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In this work, a data assimilation method is proposed following an optimise-then-discretise
approach, and is applied in the context of computational hemodynamics. The methodol-
ogy aims to make use of phase-contrast magnetic resonance imaging to perform optimal
flow control in computational fluid dynamic simulations. Flow matching between ob-
servations and model predictions is performed in luminal regions, excluding near-wall
areas, improving the near-wall flow reconstruction to enhance the estimation of related
quantities such as wall shear stresses. This work presents model validation against an
analytical solution using the standard 3-D Hagen-Poiseuille flow, and validation with
real data involving the flow control problem in a glass replica of a human aorta imaged
with a 3T magnetic resonance scanner. The validation against in vitro experiments is
performed for different flow regimes.

1. Introduction

Wall shear stresses (WSS) in arterial vessels have long been hypothesised to play
a major role in the onset and progress of endothelial disorders. The dependence of
endothelial cell function under different flow conditions and the impact of WSS in
the development of atherosclerosis have been described in earlier studies (Texon et al.

1965; Ku et al. 1985; Zarins et al. 1987; Zand et al. 1991; Walpola et al. 1993; Malek
et al. 1999). A brief review about underlying hypotheses for hemodynamic theories of
atherogenesis was given by Gessner (1973). More recent studies explored the processes
in the molecular, cellular and vascular levels, and supported the role of low WSS in the
generation of coronary atherosclerosis and vascular remodelling (Chatzizisis et al. 2007;
Chiu & Chien 2011). The effects of hemodynamics forces were discussed by Yoshida et al.

(1990) considering the differences in biological fine structures of arterial walls in the
human aorta and the endothelial morphology at bifurcations in rabbit aorta. Moreover,
characterization of blood flow at and near the aortic wall plays an important role in the
diagnosis of aortic aneurysms and their risk of rupture (Vorp et al. 1996; Vorp & Geest
2005).

Thus, the evaluation of shear stresses over the arterial wall, either using different
computational strategies to simulate or to reconstruct blood flow, gained increasing
interest in the cardiovascular research field. A basic approach to this problem consists of
using data extracted from medical images to construct patient-specific vascular models
and perform computational fluid dynamic (CFD) simulations of blood flow in these
geometric models. The major drawback in such approaches lies in the lack of data to
correctly set-up boundary conditions to the isolated arterial districts of interest. Rapidly,
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the patient-specificity is lost when using generic criteria to prescribe such boundary
conditions in CFD simulations.

A further step resides in using more advanced image acquisition techniques in an
attempt to retrieve flow field measurements and merge them into the CFD simulations,
thus providing more accurate patient-specific predictions. In this context, different meth-
ods exist to reconstruct the velocity field in a certain region of interest. Several works
have already been reported addressing this problem using particle image velocimetry
(PIV), ultrasound and 4-D phase-contrast magnetic resonance imaging (4-D flow MRI).
A comprehensive review of several methods for flow reconstruction and the assessment
of WSS is presented by Katritsis et al. (2007).

The use of PIV is known to be limited to in-vitro studies and cannot be applied to
studying blood flow in in-vivo conditions (Hochareon et al. 2004). Differently, ultrasound
imaging allows to extract 2-D information, thus requiring a 3-D flow reconstruction
process, which is prone to lack accuracy in view of the incomplete nature of the data.
Other limitation of ultrasound is that the WSS can only be estimated with acceptable
accuracy in relatively straight arteries (Reneman et al. 2006). In turn, 4-D flow MRI
offers the advantage of three-directional blood flow quantification with three-dimensional
spatial encoding. Image reconstruction from the MRI data acquisition yields 3-D CINE

magnitude images (anatomical data) and three phase difference images (velocity data),
corresponding to the components of the 3-D velocity field. Moreover, MRI can be used
in in-vivo scenarios noninvasively. Recent advances in MRI revealed a great diagnos-
tic potential in hemodynamics applications (Markl et al. 2012; Kolipaka et al. 2016).
Nevertheless, 4-D flow MRI also suffers from important limitations for the accurate
quantification of blood flow in regions close to the arterial walls (near-wall regions),
which is of the utmost importance for the patient-specific estimation of the WSS field.
Due to the limited image resolution, acquired signals within the voxels at boundaries are
obtained partially by the moving spins in the flowing blood and partially by the steady
behavior of arterial tissue. This artifact is known as partial-volume-effect (Thang et al.

1995; Shaaban & Duerinckx 2000; Bouillot et al. 2017).
As a result of aforementioned advantages and limitations of imaging technologies,

4-D flow MRI procedures have become increasingly frequent in routine towards the
improvement of CFD patient-specific simulations. However, the correct definition of
the flow problem requires knowledge of initial and boundary conditions, as well as flow
properties, i.e. blood density and blood viscosity. Particularly boundary conditions are
usually not available, or cannot be measured accurately with current imaging techniques.
Classical CFD methods (supported by MRI) usually apply fixed boundary conditions
(BC) at the inlet of the arterial domain based on the noisy measurements extracted
from the 4-D flow MRI data. This is why recent studies concentrated on optimal control
strategies to alter BCs in such a way that the flow in the lumen matches the observations
according to certain criteria. Optimal control supported by observations has been referred
to as data assimilation (DA). Such studies were firstly and mainly applied in meteorology,
physical oceanography and atmospheric flows (Council 1991; Ide et al. 1997). Owing to
the shortcomings in the classical CFD approach (CFD employing noisy data as BCs),
DA achieved an elevated attention in cardiovascular research field over the last decade.

Preliminary results of DA in tubular structures were reported by D’Elia & Veneziani
(2010a) based on 2-D Stokes flow simulations. Convergence rate and noise sensitivity
were investigated based on artificially generated noisy data. In D’Elia & Veneziani
(2010b), their work was extended to the Oseen problem. Such strategy was employed
in combination with a fixed point method to solve the Navier-Stokes, and perform
flow matching in synthetically generated datasets using different mesh refinements. In
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a further study, the authors extended their tests to an axis-symmetric cylinder and a
2-D geometry resembling a carotid artery (D’Elia et al. 2012). These studies were based
on discretise-then-optimise (DO) approach, where the equations are first discretised and
the optimisation is performed thereafter. Numerical results were mostly based on 2-D
simplified geometries or on problems with rotational symmetry. These works were some
of the first attempts to perform DA in blood flow simulations. However, real flow MRI
measurements were not available in such studies.

In a recent work, DA was performed using more realistic vascular geometries (Tiago
et al. 2016). First, a comparison between Dirichlet and Neumann boundary control was
reported with the validation based on an idealised 2-D geometry with known solution.
Secondly, numerical results were presented using a realistic 3-D geometry of a saccular
brain aneurysm. The application of velocity control (Dirichlet BC) was claimed to recover
the flow field better than the application of pressure control (Neumann BC). However,
the flow data was synthetic and experiments with real 4-D flow MRI measurements were
not available. Furthermore, they also applied the DO approach as a solution strategy. In
(Collis & Heinkenschloss 2002), however, the authors concluded that the OD approach
has better asymptotic convergence properties and leads to better adjoint approximations.

In this work, we propose a data assimilation method for 3-D steady state blood flow
simulations following the optimise-then-discretise (OD) approach. To the authors’ best
knowledge, this is the first work performing an OD-based 3-D optimal flow control in the
field of computational hemodynamics using true data acquisitions from 4-D flow MRI.
The optimisation procedure is driven by the gradient of a given cost functional, computed
within a variational framework. A Lagrangian method is employed for the calculation
of the sensitivities from which the adjoint problem is derived. Further, the proposed
approach considers cost functionals in the flow-matching formulation including the inlet
and outlet boundaries (in addition to flow-matching in the volume of the domain).
While previous studies mostly count on validations with known numerical solutions in
simplified 2-D geometries, in this work we perform 3-D validation studies relying on an
analytical solution based on the Hagen-Poiseuille flow. Additionally, we also present a
sensitivity analysis with respect to changes in the optimisation parameters. Considering
the noisy nature of 4-D flow MRI measurements, a universal outlier detection scheme is
applied prior to the mapping of the flow field in the computational domain. Besides, a
divergence-free space projection is employed to recover back the solenoidal property of
measured flow field. An additional sensitivity analysis with respect to changes in the flow-
matching domain is developed, which is important in determining the region-of-interest
for the DA procedure. The optimisation solver was tested for different initial flow guesses
demonstrating the sensitivity in the numerical results. Finally, the boundary flow control
formulation and the preprocessing pipeline are combined to reconstruct the flow field in
near-wall regions in a glass replica of the human aorta. For the latter, the methodology
was tested for different flow regimes characterised by Reynolds (Re) numbers ranging
from 1200 to 7100.

