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NUMERICAL APPROXIMATION OF STATISTICAL SOLUTIONS

OF SCALAR CONSERVATION LAWS

U. S. FJORDHOLM, K. LYE, AND S. MISHRA

Abstract. We propose efficient numerical algorithms for approximating sta-
tistical solutions of scalar conservation laws. The proposed algorithms combine
finite volume spatio-temporal approximations with Monte Carlo and multi-
level Monte Carlo discretizations of the probability space. Both sets of methods
are proved to converge to the entropy statistical solution. We also prove that
there is a considerable gain in efficiency resulting from the multi-level Monte

Carlo method over the standard Monte Carlo method. Numerical experiments
illustrating the ability of both methods to accurately compute multi-point sta-

tistical quantities of interest are also presented.

1. Introduction

Hyperbolic systems of conservation laws are a large class of nonlinear partial
differential equations that arise in a wide variety of models in physics and engineer-
ing [10]. Prominent examples include the shallow water equations of oceanogra-
phy, compressible Euler equations of aerodynamics and the magnetohydrodynamics
(MHD) equations of plasma physics.

The simplest example for this class of PDEs is provided by the scalar conservation
law

ut +∇x · f(u) = 0

u(x, 0) = ū(x)
(1)

where u : Rd×R+ → R is the conserved variable and f : R → R
d is the flux function.

A prototypical example of a scalar conservation law is the Burgers equation, i.e (1)
with d = 1 and flux function f(u) = 1

2u
2.

It is well known that discontinuities, such as shock waves, can arise in the solution
of (1) even when the initial data ū is smooth. Hence, one seeks solutions of (1) in
the sense of distributions. These weak solutions are not necessarily unique and need
to be augmented with additional admissibility criteria called entropy conditions to
ensure uniqueness. Entropy solutions of the multi-dimensional scalar conservation
law (1) exist as long as ū ∈ L1 ∩ L∞(Rd), and are unique and stable with respect
to the initial data:

∥

∥S(t)ū− S(t)v̄
∥

∥

L1(Rd)
6 ‖ū− v̄‖L1(Rd) ∀ ū, v̄ ∈ L1 ∩ L∞(Rd).

Here, S(t) : ū 7→ u(t) denotes the data to solution operator of (1).
On the other hand, similar well-posedness results for systems of conservation

laws are only available in one space dimension [5]. There are no global existence
results for generic multi-dimensional systems of conservation laws. Moreover, it is
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2 COMPUTING STATISTICAL SOLUTIONS

now known that entropy solutions for (some examples) of multi-dimensional systems
may not be unique [11, 9].

Given this paucity of well-posedness results for systems of conservation laws, it
is natural to seek alternative solution frameworks. A possible solution paradigm
is that of entropy measure valued solutions [12], where the sought for solution
is not necessarily an integrable function but rather a Young measure, i.e. a space-
time parametrized probability measure. Although entropy measure-valued solutions
exist globally (even for multi-dimensional systems) and can be approximated with
Monte Carlo type ensemble averaging numerical algorithms [14], these solutions
are not unique, even for scalar conservation laws (1), in particular in the case when
the initial Young measure is not concentrated on a single integrable function. The
reason behind this non-uniqueness is the lack of information on spatial correlations
(conditional probabilities) that is intrinsic to the notion of Young measures.

In a recent paper [13], the authors proposed another solution concept, namely
statistical solutions, to supplement measure-valued solutions with information about
multi-point spatial correlations. Statistical solutions are time-parametrized prob-
ability measures on Lp(D), where D ⊂ R

d is the spatial domain and 1 6 p < ∞.
It was proved in [13] that these probability measures on spaces of p-integrable
functions are identified with a hierarchy of Young measures, termed as correlation
measures. Consequently, the time-evolution of statistical solutions is completely
determined in terms of an infinite family of nonlinear PDEs for a class of moments
of the corresponding correlation measures. It was shown in [13] that entropy sta-
tistical solutions of the scalar conservation law (1) always exist, are unique and
stable with respect to initial data. This is in contrast to earlier notions of statis-
tical solutions for Burgers’ equation that are defined as probability measures on
distributions [8, 7, 3]. See also [6] for a different notion of statistical solutions for
the incompressible Navier–Stokes equations.

Statistical solutions can also be considered as a framework for uncertainty quan-
tification (UQ), i.e. the modeling, analysis and efficient numerical approximation
of uncertainty in the solutions of PDEs, given uncertainties in their inputs such as
the initial and boundary data, fluxes, coefficients etc. [4]. For instance, the initial
datum ū in (1) is a measured (observed) quantity, and these measurements are
not exact. Often, one needs to model the underlying input uncertainty and the
resulting solution uncertainty statistically. It is common practice to model both
input and solution uncertainty in terms of random fields (often characterized by a
large but finite number of parameters). A popular notion of uncertainty modeling
for conservation laws is that of random entropy solutions introduced in [27, 28].
However, random entropy solutions rely on a particular parametrization of the un-
derlying uncertainty. On the other hand, the framework of statistical solutions
offers a parametrization-independent modeling of uncertainty where only the law
of random fields, i.e. a probability measure on the underlying function space, is
described and evolved, cf. [13, 1].

The study of scalar conservation laws with random initial conditions also plays
an important role in turbulence research [2]. The results on burgulence can also be
reinterpreted within the framework of statistical solutions of (1).

