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In this work, a data assimilation method is proposed following an optimise-then-
discretise approach, and is applied in the context of computational haemodynamics.
The methodology aims to make use of phase-contrast magnetic resonance imaging to
perform optimal flow control in computational fluid dynamic simulations. Flow
matching between observations and model predictions is performed in luminal
regions, excluding near-wall areas, improving the near-wall flow reconstruction to
enhance the estimation of related quantities such as wall shear stresses. The proposed
approach remarkably improves the flow field at the aortic root and reveals a great
potential for predicting clinically relevant haemodynamic phenomenology. This work
presents model validation against an analytical solution using the standard 3-D
Hagen–Poiseuille flow, and validation with real data involving the flow control
problem in a glass replica of a human aorta imaged with a 3T magnetic resonance
scanner. In vitro experiments consist of both a numerically generated reference flow
solution, which is considered as the ground truth, as well as real flow MRI data
obtained from phase-contrast flow acquisitions. The validation against the in vitro

flow MRI experiments is performed for different flow regimes and model parameters
including different mesh refinements.

Key words: blood flow, control theory, variational methods

1. Introduction

Wall shear stresses (WSSs) in arterial vessels have long been hypothesised to play
a major role in the onset and progress of endothelial disorders. The dependence of
endothelial cell function under different flow conditions and the impact of WSSs
in the development of atherosclerosis have been described in earlier studies (Texon,
Imparato & Helpern 1965; Ku et al. 1985; Zarins et al. 1987; Zand et al. 1991;
Walpola, Gotlieb & Langille 1993; Malek, Alper & Izumo 1999). A brief review of
the underlying hypotheses for haemodynamic theories of atherogenesis was given by
Gessner (1973). More recent studies have explored the processes at the molecular,
cellular and vascular levels, and supported the role of low WSSs in the generation

† Email addresses for correspondence: ktaha@ethz.ch, koltukluoglu@gmail.com
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of coronary atherosclerosis and vascular remodelling (Chatzizisis et al. 2007; Chiu &
Chien 2011). The effects of haemodynamic forces were discussed by Yoshida et al.

(1990), considering the differences in the biological fine structures of arterial walls
in the human aorta and the endothelial morphology at bifurcations in rabbit aorta.
Moreover, characterisation of blood flow near the aortic wall plays an important role
in the diagnosis of aortic aneurysms and their risk of rupture (Vorp et al. 1996; Vorp
& Geest 2005).

Thus, the evaluation of shear stresses over the arterial wall, using different
computational strategies to either simulate or reconstruct blood flow, has gained
increasing interest in the cardiovascular research field. A basic approach to this
problem consists of using data extracted from medical images to construct patient-
specific vascular models and to perform computational fluid dynamic (CFD)
simulations of blood flow in these geometric models. The major drawback in such
approaches lies in the lack of data to correctly set up boundary conditions (BCs) for
the isolated arterial districts of interest. Rapidly, the patient-specificity is lost when
using generic criteria to prescribe such BCs in CFD simulations.

A further step resides in using more advanced image acquisition techniques in an
attempt to retrieve flow field measurements and merge them into the CFD simulations,
thus providing more accurate patient-specific predictions. In this context, different
methods exist to reconstruct the velocity field in a certain region of interest. Several
works have already been reported that address this problem using particle image
velocimetry (PIV), ultrasound and 4-D phase-contrast magnetic resonance imaging
(4-D flow MRI). A comprehensive review of several methods for flow reconstruction
and the assessment of WSSs is presented by Katritsis et al. (2007).

The use of PIV is known to be limited to in vitro studies and cannot be applied to
the study of blood flow in in vivo conditions (Hochareon et al. 2004). On the
other hand, ultrasound imaging allows the extraction of 2-D information, thus
requiring a 3-D flow reconstruction process, which is prone to lacking accuracy
in view of the incomplete nature of the data. Another limitation of ultrasound
is that the WSSs can only be estimated with acceptable accuracy in relatively
straight arteries (Reneman, Arts & Hoeks 2006). In turn, 4-D flow MRI offers the
advantage of three-directional blood flow quantification with three-dimensional spatial
encoding. Image reconstruction from the MRI data acquisition yields 3-D CINE
magnitude images (anatomical data) and three phase difference images (velocity data),
corresponding to the components of the 3-D velocity field. Moreover, MRI can be
used in in vivo scenarios non-invasively. Recent advances in MRI have revealed great
diagnostic potential in haemodynamics applications (Markl et al. 2012; Kolipaka
et al. 2016). Nevertheless, 4-D flow MRI also suffers from important limitations
for the accurate quantification of blood flow in regions close to the arterial walls
(near-wall regions), which is of the utmost importance for patient-specific estimation
of the WSS field. Due to the limited image resolution, the acquired signals within the
voxels at boundaries are obtained partially by the moving spins in the flowing blood
and partially by the steady behaviour of the arterial tissue. This artefact is known as
the partial volume effect (Thang, Blatter & Parker 1995; Shaaban & Duerinckx 2000;
Bouillot et al. 2018).

Correct definition of the flow problem requires knowledge of the initial conditions
and BCs, as well as the flow properties, i.e. blood density and blood viscosity.
However, due to the limitations of the aforementioned imaging techniques, in
particular the BCs are usually not available or cannot be measured accurately.
Especially, the problem of a correct assessment of the BCs for such defective data
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has been the point of attention for a long time. Several studies have been reported on
the effects of idealised versus measured inflow BCs for patient-specific simulations
of carotid bifurcation or human aorta (Campbell et al. 2012; Morbiducci et al. 2013).
Additionally, a sensitivity analysis with respect to different BCs was reported by
Cito, Pallarés & Vernet (2014). Furthermore, a recent report provided by Pirola et al.

(2017) discussed the importance of the choice of BCs on the final results.
As a result of the aforementioned advantages and limitations of current imaging

technologies, 4-D flow MRI procedures have become increasingly frequent in routine
towards the improvement of patient-specific CFD simulations. Classical CFD methods
(supported by MRI) usually apply fixed BCs at the inlet of the arterial domain
based on the noisy measurements extracted from the 4-D flow MRI data (Hardman
et al. 2013; Pirola et al. 2017). This is why recent studies have concentrated on
optimal control strategies to alter BCs in such a way that the flow in the lumen
matches the observations according to certain criteria. Optimal control supported
by observations has been referred to as data assimilation (DA). Such studies were
first and mainly applied in meteorology, physical oceanography and atmospheric
flows (Council 1991; Ide et al. 1997). Due to the shortcomings in the classical CFD
approach (CFD employing noisy data as BCs), DA has achieved elevated attention in
the cardiovascular research field over the last decade.

Data assimilation procedures in haemodynamics were anticipated a decade ago for
the prescription of flow rates in rigid and compliant domains (Formaggia, Veneziani
& Vergara 2008, 2010). Additional preliminary results of DA in tubular structures
were reported by D’Elia & Veneziani (2010a) based on 2-D Stokes flow simulations.
The convergence rate and noise sensitivity were investigated based on artificially
generated noisy data. In D’Elia & Veneziani (2010b), their work was extended to the
Oseen problem. This strategy was employed in combination with a fixed point method
to solve the Navier–Stokes equations and to perform flow matching in synthetically
generated datasets using different mesh refinements. In a further study, these authors
extended their tests to an axis-symmetric cylinder and a 2-D geometry resembling a
carotid artery (D’Elia, Perego & Veneziani 2012b). These studies were based on a
discretise-then-optimise (DO) approach, where the equations are first discretised and
the optimisation is performed thereafter. Numerical results were mostly based on 2-D
simplified geometries or on problems with rotational symmetry. These works were
some of the first attempts to perform DA in blood flow simulations. However, real
flow MRI measurements were not available in these studies.

In a recent work, DA was performed using more realistic vascular geometries
(Tiago, Guerra & Sequeira 2016). First, a comparison between Dirichlet and Neumann
boundary control was reported, with the validation based on an idealised 2-D geometry
with known solution. Second, numerical results were presented using a realistic 3-D
geometry of a saccular brain aneurysm. The application of velocity control (Dirichlet
BC) was claimed to recover the flow field better than the application of pressure
control (Neumann BC). However, the flow data were synthetic and experiments with
real 4-D flow MRI measurements were not available. Furthermore, they also applied
the DO approach as a solution strategy. In Collis & Heinkenschloss (2002), however,
the authors concluded that the optimise-then-discretise (OD) approach (where the
mathematical optimisation is first performed at the continuum level and the resulting
set of equations are then discretised thereafter) has better asymptotic convergence
properties and leads to better adjoint approximations.

In this work, we propose a data assimilation method for 3-D steady-state blood
flow simulations following the OD approach. To the best of the authors’ knowledge,
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this is the first work to perform OD-based 3-D optimal flow control in the field of
computational haemodynamics using true data acquisitions from 4-D flow MRI. The
optimisation procedure is driven by the gradient of a given cost functional, computed
within a variational framework. A Lagrangian method is employed for the calculation
of the sensitivities from which the adjoint problem is derived. Further, the proposed
approach considers cost functionals in the flow-matching formulation including the
inlet and outlet boundaries (in addition to flow matching in the volume of the domain).
While previous studies mostly count on validations with known numerical solutions
in simplified 2-D geometries, in this work we perform 3-D validation studies relying
on both an analytical solution based on the Hagen–Poiseuille flow and a numerical
solution generated using the physical phantom aorta. We also present a sensitivity
analysis with respect to changes in the optimisation parameters. Considering the
noisy nature of 4-D flow MRI measurements, a universal outlier detection scheme is
applied prior to the mapping of the flow field in the computational domain. Besides, a
divergence-free space projection is employed to recover back the solenoidal property
of the measured flow field. An additional sensitivity analysis with respect to changes
in the flow-matching domain is developed, which is important in determining the
region of interest for the DA procedure. The optimisation solver was tested for
different initial flow guesses, demonstrating the sensitivity in the numerical results.
Finally, the boundary flow control formulation and the preprocessing pipeline are
combined to reconstruct the flow field in near-wall regions in a glass replica of the
human aorta. For the latter, the methodology was tested for different flow regimes
characterised by Reynolds numbers (Re) up to 2100, and mesh analysis was performed
with different numbers of cells. The proposed strategy remarkably improves the flow
field at the aortic root and reveals a great potential for predicting clinically relevant
haemodynamic phenomenology.