2. Mathematical Formulation

2.1. Optimisation Problem

Let us define a bounded Lipschitz domain Ω ⊂ R
3 along with its boundary ∂Ω =

Γi∪Γo∪Γw, where Γi, Γo, Γw ⊂ R
3 stand for the inlet, outlet and arterial wall boundaries,

respectively. Figure 1a illustrates such a domain resembling an aortic vascular geometry
(to be used later in section 5). We further define a contracted subdomain Ωs ⊂ Ω with
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(a) (b) (c)

Figure 1: Computational domain. (a): Ω along with boundaries Γi : Inlet, Γo : Outlet and
Γw : Wall. (b): Flow-matching domain Ωs ⊂ Ω with boundaries ∂Ωs = Γsi ∪ Γso ∪ Γsw,
which is at a distance s (mm) from Γw. (c): Error measurement domain Ed, which is
within d (mm) distance from Γw.

boundary ∂Ωs = Γsi ∪ Γso ∪ Γsw, where Γsi ⊂ Γi and Γso ⊂ Γo (see figure 1b). The
incompressible steady flow of a Newtonian fluid is considered in Ω. The inflow at Γi

is prescribed by the function g = g(x) : Γi → R
3, whereas the density and dynamic

viscosity of the fluid are represented by ρ and µ, respectively. We highlight that the
function g is such that g|γi

= 0, where γi is the boundary of surface Γi. The blood flow
velocity, u ∈ U

∗ with

U
∗ =

{
v ∈H1(Ω) | div v = 0, v|Γw

= 0, v|Γi
= g

}
, (2.1)

is solution of the steady state Navier-Stokes equations, which are written in variational
form as follows:

Find u ∈ U
∗ such that,

∫

Ω

[
ρ(∇u)u · û+ 2µ∇su · ∇sû

]
dΩ = 0 ∀ û ∈ Û

∗

, (2.2)

where the strain rate tensor is defined as ∇s(·) = [∇(·) + (∇(·))T ]/2, and

Û
∗

=
{
v̂ ∈H1(Ω) | div v̂ = 0, v̂|Γw

= 0, v̂|Γi
= 0

}
. (2.3)

The constraints divu = 0 and u|Γi
= g can be relaxed using corresponding Lagrange

multipliers p and r. Now, introducing the space U =
{
v ∈H1(Ω) | v|Γw

= 0
}
, problem

(2.2) is equivalent to

PΩ : find (u, p, r) ∈ U × L2(Ω)×H−
1

2 (Γi), such that
∫

Ω

[
ρ(∇u)u · û+ 2µ∇su · ∇sû− p div û− p̂ divu

]
dΩ (2.4)

=

∫

Γi

r̂ · (u− g) dΓ +

∫

Γi

(r · û) dΓ ∀ (û, p̂, r̂) ∈ U × L2(Ω)×H−
1

2 (Γi) .

For the control flow problem, assume that some observations ũt ∈ Ω are available. We
want to find a velocity field u, such that better matches the observations and, at the
same time, is constrained to be a solution of Problem PΩ . Based on a user-defined cost
function, O, such flow-matching problem can be cast as a mathematical optimisation
problem, which reads

PM : Find g which minimises O(g) = O
∗(u(g), g, ũt) such that PΩ holds, where
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O(g) =
α

2

(∫

Ωs

|u(g)− ũt|2 dΩ +

∫

Γsi

|u(g)− ũt|2 dΓ +

∫

Γso

|u(g)− ũt|2 dΓ

)
+

+
β

2

∫

Γi

|g|2 dΓ +
β1

2

∫

Γi

|∇τ g|2 dΓ . (2.5)

2.2. Optimality Conditions

The flow-matching metric is defined on Ωs, Γsi and Γso, which are considered as the
trust region of experimental observations (see figure 1b). Furthermore, ∇τ denotes the
surface gradient, and α, β and β1 are user-defined parameters. To obtain the necessary
optimality conditions for the optimisation problem PM , and to avoid the calculation of
the derivative of the velocity field with respect to function g, it is convenient to recast
the problem of constrained optimisation as a saddle point problem. Correspondingly, we
then construct the Lagrangian functional to relax the dependence of u from g, as follows

L (g,u, p, r,λu,λp,λr) = O
∗(u, g, ũt)−

∫

Γi

λr · (u− g) dΓ −

∫

Γi

r · λu dΓ

+

∫

Ω

[
ρ(∇u)u · λu + 2µ∇su · ∇sλu − p divλu − λp divu

]
dΩ , (2.6)

with (g,u, p, r,λu, λp,λr) ∈H
1

2

0 (Γi)×U ×L2(Ω)×H−
1

2 (Γi)×U ×L2(Ω)×H−
1

2 (Γi).

Further, let us consider the perturbations (̂·) to the fields (·) above, as (·) + τ (̂·), that is

g → g + τ ĝ g, ĝ ∈H
1

2

0 (Γi) , (2.7)

u→ u+ τ û u, û ∈ U , (2.8)

p→ p+ τ p̂ p, p̂ ∈ L2(Ω) , (2.9)

r → r + τ r̂ r, r̂ ∈H−
1

2 (Γi) , (2.10)

λu → λu + τ λ̂u λu, λ̂u ∈ U , (2.11)

λp → λp + τ λ̂p λp, λ̂p ∈ L2(Ω) , (2.12)

λr → λr + τ λ̂r λr, λ̂r ∈H−
1

2 (Γi) , (2.13)

where H
1/2
0 (Γi) is the space of traces over Γi of H1(Ω) functions which are zero over

γi, the boundary of surface Γi. The Gâteaux derivative of the Lagrangian functional is
denoted as follows 〈

∂L

∂a
, â

〉
=

d

dτ
L (. . . , a+ τ â, . . .)

∣∣∣∣
τ=0

. (2.14)

Our goal is to compute the Gâteaux derivative of O with respect to perturbation in g,
〈
∂O

∂g
, ĝ

〉
=

d

dτ
O(g + τ ĝ)

∣∣∣∣
τ=0

. (2.15)

The critical points of the Lagrangian (2.6) contain information on the aforementioned
Gâteaux derivative (2.15), and are characterised by

〈
∂L

∂(λu,λp,λr)
,



λ̂u

λ̂p

λ̂r




〉
= 0 ,

〈
∂L

∂(u, p, r)
,



û

p̂
r̂




〉
= 0 ,

〈
∂L

∂g
, ĝ

〉
= 0 . (2.16)

The first and second equations in (2.16) describe the direct and the so-called adjoint
equations to solve for the state variables (u, p, r) and the adjoint variables (λu,λp,λr),
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respectively. Finally, the last equation in (2.16) provides the optimality condition of cost
functional with respect to perturbations in g. Particularly, it also follows that

〈
∂O

∂g
, ĝ

〉
=

〈
∂L

∂g
, ĝ

〉∣∣∣∣ (u,p,r) solution of direct problem

(λu,λp,λr) solution of adjoint problem

. (2.17)

Let us now compute the Gâteaux derivatives (2.16). We first obtain the direct problem
by taking the derivative with respect to the variables (λu, λp,λr). Then, the following
problem is obtained:

Psta(g) : For g ∈H
1

2

0 (Γi), determine (u, p, r) ∈ U × L2(Ω)×H−
1

2 (Γi) such that
〈
∂L

∂λu

, λ̂u

〉
=

∫

Ω

[
ρ(∇u)u · λ̂u + 2µ∇su · ∇sλ̂u − p div λ̂u

]
dΩ

−

∫

Γi

r · λ̂u dΓ = 0 ∀ λ̂u ∈ U , (2.18)

〈
∂L

∂λp
, λ̂p

〉
= −

∫

Ω

λ̂p divu dΩ = 0 ∀ λ̂p ∈ L2(Ω) , (2.19)

〈
∂L

∂λr

, λ̂r

〉
= −

∫

Γi

λ̂r · (u− g) dΓ = 0 ∀ λ̂r ∈H−
1

2 (Γi) . (2.20)

The Euler-Lagrange equations associated to (2.18)-(2.19)-(2.20) are the classical Navier-
Stokes equations, which read as follows

ρ(∇u)u− µ∆u+∇p = 0 in Ω , (2.21)

divu = 0 in Ω , (2.22)

u = 0 on Γw , (2.23)

u = g on Γi , (2.24)

(−pI + 2µ∇su)n = r on Γi , (2.25)

(−pI + 2µ∇su)n = 0 on Γo . (2.26)

Secondly, we obtain the adjoint problem by taking the derivative of Lagrangian (2.6)
with respect to state variables (u, p, r). The adjoint problem then reads as

