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Abstract W

e consider hyperbolic systems of conservation laws and review developments in

the general area of computational uncertainty quantification (UQ) for these equa-

tions. We focus on non-intrusive sampling methods of the Monte-Carlo (MC) and

Multi-level Monte-Carlo (MLMC) type. The modeling of uncertainty, within the

framework of random fields and random entropy solutions, is discussed. We also

describe (ML)MC finite volume methods and present the underlying error bounds

and complexity estimates. Based on these bounds, and numerical experiments, we

illustrate the gain in efficiency resulting from the use of MLMC methods in this

context. Recent progress in the mathematical UQ frameworks of measure-valued and

statistical solutions is briefly presented, with comprehensive literature survey.

1 Introduction

Systems of conservation laws are nonlinear partial differential equations of the form

∂tU+∇x ·F(c(x, t),U) = 0, (1a)

U(x,0) = U0(x). (1b)

Here, the unknown U = U(x, t) : Rd ×R+ →RN is the vector of conserved variables,

F = (F1, . . . ,Fd) : RN×N → RN×d is the flux function and c = (c1, . . . ,cd) : Rd ×
R+ → RN×d is a spatio-temporal coefficient. We denote R+ := [0,∞). Here, U0

denotes the prescribed initial data.

In bounded domains, the system (1) needs to be supplemented with suitable

boundary conditions.
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Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zurich, Switzerland e-mail:

smishra@sam.math.ethz.ch, e-mail: christoph.schwab@sam.math.ethz.ch

1



2 Siddhartha Mishra and Christoph Schwab

The system (1) is termed hyperbolic if the flux Jacobian matrix has real eigenval-

ues [11]. Hyperbolic systems of conservation laws arise in a wide variety of models in

physics and engineering and we refer to [11] for a wide range of examples. Solutions

of (1) can develop discontinuities in finite time, even for smooth initial data (see

again [11] and the references there). Therefore, solutions of (1) are weak solutions in

that U ∈ (L1
loc(R

d ×R+))
N is required to satisfy the integral identity

∫

R+

∫

Rd

(
Uϕt +

d

∑
j=1

F j(c j,U)ϕx j

)
dxdt +

∫

Rd
U0(x)ϕ(x,0)dx = 0 , (2)

for all test functions ϕ ∈C1
0(R+×Rd). It is well known that weak solutions are not

necessarily unique [11]. Additional admissibility criteria or entropy conditions are

necessary to obtain uniqueness. In space dimension d > 1, rigorous existence and

uniqueness results for conservation (balance) laws and for generic initial data are

available only for the scalar case, i.e, in the case N = 1.

1.1 Numerical methods

Numerical methods for the solution of (2) comprise Finite Difference (FD), Finite

Volume (FV) and Discontinuous Galerkin (DG) methods. We refer to the textbooks

[42, 28] and the references there.

Within the popular FV framework [28], the cell averages of the unknown are

updated in time in terms of numerical fluxes across cell interfaces. These numerical

fluxes are often obtained by the (approximate) solutions of Riemann problems in

the direction normal to the cell interface. Higher order spatial accuracy is obtained

by reconstructing cell averages in terms of non-oscillatory piecewise polynomial

functions, within the TVD [42], ENO [33] and WENO [6] procedures or using

Discontinuous Galerkin methods (see, e.g. [8]). Higher order temporal accuracy

is achieved by employing strong stability preserving Runge-Kutta methods [30].

Space-time DG-discretizations can also be employed for High-order spatio-temporal

accuracy [34].

1.2 Aims and scope

Any numerical scheme approximating (1) requires the initial data U0, the coefficients

c and the flux function F, as well as suitable boundary conditions, as inputs. However,

in practice, these inputs are obtained by measurements (observations). Moreover,

measurements cannot be precise and always involve some degree of uncertainty. Input

uncertainty for (1) implies, upon uncertainty propagation, corresponding uncertainty

in the solution.
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The modeling, mathematical analysis, numerical approximation and numerical

quantification of solution uncertainty, given experimental data, comprise the disci-

pline of uncertainty quantification (UQ).

One aim in this article is to survey computational methods for the efficient,

computational UQ for nonlinear, hyperbolic conservation laws with random inputs,

and to provide some indications on the numerical analysis of UQ methods for

these equations. Our focus in this article is on non-intrusive computational methods

and their implementation, and on the mathematical analysis of their computational

complexity. In our presentation, we emphasize broad applicability for a large class of

conservation laws, rather than problem-specific, optimal results.

Our motivation for this focus on non-intrusive methods is as follows: first, non-

intrusive methods afford trivial integration of existing, deterministic numerical solvers

of instances of forward problems, and are, therefore, popular in computational UQ

in science and engineering. Second and as mentioned earlier, nonlinear hyperbolic

conservation laws are well known to exhibit solutions of very low regularity in

physical space, due to shock formation even for smooth input data (initial and

boundary data, as well as flux functions). Third, hyperbolicity implies finite speed of

propagation which, in the context of UQ for conservation laws with parametric input

uncertainty, implies propagation of singular supports into the domain of parameters

that describe the uncertain inputs of the system. The presence of, in general, moving

singular supports propagating along characteristics in parametric families of weak

solutions precludes high convergence rates of “smooth” computational methods,

such as generalized polynomial chaos, PCA etc. for this class of computational

UQ problems (we mention, however, that even in the absence of viscosity, there

are regularizing effects due to averaging; cases in point are the so-called “transport

collapse” regularizations in averaging lemmas (see, e.g. [43, 44] and the references

there) or due to statistical ensemble averaging of random entropy solutions (see, e.g.

[57]).

We therefore focus in the present survey on sampling methods of Monte-Carlo

(MC for short) and of Multi-Level MC (MLMC for short) type, as well as on stochas-

tic collocation methods. These methods have in common that their computational

realization is based on existing numerical conservation law solvers, for example the

finite volume (FV) or discontinuous Galerkin (DG) type, without any modification;

this implies, in particular, that existing discretization error bounds for these methods,

e.g. from [7, 15, 39, 42] and the references there, can be used for an error analysis of

non-intrusive computational UQ for hyperbolic conservation laws.

In contrast, intrusive computational methods will require, as a rule, some form

of reformulation of the conservation law prior to discretization and entail, usually,

significant refactoring resp. redesign of numerical solvers. We refer to, e.g., [60, 24]

and references therein for examples of this type, where the so-called stochastic

Galerkin methodology has been employed and was shown to require significant

modifications of numerical schemes as well as of actual, numerical solver.

Given our focus on non-intrusive UQ methods of the MC and Multi-level MC

type, we structure this survey as follows: in the first part, we will focus on the very

specific problem of UQ for scalar conservation laws with random initial data. Here,
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we describe data and solution uncertainty in terms of random fields and within the

framework of random entropy solutions [47]. This is feasible as the underlying

deterministic solution operator is well-defined and forms a non-expansive (in time)

semi-group on L1(Rd). We will formulate both the MC and MLMC methods and

combine them with a FV space-time discretization to obtain rigorous convergence

rates for the (ML)MC-FV scheme and demonstrate that the MLMC-FV method is

significantly more efficient (computationally) than the MC-FV method.

Next, we extend the (ML)MC-FV schemes for UQ of systems of conservation laws

with random inputs. Here, the underlying deterministic problem may be ill-posed

within the class of entropy solutions [14]. Consequently, the notion of random entropy

solutions may not be well-defined. Moreover, there is no rigorous convergence

result for the underlying deterministic FV (or any other) discretization frameworks.

Hence, we postulate convergence and obtain the corresponding error (and complexity)

estimates for the (ML)MC-FV methods. Although this combination is seen to work

well in practice, recent results [16, 45, 19] have demonstrated the limitations of this

framework. Instead, novel solution concepts such as those of entropy measure valued

solutions [16, 19] and statistical solutions [17] and have been proposed and analyzed.

We will conclude with a brief review of these concepts.

2 Preliminaries

2.1 Random variables in Banach spaces

Our mathematical formulation of scalar conservation laws with random inputs will

use the concept of random fields i.e, random variables taking values in function

spaces. We recapitulate basic concepts as presented, for example, in [10, Chap1].

Let E be a Banach space, and let (Ω ,F ) be a measurable space, with the set Ω
of elementary events, and with F a corresponding σ -algebra. An E-valued random

variable (or random variable taking values in E) is any mapping X : Ω → E such

that the set {ω ∈ Ω : X(ω) ∈ A}= {X ∈ A} ∈ F for any A ∈ G , i.e. such that X is a

G -measurable mapping from Ω into E. Here, (E,G ) denotes a measurable space on

the Banach space E.

For a Banach space E, we denote the Borel σ -field B(E). Then, (E,B(E)) is

a measurable space and random variables taking values in E i.e. maps X : Ω → E

are (F ,B(E)) measurable. For a separable Banach space E with norm ‖◦‖E and

(topological) dual E∗, B(E) is the smallest σ -field of subsets of E containing all sets

{x ∈ E : ϕ(x)≤ α}, ϕ ∈ E∗, α ∈ R .

For a separable Banach space, X : Ω → E is an E-valued random variable iff for

every ϕ ∈ E∗, ω 7−→ ϕ(X(ω)) ∈ R1 is an R1-valued random variable: for any RV

X : Ω → E on (Ω ,F ) which takes values in E, the mapping Ω ∋ ω 7−→ ‖X(ω)‖E ∈
R1 is (strongly) measurable. For more details and proofs, we refer to [10] or to [51].
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The strongly measurable mapping X : Ω → E is Bochner integrable if, for any

probability measure P on the measurable space (Ω ,F ),

∫

Ω
‖X(ω)‖E P(dω)< ∞ . (3)

A probability measure P on (Ω ,F ) is a σ -additive set function from Ω into [0,1]
such that P(Ω) = 1; the triplet (Ω ,F ,P) is called probability space. We shall always

assume, unless explicitly stated, that (Ω ,F ,P) is complete.

An E-valued RV is called simple if it can assume only finitely many values. A

simple RV X , taking values in E, has the explicit form (with χA denoting the indicator

function of A ∈ F )

X =
N

∑
i=1

xi χAi
, Ai ∈ F , xi ∈ E, N < ∞ . (4)

For simple RVs X taking values in E and for any B ∈ F ,

∫

B
X(ω)P(dω) =

∫

B
XdP :=

N

∑
i=1

xiP(Ai ∩B) . (5)

For such X(·) and for all B ∈ F ,

∥∥∥
∫

B
X(ω)P(dω)

∥∥∥
E
≤
∫

B
‖X(ω)‖E P(dω) . (6)

For any random variable X : Ω → E which is Bochner integrable, there exists a

sequence {Xm}m∈N of simple random variables such that, for all ω ∈ Ω , ‖X(ω)−
Xm(ω)‖E → 0 as m → ∞. Therefore, (5) and (6) extend in the usual fashion by

continuity to any E-valued random variable. We denote the Bochner-integral

∫

Ω
X(ω)P(dω) = lim

m→∞

∫

Ω
Xm(ω)P(dω) ∈ E (7)

by E[X ] (“expectation” of X).

We introduce for 1 ≤ p ≤ ∞ Bochner spaces of p-summable random variables X

taking values in the Banach-space E. The set L1(Ω ,F ,P;E) comprises all (equiv-

alence classes of) integrable, E-valued random variables X . It is a Banach space if

equipped with the norm

‖X‖L1(Ω ;E) := E(‖X‖E) =
∫

Ω
‖X(ω)‖E P(dω) . (8)

Define Lp(Ω ,F ,P;E) for 1 ≤ p < ∞ as the set of p-summable random variables

taking values E. With the norm

‖X‖Lp(Ω ;E) := (E(‖X‖p
E))

1/p, 1 ≤ p < ∞ (9)
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Lp(Ω ,F ,P;E) becomes a Banach space. For p = ∞, we denote by L∞(Ω ,F ,P;E)
the set of all E-valued random variables which are essentially bounded. This set is a

Banach space equipped with the norm

‖X‖L∞(Ω ;E) := ess sup
ω∈Ω

‖X(ω)‖E . (10)

If T < ∞ and Ω = [0,T ], F = B([0,T ]), we write Lp([0,T ];E). Note that for any

separable Banach-space E, and for any r ≥ p ≥ 1,

Lr(0,T ;E), C0([0,T ];E) ∈ B(Lp(0,T ;E)) . (11)

We conclude the section of preliminaries with a criterion for strong measurability.

Lemma 1. [51, Corollary 1.13] Let E1 and E2 be Banach spaces, and (Ω ,F ,P) a

probability space. If f : Ω → E1 is strongly Bochner measurable, and if φ : E1 → E2

is continuous, then the composition φ ◦ f : Ω → E2 is strongly Bochner measurable.