2. Mathematical formulation

2.1. Optimisation problem

Let us define a bounded Lipschitz domain Ω ⊂ R
3 along with its boundary

∂Ω = Γi ∪ Γo ∪ Γw, where Γi, Γo, Γw ⊂ R
3 stand for the inlet, outlet and arterial

wall boundaries respectively. Figure 1(a) illustrates such a domain resembling an
aortic vascular geometry (to be used later in § 5). We further define a contracted
subdomain Ωs ⊂Ω with boundary ∂Ωs = Γsi ∪ Γso ∪ Γsw, where Γsi ⊂ Γi and Γso ⊂ Γo

(see figure 1b). The incompressible steady flow of a Newtonian fluid is considered
in Ω . The inflow at Γi is prescribed by the function g= g(x) : Γi→R

3, whereas the
density and dynamic viscosity of the fluid are represented by ρ and µ respectively.
At the outflow, Γo, a traction-free boundary (i.e. a homogeneous Neumann BC)
is considered. This hypothesis is exact when the flow is fully developed, and it
is physiologically reasonable in the present context. We highlight the fact that the
function g is such that g|γi

= 0, where γi is the boundary of surface Γi. In what
follows, L2(Ω) stands for the space of square integrable scalar functions in Ω , while
H1(Ω) is the space of square integrable vector functions whose first derivatives are
also square integrable functions in Ω . The blood flow velocity, u ∈U ∗ , with

U
∗ = {v ∈H1(Ω) | div v = 0, v|Γw

= 0, v|Γi
= g}, (2.1)

is a solution of the steady-state Navier–Stokes equations, which are written in
variational form as follows:

find u ∈U ∗ such that
∫

Ω

[ρ(∇u)u · û+ 2µ∇
su · ∇

sû] dΩ = 0, ∀ û ∈ Û ∗, (2.2)
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(a) (b) (c)

FIGURE 1. (Colour online) The computational domain. (a) The domain Ω along with
boundaries Γi, inlet, Γo, outlet, and Γw, wall. (b) The flow-matching domain Ωs⊂Ω with
boundaries ∂Ωs = Γsi ∪ Γso ∪ Γsw, which is at a distance s (mm) from Γw. (c) The error
measurement domain Ed, which is within d (mm) distance of Γw.

where the strain rate tensor is defined as ∇
s(·)= [∇(·)+ (∇(·))T]/2 and

Û
∗ = {v̂ ∈H1(Ω) | div v̂ = 0, v̂|Γw

= 0, v̂|Γi
= 0}. (2.3)

The constraints div u = 0 and u|Γi
= g can be relaxed using the corresponding

Lagrange multipliers p and r. Further, we introduce the space U ={v ∈H1(Ω) | v|Γw
=

0} and the space H−1/2(Γi), which is the dual space of H1/2(Γi) (in the sense given
by the pairing 〈r, u〉H−1/2(Γi)×H1/2(Γi)

=
∫

Γi
r · u dΓ ). The problem (2.2) now becomes

PΩ : find (u, p, r) ∈U × L2(Ω)×H−1/2(Γi) such that∫

Ω

[ρ(∇u)u · û+ 2µ∇
su · ∇

sû− p div û− p̂ div u] dΩ

=

∫

Γi

r̂ · (u− g) dΓ +

∫

Γi

(r · û) dΓ, ∀ (û, p̂, r̂) ∈U × L2(Ω)×H−1/2(Γi). (2.4)

For the control flow problem, we assume that some observations ũ
t ∈ Ω are

available. We want to find a velocity field u such that it better matches the
observations and, at the same time, is constrained to be a solution of problem
PΩ . In what follows, ∇τ denotes the surface gradient, whereas β and β1 are
arbitrary parameters for a Tikhonov regularisation and α is a positive real number.
The parameters α, β and β1 will often be denoted as optimisation parameters. Based
on a user-defined cost function, O , the aforementioned flow-matching problem can
be cast as a mathematical optimisation problem, which reads as

PM : find g that minimises O(g)=O
∗(u(g), g, ũ

t
) such that PΩ holds, where

O(g)=
α

2

(∫

Ωs

|u(g)− ũ
t|2 dΩ +

∫

Γsi

|u(g)− ũ
t|2 dΓ +

∫

Γso

|u(g)− ũ
t|2 dΓ

)

+
β

2

∫

Γi

|g|2 dΓ +
β1

2

∫

Γi

|∇τ g|2 dΓ. (2.5)

The flow-matching metric is defined on Ωs, Γsi and Γso, which are considered as
the trust region of experimental observations (see figure 1b). The well-posedness
of the problem PM has been addressed by Guerra, Sequeira & Tiago (2015).
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The user-defined cost function contains two types of terms, those to enforce the
matching between the model prediction and the available observations, and those to
deliver a regularised mathematical problem. Concerning (2.5), the first three terms are
responsible for the flow matching, while the latter two terms provide a penalisation
for the control function not to grow unboundedly, and, at the same time, to force a
certain regularity over the control. The choices of these terms were also motivated
by Gunzburger & Manservisi (2000).

2.2. Optimality conditions

To obtain the necessary optimality conditions for the optimisation problem PM, and to
avoid the calculation of the derivative of the velocity field with respect to the function
g, it is convenient to recast the problem of constrained optimisation as a saddle point
problem. Correspondingly, we then construct the Lagrangian functional to relax the
dependence of u on g as follows:

L (g, u, p, r, λu, λp, λr)=O
∗(u, g, ũ

t
)−

∫

Γi

λr · (u− g) dΓ −

∫

Γi

r · λu dΓ

+

∫

Ω

[ρ(∇u)u · λu + 2µ∇
su · ∇

s
λu − p div λu − λp div u] dΩ, (2.6)

with (g,u,p, r,λu,λp,λr)∈H
1/2
00 (Γi)×U ×L2(Ω)×H−1/2(Γi)×U ×L2(Ω)×H−1/2(Γi),

where H
1/2
00 (Γi) is the space of traces over Γi of H1(Ω) functions that are zero over γi,

the boundary of surface Γi. Further, let us consider the perturbations ˆ(·) to the fields
(·) above as (·)+ τ ˆ(·) (where τ is a real number that aids in the calculation of the
Gâteaux derivative but that is ultimately immaterial for the result), that is,

g→ g+ τ ĝ, g, ĝ ∈H
1/2
00 (Γi), (2.7)

u→ u+ τ û, u, û ∈U , (2.8)
p→ p+ τ p̂, p, p̂ ∈ L2(Ω), (2.9)

r→ r+ τ r̂, r, r̂ ∈H−1/2(Γi), (2.10)

λu→ λu + τ λ̂u, λu, λ̂u ∈U , (2.11)

λp→ λp + τ λ̂p, λp, λ̂p ∈ L2(Ω), (2.12)

λr→ λr + τ λ̂r, λr, λ̂r ∈H−1/2(Γi). (2.13)

The Gâteaux derivative of the Lagrangian functional is denoted as follows:
〈

∂L

∂a
, â

〉
=

d

dτ
L (. . . , a+ τ â, . . .)

∣∣∣∣
τ=0

. (2.14)

Our goal is to compute the Gâteaux derivative of O with respect to perturbation in g,
〈

∂O

∂g
, ĝ

〉
=

d

dτ
O(g+ τ ĝ)

∣∣∣∣
τ=0

. (2.15)

The critical points of the Lagrangian (2.6) contain information on the aforementioned
Gâteaux derivative (2.15), and are characterised by

〈
∂L

∂(λu, λp, λr)
,



λ̂u

λ̂p

λ̂r



〉
= 0,

〈
∂L

∂(u, p, r)
,




û
p̂

r̂



〉
= 0,

〈
∂L

∂g
, ĝ

〉
= 0.

(2.16a−c)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

TH
-B

ib
lio

th
ek

, o
n 

22
 M

ay
 2

01
8 

at
 2

0:
51

:0
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
32

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.329


Boundary control in computational haemodynamics 335

Equations (2.16 a) and (2.16 b) describe the direct and the so-called adjoint equations
to solve for the state variables (u, p, r) and the adjoint variables (λu, λp, λr)

respectively. Finally, (2.16 c) provides the optimality condition of the cost functional
with respect to perturbations in g. In particular, it also follows that

〈
∂O

∂g
, ĝ

〉
=

〈
∂L

∂g
, ĝ

〉∣∣∣∣ (u,p,r) solution of direct problem
(λu,λp,λr) solution of adjoint problem

. (2.17)

Let us now compute the Gâteaux derivatives (2.16). We first obtain the direct
problem by taking the derivative with respect to the variables (λu, λp, λr). Then, the
following problem is obtained:

Psta(g) : for g ∈H
1/2
00 (Γi), determine (u, p, r) ∈U × L2(Ω)×H−1/2(Γi) such that〈

∂L

∂λu

, λ̂u

〉
=

∫

Ω

[ρ(∇u)u · λ̂u + 2µ∇
su · ∇

s
λ̂u − p div λ̂u] dΩ

−

∫

Γi

r · λ̂u dΓ = 0, ∀ λ̂u ∈U , (2.18)

〈
∂L

∂λp

, λ̂p

〉
=−

∫

Ω

λ̂p div u dΩ = 0, ∀ λ̂p ∈ L2(Ω), (2.19)

〈
∂L

∂λr

, λ̂r

〉
=−

∫

Γi

λ̂r · (u− g) dΓ = 0, ∀ λ̂r ∈H−1/2(Γi). (2.20)

The Euler–Lagrange equations associated with (2.18)–(2.20) are the classical Navier–
Stokes equations, which read as follows:

ρ(∇u)u−µ1u+∇p= 0 in Ω, (2.21)

div u= 0 in Ω, (2.22)

u= 0 on Γw, (2.23)

u= g on Γi, (2.24)

(−pI+ 2µ∇
su)n= r on Γi, (2.25)

(−pI+ 2µ∇
su)n= 0 on Γo. (2.26)

Second, we obtain the adjoint problem by taking the derivative of the Lagrangian
(2.6) with respect to the state variables (u, p, r). The adjoint problem then reads as

Padj(u, ũ
t
) : for ũ

t and u, solution of (2.21)−(2.26),

determine (λu, λp, λr) ∈U × L2(Ω)×H−1/2(Γi) such that〈
∂L

∂u
, û

〉
=

∫

Γo∪Γi

[α (χΓso
+ χΓsi

)(u− ũ
t
) · û] dΓ −

∫

Γi

(λr · û) dΓ

+

∫

Ω

[α χΩs
(u− ũ

t
) · û+ ρ(∇û)u · λu + ρ(∇u)û · λu

+ 2µ∇
sû · ∇

s
λu − λp div û] dΩ = 0, ∀ û ∈U , (2.27)

〈
∂L

∂p
, p̂

〉
=−

∫

Ω

p̂ div λu dΩ = 0, ∀ p̂ ∈ L2(Ω), (2.28)
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〈

∂L

∂r
, r̂

〉
=−

∫

Γi

r̂ · λu dΓ = 0, ∀ r̂ ∈H−1/2(Γi), (2.29)

where we considered the following indicator functions:

χΩs
=

{
1 in Ωs,

0 in Ω \Ωs,
χΓsi
=

{
1 in Γsi,

0 in Γi \ Γsi,
χΓso
=

{
1 in Γso,

0 in Γo \ Γso.
(2.30a−c)

Application of standard variational arguments for (2.27)–(2.29) delivers the associated
Euler–Lagrange equations, as follows:

α χΩs
(u− ũ

t
)− ρ(∇λu)u+ ρ(∇u)T

λu −µ1λu +∇λp = 0 in Ω, (2.31)

div λu = 0 in Ω, (2.32)

λu = 0 on Γw, (2.33)

λu = 0 on Γi, (2.34)

α χΓsi
(u− ũ

t
)+ (−λpI+ 2µ∇

s
λu)n= λr on Γi, (2.35)

α χΓso
(u− ũ

t
)+ ρ(u · n)λu + (−λpI+ 2µ∇

s
λu)n= 0 on Γo. (2.36)

Finally, let us compute the optimality condition, which states

Popt(λr) : for λr, solution of (2.31)−(2.36), determine g ∈H
1/2
00 (Γi) such that〈

∂L

∂g
, ĝ

〉
=

∫

Γi

[βg · ĝ+ β1∇τ g · ∇τ ĝ+ λr · ĝ] dΓ = 0, ∀ ĝ ∈H1/2(Γi). (2.37)

The Euler–Lagrange equations associated with (2.37) are the following:

βg− β1△τ g=−λr on Γi, (2.38)

g= 0 on γi, (2.39)

where λr is solution of the adjoint problem Padj.
The well-posedness of the fully coupled nonlinear system of necessary conditions

given by (2.18)–(2.20), (2.27)–(2.29) and (2.37) has not yet been addressed in the
literature to the best of the authors’ knowledge. In this regard, we rely on the
well-posedness result reported by Guerra et al. (2015) for the minimisation problem
expressed in (2.5).

