
A variational principle for the perturbation

of repeated eigenvalues and applications

A. Dabrowski

Research Report No. 2017-37
July 2017

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



A variational principle

for the perturbation of repeated eigenvalues

and applications

Alexander Dabrowski1

Abstract

A variational principle for the shift of eigenvalues caused by a domain perturbation is derived for a
class of operators which includes elliptic differential operators. This result allows the direct exten-
sion of asymptotic formulae from simple eigenvalues to repeated ones. Some interesting examples
for the Laplacian are worked out explicitly for the following types of perturbation: excision of a
small hole, local change of conductivity, small boundary deformation.
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1. Introduction

Many asymptotic formulae for the shift of eigenvalues of differential operators caused by small
domain perturbations have been obtained in the case of multiplicity one (see for instance [1] and
references therein, [2, Chapter 9], [3], [4]). The generalization of such expressions to higher mul-
tiplicities often requires non-trivial calculations and is restricted to specific cases (see for example
[5], [6], [7, Theorem 2.5.8]). Moreover, such an effort is usually considered unnecessary due to
genericity results for simple eigenvalues (see [8], [9], [10]). Nonetheless, higher multiplicities ap-
pear in many natural situations; for example the Laplacian has non-simple spectrum whenever
the domain presents some symmetries. In this paper we derive a tool to study the behavior and
properties of repeated eigenvalues for general types of perturbations. Namely, the main result
consists in a variational minimum principle (Theorem 2.5) which allows the direct extension of
asymptotic formulae which are valid for simple eigenvalues to non-simple ones.

More in detail the topics of the paper are subdivided as follows. In Section 2 we introduce
the abstract framework and the linear operators which will be considered; they are required to
satisfy the key assumptions of genericity of simple eigenvalues and their stability. Then the main
variational principle is derived by a technique which involves a double domain perturbation at
asymptotically different speeds. In Section 3 we recall some results that show that second order
elliptic operators satisfy the spectral stability and genericity assumptions. Finally in Section 4 we
consider some domain perturbations of particular interest in applications: grounded inclusions,
conductivity inclusions, and boundary deformations. We show how the general variational asymp-
totic formula applies in each of these cases and derive new interesting properties for the Dirichlet
or Neumann Laplacian. We refer to Section 4.5 for a concise summary of the results obtained.

1Department of Mathematics, ETH Zürich, Switzerland.
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The reader interested in grasping the intuition behind the general variational principle might first
read the derivation of the asymptotic expansion for the perturbation caused by the excision of a
small hole in the proof of Proposition 4.5, which does not depend on the concepts introduced in
Section 2.

1.1. Notation used

In this paper we adopt the following conventions:

• we say that X is a domain if X ⊆ R
d is open, bounded, and connected;

• we denote as Ω an arbitrary domain with Lipschitz boundary;

• given a compact self-adjoint linear operator L(Ω), we will usually denote as λ an eigenvalue
of L(Ω), as m its multiplicity, and as u1, . . . , um an arbitrary basis of the eigenspace of λ;

• given an arbitary operator with discrete spectrum, whenever we will count its eigenvalues,
we will do so from lowest to highest and according to their multiplicity;

• given f a real valued function defined on a set S, we indicate as argminx∈S f(x) the set of
x’s which minimize f (or the single x when the minimum is unique).

Let us also briefly recall three types of convergence of domains. We say that Ωε converges to
Ω as ε → 0 in:

• Hausdorff distance, if dH(Ωε,Ω) → 0, where

dH(A,B) := max{sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|};

• measure, if |Ωε △ Ω| → 0, where △ indicates symmetric difference and | · | the Lebesgue
measure;

• Ck-topology, if there is a family (φε)ε of C
k-diffeomorphisms such that

Ω + φε(Ω) = Ωε and |φε|Ck

ε→0−−→ 0. (1)

We recall some relationships between these types of convergence which are relevant to us. Ck-

convergence implies Hausdorff convergence, since if (1) holds then dH(Ωε,Ω) ≤ |φε(Ω)|C0

ε→0−−→ 0.
If the sets considered have Lipschitz and connected boundaries, Hausdorff convergence implies mea-
sure convergence, since in this case |Ωε △ Ω| ≤ dH(Ωε,Ω)min {|Ωε|, |Ω|}. Although the converse
result fails in general, if the converging sequence’s boundaries have uniformly bounded Lipschitz
constants, then by a local patching argument it can be easily shown that also measure convergence
implies Hausdorff convergence.

Therefore, although we will state all our results referring to Hausdorff convergence, they can
be adapted to other types of convergence whenever the domains under consideration have enough
regularity.
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2. Abstract variational formulation

Let L(Ω) be a compact self-adjoint linear operator on L2(Ω) with domain H(Ω). Recall that
the eigenvalues and eigenfunctions of L(Ω) can be rewritten respectively as minima and minimizers
of a quadratic functional F (Ω) : H(Ω) → R. More in detail, if we write λ1 ≤ λ2 ≤ . . . for the
eigenvalues of L(Ω) and u1, u2, . . . for some corresponding orthonormal eigenfunctions, we have
that for F (Ω)u := 〈L(Ω)u, u〉H it holds

un = argmin
u∈Sn

F (Ω)u, λn = F (Ω)un, (2)

where Sn =
{

u ∈ H(Ω) : u ⊥ {u1, . . . , un−1} , |u|L2(Ω) = 1
}

.

