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Abstract

This paper is concerned with the high frequency homogenization of bubbly
phononic crystals. It is a follow-up of the work [H. Ammari et al., Subwavelength
phononic bandgap opening in bubbly media, J. Diff. Eq., 263 (2017), 5610–5629]
which shows the existence of a subwavelength band gap in such media. We show
that the first Bloch eigenvalue achievs its maximum at the corner of the Brillouin
zone. By computing the asymptotic of the Bloch eigenfunctions in the periodic
structure near that critical frequency, we demonstrate that these eigenfunctions can
be decomposed into two parts: one part is slowly varying and satisfies a homoge-
nized equation, while the other is periodic across each elementary crystal cell and is
varying. This is very different from the usual homogenization where the second part
is constant. This homogenization theory is termed high frequency homogenization
in the sense that it is concerned with the asymptotic of wave fields near the critical
frequency where a subwavelength band gap opens rather than the zero frequency.
Our results shed light into the wave propagation theory in metamaterials. In par-
ticular, they rigorously justify, in the nondilute case, the observed superfocusing of
acoustic waves in bubbly crystals near and below the maximum of the first Bloch
eigenvalue.
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1 Introduction

This paper is devoted to the understanding of wave propagation in metamaterials (see
for instance [17]) which consists of subwavelength resonators arranged periodically in
a background medium. These metamaterials differ from the usual photonic/phononic
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crystals (see for instance [20]) in the sense that their periods are much smaller than the
free space wavelength of the functioning frequency of the materials. Note that in the
later case the periods are comparable to the wavelengths. Because of the subwavelength
scale of the period, a homogenization theory is possible to describe the marcoscopic
behavior of the materials, and this results in effective media having negative parameters
such as negative mass, negative bulk modulus, negative electric permittivity, negative
magnetic permeability, or double negative refractive index, or high contrast. The study
of these metamaterials has drawn increasing interest nowadays because of their many
important applications in fields such as superresolution, cloaking, and novel optic and
phononic devices [32, 31].

There are many interesting mathematical works related to the homogenization the-
ory for metamaterials, see for instance [13, 22, 26, 11]. Nevertheless, there is still much
to understand about the wave propagation in these materials. Compared to the classic
homogenization theory [12, 16, 1, 30], the local resonance or cell resonance [27, 28] in the
quasi-static regime produces strong interactions among the cells in the periodic structure
and this can induce rich physics on the subwavelength scale which cannot be understood
by the standard homogenization theory. Especially, one is interested in the high fre-
quency regime when the frequency is near the critical frequency where a subwavelength
band gap of the periodic structure opens. Because this gap opens in the quasi-static
regime (corresponding to a subwavelength scale), a homogenization theory is possible
for such a structure. We note that the critical frequency usually occurs at the corner (or
edge in the two dimensional case) of the Brillouin zone in three dimensions where one has
typically anti-periodic Bloch eigenfunctions. In this frequency regime, the Bloch eigen-
functions vary on the microscale (the scale of the elementary crystal cell), and thus, a
homogenization theory which describes the macroscopic behavior of the wave field seems
impossible at first glance. This also makes the interpretation of the possible homogeniza-
tion theory a perplexing task. On the other hand, the standard homogenization theory
is applicable to the Bloch eigenfunctions which are near the center of the Brillouin zone
and hence a much lower frequency regime. For this reason, the homogenization theory
developed in this work is termed a high frequency homogenization.

The bubbly media, because of the simplicity of the constituent resonant structure,
the air bubbles, become a natural model for such studies. It is known that a single
bubble in the water possesses a quasi-static resonance which is called the Minnaert
resonance [29, 4]. This resonance makes the air bubble an ideal subwavelength resonator
(the bubble can be two order of magnitude smaller than the wavelength at the resonant
frequency) and hence a basic building block for metamaterials. We refer to [24, 23, 25,
33] for the experiments which motivated our series of studies of bubbles [4, 2, 10, 9].
In [9], using the fact that a single bubble can be well approximated by a monopole,
and the point interaction approximation, we derived an effective medium theory for
bubbly media consisting of dilute bubbles which may not be arranged periodically in a
bounded domain. Our results show that, in the dilute case, near and below the Minnaert
resonant frequency, the effective medium has high refractive index, which explains the
superfocusing phenomenon observed in the experiment reported in [23]; while near and
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above the Minnaert resonant frequency, the effective medium is dissipative.
Motivated by this work, we investigated the band structure of a bubbly phononic