Given the above discussion, we focus on the efficient numerical approximation
of statistical solutions for scalar conservation laws (1) in this article. We will
approximate the spatio-temporal domain with standard finite volume/finite differ-
ence numerical schemes. The probability space is discretized with a Monte Carlo
method. We prove that that this finite-volume Monte Carlo method converges, in
an appropriate topology, to the entropy statistical solution of (1) as the mesh is
refined and the number of Monte Carlo samples is increased. A complexity analysis
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demonstrates that this procedure can be rather expensive on account of the slow
convergence (in terms of samples) of the Monte Carlo method.

In order to improve computational efficiency, we propose and analyze a multi-
level Monte Carlo (MLMC) version of our numerical method. MLMC methods
were first proposed in [20, 17] and were applied to UQ for conservation laws in
[27]. We adapt the MLMC procedure to our setup and prove that the MLMC
method also converges to the entropy statistical solution. Moreover, we show that
the MLMC method is significantly more efficient than its Monte Carlo counterpart.
We illustrate the performance of both set of methods on a suite of numerical test
problems.

The rest of the article is organized as follows. We define statistical solutions of
(1) in Section 2. Finite volume schemes for approximating the underlying deter-
ministic problem are described in Section 3. Monte Carlo and multi-level Monte
Carlo methods are presented in Sections 4 and 5, respectively. We present a set of
numerical experiments illustrating our methods in Section 6.

2. Statistical solutions of conservation laws

In this section we briefly describe the framework of statistical solutions intro-
duced in [13]. As mentioned above, we are interested in the situation where instead
of an initial data ū ∈ L1(Rd) for (1), we are given some µ̄ ∈ P

(

L1(Rd)
)

, that is, a

probability distribution over different initial data ū ∈ L1(Rd). A statistical solution
of this initial value problem is a map t 7→ µt ∈ P

(

L1(Rd)
)

which satisfies the PDE
(1) in a certain sense. In [13], the authors showed that any probability measure
µ ∈ P(L1(Rd)) can be described equivalently as a correlation measure—a hierarchy
ν = (ν1, ν2, . . . ) in which each element νk provides the joint probability distribu-
tion νkx1,...,xk

of the solution values u(x1), . . . , u(xk) at any choice of spatial points

x1, . . . , xk ∈ R
d. The evolution equation for µt is most naturally described in terms

of its corresponding correlation measure, yielding an infinite hierarchy of evolution
equations. In particular, the equation for the one-point distribution ν1x coincides
with that of measure-valued solutions, cf. DiPerna [12]. Most statistical observables
of a fluid flow can be directly expressed in terms of correlation marginals. For in-
stance, all one-point statistics such as the mean flow can be expressed in terms of
ν1, while the structure functions of turbulence theory are easily expressed in terms
of ν2 (see Section 6).

Definition 1. Let d,N ∈ N, let q ∈ [1,∞), let D ⊂ R
d be an open set (the “spatial

domain”) and (for notational convenience) denote U = R
N (“phase space”). A

correlation measure from D to U is a collection ν = (ν1, ν2, . . . ) of maps satisfying
for every k ∈ N:

(i) νk is a Young measure from Dk to Uk.
(ii) Symmetry: if σ is a permutation of {1, . . . , k} and f ∈ C0(Uk) then

〈

νkσ(x), f(σ(ξ))
〉

=
〈

νkx , f(ξ)
〉

for a.e. x ∈ Dk.

(iii) Consistency: If f ∈ Cb(Uk) is of the form f(ξ1, . . . , ξk) = g(ξ1, . . . , ξk−1) for
some g ∈ C0(Uk−1), then

〈

νkx1,...,xk
, f
〉

=
〈

νk−1
x1,...,xk−1

, g
〉

for almost every

(x1, . . . , xk) ∈ Dk.
(iv) Lq integrability:

(2)

∫

D

〈

ν1x, |ξ|q
〉

dx < ∞.
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(v) Diagonal continuity (DC): limε→0 d
q
ε(ν

2) = 0, where

(3) dqε(ν
2) :=

(

∫

D

−
∫

Bε(x)

〈

ν2x,y, |ξ1 − ξ2|q
〉

dydx

)1/q

.

(Here, −
∫

B
= 1

|B|

∫

B
, the average over B.)

The sense in which correlation measures and probability measures on Lp are
equivalent is made more precise in the following definition:

Definition 2. A probability measure µ ∈ P(Lq(D;U)) is said to be dual to a
correlation measure ν from D to U provided

(4)

∫

Dk

〈

νkx , g(x, ·)
〉

dx =

∫

L2

∫

Dk

g(x, v(x1), . . . , v(xk)) dxdµ(v)

for every k ∈ N and for every Caratheodory function g : Dk → Cb(Uk).

It was shown in [13] that every probability measure µ ∈ P(Lq(D;U)) is dual to a
unique correlation measure ν, and vice versa. Using this duality, we can now state
the definition of statistical solutions.

Definition 3. We say that a weak*-measurable map t 7→ µt ∈ P(L1(Rd)) with
corresponding spatial correlation measures νt = (νkt )k∈N, is a statistical solution of
(1) with initial data µ̄ ∈ P(L1(Rd)), if

∫

R+

∫

(Rd)k

〈

νkt,x, ξ
1 · · · ξk

〉

∂tφ+

k
∑

i=1

〈

νkt,x, ξ
1 · · · f(ξi) · · · ξk

〉

∇xφ dx dt

+

∫

(Rd)k

〈

ν̄kx , ξ
1 · · · ξk

〉

φ|t=0 dx = 0,

(5)

for all φ ∈ C∞
c

( (

R
d
)k × R+

)

and all k ∈ N.