2.2 Monte-Carlo (MC) Sampling in Banach Spaces

Let Ŷi : Ω → F , i = 1, . . . ,M, be independent identically distributed (“iid” for short)

random variables taking values in the Banach space E. We let

EM[Y (k)] :=
1

M

M

∑
i=1

Ŷ
(k)
i ,

be the Monte Carlo estimator for E[Y (k)]. A computable estimate EM[Y (k)] for the

k-th moment M k(Y ) of Y will converge in E as M → ∞ at a rate which depends on

the integrability of Y . Specifically, at the rate of convergence (in terms of M) of

E

[∥∥∥E[Y (k)]−EM[Y (k)]
∥∥∥

p

E

]1/p

to zero as M → ∞ for some 1 ≤ p < ∞. If E is a finite dimensional space or a Hilbert

space, and if X ∈ L2k(Ω ;X), the so-called mean square error (MSE) is bounded as

E

[∥∥∥E[Y (k)]−EM[Y (k)]
∥∥∥

2

E

]
≤

C

M
Var[Y (k)] (12)

using the independence of the samples Ŷi.

For general Banach spaces E, the convergence rate depends on the type of the

Banach space, which is defined as follows, [38, Page 246].

Definition 1. Let 1 ≤ p ≤ ∞ and Z j, j ∈ N a sequence of Bernoulli-Rademacher

random variables. A Banach space E is said to be of type p if there is a type constant

C > 0 such that for all finite sequences (x j)
N
j=1 ⊂ E, N ∈ N,
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∥∥∥∥∥
N

∑
j=1

Z jx j

∥∥∥∥∥
E

≤C

(
N

∑
j=1

∥∥x j

∥∥p

E

)1/p

.

By the triangle inequality, every Banach space has type 1. Hilbert spaces have type 2.

One can show that the Lp-spaces have type min{p,2} for 1 ≤ p < ∞, [38].

One has the following result from [36], [38, Proposition 9.11] and [9, Section 4]

for Banach spaces of type p.

Proposition 1. [36] Let E be a Banach space of type p with a type constant Ct . Then,

for every finite sequence (Yj)
N
j=1 of independent mean zero random variables in

Lp(Ω), one has the bound

E

[∥∥∥∥∥
N

∑
j=1

Yj

∥∥∥∥∥

p

E

]
≤ (2Ct)

p
N

∑
j=1

E
[∥∥Yj

∥∥p

E

]
.

Corollary 1. Let E be a Banach space of type p ∈ [1,2] with type constant Ct .

Then for every finite sequence (Yj)
N
j=1 of iid mean zero random variables with

Yj(ω)∼ Y (ω) in Lp(Ω),

E

[∥∥∥EM[Y (k)]
∥∥∥

p

E

]
= E

[∥∥∥∥∥
1

N

N

∑
j=1

Y
(k)
j

∥∥∥∥∥

p

E

]
≤ (2Ct)

pN1−pE

[∥∥∥Y (k)
∥∥∥

p

E

]
.

Remark 1. The complexity of MC methods with respect to the type parameter p of

the function space E has been investigated in [12, 13] and the references there. The

relevance of Proposition 1 for MC methods applied to scalar conservation laws is due

to L1(Rd) being crucial for the error- and well-posedness analysis of the underlying

FV schemes for these problems. The space L1(Rd) being a Banach space of type 1,

will a priori not allow for convergence rate bounds in MLMC-FV discretizations,

as was incorrectly stipulated in [47], and also in related work [54] on combining

MLMC discretization with the front-tracking algorithm.

Instead, and as pointed out in [46], lower rates of convergence of FV discretiza-

tions in the stronger norms Lp(Rd) with p > 1, with the space Lp(Rd) being of type

min{p,2}, lead to convergence and error vs. work analysis of (ML)MC-FV methods

for scalar conservation laws, which will be described in detail subsequently.

3 Scalar conservation laws with random initial data

We begin with a review of classical results on deterministic scalar conservation laws

(SCLs). We also review random entropy solutions for SCLs with random initial data

from [47], and in particular existence and uniqueness of a random entropy solution

with finite second moments. Let us mention that SCLs with random input data have

received considerable attention in the context of numerical methods for uncertainty

quantification; we only mention [22, ?, 62].
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We also mention considerable activity on enlarging the class of admissible random

flux functions, in particular by so-called “rough path” calculus and the kinetic

(re)formulation of the SCL (14) - (15) rather than the Kružkov theory; we refer to

[22, 44, 43, 26] and the references there.

3.1 Deterministic scalar hyperbolic conservation laws

In-order to present the basic ideas in a simple setting, we consider the Cauchy

problem for scalar conservation laws (SCL) i.e, (1) with N = 1 and with a spatially

homogeneous deterministic flux function f (u). Then, (1) can be written as

∂u

∂ t
+div( f (u)) = 0 for (x, t) ∈ Rd ×R+. (13)

with

f (u) = ( f1(u), . . . , fd(u)) ∈C1(R;Rd) , div f (u) =
d

∑
j=1

∂

∂x j

f j(u) , (14)

We supply the SCL (13) with initial condition

u(x,0) = u0(x), x ∈ Rd , (15)

and an entropy admissibility condition, which we choose as the Kružkov entropy

condition or an equivalent version of it.

3.2 Entropy Solution

It is well-known that the deterministic Cauchy problem (13), (15) admits, for each

u0 ∈ L1(Rd)∩BV (R), a unique entropy solution u (see, e.g., [28, 58, 11]). For every

t > 0, u(·, t) ∈ L1(Rd). We require the (nonlinear) data-to-solution map

S : u0 7−→ u(·, t) = S(t)u0, t > 0 (16)

in our subsequent development. To state its properties, we introduce some additional

notation: for a Banach-space E with norm ‖◦‖E , and for 0 < T ≤+∞, we denote by

C([0,T ];E) the space of bounded and continuous functions from [0,T ] with values

in E, and by Lp(0,T ;E), 1 ≤ p ≤ +∞, the space of strongly Bochner measurable

functions from (0,T ) to E such that for 1 ≤ p <+∞

‖v‖Lp(0,T ;E) =
(∫ T

0
‖v(t)‖p

E dt
) 1

p
, (17)
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respectively, if p = ∞,

‖v‖L∞(0,T ;E) = esssup
0≤t≤T

‖v(t)‖E (18)

are finite. The following existence result is classical. (see, for example, [35, Thms.

2.13, 2.14, Thm. 4.3] or also [15, 28, 29, 37, 42],

Theorem 1. Assume that in the SCL (14)-(15) holds f ∈C1(R;Rd), and the initial

data u0 satisfies

u0 ∈ Z := L1(Rd)∩L∞(Rd)∩BV (Rd) . (19)

Then there holds:

1) The SCL (14) - (15) admits a unique entropy solution u ∈ L∞(Rd × (0,T )).
2) For every t > 0, the (nonlinear) data-to-solution map S(t) given by

u(·, t) = S(t)u0

satisfies

i) S(t) : L1(Rd)→ L1(Rd) is a (non-expansive) Lipschitz map, i.e.,

‖S(t)u0 −S(t)v0‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) . (20)

ii) S(t) maps (L1 ∩BV )(Rd) into (L1 ∩BV )(Rd) and

TV (S(t)u0)≤ TV (u0) ∀u0 ∈ (L1 ∩BV )(Rd) . (21)

iii)There hold the L∞ and L1 stability bounds

‖S(t)u0‖L∞(Rd) ≤ ‖u0‖L∞(Rd) ; (22)

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) . (23)

iv)The mapping S(t) is a uniformly continuous mapping from L1(Rd) into C([0,∞);L1(Rd)),
and

‖S(·)u0‖C([0,T ];L1(Rd)) = max
0≤t≤T

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) . (24)

Hyperbolic conservation laws exhibit finite propagation speed of perturbations.

As a consequence, compactly supported initial data gives rise to solutions which

are compactly supported for all time, however, with time-dependent supports. We

present one version of such a “domain of influence” result, for the SCL (14) - (15).

Proposition 2. For the Cauchy problem (14)-(15), assume that f ∈C1(R;Rd) and

that u0 satisfies (19). Assume moreover that the initial data u0 ∈ Z has compact

support: there exists a finite, positive constant R such that

supp(u0)⊂ [−R,R]d . (25)
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Then, for every 0 < t < ∞, the unique entropy solution u of the Cauchy problem

(14)-(15) is compactly supported as well, and with M̄ := ‖u0‖L∞(Rd) < ∞, there holds

supp(u(t))⊂ [−(R+ tB),R+ tB]d , (26)

where

B := ‖∂u f‖C0([−M̄,M̄];Rd), (27)

denotes a upper bound on the maximal propagation speed.

3.3 Random Entropy Solution

Based on Theorem 1, we will now formulate the SCL (14) - (15) for random initial

data u0(ω; ·), with deterministic flux. To this end, we denote (Ω ,F ,P) a probability

space. We assume given a Lipschitz continuous deterministic flux f and random

initial data u0, which satisfies the

Assumption 1. [Assumptions on the random input data]

1. The random initial data u0 is an L1(Rd)-valued random variable on (Ω ,F ,P). It

is in particular a strongly Bochner measurable map

u0 : (Ω ,F ) 7−→
(
L1(Rd), B(L1(Rd))

)
. (28)

2. The map u0 is also strongly Bochner measurable from (Ω ,F ,P) with values in the

space Z = L1(Rd)∩L∞(Rd)∩BV (Rd) (taking values in the separable Banach space

L1(Rd), the random initial data u0 is in particular separably valued in Z) introduced

in (19), so that

Ω ∋ ω 7→ u0(ω; ·) ∈ Z = (L1 ∩L∞ ∩BV )(Rd) (29)

is strongly Bochner measurable; here, we equip the space Z in (19), (29) with the

norm

‖u‖Z := ‖u‖L1(Rd)+‖u‖L∞(Rd)+TV (u) . (30)

3. There holds a uniform bound: for some constant 0 < M̄ < ∞,

‖u0(ω; ·)‖L∞(Ω ;Z) ≤ M̄ < ∞ , (31)

4. The random initial data u0 satisfies the bounded support assumption (25) with

probability one, i.e. there exists a constant 0 < R < ∞ such that

supp(u0(ω, ·))⊂ [−R,R]d with probability 1 . (32)

5. The flux function f is bounded on the set of states: for M̄ as in (31), item 3., there

holds, with S = [−M̄,M̄], the bound (27).
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Since L1(Rd) and C1(Rd ;Rd) are separable, we may impose on the mapping (28)

k-th moment conditions

‖u0‖Lk(Ω ;L1(Rd)) < ∞, k ∈ N , (33)

where the Bochner spaces are defined in Section 2. We consider the random scalar

conservation law (RSCL)

{
∂tu(ω;x, t)+divx( f (ω;u(ω;x, t))) = 0, t > 0,

u(ω;x,0) = u0(ω;x),
x ∈ Rd . (34)

Definition 2. [47] A random field u : Ω ∋ ω → u(ω;x, t), i.e., a measurable mapping

from (Ω ,F ) to C([0,T ];L1(Rd)), is a random entropy solution of the SCL (34) with

random initial data u0 satisfying (28) - (33) for some k ≥ 2 and with a spatially

homogeneous flux f (u) if it satisfies the following,

(i.)Weak solution:

For P-a.e ω ∈ Ω , u(ω; ·, ·) satisfies the following integral identity

T∫

0

∫

Rd

(
u(ω;x, t)ϕt(x, t)+

d

∑
j=1

f j(ω;u(ω;x, t))
∂

∂x j

ϕ(x, t)
)

dxdt

+
∫

Rd

u0(x,ω))ϕ(x,0)dx = 0, (35)

for all test functions ϕ ∈C1
0(R

d × [0,T )).
(ii.)Entropy condition: For any pair of (deterministic) entropy η and entropy flux Q(·)

i.e., η ,Q j with j = 1,2, . . . ,d are functions such that η is convex and such that

Q′
j(·) = η ′ f ′j(·) for all j, and u satisfies the following inequality

T∫

0

∫

Rd

(
η(u(ω;x, t))ϕt(x, t)+

d

∑
j=1

Q j(u(ω;x, t))
∂

∂x j

ϕ(x, t)
)

dxdt

+
∫

Rd

η(u0(ω;x)ϕ(x,0)dx ≥ 0, (36)

for all deterministic test functions 0 ≤ ϕ ∈C1
0(R

d × [0,T )), P-a.s.

We remark that it suffices to assume that (36) holds for all Kružkov entropy functions

η(u) = |u− k|, where k is any constant, which we assume throughout what follows.

Theorem 2. [[28, Chap. 2, Thms. 5.1,5.2]] Consider the SCL (14) - (15) with spa-

tially homogeneous, bounded flux f ∈C1(R;Rd) with random initial data u0 : Ω →
L1(Rd) satisfying Assumption 1 and the k-th moment condition (33) for some integer
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k ≥ 2. Then there exists a random entropy solution u : Ω →C([0,T ];L1(Rd)) which

is “pathwise” unique, i.e., for P−a.e.ω ∈ Ω , described in terms of the deterministic,

nonlinear mapping S(t) from Theorem 1 such that

u(ω; ·, t) = S(t)u0(ω; ·), t > 0, P−a.e.ω ∈ Ω . (37)

Moreover, u : Ω →C(0,T ;L1(Rd)) is P-a.s. separably valued and strongly Bochner

measurable.