2.3. Gradient descent algorithm

The procedure to solve the optimality conditions at once amounts to solving
the nonlinear system of coupled variational equations Psta, Padj and Popt (or
their corresponding Euler–Lagrange equations (2.21)–(2.26), (2.31)–(2.36) and
(2.38)–(2.39)). This problem is highly nonlinear, and a possible way to find the
stationary point for the optimisation problem PM is to evaluate the Gâteaux derivative
(2.17) to drive a descent-like iterative algorithm. In this case, first, given a guess g,
the forward problem, Psta, is solved to obtain the state variables, (u, p, r). Second,
the adjoint problem, Padj, is evaluated using the solution, u, from the direct problem.
Then, using the adjoint variable, λr, obtained from the adjoint problem, the gradient
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of the objective function with respect to the parameter g can be calculated from
(2.37) as follows:

DO(g)

Dg
= βg− β1△τ g+ λr on Γi. (2.40)

To ensure an acceptable converging solution of the algorithm, it is usual to start
by solving the forward problem based on some initial guess, (u)0, for the flow field.
Therefore, we introduce a proper linearisation, P lin

sta, of the forward problem, Psta, as

P
lin
sta(u

∗, g∗) : for u∗ and g∗, determine (u, p, r) such that∫

Ω

[
ρ(∇u)u∗ · λ̂u + 2µ∇

su · ∇
s
λ̂u − p div λ̂u

]
dΩ

−

∫

Γi

r · λ̂u dΓ = 0, ∀ λ̂u ∈U , (2.41)

−

∫

Ω

λ̂p div u dΩ = 0, ∀ λ̂p ∈ L2(Ω), (2.42)

−

∫

Γi

λ̂r · (u− g∗) dΓ = 0, ∀ λ̂r ∈H−1/2(Γi). (2.43)

The optimality condition, (2.37), ensures that the derivative of the objective functional
with respect to the control parameters vanishes at the critical point. In the gradient
descent algorithm, however, the optimality condition is not satisfied until the
algorithm converges. That procedure is described in algorithm 1 below. The fields
(·)k correspond to the fields (·) at the kth iteration. The parameter σ represents the
step size, which is adjusted dynamically. To test convergence, a small parameter ξ is
prescribed as a tolerance to potentially exit the algorithm, if necessary.

2.4. Numerical methods

The direct and adjoint problems were approximated using the finite volume method.
The linearised problem, P lin

sta, was solved using the SIMPLE algorithm described by
Patankar & Spalding (1972). According to this, the momentum equation (2.21) is
solved (after proper linearisation and discretisation), starting with an initial guess for
pressure. In addition, a pressure correction equation is derived from the continuity
equation (2.21), obtaining the pressure correction field, which is then used to update
both the pressure and the velocity. To solve the discretised momentum equation, we
applied the Gauss–Seidel method. Then, the discretised pressure correction equation
was solved using a generalised geometric–algebraic multigrid (GAMG) solver using
Gauss–Seidel iterations. The adjoint equations (2.31)–(2.36) were discretised and
solved in a similar way, following the SIMPLE algorithm and using the same solvers
as described for the solution of the direct problem. That is, Gauss–Seidel iterations
were used to solve the adjoint momentum equation (2.31) (after its corresponding
discretisation) and GAMG was used to solve the discretised adjoint pressure correction
derived from the adjoint continuity equation (2.32). The entire optimisation algorithm
including the direct and adjoint solvers was implemented using the open source CFD
library OpenFOAM (Weller et al. 1998).
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Algorithm 1 Steepest descent with dynamic step size

Given: α, β, β1 > 0 ⊲ Set optimisation parameters
Input: u0, g0, ũ

t ⊲ Provide initial guess and target flow
Output: uk ⊲ Flow field at last iteration k

1: procedure DATAASSIMILATION(u0, g0, ũ
t)

2: σ← 1, ξ← 10−8 and k← 0
3: (u0, ·, ·)←P lin

sta(u
0, g0) ⊲ Evaluate linearised problem (2.41)

4: cost0←O∗(u0, g0, ũ
t
) ⊲ Evaluate cost function (2.5)

5: for k← 1, n do

6: (·, ·, λk
r)←Padj(u

k−1, ũ
t
) ⊲ Evaluate adjoint problem (2.27)–(2.29)

7: sk←−(βgk−1 − β1△τ gk−1 + λk
r) ⊲ Set steepest descent direction (2.40)

8: repeat

9: gk← gk−1 + σ sk ⊲ Update control, using step size σ

10: (uk, ·, ·)←P lin
sta(u

k−1, gk)

11: costk←O∗(uk, gk, ũ
t
)

12: if costk > costk−1 then

13: σ← 0.5σ

14: end if

15: until costk < costk−1

16: if (
∣∣costk − costk−1

∣∣)/(costk) > ξ then

17: σ← 1.5σ

18: else

19: return uk

20: end if

21: end for

22: end procedure

3. Preprocessing of observational data

The proposed approach was validated and tested based on data that were generated
both artificially and empirically. Generated artificial data were used to validate the
approach both on a simplified geometry with an available analytical solution (see
§ 4) as well as on a physical glass replica of a human aorta. The latter geometry
was used to generate a reference flow solution to be considered as the ground
truth for validation purposes (see § 5.4). The experimental data were generated with
real measurements of flow MRI acquired for the glass replica of the aorta (see
§ 5). Both kinds of observations contain either some artificially added or realistic
noise respectively. Hence, the data further require some preprocessing prior to
the application of the proposed optimisation algorithm. Let umri denote the noisy
data, which are either artificially generated or obtained from the MR scan. First of
all, a noise detection strategy was applied to the observed data, umri, to eliminate
potential spurious vectors, yielding a denoised flow field, u◦mri. Second, the vascular
domain was segmented from the (either artificial or experimental) MRI data and
was registered with the exact phantom geometry (for both the experimental scenario
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with the flow MRI scan and the artificially generated reference flow solution on the
phantom). For both artificial and experimental data, the geometries were available
as either a user-generated cylinder or the surface data representing the 3-D print of
the glass replica respectively. Furthermore, the computational mesh was created from
these exact geometries. The measured and denoised velocity field, u◦mri, inside the
segmented region of interest was mapped into the computational mesh domain, using
the transformation obtained from the registration step. This mapping was performed
using linear interpolation, yielding a denoised flow field in the computational mesh
domain, denoted as ūmri. Finally, a space projection was applied to ūmri to recover
back the divergence-free property of the flow data, which returns a flow field called
ũ

⋆. The preprocessing steps can be tabularly summarised as follows:

umri

outlier detection
−−−−−−−→ u◦mri

registration
−−−−−→ ūmri

space projection
−−−−−−−→ ũ

⋆

umri: reconstructed flow field from 4-D flow MRI (or artificially generated),

u◦mri: denoised flow field defined in the observational domain (usually coarse mesh),

ūmri: linearly interpolated flow field mapped in the computational domain (fine mesh),

ũ
⋆: divergence-free flow field defined in the computational domain.

3.1. Noise detection

A variation of the usual median test, proposed by Westerweel & Scarano (2005) and
initially applied to PIV, was implemented and applied to the MRI data, umri, to detect
the spurious vectors in the measurements. The method utilises a normalisation to the
original median test and considers the local fluctuations of the flow field. For a wide
variety of documented flow cases, Westerweel & Scarano (2005) verified the generality
of the method for Reynolds numbers ranging from 10−1 to 107.

For a more formal description of the method, let us first introduce a set of 3-tuples,

NR = {(i, j, k) ∈Z | −R 6 i, j, k 6 R∧ R ∈N} \ {(0, 0, 0)}. (3.1)

Second, we define Ux =Ux,(0,0,0) ∈R
n to be the displacement vector at pixel position

x, and Ux,NR
is the set of its [(2R+ 1)3 − 1] neighbours. Figure 2 illustrates the

neighbourhood for R = 1. Additionally, let Ux,med be the median of Ux,NR
. The

classical median test value is defined as (MT)x,NR
=‖Ux,med −Ux‖, which is passed if

it is smaller than a user-defined threshold value ǫt. Furthermore, we define the set of
residuals, rx,NR

, as

rx,NR
= {r ∈R | r= ‖U−Ux,med‖ ∧U ∈Ux,NR

}, (3.2)

and, similarly, rx,med is defined to be the median of rx,NR
, which is used to normalise

the usual median test,

(NMT)x,NR
=
‖Ux,med −Ux‖

rx,med + ǫ
< ǫt. (3.3)

Under uniform flow conditions, the main normalisation factor rx,med tends to yield
zero; hence, a small and acceptable local fluctuation level ǫ is applied to compensate
for a potential division by zero and to account for remaining velocity fluctuations
obtained from cross-correlation analysis. In practice, ǫ values between 0.1 and 0.2
might be used (Westerweel & Scarano 2005; Raffel et al. 2007; Garcia 2011). In our
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x

x

y

z

FIGURE 2. (Colour online) For R= 1, the set Ux,N1 is shown with the 26 neighbours of
Ux (not all neighbours illustrated). It should be noted that NR does not contain the tuple
(0, 0, 0); hence, Ux =Ux,(0,0,0) is not included in Ux,N1 .

case, ǫ= 0.2 performed well for the available MR flow data. Furthermore, ǫt= 2.25 is
used as the validation threshold. Once the latter parameter is detected from numerical
experiments, it can be used for other data in similar flow regimes with the same
imaging modality.