Padj(u, ũ
t) : For ũt, and u, solution of (2.21)–(2.26),

determine (λu, λp,λr) ∈ U × L2(Ω)×H−
1

2 (Γi), such that
〈
∂L

∂u
, û

〉
=

∫

Γo∪Γi

[
α (χΓso

+ χΓsi
)(u− ũt) · û

]
dΓ −

∫

Γi

(
λr · û

)
dΓ

+

∫

Ω

[
αχΩs

(u− ũt) · û+ ρ(∇û)u · λu + ρ(∇u)û · λu+

+ 2µ∇sû · ∇sλu − λp div û
]
dΩ = 0 ∀ û ∈ U , (2.27)

〈
∂L

∂p
, p̂

〉
= −

∫

Ω

p̂ divλu dΩ = 0 ∀ p̂ ∈ L2(Ω) , (2.28)

〈
∂L

∂r
, r̂

〉
= −

∫

Γi

r̂ · λu dΓ = 0 ∀ r̂ ∈H−
1

2 (Γi) , (2.29)

where, we considered the following indicator functions,

χΩs
=

{
1 in Ωs ,

0 in Ω \Ωs ,
χΓsi

=

{
1 in Γsi ,

0 in Γi \ Γsi ,
χΓso

=

{
1 in Γso ,

0 in Γo \ Γso .
(2.30)
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Applying standard variational arguments for (2.27)-(2.28)-(2.29) delivers the associated
Euler-Lagrange equations, as follows

αχΩs
(u− ũt)− ρ(∇λu)u+ ρ(∇u)Tλu − µ∆λu +∇λp = 0 in Ω , (2.31)

divλu = 0 in Ω , (2.32)

λu = 0 on Γw , (2.33)

λu = 0 on Γi , (2.34)

αχΓsi
(u− ũt) + (−λpI + 2µ∇sλu)n = λr on Γi , (2.35)

αχΓso
(u− ũt) + ρ(u · n)λu + (−λpI + 2µ∇sλu)n = 0 on Γo . (2.36)

Finally, let us compute the optimality condition, which states

Popt(λr) : For λr, solution of (2.31)–(2.36), determine g ∈H
1

2

0 (Γi), such that
〈
∂L

∂g
, ĝ

〉
=

∫

Γi

[
βg · ĝ + β1∇τg · ∇τ ĝ + λr · ĝ

]
dΓ = 0 ∀ ĝ ∈H

1

2 (Γi) . (2.37)

The Euler-Lagrange equations associated to (2.37) are the following,

βg − β1△τg = −λr on Γi , (2.38)

g = 0 on γi , (2.39)

where λr is solution of the adjoint problem Padj.

2.3. Gradient Descent Algorithm

The procedure to solve the optimality conditions at once amounts to solve the nonlinear
system of coupled variational equations Psta, Padj and Popt (or their corresponding
Euler-Lagrange equations (2.21)–(2.26), (2.31)–(2.36) and (2.38)–(2.39)). This problem
is highly nonlinear and a possible way to find the stationary point for the optimisation
problem PM is to evaluate the Gâteaux derivative (2.17) to drive a descent-like iterative
algorithm. In this case, first, given a guess g, the forward problem, Psta, is solved to
obtain the state variables, (u, p, r). Second, the adjoint problem, Padj, is evaluated using
the solution, u, from the direct problem. Then, using the adjoint variable, λr, obtained
from the adjoint problem, the gradient of the objective function with respect to the
parameter g can be calculated from (2.37), as follows,

DO(g)

Dg
= βg − β1△τg + λr on Γi . (2.40)

To ensure an acceptable, converging solution of the algorithm, it is usual to start
with solving the forward problem based on some initial guess, (u)0, for the flow field.
Therefore, we introduce a proper linearisation, P

lin
sta, of the forward problem, Psta, as

P
lin
sta(u

∗, g∗) : For u∗ and g∗, determine (u, p, r) such that
∫

Ω

[
ρ(∇u)u∗ · λ̂u + 2µ∇su · ∇sλ̂u − p div λ̂u

]
dΩ−

−

∫

Γi

r · λ̂u dΓ = 0 ∀ λ̂u ∈ U , (2.41)

−

∫

Ω

λ̂p divu dΩ = 0 ∀ λ̂p ∈ L2(Ω) ,

−

∫

Γi

λ̂r · (u− g∗) dΓ = 0 ∀ λ̂r ∈H−
1

2 (Γi) .
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The optimality condition, (2.37), ensures that the derivative of the objective functional
with respect to the control parameters vanishes at the critical point. In the gradient
descent algorithm, however, the optimality condition is not satisfied until the algorithm
converges. That procedure is described in algorithm 1 below. The fields (·)k correspond
to the fields (·) at k-th iteration. Parameter σ represents the step size, which is adjusted
dynamically. To test convergence, a small parameter ξ is prescribed as a tolerance to
potentially exit the algorithm, if necessary.

Algorithm 1 Steepest descent with dynamic step size

Given: α, β, β1 > 0 ⊲ Set optimisation parameters

Input : u0, g0, ũt ⊲ Provide initial guess and target flow

Output : uk ⊲ Flow field at last iteration k

1: procedure DataAssimilation(u0, g0, ũt)

2: σ ← 1, ξ ← 10−8 and k ← 0

3: (u0, ·, ·)←P
lin
sta(u

0, g0) ⊲ Evaluate linearised problem (2.41)

4: cost0 ← O
∗(u0, g0, ũt) ⊲ Evaluate cost function (2.5)

5: for k ← 1, n do

6: (·, ·,λk
r
)←Padj(u

k−1, ũt) ⊲ Evaluate adjoint problem (2.27)–(2.29)

7: sk ← −(βgk−1 − β1△τg
k−1 + λk

r
) ⊲ Set steepest descent direction (2.40)

8: repeat

9: gk ← gk−1 + σsk ⊲ Update control, using step size σ

10: (uk, ·, ·)←P
lin
sta(u

k−1, gk)

11: costk ← O
∗(uk, gk, ũt)

12: if costk > costk−1 then

13: σ ← 0.5σ

14: end if

15: until costk < costk−1

16: if (
∣∣costk − costk−1

∣∣)/(costk) > ξ then

17: σ ← 1.5σ

18: else

19: return uk

20: end if

21: end for

22: end procedure

2.4. Numerical Methods

The direct and adjoint problems were approximated using the finite volume method.
The linearised problem, P

lin
sta, was solved using the SIMPLE algorithm described by

Patankar & Spalding (1972). According to this, the momentum equation (2.21) is solved
(after proper linearisation and discretisation) starting with an initial guess for pressure.
In addition, a pressure correction equation is derived from the continuity equation (2.21)
obtaining the pressure correction field, which is then used to update both the pressure
and the velocity. To solve the discretised momentum equation, we applied the Gauss-



Boundary Control for Steady-States 9

Seidel method. Then, the discretised pressure correction equation was solved using a
generalised geometric-algebraic multi-grid (GAMG) solver using Gauss-Seidel iterations.
The adjoint equations (2.31)–(2.36) were discretised and solved in a similar way, following
the SIMPLE algorithm and using the same solvers as described for the solution of the
direct problem. That is, Gauss-Seidel iterations were used to solve the adjoint momentum
equation (2.31) (after its corresponding discretisation) and GAMG was used for solving
the discretised adjoint pressure correction derived from the adjoint continuity equation
(2.32). The entire optimisation algorithm including the direct and adjoint solvers were
implemented using the open source CFD library, OpenFOAM (Weller et al. 1998).

3. Preprocessing of Observational Data

The proposed approach was validated and tested based on data, which were generated
both artificially and empirically. Generated artificial data were used to validate the
approach on a simplified geometry, where analytical solutions are available (see section
4). The experimental data were generated with MRI measurements acquired for a glass
replica of a human aorta (see section 5). Both kinds of observations contain either some
artificially added or realistic noise, respectively. Hence, the data further requires some
preprocessing, prior to the application of the proposed optimisation algorithm. Let umri

denote the noisy data, which is either artificially generated or obtained from the MR
scan. First of all, a noise detection strategy was applied to the observed data, umri, to
eliminate potential spurious vectors, yielding a denoised flow field, u◦

mri. Secondly, the
vascular domain was segmented from (either artificial or experimental) MRI data and was
registered with the exact phantom geometry (for the experimental scenario). For both
artificial and experimental data, the geometries were available as either a user-generated
cylinder or the surface data representing the 3-D print of glass replica, respectively.
Furthermore, the computational mesh was created from such exact geometries. The
measured and denoised velocity field, u◦

mri, inside the segmented region of interest were
mapped into the computational mesh domain, using the transformation obtained from
the registration step. This mapping was performed using linear interpolation, yielding
a denoised flow field in the computational mesh domain denoted as ūmri. Finally, a
space projection was applied to ūmri to recover back the divergence-free property of the
flow data, which returns a flow field called ũ⋆. The preprocessing steps can be tabularly
summarised as follows:

umri
Outlier Detection
−−−−−−−−−−−→ u◦

mri

Registration
−−−−−−−−→ ūmri

Space Projection
−−−−−−−−−−→ ũ⋆

umri : Reconstructed flow field from 4-D flow MRI (or artificially generated),

u◦

mri : Denoised flow field defined in observational domain (usually coarse mesh),

ūmri : Linearly interpolated flow field mapped in the computational domain (fine mesh),

ũ⋆ : Divergence-free flow field defined in the computational domain.