For every k ≥ 1, for every 0 ≤ t ≤ T < ∞, and for P-ae. ω ∈ Ω holds

‖u‖
Lk(Ω ;C(0,T ;L1(Rd))) ≤ ‖u0‖Lk(Ω ;L1(Rd)) , (38)

‖S(t)u0(ω; ·)‖(L1∩L∞)(Rd) ≤ ‖u0(ω; ·)‖(L1∩L∞)(Rd) (39)

TV (S(ω; t)u0(ω; ·))≤ TV (u0(ω; ·)). (40)

There exists M̄ < ∞ such that

‖u0‖L∞(Ω ;L∞(Rd)) ≤ M̄ . (41)

and

sup
0≤t≤T

‖u(ω; ·, t)‖L∞(Rd) ≤ R̄ P−a.e. ω ∈ Ω . (42)

Theorem 2 ensures the existence of a unique random entropy solution u(ω;x, t) with

finite k-th moments for bounded random flux, provided that u0 ∈ Lk(Ω ,F ,P;Z).
The deterministic maximum principle (22) and (41) imply, in addition, that P-

a.e. realization of the random entropy solution u takes values in the state space

S = [−M̄,M̄], for a.e.x ∈ Rd and for all t > 0.

4 Monte Carlo and Multi-level Monte Carlo Finite Volume

Methods

We present the Multilevel Monte Carlo Finite Volume Method (MLMC-FVM) for

scalar conservation laws. We introduce it in several steps: first, we discuss MC

sampling of random initial data, second, FV discretization of the samples on the

single, fixed triangulation and, finally, its multi-level extension on a hierarchy of

possibly unstructured grids.

4.1 Monte-Carlo Method

The MC method for the SCL with random data u0(ω;x) as in (28) - (31) consists in

sampling in the probability space. We also assume (33), i.e., the existence of k-th
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moments of u0 for some k ∈ N, to be specified. We analyze the error in computable

numerical approximations of k-th order statistical moments of u. For k = 1 we

obtain the expected value of the solution random field i.e, M 1(u) = E[u]. The MC

approximation of E[u] is defined as the usual statistical sample average: given M

independent, identically distributed (“iid” for short) draws of the initial data, ûi
0,

i = 1, . . . ,M, the MC estimate of E[u(·; ·, t)] at time t > 0 is the sample average

EM[u(·, t)] :=
1

M

M

∑
i=1

ûi(·, t) . (43)

Here, ûi(·, t) denotes the M unique entropy solutions of the M Cauchy Problems (14)

- (15) with iid initial data ûi
0. We observe that by

ûi(·, t) = Ŝ(t) ûi
0 (44)

we have from (21) - (23) for M MC samples and for any 0 < t < ∞, for every

1 ≤ p ≤ ∞, using the triangle inequality,

‖EM[u(ω; ·, t)]‖Lp(Rd) =
∥∥∥ 1

M

M

∑
i=1

Ŝ(t)ûi
0(·;ω)

∥∥∥
Lp(Rd)

≤
1

M

M

∑
i=1

∥∥ûi
0(ω; ·)

∥∥
Lp(Rd)

.

(45)

Using the i.i.d. property of the samples {ûi
0}

M
i=1 of the random initial data u0 and

the linearity of the expectation E[·], we obtain for any 1 ≤ p ≤ ∞ from the assumed

strong measurability of u0 in the Banach space Z defined in (29), the bound

E

[
‖EM[u(·; ·, t)]‖Lp(Rd)

]
≤ E

[
‖u0‖Lp(Rd)

]
= ‖u0‖L1(Ω ;Lp(Rd)) < ∞. (46)

As M → ∞, the MC estimates (43) converge in L2(Ω ;C([0,T ];Lp(Rd))) and the

following convergence rate bound holds.

Theorem 3. Assume that in the SCL (14) - (15) the random initial data u0 satisfies

Assumption 1, items 1.-5. In particular, u0 is with probability one compactly supported

in space, i.e, there exists a compact domain D ⊂ Rd such that supp(u0(ω))⊂ D for

almost every ω ∈ Ω .

Assume, moreover, that the random initial data u0 is strongly Bochner measurable

taking values in the space Z = L1(Rd)∩ L∞(Rd)∩BV (Rd) (cp. (29), (30)), and

satisfies

u0 ∈ L2(Ω ;L1(Rd))∩L2(Ω ;L∞(Rd)) . (47)

Assume further that (29), (31) hold.

Then for every 0 < t < ∞ holds the apriori bound

‖u(t)‖2
L2(Ω ;L2(Rd))

≤ ‖u0‖L2(Ω ;L1(Rd))‖u0‖L2(Ω ;L∞(Rd)) (48)

The MC estimates EM[u(·, t)] in (43) converge, as M → ∞, to M 1(u(·, t)) =E[u(·, t)].
For M ∈ N, and for every fixed 0 < t < ∞, there holds the error bound
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‖E[u(·, t)]−EM[u(·, t)]‖2
L2(Ω ;L2(Rd)) ≤ M−1 ‖u0‖L2(Ω ;L1(Rd)) ‖u0‖L2(Ω ;L∞(Rd)) .

(49)

Under Assumption 1, item 4., we also have for every 0 < t < T

‖E[u(·, t)]−EM[u(·, t)]‖2
L2(Ω ;L1(Rd)) ≤C(T )M−1 ‖u0‖L2(Ω ;L1(Rd)) ‖u0‖L2(Ω ;L∞(Rd)) .

(50)

In (50), C(T ) is a time dependent constant that also depends on the bounded domain

[−R,R]d on which the random initial data is supported with probability 1.

Proof. Under the assumptions of the theorem, by Theorem 2 there exists a unique

random entropy solution u.

For any v ∈ L1(Rd)∩L∞(Rd) holds ‖v‖2
L2(Rd)

≤ ‖v‖L1(Rd)‖v‖L∞(Rd). For every

fixed 0 < t < ∞ we have from (22), (23),

∫
Ω ‖S(t)u0‖

2
L2(Rd)

=
∫

Ω ‖u(ω; t)‖2
L2(Rd)

dP(ω)

≤
∫

Ω ‖u0(ω)‖L1(Rd)‖u0(ω)‖L∞(Rd)dP(ω)

≤ ‖u0‖L2(Ω ;L1(Rd))‖u0‖L2(Ω ;L∞(Rd)) .

Therefore, for every 0 < T < ∞,

‖u‖2
L2(Ω ;C(0,T ;L2(Rd)))

=
∫

Ω sup0<t<T ‖u(ω; t)‖2
L2(Rd)

dP(ω)

≤ sup0<t<T ‖S(t)u0‖
2
L2(Ω ;L2(Rd))

≤ ‖u0‖L2(Ω ;L1(Rd))‖u0‖L2(Ω ;L∞(Rd)) ,

(51)

which is finite by assumption (47). From this bound follows the MC error bound (49)

by referring to the general MC error bound in Corollary 1, with the observation that

Hilbert spaces have type p = 2, and type constant 2Ct = 1 or directly from (12).

We show the second part: note that the space L1(Rd) is of type 1. From Corollary 1

we can not expect a MC convergence rate bound in L1(Rd) without extra assumptions.

Suppose therefore now that Assumption 1, item 4., holds, ie. all realizations of u0

have compact support in a common set [−R,R]d . Then the bound (27) of the flux f in

C1(S;Rd) and the finite propagation property, Prop. 2, imply that for every 0 < t < ∞,

and P-a.s., that the random entropy solution is likewise compactly supported: from

(26) it follows that there holds, for every t > 0,

supp(u(ω; t))⊂ [−(R+ tB),R+ tB]d with probability1 . (52)

Then, for P-a.e. ω ,

‖u(ω; t)‖L1(Rd) ≤C(t,B,R)‖u(ω; t)‖L2(Rd) .

Squaring both sides and taking expectations, we find

‖u(t)‖2
L2(Ω ;L1(Rd))

≤C(t,B,R)2‖u(ω; t)‖2
L2(Ω ;L2(Rd))

.

Using (48) and reasoning as before, we arrive at (50). ⊓⊔
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Remark 2. The bound (51) can be generalized to k-point correlation functions

M (k)u = E(u(·, t,x1)...u(·, t,xk)), x1, ...,xk ∈ Rd with k > 1 of the random entropy

solution: from Jensen’s inequality and Fubini’s theorem,

‖M (k)u(t)‖2
L2(Rkd)

≤
∫

Ω

∫

x1

...
∫

xk

|u(·,x1, t)...u(·,xk, t)|
2dxk...dx1dP(ω)

=
∫

Ω
‖u(·, t, ·)‖2k

L2(Rd)
dP(ω)

=
∫

Ω
‖S(t)u0(·)‖

2k
L2(Rd)

dP(ω)

≤
∫

Ω
‖S(t)u0(·)‖

k
L1(Rd)

‖S(t)u0(·)‖
k
L∞(Rd)

dP(ω)

≤
∫

Ω
‖u0(·)‖

k
L1(Rd)

‖u0(·)‖
k
L∞(Rd)

dP(ω)

≤ ‖u0‖
k
L2k(Ω ;L1(Rd))

‖u0‖
k
L2k(Ω ;L∞(Rd))

.

From Theorem 3 we see that L1(Rd) MC convergence rate bounds can be obtained

despite L1 being a Banach space of type 1; however, as already observed in [13] and

the references there, this is only possible by an intermediate bound of samples and,

for multilevel MC, for error bounds on FV discretizations in Banach spaces of type

1 < q ≤ 2, as introduced in Def. 1. As observed in [46], Theorem 4.1, the assumption

of compactly supported initial data, satisfying (25), and bounded flux (27) which

imply (26) at positive time t > 0 does afford intermediate L2
ω L2

x bounds which in turn

allow MC convergence rate bounds.

The properties (20) - (24) also hold for FV discretizations. Accordingly, we aim

at analogous results for MC FV methods for the random SCL. We next introduce

FV methods; rather than presenting a particular scheme, we state several properties

required in the ensuing error analysis which are satisfied by several popular FV

methods.

4.2 Finite Volume Method (FVM)

So far, the MC method was prescribed under the assumption that “pathwise” entropy

solutions ûi(ω;x, t) = S(ω; t) ûi
0(ω;x) for the Cauchy problem (14) - (15) iid initial

data samples ûi
0 = u0(ωi;x) are available exactly. In practice, numerical approxima-

tions of S(t)ûi
0 must be computed and the corresonding discretization errors taken

into accout.

To analyze MC-FVM approximations we impose sufficient conditions on the FVM

to afford the Kuznetsov type error bounds for first order FVM for the deterministic

SCL (14)-(15); these will be required for the convergence rate bounds of the MLMC

FVM as considered in [46, 47] and also for parametric collocation FVM as in [46,

Sec.5] in the subsequent chapters. We review the generic first order, explicit FV

schemes considered here, as for example in [15, 42, 37].
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Denote the time step by ∆ t > 0 and a triangulation T of the spatial domain

D ⊂ Rd of interest. We assume that T is a set of open, convex polyhedra K ⊂ Rd

with plane faces such that standard conditions on shape regularity hold: if K ∈ T

denotes a generic volume, we define

ρK = ρ(K) = max{diam(Br) : Br ⊂ K} (53)

i.e., the maximum inradius in volume K for K ∈ T and define, in addition, for a

generic mesh T , the shape regularity constants (where ∆xK := diamK)

κ(T ) := sup{∆xK/ρ(K) : K ∈ T }, T ∈M . (54)

The meshwidth of triangulation T is

∆x(T ) = sup{diam(K) : K ∈ T } . (55)

For any volume K ∈ T , we define the set N (K) of neighboring volumes

N (K) := {K′ ∈ T : K′ 6= K ∧measd−1(K ∩K′)> 0} . (56)

We assume that the triangulation T are regular in the sense that the support size of

the FV “stencil” at any element K ∈ T is uniformly bounded i.e,

σ(T ) := sup
K∈T

#(N (K))≤ B < ∞ (57)

with some bound B which is independent of the particular partition T . The global

CFL constant is defined by

λ := ∆ t/∆x(T ) . (58)

for constant time step ∆ t; we also set tn = n∆ t. It is determined by a standard CFL

condition (see e.g. [28]) based on the maximum wave speed given by the flux bound

(27), see Proposition 2).