We define the canonical statistical solution as µt = S(t)#µ̄, that is, the measure
satisfying

∫

L1

G(u) dµt(u) =

∫

L1

G(S(t)ū) dµ̄(ū)

for every G ∈ Cb(L
1(Rd)). It is straightforward to show that this indeed constitutes

a statistical solution of (1) with initial data µ̄. Moreover, in [13] it was shown that
under an additional entropy condition on the statistical solution, any two entropy
statistical solutions (see Section 4.2 of [13] for a precise definition) µt, ρt satisfy

W1(µt, ρt) 6 W1(µ̄, ρ̄),

whereW1 is the 1-Wasserstein distance on the set of probability measures P(L1(Rd)).
In particular, the entropy statistical solution is unique and coincides with the canon-
ical statistical solution. We refer to [13] for further details.

3. Numerical approximation of statistical solutions

In this section we introduce numerical approximations of statistical solutions,
which are based on standard finite volume methods (FVM) for (1). In Section 3.1
we give a short description of FVM for scalar conservation laws, and in Section
3.2 we prove that FVM applied to statistical ensembles converges as the mesh is
refined. We postpone the discretization of the probability space to Section 4.
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3.1. Finite volume methods for conservation laws. This section briefly de-
scribes the conventional approach of numerically approximating conservation laws
through finite volume and finite difference methods. For a complete review, one
can consult [24].

We discretize the computational spatial domain as a collection of cells
{

(x1
i1−1/2, x

1
i1+1/2)× · · · × (xd

id−1/2, x
d
id+1/2)

}

(i1,...,id)
⊂ R

d,

with corresponding cell midpoints

xi1,...,id :=

(

x1
i1+1/2 + x1

i1−1/2

2
, . . . ,

xd
id+1/2 + xd

id−1/2

2

)

.

For simplicity, we assume that our mesh is equidistant, that is,

xk
ik+1/2 − xk

ik−1/2 ≡ ∆ ∀ k = 1, . . . , d

for some ∆ > 0. We will describe the semi-discrete case. For each cell, marked by
(i1, . . . , id), we let u∆

i1,...,id(t) denote the averaged value in the cell at time t > 0.

We use the following semi-discrete formulation:

d

dt
u∆
i1,...,id(t) +

d
∑

k=1

1

∆

(

F k,∆
i1,...,ik+1/2,...,id

(t)− F k,∆
i1,...,ik−1/2,...,id

(t)
)

= 0

u∆
i1,...,id(0) = u0(xi1,...,id)

(6)

where F k,∆ is a numerical flux function in direction k. In a (2p+1)-point scheme,

the numerical flux function F k,∆
i1,...,ik+hf,...,id

(t) can be written as a function of

u∆
i1,...,jk,...,ik(t) for jk = ik − p + 1, . . . , ik + p. We furthermore assume the nu-

merical flux function is consistent with f and locally Lipschitz continuous, which
amounts to requiring that for every bounded set K ⊂ R, there exists a constant
C > 0 such that for k = 1, . . . , d,

(7) |F k,∆
i1,...,id

(t)− f(u∆
i1,...,id)| 6 C

ik+p
∑

jk=i1−p+1

|u∆
i1,...,id(t)− u∆

i1,...,jk,...,id(t)|,

whenever u∆
i1,...,ik−p+1,...,id(t), . . . , u

∆
i1,...,ik+p,...,id(t) ∈ K.

We let S∆ : L∞(Rd) → L∞(Rd × R+) be the spatially discrete numerical evo-
lution operator corresponding to (6). Since S∆ is the composition of a projection
from L∞ onto piecewise constant functions and a continuous evolution under an
ordinary differential equation, we see that S∆ is measurable.

The current form of (6) is continuous in time, and one needs to employ a time
stepping method to discretize the ODE in time, usually through some strong sta-
bility preserving Runge–Kutta method [19].

3.2. Spatial convergence of statistical solutions for scalar equations. We
are interested in measuring convergence to the statistical solution of (1) in the
1-Wasserstein distance on P(L1(Rd)), defined here as

(8) W1(µ1, µ2) = inf
π∈Π(µ1,µ2)

(

∫

L1(Rd)2
‖u1 − u2‖L1(Rd) dπ(u1, u2)

)

.

Let S∆ be some numerical evolution operator, then we set

(9) µ∆
t := S∆(t)#µ̄.
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Theorem 1. Let µ̄ ∈ P(L1(Rd)) be the initial data. For every t ∈ R
+, define µ∆

t :=
S∆(t)#µ̄ and µt := S(t)#µ̄. Assume the numerical scheme has a convergence rate
of s for the given initial data, i.e,

(10)

∫

L1(Rd)

∥

∥S(t)(ū)− S∆(t)(ū)
∥

∥

L1(Rd)
dµ̄(ū) 6 C∆s,

for some s > 0. Then

(11) W1(µ
∆
t , µt) 6 C∆s.

Proof. Define the measure γ ∈ P
(

L1(Rd)× L1(Rd)
)

by

(12) γ =
(

S(t),S∆(t)
)

#µ̄.

One can trivially check that γ ∈ Π(µt, µ
∆
t ). We obtain

W1(µt, µ
∆
t ) 6

∫

L1(Rd)2
‖u1 − u2‖L1(Rd) dγ(u1, u2)

=

∫

L1(Rd)

∥

∥S(t)(ū)− S∆(t)(ū)
∥

∥

L1(Rd)
dµ̄(ū).