crystal which is made of periodically arranged bubbles in a homogeneous fluid [2]. We
showed that there exists a subwavelength band gap in such a structure. This subwave-
length band gap is mainly due to the cell resonance of the bubbles in the quasi-static
regime and is quite different from the usual band gaps in photonic/phononic crystals
where the gap opens at wavelength which is comparable to the period of the structure
[19, 3, 5]. We refer to [10] for the related work on bubbly metasurfaces which is a
homogenization theory for a thin layer of periodically arranged bubbles mounted on a
perfect reflection surface. We also refer to [14, 15] and the references therein for the
other interesting related works on wave propagation in bubbly media.

In this paper, based on the previous two works: effective medium theory for bubbly
media in the dilute regime and the existence of a subwavelength band gap in the bubbly
crystals, we further investigate the homogenization theory of the bubbly crystal near the
frequency where the band gap opens. Our main approach is based on rigorous asymptotic
analysis and layer potential techniques [5] which enables us to derive explicit formulas
for the Bloch eigenfunctions. It is these formulas which make both the homogenization
theory and the justification of the superfocusing phenomenon in the nondilute case
possible.

We remark that our paper is related to the works [18, 11]. There are three major
differences. (i) The homogenization in [18, 11] is concerned with the perturbation of
the standing waves which are the Bloch eigenfunction at the edge of the Brillouin zone
(in the two dimensional case). Our work is concerned with Bloch eigenfunctions near
which the subwavelength band gap opens. We show that the band gap opens at the
corner (edge in two dimensions) of the Brillouin zone; (ii) The main approach in [18, 11]
is based on a two-scale analysis, while our work relies on layer potential techniques;
(iii) The theory in [18, 11] may be restricted to the two dimensional case for certain
structures, while our theory is applicable to any metamaterial where a subwavelength
band gap exists. To sum up, this work complements the results of [18, 11].

The paper is organized in the following way. In Section 2, we state the high frequency
homogenization problem for the bubbly crystal, which we are interested in. Then in
Section 3, we introduce some preliminaries on the layer potentials and quasi-periodic
layer potential techniques. Next in Section 4, we consider the normalized unit cell
problem. We show that the first Bloch eigenvalue attains its maximum at the corner
of the Brillouin zone. We also derive its asymptotic near that corner point. Finally
in Section 5, we derive the high frequency homogenization theory by analyzing the
asymptotic of the Bloch eigenfunctions when the frequency is near the critical frequency
which is the maximum of the first Bloch eigenvalue and where a band gap opens.

2 Problem setup

We first describe the bubble phononic crystal under consideration. Let Y be the unit
cell [−1/2, 1/2]3 in R

3, and let D be a bounded and simply connected smooth domain
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contained in Y . The bubbles are periodically arranged with period s > 0 in each
direction. More precisely, let Ds = sD be the domain occupied by the bubble in the
unit cell Ys = [− s

2 ,
s
2 ]

3. Then the bubbles occupy the domain ∪n∈Zd(sD + n). We
denote by ρb and κb the density and the bulk modulus of the air inside the bubbles,
respectively, and by ρ and κ the corresponding parameters for the background medium.
Let Bs = [−π

s ,
π
s ]

3 be the Brillouin zone corresponding to the periodic structure. The
Bloch eigenvalues and eigenfunctions are solutions to the following α-periodic equations
in the cell Ys for each α ∈ Bs:























































∇ · 1
ρ
∇u+

ω2

κ
u = 0 in Ys\Ds,

∇ · 1

ρb
∇u+

ω2

κb
u = 0 in Ds,

u+ − u− = 0 on ∂Ds,

1

ρ

∂u

∂ν

∣

∣

∣

∣

+

− 1

ρb

∂u

∂ν

∣

∣

∣

∣

−

= 0 on ∂Ds,

e−iα·xu is periodic.