We discretize (14)-(15) by an explicit, first order FV scheme on T :

vn+1
K = H({vn

K′ : K′ ∈ N (K)∪K}), K ∈ T (59)

where H : R(2k+1)d
→ R, with k denoting the size of the stencil of the FV scheme, is

continuous and where vn
K denotes an approximation to the cell average of u at time

tn = n∆ t).
In our subsequent developments, we write the FVM in operator form. To this

end, we introduce the operator HT (v) which maps a sequence v = (vK)K∈T into

HT ((vK)K∈T ). The time explicit FVM (59) takes the abstract form

vn+1 = HT (vn), n = 0,1,2, . . . . (60)
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For the ensuing convergence analysis, we shall assume and use several properties of

the FV scheme (60); these properties are satisfied by many commonly used FVM of

the form (60), on regular or irregular meshes T in Rd .

To state the assumptions, we introduce further notation: for any initial data u0(x)∈
L1(Rd), we define the FVM approximation at time t = 0, (v0

K)K∈T by the cell

averages

v0
K =

1

|K|

∫

K
u0(x)dx, where K ∈ T . (61)

Interpreting the vector v = (vK)K∈T ∈ R#T as cell averages, we associate with v the

piecewise constant function vT (x, t) defined a.e. in Rd × (0,∞) by

vT (x, t)
∣∣
K

:= vn
K , K ∈ T , t ∈ [tn, tn+1) . (62)

We denote space of all piecewise constant functions on T (i.e., the “simple” or “step”

functions on T ) by S(T ). Given any vT ∈ S(T ), we define the (mesh-dependent)

norms:

‖v‖L1(T ) = ∑
K∈T

|K| |vK |= ‖vT ‖L1(Rd) , ‖v‖L∞(T ) = sup
K∈T

|vK |= ‖vT ‖L∞(Rd) .

As in [47, 46], we consider FVM schemes in the MC-FVM algorithms which satisfy

the following standard assumptions which are analogous to (22), (23) and (24).

Assumption 2. The abstract FV scheme (60) satisfies

1. Stability: ∀t ≥ 0

‖vT (·, t)‖L∞(Rd) ≤ ‖vT (·,0)‖L∞(Rd) , (63)

‖vT (·, t)‖L1(Rd) ≤ ‖vT (·,0)‖L1(Rd) , (64)

TV (vT (·, t))≤ TV (vT (·,0)), (65)

2. Lipschitz continuity: For any two sequences v = (vK)K∈T , w = (wK)K∈T we

have

‖HT (v)−HT (w)‖L1(T ) ≤ ‖v−w‖L1(T ) (66)

or, equivalently,

‖HT (vT )−HT (wT )‖L1(Rd) ≤ ‖vT −wT ‖L1(Rd) . (67)

3. Convergence: If in the CFL bound (58) the CFL constant λ = ∆ t/∆x(T ) is kept

constant as ∆x(T )→ 0, the approximate solution vT (x, t) generated by (59) - (62)

converges to the unique entropy solution u of the scalar conservation laws (14) - (15)

at L1(Rd)-rate 0 < s ≤ 1: there exists C > 0 independent of ∆x such that, as ∆x → 0,

for every t and for (∆ t)s ≤ t ≤ T , it holds

‖u(·, t)− vT (·, t)‖L1(Rd) ≤ ‖u0 − v0
T ‖L1(Rd)+Ct TV (u0)∆xs . (68)
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Let us mention that (63), (64) and (65) hold in particular for monotone schemes

on Cartesian meshes, see [28, 37]. The classical error analysis of Kuzsnetsov, see

e.g. [15], imply the convergence rate s = 1/2 in (68). In case of monotone schemes

on general FV meshes, one might lose the bound on the total variation of the approx-

imations, and the convergence rate, i.e., the rate s in (68) is correspondingly reduced,

see [7].

The error bound (68) contains an initial data approximation error ‖u0−v0
T
‖L1(Rd).

This error vanishes for step function initial data on T (as, e.g., in the solution of

Riemann problems). More generally, this error can be bounded by ∆xs provided

that u0 has appropriate regularity: under Assumption 2, for u0 ∈ BV (Rd) and for the

cell-average projection v0
T

in (61), we obtain

‖u0 − v0
T ‖L1(Rd) ≤C(κ,σ)∆xTV (u0)≤C(κ,σ)∆xsTV (u0), (69)

as s ≤ 1 in (68). Here, the constant C(κ,σ) depends on the stencil size constant σ
and the shape regularity constant κ in (57), and (54), respectively.

Explicit FV schemes (59), (60) subject to the CFL stability condition (58) exhibit

a discrete finite domain of dependence result analogous to Proposition 2.

Proposition 3. [Discrete finite dependence domain]

Under Assumption 2 and the assumptions of Proposition 2, in particular under

the compact support assumption (25) on the random intial data u0, for the explicit

FV scheme (53), (61) there holds:

1. the projection of the initial data on triangulation T , v0
T

, defined in (61), (62),

has compact support independently of T : there exists c > 0 such that, for all 0 <
h(T )≤ 1, and with probability 1, holds

supp(v0
T )⊂ [−(1+ c)R,(1+ c)R]d . (70)

2. the discrete solutions satisfy a dependence domain result: with probability 1 and

with the constant c > 1 from (70) for every t > 0 holds

supp(vT (·, t))⊂ [−(1+ c)(R+ tB),(1+ c)(R+ tB)]d , (71)

where B denotes the bound (27) on the flux, and where c > 1 is as in (70).

We refer to [42, Chapter 3.6] for a detailed discussion.

Let us finally mention that the work for the realization of scheme (59) - (62) on

a bounded domain D ⊂ Rd scales as (using the CFL stability condition (58), i.e.,

∆ t/∆x(T )≤ λ = const.)

WorkT = O

(
∆ t−1 ∆x−d

)
= O

(
∆x−(d+1)

)
, (72)

with the constant implied in O (·) depending on on the support domain D of the

solution.
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4.3 MC-FVM

In the Monte Carlo Finite Volume Methods (MC-FVMs), we combine MC sampling

of the random initial data with the FVM (60). In the convergence analysis of these

schemes, we shall require the application of the FVM (60) to random initial data

u0 ∈ L∞(Ω ;(L1 ∩L∞ ∩BV )(Rd)): given a draw u0(x;ω) of u0, the FVM (60) - (62)

produces a family vT (x, t;ω) of random step functions on T .

Proposition 4. Consider the FVM (60) - (62) for the approximation of the entropy

solution corresponding to a draw u0(ω;x) of the random initial data, satisfying

Assumption 1.

Then, if the FVM satisfies Assumption 2, and provided that u0 ∈ Lk(Ω ;Z), the

random grid functions Ω ∋ ω 7→ vT (ω;x, t) defined by (58) - (62) satisfy, for every

0 < t < ∞, 0 < ∆x < 1, and every k ∈ N∪{∞}, the stability bounds

‖vT (·; ·, t)‖Lk(Ω ;L∞(Rd)) ≤ ‖u0‖Lk(Ω ;L∞(Rd)) , (73)

‖vT (·; ·, t)‖Lk(Ω ;L1(Rd)) ≤ ‖u0‖Lk(Ω ;L1(Rd)) . (74)

We also have error bounds

‖u(·; ·, t)− vT (·; ·, t)‖Lk(Ω ;L1(Rd))

≤
∥∥u0(·; ·)− v0

T (·; ·)
∥∥

Lk(Ω ;L1(Rd))
+Ct∆xs ‖TV (u0(·; ·))‖Lk(Ω) . (75)

Remark 3. 1. In order for ‖TV (u0(·; ·))‖Lk(Ω) in (75) to be meaningful, a sufficient

condition is that u0 : Ω → BV (Rd) be strongly measurable, which we assumed in

(31).

2. The initial data approximation error term
∥∥u0(·; ·)− v0

T
(·; ·)

∥∥
Lk(Ω ;L1(Rd))

in (75)

can be bounded as in (69) provided that the random initial data u0 has sufficient

regularity: if u0 : Ω → Z is strongly measurable, and if u0 ∈ Lk(Ω ;Z), then (69)

implies

‖u0 − v0
T ‖Lk(Ω ;L1(Rd)) ≤C∆x . (76)

This approximation error bound holds without assumption of bounded support on u0.

4.3.1 Definition of the MC-FVM Scheme

We consider once more the SCL (14) - (15) with random data u0 and with flux f

satisfying (28) - (33). We assume the moment condition u0 ∈ Lk(Ω ;Z) for sufficiently

large k ∈ N. The MC-FVM scheme for the MC estimation of the mean (ie., the

ensemble average) of the random entropy solution is as follows.

Definition 3. (MC-FVM Scheme) Generate a sample of M ∈ N i.i.d. realizations

{ûi
0}

M
i=1 of initial data, approximated on the triangulation T by cell average projec-

tions (61).
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ûi(·, t) = S(t)ûi
0(·), i = 1, . . . ,M. (77)

Let HT (·) be a FVM scheme (59) - (62) satisfying Assumption 2. Then the MC-FVM

approximations of M k(u(·, t)) are defined as statistical estimates from the ensemble

{v̂i
T (·, t)}M

i=1 (78)

obtained by (60) from the FV approximations v̂i
T
(·,0) of the M i.i.d initial data

samples {ûi
0(x)}

M
i=1 by (61): specifically, the first moment of the random solution

u(ω; ·, t) at time t > 0, is approximated by the sample average of FV solutions,

M
1(u(·, t))≈ EM[vT (·, t)] :=

1

M

M

∑
i=1

v̂i
T (·, t). (79)

4.3.2 Convergence Rates for MC-FVM

We next address the convergence of EM[vT ] to the mean E(u).

Theorem 4. Assume that all realizations of the random initial data u0 are supported

on one common, bounded domain [−R,R]d ⊂Rd for some 0 < R < ∞ and satisfy (28)

- (32). Assume further given a FVM (59) - (62) such that (58) holds and such that

Assumption 2 is satisfied; in particular, assume that the deterministic FVM scheme

converges at rate s > 0 in C([0,T ];L1(Rd)) for every 0 < T < ∞, i.e. (68) holds.

Then, the MC estimate EM[vT (·, t)] defined in (79) satisfies, for every M, the error

bound

‖E[u(·, t)]−EM[vT (ω; ·, t)]‖L2(Ω ;L1(Rd))

≤C(D,T )
[
M− 1

2 ‖u0‖L2(Ω ;L1(Rd))

+
∥∥u0 − v0

T

∥∥
L∞(Ω ;L1(Rd))

+ t∆xs ‖TV (u0(ω; ·))‖L∞(Ω)

]
(80)

where C > 0 depends on the final time T and the domain D, in which the initial data is

supported P-a.s. but is independent of M and of ∆x as M → ∞ and as λ∆x = ∆ t ↓ 0.

Proof. The proof of the above theorem proceeds along the lines of the proof of [47,

Thm. 4.6]. However, we point out that there was an error in the argument of the

proof of [47, Theorem 4.6] due to the incorrect derivation of a direct MC sampling

convergence rate in the type one Banach space L1(Rd). On the other hand and as

mentioned in the previous section, we may use the local support assumptions on the

initial data, and the finite speed of propagation implied by hyperbolicity, to obtain FV

convergence rate bounds in the type 2 space L2(Rd) from which follows the claimed

convergence rate.

For fixed t > 0, we have
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‖E[u(·, t)]−EM[vT (·, t)]‖L2(Ω ;L1(Rd)) ≤ ‖E[u(·, t)]−EM[u(·, t)]‖L2(Ω ;L1(Rd))

+ ‖EM[u(·, t)]−EM[vT (·, t)]‖L2(Ω ;L1(Rd))

=: I+ II .

Term I is a MC error which can be bounded by (50).

Term II is essentially a discretization error bound. By the (pathwise) FV error

bounds (68) and by (21) - (24) and Assumption 2 by the triangle inequality that

II = ‖EM[u(·, t;ω)− vT (·, t)]‖L2(Ω ;L1(Rd))

≤
1

M

M

∑
j=1

‖û j(·, t;ω)− v̂
j

T
(·, t;ω)]‖L2(Ω ;L1(Rd))

≤ ‖u(·, t;ω)− vT (·, t;w)]‖L2(Ω ;L1(Rd))

≤C
{
‖u0 − v0

T ‖L2(Ω ;L1(Rd))+ t∆xs‖TV (u0(·,w))‖L2(Ω)

}
.

⊓⊔
The initial data approximation error ‖u0 − v0

T
‖L2(Ω ;L1(Rd)) can be bounded by ∆x as

indicated in Remark 3, item 2.