Inserting the assumptions of (10) yields the claim. �

The above theorem is used below to obtain convergence rates for monotone
schemes approximating scalar conservation laws (see [18, 21] for definitions).

Corollary 1. Let µ̄ ∈ P(L1(Rd)) be such that

TV(µ̄) :=

∫

L1(Rd)

TV(ū) dµ̄(ū) < ∞.

For every t ∈ R
+, define µt := S(t)#µ̄ and µ∆

t := S∆(t)#µ̄. Then

(13) W1(µ
∆
t , µt) 6 C∆1/2 TV(µ̄).

Proof. The convergence estimate of Kuznetsov [22] for monotone schemes approx-
imating scalar conservation laws yields

∥

∥S(t)(ū)− S∆(t)(ū)
∥

∥

L1(Rd)
6 C

√
∆TV(ū)

for every ū ∈ L1 with TV(ū) < ∞. The estimate (13) now follows from (11). �

4. Monte Carlo approximations of statistical solutions

Let µ̄ ∈ P(L1(Rd)) be the given initial measure. We choose a probability space
(Ω,X ,P) and a random field ū ∈ L2

(

Ω;L1(Rd)
)

such that the law of ū with respect
to P is µ̄. In most real-world applications, the uncertainty in initial data is usually
described in terms of such a random field ū, for instance, one given as a parametric
function ū : [0, 1]Q × R

d → R, with possibly Q ≫ 1. Draw M independent and
identically distributed (i.i.d.) samples ū1, . . . , ūM of ū and for 1 6 k 6 M , set

uk(ω, ·, t) := S∆(t)(ūk).

We define the Monte Carlo µ∆,M
t approximation as

µ∆,M
t :=

1

M

M
∑

k=1

δuk(ω;·,t),

or equivalently, through its action on an integrable function,

〈

µ∆,M
t , G

〉

=
1

M

M
∑

k=1

G(uk(ω; ·, t)) G ∈ Cb(L
1(Rd)).
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The relevant notion of convergence on P(L1(Rd)) is that of weak convergence.
We say that a sequence {νn}n∈N ⊂ P(L1(Rd)) converges weakly to ν ∈ P(L1(Rd))
if

〈

νn, G
〉

→
〈

ν,G
〉

for all G ∈ Cb(L
1(Rd)).

It can be shown that weak convergence preserves the probability measure structure,
that is, ν > 0 and ν(X) = 1.

Using standard Monte Carlo techniques we obtain the following convergence
theorem for our Monte Carlo method.

Theorem 2. Let µ̄ ∈ P
(

L1(Rd)
)

be the initial data. Furthermore, let t ∈ R+,

µ∆
t := S∆(t)#µ̄ and let µ∆,M

t be the Monte Carlo approximation. Then

(14)
∥

∥

〈

µ∆,M
t − µ∆

t , G
〉
∥

∥

L2(Ω)
=

√

Var(G(u∆x(·, ·, t)))
M1/2

for all G ∈ C
(

L1(Rd)
)

. Here,

(15) Var(G(u∆x(·, ·, t))) :=
∫

L1(Rd)

G(u)2 dµt(u)−
(
∫

L1(Rd)

G(u) dµt(u)

)2

.

Proof. We have

(16)
〈

µ∆
t , G

〉

=

∫

Ω

G(u∆(ω′, ·, t)) dP(ω′).

Hence,

∥

∥

〈

µ∆,M
t − µ∆

t , G
〉
∥

∥

2

L2(Ω)
=

∫

Ω

[
∫

Ω

G(u∆(ω′, ·, t)) dP(ω′)− 1

M

M
∑

k=1

G(uk(ω; ·, t))
]2

dP(ω)

=
Var(G(u∆x(·, ·, t)))

M
,

where the key observation is that G(u∆(ω, ·, t)) is a real-valued random variable,
hence we can directly apply the standard Monte Carlo estimate found in [23]. �

Note that if G ∈ Cb(L
1(Rd)) then Var(G(u∆x(·, ·, t))) 6 2‖G‖2Cb(L1) < ∞, and

hence the right-hand side of (14) is finite. Examples of such test functions G in-
clude finite-dimensional observables G(u) = g

(〈

φ1, u
〉

, . . . ,
〈

φn, u
〉)

for functionals

φ1, . . . , φn ∈ L1(Rd)∗ = L∞(Rd) and g ∈ Cb(R
n).

Remark 1. It can be shown that the convergence rate of the Monte Carlo method,
measured in the Wasserstein metric for probability measures on R

d, deteriorates as d
grows [16], and hence one can not expect to obtain a convergence rate for the Monte
Carlo method in the Wasserstein metric for probability measures on L1. However,
as the weak topology on probability measures is metrized by the Wasserstein metric,
Theorem 2 enables us to conclude that the Monte Carlo method does converge with
respect to the Wasserstein metric as M → ∞.

4.1. Work analysis for Monte Carlo. The work of a numerical method is the
number of floating point operations it consumes. The classical explicit finite volume
method has a work estimate of

(17) WorkFVM(∆,∆t) = O(∆−d∆t−1).

Applying the CFL requirement ∆t ≃ ∆, gives

WorkFVM(∆,∆t) = Work∆FVM = O(∆−d−1).

Thus, the work to compute E∆
M (ū) scales as

WorkMC(∆,M) = MWork∆FVM = O(M∆−d−1).
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If we assume the spatial error scales as

W1(µt, µ
∆
t ) = O(∆s),

we then choose the number of samples such that the Monte Carlo error is asymp-
totically the same as the spatial error. That is, we choose

M−1/2 ≃ ∆s ⇔ M ≃ ∆−2s.