Prior to the application of noise detection, the observations umri obtained from MRI
measurements are initially already divergence-free. This is ensured by the constraints
applied during the reconstruction process of the MRI data, which is out of the scope
of this work. After denoising, however, the detected spurious vectors are erased from
the data, which results in a flow field u◦mri with gaps at certain positions within the
observations. This clearly violates the divergence-free property of the observed data
umri. One possible way to fill in the gaps would be the use of some interpolation
scheme. However, such schemes will not necessarily ensure a solenoidal flow field.
Therefore, we rely on the application of a projection over a divergence-free space at
a later stage (see § 3.4) to automatically fill in the aforementioned gaps and to recover
back the divergence-free property of the flow field.

3.2. Segmentation and registration

After the removal of outliers, the arterial structures, in which the analysis is to be
performed, are segmented from both the artificially generated flow data as well as
the acquired MR measurements. The experimental MRI data comprise the anatomical
structures and the velocity field data (Markl et al. 2012), whereas the artificial flow
data consist of the flow field generated either in a cylindrical geometry or in the
geometry of the phantom aorta. For validation studies in the simplified domain, the
flow data were used for segmentation of the cylindrical geometry (see § 4), whereas
for experimental and complementary validation studies, the anatomical data from
MR images were used to extract the vascular geometry from the aorta replica (see
§ 5). The segmentation was performed using the snake evolution method available in
ITK-SNAP (http://www.itksnap.org) and was smoothed using the tools available in
the VMTK library (http://www.vmtk.org). This procedure is expected to suffer from
the low resolution and partial volume effects of flow MRI data.

For the comparison with experimental MRI data, high-resolution aortic surface data
were already available from the 3-D print of the glass replica. The latter were used
to generate the computational mesh for the exact geometry. However, after image
acquisition and segmentation, the flow data are misaligned with the exact geometry

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

TH
-B

ib
lio

th
ek

, o
n 

22
 M

ay
 2

01
8 

at
 2

0:
51

:0
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
32

9

http://www.itksnap.org
http://www.vmtk.org
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.329


Boundary control in computational haemodynamics 341

of the replica. Therefore, a registration step was necessary to align the measured flow
field with the exact geometry of the replica. The rigid registration was performed
using the iterative closest point (ICP) algorithm, which aims to minimise the distance
between two sets of points. The numbers of available points in the point clouds of
both the exact and the segmented geometries were approximately 1600 000 and 12 000
respectively. Prior to the registration process, 5000 points were randomly sampled
from each geometry, which were then used as the two point input clouds for the
ICP algorithm. The root-mean-square error between the registered point clouds was
0.001. In the case of the artificially generated flow data in the cylindrical domain,
no registration step was required, since the geometry was already aligned with the
segmented domain.

3.3. Mapping in the computational mesh

For both cases, the analytical geometry (cylinder) and the experimental geometry
(glass replica of aorta), the available exact geometries were used to generate
the computational mesh domain, which was used for the flow simulations. For
both datasets, a hexahedral mesh was created using OpenFOAM’s snappyHexMesh
procedure. In the case of the experimental geometry, the mesh was rigidly transformed
into its corresponding segmentation using the mapping obtained from the registration
step. After mesh generation, the velocities, u◦mri, from the denoised phase difference
images (obtained from 4-D flow MRI and denoised with the universal outlier detection
scheme) with limited resolution (i.e. in a coarse observational domain) were mapped
into the fine hexahedral mesh (computational domain for CFD simulations with high
resolution) using the linear interpolation method available in ITK (Johnson et al.
2013). As a result of the combination of the linear interpolation and the previous
noise detection process, the final flow field (denoted by ūmri) in the CFD mesh
was not divergence-free. The divergence-free property was then recovered with the
projection over a divergence-free space applied to the velocity field in the CFD mesh,
as explained next.

3.4. Projection into divergence-free space

Let ūmri ∈ (L2(Ω))3 be a given observation, projected into a bounded Lipschitz domain
Ω ∈R3 with boundary ∂Ω . According to Helmholtz–Hodge decomposition (HHD), the
velocity field can be decomposed into the sum of its divergence-free, curl-free and
gradient of harmonic components, if the velocity is known at the boundary (Denaro
2003; Harouna & Perrier 2012; Bhatia et al. 2013). In this work, we reconstruct the
divergence-free flow field by removing the gradient of the harmonic component and
solving the following problem:

P⊥(ūmri) : given ūmri, find ũ
⋆ = ūmri −∇q such that

1q=∇ · ūmri in Ω

q= 0 on Γw and ∇q · n= 0 on ∂Ω\Γw.



 (3.4)

The problem P⊥ differs from the HHD in terms of the applied BCs, but under certain
modifications the HHD can be recovered. Although the problem P⊥ does not directly
correspond to the HHD, it still represents a projection over a space of divergence-free
flow fields.

The observations, ūmri, are assumed to be already modified by the application of the
universal outlier detection scheme (as described in § 3.1) prior to its projection in the
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–256

div div

256 –256 256

(a) (b)

FIGURE 3. (Colour online) The divergence of the flow field in a phantom of a human
aorta acquired with MRI: (a) raw data, before the application of the divergence-free
projection operator, P⊥; (b) the divergence-free flow field, after the application of P⊥.

CFD mesh. The projection (u◦mri→ ūmri) is performed by linear interpolation. Problem
P⊥ is solved using OpenFOAM’s (Weller et al. 1998) conjugate gradient solver
(PCG) with simplified diagonal-based incomplete Cholesky preconditioner (DIC).
Figure 3 illustrates that the projection into the space of divergence-free vector fields
(in the phantom replica of the human aorta) recovers the divergence-free property of
the flow field to a great extent.

4. Validation of the methodology

To validate the approach and analyse its performance, we consider the flow of a
fluid in a cylindrical geometry, where an analytical solution of a fully developed flow
is available. In this work, first an analytical solution is generated for a fine hexahedral
mesh of a cylinder. Second, a much coarser voxel grid is used to simulate the MRI
acquisition pipeline. For each voxel, the MRI simulation is based on the averaged
velocity field provided by the fine mesh. Furthermore, some artificial noise is added
to the voxel data and, finally, these artificially generated MRI data are put into the
preprocessing pipeline described in § 3.

4.1. Poiseuille flow

We consider the fully developed laminar flow of a Newtonian fluid in a cylinder of
length L, constant cross-sectional area A and diameter D (R=D/2 is the pipe radius).
The solution of the Navier–Stokes equations in this case yields

uext(r)=
1PD2

16νρL

(
1−

r2

R2

)
. (4.1)

From (4.1), and calling Uavr the average velocity, it can be derived that uext(r) =
2Uavr(1 − r2/R2). Finally, taking Re = DUavr/ν, the analytical solution can be given
in terms of the Reynolds number and kinematic viscosity as

uext(r)=
2νRe

D

(
1−

r2

R2

)
. (4.2)

4.2. Evaluation of analytical solution

During the MRI acquisition process, the velocities are spatially averaged. To simulate
such a framework, the exact solution from (4.2) needs to be spatially averaged to the
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0
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0.79

0.4

0.85
(a) (b) (c)

–0.05

FIGURE 4. (Colour online) Artificially generated velocity images (2 mm isotropic voxel
size) of both (a) the exact solution and (b) the integrated noise with an SNR of 20, before
their mapping into (c) the computational flow domain.

desired MRI voxel size. Since it is not possible to calculate the exact solution for an
infinite number of points, its evaluation was performed on each cell centre of a fine
hexahedral mesh with 3693 600 cells. The cylinder radius was R= 1.2 cm (diameter
D= 2.4 cm) and the length was L= 6 cm (see figure 4c). As the solution described
by the Hagen–Poiseuille equation (4.1) is valid for laminar flow, the Reynolds number
was chosen to be 2000. Finally, as a reasonable approximation of blood viscosity in
the human aorta, the kinematic viscosity was chosen to be ν = 4.8 cP. Under these
conditions, the maximum flow velocity in the aforementioned cylinder approximately
results in |u|max ≈ 0.8 m s−1.

4.3. Generation of artificial MRI data

The acquired velocities with flow MRI are proportional to the phase shift in the
signal of spins moving along a magnetic gradient field. Since the phase of a signal is
limited to 2π radians, so is also the range of velocities that can be detected uniquely.
The highest velocity that is likely to be encountered within the region of interest is
held within a user-defined velocity encoding (VENC). For velocity magnitudes higher
than the VENC, the so-called velocity aliasing effect (or phase wrap-around artefact)
occurs, which prevents the unique assignment of the velocities. The quality of flow
MRI suffers from velocity noise, which is proportional to the velocity encoding
and inversely associated with the signal-to-noise ratio (SNR) in the related phase
difference images (Pelc et al. 1991). As described by Pelc et al. (1991), the standard
deviation of the velocity can be approximated as

σu ≈ (0.45 ∗VENC)/SNR. (4.3)

Gudbjartsson & Patz (1995) showed that in the existence of noise, the image intensity
in phase-contrast MRI is governed by the Rician distribution. For SNR greater than
two, the noise distribution is shown to be nearly Gaussian. The analytical solution
evaluated in the fine mesh was first averaged into an MRI grid of 2 mm voxel size
in each direction, as shown in figure 4(a). Gaussian white noise was added thereafter
on the averaged velocities, as shown in figure 4(b). The VENC was chosen to be
120 cm s−1 in the longitudinal direction (z), whereas it was 20 cm s−1 in the remaining
directions (x and y). The standard deviation of the velocity was chosen such that the
noise amplitude corresponded to an SNR of 20. As the cylinder is user-defined, the
acquired flow field is already registered with the exact geometry. After the addition
of artificial noise, the thus-simulated MRI data follow the preprocessing pipeline (with
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the exception of the registration stage), as described in § 3, before starting the CFD
simulation. In what follows, usnr will represent the noisy MRI measurements, which
are mapped into the computational domain and for which a decomposition is applied
to project the field over a divergence-free space, as described in §§ 3.3 and 3.4. The
cylindrical computational domain is illustrated in figure 4(c).