4.3.3 Work estimates

To calculate the error versus computational work, we estimate the asymptotic com-

plexity of computing the estimators along the lines of [46]. In doing this, we assume

that the computational domain D ⊂Rd is bounded and suitable boundary conditions

are specified on ∂D. In this bounded, computational domain D, the work for one

time step (59), (60) is of order O
(
∆x−d

)
(with O (·) depending on the size of the

domain and on the size of stencil employed in the FV scheme) we find from the CFL

condition (58) that the total computational work to obtain {vT (·, t)}0<t≤T in D is by

(72)

Work(T ) = O

(
∆x−d−1

)
, as λ∆x = ∆ t ↓ 0. (81)

The work for the computation of the MC estimate EM[vT (·, t)] is assumed to scale as

Work(M,T ) = O

(
M∆x−d−1

)
, as ∆ t = λ∆x ↓ 0. (82)

The bound (80) allows to infer convergence order estimates in terms of work. To

derive these, we choose M−1/2 ∼ ∆xs in (80). Setting the implied constant equal to

one results in M = ∆ t−2s. Inserting in (82) yields

Work(T ) = O

(
∆ t−2s ∆x−(d+1)

)
(58)
= O

(
∆x−(d+1)−2s

)
(83)

so that we obtain from (80)
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‖E[u(·, t)]−EM[vT (·, t)]‖L2(Ω ;L1(Rd)) ≤C∆ ts ≤C(Work(T ))−s/(d+1+2s) . (84)

Regarding the convergence rate in the estimate (84), for the deterministic FV scheme

holds

Work(T ) = O

(
∆ t−1 ∆x−d

)
(58)
= O

(
∆x−(d+1)

)
.

The bound on the FV error, (68), becomes when written in terms of work, equal to

‖u(·, t)− vT (·, t)‖L1(Rd)

≤
∥∥u0 − v0

T

∥∥
L1(Rd)

+Ct TV (u0) (Work(T ))−s/(d+1) . (85)

Ignoring initial data approximation errors, which are negligible in comparison

to the computational work for the time marching, the exponent −s/(d +1) for the

deterministic FVM as compared to −s/(d +1+2s) for the MC-FVM. For low order

FV schemes (ie., for small values of the convergence rate s) and in space dimensions

d = 2,3, we observe a considerably reduced rate of convergence of the MC-FVM.

For high order FV schemes, we recover in (84) the MC rate 1/2 of the error in terms

of work.

4.4 Multilevel MC-FVM

Next, we present and analyze a scheme that allows us to achieve a better accuracy

versus work bound for the random initial data u0, compared to the standard MC-FVM

error bound (84). The Multilevel Monte Carlo Finite Volume (MLMC-FVM) scheme

is based on MC sampling with level dependent sample sizes Mℓ on different levels ℓ
of resolution of the FVM. Throughout, we assume the explicit FV scheme satisfies

Assumption 2 and the CFL stability condition (58). To define the MLMC-FVM, we

start by reviewing notation as used in [46].

4.4.1 Notation

The MLMC-FVM is defined as a multilevel discretization in x and t with level

dependent numbers Mℓ of samples. To this end, we assume we are given a family

{Tℓ}
∞
ℓ=0 of nested triangulations of Rd such that the mesh width

∆xℓ = ∆x(Tℓ) = sup{diam(K) : K ∈ Tℓ}= O

(
2−ℓ∆x0

)
, ℓ ∈ N0, (86)

where K denotes a generic FV cell K ∈T . We also assume the family M= {Tℓ}
∞
ℓ=0

of meshes to be shape regular; if K ∈ Tℓ denotes a generic cell, we recall, for a

generic mesh T ∈M, the shape regularity constants κ(T ) defined in (54). We say

that the family M of meshes is κ-shape regular, if there exists a constant κ(M)< ∞

such that with ρK denoting the diameter of the largest ball insribed into K
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κ(M) = sup
T ∈M

κ(T ) = sup
T ∈M

sup
K∈T

diam(K)

ρK

. (87)

For a mesh hierarchy M= {Tℓ}
∞
ℓ=0, we denote

∆xℓ := ∆x(Tℓ), Tℓ ∈M, ℓ= 0,1, . . . . (88)

4.4.2 MLMC-FVM

The MLMC FVM consists in estimates of E[u(·, t)] obtained by replacing u(·, t) by a

FV discretization, on a sequence of discretizations {Tℓ}ℓ∈N0
which we assume to be

nested. We denote in the present section the FV approximation vT on triangulation

T ∈M by vℓ(·, t). On Tℓ ∈M, the CFL condition (58) takes the form

∆ tℓ ≤ λ∆xℓ, ℓ= 0,1,2, . . . , . (89)

We assume the CFL constant λ > 0 to be independent of ℓ and of the input realization

ω; this will allow for deterministic error vs. work bounds; we refer to [49] for a

discussion of error vs. work of MLMC for nonuniform (log-gaussian) random inputs.

As the FV scheme is CFL stable, we may generate a sequence {vℓ(·, t)}
∞
ℓ=0 of

stable FV approximations on triangulation Tℓ for time steps of sizes ∆ tℓ which

satisfy the CFL condition (89) with respect to mesh Tℓ ∈M. We set in what follows

v−1(·, t) := 0. Then, given a target (finest) level L ∈ N of spatial resolution, we may

use the linearity of the expectation operator to write, as is customary in MLMC

analysis (see, e.g., [27])

E[vL(·, t)] =
L

∑
ℓ=0

E

[
vℓ(·, t)− vℓ−1(·, t)

]
. (90)

We next estimate each term in the sum (90) by a Monte-Carlo method with a level-

dependent number of samples, Mℓ, to obtain the MLMC-FVM estimator,

EL[u(·, t)] =
L

∑
ℓ=0

EMℓ
[vℓ(·, t)− vℓ−1(·, t)] . (91)

Here, EM[vT (·, t)] is the standard MC estimator defined in (79), and vℓ(·, t) denotes

the FV solution on Tℓ, computed under the CFL assumption (89), with ∆ tℓ ≤ λ∆xℓ
where ∆xℓ := ∆x(Tℓ) denotes the meshwidth at mesh level ℓ (see (55)) and where the

CFL constant λ > 0 is independent of ℓ. We emphasize that the form of the estimator

(90) implies that the same draw of the random initial data should be approximated

on two successive meshes in the hierarchy.
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4.4.3 Convergence Analysis

The MLMC-FVM mean field error

∥∥E[u(·, t)]−EL[u(·, t)]
∥∥

L2(Ω ;L1(Rd))
(92)

for 0 < t < ∞ and L ∈ N was analyzed in [47] for the SCL (13) with random initial

data and deterministic flux. Analogous results for the more general SCL with random

fluxes was shown in [46]. The choice of the sample sizes {Mℓ}
∞
ℓ=0 is such that,

for every L ∈ N, the MLMC error (92) is of order (∆xL)
s, where s is the order of

convergence in the Kuznetsov type error bound (68). The design of MLMC-FVM is

based on a judicious choice of MC sample numbers {Mℓ}
∞
ℓ=0 at the discretization

levels ℓ. To derive it, we observe that for each L, the error bound (92) holds with

work bounded by

WorkL =
L

∑
ℓ=0

MℓO

(
∆x−d−1

ℓ

)
= O

( L

∑
ℓ=0

Mℓ∆x−d−1
ℓ

)
. (93)

The MLMC convergence analysis in [47] used incorrectly a MC convergence estimate

for the space L1(Rd) which is a Banach space of type 1. This error was rectified in a

recent paper [46], where the following bound on the variance of the FV details was

shown:

‖(vℓ− vℓ−1)(·, t)‖
2
L2(Ω ;L1(Rd)) ≤C(D,T )∆xs

ℓ ‖u0‖
2
L2(Ω ;W s,2(Rd)) . (94)

Theorem 5. [46, Thm. 4.7] Suppose that Assumption 1, items 1. - 5. hold, and that,

moreover, (28) - (32) and (87) - (89) are valid. Then, for any sequence {Mℓ}
∞
ℓ=0 of

MC sample numbers at mesh level ℓ, we have for the MLMC-FVM estimate EL[u(·, t)]
in (91) the error bound

∥∥E[u(·, t)]−EL[u(·, t)]
∥∥

L2(Ω ;L1(Rd))

≤C
(
D,T,‖u0‖L∞(Ω ;Z)

)
[

∆xs
L +

L

∑
ℓ=1

M
− 1

2
ℓ ∆x

s
2
ℓ +M

− 1
2

0

]
(95)

where C is a constant that depends on the final time T < ∞, the initial data and on

the bounded domain D which contains, according to (52), the support of u(t) with

probability one, but is independent of L.

Proof. We calculate for any t ∈ [0,T ]

∥∥E[u(·, t)]−EL[u(·, t)]
∥∥

L2(Ω ;L1(Rd))
≤ ‖E[u(·, t)]−E[vL(·, t)]‖L2(Ω ;L1(Rd))︸ ︷︷ ︸

I

+
∥∥E[vL(·, t)]−EL[u(·, t)]

∥∥
L2(Ω ;L1(Rd))︸ ︷︷ ︸

II
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In complete analogy with the estimation of term II in proof of Theorem 4, the term

I in the above estimate can be readily estimated in terms of the spatio-temporal

discretization error of the FV scheme at the finest mesh resolution with diameter ∆xL

as follows,

I ≤C(T,‖u0‖L∞(Ω ;Z))∆xs
L.

To estimate term II in the above estimate, we use the discrete finite dependence

domain result, Proposition 3, and the bounded support assumption (32) on the

random initial data and proceed as follows,

II =
∥∥E[vL(·, t)]−EL[u(·, t)]

∥∥
L2(Ω ;L1(Rd))

=

∥∥∥∥∥
L

∑
l=0

[
E[vl(·, t)− vl−1(·, t)]−EMℓ

[vℓ(·, t)− vℓ−1(·, t)]
]
∥∥∥∥∥

L2(Ω ;L1(Rd))

≤
L

∑
l=0

∥∥E[vl(·, t)− vl−1(·, t)]−EMℓ
[vℓ(·, t)− vℓ−1(·, t)]

∥∥
L2(Ω ;L1(Rd))

≤C(D,T )
L

∑
l=0

∥∥E[vl(·, t)− vl−1(·, t)]−EMℓ
[vℓ(·, t)− vℓ−1(·, t)]

∥∥
L2(Ω ;L2(Rd))

≤C(D,T )





‖v0(·, t)‖L2(Ω ;L2(Rd))

M
1
2
0

+
L

∑
l=1


‖(vℓ− vℓ−1)(·, t)‖L2(Ω ;L2(Rd))

M
1
2
l







In the final estimate, we used the compact support assumption (50) and in the final

step, we used the standard Hilbert space MC estimate (12) for the detail vℓ− vℓ−1.

Accordingly, we need to bound the variance of the details vℓ− vℓ−1 in the (Hilbert)

space L2(Rd) according to

‖(vℓ− vℓ−1)(·, t)‖L2(Ω ;L2(Rd)) ≤C(D,T )‖u0‖L2(Ω ;Z) ∆x
s
2
ℓ . (96)

Note that the use of the (Hilbertian) L2(Rd) norm in the error bound entails the

convergence rate s/2 of the FV detail vℓ− vℓ−1, where 0 < s ≤ 1 denotes the L1(Rd)
convergence rate of the (deterministic) FV approximation. Substituting the above in

the estimate for term I and using the stability of the numerical solution at the coarsest

level of discretization ∆x0, we arrive at (95). ⊓⊔
The error bound (95) is then used to select MC sample numbers Mℓ at discretiza-

tion level ℓ to achieve a prescribed tolerance ε ∼ ∆xs
L, with minimal computational

work.

A (standard in MLMC by now) Lagrange multiplier argument (see,e.g., Giles [27]

and references therein) allows to solve the corresponding constrained minimization

problems results in sample number choices obtained, for example, in [46] for 0 <
s < d +1,
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Mℓ ∼
∆x

(s+d+1)
2

ℓ

∆x2s
L

L

∑
k=0

∆x
(s−(d+1))

2
k ∼

∆x
(s+d+1)

2
ℓ

∆x
(3s+d+1)

2
L

(97)

with ∼ denoting equivalence uniform with respect to L and ℓ.
As in [47], we use the sample numbers Mℓ in (97) to obtain the following error

estimate in terms of work

∥∥E[u(·, t)]−EL[u(·, t)]
∥∥

L2(Ω ;L1(Rd))
≤C

(
Work({Mℓ}

L
ℓ=0;TL)

)−s/(d+1+s)
. (98)

The complexity estimate (98) shows that the MLMC FVM can be more efficient than

the MC FVM (84), in terms of computational work that needs to be performed for

obtaining the same error. However, to achieve a comparable error in L2(Ω ;L1(Rd)),
the MLMC method is more expensive than a single deterministic solve.

Remark 4. The above discussion on random entropy solutions and (ML)MC methods

considered the simplest case of a scalar conservation law with random initial data.

These notions and methods were extended to the case where the flux function in

a scalar conservation law is random. In a recent paper [46], where the appropriate

notion of random entropy solutions were defined and shown to exist, provided that

the uncertainty in the flux satisfied certain assumptions, which ensure the random

flux to be Bochner measurable and P-a.s. separably valued in the space of Lipschitz

continuous flux functions. Both the MC-FV and MLMC-FV methods were analyzed

in this context and the MLMC-FV method was shown to satisfy the same error

vs computational work i.e, (98) as in the case of deterministic fluxes and random

data. Consequently, the MLMC method is significantly more efficient than the

corresponding MC-FV method. We refer to [46] for details.

