Subsection 2.2, the permittivity ε2 of the plasmonic particle depends on the operating
frequency and is modeled as

ε2 = ε2(ω) = 1−
ω2
p

ω(ω + iγ)
.

For ease of notation, we denote

λDj
=

εj + εm
2(εj − εm)

, j = 1, 2.

The total electric potential u satisfies the following equation:





∇ · (ε∇u) = 0 in R2\(∂D1 ∪ ∂D2),

u|+ = u|− on ∂D1 ∪ ∂D2,

εm
∂u

∂ν

∣∣∣
+
= ε1

∂u

∂ν

∣∣∣
−

on ∂D1,

εm
∂u

∂ν

∣∣∣
+
= ε2

∂u

∂ν

∣∣∣
−

on ∂D2,

(u− ui)(x) = O(|x|−1), as |x| → ∞,

(3.1)

where ui(x) = d · x is the incident potential with a constant vector d ∈ R2.

3.1 Boundary integral formulation

We derive a layer potential representation of the total field u to (3.1) in this section. We first
denote by uD1

the total field resulting from the incident field ui and the ordinary particle D1

(without the plasmonic particle D2). Then uD1
has the following representation:

uD1
(x) = ui(x) + SD1

(
λD1

Id−K∗
D1

)−1
[
∂ui

∂ν1
](x), for x ∈ R2\D1.

We next introduce the Green functionGD1
(·, y) for the medium with permittivity distribution

εD1
χ(D1) + εmχ(R

2\D1). More precisely, GD1
(·, y) satisfies the following equation

∇x ·
(
(εD1

χ(D1) + εmχ(R
2\D1))∇xGD1

(x, y)
)
= δ(x− y).
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One can show that

GD1
(x, y) = G(x, y) + SD1

(
λD1

Id−K∗
D1

)−1
[ ∂
∂ν
G(·, y)

]
(x) for x, y ∈ R2\D1. (3.2)

Using GD1
, we define layer potential SD2,D1

by

SD2,D1
[ϕ](x) =

∫

∂D2

GD1
(x, y)ϕ(y)dσ(y).

The total potential u can then be represented in the following form:

u = uD1
+ SD2,D1

[ψ], x ∈ R2\D2, (3.3)

where density ψ satisfies the following boundary integral equation

(λD2
Id−A) [ψ] =

∂uD1

∂ν2
(3.4)

with

A = K∗
D2

− ∂

∂ν2
SD1

(
λD1

Id−K∗
D1

)−1 ∂SD2
[·]

∂ν1
.

We note that the equation (3.4) is written in the form

(AD2,0 +AD2,1) [ψ] =
∂uD1

∂ν2
, (3.5)

where

AD2,0 = λD2
Id−K∗

D2
,

AD2,1 =
∂

∂ν2
SD1

(
λD1

Id−K∗
D1

)−1 ∂SD2
[·]

∂ν1
. (3.6)

3.2 Strong interaction regime and conformal transformation

We assume the following condition on the sizes of the particles D1 and D2.

Condition 1. The plasmonic particle D2 has size of order one; the dielectric particle D1 has

size of order δ ≪ 1.

Definition 3.1 (Strong interaction regime). We say that the small dielectric particle D1 is

in the strong regime with respect to the plasmonic particle D2 if there exist positive constants C1

and C2 such that C1 < C2 and

C1δ ≤ dist(D1, D2) ≤ C2δ.

Definition 3.1 says that the dielectric particle D1 is closely located to the plasmonic particle
D2 with a separation distance of order δ.

In our recent paper [10], the intermediate interaction regime is considered. The key observa-
tion is that the distance between D1 and D2 is assumed to be of order one. The operator AD2,1

in the integral equation (3.5) can be considered as a small perturbation to the operator AD2,0.
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However, in the strong interaction regime, the operator AD2,1 is no longer small compared to the
latter. As a consequence, the perturbation theory is not applicable and it becomes challenging
to analyze the interaction between the particles .