This gives the optimal work estimate

(18) WorkMC(∆,M) = O(∆−d−1−2s).

5. Multilevel Monte Carlo approximation

We define the multi-level Monte Carlo approximation similar to that found in
[17] and [27]. We assume we have a family of nested meshes with mesh lengths
(∆l)

L
l=0, where

(19) ∆l = 2−l∆0 for l = 1, . . . , L.

Following the notation in the previous section, we define the multi-level Monte
Carlo approximation of µt to be

(20) µ∆,M
t := µ∆0,M0

t +

L
∑

l=1

(

µ∆l,Ml

t − µ
∆l−1,Ml

t

)

,

where M = (M0, . . . ,ML) ∈ N
L+1 and ∆ = (∆0, . . . ,∆L). In other words, we set

µ∆,M
t :=

1

M0

M0
∑

k=1

δ
u
∆0
k

(ω;·,t)
+

L
∑

l=1

1

Ml

Ml
∑

k=1

(

δ
u
∆l
k

(ω;·,t)
− δ

u
∆l−1
k

(ω;·,t)

)

.

Remark 2. µ∆,M
t will in general not be a probability measure on L1(Rd,R), but

rather a signed measure on L1(Rd,R).

Theorem 3. Let µ̄ ∈ P(L1(Rd,R)) be the initial data, and for any t ∈ R+ and ∆ >

0, let µ∆
t := S∆(t)#µ̄ and let µ∆,M

t be the Multilevel Monte Carlo approximation
(20). Then

∥

∥

〈

µ∆,M
t −µ∆L

t , G
〉∥

∥

L2(Ω)
6

Var(G(u∆0(·, ·, t)))
M

1/2
0

+

L
∑

l=1

Var
(

G(u∆l(ω; ·, t))−G(u∆l−1(ω; ·, t))
)1/2

M
1/2
l

,

for every G ∈ Cb(L
1(Rd,R)). Moreover,

Var
(

G(u∆l(ω; ·, t))−G(u∆l−1(ω; ·, t))
)

→ 0 as ∆ → 0.

Proof. We observe that

µ∆L = µ∆0 +
L
∑

l=1

(

µ∆l − µ∆l−1
)

.

Therefore, we get
∥

∥

〈

µ∆,M
t − µ∆L

t , G
〉∥

∥

L2(Ω)
6
∥

∥

〈

µ∆0,M0

t − µ∆0
t , G

〉∥

∥

L2(Ω)

+

L
∑

l=1

∥

∥

∥

〈

µ∆l,Ml

t − µ
∆l−1,Ml

t , G
〉

−
〈

µ∆l

t − µ
∆l−1

t , G
〉

∥

∥

∥

L2(Ω)
.

We can easily bound the first term using Theorem 2 to get
∥

∥

〈

µ∆,M0

t − µ∆0
t , G

〉∥

∥

L2(Ω)
6 CGM

−1/2
0 .
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For the second term, we observe that
∥

∥

∥

〈

µ∆l,Ml

t − µ
∆l−1,Ml

t , G
〉

−
〈

µ∆l

t − µ
∆l−1

t , G
〉

∥

∥

∥

L2(Ω)

=

∥

∥

∥

∥

∥

1

Ml

Ml
∑

k=1

(

G(u∆l

k (ω; ·, t))−G(u
∆l−1

k (ω; ·, t))
)

−
∫

Ω

(

G(u∆l(ω′; ·, t))−G(u∆l−1(ω′; ·, t))
)

dP(ω′)

∥

∥

∥

∥

∥

L2(Ω)

.

Using a standard Monte Carlo estimate, we get
∥

∥

∥

〈

µ∆l,Ml

t −µ
∆l−1,Ml

t , G
〉

−
〈

µ∆l

t −µ
∆l−1

t , G
〉

∥

∥

∥

L2(Ω)
6

Var
(

G(u∆l(ω; ·, t))−G(u∆l−1(ω; ·, t))
)

M
1/2
l

.

Summing over l and adding the first estimate yields the first statement. The last
statement follows from the facts that G is continuous and (u∆)∆>0 forms a conver-
gent sequence as ∆ → 0. �

Remark 3. For general G ∈ Cb(L
1(Rd,R)), we can only guarantee that

(21) Var
(

G(u∆l(ω; ·, t))−G(u∆l−1(ω; ·, t))
)

→ 0.

However, for practical computations, G is known, and we can get a much better
estimate on the decay of (21).

5.1. Work analysis of MLMC. In this section we extend the analysis of Sec-
tion 4.1 to the MLMC algorithm. In the computation of the MLMC approxima-
tion µ∆,M, we compute Ml finite volume simulations with resolution ∆l for each
l = 0, . . . , L, and Ml finite volume simulations with resolution ∆l−1 for l = 1, . . . , L.
If Ml 6 Ml−1 then the latter can be neglected, and we find that the work performed
by the MLMC algorithm is

(22)

Work∆,M
MLMC =

L
∑

l=0

MlWork∆l

FVM

=
L
∑

l=0

O
(

Ml(∆
−d−1
l )

)

=

L
∑

l=0

O
(

Ml2
l(d+1)∆−d−1

0

)

.