3.1. Noise Detection

A variation of the usual median test, proposed by Westerweel & Scarano (2005) and
initially applied to PIV, was implemented and applied to MRI data, umri, for detecting
the spurious vectors in the measurements. The method utilises a normalization to the
original median test and considers the local fluctuations of the flow field. For a wide
variety of documented flow cases, Westerweel and Scarano verified the generality of the
method for Re numbers ranging from 10−1 to 107.
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Figure 2: For R = 1, the set Ux,N1
is shown with the 26 neighbours of Ux (not all

neighbours illustrated). Note that NR does not contain the tuple (0, 0, 0), hence Ux =
Ux,(0,0,0) is not included in Ux,N1

.

For a more formal description of the method, let us first introduce a set of 3-tuples,

NR = { (i, j, k) ∈ Z | −R 6 i, j, k 6 R ∧ R ∈ N } \ { (0, 0, 0) } . (3.1)

Secondly, we define Ux = Ux,(0,0,0) ∈ R
n to be the displacement vector at pixel

position x and Ux,NR
is the set of its [(2R+ 1)

3
− 1] neighbours. Figure 2 illustrates

the neighborhood for R = 1. Additionally, let Ux,med be the median of Ux,NR
. The

classical median test value is defined as (MT)
x,NR

= ‖Ux,med − Ux‖, which is passed
if it is smaller than a user defined threshold value ǫt. Furthermore, we define the set of
residuals, rx,NR

, as

rx,NR
= { r ∈ R | r = ‖U −Ux,med‖ ∧ U ∈ Ux,NR

} , (3.2)

and similarly, rx,med is defined to be the median of rx,NR
, which is used to normalise the

usual median test:

(NMT)
x,NR

=
‖Ux,med −Ux‖

rx,med + ǫ
< ǫt . (3.3)

Under uniform flow conditions the main normalization factor rx,med tends to yield
zero, hence a small and acceptable local fluctuation level ǫ is applied to compensate for
a potential division by zero and to account for remaining velocity fluctuations obtained
from cross correlation analysis. In practice, ǫ values between 0.1 and 0.2 might be used
(Westerweel & Scarano 2005; Raffel et al. 2007; Garcia 2011). In our case, ǫ = 0.2
performed well for the available MR flow data. Furthermore, ǫt = 2.25 is used as
validation threshold. Once the latter parameter is detected from numerical experiments,
it can be used for other data at similar flow regimes with the same imaging modality.

Prior to the application of noise detection, the observations, umri, obtained from MRI
measurements are initially already divergence-free. This is ensured by the constraints
applied during the reconstruction process of MRI data, which is out of scope of this
work. After denoising, however, the detected spurious vectors are erased from the data
which results in a flow field u◦

mri with gaps at certain positions within the observations.
This clearly violates the divergence-free property of observed data, umri. One possible
way to fill in the gaps would be the use of some interpolation scheme. However, such
schemes will not necessarily ensure a solenoidal flow field. Therefore, we rely on the
application of a projection over a divergence-free space at a later stage (see section 3.4)
to automatically fill in the aforementioned gaps and to recover back the divergence-free
property of the flow field.
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3.2. Segmentation and Registration

After the removal of outliers, the arterial structures, in which the analysis is to be
performed, are segmented from both the artificially generated flow data as well as from the
acquired MR measurements. The artificial data consists only in the flow field generated
in a cylindrical geometry, whereas the experimental MRI data comprises the anatomical
structures and the velocity field data (Markl et al. 2012). For validation studies, the
flow data were used for segmentation of the cylindrical geometry (see section 4), whereas
for experimental studies, the anatomical data from MR images were used to extract
the vascular geometry from the aorta replica (see section 5). The segmentation was
performed using the snake evolution method available in ITK-SNAP (www.itksnap.org)
and was smoothed using the tools available in the VMTK library (www.vmtk.org).

For the comparison with experimental MRI data, a high resolution aortic surface data
was already available from the 3-D print of glass replica. The latter was used to generate
the computational mesh for the exact geometry. However, after image acquisition and
segmentation, the flow data is misaligned with the exact geometry of replica. Therefore,
a registration step was necessary to align the measured flow field with the exact geometry
of replica. The rigid registration was performed using ITK point-set to point-set method
(www.itk.org). In the case of the artificially generated flow data in the cylindrical domain,
no further registration step was required, since the geometry was already aligned with
the segmented domain.

3.3. Mapping in the Computational Mesh

For both cases, the analytical geometry (cylinder) and the experimental geometry
(glass replica of aorta), the available exact geometries were used to generate the com-
putational mesh domain, which is used for the flow simulations. For both datasets, a
hexahedral mesh was created using OpenFOAM’s snappyHexMesh procedure. In the
case of experimental geometry, the mesh was rigidly transformed into its correspond-
ing segmentation using the mapping obtained from the registration step. After mesh
generation, the velocities, u◦

mri, from the denoised phase difference images (obtained
from 4-D flow MRI and denoised with the universal outlier detection scheme) with
limited resolution (i.e. in a coarse observational domain) were mapped into the fine
hexahedral mesh (computational domain for CFD simulations with high resolution) using
the linear interpolation method available in ITK (Johnson et al. 2013). As a result of the
combination of the linear interpolation and the previous noise detection process, the final
flow field (denoted by ūmri) in the CFD mesh is not divergence-free. The divergence-free
property is then recovered with the projection over a divergence-free space applied to the
velocity field in the CFD mesh as explained next.

3.4. Projection into Divergence-Free Space

Let ūmri ∈
(
L2 (Ω)

)3
be a given observation, projected in a bounded Lipschitz domain

Ω ∈ R
3 with boundary ∂Ω. According to Helmholtz-Hodge decomposition (HHD), the

velocity field can be decomposed into the sum of its divergence-free, curl-free and gradient
of harmonic components, if the fluid velocity is known at the boundary (Denaro 2003;
Harouna & Perrier 2012; Bhatia et al. 2013). In this work, we reconstruct the divergence-
free flow field by removing the gradient of harmonic component and solving the following
problem:

P⊥(ūmri) : Given ūmri, find ũ⋆ = ūmri −∇q, such that

∆q = ∇ · ūmri in Ω (3.4)
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(a) (b)

Figure 3: Divergence of flow field in a phantom of a human aorta acquired with MRI:
(a) Raw data, before the application of divergence-free projection operator, P⊥ .
(b) Divergence-free flow field, after the application of P⊥ .

q = 0 on Γw and ∇q · n = 0 on ∂Ω\Γw .

The problem P⊥ presents a projection over a space of divergence-free flow fields. Under
certain modifications of the BCs in P⊥, the HHD can be recovered.

The observations, ūmri, are assumed to be already modified by the application of the
universal outlier detection scheme (as described in section 3.1) prior to its projection
in the CFD mesh. The projection (u◦

mri → ūmri) is performed by linear interpolation.
Problem P⊥ is solved using OpenFOAM’s (Weller et al. 1998) conjugate gradient solver
(PCG) with simplified diagonal-based incomplete Cholesky preconditioner (DIC). Figure
3 illustrates, that the projection into the space of divergence-free vector fields (in the
phantom replica of human aorta) recovers the divergence-free property of the flow field
to a great extent.

4. Validation of the Methodology

To validate the approach and analyse its performance, we consider the flow of a fluid in
a cylindrical geometry, where an analytical solution of a fully developed flow is available.
In this work, first an analytical solution is generated for a fine hexahedral mesh of a
cylinder. Secondly, a much coarser voxel grid was used to simulate the MRI acquisition
pipeline. For each voxel, the MRI simulation was based on the averaged velocity field
provided by the fine mesh. Furthermore, some artificial noise was added to the voxel data
and, finally, such artificially generated MRI data was put into the preprocessing pipeline
described in section 3.