However, there is an ambiguity in the choice of eigenfunctions which is particularly relevant
to us: the sequence of eigenfunctions is univocally determined only up to eigenspaces. That is
if λn = · · · = λn+m, any choice of orthonormal eigenfunctions in the linear space spanned by
{un, . . . , un+m} is still a basis. Our minimum principle will select the right basis for the problem
considered, whenever possible and up to a predetermined asymptotic error.

The notations and assumptions we adopt are the following.

Assumption 2.1. We suppose to have a family of domains (Ωε)0<ε≤ε0 such that Ωε → Ω in Hausdorff
distance as ε → 0.

We also assume that for any couple of Lipschitz domains Ω, Ω̃ such that Ω ⊆ Ω̃, there is a
continuous restriction operator R : H(Ω̃) → H(Ω), and for any δ > 0 there is a continuous
extension operator E : H(Ω) → H(Ω̃) such that R ◦ E is the identity and |E u| ≤ |u| + δ. We
will not use the notation R,E explicitly; if ũ ∈ H(Ω̃), we will denote still as ũ the restriction Rũ,
while if u ∈ H(Ω) we will denote still as u any extension E u.

Assumption 2.2. We suppose that the spectrum is continuous with respect to Hausdorff conver-
gence. More precisely, if λε is an eigenvalue of L(Ωε) and uε is an eigenfunction associated to λε,
then there exists λ an eigenvalue of L(Ω) and u an eigenfunction of λ such that λε → λ and uε → u
in norm in H(E) as ε → 0, for any Lipschitz domain E that contains Ω and Ωε for all ε.

We will often say that λε is perturbed from λ if λε → λ as ε → 0.

Assumption 2.3. We suppose that the spectrum of L(Ω) is “generically” simple. By this we mean
that one can always find a domain arbitrarily near to Ω in Hausdorff distance whose eigenvalues
are all simple.

Assumption 2.4. We suppose to already know an asymptotic expansion for simple eigenvalues. In
particular we assume that if λ is a simple eigenvalue of L(Ω) with associated eigenfunction u, then

λε − λ = f(ε, u) + r(ε),

where r(ε) = o(f(ε, u)) as ε → 0, and f is a known function. We also require f to be continuous.

Under these assumptions we can prove the following result.

Theorem 2.5 (Variational minimum principle). Let λ be an eigenvalue of L(Ω) of multiplicity

m, and let λε,1 ≤ · · · ≤ λε,m be all the eigenvalues of L(Ωε) perturbed from λ. Then for any

n ∈ {1, . . . ,m} it holds

λε,n − λ = f(ε, vn) +O(r(ε)),
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where

vn ∈ argmin
v∈Sn

f(ε, v), (3)

with

Sn =
{

v ∈ H(Ω) : v ⊥ {v1, . . . , vn−1} , |v|L2(Ω) = 1
}

. (4)

Proof. Step 1. For δ ∈ (0, δ0) let Ωδ be a perturbation of Ω not farther than δ in Hausdorff dis-
tance from Ω, and such that λ splits into λδ,1 < · · · < λδ,m simple eigenvalues with corresponding
associated eigenfunctions uδ,1, . . . , uδ,m. Existence of such perturbations is guaranteed by Assump-
tion 2.3. Let Ωε,δ be an arbitrary set not farther than ε from Ωδ in Hausdorff distance, and let
λε,δ,1, . . . , λε,δ,m indicate the eigenvalues of L(Ωε,δ) perturbed respectively from λδ,1, . . . , λδ,m. Then
from Assumption 2.4

λε,δ,n − λδ,n = f(ε, uδ,n) + r(ε).

Choosing δ appropriately small with respect to ε so that λε,n − λε,δ,n = O(r(ε)) and λδ,n − λ =
O(r(ε)), we have that

λε,n − λ = lim
δ→0

(λε,n − λε,δ,n + λε,δ,n − λδ,n + λδn − λ) = lim
δ→0

(λε,δ,n − λδ,n) +O(r(ε)).

By Assumption 2.2 as δ → 0 we have uδ,n → un, where un is a certain eigenfunction of Ω with λ
its associated eigenvalue. By the continuity of f we thus have

λε,n − λ = f(ε, un) + r(ε). (5)

Step 2. To retrieve the variational characterization of un, recall that we assumed λε,1 ≤ · · · ≤ λε,m.
Therefore, for λε,1 to be the smallest eigenvalue, u1 must be a minimizer of the right hand side of
(5) among all eigenfunctions of λ of norm 1, that is u1 ∈ V1. Considering now λε,2, we have that u2

must also be in the eigenspace of λ, but for λ to have multiplicity at least m, u2 must be linearly
independent with respect to u1; thus we take u2 ∈ V2. With the same reasoning for λε,3, . . . , λε,m,
we can show that (3) must hold for every n.