The number of samples per level, Ml, has so far been unspecified. It is common to
optimize the number of samples for a given convergence rate. We handle the general
case, and optimize with respect to the number of samples, where the variance across
the levels is abstractly given as

(23) Var(G(u∆l)−G(u∆l−1)) = Vl.

Theorem 4. Assume

Vl = O(∆r
l )

for some positive r. Choose the number of samples per level as

Ml = 2r(L−l)∆
r/2−s
L , l = 1, . . . , L,

and

M0 =
1

∆2s
L

.

Then

(24) Work∆,M
MLMC

= 2−L(d+1)∆−d−1−2s
L +∆

−d−1+r/2−s
L L.
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In particular for all r > 0

Work∆,M
MLMC

6 WorkMC(∆L,∆
−2s
L ),

and when r > 2s, we have

Work∆,M
MLMC

= Work∆L

FVM
.

Proof. We compute

Work∆,M
MLMC =

L
∑

l=0

∆−d−1
l Ml

=

L
∑

l=0

(2L−l∆L)
−d−1Ml

= (2L∆L)
−d−1M0 +

L
∑

l=1

(2L−l∆L)
−d−1Ml

= 2−L(d+1)∆−d−1−2s
L +

L
∑

l=1

(2−d−1)L−l∆−d−1
L 2r(L−l)∆

r/2−s
L

= 2−L(d+1)∆−d−1−2s
L + (2−d−1+r)L∆

−d−1+r/2−s
L

L
∑

l=1

(2d+1−r)l

6 2−L(d+1)∆−d−1−2s
L + (2−d−1+r)L∆

−d−1+r/2−s
L L(2d+1−r)L

= 2−L(d+1)∆−d−1−2s
L +∆

−d−1+r/2−s
L L,

which is what we wanted. �

Remark 4. It is possible to obtain a similar work estimate by minimizing the work
for a given error and using a Lagrange multiplier technique [17].

6. Numerical Examples

In this section, we will test the Monte Carlo and the multi-level Monte Carlo on
a suite of numerical experiments. Our model equation for scalar conservation laws
is the one-dimensional Burgers equation

(25)
ut +

(u2

2

)

x
= 0 for x ∈ D := [0, 1], t 6 T

u(x, 0) = ū(x) for x ∈ D

with suitable boundary conditions.
We will compute statistical quantities of interest for the approximated solution.

These include one-point statistics such as the mean and the variance. We will also
compute a two point local structure function of the solution, which is given by

(26) Sp(x, t;h) :=

∫

R2

|u1 − u2|p dν2t,x,x+h(u1, u2) x ∈ D,h > 0

for some p > 1.
We also define the integrated structure functions as

(27) S̄p(t;h) =

∫

D

Sp(x, t;h) dx =

∫

L1(D)

∫

D

|u(x+ h)− u(x)|p dx dµt(u).

We assume that the initial measure has integrable Lp-norms,
∫

L1(D)

‖ū‖p
Lp(Rd)

dµ̄(ū) < ∞.
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By Minkowski’s inequality, this assumption implies that the structure function S̄p

is finite, and we may therefore approximate it using the Monte Carlo algorithm.
We let S∆,M

p (x, t;h), S̄∆,M
p (t;h) and S∆,M

p (x, t;h), S̄∆,M
p (t;h) denote the local and

integrated structure functions for the single- and multi-level Monte Carlo methods,
respectively.

We define a perturbed version of the three-point moment by setting

(28) Mp(x, t;h1, h2) :=

∫

R3

(u1 − u2)(u1 − u3)
2 dν3t,x,x+h1,x+h2

(u1, u2, u3).

This three-point moment is also bounded assuming e.g.
∫

L1(D)

‖ū‖L3(D) dµ̄(ū) < ∞.

6.1. Uncertain shock location. We consider Burgers’ equation with the initial
data

(29) ū(ω, x) =

{

1 x < X(ω) + 1
2

0 otherwise.
x ∈ [0, 1].

Here X is a a uniformly distributed random variable on [− 1
10 ,

1
10 ]. We can explic-

itly compute the mean and the variance in this case. Given the one-dimensional
stochastic space for this scalar problem, the structure function (26) can also be
explicitly computed,

Sp(x, t;h) =











0 x+ 1
10 + h < 1

2 (1 + t)

0 x− 1
10 + h > 1

2 (1 + t)

5
(

min( 1
10 , x+ h− 1

2 (1 + t))−max(− 1
10 , x− 1

2 (1 + t)))
)

otherwise.

We use the Monte Carlo and Multilevel Monte Carlo algorithm to approximate
different statistical quantities of interest. For the Monte Carlo simulations we set
the number of samples equal to the number of finite volume cells, while for the
MLMC simulations we set

Ml =

{

16 · 2L−l if l = 1, . . . , L

1/∆L if l = 0

For the spatial discretization we use a finite volume solver, based on the Godunov
flux with piecewise linear WENO reconstruction and an SSP Runge–Kutta method
of second order. We set the CFL constant to be 0.475.

We plot the point-wise mean and variance in Figure 1, and the corresponding
convergence histories in Figure 2. The plots show that both the MC and MLMC
methods approximate the mean and variance quite accurately. The convergence
plots also show that the MLMC method is (an order of magnitude) more efficient
when compared to the MC method.

For a comparison between the numerical and analytically computed structure
functions, see Figure 3. In addition, we perform a convergence study with respect
to the analytical solution in Figure 4. As is clear from Figure 4, the work required to
achieve a given error in the Monte Carlo simulation is significantly greater than the
computational work required with MLMC method. In fact, the gain in efficiency is
a couple of orders of magnitude. Moreover, in Figure 4 (right), we plot the error vs.
work for the Monte Carlo and MLMC algorithms in computing the third moment
(28). Again the gain in efficiency with the MLMC method is significant.