5 Statistical Moments

The error bounds for the MLMC-FVM obtained up to this point addressed the

numerical estimation of the “ensemble average”, or mean-field. Here, we briefly

comment on efficient numerical approximation of 2- and k-point correlation functions

of random solutions. When the physical problem is posed in d spatial variables,

spatial k-point correlation functions of random or of statistical solutions can be

represented (under the provision of sufficient regularity) as deterministic functions

of kd variables.

The “natural”, FV approximation of k-point spatial correlations of random entropy

solutions as well as of correlation margins of statistical EMV solutions introduced

in [19, 16], will involve k-fold (algebraic) tensorisation of (finite dimensional, by

the bounded support assumption (32) on the random initial data, and by the cor-

responding bounded support property (71) of FV approximations implied by the

uniform hyperbolicity of the SCL). This can increase computational complexity

due to the low convergence rate 1/2 of MC sampling, and to the so-called “curse
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of dimensionality”, which entails complexity O
(
∆x−kd−1

)
in k-point correlation

estimation. This can be prohibitive, in particular in space dimension d = 3, even for

two-point correlations where k = 2. Two algorithmic strategies are next presented

which allow, to some extent and under appropriate regularity conditions, to reduce

the computational complexity: first, the MC statistical estimation of k-th central sta-

tistical moments in the physical dimension D as analyzed recently in [3], and second,

k-fold sparse tensor products of FV solutions in the physical domain D ⊂ Rd as pro-

posed in [47]. They render k-point correlations in Dk ⊂ Rkd numerically accessible

in O
(
∆x−d−1| log∆x|k−1

)
operations.

5.1 Estimation of k-th order central statistical moments

Given a random entropy solution u, a “natural” MC estimator based on M iid samples

for the k-th central moment of u(·;x, t) reads

Sk
M[u] :=

1

M

M

∑
i=1

(ui −EM[u])k , (99)

assuming availability of exact solution samples ui of the random entropy solution.

The estimator (99) is to be interpreted pointwise w.r. to x ∈ D and t ∈ [0,T ]. It is,

however, well-known to be a statistically biased estimator. Unbiased estimators are

known. For example,

S̃2
M[u] :=

M

M−1
S2

M[u] , S̃3
M[u] :=

M2

(M−1)(M−2)
S3

M[u] (100)

are unbiased estimators of M 2(u) and M 3(u). For k ≥ 4, unbiased estimators

S̃k
M[u] can be obtained as polynomial expressions of Sr

M[u] for r = 1, ...,K which are,

however, not unique. We refer to [3, Lemma 3] for details.

A MLMC estimator of M k(u)(x, ...,x; t) is introduced and analyzed in [3, Theo-

rem 1].

As the corresponding algorithms only access the FV solver through iid samples

of the random initial data and random flux, respectively, they are nonintrusive and

embarrasingly parallel. Operating only in the physical domain D ⊆ Rd , they do not

require additional data structures for tensorization of FV solutions. Central statisti-

cal moments M k(u)(x, ...,x; t) can, however, also be numerically approximated as

“diagonals” of statistical k-point correlations M k(u). We discuss this next.
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5.2 Estimation of k-point spatial correlations

The work to form a single tensor product over a bounded computational domain

D ⊂ Rd (such as, e.g., the support domain of the solution at time t in (26)) grows,

ignoring timestepping, as O(∆x−kd) which may entail a computational effort that is,

for moment orders k ≥ 2, prohibitive. To reduce the complexity of k-point correlation

function estimation, a so-called “sparse grid” or “sparse tensor product” approach

was proposed in [52, 2, 47]. We refer to [59, 31, 56] and the references there for

general presentations of sparse tensor product spaces.

5.2.1 k-point correlation estimation by sparse tensorization of FV Solutions

As is standard in multi-resolution analysis, the cell-average projections Pℓ : L1(Rd)→
Sℓ, defined in (88), (104), allow us to introduce spaces of increments or details in the

FV mesh hierarchy M= {Tℓ}
∞
ℓ=0:

Wℓ := (Pℓ−Pℓ−1)Sℓ, ℓ≥ 0 (101)

where P−1 := 0 so that W0 = S0. Then, for any L ∈ N0, we have the multilevel

decomposition

SL =W0 ⊕ ...⊕WL =
L⊕

ℓ=0

Wℓ . (102)

The k-point correlations (vL(·, t))
(k) of FV solutions at time t > 0 belong to the

(algebraic) tensor product space

(SL)
(k) := SL ⊗ ...⊗SL︸ ︷︷ ︸

k times

= ∑
|ℓ|∞≤L

Sℓ1
⊗ ...⊗Sℓk

=
⊕

|ℓ|∞≤L

k⊗

j=1

Wℓ j
. (103)

In the numerical realization of 2- and k point correlation functions and correlation

margins of measure valued solutions, the computational realization of approximations

in the tensor product space (SL)
(k) is necessary. To formulate it, we introduce the

k-fold algebraic tensor products of the FV cell-average projections by

P
(k)
L v := PL ⊗ ...⊗PL︸ ︷︷ ︸

k times

: L1(Rkd)→ (SL)
(k) . (104)

In the case that NL := dimSL < ∞ (as e.g. when the spaces Sℓ are only defined

on a bounded domain D ⊂ Rd such as the “support box” (26) in Prop. 2) then

dim((SL)
(k)) = Nk

L which is prohibitive. Sparse Tensor approximations of k-point

correlation functions, (v(·, t))(k) are “compressed” FV approximations which involve

FV spaces of piecewise constant functions on coarser meshes. They are defined in

terms of the increment space Wℓ in (101) by
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(̂SL)
(k)

:=
⊕

|ℓ|1≤L

k⊗

j=1

Wℓ j
(105)

where |ℓ|1 := ℓ1+ ...+ℓk and where algebraic tensor products are implied. Note that a

realization of the sparse tensor product space (̂SL)
(k)

according to its definition (105)

requires construction of explicit bases for Wℓ in (101); on unstructured, simplicial

triangulations T as in our Assumption 2 such bases can be numerically constructed

by agglomeration, see, e.g. [1]. A one-scale FV solution on the finest mesh TL can

be converted to a ML representation in O(NL) operations by the so-called pyramid

scheme (see, e.g., [5, Pp. 225-294]). If the mesh family M used in the pathwise FV

approximation (see Assumption 2) is generated by recursive dyadic refinements of

the initial triangulation T0, when NL = dimSL < ∞ (as is the case e.g. on bounded

domains D ⊂ Rd) it holds (see, e.g. [59, 56])

dim(̂SL)
(k)

= O(NL(log2 NL)
k−1) . (106)

Having at hand the sparse tensor product space (̂SL)
(k)

in (105), we also define the

sparse tensor projection

(̂PL)
(k)

:=
⊕

|ℓ|1≤L

k⊗

j=1

(Pℓ j
−Pℓ j−1) : L1(Rkd)→ (̂SL)

(k)
. (107)

We refer to [31, 59] and the references there, from where we briefly recapitu-

late approximation properties of sparse tensor product projections: for any function

U(x1, ...,xk) which belongs to (W s,1(Rd))(k) being the space of functions of k vari-

ables x1, ...,xd ∈ Rd which are, with respect to each variable, in W s,1(Rd), it holds

‖U − (̂PL)
(k)

U‖L1(Rkd) ≤C(∆xL)
s| log∆xL|

k−1‖U‖(W s,1(Rd))(k) (108)

where C > 0 is independent of ∆xL (it depends only on k, d and the shape regularity

of the family M of triangulations, but is independent of ∆xL).

5.2.2 Sparse MLMC-FVM Estimator

The MLMC sparse FV estimator is based on a sparse tensor product FV approxima-

tion for each MC sample. To define it, we recall that EM[·] denotes the MC estimate

based on M samples): for a given sequence {Mℓ}
L
ℓ=0 of MC sample numbers at

level ℓ= 0, ...,L, the sparse tensor MLMC estimate of M k[u(·, t)] is, for 0 < t < ∞,

defined by

ÊL,(k)[u(·, t)] :=
L

∑
ℓ=0

EMℓ
[P̂ℓ

(k)
(vℓ(·, t))

(k)− P̂ℓ−1

(k)
(vℓ−1(·, t))

(k)] . (109)
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We observe that (109) is identical to (103) except for the sparse formation of the

k-point correlation functions of the FV solutions corresponding to the initial data

samples ûi
0. In bounded domains, this reduces the work for the formation of the

k-point correlation function from Nk
L to O(NL(log2 NL)

k−1) per sample at mesh level

L. As is well known (see, e.g. [31, 59]) use of sparse rather than full tensor products

essentially preserves (ie., up to logarithmic w.r. to ∆x terms) the order s of FV

convergence of sparse tensor product k point correlation function approximations.

5.2.3 Combination Formula

Sparse tensor products are particularly easy to realize when the FV scheme already

produces FV solutions to SCLs in MRA format. Such schemes are nonstandard, but

available even on unstructured meshes as we admit in Assumption 2, in a development

[50, 25] originating in the seminal work of A. Harten [4, 1]. Often, however, only

single-level (one-scale) numerical FV approximations on triangulations Tℓ, ℓ =
0, ...,L are available. In order to realize the MLMC-FV estimator (109), for each

realization the approximations must be converted to a MR representation. This can be

achieved also on unstructured meshes in linear complexity by the so-called pyramid

scheme (see, e.g., [55] for a definition and an algorithm).

An alternative approach which obviates MR based numerical methods is the

so-called combination formula, as proposed for this purpose (in a different context)

in [32, Lemma 12, Thm. 13]. For the projector (̂PL)
(k)

in (107), the combination

identity

(̂PL)
(k)

=
k−1

∑
i=0

(−1)i

(
k−1

i

)
∑

|ℓ|1=k−i

P
(k)
ℓ , where P

(k)
ℓ :=

k⊗

j=1

Pℓ j
(110)

holds. The combination identity (110) implies that sparse tensor MC-FV approxi-

mations of k-point correlation functions can be numerically built from (pointwise)

products of standard, one-scale FV approximations of the SCL (13) - (15) with iid

samples of the random initial data u0 on mesh levels ℓ := (ℓ1, ..., ℓk). When inserted

into (109), the combination identity (110) provides an explicit realization of the

MLMC-FVM estimator of k-point correlations of random entropy solutions, based

exclusively on (parallel) standard FV solves on all mesh levels.

5.2.4 Error Bounds and Complexity Analysis

We can now generalize Theorems 4 and 5 to sparse tensor MLMC-FV estimates

for the k-th moments of random entropy solutions; it also applies to estimates of

correlation measures of entropy statistical solutions as introduced in [17].

Theorem 6. Assume that the random initial data u0 satisfies Assumption 1, items

1.-4. and that the FV scheme satisfies Assumption 2, items 1.-3.. In particular, assume
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that the deterministic FV scheme converges at rate s > 0 according to (68) and that

for u0, the bounded support Assumption 2, item 4., (32) holds.

Assume further that the FV scheme satisfies the CFL condition (58) and that

the random initial data u0 is Bochner-integrable of order 2k in the spaces Z =
(L1 ∩L∞ ∩BV )(Rd) and in W s,1(Rd), i.e.

u0 ∈ L2k(Ω ;Z)∩L2k(Ω ;W s,1(Rd)) . (111)

Then, MLMC-FVM estimator ÊL,(k)[u(·, t)] defined in (109) satisfies, for every se-

quence {Mℓ}
L
ℓ=0 of MC samples, the error bound

‖M ku(·, t)− ÊL,(k)[u(·, t;ω)]‖2
L2(Ω ;L1(Rkd))

. (1∨ t)∆x2s
L | log∆xL|

2(k−1)
{
‖TV(u0(·,ω))‖2k

Lk(Ω ;dP)
+‖u0(· ;ω)‖2k

L∞(Ω ;W s,1(Rd))

}

+

{
L

∑
ℓ=0

∆xs
ℓ| log∆xℓ|

k−1

Mℓ

}{
‖u0(· ;ω)‖2k

L2k(Ω ;W s,1(Rd))
+ t2‖TV(u0(· ;ω))‖2k

L2k(Ω ;dP)

}
.

Here, the constant implied in . depends on the order k of the moment to be estimated,

on the physical space dimension d, and on the support size constant R > 0 in the

bounded support assumption (32).