Notice that we can recover some partial information also on the eigenfunctions’ perturbation
as in the following remark.

Remark 2.6. With the same notation of Theorem 2.5, let uε,1, . . . uε,m be eigenfunctions associated
to λε,1, . . . , λε,m. Since by Assumption 2.2 we have that uε,n → un for some eigenfunction un which
is associated to λ, we will have that for ε small enough, an approximation up to an O(r(ε)) error
of un will be given by (3). �

2.1. Asymptotic formulae involving a bilinear function

It is useful to consider more carefully the case where the expression in the asymptotic formula
admits a separation of variables as

f(ε, u) = E(ε)b(u, u), (6)

with E : X → R and b : H × H → R a symmetric bilinear form. This happens for many useful
types of domain perturbations (see Section 4). The advantage of this case is that the minimizer
of (3) can be easily computed as follows. Choosing u1, . . . , um an arbitrary orthonormal basis of
the eigenspace of λ, condition (3) can be rewritten as

vn ∈ E(ε) argmin
{

a · Ba : a ∈ R
m, |a| = 1, a1u1 + · · ·+ amum ⊥ {v1, . . . , vn−1}

}

, (7)
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where B is a symmetric matrix with elements

Bj
i := b(ui, uj). (8)

Then by diagonalizing B we obtain the following result.

Corollary 2.7. If f can be rewritten as in (6), a minimum and a minimizer of (3) are respec-

tively the n-th eigenvalue of B and a1,nu1 + · · ·+ am,num, where (a1,n, . . . , am,n) is the normalized

eigenfunction of B associated to its n-th eigenvalue.

Notice that if the bilinear form b has the further decomposition

b(ui, uj) = l(ui)l(uj) ∀i, j, (9)

where l : H → R is linear, an easy computation shows that the first m − 1 eigenvalues of B are
zero and the m-th one is l(u1)

2 + · · ·+ l(um)
2. Therefore we have the following result.

Corollary 2.8. If the bilinear form b can be rewritten as in (9), then

λε,n − λ =











E(ε)
m
∑

n=1

l(un)
2 + r(ε) if n = m,

r(ε) if n < m.

Moreover, by Remark 2.6, the O(r(ε))-best approximation of uε,m in the eigenspace of λ is given

by
∑m

n=1 l(un)un
√

∑m
n=1 l(un)2

.

3. Stability and simplicity of the spectrum of elliptic operators

We recall hereafter some results which show that eigenvalues of linear elliptic operators are
stable under Hausdorff convergence of the underlying domains, and that they are generically simple.
In particular, from these results we will have that Assumptions 2.2-2.3 hold. For simplicity we
restrict our attention to second order operators, but the same results for higher order operators
can be found in the reference provided in the text.

Let L be a second order elliptic differential operator defined as

L(Ω)u := −∇ · (A∇u) + b · ∇u+ c,

where A : Rd×d → R, b : Rd → R, c : R → R are smooth. Let a be the associated coercive,
continuous, and bounded bilinear form defined as

aΩ(u, v) :=

ˆ

Ω

A∇u · ∇v + (b · ∇u)v + cuv, ∀u, v ∈ H1(Ω).

We say that λ is an eigenvalue of Ω with associated eigenfunction u ∈ V (Ω) if

aΩ(u, v) = λ

ˆ

Ω

uv, ∀v ∈ V (Ω),
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where V (Ω) = H1
0(Ω) in the case of homogeneous Dirichlet boundary conditions, or V (Ω) =

H1(Ω)/R in the case of homogeneous Neumann boundary conditions. From standard results in
spectral theory, we know that the eigenvalues of any Lipschitz domain have finite multiplicity and
can be arranged in a non-decreasing sequence, where each eigenvalue is repeated as many times
as its multiplicity; we also assume that the associated eigenfunctions are orthonormal in L2. With
these conventions we can state the following stability result.

Theorem 3.1. For any n ∈ N, Let λ be the n-th eigenvalue of L(Ω) and λε be the n-th eigenvalue

of L(Ωε) for a certain ε ∈ X. Then there exists a constant C, which depends only on n, on

the Lipschitz constants of Ω, on the dimension d, and on the coercivity, continuity, boundedness

constants of a, such that

|λε − λ| ≤ CdH(Ωε,Ω).

A proof of this result can be obtained as a consequence of the theory of transition operators
and its applications (see [11] for a survey of the technique). In what follows we outline another
approach which relies on stability results for boundary value problems.

Outline of the proof. We adapt the argument from [12, Section 4.4] to our case. Let E be an
arbitary Lipschitz domain containing Ωε ∪ Ω and consider uε extended to the whole E. Let u be
the orthogonal projection of uε from V (E) onto V (Ω). Let u be the unique solution in V (Ω) of

a(u, v) = λ

ˆ

uv, ∀v ∈ V (Ω).