To confirm the assertion of Theorem 1, we measure the Wasserstein distance
between the generated sequence and the exact solution in Figure 5a. Since the
Monte Carlo ensemble is a stochastic quantity, the measured error will also be
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Exact
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(a) Mean.
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x

V
a
r(
u
(·
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x
,
0
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variance at N = 128

Exact

Monte Carlo

MLMC

(b) Variance.

Figure 1. Mean and variance for Burgers’ equation and initial
data given in (29).

106 107 108 109 1010 1011
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Work

E
rr
o
r
(|
|
·
||
L
1
(
[0

,
1
])
)
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Monte Carlo

O(Work−0.13)

MLMC

O(Work−0.20)

(a) Mean.
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10−3

10−2.5

Work

E
rr
o
r
(|
|
·
||
L
1
(
[0

,
1
])
)

Convergence variance

Monte Carlo

O(Work−0.14)

MLMC

O(Work−0.25)

(b) Variance.

Figure 2. Convergence for mean and variance for Burgers’ equa-
tion and initial data given in (29).

stochastic. We therefore run 10 experiments for each mesh resolution and measure
the average error. As is clear from the figure, the convergence rate of the mean
of the error is close to 1/2, which agrees well with the Monte Carlo error in (14).
However, as we can see, the variance of the error is rather large relative to the error.

Because the initial data (29) only depends on a one-dimensional parameter,
we can replace the stochastic Monte Carlo integration rule with a deterministic
midpoint integration rule. Figure 5b clearly shows a convergence rate of 1 for the
deterministic integration rule.

6.2. Fractional Brownian motion. As is standard in the burgulence literature
[2, 31], we perform experiments for Burgers’ equation (25) with the initial data set
to be fractional Brownian motion. Introduced by Mandelbrot et al. [26], fractional
Brownian motion can be seen as a generalization of standard Brownian motion with
a scaling exponent different than 1/2. We set

uH
0 (ω;x) := BH(ω;x) ω ∈ Ω, x ∈ [0, 1],
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(a) Point quantity.

0 0.1 0.2 0.3

0

0.1

0.2

0.3

h

S̄
p

∆x,M
(t;h)

S̄
p

∆x,M,L
(t;h)

S̄p(t;h)

(b) Integrated.

Figure 3. Comparison of two point structure function numeri-
cally computed and analytic solution for Burgers’ equation and
initial data given in (29). Here ∆ = 1/1024 and M = 1024.

106 107 108 109
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Work

||
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O(Work−0.41)
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O(Work−0.59)

(a) Two-point structure functions.

107 108 109 1010 1011 1012
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Work

||
·
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L
1
(
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,
1
]2

)

Monte Carlo

O(Work−0.33)

MLMC

O(Work−0.56)

(b) Three-point moment.

Figure 4. Convergence errors of the two-point structure function
(27) and three-point moment (28) with initial data given as the
uncertain shock location (29).

where BH is fractional Brownian motion with Hurst exponentH ∈ (0, 1). Brownian
motion corresponds to a Hurst exponent of H = 1/2.

To generate fractional Brownian motion, we use the random midpoint displace-
ment method originally introduced by Lévy [25] for Brownian motion, and later
adapted for fractional Brownian motion [15, 30]. Consider a uniform partition
0 = x1/2 < · · · < xN+1/2 = 1 with xi+1/2 − xi−1/2 ≡ ∆, where N = 2k + 1 is the
number of cells for some k ∈ N. We first fix the endpoints

uH,∆x
1 (ω; 0) = 0 uH,∆x

N (ω; 0) = X0(ω),
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103 104

10−3.5

10−3

N

W
1

W1(µ0.2, µ
∆x,M
0.2 )

E(W1(µ0.2, µ
∆x,M
0.2 ))

std(W1(µ0.2, µ
∆x,M
0.2 ))

(a) Monte Carlo algorithm

103 104
10−5

10−4

N

W
1

W1(µ0.2, µ
∆x,M
0.2 )

O(N−1.00)

(b) Midpoint rule

Figure 5. Wasserstein convergence for the initial data given in
(29) at T = 0.2.

where (Xk)k∈N is a collection of normally distributed random variables with mean
0 and variance 1. Recursively, we set

uH,∆x
2k−l−1(2j+1)

(ω; 0) =
1

2

(

uH,∆x
2k−l(j+1)

(ω; 0) + uH,∆x
2k−lj

(ω; 0)
)

+

√

1− 22H−2

22lH
X2l+j(ω)

for l = 0, . . . , k and for j = 0, . . . , 2l. That is, we bisect every interval and set the
middle value to the average of the neighbouring values plus some Gaussian random
variable. See Figure 6 (left) for an example with H = 0.01.

We run experiments for the standard Brownian motion (H = 0.5) and an even
rougher (pathwise) initial datum, corresponding to H = 0.01 . In both cases, one
can easily check that the initial total variation TV(ūH(ω, ·)) is in fact infinite for
almost all ω, and hence the Kuznetszov error estimate [22] does not apply.

For the Monte Carlo simulations we set the number of samples equal to the
number of finite volume cells, while for the MLMC simulations we set

Ml =

{

16 · 2L−l if l = 1, . . . , L

1/∆L if l = 0

For the Finite Volume Method, we use the Godunov flux with WENO2 reconstruc-
tion and an SSP Runge–Kutta method of second order. We set the CFL constant
to be 0.475.