4.4. Optimisation with exact solution as target flow

First, we consider one case where the optimisation starts with a noisy flow field
and is performed against the exact solution. That is, the target flow field ũ

t in
the objective function (2.5) corresponds to uext given by (4.2). In addition, the initial
condition, (u)0=u0, corresponds to the artificially generated divergence-free flow field,
usnr, as described in § 4.3. Thus, algorithm 1 is executed with the input parameters
(usnr, gsnr, uext), where gsnr= usnr on Γi. In what follows, we will denote uopt= uk

opt as
the solution returned by the optimisation process after k iterations of algorithm 1. The
mesh is set up with 118 800 cells including 114 840 hexahedras and 3960 prisms. The
size of the mesh is suitable to obtain satisfactory results. Flow-matching domains, Ωs,
Γsi and Γso (see figure 4c), cover the lumen, including both inlet and outlet boundaries.
In what follows, we will give a meaning to the subscript, s, in the flow-matching
domain, Ωs. The subscript s prescribes the extent of contraction of the whole domain
Ω in millimetres (mm), as follows:

Ωs = {x ∈Ω | ‖x− y‖> s(mm)∀y ∈ Γw}. (4.4)

In this set-up, we set s = 2. That is, the flow-matching domain Ωs is a contracted
domain of Ω such that the distance to Γw is at least 2 mm. Figure 4(c) shows the
example of Ωs in the cylinder. Furthermore, the optimisation parameters are α= 0.15,
β = 10−4 and β1 = 10−8. Figure 5(a–c) illustrates the norms of the flow matching,
‖ũt−u‖fm, the control, ‖g‖co, and the surface gradient of the control, ‖∇τ g‖sg, which
are defined as follows:

‖ũt − u‖fm =


 100

avr
Ω
|ũt|




√
1

VΩ

∫

Ω

|ũt − u|2 dΩ, (4.5)

‖g‖co =


 1

avr
Γi

|ũt|




√
1

AΓi

∫

Γi

|g|2 dΓ , (4.6)

‖∇τ g‖sg =


 1

avr
Γi

|∇τ ũ
t|




√
1

AΓi

∫

Γi

|∇τ g|2 dΓ , (4.7)

where VΩ is the volume of the entire domain and AΓi
is the area at the inlet. The

norms are normalised against the average magnitude of the target velocity or its
surface gradient.

As can be seen in figure 5(b), the norm of the control, ‖g‖co, rapidly grows at
the beginning, forcing the noisy vectors towards their desired position and remaining
almost constant after a while. In figure 5(c), the sudden decrease in the norm of the
velocity surface gradient, ‖∇τ g‖sg, shows the denoising process at the inlet. Once
a good approximation is reached, the velocities at the inlet are only being adjusted
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FIGURE 5. (Colour online) The norms from optimisation with parameters α = 0.15,
β = 10−4 and β1 = 10−8. The norms are plotted against the number of iterations on the
horizontal axis. (a) Flow matching, (b) control, (c) surface gradient of control.

slightly during the rest of the iterations. This is continued until a sufficient flow
matching is achieved in the entire domain, as illustrated in figure 5(a).

Let us now focus on the results in the domain close to the cylinder wall. To confirm
the presented results also with respect to the accuracy in the near-wall regions, we
calculated both the root-mean-square error, nRMSEd = nRMSEd(uext, uopt), and the
flow direction error, FDEd = FDEd(uext, uopt), defined by

nRMSEd(ut, uc)=


 100

avr
Ed

|ut|




√
1

Vd

∫

Ed

|ut − uc|2 dEd, (4.8)

FDEd(ut, uc)=

√
1

Vd

∫

Ed

(
1−

ut · uc

|ut||uc|

)2

dEd. (4.9)

In what follows, the subscript d stands for the evaluation of the error within the
contracted subdomain Ed ⊂Ω with volume Vd, which is defined as

Ed = {x ∈Ω | ∃y ∈ Γw, ‖x− y‖< d (mm)}. (4.10)

That is, we want to evaluate the errors in the domain Ed at near-wall regions (this
domain is not meant to be included in the flow-matching domain Ωs), where the
nearest Euclidean distance of all points in Ed is at most d mm apart from the wall, Γw.
Figure 4(c) features the contracted domain in the cylinder. It should be noted that both
errors, (4.8) and (4.9), are evaluated between the exact solution, uext, and the results
obtained from the proposed optimisation strategy, uopt, in the contracted region Ed. In
addition, the error nRMSEd is normalised against the average velocity magnitude of
the observations in Ed.

For d = 2, the initial errors nRMSE2(uext, usnr) and FDE2(uext, usnr) between the
exact solution, uext, and noisy observations, usnr, were 26.65 % and 1.1 × 10−2

respectively. After optimal control, the root-mean-square error, as a percentage of
the average velocity magnitude, was reduced to nRMSE2(uext, uopt)= 3.53 %, and the
flow direction error was FDE2(uext, uopt)= 3.5× 10−5.

4.4.1. Sensitivity analyses with respect to changes in optimisation parameters

There have been some reported discussions in the literature concerning the choice of
the optimisation parameters for related control problems, mostly based on simplified
2-D geometries. In Lee (2011), the penalisation value was set to 10−10 for a Neumann
boundary control and validations were performed for a flow problem in a 2-D square
case. In Guerra, Tiago & Sequeira (2014), a 2-D geometry for a stenosed vessel was
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considered, where the parameter related to the surface gradient term (denoted as β1

in this work) was set to 10x, with x ∈ {−5, −4, −2, −1, 0, 1}, whereas the other
optimisation parameters were maintained constant. Further works have also reported
on the choice of regularisation parameters in the related field (Fursikov, Gunzburger
& Hou 1998; D’Elia et al. 2012a; Bertagna et al. 2014; Guerra et al. 2015).

In this work, the parameter α was chosen on a trial and error basis. It was observed
that α should be between 0.15 and 0.5 depending on the data being used. Values larger
than 0.5 enforce a more stringent flow matching, and the optimiser already stops at
very early stages of the iterations. For values smaller than 0.15, the optimiser performs
more iterations because the flow-matching term is more relaxed. In the latter case, as
expected, the final solution gets further away from the observations.

The differences in the response as a consequence of changes in the optimisation
parameters, β and β1, were examined in this work for the 3D case. First of all, we
set α = 0.15, which was experimentally found to be an appropriate parameter for
this use case and was then used in the sensitivity analyses with respect to changes
in β and β1. Second, we kept β1 = 10−8 fixed and modified β. Figure 6(a,b) shows
the flow-matching norm, ‖ũt − u‖fm, and the control norm, ‖g‖co, for different β
values. In addition, figure 6(b) also contains the constant norm, ‖gext‖co, of the exact
solution. We observed that for larger values, such as β > 10−4, there was not enough
control and the flow matching was poor. This is because the objective function
was rapidly penalised at early stages of the optimisation, where the optimiser needs
larger controls in order to reduce the error. For smaller β values, however, there
was no hard penalisation and the optimiser could apply larger controls, as illustrated
in figure 6(b). In general, the values 10−4 and 10−5 delivered satisfactory results,
and β = 10−5 was observed to be the best choice. Furthermore, we fixed β at
10−5 and ran the optimiser with β1 set to 10−7, 10−8 and 10−9 (smaller values
of β1 rendered unacceptable solutions because of the lack of smoothing effect on
noisy measurements). For different β1 values, figure 7(a,c) shows the plots for the
flow-matching norm, ‖ũt− u‖fm, and the surface gradient norm, ‖∇τ g‖sg. Let us first
analyse the results between the values 10−7 and 10−8 for β1. It can be observed that
the norm of the surface gradient is further reduced for β1 = 10−8 over the successive
iterations, and better flow matching is achieved. This can be explained by further
investigation of the control norm, ‖g‖co, along with the norm of the exact solution,
‖gext‖co, in figure 7(b). We can observe that there is not enough control for β1= 10−7.
This shows that even if we are able to remove the noise at the inlet (which is
explained by the reduction in the value of the surface gradient for β1 = 10−7), the
controls are small and hence the velocities cannot be properly controlled. Second,
let us consider the results for β1 values of 10−8 and 10−9. Figure 7(a) shows that
the flow matching is achieved with an almost equally good quality. In figure 7(b),
however, fluctuations along the iterations can be observed in the norm of controls for
β1 = 10−9. In addition, figure 7(c) shows that the fluctuations also have an effect on
the norm of the surface gradient, which is not as greatly reduced in early iterations as
is the case for β1= 10−8. Finally, our interpretations are also confirmed quantitatively
in near-wall regions. Table 1 summarises the results from the sensitivity analysis
comparing the root-mean-square errors, nRMSE2, and the flow direction errors, FDE2,
for varied optimisation parameters. Our conclusion is that a value of β1 = 10−8

delivers sufficiently accurate results, and this value will be used hereafter.

4.5. Optimisation with noisy solution as target flow

So far, we have been able to validate the proposed approach using an analytical
solution. Actually, an exact solution is not available or cannot be provided by
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(β, β1) (10−3, 10−8) (10−4, 10−8) (10−5, 10−8) (10−5, 10−9) (10−5, 10−7)

nRMSE2(uext, uopt) 4.53 % 3.53 % 3.41 % 3.68 % 8.40 %
FDE2(uext, uopt) 7.0× 10−5 3.5× 10−5 2.8× 10−5 1.4× 10−4 4.8× 10−5

TABLE 1. Dimensionless root-mean-square (nRMSE2(uext, uopt)) and flow direction
(FDE2(uext, uopt)) errors measured within the near-wall (2 mm) domain (E2).

3010 20 40 500 3010 20 40 500

1
1.33

1.34

1.35

2

3

4

5

6(a) (b)

FIGURE 6. (Colour online) Alteration in norms of (a) flow matching and (b) control (solid
lines in a,b) with respect to changes in β, along with the constant norm of the exact
solution (dashed line in b), where α= 0.15 and β1= 10−8. The norms are plotted against
the number of iterations on the horizontal axis.
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FIGURE 7. (Colour online) Alteration in norms of (a) flow matching, (b) control and (c)
control surface gradient (solid lines in a–c) with respect to changes in β1, along with the
constant norm of the exact solution (dashed line in b), where α= 0.15 and β = 10−5. The
norms are plotted against the number of iterations on the horizontal axis.

measurements or experiments. Here, the performance of the optimisation framework
was evaluated considering the artificially generated noisy measurements as the
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target flow. That is, we set ũ
t = usnr in the objective function (2.5). In order to

avoid lack of control, the initial flow field was low-pass filtered with a cutoff
frequency of 0.5. The low-pass filtered field is just a smoothed version of the
measurements. It reduces the edge contents and results in a blurred image. The
degree of the smoothness is proportional to the chosen cutoff frequency. Use of
a blurred (smoothed or low-pass filtered) version of the measurements as initial
condition is not mandatory. However, the motivation behind using it was the fact
that, preferably, the flow-matching term in the objective function (first term in (2.5))
should not result in a null value at the very first iteration (e.g. by the application of
the measurements directly as initial condition). Moreover, the choice of such an initial
condition enables us to start with a guess close (in some sense) to the measurements
(as opposed to the case of, e.g., potentially applying a zero field as initial condition)
to avoid a significantly large number of iterations until the convergence. The resulting
flow field is represented by ulpf in Ω , and algorithm 1 was executed with the input
parameters (ulpf , glpf , usnr), where glpf = ulpf on Γi. Motivated by the findings of the
previous section, parameters β and β1 were set to 10−5 and 10−8 respectively. As
before, the flow matching was performed in Ωs with s = 2. The parameter α was
adjusted to 0.5 for this set-up. Under these conditions, the quantitative results yielded
4.85 % and 5.8× 10−5 for nRMSE2 and FDE2 respectively.