From [13, Inequality (3.2)] we have that

|u− u|H1(E) ≤ C|λu|L2(E)|λu|V (E)′dH(Ω,Ωε),

where C is a constant which depends only on the Lipschitz constant of Ω, and the constants
involved in the continuity, boundedness and coercivity assumptions on a. Since |u|V (E)′ ≤ |u|L2(E),

and by Weyl’s law there is a constant C̃ which depends only on the area of Ω and the dimension
d such that λ ≤ C̃nd/2, then

|u− u|H1(E) ≤ CC̃n2/d|u|2L2(E)dH(Ω,Ωε).

Then by [12, Equation (4.31) and Lemma 14], we obtain the estimate in the thesis.

The following result concerning stability of eigenfunctions is a particular case of [14, Theorem
1.2 and subsequent discussion].

Theorem 3.2. Let Ωε be a family of Lipschitz domains converging to Ω in Hausdorff distance as

ε → 0. Suppose that either one of the two following hypotheses holds:

• Ωε ⊆ Ω for all ε,

• the Lipschitz constant of ∂Ωε are uniformly bounded.

Let λ and λ̃ be the n-th eigenvalues respectively of Ω and Ω̃ and let uε,1, . . . , uε,m be an orthonormal

basis of the eigenspace of λ̃. Then there exists u1, . . . , um an orthonormal basis of λ such that as

ε → 0 it holds

uε,n → un in H1(Ω), ∀n ∈ {1, . . . ,m} .
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We move on to the issue of genericity of simple eigenvalues.

Theorem 3.3. There are smooth domains arbitrarily near to Ω in Hausdorff distance whose eigen-

values are all simple.

This result has been proven in [8] for elliptic operators of arbitrary order on C3-domains, and
can be easily adapted to our case as follows. If ∂Ω is smooth, then we can find a smooth domain
Ω̃ whose eigenvalues are all simple and which is arbitrarily near to Ω in the C3-topology. Since
C3-convergence implies Hausdorff convergence, we have the thesis. When ∂Ω is only Lipschitz,
we can find a domain arbitrarily near to Ω in Hausdorff distance which has smooth boundary,
reducing to the previous case.

Remark 3.4. In the case of the Laplacian, it has been proven in [15] that the perturbation can be
chosen localized. This means that not only the perturbation can be chosen near in Hausdorff or
Ck-distance, but also restricted to an arbitrarily small ball centered at an arbitrary point of Ω. �

4. Applications to eigenvalues of the Laplacian

Definition 4.1. For this section we will use the following conventions:

• we say that λ is an eigenvalue of a domain X if it is an eigenvalue of the negative Laplacian
on X, with either Dirichlet or Neumann conditions on ∂X;

• (Ωε)ε denotes a family of Lipschitz domains perturbed from Ω. Although the nature of the
perturbation may vary, we assume that Ωε → Ω in Hausdorff distance as ε → 0.

Under these hypotheses Assumption 2.1 is fulfilled. Assumptions 2.2 and 2.3 have been shown
to hold in the more general case considered in Section 3. Finally, in order to apply Theorem 2.5,
we will verify Assumption 2.4 on a case by case basis.

4.1. Fundamental solutions and layer potentials

Before focusing on the particular domain perturbations considered, we recall some concepts
which will be useful later.

Definition 4.2. If ω ∈ C\0, we define as fundamental solution for Helmholtz equation ∆u+ω2u =
0 the function

Γω(r) :=
i

4

(ωr

2π

)
d

2
−1

H1
d

2
−1
(ωr),

where H1
n is the Hankel function of the first kind of order n (see [16, Chapter 9] for its definition).

If ω = 0, we define as fundamental solution for Laplace equation the function

Γ0(r) :=















− log r

2π
if d = 2,

1

|Sd−1|rd−2
if d ≥ 3,

(10)

where Sd−1 is the unit sphere of dimension d− 1.
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Recall that from the theory of Green’s functions, for any ω ∈ C, we have that

(∆x + ω2)Γω(|x− y|) = −δy(x),

where δy is the Dirac delta distribution at y.
We introduce in the following definition two convolution operators, commonly called layer

potentials in the theory of boundary value problems (for the latter we refer to [17]).

Definition 4.3. Given φ ∈ L2(∂Ω), we define:

(Single layer potential) Sω
Ω[φ](x) :=

ˆ

∂Ω

Γω(x, y)φ(y) dσ(y) for x ∈ R
2,

(Neumann-Poincaré operator) Kω
Ω[φ](x) :=

ˆ

∂Ω

∂Γω(x, y)

∂ν(y)
φ(y) dσ(y) for x ∈ ∂Ω.