(2.1)

Here, ∂/∂ν denotes the outward normal derivative and |± denote the limits from outside
and inside D.

Let

v =

√

κ

ρ
, vb =

√

κb
ρb
, k =

ω

v
and kb =

ω

vb

be respectively the speed of sound outside and inside the bubbles, and the wavenumber
outside and inside the bubbles. We also introduce the dimensionless contrast parameter

δ =
ρb
ρ
.

For bubbly media, we assume that δ ≪ 1, justifying the high contrast nature of the
media. In realistic setup, δ may be of the order of 10−3. On the other hand, we assume
that

kb
k

=
v

vb
=

√

ρbκ

ρκb
= O(1),

i.e., the wave numbers inside and outside the bubbles are comparable.
It is known that (2.1) has nontrivial solutions for discrete values of ω which are called

the Bloch eigenvalues. These eigenvalues can be arranged in the following increasing
manner (see [5]):

0 ≤ ωα
1,s ≤ ωα

2,s ≤ · · · .
We denote the Bloch eigenfunction corresponding to the eigenvalue ωα

j,s by uαj,s.
We have the following band structure of propagating frequencies for the given periodic

structure:

[0,max
α

ωα
1,s] ∪ [min

α
ωα
2,s,max

α
ωα
2,s] ∪ [min

α
ωα
3,s,max

α
ωα
3,s] ∪ · · · .
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In [2], it is shown that there is a subwavelength band gap in the above band structure
for fixed s (say s = 1) and sufficiently small δ. More precisely, one has

ωs
∗ := max

α
ωα
1,s = O(δ

1

2 ) < min
α
ωα
2,s = O(1).

In this paper, we investigate the asymptotic properties of the Bloch eigenfunctions in
the bubbly crystal when the frequency ω is near the critical frequency ωs

∗ where the
subwavelength band gap opens for s≪ 1. By a scaling argument, it can be shown that

ωs
∗ =

1

s
ω1
∗.

In order to fix the critical frequency in the limit when s tends to zero, we rescale the
contrast parameter δ as follows:

δ = O(s2).

Then the critical frequency remains of order one in the limiting process when s tends to
zero. Thus we are in the situation when the wavelength (of the free space) is of order one
and the cell size is of order s≪ 1. As a result, one can develop a homogenization theory
for such a structure. Indeed, in what follows, we shall show that the Bloch eigenfunctions
uα1,s, when the frequency is near the critical frequency ωs

∗, can be decomposed into two
parts: one part is slowly varying and satisfies a homogenized equation, while the other is
periodic across each elementary crystal cell and is rapidly varying. This is very different
from the usual homogenization where the second part is constant. Our main approach
is the layer potential techniques which we shall introduce in the next section. It is also
worth emphasizing that the rapid variations of the second part of the solution justifies
the superfocusing of acoustic waves in bubbly crystals experimentally observed in [21].

3 Preliminaries

We collect notations and some results regarding the Green function and the quasi-
periodic Green’s function for the Helmholtz equation in three dimensions. We refer
to [5] and the references therein for the details.

We introduce the single layer potential Sk
D : L2(∂D) → H1(∂D), H1

loc(R
3) associated

with D and the wavenumber k defined by, ∀x ∈ R
3,

Sk
D[ψ](x) :=

∫

∂D
Gk(x,y)ψ(y)dσ(y),

where

Gk(x,y) := − eik|x−y|

4π|x− y| ,

is the Green function of the Helmholtz equation in R
3, subject to the Sommerfeld radi-

ation condition. Here, L2(∂D) is the space of square integrable functions and H1(∂D)
is the standard Sobolev space.
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We also define the boundary integral operator (Kk
D)

∗ : L2(∂D) → L2(∂D) by

(Kk
D)

∗[ψ](x) := p.v.