We now introduce a method to tackle this issue by using conformal mapping technique. Let
B1 be a circular disks containing the dielectric particle D1 with radius r1 of order δ. We assume
the plasmonic particle D2 is a circular disk with radius r2. For convenience, we denote D2 by
B2. We emphasize that the shape of D1 is unknown. We let d to be the distance between the
two disks B1 and B2, i.e.,

d = dist(B1, B2).

By the assumption, d is of order δ.
Let Rj be the reflection with respect to ∂Bj and let p1 and p2 be the unique fixed points

of the combined reflections R1 ◦ R2 and R2 ◦ R1, respectively. Let n be the unit vector in the
direction of p2−p1. We set (x, y) ∈ R2 to be the Cartesian coordinates such that p = (p1+p2)/2
is the origin and the x-axis is parallel to n. Then one can see that p1 and p2 can be written as

p1 = (−a, 0) and p2 = (a, 0), (3.7)

where the constant a is given by

a =

√
d
√
(2r1 + d)(2r2 + d)(2r1 + 2r2 + d)

2(r1 + r2 + d)
. (3.8)

Then the center ci of Bi (i = 1, 2) is given by

ci =
(
(−1)i

√
r2i + a2, 0

)
. (3.9)

Define the conformal transformation Φ by

ζ = Φ(z) =
z + a

z − a
, z = x+ iy.

In other words,

z = Φ−1(ζ) = a
ζ + 1

ζ − 1
.

We also define
sj = (−1)j sinh−1(a/rj), j = 1, 2,

and the two disks B̃1 and B̃2 by

B̃1 = {|ζ| < r̃j}, r̃j = exp(sj), j = 1, 2.

It can be shown that, in the ζ-plane, the disks B1 and B2 are transformed to

Φ(B1) = B̃1 = {|ζ| < r̃1},

and
Φ(B2) = R2 \ B̃2 = {|ζ| > r̃2}.
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-0.5
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0.5

1

1.5

Transformed frame

Figure 1: (left) original configuration and (right) transformed one by the conformal map Φ

One can check that r̃1 < 1 and r̃2 > 1. The exterior region R2 \B1 ∪B2 becomes a shell region
between ∂B̃1 and ∂B̃2 in the ζ-plane:

Φ(R2 \B1 ∪B2) = B̃2 \ B̃1 = {r̃1 < |ζ| < r̃2}.

To illustrate the geomtery, in Figure 1,we show an example for the configuration of a system
of a small dielectric particle D1 and a plasmonic particle B2. We also show its transformed
geometry by the conformal map Φ. We set δ = 0.2, r1 = δ, r2 = 1 and d = δ.

It is worth mentioning that the shape of the transformed domain D̃1 strongly depends on
the ratio between d and δ but is independent of δ itself. Suppose that d = cδ for some c > 0. If
c is of order one, then the shape of D̃1 is almost the same as that of D1. On the contrary, if c
is too small, then the shape of D̃1 is highly distorted. See Figure 2.

3.3 Boundary integral formualtion in the transformed domain

Let us define ũ(ζ) = u(Φ−1(ζ)) and ũi(ζ) = ui(Φ−1(ζ)). Then, since the mapping Φ is conformal,
ũ and ũi are harmonic in the ζ-plane. Moreover, the transmission conditions for ũ are preserved.
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Transformed frame with d=5 
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-0.4

0

0.4
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Figure 2: (left) original configuration (center) the transformed one with d = 5δ (right) the same
but with d = 0.5δ. We set r1 = δ, r2 = 1 and δ = 0.01.

In fact, the transformed potential ũ satisfies the following equations:





∇ · (ε̃∇ũ) = 0 in R2\(∂D̃1 ∪ ∂D̃2),

ũ|+ = ũ|− on ∂D̃1 ∪ ∂D̃2,

εm
∂ũ

∂ν

∣∣∣
+
= ε1

∂ũ

∂ν

∣∣∣
−

on ∂D̃1,

ε2
∂ũ

∂ν

∣∣∣
+
= εm

∂ũ

∂ν

∣∣∣
−

on ∂D̃2,

(ũ− ũi)(ζ) = O(|ζ − (1, 0)|) as ζ → (1, 0),

(3.10)

where the transformed permittivity distribution ε̃ is given by

ε̃ = ε1χ(D̃1) + ε2χ(R
2 \ D̃2) + εmχ(D̃2 \ D̃1).