We measure the decay of Vl defined in (23) numerically forH = 0.01 andH = 0.5
and see that Vl as a function of the mesh width h behaves approximately as O(h)
(results not displayed here). This happens in spite of the fact that the Kuznetszov
error estimate does not apply.

Our aim is to numerically approximate structure functions. Following [31], one
intuitively argues that if the (pathwise) solution consists of a disjoint set of shocks,
well-separated by rarefaction waves for almost all times, then the exponent of the
structure function (27) will be dominated by the behavior at shocks and the struc-
ture functions will scale as O(h) for any 1 6 p < ∞. Given the rigorous results of
Sinai [29], one expects this scaling to hold in the case of standard Brownian motion
initial data.

In Figure 7 we approximate the scaling exponents of S̄p for different values of
H. For H = 0.5, the structure functions scale close to O(h) for p = 1, 2, 3, which
agrees with the results of [2, 29]. Similarly for H = 0.01, even though the initial
data is much rougher than standard Brownian motion, we observe from Figure 6,
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Figure 6. Single sample simulation results for the Burgers’ equa-
tion with initial data given as fractional Brownian motion with
H = 0.01. In this example, ∆ = 1/1024.

that the initally highly oscillatory pathwise solution very quickly evolves into a set
of well-separated shocks separated by rarefaction waves. As argued before, one
expects a scaling exponent of approximately O(h) for all p. This is indeed verified
in the approximate structure functions for p = 1, 2, 3, shown in Figure 7 (right).

We also measure the numerical convergence rate of the Monte Carlo and Mul-
tilevel Monte Carlo algorithm against a reference solution computed with ∆x =
1/4096 and M = 4096. The results are shown in Figure 8b. As is expected, the
MLMC algorithm outperforms the single-level Monte Carlo algorithm. Indeed, the
error versus work asymptotic of a MLMC simulation is equal to that of the runtime
asymptotics for a single sample.

This example clearly illustrates the ability of both the MC and MLMC meth-
ods to compute statistical quantities in a realistic and well-studied problems and
demonstrates the considerable gain in efficiency for the MLMC method over the
MC method.

6.3. Cubic conservation law with Brownian initial data. We redo the ex-
periments in the previous section, but with the cubic conservation law,

(30)
ut +

(u3

3

)

x
= 0 for x ∈ D := [0, 1], t 6 T

u(x, 0) = ū(x) for x ∈ D.

In this case, it is not possible to derive explicit expressions or asymptotices for the
structure functions as in the case of Burgers’ equation [29], as no explicit Hopf–Lax-
type formulas are available for a non-convex flux function. Therefore, numerical
simulations are the main tool in calculating statistical quantities of interest. We ap-
proximate the structure functions (30) with initial data given as Brownian motion,

in other words, we set u0(x, ω) = B
1/2
x (ω). The results are shown in Figure 9. As

is clear from the figure, we get the same linear scaling of the structure functions for
any 1 6 p < ∞, indicating that the initially highly oscillatory solution breaks down
into shocks, well separated by rarefactions, as in the case of Burgers’ equation.

7. Conclusion

We consider statistical solutions for scalar conservation laws. Statistical solu-
tions are time-parametrized probability measures on L1(Rd), whose time evolution
is specified in terms of an infinite family of PDEs for the corresponding correla-
tion measures. Statistical solutions provide a framework for parametrization free
uncertainty quantification in conservation laws with random initial data and their
well-posedness was established in [13].

We design an efficient algorithm for the numerical approximation of statistical
solutions of scalar conservation laws. This algorithm is based on standard finite
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Figure 7. Structure functions for Burgers’ equation with initial
data given as fractional Brownian motion. In this example, ∆ =
1/16384 and M = 16384.
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Figure 8. Error vs. work for the Monte Carlo and MLMC meth-
ods for Burgers’ equation with fractional Brownian motion initial
data.

volume (difference) methods for the spatio-temporal discretization and (multi-level)
Monte Carlo methods for discretizing the probability space.

We prove that both the Monte Carlo and the multi-level Monte Carlo based
algorithms converge to the entropy statistical solutions of scalar conservation laws,
in the Wasserstein metric on probability measures on integrable functions, as the
mesh is refined and the number of samples increased. We also present a complexity
analysis and prove that there is a considerable gain in computational efficiency of
the multi-level Monte Carlo method over the Monte Carlo method.

We present a set of numerical experiments for Burgers’ equation to illustrate the
ability of the both the Monte Carlo and the multi-level Monte Carlo algorithms
to approximate the statistical solution accurately and to demonstrate the gain in
efficiency resulting from the MLMC method. These experiments involve rough
random initial conditions such as fractional Brownian motion (in space), and the
computed results are consistent with those published in the burgulence literature
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Figure 9. Structure function scaling for a cubic conservation law
(f(u) = 1/3u3).

[2, 31]. We also compute statistical quantities of interest for the cubic conservation
law. In this case, it is not possible to obtain analytical formulas for structure
functions. However, numerical results show that the structure functions scale as in
the case of Burgers’ equation with rough random initial conditions.

The convergence of our numerical methods in the scalar case was underpinned
by the presence of (pathwise) convergent numerical methods for the underlying
deterministic problem. Such convergence results are not available for systems of
conservation laws. Consequently, the design of convergent numerical approxima-
tions for systems of conservation laws is very challenging and is addressed in a
forthcoming paper.
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