∫

∂D

∂Gk(x,y)

∂ν(x)
ψ(y)dσ(y), ∀x ∈ ∂D.

Here p.v. stands for the Cauchy principal value. We use the notation ∂
∂ν

∣

∣

∣

±
indicating

∂u

∂ν

∣

∣

∣

±
(x) = lim

t→0+
〈∇u(x± tν(x)), ν(x)〉,

with ν being the outward unit normal vector to ∂D. Then the following jump formula
holds:

∂

∂ν

∣

∣

∣

±
Sk
D[φ](x) =

(

±1

2
I + (Kk

D)
∗

)

[φ](x), a.e. x ∈ ∂D.

We now define quasi-periodic layer potentials. Let Y = Y1 be the unit cell [−1/2, 1/2]3.
For α ∈ [−π, π]3, the function Gα,k is defined to satisfy

(△x + k2)Gα,k(x,y) =
∑

n∈R3

δ(x− y − n)ein·α,

where δ is the Dirac delta function and Gα,k is α-quasi-periodic, i.e., e−iα·xGα,k(x,y) is
periodic in x with respect to Y . It is known that Gα,k can be written as

Gα,k(x,y) =
∑

n∈Z3

ei(2πn+α)·(x−y)

k2 − |2πn+ α|2 ,

if k 6= |2πn+ α| for any n ∈ Z
3. We remark that

Gα,k(x,y) = Gα,0 +
∞
∑

ℓ=1

k2ℓGα,#
ℓ := Gα,0(x,y)−

∞
∑

ℓ=1

k2ℓ
∑

n∈Zd

ei(2πn+α)·(x−y)

|2πn+ α|2(ℓ+1)
(3.1)

when α 6= 0, and k → 0.
We are ready to define the quasi-periodic single layer potential Sα,k

D :

Sα,k
D [φ](x) =

∫

∂D
Gα,k(x,y)φ(y)dσ(y), x ∈ R

3.

Then Sα,k[φ] is an α-quasi-periodic function satisfying the Helmholtz equation (△ +
k2)u = 0. In addition, one has the jump formula:

∂

∂ν

∣

∣

∣

±
Sα,k
D [φ](x) =

(

±1

2
I + (K−α,k

D )∗
)

[φ](x), a.e. x ∈ ∂D,

where (K−α,k
D )∗ is the operator given by

(K−α,k
D )∗[φ](x) = p.v.

∫

∂D

∂

∂ν(x)
Gα,k(x,y)φ(y)dσ(y).
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We remark that S0
D, S

α,0
D : L2(∂D) → H1(∂D) are invertible for α 6= 0; see [5]. Moreover,

the following decomposition holds for the layer potential Sα,k
D :

Sα,k
D = Sα,0

D +
∞
∑

ℓ=1

k2ℓSα
D,ℓ with Sα

D,ℓ[ψ] :=

∫

∂D
Gα,#

ℓ (x− y)ψ(y)dy, (3.2)

where the convergence holds in B(L2(∂D), H1(∂D)), the set of linear bounded operators
from L2(∂D) onto H1(∂D).

Finally, we introduce the α-quasi capacity of D, denoted by CapD,α,

CapD,α :=

∫

Y \D
|∇u|2,

where u is the α-periodic harmonic function in Y \D̄ with u = 1 on ∂D. For α 6= 0, we

have u(x) = Sα,0
D

(

Sα,0
D

)−1
[1](x) and

CapD,α := −
∫

∂D

(

Sα,0
D

)−1
[1](y)dσ(y).

Moreover, we have a variational definition of CapD,α. Indeed, let C∞
α (Y ) be the set of

C∞ functions in Y which can be extended to C∞ α-periodic functions in R
3. Let Hα

be the closure of the set C∞
α (Y ) in H1, and let Vα := {v ∈ Hα : v = 1 on ∂D}. Then

we can show that

CapD,α = min
v∈Vα

∫

Y \D
|∇v|2.