4.5.1. Sensitivity analyses with respect to changes in the flow-matching domain

As described in § 4.3, the addition of artificial noise follows the same procedure
at each location in the flow domain and does not depend on the velocity magnitudes.
Hence, the near-wall regions with very low velocities contain almost no relevant
signal, but mostly noise. Moreover, near-wall regions also contain further errors due
to partial volume effects. Hence, such locations should rather be avoided in the
flow-matching domain, Ωs. Therefore, a further contraction in the subdomain was
considered in addition. To account for it, we performed a sensitivity analysis with
respect to changes in the flow-matching domain Ωs using the same parameters as
specified above. The simulations were performed with s varying from 1.5 to 4.

The norms of the control are shown in figure 8(a) for different values of s. It
can be observed that larger controls result for s= 2.5. The magnitude of the control
g decreases if Ωs is further contracted or extended. This can be also confirmed
by nRMSEd in figure 8(b), where the x-axis represents s. The errors in near-wall
regions are further decreased for s= 2.5. In addition, figure 8(b) illustrates the error
measurements (y-axis) for different values of d represented in different colours. It can
be observed that in all cases, the optimisation framework delivers accurate results at
locations of the domain close to the lateral boundary (the wall). This is especially
interesting for the evaluation of WSSs, some of the most important parameters for
diagnostic purposes in the cardiovascular field. Table 2 summarises the results in the
near-wall domains Ed defined for different distances from the wall (with d values
ranging from 3 mm to 0.5 mm) for varying flow-matching domains Ωs with s varying
from 1.5 to 4. For example, for a flow-matching domain Ω2.5, which is 2.5 mm apart
from the wall Γw, the root-mean-square error nRMSE2, which is evaluated within
2 mm distance of the wall Γw, is 4.52 %, and FDE0.5 is 5.0 × 10−5. This improves
the accuracy in comparison with the results from the previous section, where the
flow-matching domain was chosen to be Ω2. For s > 3, the accuracy also starts to
drop. This is a remarkable finding for the choice of Ωs. In addition, contraction of the
flow-matching domain also in the longitudinal direction (e.g. exclusion of the locations
at and near the inlet/outlet boundaries from Ωs) also results in loss of accuracy. In
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s 1.5 2 2.5 3 3.5 4

nRMSE3 5.92 % 4.86 % 4.46 % 4.90 % 5.85 % 7.26 %
FDE3 6.1× 10−5 4.8× 10−5 4.2× 10−5 4.4× 10−5 4.7× 10−5 5.0× 10−5

nRMSE2 5.85 % 4.85 % 4.52 % 4.92 % 5.86 % 7.35 %
FDE2 7.5× 10−5 5.8× 10−5 5.0× 10−5 5.3× 10−5 5.7× 10−5 6.0× 10−5

nRMSE1 6.03 % 5.18 % 4.97 % 5.29 % 5.98 % 7.36 %
FDE1 1.0× 10−4 7.9× 10−5 6.9× 10−5 7.3× 10−5 7.7× 10−5 8.2× 10−5

nRMSE0.5 6.68 % 5.93 % 5.88 % 6.18 % 6.64 % 7.80 %
FDE0.5 1.3× 10−4 1.0× 10−4 8.7× 10−5 9.2× 10−5 9.8× 10−5 1.0× 10−4

TABLE 2. Dimensionless root-mean-square (nRMSEd(uext, uopt)), and flow direction
(FDEd(uext, uopt)), errors measured within the near-wall (d (mm)) domain, Ed, for varying
flow-matching domains Ωs (s (mm) apart from the wall).

3010 20 40 50 600 1.5 2.0 2.5 3.0 3.5 4.0
1.30

1.31

1.32

4

5

6

7

8

s (mm)

(a) (b)

FIGURE 8. (Colour online) Illustration of (a) norms of control (for different s) with
respect to changes in the flow-matching domain, Ωs, and (b) root-mean-square errors
(plotted against s for different d) in the near-wall domain, Ed. The norms are plotted
against the number of iterations in the horizontal axis.

this case, the errors (achieved from the contractions in the longitudinal direction)
increase to a similar extent to that already given in table 2 for the radial contractions.
In general, the flow-matching domain should be constructed such that it contains
almost all available information about the flow field in the luminal area (reaching
from inlet to outlet), whereas it should avoid using the information at near-wall
locations. We have shown that it is a very good choice to keep the flow-matching
domain 2.5 (mm) away from the vessel wall for this case.

4.5.2. Comparison against classical CFD

Finally, the ability of the boundary control approach to the measured flow field
in the entire domain was compared against the results delivered from the classical
CFD strategy. The latter is based on a single forward simulation, with Dirichlet BCs,
applied (as usual) at the inlet boundary. Then, the classical CFD implies solution of
the problem Psta, as stated by the variational equations (2.18)–(2.20). Thus, using the
initial guess usnr and the BC u = usnr on Γi, the linearised problem P lin

sta(usnr, gsnr)

was solved with gsnr= usnr on Γi, iteratively until convergence was achieved. In what
follows, the solution obtained from a classical CFD approach will be denoted as ucfd.
Motivated by the conclusion in § 4.5.1, the optimisation algorithm was employed to
deliver the optimised solution uopt for parameters α = 0.5, β = 10−5, β1 = 10−8 and
s = 2.5. Furthermore, the optimisation was performed against the noisy solution as
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0

A

0.8

FIGURE 9. (Colour online) Flow patterns for the fields usnr, ucfd, uopt and uext illustrated at
the inlet (Γi), the outlet (Γo) and a curved surface (A) immersed in the lumen. The colours
representing the velocity magnitudes are scaled to the range of 0 and 0.8, whereas the
corresponding maximum velocities are |usnr|max ≈ 0.853, |ucfd|max ≈ 0.777, |uopt|max ≈ 0.784
and |uext|max ≈ 0.8.

target flow and initialised with the low-pass filtered flow field, as described in § 4.5.
We want to emphasise that, during the optimisation procedure, there is no knowledge
available about the exact solution at all.

Flow patterns were first inspected visually to obtain a qualitative interpretation.
Figure 9 shows the flow patterns in the domain, obtained from the artificially
generated noisy measurements, usnr, the computations via the traditional CFD method,
ucfd, the computations from the proposed optimisation framework, uopt, and finally the
exact solution, uext. It can be appreciated that the optimised flow is the one that better
resembles the exact solution. Especially, it features excellent qualitative agreement
with the exact solution at the inlet boundary and at locations near to the inlet, where
the traditional CFD approach suffers from inaccuracy, caused by the noisy BC.

To confirm the previous qualitative assessment, the simulation results from both
the classical CFD and the control approaches were quantitatively compared against
the exact solution. First, we evaluated nRMSEd and FDEd in the near-wall domain
Ed for the values d = 2, d = 1 and d = 0.5. Table 3 shows that the velocity field
was reconstructed by the optimisation algorithm much more accurately at the wall
boundary, in comparison with the classical CFD approach. Noisy observations, usnr,
deliver almost no relevant signal near the boundaries, which can be observed by the
huge and increasing errors for decreasing d values. In contrast, however, nRMSEd is
more rapidly decreased when applying the optimisation algorithm to obtain uopt, as we
get closer to wall boundary. This shows the feasibility of the optimisation approach,
especially for its accuracy at the boundaries. Furthermore, the flow direction errors
are decreased to a much greater extent for the optimised flow in comparison with the
classical CFD method. This also shows clearly that the noise at the inlet boundary
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x= uext nRMSEd(x, y) FDEd(x, y)

y= usnr y= ucfd y= uopt y= usnr y= ucfd y= uopt

d= 2 26.65 % 8.36 % 4.52 % 1.1× 10−2 1.2× 10−3 5.0× 10−5

d= 1 61.30 % 11.79 % 4.97 % 1.6× 10−2 1.7× 10−3 6.9× 10−5

d= 0.5 139.82 % 17.93 % 5.88 % 2.1× 10−2 2.1× 10−3 8.7× 10−5

TABLE 3. Dimensionless root-mean-square (nRMSEd(uext, y)) and flow direction
(FDEd(uext, y)) errors for y = {usnr, ucfd, uopt}, measured within the near-wall (d mm)
domain (Ed). Optimisation is performed using measurements in the flow-matching volume
(Ωs), which is s= 2.5 mm apart from the wall boundary.

is removed to a great extent by the application of the control. In addition, it can
be seen that FDEd is not further decreased as we get close to the walls. This is
expected, since the optimisation procedure itself is a trade-off between decreasing the
flow-matching errors in terms of magnitudes and the flow direction errors based on
the surface gradient. Both terms are included in the objective function and are affected
by the choice of parameters.

In addition, the computational cost of both the classical CFD method and the
optimisation procedure were evaluated and compared in terms of wall clock time (or
execution time). The classical CFD method using the SIMPLE algorithm required
approximately 100 iterations to reach the solution, and its execution time was 34 s.
In turn, the data assimilation process required approximately 50 iterations with an
execution time of 82 s.

Finally, the maximum and average WSSs were calculated from the numerical results
based on the classical CFD and the optimisation procedure. These quantities were then
compared against the WSSs computed with the analytical solution. Figure 10 shows
the box plots to characterise the discrepancies between the WSS field obtained from
the exact solution, uext, and the WSS fields obtained from both the computations with
classical CFD, ucfd, and the optimised solution, uopt.

5. Data assimilation in a realistic geometry

The proposed approach was tested for the flow-matching control problem in a more
realistic geometry obtained from a glass replica of a human aorta. The geometry
consisted of aortic root, ascending aorta, aortic arch without branches and descending
aorta, as illustrated in figure 1(a). First, a validation study was performed on the
aorta based on a manufactured solution used as the ground truth. The results from
the assimilation procedure and the classical CFD method were quantitatively compared
against the ground truth (available reference solution). Second, real flow data were
gathered from the flow MRI scans to investigate the performance of the solvers in
real case scenarios. The optimisation results were first qualitatively compared with
measured data. In addition, and since there is no reference solution available in
this case, the results were quantitatively compared against the results when using
the classical CFD method prescribing Dirichlet BCs. The discrepancies between the
solution obtained from the data assimilation approach and the CFD solution were
also examined in contrast to the discrepancies encountered between both solutions
in the manufactured scenario involving the aorta phantom geometry. Furthermore, a
sensitivity analysis with respect to changes in the initial guess flow field was analysed
and discussed in the real case scenario. Finally, the proposed approach was tested
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIGURE 10. Box plot illustrating the differences (|WSScfd| − |WSSext|) and (|WSSopt| −
|WSSext|) on the horizontal axis, where the labels WSScfd, WSSopt and WSSext represent
the wall shear stresses corresponding to the fields ucfd, uopt and uext respectively.

under flow conditions with increasing Reynolds numbers ranging approximately from
1200 up to 2100. For the highest Reynolds number, a mesh sensitivity analysis was
also carried out.