Note that the transformed problem looks similar to the original one, even though the geometry
of the particles is of a completely different nature. As δ goes to zero, the radii r̃1 and r̃2 have
the following asymptotic properties:

r̃1 = r̃01 +O(δ), r̃2 = 1 +O(δ)

for some 0 < r01 < 1 independent of δ. Hence, in contrast to the original problem, the transformed

boundaries ∂B̃1 and ∂B̃2 (= ∂D̃2) are not close to touching. Moreover, they share the same
center (see Figure 1). This will enable us to analyze more deeply the spectral nature of the
problem.

Now we represent the solution to the transformed problem using the layer potentials. By
applying a similar procedure as the one used for (3.6), we can obtain the following representation:

ũ = (const.) + u
D̃1

+ S
D̃2,D̃1

[ψ̃], x ∈ R2. (3.11)

11



Here, the constant term is needed to satisfy the boundary condition at infinity in (3.10). The
density function ψ̃ satisfies the following boundary integral equation:

(
λD2

I − Ã
)[
ψ̃
]
=
∂ũ

D̃1

∂ν2
, (3.12)

where

Ã = K∗
D̃2

− ∂

∂ν2
S
D̃1

(
λD1

I −K∗
D̃1

)−1 ∂S
D̃2

[·]
∂ν1

, (3.13)

ũ
D̃1

= ũi + S
D̃1

(
λD1

I −K∗
D̃1

)−1 [∂ũi
∂ν1

]
. (3.14)

Lemma 3.1. The following relation between A and Ã holds

〈φ,A[ψ]〉H∗(∂D2) = 〈φ̃, Ã[ψ̃]〉
H∗(∂D̃2)

, (3.15)

where φ, ψ ∈ H∗(∂D2) and φ̃ = φ ◦ Φ−1, ψ̃ = ψ ◦ Φ−1.

Proof. By the conformality of the map Φ, the single layer potentials SD2
[φ] and S

D̃2
[φ̃] ◦ Φ are

identical up to an additive constant, whence (3.15) follows.

3.4 Computation of the operator Ã and its spectral properties

Here we compute the operator Ã. Note that Ã is an operator which maps H∗(∂D̃2) onto
H∗(∂D̃2). Since ∂D̃2 is a circle, we use the Fourier basis for H∗(∂D̃2). Let (r, θ) be the polar
coordinates in the ζ-plane, i.e., ζ = reiθ. We define

ϕc
n(θ) = cosnθ, ϕs

n(θ) = sinnθ.

The following proposition holds.

Proposition 3.1. We have

Ã[ϕc
n](ζ) =

∞∑

m=1

− r̃
−(n+m)
2

4πn
(M cc

nm(λD1
, D̃1) cosmθ +M cs

nm(λD1
, D̃1) sinmθ), (3.16)

and

Ã[ϕs
n](ζ) =

∞∑

m=1

− r̃
−(n+m)
2

4πn
(M sc

nm(λD1
, D̃1) cosmθ +M ss

nm(λD1
, D̃1) sinmθ) (3.17)

for n 6= 0.

Proof. Since ∂D̃2 is a circle, K∗
D̃2

= 0 on H∗(∂D̃2). Therefore, we only need to consider the

12



second term in A. It is easy to see that

S
D̃2

[
ϕc
n

]
(r, θ) = − r̃

−n+1
2

2n
rncosnθ, (3.18)

S
D̃2

[
ϕs
n

]
(r, θ) = − r̃

−n+1
2

2n
rnsinnθ, (3.19)

for 0 ≤ r ≤ r̃2. Thus, we have

Ã[ϕc
n](ζ) = − r̃

−n+1
2

2n

∂

∂ν2

∫

∂D̃1

G(ζ, ζ ′)
(
λD1

I −K∗
D̃1

)−1
[
∂

∂ν1
Re{Pn}

]
(ζ ′) dσ(ζ ′). (3.20)