4 The Bloch eigenvalue in the unit period case

We consider the bubbly phononic crystal when the period s = 1 in this section. For
ease of notation, we write ωα

1,1 = ωα
1 and uα1,1 = uα1 . We are interested in the point in

the Brillouin zone where the maximum of ωα
1 is achieved. It is clear that due to time

reversal symmetry, we have
ωα
1 = ω−α

1 .

On the other hand,

ωα
1 = ω

α+(2π,2π,2π)
1 .

Therefore,

ωα
1 = ω

−α+(2π,2π,2π)
1 .

It then follows that (π, π, π) is a critical point of ωα
1 . In what follows, we prove that

(π, π, π) is a maximum point with the following symmetry assumption on D.

Assumption 4.1 D is symmetric with respect to planes {(x1, x2, x3) : xj = 0}, j =
1, 2, 3.
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Proposition 4.2 Suppose that Assumption 4.1 holds. Let α∗ := (π, π, π). Then CapD,α

and ωα
1 attain their maxima at α = α∗.

Proof. By the variational principle, we have the following characterization of CapD,α:

CapD,α = min
v∈Vα

∫

Y \D
|∇v|2.

Let Vα,0 := {v ∈ Hα : v = 1 on ∂D, v = 0 on ∂Y }. Then Vα,0 ⊂ Vα and

CapD,α = min
v∈Vα

∫

Y \D
|∇v|2 ≤ min

v∈Vα,0

∫

Y \D
|∇v|2.

Now, let v0 be a harmonic function satisfying
{

v0 = 1 on ∂D,

v0 = 0 on ∂Y.
(4.1)

Since D is symmetric, v0 is symmetric with respect to the planes xj = 0, j = 1, 2, 3,
and hence v0 can be extended to an α∗-quasi-periodic function (anti-periodic in each
direction). By the characterization of CapD,α∗ , we have

∫

Y \D
|∇v0|2 = CapD,α∗ .

It follows that

CapD,α ≤ min
v∈Y

∫

Y \D
|∇v|2 ≤

∫

Y \D
|∇v0|2 = CapD,α∗ .

Thus CapD,α attains its maximum at α = α∗.
The argument for ωα

1 is similar to the one for CapD,α. By symmetry, we see that

uα
∗

1 is symmetric with respect to the planes {xj = 0}, j = 1, 2, 3. This combined with
anti-periodicity yields that uα

∗

1 is zero on ∂Y . Let

Hα,0 := {u ∈ Hα : u = 0 on ∂Y }.

Then

(ωα
1 )

2 = min
u∈Hα

∫

Y ρ
−1|∇v|2

∫

Y κ
−1|v|2 ≤ min

u∈Hα,0

∫

Y ρ
−1|∇v|2

∫

Y κ
−1|v|2 ≤

∫

Y ρ
−1|∇uα∗

1 |2
∫

Y κ
−1|uα∗

1 |2 = (ωα∗

1 )2.

This completes the proof. �

Remark 1 We conjecture that the maximum of the first Bloch eigenvalue is achieved

at the corner of the Brillouin zone for general periodic metamaterials under a similar

symmetry assumption as Assumption 4.1 on the cell structure.
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In the sequel, we suppose that Assumption 4.1 holds. To simplify the calculations
and the presentation, we also assume

Assumption 4.3 The wave speed inside the bubble is equal to the one outside, i.e.,

v = vb.

Let uα1 be the α-quasi-periodic propagating wave mode corresponding to ωα
1 , which

is given in [2] by

uα1 =







Sα,ωα
1
/v

D

(

Sα,0
D

)−1
[1] +O(δ1/2) in Y \D,

Sωα
1
/vb

D

(

S0
D

)−1
[1] +O(δ1/2) in D.