5.1. Experimental set-up

The in vitro experiment was prepared in a scanner and control room including a 3T
MRI scanner from Philips. The glass replica, covered by a six-element cardiac coil,
was placed in the scanner and connected to a centrifugal pump (in the control room)
with a maximum pressure of 3.9 bar. The connection was made with a PVC tubing
of total length 20 m with an inner diameter of 19 mm. The inlet and outlet of the
pipe were connected to a reservoir in the control room, creating an open circuit. A
ball bearing valve was placed 1.5 m downstream of the tube and was used to control
the flow rate. Figure 11 illustrates the experimental set-up.

The reservoir was filled with a mixture of 24 l H2O, 40 g carboxymethyl cellulose
carboxymethyl (CMC) and 10 g sulphate. The aim of the CMC medium was to
increase the viscosity of the fluid to an approximately similar level to blood viscosity.
On the other hand, the sulphate acted as a contrast agent to increase the signal
magnitude. For a temperature of 27◦ C, the mixture featured a viscosity of 3.5 cP.

Three different image acquisitions were performed to obtain data with increasing
Reynolds numbers. The maximum velocities in the obtained data were 1.06, 1.71
and 2.26 m s−1, and the corresponding Reynolds numbers were 1223, 1860 and
2105 respectively. Thus, the flow rates were controlled such that the obtained data
contained laminar flow. We highlight the fact that the flow model does not account
for turbulence, and consideration of turbulence models is matter of current research.

A 3-D spoilt gradient-echo sequence with flow encoding gradients was used for the
flow MRI acquisitions. The eddy-current induced background phase was compensated
by application of linear phase correction. The acquisition parameters were chosen as
flip angle 10◦, time of repetition and echo (TR/TE) 2.6/4.87 ms, field of view (FOV)
[244× 244× 62] mm3 and voxel size [1.4× 1.4× 1.5] mm3. Furthermore, considering
the increasing Reynolds numbers of the measured data, the corresponding VENCs
were chosen as 120, 200 and 260 cm s−1 respectively.
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Reservoir

Aorta

Pump
Scanner room

Control room
Anatomy

data

Velocity
data

FIGURE 11. (Colour online) The experimental set-up for the glass replica of a
human aorta.

5.2. On the imaging resolution of flow MRI

Flow MRI is primarily limited by the SNR, and the scanning parameters must
be chosen such that there is a trade-off between the acquisition time and the
spatial/temporal resolution. Besides, in patient-specific cardiovascular acquisition,
the optimised scan parameters must take the variability of the cardiac period and/or
shifts in patient position into account and ensure that physiological artefacts, such
as respiratory motion, are minimised (Callaghan & Grieve 2016). A substantial
decrease in the voxel size is not clinically feasible. This would increase the scan time
(potentially by several hours), which is not practical for a patient lying inside the
MRI device. At the same time, this will result in a lower number of protons within
the voxel substantially decreased in size. Hence, the gathered signal will suffer more
from noise and the SNR will decrease.

Under normal clinical conditions, it is currently possible to acquire a 4-D flow
dataset of the heart and major vessels in approximately 10 min at a spatial resolution
of 2.5 mm (isotropic) with a temporal resolution of 30–40 ms (Callaghan et al.

2016). In the work reported by Bock et al. (2011), the authors used 2.1 mm
isotropic voxel size for patient-specific measurement of the aorta. In addition, Cibis
et al. (2015) performed MRI scans of fontant patients using a spatial resolution
of 1.9–2.5 × 1.9–2.5 × 2.2–3.3 mm3 with coverage of the heart and large arteries.
Further studies have performed personalised acquisitions of the ventricle based
on a cross-sectional resolution between 1.9 and 2.5 mm (de Vecchi et al. 2016;
Larsson et al. 2017). However, the most recent studies of flow MRI have investigated
the feasibility towards even higher resolutions with clinically feasible scan times.
Schmitter et al. (2016) reported increased imaging resolutions, such of 1.2 mm
isotropic voxel size, using accelerated protocols.

Following the clinical feasibility and considering the recent improvements in terms
of the resolution, we have therefore used an approximately 1.5 mm isotropic voxel
size in our acquisitions, which finally resulted in a resolution of 1.4× 1.4× 1.5 mm3.

5.3. Data preprocessing

For the generation of the computational mesh, the aortic replica was first segmented
(see figure 12a) from the anatomical data and then smoothed (see figure 12b).
Thereafter, the available exact geometry (see figure 12d), with the region of interest
that defines the inlet/outlet boundaries highlighted, was registered with the smoothed
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 12. (Colour online) Mesh generation from (d) the exact geometry including (a)
the segmentation of the domain from anatomical data, (b) smoothing and (c) registration
of the exact geometry with the smoothed geometry. A region of interest (d) defines the
computational domain for which a hexahedral mesh with 122 079 cells is created, shown
in (e) at the inlet and ( f ) in the domain.

geometry, as shown in figure 12(c). Section 3.2 provides more details about the
applied segmentation and registration. Finally, a hexahedral mesh with 122 079 cells
was created using the exact geometry cut by the region of interest. Moreover, two
additional hexahedral meshes with approximately 750 000 and 1370 000 cells were
created for a mesh sensitivity analysis. Figure 12(e–f ) illustrates the computational
mesh with 122 079 cells.

Having generated the computational mesh, the measured flow data followed
into the preprocessing pipeline, as described in § 3. In what follows, uRe

snr with
Re= {1223, 1860, 2105} will represent the flow fields derived after the application of
divergence-free space projection; that is, after solving the problem P⊥ described by
the equation (3.4).

5.4. Validation of the data assimilation based on a manufactured solution in the

aorta

Due to the noisy nature of flow MRI scans, there exists no true reference solution in
such real case scenarios. This makes it difficult to posit an argumentation about the
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value of the assimilation procedure. Therefore, we have first generated a numerical
reference solution on the computational mesh to validate the approach on the aortic
geometry. The numerical solution will be considered as the ground truth in the
quantification of the errors.

The generation of the ground truth was based on a forward steady-state flow
simulation with an idealised BC at the inlet, resembling a parabolic flow profile.
A kinematic viscosity of 4.5 cP was considered and the resulting flow field with
Re= 1780 had a maximum flow velocity of 0.8 m s−1. In what follows, the ground
truth will be denoted as uext. An artificial noise with an isotropic VENC of 0.9 m s−1

and an SNR of 10 (see § 4.3 for more details) was added on top of the ground truth.
Following our usual notation, the noisy flow field (after being decomposed into its
divergence-free components) will be denoted as usnr.

To analyse the performance of the optimisation procedure for such a realistic aortic
geometry, the assimilation was first performed against the ground truth. Thus, the
target flow in the objective function (2.5) was set as ũ

t = uext and algorithm 1 was
executed with the input parameters (usnr, gsnr, uext), where gsnr = usnr on Γi. The
resulting flow field will be denoted as uext

opt in the sense of the solution of data
assimilation performed against the ground truth. A quantitative comparison of the
assimilation procedure directly against the ground truth in terms of nRMSEd(u

ext
opt, uext)

yielded 0.8, 1.1 and 1.4 % for d=2, 1, 0.5 respectively. The errors are relatively small,
and this shows the feasibility of the approach in a complex geometry.

However, in a real case scenario, a ground truth is usually not available and the
assimilation cannot be performed against an already known solution. In order to
avoid any bias in favour of one of the solvers (the optimisation or the classical
CFD), the assimilation was additionally performed against the noisy solution. That
is, algorithm 1 was additionally executed with the input parameters (usnr, gsnr, usnr).
In this case, the resulting flow field will be denoted as usnr

opt . The classical CFD
method was also executed, where the Dirichlet BC and the initial conditions were
set to the flow field usnr, and the resulting flow field will be denoted as ucfd. In
this sense, both solvers have no information whatsoever about the ground truth prior
starting the simulations. The errors, nRMSE1(x, uext) and FDE1(x, uext), evaluated for
x= {ucfd, , usnr

opt, uext
opt}, were 6.81 %, 4.77 %, 1.10 % and 0.12, 0.10, 0.01 respectively.

This reveals that the optimisation solver still performs better in comparison with the
classical CFD method, even if one assimilates against a noisy solution. The rather
small difference between 6.81 % and 4.77 % can be explained by the fact that the
errors within the close proximity of the wall are evaluated in the entire domain.
However, it should be noted that in this aorta geometry the size of the entire domain
is much larger than the region where the BCs have a true impact. Indeed, after the
development length, whatever the BC is, the solution tends to become that of a
fully developed flow, and the errors are masked by this fact. In other words, as the
optimisation controls the velocities at the inlet, it is expected that more representative
errors are encountered near the inlet location. To investigate this, the same errors were
evaluated near the aortic root inlet (within a close proximity of the inlet), instead
of taking the entire domain. Let us define a further contracted subdomain domain
Es

d ⊂ Ed ⊂Ω as follows:

Es
d = {x ∈Ω | ∃y ∈ Γw, ∃z ∈ Γi, ‖x− y‖< d (mm)∧ ‖x− z‖< s (mm)}. (5.1)

Correspondingly, the errors nRMSE4
d and FDE4

d are defined within 4 cm proximity
of the inlet in the corresponding domain E4

d and will be used in the rest of this work.
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x−→ ucfd usnr
opt uext

opt d−→ 2 1 0.5

nRMSE4
1(x, uext) 34 % 17 % 5 % nRMSE4

d(ucfd, usnr
opt) 23 % 30 % 34 %

FDE4
1(x, uext) 0.22 0.18 0.03 FDE4

d(ucfd, usnr
opt) 0.11 0.13 0.15

TABLE 4. On the left, root-mean-square errors (nRMSE4
1(x, uext)) and flow direction errors

(FDE4
1(x, uext)) evaluated within the close proximity (4 cm) of the inlet and the near-wall

(1 mm) domain (E4
1), where x = {ucfd, usnr

opt, uext
opt}. On the right, the corresponding errors

nRMSE4
d(ucfd, usnr

opt) and FDE4
d(ucfd, usnr

opt) reporting the difference between the solutions of
the classical CFD, ucfd, and the data assimilation procedure, usnr

opt .

The errors, nRMSE4
1(x, uext) and FDE4

1(x, uext), evaluated for x={ucfd, usnr
opt, uext

opt}, were
34 %, 17 %, 5 % and 0.22, 0.18, 0.03 respectively. These results are also summarised
on the left-hand side of table 4. It can be observed that, compared with the results of
the classical CFD method, there is a significant improvement in the outcome provided
by the assimilation (against the noisy solution) in the close proximity of the inlet.
This is a remarkable finding for the improvement of the flow field, especially at the
aortic root, which is a place where flow disturbances can easily lead to pathological
modifications of the arterial wall.

Furthermore, we examined the difference between the solutions of the optimisation,
usnr

opt , and the classical CFD, ucfd. The errors, nRMSE4
1(ucfd, usnr

opt) and FDE4
1(ucfd, usnr

opt),
were 23 %, 30 %, 34 % and 0.11, 0.13, 0.15 respectively. Thus, the difference between
the data assimilation procedure and the classical CFD method is approximately 30 %,
which clearly emphasises to what extent the data assimilation is able to alter the CFD
solution. The right-hand side of table 4 summarises the differences between the two
solvers.