It is known that [2]

G(x, y) =
∞∑

m=1

(−1)

2πm

cos(mθx)

rmx
rmy cos(mθy) +

(−1)

2πm

sin(mθx)

rmx
rmy sin(mθy), |x| < |y|,

where (rx, θx) and (ry, θy) are the polar coordinates of x and y, respectively. Then, by letting

x = ζ and y = ζ ′ ∈ ∂D̃2, we get

Ã[ϕc
n](ζ) =

∞∑

m=1

− r̃
−(n+m)
2

4πn
cosmθ

∫

∂D̃1

Re{Pm}
(
λD1

I −K∗
D̃1

)−1
[
∂

∂ν1
Re{Pn}

]
(ζ ′) dσ(ζ ′)

− r̃
−(n+m)
2

4πn
sinmθ

∫

∂D̃1

Im{Pm}
(
λD1

I −K∗
D̃1

)−1
[
∂

∂ν1
Re{Pn}

]
(ζ ′) dσ(ζ ′).

Finally, from the definition of the CGPTs (see (2.13)), (3.16) follows. Similarly, one can derive
(3.17).

Let us define

Mnm =Mnm(λD1
, D̃1) =

(
M cc

nm(λD1
, D̃1) M cs

nm(λD1
, D̃1)

M sc
nm(λD1

, D̃1) M ss
nm(λD1

, D̃1)

)
,

and

M̃nm = −r
−(n+m)
2

4πn
Mnm(λD1

, D̃1).

In view of Proposition 3.1, we see that the operator Ã can be represented in a block matrix form
as follows:

Ã =




M̃11 M̃12 M̃13 · · ·
M̃21 M̃22 · · · · · ·
M̃31 · · · · · ·
· · ·


 . (3.21)

Recall that D̃1 is contained in the disk B̃1 with radius r̃1. One can derive that

|Mnm(λD1
, D̃1)| ≤ Cr̃n+m

1
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for some positive constant C [4]. Therefore,

|M̃nm(λD1
, D̃1)| ≤ C

(
r̃1
r̃2

)n+m

. (3.22)

This decay property of M̃nm is crucial for our conformal mapping technique. An important
consequence is that the operator Ã can be efficiently approximated by finite dimensional matrices
obtained through a standard truncation procedure. Here we remark that Ã = O((r̃1/r̃2)

2).
If the particle D1 is in the strong regime, then we may write d = cδ for some c > 0. If c is

of order one, the ratio r̃1
r̃2

is relatively small (but regardless of how small δ is). In section 4 we
apply the eigenvalue perturbation method to analyze the spectral nature more explicitly when
we consider the related inverse problem.

3.5 Spectral decomposition A of and the scattered field

It is clear that Ã is compact and is self-adjoint in H∗. Let {(λn, ψ̃n) : n ≥ 1} be the set of its
eigenvalue-eigenfunction pairs. We order the eigenvalues in such a way that |λj | is decreasing
and tends to 0 as j → ∞. Then A admits the following spectral decomposition:

Ã =
∞∑

n=1

λjψ̃n ⊗ ψ̃n.

We remark that all the eigenvalues {λj : j ≥ 1} lie in the interval (−1/2, 1/2). Moreover, they
can be numerically approximated by the eigenvalues of a finite truncation of the infinite matrix
Ã.

Thanks to (3.15), if we let ψn = ψ̃n ◦ Φ, then we obtain

A =

∞∑

n=1

λjψn ⊗ ψn. (3.23)

It is also worth mentioning that the orthogonality of basis {ψn} is also preserved.
Using the spectral representation formula (3.23), we can derive the following result.

Theorem 3.1. Assume that Condition 1 holds and that D2 is in the strong interaction regime,

then the scattered field usD2
= u− uD1

by the plasmonic particle D2 has the following represen-

tation:

usD2
= SD2,D1

[ψ],

where ψ satisfies

ψ =

∞∑

j=1

(
∇ui(z) · ν, ψj

)
H∗(∂D2)

ψj +O(δ2)

λD2
− λj

.