4.1. Poiseuille Flow

Consider the fully developed laminar flow of a Newtonian fluid in a cylinder of length
L, constant cross-sectional area A, and diameter D (R = D/2 the pipe radius). The
solution of the Navier-Stokes equations in this case yields

uext(r) =
∆PD2

16νρL

(
1−

r2

R2

)
. (4.1)

From (4.1), and calling Uavr the average velocity, it can be derived that uext(r) =
2Uavr

(
1− r2/R2

)
. Finally, taking Re = DUavr/ν, the analytical solution can be given

in terms of the Reynolds number and kinematic viscosity as,

uext(r) =
2νRe

D

(
1−

r2

R2

)
. (4.2)
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4.2. Evaluation of Analytical Solution

During the MRI acquisition process, the velocities are spatially averaged. To simulate
such a framework, the exact solution from equation (4.2) needs to be spatially averaged
to the desired MRI voxel size. Since it is not possible to calculate the exact solution for
an infinite number of points, its evaluation was performed on each cell center of a fine
hexahedral mesh with 3693600 cells. The cylinder radius was R = 1.2 cm, and the length
was L = 6 cm (see figure 4c). As the solution described by Hagen-Poiseuille equation (4.1)
is valid for laminar flow, the Re number was chosen to be 2000. Finally, as a reasonable
approximation of blood viscosity in human aorta, the kinematic viscosity was chosen
to be ν = 4.8 · 10−6 m2/s. Under these conditions, the maximum flow velocity in the
aforementioned cylinder approximately results in |u|max ≈ 0.8 m/s.

4.3. Generation of Artificial MRI Data

Acquired velocities with flow MRI are proportional to the phase-shift in the signal of
spins moving along a magnetic gradient field. Since, the phase of a signal is limited to 2π
radians, so is also the range of velocities, which can be detected uniquely. The highest
velocity, which is likely to be encountered within the region of interest, is hold within a
user-defined velocity encoding (VENC). For velocity magnitudes higher than the VENC,
the so-called velocity aliasing (or phase wrap-around artifact) occurs, which prevents the
unique assignment of the velocities. The quality of flow MRI suffers from velocity noise,
which is proportional to velocity encoding and inversely associated to signal-to-noise
ratio (SNR) in the related phase difference images (Pelc et al. 1991). As described by
Pelc et al. (1991), the standard deviation of velocity can be approximated as

σu ≈ (0.45 ∗VENC)/SNR . (4.3)

Gudbjartsson & Patz (1995) showed that in the existence of noise, the image intensity in
phase-contrast MRI is governed by the Rician distribution. For SNR greater than two, the
noise distribution is shown to be nearly Gaussian. The analytical solution evaluated in
the fine mesh was first averaged into an MRI grid of 2 mm voxel size in each direction as
shown in figure 4a. Gaussian white noise was added thereafter on the averaged velocities
as shown in figure 4b. VENC was chosen to be 120 cm/s in the longitudinal direction (z),
whereas it was 20 cm/s in the remaining directions (x and y). The standard deviation
of velocity was chosen such that the noise amplitude corresponds to a SNR of 20. As
the cylinder is user-defined, the acquired flow field is already registered with the exact
geometry. After the addition of artificial noise, the so simulated MRI data follows the
pre-processing pipeline (with exception of the registration stage) as described in section
3, before starting the CFD simulation. In what follows, usnr will represent the noisy
MRI measurements, which are mapped into the computational domain and for which a
decomposition is applied to project the field over a divergence-free space as described in
sections 3.3 and 3.4. The cylindrical computational domain is illustrated in figure 4c.

4.4. Optimisation with Exact Solution as Target Flow

First, we consider one case where the optimisation starts with a noisy flow field and is
performed against the exact solution. That is, the target flow field, ũt in the objective
function (2.5), corresponds to uext given by (4.2). In addition, the initial condition,
(u)0 = u0, corresponds to the artificially generated divergence-free flow field, usnr,
as described in section 4.3. Thus, algorithm 1 is executed with the input parameters
(usnr, gsnr,uext), where gsnr = usnr on Γi. In what follows, we will denote uopt = uk

opt

as the solution returned by the optimisation process after k iterations of algorithm 1. The
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(a) Exact averaged solution (b) Artificial noisy solution (c) Flow Domain

Figure 4: Artificially generated velocity images (2 mm isotropic voxel size) of both the
exact solution (a) and the integrated noise with a SNR of 20 (b), before their mapping
into the computational flow domain (c).

mesh is set up with 118800 cells including 114840 hexahedras and 3960 prisms. The size
of the mesh is suitable to obtain satisfactory results. Flow matching domains, Ωs, Γsi and
Γso (see figure 4c), cover the lumen including both inlet and outlet boundaries. In what
follows, we will give a meaning to the subscript, s, in flow-matching domain, Ωs. The
subscript, s, prescribes the extent of contraction of the whole domain Ω in millimetres
(mm), as follows,

Ωs = {x ∈ Ω | ‖x− y‖> s (mm) ∀y ∈ Γw } . (4.4)

In this set-up, we set s = 2. That is, the flow-matching domain, Ωs, is a contracted domain
of, Ω, such that the distance to Γw is at least 2 mm. Figure 4c shows the example of Ωs

in the cylinder. Furthermore, the optimisation parameters are α = 0.15, β = 10−4 and
β1 = 10−8. Figures 5a, 5b and 5c illustrate the norms of the flow matching, ‖ũt − u‖fm,
the control, ‖g‖co, and the surface gradient of the control, ‖∇τ g‖sg, which are defined
as follows:

‖ũt − u‖fm =


 100

avr
Ω
|ũt|




√
1

VΩ

∫

Ω

|ũt − u|2 dΩ , (4.5)

‖g‖co =


 1

avr
Γi

|ũt|




√
1

AΓi

∫

Γi

|g|2 dΓ , (4.6)

‖∇τ g‖sg =


 1

avr
Γi

|∇τ ũt|




√
1

AΓi

∫

Γi

|∇τg|2 dΓ , (4.7)

where VΩ is the volume of the entire domain, and AΓi
is the area at inlet. The norms

are normalised against the average magnitude of target velocity or its surface gradient.
As it can be seen in figure 5b, the norm of the control, ‖g‖co, rapidly grows at the

beginning, forcing the noisy vectors towards their desired position and remaining almost
constant after a while. In figure 5c, the sudden decrease in the norm of velocity surface
gradient, ‖∇τ g‖sg, shows the denoising process at inlet. Once a good approximation
is reached, the velocities at inlet are only being adjusted slightly during the rest of
iterations. This is continued until a sufficient flow matching is achieved in the entire
domain as illustrated in figure 5a.

Let us now focus on the results in the domain close to the cylinder wall. To confirm
the presented results also with respect to the accuracy in near-wall regions, we calculated
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Figure 5: The norms from optimisation with parameters α = 0.15, β = 10−4, β1 = 10−8.
The norms are plotted against the number of iterations in the horizontal axis.

both the root mean square error, nRMSEd = nRMSEd(uext,uopt), and the flow direction
error, FDEd = FDEd(uext,uopt), defined by

nRMSEd(ut,uc) =


 100

avr
Ed

|ut|




√
1

Vd

∫

Ed

|ut − uc|2 dEd , (4.8)

FDEd(ut,uc) =

√
1

Vd

∫

Ed

(
1−

ut · uc

|ut||uc|

)2

dEd . (4.9)

In what follows, the subscript, d, stands for the evaluation of the error within the
contracted subdomain Ed ⊂ Ω with volume Vd, which is defined as

Ed = {x ∈ Ω | ∃y ∈ Γw, ‖x− y‖< d (mm) } . (4.10)

That is, we want to evaluate the errors in domain, Ed, at near-wall regions (this domain is
not meant to be included in the flow-matching domain Ωs), where the nearest Euclidean
distance of all points in Ed, is at most d mm apart from the wall, Γw. Figure 4c features the
contracted domain in the cylinder. Note that both errors, (4.8) and (4.9), are evaluated
between the exact solution, uext, and the results obtained from the proposed optimisation
strategy, uopt in the contracted region, Ed. In addition, the error nRMSEd is normalised
against the average velocity magnitude of the observations in Ed.

For d = 2, the initial errors nRMSE2(uext,usnr) and FDE2(uext,usnr) between
the exact solution, uext, and noisy observations, usnr, were 26.65% and 1.1 · 10−2,
respectively. After optimal control, the root mean square error, as a percentage of average
velocity magnitude, were reduced to nRMSE2(uext,uopt) = 3.53% and the flow direction
error was FDE2(uext,uopt) = 3.5 · 10−5.