Then, the total work to compute the MLMC estimates ÊL,(k)[u(· ; t)] is bounded by

(with O(·) depending on the size of D)

Ŵork
MLMC

L = O

(
L

∑
ℓ=0

Mℓ∆x
−(d+1)
ℓ | log∆x|k−1

)
. (112)

Based on Theorem 6, we infer that the choice (97) of numbers Mℓ of MC samples at

level ℓ should also be used in the MLMC estimation of k-point correlation functions

for k > 1, provided the order s of the underlying deterministic FVM scheme (59) -

(61) satisfies

0 ≤ s < d +1 . (113)

In particular, in a bounded domain D ⊂ Rd containing the bounded support in (52),

‖M ku(·, t)− ÊL,(k)[u(·, t;ω)]‖L2(Ω ;L1(Dk)) ≤C(Ŵork
MLMC

L )−s′/(d+1+s) (114)

for any 0 < s′ < s (with constant growing as 0 < s′ → s ≤ 1). The computational

domain D can, in particular, contain the bounded support domains of the exact and

discrete solutions at time t > 0, as indicated in (71), (52).
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6 Monte Carlo and Multi-level Monte Carlo methods for systems

of conservation laws

6.1 General considerations

We consider the general system of conservation laws (1), with random initial data in

(115b) as well as possibly random coefficients and random flux functions in (115a).

A notion of random entropy solutions can be defined for this general case, analogous

to definition 2 for scalar conservation laws. We refer to [48] for details. However,

there are no well-posedness results for random entropy solutions for systems as even

the underlying deterministic problem may not be well-posed, particularly in several

space dimensions [14]. One approach to developing numerical approximations in

this case is to assume existence of random entropy solutions and to design efficient

methods for numerical approximations of their solutions:

It is fairly straightforward to extend the MCFV scheme, given in section 4.3.1,

to general, nonlinear hyperbolic systems of conservation laws with random inputs.

A convergence rate estimate, analogous to (80) can be proved, provided that one

postulates a convergence rate, analogous to (68), for the underlying spatio-temporal

FV discretization, see [48]. Similarly, the MLMC method, as described in section

4.4 can also be readily extended to this general case and a convergence rate estimate,

similar to (95), once the underlying spatio-temporal discretization converges like in

(68) or at least a estimate of the type (96) holds. Consequently, a complexity estimate

as (98) can be shown under these assumptions, demonstrating that the MLMC-FV

method is more efficient than the MC-FV method.

6.2 Numerical experiments

We present a few numerical experiments involving systems of conservation laws to

illustrate the robustness of the MLMC method and its comparison with the Monte

Carlo method.

6.2.1 Uncertain Orszag-Tang vortex

This test is taken from [48], section 6.2. The system of conservation laws under con-

sideration are the ideal magnetohyrodynamics (MHD) equations of plasma physics.

We consider the ideal MHD equations on the two-dimensional domain [0,1]2 with

periodic boundary conditions. The random initial data is an uncertain version of the

well-known Orszag-Tang benchmark test problem. We consider a random initial data

with 8 sources of uncertainty, namely in the amplitudes of the initial density and

pressure, phases of the initial sinosoidal velocity fields and the phases and amplitude

of the initial solenoidal magnetic fields. The mean and the variance of the density,
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computed at time T = 1.0 with an MLMC-FV method, with 8 levels of resolution,

a finest mesh of 40962 and with 4 samples at the finest level, with the underlying

FV method using a HLLC Riemann solver, a second-order WENO reconstruction

and upwind treatment of the Godunov-Powell source term [23], are shown in figure

1. In this case, one computes a reference solution with the above configuration and

calculates the L2(Ω ,L1(D)) error for both the mean and variance, with MC and

MLMC methods (of both first and second order spatio-temporal discretizations). The

errors for the mean and variance are plotted in figures 2 and 3, respectively. They

show that in this example, the MLMC FV method is at least 50− 60 times faster

than the single-level MC FV method for the mean and 10−20 times faster for the

variance, to achieve a prescribed error tolerance in the engineering range of accuracy.

Thus, this justifies the complexity estimates, described here, at least for this example.
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Fig. 1 Uncertain Orszag-Tang vortex solution at t = 1.0 using MLMC-FVM (8 sources of uncer-

tainty). Left: Convergence of the sample mean of random density. Right: Convergence of the sample

variance of the random density. Reproduced from [48]

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
log10(cells) in x-direction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
g
1

0
( 
L
2
(Ω

,
L
1
) 

e
rr

o
r 

)  1/2

 1/1

Relative L1 error of mean of rho (K=5)

MC

MLMC

MC2

MLMC2

0 1 2 3 4 5 6 7
log10(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
g
1

0
( 
L
2
(Ω

,
L
1
) 

e
rr

o
r 

)

 1/6

 1/3

Relative L1 error of mean of rho (K=5)

MC

MLMC

MC2

MLMC2

Fig. 2 Convergence of sample mean in the uncertain Orszag-Tang vortex simulation (8 sources of

uncertainty). Left: Error vs. Mesh resolution. Right: Error vs. Runtime. Reproduced from [48].
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Fig. 3 Convergence of sample variance in the uncertain Orszag-Tang vortex simulation (8 sources

of uncertainty). Left: Error vs. Mesh resolution. Right: Error vs. Runtime. Reproduced from [48].

6.2.2 A random Kelvin-Helmholtz problem

This numerical example is taken from a recent paper [16] and the MLMC compu-

tations are presented in [45]. We consider the compressible Euler equations in the

two-dimensional domain [0,1]2 with periodic boundary conditions. The uncertainty

arises due to the initial data being a (very small) random perturbation of the classic

Kelvin-Helmholtz problem, see [16], with 20 sources of uncertainty in the initial

data. The mean and variance of the density, computed with a Monte Carlo method,

on a Cartesian 10242 grid and with 400 MC samples are shown in Figure 4 (Top

Row). The underlying FV scheme is the third-order entropy stable TeCNO scheme

of [18]. Surprisingly for this test case, the variance of the solution is at least three

orders of magnitude higher than the variance of the initial data. This amplification of

variance is due to the generation of structures at smaller and smaller scales, when the

shear flow interacts with the contact discontinuity. In this particular case, the MLMC

method provides no gain in computational efficiency over the standard Monte Carlo

method. This is depicted in Figure 4 (Bottom row, Left), where the L1 difference in

the mean of the density, computed with the MLMC and MC methods, at the same

grid resolution for the finest grid and the same number of samples at the finest grid

resolution of MLMC, with respect to an MC reference solution computed with 1024

samples, is compared. The results show that error due to MLMC is comparable to

the error due to the MC calculation, provided that the number of samples at the finest

grid level of the MLMC calculation is the same as the number of MC samples. Thus,

in this case, the coarse levels of the MLMC method do not increase the accuracy of

the computation and are redundant. Given this observation, it is clear that an error

estimate of the form (95) cannot hold for this particular example. In fact, even an

error estimate of the form (68) for the underlying spatio-temporal discretization, does

not hold for this example. We see this from Figure 4 (Bottom row, Right) where

the difference in L1 between two successive mesh resolutions for a single sample is

shown. This figure show that the error remains constant with respect to resolution

and the underlying FV scheme does not converge for this particular test case. It was

also shown in [45] that even weaker convergence bounds, such as the variance of
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the difference between successive resolutions (96), does not hold for this particular

problem, as structures at even smaller scales are generated upon mesh refinement.
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Fig. 4 UQ for the random Kelvin-Helmholtz problem. Top Row: Density at time T = 2 computed

with MC method and TeCNO3 scheme with the algorithm proposed in [16] Left: Convergence of

the sample mean, Right: Convergence of the sample variance (Reproduced from [16]). Bottom Row

Left: Comparison between MC and MLMC method with respect to error in mean of the density

with respect to a reference solution (Reproduced from [45]). Bottom Right: Lack of convergence

for a single sample for the density (reproduced from [16]).

7 Measure-valued and Statistical solutions

It is interesting to note that the Monte Carlo and Multi-level Monte Carlo methods

converge for the previous numerical experiment, as shown in Figure 4 (bottom left),

even though the underlying spatio-temporal discretization may not converge in L1,

as shown in Figure 4 (bottom right). What exactly do the (ML)MC-FV computations

converge to in this case ?
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7.1 Measure-valued solutions

This question was partially answered in recent papers [16, 19] and references therein.

There, the authors proved that a Monte Carlo based algorithm, together with an

entropy stable scheme such as the TeCNO scheme of [18], converges to an entropy

measure valued solution of the underlying system of conservation laws (1). Measure

valued solutions were first proposed by [53] and are in fact Young measures i.e,

space-time parametrized probability measures on the phase space RN of the system

(1). Let D ⊂Rd be the domain and Dt := D×R+, we define Young measure from Dt

to RN as a map which associates to each point (x, t) ∈ Dt a probability measure on

RN . More precisely, a Young measure is a weak* measurable map ν : Dt → P(RN),
meaning that the mapping

(x, t) 7→
〈
νx,t , g

〉
=
∫

RN

g(ξ )dνx,t(ξ ) is Borel measurable for every g ∈C0(R
N).

The set of all Young measures from Dt into RN is denoted by Y(Dt ,R
N). Given

this notation for Young measures, one can rewrite the following system of N- conser-

vation laws,

∂tu+∇x · f (u) = 0, (x, t) ∈ Dt , (115a)

u(x,0) = ū(x), x ∈ D. (115b)

in terms of the following measure-valued Cauchy problem,

∂t〈νx,t ,ξ 〉+∇x · 〈νx,t , f (ξ )〉= 0, (x, t) ∈ Dt ,

〈νx,0,ξ 〉= 〈σx,ξ 〉, x ∈ D,
(116)

with possibly Young measure-valued initial data σx. The above system (116) has to

hold in the sense of distributions. Entropy (admissibility) conditions can be imposed

by interpreting an associated entropy inequality in the Young measure sense [53]

Global existence of measure-valued solutions was shown recently in [16, 19]

and references therein, by proving convergence of the following Monte Carlo based

ensemble averaging algorithm,

Algorithm 1

Let the initial data for an underlying time-dependent PDE (116) be given as a Young

measure σ ∈ Y(D,RN) i.e, a Young measure D 7→ P(RN).

• Step 1: Let u0 : Ω 7→ Lp(Rd) be a random field on a probability space (Ω ,Σ ,P)
with law σ , i.e., σ(E) = P(u0(ω) ∈ E).

• Step 2: Evolve the initial random field by applying a suitable numerical scheme,

with solution map S ∆
t , to the initial data u0(ω) for every ω ∈ Ω , obtaining an

approximate random field u∆ (ω; ·, t) := S ∆
t u0(ω; ·).

• Step 3: Define the approximate measure-valued solution ν∆ as the law of u∆

with respect to P, i.e. for all Borel sets E ⊂ RN ,
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ν∆
x,t(E) = P

(
u(ω;x, t) ∈ E

)
.

It was shown in [16, Appendix A.3.1] that ν∆ are indeed Young measures. The

existence of a random field u0 with a given law σ , as required in Step 1, is guaranteed

by proposition A.3 of [16].

The numerical method in Step 2 of algorithm 1, can be appropriate structure

preserving Finite Volume Methods, such as the arbitrary high-order entropy sta-

ble TeCNO schemes of [18]. The last ingredient in our numerical approximation

of measure-valued solutions is to find, and approximate, the random field u0(ω;x)
which appears in Algorithm 1, resulting in the following algorithm.

Algorithm 2.

Let ∆ = (∆x1, . . . ,∆xd) denote the grid size parameter and let M ∈ N. Let further

σ∆ ∈ Y(Rd ,RN) denote the initial Young measure.

• Step 1: For some probability space (Ω ,Σ ,P), draw M i.i.d. random fields

u
∆ ,1
0 , . . . ,u∆ ,M

0 : Ω ×Rd → RN , with [the same] law σ∆ .

• Step 2: For each k and for a fixed ω ∈ Ω , use a suitable numerical scheme to

numerically approximate the conservation law (115a) with initial data u
∆ ,k
0 (ω).

Denote u∆ ,k(ω; ·, t) = S ∆
t u

∆ ,k
0 (ω; ·). as the computed solutions.

• Step 3: Define the approximate measure-valued solution

ν∆ ,M
x,t :=

1

M

M

∑
k=1

δu∆ ,k(ω;x,t). (117)

Note that, as in any Monte Carlo method, the approximation ν∆ ,M depends on

the choice of ω ∈ Ω , i.e. on the choice of seed in the random number generator.

However, one can prove that the convergence rate of approximation is independent

of this choice, P-almost surely.

The approximate solutions ν∆ ,M were proved to converge to an entropy measure-

valued solution of (116) as (∆ ,M)→ (0,∞) in [16]. This convergence is in the weak-∗
topology on Young measures that amounts to convergence of one-point statistical

quantities of interest such as the mean, variance, point statistics and probability

density functions etc. Thus, the results of figure 4 are justified, mathematically.

Furthermore, the computations of [16] also demonstrated that the measure-valued

solution may not be atomic even if the initial data is an atomic young measure

concentrated on a L1 function. Thus, there seems to be no fully deterministic version

of multi-dimensional systems of conservation laws and the initial value problem

for (115), hitherto considered deterministically, should in fact be considered as a

problem in uncertainty quantification (UQ).