4.2. Perturbation by a grounded inclusion

Let B be a Lipschitz domain in R
d with connected boundary, with volume |B| = |Ω|, and

centered at the origin in the sense that
´

∂B
y1 dσ(y1, y2) =

´

∂B
y2 dσ(y1, y2) = 0. Fix a point z ∈ Ω

and consider a scaling coefficient ε > 0. Let D := z + εB and Ωε := Ω \D.
Suppose then that the domain Ω is perturbed into Ωε by requiring homogeneous Dirichlet

conditions to hold on ∂D. Let λ be an eigenvalue of Ω with associated eigenfunction u. Then λε

is an eigenvalue of Ωε perturbed from λ with associated eigenfunction uε, if λε → λ as ε → 0 and

{

∆u+ λu = 0 in Ω,

u = 0 or ∂νu = 0 on ∂Ω,











∆uε + λεuε = 0 in Ω \D,

uε = 0 on ∂D,

uε = 0 or ∂νuε = 0 on ∂Ω.

In [1, Chapter 3] the leading order term for the perturbation of a simple eigenvalue is obtained
in the case of dimension 2 and 3. However these computations can be repeated exactly in the same
way for d ≥ 4, and the resulting asymptotic formula can be restated as follows.

Lemma 4.4. Given λ a simple eigenvalue of Ω with associated eigenfunction u, and λε the eigen-

value of Ωε perturbed from λ, then

λε − λ =
u(z)2

Γ0(ε)
+ o (1/Γ0(ε)) . (11)

We seek to apply the variational principle from Theorem 2.5 to our case. Although the ex-
pression in (11) is not continuous under L2 convergence of u, we can easily rewrite it so that
Assumption 2.4 holds. In fact, taking Bδ a ball centered at z of radius δ = δ(ε) small enough, by
the continuity of Laplacian eigenfunctions we have that u(z) =

´

Bδ

u + o(1) as ε → 0. Thus we
also have that

λε − λ =

´

∂Bδ

u2

Γ0(ε)
+ o (1/Γ0(ε)) , (12)

an expression which now is continuous under L2 convergence. Then by Corollary 2.8 we obtain
the following result.

8



Proposition 4.5. Let λ be an eigenvalue of multiplicity m of the negative Laplacian on Ω and

u1, . . . , um some associated eigenfunctions orthonormal in L2(Ω). Let

U(z) := (u1(z), . . . , um(z)).

Then the largest perturbed eigenvalue behaves like

λε,m − λ =
|U(z)|2
Γ0(ε)

+ o (1/Γ0(ε)) , (13)

while all the other eigenvalues behave like

λε,n − λ = o(1/Γ0(ε)), for n < m,

where Γ0 is the fundamental solution of the Laplacian as defined in (10).

Remark 4.6. We collect some interesting consequences of Proposition 4.5.

1. For ε small enough, the largest perturbed eigenvalue λε,m will always be simple as long as at
least one of the eigenfunctions u1, . . . , um is not zero in z.

2. If uε,m is the eigenfunction associated to λε,m, then by Corollary 2.8 the o(1/Γ0(ε))-best
approximation to uε,m in the eigenspace of λ will be

u1(z)u1 + · · ·+ um(z)um
√

u1(z)2 + · · ·+ um(z)2
.

3. It can be shown that in two dimensions the higher order terms in formula (11) can be further
computed as

λε − λ =
u(z)2

log(ε) +R(z)
+O

(

ε2
)

, (14)

where R is a function of z which does not depend on u (see [18] for its computation and
expression). Therefore from Corollary 2.8 we have the stronger approximation

λε,n − λ =











|U(z)|2
log(ε) +R(z)

+O
(

ε2
)

if n = m,

O (ε2) if n < m. �

Hereafter we give an additional proof of Proposition 4.5 without relying on the general frame-
work introduced in Section 2, but mimicking the proof of Theorem 2.5. It serves the dual purpose
of giving a self-contained proof and motivating the choice of Assumptions 2.1-2.4. We also exploit
some specific features of the case considered.

Proof. Step 1. For any ε, δ > 0 consider a localized deformation of Ω into Ωδ such that

• λ splits into simple eigenvalues λδ,1 < · · · < λδ,m with uδ,1, . . . , uδ,m associated eigenfunctions;

• Ωδ △ Ω is contained in a ball of radius δ;

• the ε and δ-perturbations are well separated, that is the closures of Ωδ △ Ω and Ωε △ Ω are
disjoint.
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Ω

Ω
ε

Ω
δ

Ω
δ,ε

= Ω
ε,δ

Figure 1: An illustration of the successive perturbations used in the proof of Proposition 4.5 in the case of a disk.

(Existence of such perturbations is guaranteed by Remark 3.4). Consider now the further pertur-
bation of Ωδ into Ωε,δ obtained by inserting in Ωδ the inclusion D, and call λε,δ,1 < · · · < λε,δ,m

the eigenvalues perturbed respectively from λδ,1, . . . , λδ,m. Notice that from the continuity of the
spectrum (Theorem 3.1), λε,δ,1, . . . , λε,δ,m are still simple for ε small enough. From (11) we have
that

λε,δ,n − λδ,n =
uδ,n(z)

2

Γ0(ε)
+ o (1/Γ0(ε)) . (15)