As a corollary, we obtain the following asymptotic expansion of the scattered field u− ui.
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Theorem 3.2. The following far field expansion holds:

(u− ui)(x) = ∇ui(z) ·M(λD1
, λD2

, D1, D2)∇G(x, z) +O

(
δ3

dist(λD2
, σ(A))

1

|x|2
)
,

as |x| → ∞. Here, z is the center of mass of D2 and M(λD1
, λD2

, D1, D2) is the polarization

tensor satisfying

M(λD1
, λD2

, D1, D2)l,m =

∞∑

j=1

(νl, ψj)H∗(∂D2)(ψj , xm)− 1

2
, 1
2

+O(δ2)

λD2
− λj

, (3.24)

for l,m = 1, 2.

From the above far field expansion of the scattered field, it is clear that when we vary the
frequency of the incident field, at certain frequency ω such that λD2

(ω) = λj for some j which
satisfies the condition that

(νl, ψj)H∗(∂D2)(ψj , xm)− 1

2
, 1
2

6= 0,

the scattered field will show a sharp peak, which corresponds to the excitation of a plasmonic
resonance. Such a frequency is called a plamonic resonant frequency for the system of two
particles, which is different from the one for the single plasmonic particle D2. The difference is
called the shift of resonant frequency. This shift is due to the interaction of the target particle
with the plasmonic particle. We note that the resonant frequencies of the two-particle system can
be determined from the far field data, which further determines those λj which are eigenvalues
of the operator A. In the next section, we discuss how to reconstruct the shape of D1 from these
recovered eigenvalues.

4 The inverse problem

We assume that we can measure the eigenvalues λj for j = 1, 2, ..., J, from the far field by
varying the frequency of incident field and then picking up local peaks. These eigenvalues are
also the eigenvalues of the operator Ã, which depends on the CGPTs of the transformed shape
D̃1 according to (3.21). So we reconstruct D̃1 first. Once we find D̃1, the shape of D1 can be
easily recovered by using the mapping Φ.

4.1 Reconstruction of CGPTs

In this subsection, we propose an algorithm to reconstruct the CGPTs from measurements of the
eigenvalues λj . For ease of presentation, we only consider the first two largest eigenvalues λ1 and
λ2. We denote their measurements by P1 and P2, respectively. Note that a single measurement
of (P1,P2) typically yields very poor reconstruction of the CGPTs due to the lack of information.
To overcome this issue, we need to measure the eigenvalues for different configurations of the
two particles. Recall the target particle contains the origin. We can rotate it around the origin
multiple times and measure (P1,P2) for each configuration. The CGPTs for the target particle
after each rotation are related in the following way.
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Define

N (1)
m,n(λ,D) = (M cc

m,n −M ss
m,n) + i(M cs

m,n +M sc
m,n),

N (2)
m,n(λ,D) = (M cc

m,n +M ss
m,n) + i(M cs

m,n −M sc
m,n)

and let RθD = {eiθx : x ∈ D}, θ ∈ [0, 2π). Then for all integers m,n and all angle parameters θ,
we have [2]

N (1)
m,n(RθD) = ei(n+m)θN (1)

m,n(D), N (2)
m,n(RθD) = ei(n−m)θN (2)

m,n(D).

Let us write d = cδ for some c > 0. As discussed in subsection 3.2, if c is of order one, then
the deformation of the shape D̃1 from D1 is not so strong. So, if the domain D1 is rotated by
an angle θ, then the transformed domain will also be rotated by the same amount of angle. So

we may (approximately) identify R̃θD1 with RθD̃1.
Measuring Pj for multiple rotation angles θi for RθD̃1 will yield a non-linear system of equa-

tions that will allow the recovery of the CGPTs associated with D1. From the recovered CGPTs,
we will reconstruct the ordinary particle D1. Here, we only consider the shape reconstruction
problem. Nevertheless, by using the CGPTs associated with D1, it is possible to reconstruct
the permittivity ε1 of D1 in the case it is not a priori given [2].