5.5. Numerical results based on flow MRI scans

We will first present the numerical results for Re = 1223 based on the flow data
denoted by uRe

snr (as described in § 5.3), mapped on the computational mesh domain
and projected into a divergence-free space. In what follows, uRe

snr with Re= 1223 will
be simply denoted as usnr. The target flow in the objective function (2.5) was set as
ũ

t = usnr. A low-pass filtered flow field of this target flow with a cutoff frequency of
4 was used as the initial guess, which will be denoted as (u)0 = u4.0

lpf . The frequency
was chosen such that the flow field, being low-pass filtered, was not oversmoothed
and remained close to the actual target field. The maximum magnitude of low-pass
filtered flow data was 0.98 m s−1, whereas for the target flow it was 1.06 m s−1. Flow
matching was performed in Ωs, with s = 2.5, and the optimisation parameters were
chosen as β = 10−5, β1= 10−6 and α= 0.25. That is, algorithm 1 was executed in the
domain as represented in figure 1(a) with the input parameters (u4.0

lpf , g4.0
lpf , usnr), where

g4.0
lpf = u4.0

lpf on Γi.
The flow patterns predicted by the optimisation algorithm and the classical CFD

method were first qualitatively compared against the measured data by visual
inspection. Figure 13 shows the streamlines corresponding to the different velocity
fields. Figure 14 illustrates the magnitude of the velocity field in a cross-sectional
slice covering part of the ascending and descending aorta. Furthermore, figure 15
highlights the wraps of the velocity profile for a set of transverse slices. It can be
observed that the measured velocity field, usnr, and the optimised solution, uopt, are
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0 1.01 0 1.01 0 1.01 0 1.01

FIGURE 13. (Colour online) Streamlines for the magnitudes of the different velocity fields.
The observations considered here are the measured data with Re= 1223.

0 1.04 0 1.04 0 1.04 0 1.04

FIGURE 14. (Colour online) Velocity magnitude in a cross-sectional slice for the different
velocity fields. The observations considered here are the measured data with Re= 1223.

0 1.01 0 1.01 0 1.01 0 1.01

FIGURE 15. (Colour online) Warps of the magnitudes of the velocity fields at a set of
cross-sectional slices. The observations considered here are the measured data with Re=
1223.

reasonably similar, whereas the flow field predicted by the classical CFD method is
relatively far from the measured data.

The results were also analysed quantitatively. However, the observations have a
noisy nature and there is no true reference solution available in this case. Respectively,
we evaluated the errors between ucfd and uopt to quantify the differences of the
flow fields predicted by the classical CFD method and the optimisation strategy.
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4.30

8.64

4.30

8.64

50

100

0 0 0

(a) (b) (c)

FIGURE 16. (Colour online) (a,b) Magnitude fields of WSSs, |WSScfd| and |WSSopt|,
corresponding to the velocity fields ucfd and uopt. (c) Normalised difference field,
(100/Nwss) |WSSopt−WSScfd| on Γw, where Nwss is as described in (5.2). The observations
considered here are the measured data with Re= 1223.

The flow-matching norm, ‖uopt − ucfd‖fm, resulted in 39 % of the average velocity
magnitude of optimised solution. In addition, the errors were evaluated at the
aortic root in the close proximity of the inlet. For d = {2, 1, 0.5}, the errors
nRMSE4

d(ucfd, uopt) were 46 %, 51 % and 60 % respectively. This shows that the
differences in the predictions grow on getting closer to the wall. The normalised
difference, ‖WSScfd − WSSopt‖ (see (5.2) and (5.3)), between the WSS fields
corresponding to the velocity fields ucfd and uopt was 43.72 %. Furthermore,
figure 16(a,b) illustrates the magnitudes of the WSS fields, WSScfd and WSSopt,
and figure 16(c) shows their normalised difference field. In addition, figure 17(a,b)
illustrates the pressure fields of the predictions from the classical CFD method
and from the optimisation strategy respectively, whereas figure 17(c) shows their
normalised difference field.

Notably, the better qualitative agreement between the observations and the optimised
solution, and quantitatively significant differences between the optimised solution and
the predictions from classical CFD, support the fact that the optimisation delivers a
better solution when compared with the classical CFD approach. The improvement in
the flow field is especially emphasised at the aortic root, which is one of the most
important clinically relevant locations for the development of pathological alterations
of the anatomical structures underlying the arterial wall,

Nwss =
1

AΓw

∫

Γw

|WSSopt +WSScfd|

2
dΓ, (5.2)

‖WSSopt −WSScfd‖ =
100

Nwss

√
1

AΓw

∫

Γw

|WSSopt −WSScfd|2 dΓ . (5.3)

5.6. Sensitivity with respect to changes in initial guess

To analyse the performance and sensitivity of the optimisation strategy with respect to
changes in the initial guess, different flow fields were generated from the observations
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Init. guess (u)0 = usnr (u)0 = u0 (u)0 = u3.5
lpf (u)0 = u4.0

lpf (u)0 = u4.5
lpf

Numb. iters 955 854 640 492 251
‖ũt − u‖fm 37.17 % 37.01 % 37.03 % 36.84 % 36.91 %
avr(|WSSopt|) 2.83 2.85 2.85 2.87 2.88

TABLE 5. Results of optimised solutions (number of iterations, flow-matching norm and
average WSS) for different initial guesses usnr, u0, u3.5

lpf , u4.0
lpf and u4.5

lpf .

0.25

0.50

0

0.25

0.50

0

50

100

0

(a) (b) (c)

FIGURE 17. (Colour online) Pressure fields corresponding to predictions from classical
CFD, pcfd, from optimisation strategy, popt, and their normalised difference field,
(100/Np) |popt − pcfd| on ∂Ω , where Np = (1/VΩ)

∫
Ω

(|popt + pcfd|/2) dΩ . The observations
considered here are the measured data with Re= 1223.

to be applied as the initial guess flow. The observations were low-pass filtered with
different cutoff frequencies 3.5 and 4.5, denoted as u3.5

lpf and u4.5
lpf respectively. The

maximum velocity magnitude was 1.16 m s−1 for the flow field u3.5
lpf , whereas it was

0.84 m s−1 for u4.5
lpf . In addition, a zero flow field, u0, was prepared as the initial

guess, that is, u0 = 0 in Ω . Under the same conditions as in § 5.5, algorithm 1 was
executed with input parameters (u3.5

lpf , g3.5
lpf , usnr), (u4.5

lpf , g4.5
lpf , usnr), (usnr, gsnr, usnr) and

(u0, gsnr, usnr), where g3.5
lpf = u3.5

lpf , g4.5
lpf = u4.5

lpf and gsnr = usnr on Γi correspondingly.
Visual inspection revealed no remarkable differences in the final optimised velocity

fields. Table 5 shows the flow-matching norms, the averaged WSS and the number
of iterations for the optimisation starting with initial conditions usnr, u0, u3.5

lpf , u4.0
lpf

and u4.5
lpf respectively. The numerical experiments with modified initial guesses provide

clear evidence that, for the steady-state problem, the data assimilation algorithm is
converging to the unique solution of the problem regardless of the initial solution
provided. Both the qualitative and the quantitative results indicate that there were no
significant changes in the solution with respect to changes in the initial guess provided
to the optimisation algorithm. However, the number of iterations to reach convergence
was rather sensitive to this initial guess.

5.7. Data assimilation for different Reynolds numbers

In what follows, the measured and preprocessed data will now be denoted as uRe
snr

representing the flow fields with different Reynolds numbers, as described in § 5.1.
Using the available data with increasing flow rates and setting the initial guesses to
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x= ucfd, y= uopt nRMSE4
2(x, y) nRMSE4

1(x, y) nRMSE4
0.5(x, y)

Re= 1223, cells: 122 K 46 % 51 % 60 %
Re= 1860, cells: 122 K 49 % 58 % 66 %
Re= 2105, cells: 122 K 64 % 73 % 80 %
Re= 2105, cells: 750 K 53 % 58 % 69 %
Re= 2105, cells: 1370 K 46 % 49 % 61 %

TABLE 6. Root-mean-square errors (nRMSE4
d(ucfd, uopt)) and flow direction errors

(FDE4
d(ucfd,uopt)) evaluated within the close proximity (4 cm) of the inlet and the near-wall

(d mm) domain (E4
d) for different Reynolds numbers, where d= {2, 1, 0.5}.

0, algorithm 1 was executed with the input parameters (0, gRe
snr, uRe

snr), where gRe
snr= uRe

snr

on Γi and Re = {1223, 1860, 2105}. The results are summarised in table 6. It can
be observed that the errors between the solutions predicted by the classical CFD and
the optimised flow grow for increasing Reynolds number, and they grow more on
getting closer to the wall, which is also consistent with the corresponding validations
in table 4 of § 5.4.

For the observed data with Re = 2105, the flow field is almost in a transitional
region. Therefore, we additionally performed a mesh analysis for the computations
relying on the flow field u2105

snr . The consistency of the assimilation on two different
additional meshes with 750 000 and 1370 000 cells was examined. Table 6 additionally
summarises the errors for the different meshes. In general, it can observed that the
flow field predicted by the classical CFD method diverges by approximately 50 %
from the solution provided by the optimised flow.

6. Conclusion

In this work, an optimise-then-discretise approach was developed for the flow
control problem using 4-D flow MRI data in the context of computational
haemodynamics. The methodology was validated against an analytical solution as
well as against experimental MRI measurements performed in a glass replica of a
human aorta.

The proposed control algorithm was analysed in detail in order to assess the
capabilities of the methodology to reconstruct blood flow in near-wall regions,
targeting the computation of haemodynamically relevant quantities such as the wall
shear stress.

A critical aspect in the assimilation procedure is the size and location of the domain,
Ωs, where the flow matching is performed. In general, Ωs should be constructed such
that it contains almost all available and reliable information about the flow field in
the luminal area (spanning the entire domain from inlet to outlet), whereas it should
avoid using the information at near-wall locations.

The method proved to deliver physically consistent flow fields, with substantial
reduction of noise present in the 4-D flow MRI measurements, outperforming the
predictive capabilities of standard CFD approaches. The proposed approach provides
a systematic strategy to improve the model predictions regarding clinically relevant
haemodynamic data.

Overall, the flow control algorithm demonstrated robustness and feasibility towards
reconstruction of flow fields from partial 4-D flow MRI measurements under different
flow regimes with increasing Reynolds number. Reconstruction of the more complex
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flow structures observed in transient fluid dynamics and account for turbulence are out
of the scope of the present work, and are matters of current research.

The proposed method is the groundwork for the development of a frequency-based
approach for periodic flows. Therefore, this study is the first of a sequence that will
eventually address the dynamic case.
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