From Theorem 3.1 we know that uδ,n converges in H1-norm as δ → 0 to un, a certain element in
the eigenspace of λ. Unfortunately we can not pass directly to the limit in the right hand side of
(15), since from the H1-convergence it can not be deduced that uδ,n converges to un at the point
z. However we can exploit the continuity of uδ,n and un at z to rewrite

uδ,n(z)
2 +O(ε2) =

ˆ

Br

u2
δ,n −−→

δ→0

ˆ

Br

u2
n = un(z)

2 +O(ε2) (16)

where Br is a small enough ball centered at z.
Step 2. Consider now the domain Ωε instead. Perturb Ωε into Ωδ,ε by inserting an inclusion

exactly as from Ω to Ωδ; this is possible since we supposed that the ε and δ-perturbations are well
separated (see for instance Figure 1). Call λδ,ε,1 ≤ · · · ≤ λδ,ε,m the eigenvalues of Ωδ,ε perturbed
from λ. We have that Ωδ,ε = Ωε,δ and λε,δ,n = λδ,ε,n. Therefore we can rewrite

λε,n = λ− (λδ,ε,n − λε,n) + (λδ,ε,n − λδ,n) + (λδ,n − λ).

Thanks to the continuity of the spectrum, δ can be chosen small enough with respect to ε so that
λδ,ε,n − λε,n = o(1/Γ0(ε)) and λδ,n − λ = o(1/Γ0(ε)). Therefore, taking into consideration (15) and
(16), we have that

λε,n = λ+
un(z)

2

Γ0(ε)
+ o (1/Γ0(ε)) . (17)

In the next steps we provide a variational characterization of un.
Step 3. Notice that the only “free variable” in the right hand side of (17) is the choice of un

in the eigenspace of λ. From the fact that we already ordered the eigenvalues as λε,1 ≤ · · · ≤ λε,m

and the fact that uδ,k cannot converge to un if n 6= k, it follows that un ∈ argminv∈Sn
v(z)2, where

Sn =
{

v ∈ H1(Ω) : v ⊥ {u1, . . . , un−1} , |v|L2(Ω) = 1
}

.

Step 4. Finding a minimizer of v(z)2 among all v ∈ Sn amounts to finding unit vectors
a1, . . . , an ∈ R

m such that an ⊥ {a1, . . . , an−1} and (an · U(z))2 is minimum. Since R
m has

10
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Figure 2: A log
2
-log

2
plot of the behavior of an eigenvalue bifurcation from 50π2 as the size coefficient ε of the

inclusion decreases. The original domain is the unit square (0, 1)2 and the inclusion is a disk of radius ε centered
at (1/4, 1/4).

Figure 3: Eigenfunction associated to the largest perturbed eigenvalue from 50π2 caused by a grounded disk
inclusion of radius 10−3 centered at (1/4, 1/4); numerical computation (left) and the O(ε2)-best approximation
with an element of the eigenspace of 50π2 (right).

dimension m, we can find m − 1 unit vectors a1, . . . , am−1 orthogonal to U(z), while the last one
must be am = U(z)/|U(z)|. Rewriting un(z) as an · U(z) in (17) we obtain the formula in the
thesis.

Example 4.7. Let Ω be the unit square (0, 1)2 and consider the Dirichlet eigenvalue λ = 50π2 with
associated orthonormal eigenfunctions u1, u2, u3 defined as











u1(x, y) = 2 sin(πx) sin(7πy),

u2(x, y) = 2 sin(7πx) sin(πy),

u3(x, y) = 2 sin(5πx) sin(5πy).

Since for any point z in Ω there is at least one eigenfunction which is non-zero at z, the insertion at
z of a small grounded inclusion will cause an eigenvalue bifurcation of λ; in particular one perturbed
eigenvalue will shift from λ as 1/ log(ε) while the others will shift like O(ε2). The outcome of a
numerical experiment for a disk inclusions centered at (1/4, 1/4), is illustrated in Figure 2.

By Remark 2.6 we also know that the best O(ε2) approximation in the eigenspace of λ of the
eigenfunction corresponding to the largest perturbed eigenvalue will be given by the sum of the
eigenfunctions associated to λ; a comparison between a numerical computation of the eigenfunction
associated to the largest perturbed eigenvalue and its O(ε2) approximation is given in Figure 3. �
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4.3. Perturbation by a conductivity inclusion

In this section we consider a perturbation of Ω caused by the insertion of a small inclusion
with conductivity coefficient different from the background. This causes the eigenvalue λ to split
into m (possibly distinct) eigenvalues λε,1 ≤ · · · ≤ λε,m such that the following eigenvalue system
holds:







































(∆ + λε,n)uε,n = 0 in Ω \D,

(k∆+ λε,n)uε,n = 0 in D,

lim
x→∂D
x∈Ω\D

∂uε,n

∂ν
(x) = k lim

x→∂D
x∈D

∂uε,n

∂ν
(x),

uε,n = 0 or ∂νuε,n = 0 on ∂Ω,

where B, z, ε,D,Ωε are defined as in Section 4.2, n = 1, . . . ,m and uε,n are eigenfunctions associ-
ated to λε,n. It has been shown in [19] that if λ is a simple eigenvalue with associated eigenfunction
u, and λε is a perturbation of λ, then

λε − λ = εd〈∇u(z),∇u(z)〉M +O(εd+1),

where 〈x, y〉M := x·M(k,B)y for any x, y ∈ R
d, andM(k,B) is a d×dmatrix known as polarization

tensor, which can be defined as

(M(k,B))ji =

ˆ

∂B

(

k + 1

2(k − 1)
I − (K0

B)
∗

)−1

(νj)yi dσ(y).