4.4.1. Sensitivity Analyses with Respect to Optimisation Parameters

The differences in the response as a consequence of changes in the optimisation param-
eters, β and β1, were examined. First of all, we set α = 0.15, which was experimentally
found to be an appropriate parameter for this use-case and will then be used in the
sensitivity analyses with respect to β and β1. Secondly, we kept β1 = 10−8 fixed and
modified β. Figures 6a and 6b show the flow-matching norm, ‖ũt − u‖fm, and the
control norm, ‖g‖co, for different β values. We observed, that for larger values, such as
β > 10−4, there was not enough control and the flow-matching was poor. This is because
the objective function was rapidly penalised at early stages of the optimisation, where the
optimiser needs larger controls in order to reduce the error. For smaller β values, however,
there is no hard penalization and the optimiser can apply larger controls as illustrated in
figure 6b. In general, the values 10−4 and 10−5 delivered satisfactory results and β = 10−5
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Figure 6: Sensitivities with respect to changes in β, where α = 0.15 and β1 = 10−8.
The norms are plotted against the number of iterations in the horizontal axis.

was observed to be the best choice. Furthermore, we fixed β at 10−5 and run the optimiser
with β1 set to 10−7, 10−8 and 10−9 (smaller values of β1 rendered unacceptable solutions
because of the lack of smoothing effect on noisy measurements), respectively. For different
β1 values, figures 7a and 7c show the plots for the flow-matching norm, ‖ũt −u‖fm, and
the surface gradient norm, ‖∇τ g‖sg. Let us first analyse the results between the values
10−7 and 10−8 for β1. It can be observed, that the norm of surface gradient is further
reduced for β1 = 10−8 over the successive iterations and better flow matching is achieved.
This can be explained by further investigation of the control norm ‖g‖co in figure 7b. We
can observe, that there is no enough control for β1 = 10−7. This shows, that even if we
are able to remove the noise at inlet (which is explained by the reduction in the value of
the surface gradient for β1 = 10−7), the controls were small, hence the velocities could
not be properly controlled. Secondly, let us consider the results for β1 values 10−8 and
10−9. Figure 7a shows that the flow-matching is achieved with an almost equally good
quality. In figure 7b, however, fluctuations along the iterations can be observed in the
norm of controls for β1 = 10−9. In addition, figure 7c shows that the fluctuations have also
an effect on the norm of the surface gradient, which was not as greatly reduced in early
iterations, as it was the case for β1 = 10−8. Finally, our interpretations are also confirmed
quantitatively at near-wall regions. Table 1 summarises the results from the sensitivity
analysis comparing the root mean square errors, nRMSE2, and the flow direction errors,
FDE2 for varying optimisation parameters. Our conclusion is that setting β1 = 10−8

delivers sufficiently accurate results and will be used in hereafter.

4.5. Optimisation with Noisy Solution as Target Flow

So far, we were able to validate the proposed approach using an analytical solution.
Actually, an exact solution is not available or cannot be provided by measurements
or experiments. Here, the performance of the optimisation framework was evaluated
considering the artificially generated noisy measurements as the target flow. That is, we
set ũt = usnr in the objective function (2.5). In order to avoid lack of control, the initial
flow field was low-pass filtered with a cutoff frequency of 0.5. The resulting flow field is
represented by ulpf in Ω and the algorithm 1 was executed with the input parameters
(ulpf , glpf ,usnr), where glpf = ulpf on Γi. Motivated by the findings of the previous
section, parameters β and β1 were set to 10−5 and 10−8, respectively. As before, the flow
matching was performed in Ωs with s = 2. Parameter α was adjusted to 0.5 for this
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Figure 7: Sensitivities with respect to changes in β1, where α = 0.15 and β = 10−5. The
norms are plotted against the number of iterations in the horizontal axis.

(β, β1)
(

10−3
, 10−8

) (

10−4
, 10−8

) (

10−5
, 10−8

) (

10−5
, 10−9

) (

10−5
, 10−7

)

nRMSE2(uext,uopt) 4.53 % 3.53 % 3.41 % 3.68 % 8.40 %

FDE2(uext,uopt) 7.0 · 10−5 3.5 · 10−5 2.8 · 10−5 1.4 · 10−4 4.8 · 10−5

Table 1: Dimensionless root mean square (nRMSE2(uext,uopt)) and flow direction
(FDE2(uext,uopt)) errors measured within the near-wall (2 mm) domain (E2).

set-up. Under these conditions, the quantitative results yielded 4.85% and 5.8 · 10−5 for
nRMSE2 and FDE2, respectively.

4.5.1. Sensitivity Analyses with Respect to Flow-Matching Domain

As described in section 4.3, the addition of artificial noise follows the same procedure
at each location in the flow domain and does not depend on the velocity magnitudes.
Hence, the near-wall regions with very low velocities contain almost no relevant signal, but
mostly noise. Moreover, near-wall regions also contain further errors due to partial volume
effects. Hence, such locations should rather be avoided in the flow-matching domain,
Ωs. Therefore, a further contraction in the subdomain was considered in addition. To
account for it, we performed a sensitivity analysis with respect to changes in the flow-
matching domain Ωs, using the same parameters as specified above. The simulations
were performed with varying s ranging from 1.5 to 4.

The norms of the control are shown in figure 8a for different values of s. It can be
observed, that larger controls result for s = 2.5. The magnitude of the control g decreases
if Ωs is further contracted or extended. This can be also confirmed by nRMSEd in figure
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Figure 8: Illustration of (a): norm of controls with respect to changes in flow-matching
domain, Ωs, and (b): root-mean-square errors at near-wall domain, Ed. The norms are
plotted against the number of iterations in the horizontal axis.

8b, where the x-axes represents s. The errors at near-wall regions are further decreased for
s = 2.5. In addition, figure 8b illustrates the error measurements (y-axes) for different
values of d represented in different colours. It can be observed that in all cases, the
optimisation framework delivers accurate results at locations of the domain close to
the lateral boundary (the wall). This is especially interesting for the evaluation of wall
shear stresses, one of the most important parameters for diagnostic purposes in the
cardiovascular field. Table 2 summarises the results in the near-wall domains Ed defined
for different distances from the wall (with d values ranging from 3 mm to 0.5 mm) for
varying flow-matching domains Ωs with varying s ranging from 1.5 to 4. E.g., for a flow-
matching domain Ω2.5, which is 2.5 mm apart from the wall Γw, the root-mean-square
error nRMSE2, which is evaluated within 2 mm distance of the wall Γw, was 4.52%,
and FDE0.5 was 5.0 · 10−5. This improves the accuracy in comparison to the results
from previous section, where the flow-matching domain was chosen to be Ω2. For s > 3,
the accuracy also starts dropping. This is a remarkable finding for the choice of Ωs. In
general, the flow-matching domain should be constructed such that it contains almost
all available information about the flow field in the luminal area (reaching from inlet to
outlet), whereas it should avoid using the information at near-wall locations. We have
shown that keeping the flow-matching domain 2.5 (mm) away from the vessel wall is a
very good choice for this case.

4.5.2. Comparison against classical CFD

Finally, the ability of boundary control approach to the measured flow field in the entire
domain was compared against the results delivered from the classical CFD strategy. The
latter is based on a single forward simulation, with Dirichlet boundary conditions, applied
(as usual) at the inlet boundary. Then, the classical CFD implies solving the problem
Psta, as stated by the variational equations (2.18)-(2.19)-(2.20). Thus, using the initial
guess usnr and the BC u = usnr on Γi, the linearised problem P

lin
sta(usnr, gsnr) was

solved with gsnr = usnr on Γi, iteratively until convergence is achieved. In what follows,
the solution obtained from a classical CFD approach will be denoted as ucfd. Motivated
by the conclusion in section 4.5.1, the optimisation algorithm was employed to deliver
the optimised solution uopt for parameters α = 0.5, β = 10−5, β1 = 10−8 and s = 2.5.
Furthermore, the optimisation is performed against the noisy solution as target flow and
initialised with the low-pass filtered flow field, as described in section 4.5. We want to
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s 1.5 2 2.5 3 3.5 4

nRMSE3 5.92 % 4.86 % 4.46 % 4.90 % 5.85 % 7.26 %

FDE3 6.1 · 10−5 4.8 · 10−5 4.2 · 10−5 4.4 · 10−5 4.7 · 10−5 5.0 · 10−5

nRMSE2 5.85 % 4.85 % 4.52 % 4.92 % 5.86 % 7.35 %

FDE2 7.5 · 10−5 5.8 · 10−5 5.0 · 10−5 5.3 · 10−5 5.7 · 10−5 6.0 · 10−5

nRMSE1 6.03 % 5.18 % 4.97 % 5.29 % 5.98 % 7.36 %

FDE1 1.0 · 10−4 7.9 · 10−5 6.9 · 10−5 7.3 · 10−5 7.7 · 10−5 8.2 · 10−5

nRMSE0.5 6.68 % 5.93 % 5.88 % 6.18 % 6.64 % 7.80 %

FDE0.5 1.3 · 10−4 1.0 · 10−4 8.7 · 10−5 9.2 · 10−5 9.8 · 10−5 1.0 · 10−4

Table 2: Dimensionless root mean square, nRMSEd(uext,uopt), and flow direction,
FDEd(uext,uopt), errors measured within the near-wall (d (mm)) domain, Ed, for
varying flow-matching domains, Ωs (s (mm) apart from the wall).

emphasise that, during the optimisation procedure, there is no knowledge available about
the exact solution at all.