In view of (3.21) and (3.22), using a standard perturbation method, the asymptotic expansion
of the eigenvalue λj , j = 1, 2

λj = λ0j + λ1j + λ2j + · · · , where λkj = O
(
(r̃1/r̃2)

k+2 ) (4.1)

for i = 1, 2. Each term in the RHS of the above expansion can be computed explicitly. Although
we omit the explicit expressions, we mention that they are nonlinear and depend on CGPTs in
the following way:

λ0j = λ0j (M11),

λ1j = λ1j (M11,M12),

λ2j = λ2j (M11,M12,M22,M13),

... =
...

λkj = λkj (∪m+n≤k+2{Mmn}).

Suppose we have measurements P1(θ) and P2(θ) for 11 different rotation angles θ1, θ2, ..., θ11
of the unknown particle D̃1. We can reconstruct Mnm approximately for m + n ≤ 5. Recall
that Mmn = MT

nm where subscript T stands for the transpose. We look for a set of matrices
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{M (1)
nm}m+n≤5 satisfying [M

(1)
nm]T =M

(1)
mn and the the following nonlinear system: for j = 1, 2,

Pj(θ1) =
3∑

l=0

λlj

(
∪m+n≤l+2 {M (1)

nm(Rθ1D̃1)}
)
,

Pj(θ2) =

3∑

l=0

λlj

(
∪m+n≤l+2 {M (1)

nm(Rθ2D̃1)}
)
,

... =
...

Pj(θ11) =

3∑

l=0

λlj

(
∪m+n≤l+2 {M (1)

nm(Rθ11D̃1)}
)
.

We note that the above equations has 22 independent parameters. They can be solved by using
standard optimization methods. We expect that

Mnm =M (1)
nm +O

(
(r̃1/r̃2)

6 ) for m+ n ≤ 5.

The above scheme can be easily generalized to reconstruct the higher order CGPTs Mnm.
This requires more measurement data (P1,P2) from more rotations. Let k ≥ 2. One can see

that (using the symmetry [M
(k)
nm]T = M

(k)
mn) the set of GPTs Mmn satisfying m+ n ≤ 4k + 1

contains ek independent parameters, where ek is given by

ek = 16k2 + 6k.

Therefore, we need ek/2 pairs of (P1,P2) to reconstruct these GPTs. Let {M (k)
nm}m+n≤4k+1 be

the set of matrices satisfying [M
(k)
nm]T =M

(k)
mn and the following system of equations:

Pj(θi) =
k−1∑

l=0

λlj

(
∪m+n≤l+2 {M (k)

nm(RθiD̃1)}
)
, i = 1, ..., ek, j = 1, 2.

Then we have
Mnm =M (k)

nm +O
(
(r̃1/r̃2)

4k+2 ) for m+ n ≤ 4k + 1.

4.2 Optimal control approach

Now, in order to recover the shape of D̃1 from the CGPTs Mmn, we can minimize the following
energy functional

J (l)
c [B] :=

1

2

∑

H,F∈{c,s}

∑

n+m≤k

∣∣MHF
mn (λD1

, B)−MHF
mn (λD1

, D1)
∣∣2 , (4.2)

We apply the gradient descent method for the minimization. We need the shape derivative

of the functional J (l)
c [B]. For ǫ small, let Bǫ be an ǫ-deformation of B, i.e., there is a scalar

function h ∈ C1(∂B), such that

∂Bǫ := {x+ ǫh(x)ν(x) : x ∈ ∂B}.
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According to [2, 3, 6], the perturbation of the CGPTs due to the shape deformation is given by

MHF
nm (λD1

, Bǫ)−MHF
nm (λD1

, B)

= ǫ(kλD1
− 1)

∫

∂B
h(x)

[
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−
+

1

kλD1

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) +O(ǫ2), (4.3)

where
kλD1

= (2λD1
+ 1)/(2λD1

− 1), (4.4)

and u and v are respectively the solutions to the following transmission problems:





∆u = 0 in B ∪ (R2\B) ,

u|+ − u|− = 0 on ∂B ,

∂u

∂ν

∣∣∣
+
− kλD1

∂u

∂ν

∣∣∣
−
= 0 on ∂B ,

(u−H)(x) = O(|x|−1) as |x| → ∞ ,

(4.5)

and 



∆v = 0 in B ∪ (R2\B) ,

kλD1
v|+ − v|− = 0 on ∂B ,

∂v

∂ν

∣∣∣
+
− ∂v

∂ν

∣∣∣
−
= 0 on ∂B ,

(v − F )(x) = O(|x|−1) as |x| → ∞ .

(4.6)

Here, ∂/∂T is the tangential derivative. In the case ofM cs
nm, for example, we put H = Re{Pn} =

rn cosnθ and F = Im{Pm} = rn sinnθ. The other cases can be handled similarly.
Let

wHF
m,n(x) = (kλD1

− 1)

[
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−
+

1

kλD1

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x), x ∈ ∂B .

The shape derivative of J (l)
c at B in the direction of h is given by

〈dSJ (l)
c [B], h〉 =

∑

H,F∈{c,s}

∑

m+n≤k

δHF
N 〈wHF

m,n, h〉L2(∂B) ,

where
δHF
N =MHF

nm (λD1
, B)−MHF

nm (λD1
, D1) .

By using the shape derivatives of the CGPTs, we can get an approximation for the matrix(
M̃nm(λD1

, Bǫ)
)N
n,m=1

for the slightly deformed shape. Next, the shape derivative of λNj (B)
can be computed by using the standard eigenvalue perturbation theory. Finally, by applying a

gradient descent algorithm, we can minimize, at least locally, the energy functional J (l)
c .
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Figure 3: The magnitude of the polarization tensor. The dotted line (or solid line) represents the
case when the dieletric particle D1 is absent (or presented), respectively. We set Im{λ2} = 0.003.

4.3 Numerical examples

In this subsection, we support our theoretical results by numerical examples. In the sequel, we
set δ = 0.001. We also assume that B1 and B2 are disks of radii r1 = δ and r2 = 1, respectively
and they are separated by a distance d = 5δ. Then the ratio r̃1/r̃2 between the trasnformed
radii is approximately 0.127. Note that the ratio is rather small but much larger than the small
parameter δ. We suppose the material parmater ε1 of D1 is known and to be given by ε1 = 3
and so, it holds that λD1

= 1.
We rotate the unknown particle D1 by the angle θi, i = 1, 2, ..., 11 and get the measurement

pair (P1(θi),P2(θi)) for each rotation θi, where θi is given by

θi =
2π

11
(i− 1), i = 1, 2, ..., 11.

We mention that, as discussed in [10], we can measure (P1,P2) from the local peaks of the
plasmonic resonant far-field.

Figure 3 shows the shift in the plasmonic resonance. In the absence of the dielectric particle
D1, the local peak occurs only at λD2

= 0. If the particle D1 is presented in a strong regime,
then many local peaks appear. By measuring the first two largest values of λD2

at which a local
peak appear, we get (P1,P2) approximately.

From measurements of (P1,P2), we recover the contracted GPTs using the algorithm de-
scribed in subsection 4.1. We then minimize functional (4.2) to reconstruct an approximation
of D̃1. Finally, we use D1 = Φ−1(D̃1) to get the shape of D1. We consider the case of D1 being
a flower-shaped particle and show comparison between the target shapes and the reconstructed
ones, as shown in Figure 4. We recover the first contracted GPTs up to order 5, i.e., Mmn

for m + n ≤ 5. We take as an initial guess the equivalent ellipse to D̃1, determined from the
recovered first order polarization tensor. The required number of iterations is 30. It is clear that
they are in good agreement.

19



0

0

0

0

0

0

Figure 4: Comparison between the original shape (gray) of the particle D1 and the reconstructed
one (black). The iteration number is 30.
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