Therefore in this case Corollary 2.7 specifies to the following result.

Proposition 4.8. Let λ be an eigenvalue of multiplicity m of L(Ω) and u1, . . . , um some associated

eigenfunctions orthonormal in L2(Ω). Let λε,1 ≤ · · · ≤ λε,m be the eigenvalues perturbed from λ.
Then for every n ∈ {1, . . . ,m}, the O(εd+1) approximation of λε,n−λ is given by the n-th eigenvalue

of the matrix with element

εd〈∇ui(z),∇uj(z)〉M
in position (i, j).

Remark 4.9. We consider some extremal cases of Proposition 4.8 of particular interest.

1. If 〈∇ui(z),∇uj(z)〉M = 0 for all i 6= j, then it is enough to reorder u1, . . . , um according to
the magnitude of 〈∇u1(z),∇u1(z)〉M , . . . , 〈∇um(z),∇um(z)〉M , to obtain that for any n it
holds

λε,n − λ = εd〈∇un(z),∇un(z)〉M +O(εd+1).

We also remark that if the multiplicity m is larger than the dimension d, only d vectors can
be linearly independent, and thus we will have that λε,n − λ = O(εd+1) for n ≤ m− d.

2. If ∇ui(z),∇uj(z) are parallel with respect to 〈·, ·〉M , then by Corollary 2.8 we will have

λε,n − λ =







εd
∑m

n=1〈∇un(z),∇un(z)〉M +O
(

εd+1
)

if n = m,

O
(

εd+1
)

if n < m. �

12
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Figure 4: A log
2
-log

2
plot of the behavior of an eigenvalue bifurcation as the size coefficient ε of the conductivity

inclusion decreases. The original domain is the unit square (0, 1)2, the inclusion a disk of conductivity k = 2,
centered respectively at (1/2, 1/2) (left graph), at (1/4, 1/2) (center graph), at (1/4, 1/4) (right graph).

Example 4.10. Let Ω be the unit square (0, 1)2 and consider the Neumann eigenvalue λ = 4π2 with
associated eigenfunctions u1, u2 defined as

{

u1(x, y) =
√
2 cos(2πy),

u2(x, y) =
√
2 cos(2πx).

Let B be the disk of radius 1/π2 centered at 0. Recall that in this case we have M(k,B) =
2(k − 1)I/(π2(k + 1)). Although the first term in the asymptotic formula for λε,n − λ can be
easily computed in this case, here we focus our attention only on the asymptotic order. We can
easily determine, reasoning as in Remark 4.9, whether the first term in the asymptotic expansion
of λe,n − λ is zero; such behavior will depend on the choice of z. For example:

• for z = (1/2, 1/2) we have that both eigenfunctions u1, u2 have zero gradient at 0, and thus
both eigenvalues shift from λ as O(ε3);

• for z = (1/4, 1/2) one of the eigenfunctions has zero gradient while the other has a non-zero
entry, thus one eigenvalue shift behaves like ε2 the other like O(ε3);

• for z = (1/4, 1/4) the gradients of the two eigenfunctions are orthogonal and non-zero, thus
both eigenvalues shift from λ as ε2.

Numerical results (obtained with the finite element method) which confirm the previous calcula-
tions are presented in Figure 4. A comparison between a numerical computation of the eigenfunc-
tions and their O(ε2) approximation for the case of a disk inclusion centered at z = (1/4, 1/2) is
given in Figure 5. �

Example 4.11. Let Ω be the unit square (0, 1)2 and consider the Neumann eigenvalue λ = 100π2

with associated eigenfunctions u1, u2, u3, u4 defined as



















u1(x, y) =
√
2 cos(10πy),

u2(x, y) =
√
2 cos(10πx),

u3(x, y) = 2 cos(6πx) cos(8πy),

u4(x, y) = 2 cos(8πx) cos(6πy).