Measure-valued solutions for (116) exist for all times ([19] and references therein)

and are able to capture limits of numerical approximation of systems of conservation

laws (115). They also serve as an UQ framework within which the random initial

data is represented as a Young measure (or point probability distribution). However,

measure-valued solutions are not necessarily unique, particularly when the initial
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data is non-atomic. This holds true even for scalar conservation laws, see for in-

stance example 9.1 in [19], even for the one-dimensional Burgers’ equation. Thus,

measure-valued solutions need to be augmented with additional constraints in order

to recover uniqueness. This is consistent with the observations, reported in [16, 19],

that the computed measure valued solution when realized as a limit of the MC-FV

algorithm, is stable with respect to the choice of numerical method and with respect

to perturbations of the underlying random initial data. We refer to [40] for numerical

approximation of EMV solutions and convergence analysis for a combined MC FV

method for the velocity formulation of the incompressible Euler equations.

7.2 Statistical solutions

An attempt to constrain measure-valued solutions in order to recover uniqueness

has been made recently in [17]. In this paper, the authors propose a concept of

statistical solutions of systems of conservation laws as a suitable solution paradigm

as well as computational UQ framework. Statistical solutions of the Navier-Stokes

equations in the sense of Foias and Prodi [21] are time-parametrized families of

probability measures on a Lp function space. We refer to the surveys [20, 41] for

their mathematical theory for the incompressible Navier-Stokes equations.

In these references, statistical solutions are time-dependent probability measures

on divergence free L2 functions that evolve based on either Cylindrical moments

(Liouville equation) or Characteristic functionals (Hopf equation) resulting in a

functional differential equation on an infinite-dimensional space.

Although a viable concept for viscous flows such as the incompressible Navier-

Stokes equations, it is unclear how the statistical solutions in the sense of [20] can be

extended to inviscid problems such as systems of conservation laws (115). Moreover,

probability measures on Lp spaces are non-local and local statistical quantities such

as one-point statistics or multi-point correlations are hard to interpret in this setting.

Hence, the linkage between statistical solutions (in the sense of [20] or of the closely

related notion of statistical solutions introduced by Vishik and Fursikov in [61]) and

measure-valued solutions is unclear.

These difficult issues were tackled in a recent paper [17] in which the authors

were able to localize probability measures on infinite-dimensional function spaces

by relating them to Young measures as described below.

7.2.1 Correlation measures

Let U = RN and Dk := D×·· ·×D denote the k-fold cartesian product of D. In [17],

the authors defined correlation measures as a collection ν = (ν1,ν2, . . .) of maps

νk : Dk → P(Uk) satisfying the following properties:

• (i.) Weak-∗ measurability: Each map νk : Dk → P(Uk) is weak-∗ measurable,

in the sense that the map x 7→
〈
νk

x , f
〉

from x ∈ Dk into R is Borel measurable
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for all f ∈C0(U
k) and k ∈ N. In other words, νk is a Young measure from Dk to

Uk.

• (ii.) Lp-boundedness: ν is Lp-bounded, in the sense that

∫

D

〈
ν1

x , |ξ |
p
〉

dx <+∞.

• (iii.) Symmetry: If σ is a permutation of {1, . . . ,k} and f ∈ C0(R
k) then〈

νk
σ(x), f (σ(ξ ))

〉
=
〈
νk

x , f (ξ )
〉

for a.e. x∈Dk. Here, we denote σ(x)=σ(x1,x2, . . . ,xk)=

(xσ1
,xσ2

, . . . ,xσk
).

• (iv.) Consistency: If f ∈ C0(U
k) is of the form f (ξ1, . . . ,ξk) = g(ξ1, . . . ,ξk−1)

for some g ∈ C0(U
k−1), then

〈
νk

x1,...,xk
, f
〉
=
〈
νk−1

x1,...,xk−1
, g
〉

for almost every

(x1, . . . ,xk) ∈ Dk.

• (v.) Diagonal continuity (DC): If Br(x) :=
{

y ∈ D : |x− y|< r
}

then

lim
r→0

∫

D

1

|Br(0)|

∫

Br(x)

〈
ν2

x,y, |ξ1 −ξ2|
p
〉

dydx = 0. (118)

Each element νk is called a correlation marginal. The consistency property implies

that the k-th correlation marginal νk determines all ν l , l ≤ k. Thus, the family of

correlation marginals is a hierarchy of young measures. The equivalence between

correlation measures and probability measures on Lp is described by the following

result, which is [17, Thm. 2.7]:

For every correlation measure ν defined as above, there exists a unique probability

measure µ ∈ P(Lp(D)) satisfying

∫

Lp
‖u‖p

Lp dµ(u)< ∞ (119)

such that, for all k ∈ N and for every g ∈ L1(Dk : C0(U
k)): there holds

∫

Dk

∫

Uk
g(x,ξ )dνk

x (ξ )dx =
∫

Lp

∫

Dk
g(x,u(x))dxdµ(u) (120)

(where u(x) denotes the vector (u(x1), . . . ,u(xk))). Conversely, for every probability

measure µ ∈ P(Lp(D)) with finite Lp bound, there exists a unique correlation

measure ν satisfying (120). The relation (120) is also valid for any measurable

g : D×U → R such that |g(x,ξ )| ≤C|ξ |p for a.e. x ∈ D.

Moreover, it was also shown in [17] (Theorem 2.20) that the probability measure

µ (equivalently the associated correlation measure ν) was uniquely determined in

terms of moments or correlation functions of the correlation measure ν given by

mk : Dk → Uk, mk(x) :=
∫

Uk
ξ1 ⊗·· ·⊗ξk dνk

x (ξ ), k ∈ N. (121)
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Here, U⊗k refers to the tensor product space U⊗·· ·⊗U≃ RkN (repeated k times),

and ξ1⊗·· ·⊗ξk is a functional defined by its action on the dual space
(
U⊗k

)∗
= U⊗k

through (
ξ1 ⊗·· ·⊗ξk

)
:
(
ζ1 ⊗·· ·⊗ζk

)
= (ξ1 ·ζ1) · · ·(ξk ·ζk).

7.2.2 Definition of statistical solutions

Once it is established that probability measures on Lp are completely characterized

by moments (correlation functions) of the associated correlation measure, one can

evolve an initial probability measure on Lp(D) in time by writing evolution equations

for these correlation functions. Following [17], we define statistical solution of

(115a) with an initial data µ̄ ∈ P
(
L1
(
Rd ,RN

))
as a weak*-measurable mapping

t 7→ µt ∈ P
(
L1
(
Rd ,RN

))
such that the corresponding correlation measures (νk

t )k∈N

satisfy the following equations in the sense of distributions,

∂t

〈
νk

t,x, ξ1 ⊗·· ·⊗ξk

〉
+

k

∑
i=1

∇xi
·
〈
νk

t,x, ξ1 ⊗·· ·⊗ f (ξi)⊗·· ·⊗ξk

〉
= 0, ∀k ∈ N.

(122)

Note that the first equation in the hierarchy for k = 1 precisely agrees with

the definition of measure-valued solutions (116). Thus, a statistical solution is a

measure-valued solution that includes information about the evolution of all possible

multi-point correlations in the underlying functions. Hence, statistical solutions are

considerably more constrained than measure-valued solutions providing some hope

for uniqueness. Moreover, statistical solutions reduce to standard weak solutions

as long as the initial data and the resulting statistical solution are atomic i.e, µ̄ =
δū,µt = δu(t) with ū,u(t)∈ Lp(D). On the other hand, a non-atomic initial probability

measure µ̄ can be used to model input uncertainty. Hence, statistical solutions provide

a UQ framework [17].

Currently, well-posedness results for statistical solutions are only available for

scalar conservation laws. In [17], a concept of entropy statistical solutions was pro-

posed for scalar conservation laws, Definition 4.3 therein. This concept generalizes

Kružkhov entropies to probability measures on L1. Well-posedness of entropy sta-

tistical solutions for scalar conservation laws was shown in [17, Thm. 4.7]. These

entropy statistical solutions were also shown to satisfy a non-expansive property with

respect to the 1-Wasserstein metric on probability measures on L1. The mathematical

analysis of the convergence of the MC-FV algorithms 1,2, in the sense of [16], for

scalar conservation laws is currently in progress. Some (preliminary) findings are

as follows: the same Monte Carlo ensemble averaging algorithm 2, proposed in

[16], also converges, under additional assumptions, to a statistical solution of the

underlying nonlinear, hyperbolic system as will be shown in a forthcoming paper.

Thus, statistical solutions may provide a suitable mathematical and numerical solu-

tion framework for multi-dimensional systems of conservation laws as well as of

computational uncertainty quantification for them.
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The algorithms proposed in [16, 19] are Monte Carlo based. A MLMC version of

this algorithm was designed and shown to converge to an entropy measure valued

solution in a recent paper [45]. Moreover, it was shown in [45] that if the variance of

the details, similar to (96), converge at an algebraic rate i.e if s > 0 in (96), then the

MLMC algorithm for approximating entropy measure-valued solutions will be more

efficient than the Monte Carlo version. However, such an estimate may not hold as

shown in figure 4 and the MC and MLMC versions will be comparable (see figure 4

bottom left).

Currently, computation of k-point correlation functions within the framework of

statistical solutions uses a full tensor format. This can be prohibitively expensive for

even moderate k.

The adaptation of the sparse-tensor algorithms from [47] as described in Section

4.4 to this framework in order to accelerate the computations of multi-point statistical

quantities of interest is currently under development.
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49. Mishra, S., Schwab, C., Šukys, J.: Multi-level Monte Carlo finite volume methods for

uncertainty quantification of acoustic wave propagation in random heterogeneous layered

medium. J. Comput. Phys. 312, 192–217 (2016). DOI 10.1016/j.jcp.2016.02.014. URL

http://dx.doi.org/10.1016/j.jcp.2016.02.014

Page:43 job:Mishra_Schwab_MLMCbookReview_final macro:svmult.cls date/time:20-Aug-2017/23:35

http://dx.doi.org/10.1007/s00365-012-9178-7
http://dx.doi.org/10.1007/s00365-012-9178-7
http://dx.doi.org/10.1016/j.jcp.2013.06.013
http://dx.doi.org/10.1007/978-3-642-23911-3
http://dx.doi.org/10.1007/978-3-0348-8150-0
http://dx.doi.org/10.1007/978-3-0348-8150-0
http://dx.doi.org/10.1017/CBO9780511791253
http://dx.doi.org/10.1007/s40072-014-0038-2
http://dx.doi.org/10.1016/j.jcp.2016.02.014


44 Siddhartha Mishra and Christoph Schwab

50. Müller, S.: Multiresolution schemes for conservation laws. In: Multiscale, nonlinear and adap-

tive approximation, pp. 379–408. Springer, Berlin (2009). DOI 10.1007/978-3-642-03413-8 11.

URL http://dx.doi.org/10.1007/978-3-642-03413-8 11

51. van Neerven, J.: Stochastic evolution equations (2007/8). Lecture Notes, ISEM

52. von Petersdorff, T., Schwab, C.: Sparse finite element methods for operator equations with

stochastic data. Appl. Math. 51(2), 145–180 (2006). DOI 10.1007/s10492-006-0010-1. URL

http://dx.doi.org/10.1007/s10492-006-0010-1

53. R. J. DiPerna: Measure-valued solutions to conservation laws. Archive for Rational Mechanics

and Analysis 88, 223–270 (1985)

54. Risebro, N.H., Schwab, C., Weber, F.: Multilevel monte carlo front-tracking for random scalar

conservation laws. BIT Numerical Mathematics (2016). DOI http://dx.doi.org/10.1007/

s10543-015-0550-4

55. Schmidlin, G., Schwab, C.: Wavelet Galerkin BEM on unstructured meshes by aggregation. In:

Multiscale and multiresolution methods, Lect. Notes Comput. Sci. Eng., vol. 20, pp. 359–378.

Springer, Berlin (2002). DOI 10.1007/978-3-642-56205-1 12. URL http://dx.doi.org/10.1007/

978-3-642-56205-1 12

56. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and

stochastic PDEs. Acta Numer. 20, 291–467 (2011). DOI 10.1017/S0962492911000055. URL

http://dx.doi.org/10.1017/S0962492911000055

57. Schwab, C., Tokareva, S.: High order approximation of probabilistic shock profiles in hyperbolic

conservation laws with uncertain initial data. ESAIM: Mathematical Modelling and Numerical

Analysis 47(3), 807–835 (2013). DOI http://dx.doi.org/10.1051/m2an/2012060

58. Smoller, J.: Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, second edn.

Springer-Verlag, New York (1994)

59. Todor, R.A.: A new approach to energy-based sparse finite-element spaces. IMA J. Numer.

Anal. 29(1), 72–85 (2009). DOI 10.1093/imanum/drm041. URL http://dx.doi.org/10.1093/

imanum/drm041

60. Tryoen, J., Le Maı̂tre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding

for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010).

DOI 10.1016/j.jcp.2010.05.007. URL http://dx.doi.org/10.1016/j.jcp.2010.05.007

61. Višik, M.I., Fursikov, A.V.: Solutions statistiques homogènes des systèmes differentiels
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