Flow patterns were first inspected visually to obtain a qualitative interpretation.
Figure 9 shows the flow patterns in the domain, obtained from the artificially generated
noisy measurements, usnr, the computations via the traditional CFD method, ucfd, the
computations from the proposed optimisation framework, uopt, and finally the exact
solution, uext. It can be appreciated that the optimised flow is the one that better
resembles the exact solution. Especially, it features excellent qualitative agreement with
the exact solution at the inlet boundary and at locations near to the inlet, where
the traditional CFD approach suffers from inaccuracy, caused by the noisy boundary
condition.

To confirm the previous qualitative assessment, the simulation results from both the
classical CFD and the control approaches were quantitatively compared against the exact
solution. First, we evaluated nRMSEd and FDEd in the near-wall domain Ed for the
values d = 2, d = 1 and d = 0.5. Table 3 shows that the velocity field was reconstructed
by the optimisation algorithm much more accurately at the wall boundary, in comparison
to the classical CFD approach. Noisy observations, usnr, deliver almost no relevant
signal near the boundaries, which can be observed by the huge and increasing errors
for decreasing d values. In contrast, however, nRMSEd is more rapidly decreased when
applying the optimisation algorithm to obtain uopt, as we get closer to wall boundary.
This shows the feasibility of the optimisation approach, especially for its accuracy at
the boundaries. Furthermore, the flow direction errors are decreased to a much greater
extent for the optimised flow in comparison to the classical CFD method. This also
shows clearly that the noise at the inlet boundary was removed to a great extent by the
application of the control. In addition, it can be seen that FDEd is not further decreased
as we get close to the walls. This is expected, since the optimisation procedure itself
is a trade-off between decreasing the flow-matching errors in terms of magnitudes and
the flow direction errors based on the surface gradient. Both terms are included in the
objective function and are affected by the choice of parameters.

Finally, the maximum and average wall shear stresses were calculated from the nu-
merical results based on the classical CFD and from the optimisation procedure. These
quantities were then compared against the wall shear stresses computed with the ana-
lytical solution. Figure 10 shows the box plots to characterise the discrepancies between
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Figure 9: Flow patterns for fields usnr, ucfd, uopt and uext illustrated at inlet (Γi),
outlet (Γo) and at a curved surface (A) immersed in the lumen. The colours representing
the velocity magnitudes are scaled to the range of 0 and 0.8, whereas the corresponding
maximum velocities were |usnr|max ≈ 0.853, |ucfd|max ≈ 0.777, |uopt|max ≈ 0.784 and
|uext|max ≈ 0.8.

x = uext

nRMSEd(x,y) FDEd(x,y)

y = usnr y = ucfd y = uopt y = usnr y = ucfd y = uopt

d = 2 26.65 % 8.36 % 4.52 % 1.1 · 10−2 1.2 · 10−3 5.0 · 10−5

d = 1 61.30 % 11.79 % 4.97 % 1.6 · 10−2 1.7 · 10−3 6.9 · 10−5

d = 0.5 139.82 % 17.93 % 5.88 % 2.1 · 10−2 2.1 · 10−3 8.7 · 10−5

Table 3: Dimensionless root mean square (nRMSEd(uext,y)) and flow direction
(FDEd(uext,y)) errors for y = {usnr, ucfd, uopt }, measured within the near-wall (d
mm) domain (Ed). Optimisation is performed using measurements in the flow-matching
volume (Ωs), which is (s = 2.5 mm) apart from the wall boundary.

the WSS field obtained from the exact solution, uext, and the WSS fields obtained from
both the computations with classical CFD, ucfd, and the optimised solution, uopt.

5. Data Assimilation in a Realistic Geometry

The proposed approach was tested for the flow-matching control problem in a more
realistic geometry obtained from a glass replica of a human aorta. The geometry consists
of aortic root, ascending aorta, aortic arch without branches and descending aorta as
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y = |WSSopt|

y = |WSScfd|

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
y − |WSSext|

Figure 10: Box plot illustrating the differences (|WSScfd|−|WSSext|) and (|WSSopt|−
|WSSext|) in the horizontal axis, where the labels WSScfd, WSSopt and WSSext

represent the wall shear stresses corresponding to the fields ucfd, uopt and uext,
respectively.

illustrated in figure 1a. Optimisation results were first compared with measured data
both qualitatively and quantitatively. In addition, the results were compared against
the results when using classical CFD method prescribing Dirichlet boundary conditions.
Furthermore, a sensitivity analysis with respect to changes in the initial guess flow
field were analysed and discussed. Finally, the proposed approach was tested under flow
conditions with increasing Re numbers ranging approximately from 1200 up to 7100.

5.1. Experimental Setup

The in-vitro experiment was prepared in a scanner and control room including a 3T
MRI scanner from Philips. The glass replica, covered by a 6-element cardiac coil, was
placed in the scanner and connected to a centrifugal pump (in the control room) with
a maximum pressure of 3.9 bar. The connection was made with a PVC tubing of total
length 20 m with an inner diameter of 19 mm. The inlet and outlet of the pipe were
connected to a reservoir in the control room creating an open circuit. A ball bearing
valve was placed 1.5 m downstream the tube and was used to control the flow rate.
Figure 11 illustrates the experimental setup.

The reservoir was filled with a mixture of 24 liter H2O, 40 gr carboxymethyl cellulose
carboxymethyl (CMC) and 10 gr sulfate. The aim of CMC medium was to increase the
viscosity of the fluid to an approximately similar level of blood viscosity. On the other
side, sulfate acted as a contrast agent to increase the signal magnitude. For a temperature
of 27◦ C, the mixture featured a viscosity of 3.5 cP.

Five different image acquisitions were performed to obtain data with increasing Re
numbers. The maximum velocities in the obtained data were 1.06, 1.71, 2.26, 3.47 and
4.88 m/s and the corresponding Re numbers were 1223, 1860, 2105, 4636 and 7171,
respectively. Thus, the flow rates were controlled such that the obtained data first
contained laminar flow, then included transitional regions, and finally, consisted of
turbulent flow. We highlight that the flow model does not account for turbulence, and
therefore we acknowledge the model deficiency for high Re numbers. Even so, we report
the results to demonstrate the capabilities of the methodology under extreme conditions.
Consideration of turbulence models is matter of current research.

A 3-D spoiled Gradient-Echo sequence with flow encoding gradients was used for the
flow-MRI acquisitions. The eddy-current induced background phase was compensated
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Figure 11: Experimental setup for the glass replica of human aorta.

by application of linear phase correction. The acquisition parameters were chosen as
flip angle: 10o, time of repetition and echo (TR/TE): 2.6/4.87 ms, field of view (FOV):
[244× 244× 62] mm3 and voxel size: [1.4× 1.4× 1.5] mm3. Furthermore, considering the
increasing Re numbers of the measured data, the corresponding VENCs were chosen as
120, 200, 260, 380 and 520 cm/s, respectively.

5.2. Data Preprocessing

For the generation of the computational mesh, the aortic replica was first segmented
(see figure 12a) from the anatomical data and then smoothed (see figure 12b). Thereafter,
the available exact geometry (see figure 12d), with the region of interest which defines
the inlet/outlet boundaries highlighted, was registered with the smoothed geometry as
shown in figure 12c. Finally, a hexahedral mesh with 122079 cells was created using the
exact geometry cut by the region of interest. Figures 12e–12f illustrate the computational
mesh.

Having the computational mesh generated, the measured flow data followed into
the preprocessing pipeline as described in section 3. In what follows, uRe

snr with Re =
{ 1223, 1860, 2105, 4636, 7171 } will represent the flow fields derived after the application
of divergence-free space projection, that is after solving the problem P⊥ described by
the equation (3.4).

5.3. Simulation Results

We will first present the numerical results for Re = 1223 based on the flow data
denoted by, uRe

snr, mapped on the computational mesh domain and projected into a
divergence-free space. In what follows, uRe

snr with Re = 1223 will be simply denoted as
usnr. The target flow in the objective function (2.5) is set as ũt = usnr. A low-pass
filtered flow field of this target flow with a cut-off frequency of 4 was used as the initial
guess, which will be denoted as (u)0 = u4.0

lpf . The frequency was chosen such that the flow
field being low-pass filtered is not over-smoothed and remains close to the actual target
field. The maximum magnitude of low-pass filtered flow data was 0.98 m/s, whereas for
the target flow it was 1.06 m/s. Flow matching was performed in Ωs with s = 2.5 and
the optimisation parameters were chosen as β = 10−5, β1 = 10−6 and α = 0.25. That
is, algorithm 1 is executed in the domain as represented in figure 1a with the input
parameters (u4.0

lpf , g
4.0
lpf ,usnr), where g4.0

lpf = u4.0
lpf on Γi.