(4.2)

Since we have

Sωα
1
/vb

D

(

S0
D

)−1
[1] ≈ S0

D

(

S0
D

)−1
[1] = Sα,0

D

(

Sα,0
D

)−1
[1] ≈ Sα,ωα

1
/v

D

(

Sα,0
D

)−1
[1]

in D up to a remainder of order of O(δ1/2), uα1 can be approximated in Y by

uα1 = Sα,ωα
1
/v

D

(

Sα,0
D

)−1
[1] +O(δ1/2). (4.3)

We shall investigate the behavior of ωα
1 near α = α∗. We first introduce some

notation. Let

Gα̃,1 (x) =
∑

n∈Z3

ei(2πn+α∗)·x

k2 − |2πn+ α∗|2
( |α̃|2
k2 − |2πn+ α∗|2 +

4((2πn+ α∗) · α̃)2
(k2 − |2πn+ α∗|2)2

)

,

and define the boundary integral operator

S α̃
1 [φ](x) :=

∫

∂D
Gα̃

1 (x− y)φ(y)dσ(y).

Lemma 4.4 The following holds

Sα∗+ǫα̃,0
D = eiǫα̃·x

(

Sα∗,0
D + ǫ2S α̃

1 +O(ǫ4)
)

,

where the O(ǫ4) term is an operator from L2(∂D) to H1(∂D) whose operator norm is of

order ǫ4.

Proof. Since

1

k2 − |2πn+ α∗ + ǫα̃|2

=
1

k2 − |2πn+ α∗|2
(

1 +
ǫ2|α̃|2

k2 − |2πn+ α∗|2 +
4ǫ2((2πn+ α∗) · α̃)2
(k2 − |2πn+ α∗|2)2

)

+O(ǫ3|α̃|3),
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using the symmetry in the summation, we can derive that

Gα∗+ǫα̃,k (x) = eiǫα̃·x
∑

n∈Z3

ei(2πn+α∗)·x

k2 − |2πn+ α∗ + ǫα̃|2

= eiǫα̃·x
∑

n∈Z3

ei(2πn+α∗)·x

k2 − |2πn+ α∗|2
(

1 +
ǫ2|α̃|2

k2 − |2πn+ α∗|2 +
4ǫ2((2πn+ α∗) · α̃)2
(k2 − |2πn+ α∗|2)2

)

+O(ǫ4|α̃|4)

= eiǫα̃·x
(

Gα∗,k (x) + ǫ2Gα̃
1 (x)

)

+O(ǫ4|α̃|4).

The lemma follows. �

Let Λα̃
D be a quadratic function in α̃ defined by

Λα̃
D :=

1

2

∫

∂D
(α̃·y)2

(

Sα∗,0
D

)−1
[1]+

(

Sα∗,0
D

)−1
[(α̃·x)2]−2

(

Sα∗,0
D

)−1
S α̃
1

(

Sα∗,0
D

)−1
[1]dσ(y).

Lemma 4.5 For every small ǫ > 0, it holds that

CapD,α∗+ǫα̃ = CapD,α∗ + ǫ2Λα̃
D +O(ǫ4).

Moreover, Λα̃
D is a negative semidefinite quadratic function of α̃.

Proof. Recall that

CapD,α∗+ǫα̃ = −
∫

∂D

(

Sα∗+ǫα̃,0
D

)−1
[1](y)dσ(y).

We solve 1 = Sα∗+ǫα̃,0
D [φ] (x) for φ. Since Sα∗+ǫα̃,0

D = eiǫα̃·x
(

Sα∗,0
D + ǫ2S α̃

1 +O(ǫ4)
)

,

we get

φ(y) = eiα̃·ǫy
(

(

Sα∗,0
D

)−1
− ǫ2

(

Sα∗,0
D

)−1
Sα
1

(

Sα∗,0
D

)−1
)

[e−iα̃·ǫx](y) +O(ǫ4)

= eiα̃·ǫy
[

(

Sα∗,0
D

)−1
[1]− ǫ2

(

(

Sα∗,0
D

)−1
[(α̃ · x)2/2]−

(

Sα∗,0
D

)−1
S α̃
1

(

Sα∗,0
D

)−1
[1]

)]

(y)

+O(ǫ4).