The flow patterns predicted by the optimisation algorithm and by the classical CFD
method were first qualitatively compared against the measured data by visual inspection.
Figure 13 shows the streamlines corresponding to the different velocity fields. Figure 14



Boundary Control for Steady-States 23

(a) Segmented Domain (b) Smoothed Domain (c) Registration

(d) Exact Geometry (e) Mesh at Inlet (f) Mesh in Domain

Figure 12: Mesh generation from exact geometry (d) including the segmentation (a) of
domain from anatomical data, smoothing (b) and registration (c) of exact geometry with
the smoothed geometry. A region of interest (d) defines the computational domain for
which a hexahedral mesh with 122079 cells is created (e), (f).

illustrates the magnitude of the velocity field in a cross-sectional slice covering part of
the ascending and descending aorta. Furthermore, figure 15 highlights the wraps of the
velocity profile for a set of transversal slices. It can be observed that the measured velocity
field, usnr, and the optimised solution, uopt, are reasonably similar, whereas the flow
field predicted by the classical CFD method is relatively far from the measured data.

The results were also analysed quantitatively and compared against the measured data.
The flow matching norm between the observations and optimised flow, ‖ũt − uopt‖fm,
resulted in 37% of the average velocity magnitude of observations, whereas the norm
between the observations and the computations from traditional CFD method, ‖ũt −
ucfd‖fm, was 50%. This supports the fact, that the optimisation delivers a better solution
when compared with the classical CFD approach. Furthermore, the root-mean-square
errors, nRMSEd(usnr,uopt), were evaluated at near-wall regions. For d = 2, 1, 0.5, the
errors were 49, 65 and 82% of average flow magnitude of observed data, respectively. As
expected in this case, the computed flow diverges even more from the observed data, as
getting closer to the wall. This is due to the fact that the phantom material itself delivers
almost no relevant signal at and near the boundary, but mainly noise. For the classical
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Figure 13: Streamlines for the different velocity fields.

Figure 14: Velocity magnitude in a cross-sectional slice for the different velocity fields.

Figure 15: Wraps of the velocity fields at a set of cross-sectional slices.

CFD method, nRMSEd(usnr,ucfd) was 52, 68 and 89% for d = 2, 1, 0.5, respectively.
In addition, we evaluated the errors between ucfd and uopt to quantify the differences
of the flow fields predicted by the classical CFD method and the optimisation strategy.
For d = 2, 1, 0.5, the errors nRMSEd(ucfd,uopt) were 41, 46 and 49%, respectively. This
shows, that the differences in the predictions grow as getting closer to the wall. The
normalised difference, ‖WSScfd−WSSopt‖ (see equations (5.1) and (5.2)), between the
WSS fields corresponding to the velocity fields ucfd and uopt was 43.72%. Furthermore,
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(a) (b) (c)

Figure 16: (a), (b): Magnitude fields of wall shear stresses, |WSScfd| and |WSSopt|,
corresponding to the velocity fields ucfd and uopt, (c): Normalised difference field,
100

Nwss

|WSSopt −WSScfd| on Γw, where Nwss is as described in equation (5.1)

figures 16a and 16b illustrate the magnitudes of the WSS fields, WSScfd and WSSopt,
and figure 16c shows their normalised difference field. In addition, figures 17a and 17b
illustrate the pressure fields of the predictions from the classical CFD method and
from the optimisation strategy, respectively, whereas figure 17c shows their normalised
difference field.

Nwss =
1

AΓw

∫

Γw

|WSSopt +WSScfd|

2
dΓ , (5.1)

‖WSSopt −WSScfd‖ =
100

Nwss

√
1

AΓw

∫

Γw

|WSSopt −WSScfd|2 dΓ . (5.2)

5.4. Sensitivity with Respect to Initial Guess

To analyse the performance and sensitivity of the optimisation strategy with respect to
changes in the initial guess, different flow fields were generated from the observations to
be applied as initial guess flow. The observations were low-pass filtered with varying cut-
off frequency 3.5 and 4.5, denoted as u3.5

lpf and u4.5
lpf , respectively. The maximum velocity

magnitude was 1.16 m/s for the flow field u3.5
lpf , whereas it was 0.84 m/s for u4.5

lpf . In
addition, a zero flow field, u0, was prepared as initial guess, that is u0 = 0 in Ω. Under
the same conditions as in section 5.3, algorithm 1 was executed with input parameters
(u3.5

lpf , g
3.5
lpf ,usnr), (u

4.5
lpf , g

4.5
lpf ,usnr), (usnr, gsnr,usnr) and (u0, gsnr,usnr), where g3.5

lpf =

u3.5
lpf , g

4.5
lpf = u4.5

lpf and gsnr = usnr on Γi, correspondingly.
Visual inspection revealed no remarkable differences in the final optimised velocity

fields. Table 4 shows the flow-matching norms, the averaged WSS and the number of
iterations for the optimisation starting with initial conditions, usnr, u0, u

3.5
lpf , u

4.0
lpf and

u4.5
lpf , respectively. Both the qualitative and quantitative results indicate that there was

no significant changes in the solution with respect to changes in the initial guess provided
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(a) (b) (c)

Figure 17: Pressure fields corresponding to predictions from classical CFD, pcfd, from

optimisation strategy, popt, and their normalised difference field,
100

Np
|popt− pcfd| on ∂Ω,

where Np =
1

VΩ

∫

Ω

|popt + pcfd|

2
dΩ .

Init. Guess (u)0 = usnr (u)0 = u0 (u)0 = u
3.5

lpf (u)0 = u
4.0

lpf (u)0 = u
4.5

lpf

Numb. Iters. 955 854 640 492 251

‖ũt − u‖fm 37.17 % 37.01 % 37.03 % 36.84 % 36.91 %

avr(|WSSopt|) 2.83 2.85 2.85 2.87 2.88

Table 4: Results of optimised solutions (number of iterations, flow-matching norm and
average WSS) for different initial guesses usnr, u0, u

3.5
lpf , u

4.0
lpf and u4.5

lpf .

to the optimisation algorithm. However, the number of iterations to reach convergence
was rather sensitive to this initial guess.

5.5. Data assimilation for different Reynolds numbers

In what follows, the measured and preprocessed data will now be denoted as uRe
snr

representing the flow fields with different Re numbers, as described in section 5.1. Using
the available data with increasing flow rates and setting the initial guesses to 0, algorithm
1 was executed with the input parameters (0, gRe

snr,u
Re
snr), where gRe

snr = uRe
snr on Γi

and Re = { 1223, 1860, 2105, 4636, 7171 }. The results are summarised in table 5. For
considerate Re numbers, such as 1223, 1860 and 2105, it can be observed that the errors
predicted by the classical CFD grow faster than the errors predicted by the optimisation
strategy for increasing Re numbers. This confirms the feasibility of the proposed approach
in comparison to traditional CFD methods. For higher Re numbers, such as 4636 and
7171, the model deficiency counteracts the role of the optimisation, yielding errors which
are not to be considered seriously. However, the errors remain bounded, and are a clear
indication that consideration of turbulence is a matter worth of research in the future.
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x = u
Re

snr nRMSE2(x,y) FDE2(x,y)

Re y = ucfd y = uopt y = ucfd y = uopt

1223 51.72 % 48.78 % 0.41 0.48

1860 55.21 % 47.61 % 0.38 0.37

2105 63.32 % 48.36 % 0.39 0.42

4636 50.30 % 48.71 % 0.39 0.34

7171 55.41 % 56.98 % 0.41 0.37

Table 5: Root mean square errors (nRMSE2(usnr,y)) and flow direction errors
(FDE2(usnr,y)) within the near-wall (2 mm) domain (E2) for different Re numbers,
where y = {ucfd, uopt }.

6. Conclusion

In this work, an optimise-then-discretise approach was developed for the flow control
problem using 4-D flow MRI data in the context of computational hemodynamics. The
methodology was validated against an analytical solution as well as against experimental
MR measurements performed in a glass replica of a human aorta.

The proposed control algorithm was analysed in detail in order to assess the capa-
bilities of the methodology to reconstruct blood flow in near-wall regions, targeting the
computation of hemodynamically relevant quantities such as the wall shear stress.

The method proved to deliver physically consistent flow fields with substantial reduc-
tion of noise present in the 4-D flow MRI measurements, outperforming the predictive
capabilities of standard CFD approaches.

Overall, the flow control algorithm demonstrated robustness and feasibility towards
reconstruction of flow fields from partial 4-D flow MRI measurements under different
flow regimes with increasing Re numbers. Reconstruction of more complex flow structures
observed in transient fluid dynamics and accounting for turbulence are out of the scope
of the present work, and are matter of current research.
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