Using the expansion

eiα̃·ǫy = 1 + iǫα̃ · y − 1

2
ǫ2(α̃ · y)2 + −iǫ3

6
(α · y)3 +O(ǫ4),

and the symmetry in the integration, we have

CapD,α∗+ǫα̃ = −
∫

∂D
φ(y)dσ(y)

= CapD,α∗ + ǫ2Λα̃
D +O(ǫ4).
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Finally, since CapD,α attains the maximum at α = α∗, Λα̃
D is a negative semidefinite

quadratic function of α̃. This completes the proof. �

We now introduce a matrix {λij} such that

v2b
|D|Λ

α̃
D := −

∑

1≤i,j≤3

λijα̃iα̃j . (4.4)

It is clear that the matrix {λij} is symmetric and positive semidefinite.

Lemma 4.6 We have

(ωα∗+ǫα̃
1 (δ))2 = δω2

M,α∗ − ǫ2δ
∑

1≤i,j≤3

λijα̃jα̃j + λ0(α
∗)δ2 +O(ǫ4δ + ǫ2δ2 + δ3).

Proof. Recall that the following asymptotic formula of ωα
1 in [2] holds:

(ωα
1 (δ))

2 =
δv2bCapD,α

|D| +O(δ2) := δ(ωM,α)
2 +O(δ2), (4.5)

where ωM,α ==

√

v2
b
CapD,α

|D| , and the O(δ2) term is uniformly of order δ2 with respect

to α away from 0. A further asymptotic expansion implies that the O(δ2) term can be
further decomposed as

O(δ2) = λ0(α)δ
2 +O(δ3),

where O(δ3) denotes some uniformly bounded remaining term. Since α∗ is a critical
point of ωα

1 regardless of δ, we have λ0(α) = λ0(α
∗) +O(|α− α∗|2).

Finally, we obtain that

(ωM,α∗+ǫα̃)
2 =

v2bCapD,α∗+ǫα̃

|D| = (ωM,α∗)2 +
ǫ2v2b
|D| Λ

α̃
D +O(ǫ4).

This completes the proof. �

5 Homogenization of the Bloch eigenfunction

We now consider the asymptotic behaviors of the Bloch eigenfunction in the bubbly
crystal with period s. We first present the relation between the Bloch eigenvalues and
eigenfunctions at different scales, which follows from a scaling argument.

Lemma 5.1 Let ωα
1 and uα1 be the Bloch eigenvalue and eigenfunction of the bubbly

crystal with period 1, then the bubbly crystal with period s has Bloch eigenvalue

ω
α/s
1,s =

1

s
ωα
1

and eigenfunction

u
α/s
1,s (x) = uα1

(x

s

)

.
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As a consequence, we see that

ωs
∗ = max

α
ωα
1,s =

1

s
max
α

ωα
1 =

1

s
ωα∗

1 .

Moreover, the maximum is attained at the corner point 1
sα

∗ of the Brillouin zone Bs.
We are interested in the behavior of the Bloch eigenfunction uα1,s for α near α∗/s.

Lemma 5.2
u
α∗/s+α̃
1,s (x) = eiα̃·xS

(x

s

)

+O(s2 + δ1/2), (5.1)

where the function S is defined by

S(x) = Sα∗,0
D

[

(

Sα∗,0
D

)−1
[1]

]

(x). (5.2)

Proof. Note that u
α∗/s+α̃
1,s (x) = uα

∗+sα̃
1 (x/s). By (4.3), we have

uα
∗+sα̃

1 (x/s) = Sα∗+sα̃,v−1ωα∗
+sα̃

1

D

[

(

Sα∗+sα̃,0
D

)−1
[1]

]

(x

s

)

+O(δ1/2).

Since ωα∗+sα̃
1 = O(δ1/2), using (3.2), we further obtain

uα
∗+sα̃

1 (x/s) = Sα∗+sα̃,0
D

[

(

Sα∗+sα̃,0
D

)−1
[1]

]

(x

s

)

+O(δ1/2). (5.3)

On the other hand, in the proof of Lemma 4.5, we showed that

(

Sα∗+sα̃,0
D

)−1
[1]

(y

s

)

= eiα̃·y
(

Sα∗,0
D

)−1
[1]

(y

s

)

+O(s2). (5.4)

It follows from (5.3) and (5.4) that

uα
∗+sα̃

1 (x/s) =

∫

s∂D
eiα̃·(x−y)Gα∗,0

(

x− y

s

)

eiα̃·y
(

(

Sα∗,0
D

)−1
[1]

)

(y

s

)

s−2dσ(y)

+O(s2 + δ1/2)

= eiα̃·xSα∗,0
D

[

(

Sα∗,0
D

)−1
[1]

]

(x

s

)

+O(s2 + δ1/2).

Then the lemma follows. �

We note that the function S defined by (5.2) is a piecewise harmonic function with
S = 1 on ∂D and S = 0 on ∂Y . S

(

x

s

)

varies on the small scale s and describes the

microscopic behavior of the u
α∗/s+α̃
1,s . On the other hand, the function eiα̃·x represents

the macroscopic behavior of u
α∗/s+α̃
1,s . We now derive a homogenized equation for this

macroscopic field near the critical frequency ωs
∗.
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We first recall from [2] that

ωα∗

1 = C
√
δ +O(δ3/2)

for some positive constant C of order one which depends on D, vb and α∗. In order to
keep the critical frequency ωs

∗ on a fixed order when the cell size s tends to zero, we
assume that

Assumption 5.3 δ = µs2 for some positive constant µ.

As a result, we have

max
α

ωα
1,s = ωs

∗ =
1

s
ωα∗

1 = O(1).

Now, suppose that ω is near ωs
∗. We need to find the corresponding Bloch eigenfunc-

tions, or α̃ so that

ω2 = ω
α∗/s+α̃
1,s .

Using Lemmas 4.6 and 5.1, we have

ω2
∗ − ω2 = δ

∑

1≤i,j≤3

λijα̃iα̃j +O(s4), (5.5)

where ω∗ := ωs
∗.

Let
ω2
∗ − ω2 = βδ

for some constant β. Then we have
∑

1≤i,j≤3

λijα̃iα̃j = β +O(s2),

which shows that all the solutions α̃ lie approximately on the ellipsoid defined by

{α = (α1, α2, α3) :
∑

1≤i,j≤3

λijαiαj = β}.

It also implies that the plane wave u(x) := eiα̃·x satisfies to a leading order term

∑

1≤i,j≤3

λij∂i∂j û(x) + βû(x) = 0. (5.6)

We now consider two cases. Case I: β > 0 and Case II: β < 0.
In the first case, α̃ is a well-defined vector in R

3, which justifies the existence of true
Bloch eigenfunctions. However, in the second case α̃ is a pure imaginary vector, and
hence is not a Bloch eigenfunction. The associated function eiα̃·x either grows or decays
exponentially along certain direction. This justifies that a band gap opens at the critical
frequency ω∗.

To conclude, we have the following main result on the homogenization theory for the
bubbly crystals.
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Theorem 5.4 Under Assumption 4.1, 4.3 and 5.3, for frequencies in a small neigh-

borhood of maximum of the first Bloch eigenvalue, say, ω2
∗ − ω2 = O(s2), the following

asymptotic of Bloch eigenfunction u
α∗/s+α̃
1,s holds:

u
α∗/s+α̃
1,s (x) = eiα̃·xS

(x

s

)

+O(s),

where the macroscopic field eiα̃·x satisfies the following equation

∑

1≤i,j≤3

λij∂i∂j û(x) +
ω2
∗ − ω2

δ
û(x) = 0. (5.7)

which can be viewed as the homogenized equation for the bubbly phononic crystal, while

the microscopic field is periodic and varies on the scale of s.

It is clear that the homogenized medium is very dispersive below and near the critical
frequency ω∗. Moreover, the microscopic oscillations of the field at the period of the
crystal justify the superfocusing phenomenon [21]. This mechanism differs from the one
based on the high contrast effective medium theory derived in [9], which is valid only in
the dilute case.
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