Let B be the disk of radius 1/π2 centered at 0. Different choices for z showcase the asymptotically
different splittings which can and cannot occur. For example:

• for z = (1/2, 1/2), for any n it holds ∇un(z) = 0, and therefore λε,n − λ = O(ε3);

13



Figure 5: Eigenfunctions associated to the eigenvalues perturbed from 4π2. The perturbation consists in the excision
of a disk of radius 0.1 centered at (1/4, 1/2). Numerical computations of the eigenfunctions themselves are plotted
in the left column, their difference with the O(ε2)-best approximations in the two-dimensional eigenspace of 4π2

are plotted in the right column.
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• for z = (1/3, 1/2), ∇u1(z) = ∇u3(z) = 0 while ∇u2(z),∇u4(z) are all parallel and non-zero,
thus from Point 2 of Remark 4.9 we have λε,n−λ = O(ε3) for n = 1, 2, 3 while λε,4−λ = Θ(ε2);

• for z = (1/7, 1/7) computations of the gradient of the eigenfunctions at z show that λε,n−λ =
O(ε3) for n = 1, 2 and λε,n − λ = Θ(ε2) for n = 3, 4;

• by Point 1 of Remark 4.9 there is no z ∈ Ω such that λε,n − λ = Θ(ε2) for more than two
different indices n. �

4.4. Perturbation by boundary deformation

In this section we consider Ωε obtained from Ω by a normal boundary deformation. For simplic-
ity suppose that Ω is globally the epigraph of a Lipschitz function ϕ, that is Ω =

{

x ∈ R
d : ϕ(x) ≤ 0

}

.
Given w ∈ C∞(∂Ω) we also suppose that the boundary perturbation is such that Ωε = {x ∈ R

d :
ϕ(x) + εw(x)ν(x) ≤ 0}. Recall that if λ is a simple eigenvalue of Ω with associated eigenfunction
u, and λε → λ, then Hadamard’s formula reads

∂λε

∂ε

∣

∣

∣

ε=0
=

ˆ

∂Ω

(

|∇u|2 − λu2 − 2(∂νu)
2
)

w, (18)

for Dirichlet or Neumann conditions on ∂Ω (for its simple proof see [15, Lemma 5], or the more
extensive discussions at [20], [21]). Therefore, if λ has multiplicitym, an application of Theorem 2.5
provides us with the variational formula

λε,n − λ = ε argmin
v∈Sn

ˆ

∂Ω

(

|∇v|2 − λv2 − 2(∂νv)
2
)

w +O(ε2). (19)

Example 4.12. Let Ω = (0, 1)2 and consider the Dirichlet eigenvalue λ = 10π2 with associated
orthonormal eigenfunctions u1(x, y) = 2 sin(πx) sin(3πy), u2(x, y) = 2 sin(3πx) sin(πy). Suppose
the boundary of Ω is perturbed on the upper side of the square Ω with w(x, y) = sin(πx), that
is ∂Ω ∩ {y = 1} is deformed into {(x, y) : 0 ≤ x ≤ 1, y = 1 + sin(πx)}. Notice that in the case of
homogeneous Dirichlet boundary conditions, the integrand in (18) becomes just −(∂νu)

2w. Then
a direct computation shows that

−
ˆ

∂Ω

(a1∂νu1 + a2∂νu2)
2w = −

ˆ 1

0

(6a1π sin(πx) + 2a2π sin(3πx))2 sin(πx)

=
16π

35
(−105a21 + 14a1a2 − 9a22),

thus by (19) we can explicitly calculate

uε,1 = c1u1 + c2u2 +O(ε2), λε,1 − λ = C1ε+O(ε2),

uε,2 = c2u1 − c1u2 +O(ε2), λε,2 − λ = C2ε+O(ε2),

where c1 ≃ 0.9974, c2 ≃ −0.07235, C1 ≃ −151.5, C2 ≃ −12.20. A comparison of these results with
a finite element method simulation is presented in Figure 6. A comparison between a numerical
computation of the eigenfunctions and the minimizers of the expression in (19) is given in Figure 7.

�

Notice that in general minimizing the expression in (19) is a computationally expensive task.
However, we can still obtain some cheaper, qualitative information if we approximate to a more
treatable form the domain perturbation considered. We showcase such an heuristic in the following
example, where a local perturbation is “singularized” to obtain an asymptotic formula easier to
analyze.
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Figure 6: Behavior of an eigenvalue bifurcation as the scaling parameter ε of the boundary deformation decreases.
The original domain is the unit square (0, 1)2 and the boundary deformation is given by ε sin(πx)ν(x, 1) on the
upper side {(x, y) : x ∈ (0, 1), y = 1}.

Figure 7: Eigenfunctions associated to the eigenvalues perturbed from 10π2. The perturbation consists in a bound-
ary deformation ε sin(πx)ν(x, 1) of the upper side {(x, y) : x ∈ (0, 1), y = 1} for ε = 1/10. Numerical computations of
the eigenfunctions are plotted in the left column, their O(ε2)-best approximations in the two-dimensional eigenspace
of 4π2 in the right column.
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Example 4.13. Suppose a small dent is present on the surface ∂Ω at the point z, shaped as a cone
with circular base of radius δ and height ε. Let at first λ be a simple Dirichlet eigenvalue with
associated eigenfunction u. If we approximate

ˆ

∂Ω

(∂νu)
2w ≃ δ2π(∂νu(z))

2,

then for frequencies low enough we will have

λε − λ ≃ −εδ2π(∂νu(z))
2. (20)

The right hand side in (20) is bilinear in u therefore, if we adopt such an approximation for λε−λ,
by Corollary 2.8 we have that for any non-simple eigenvalue the largest perturbed eigenvalue will
shift like O(ε) while all the smaller ones will shift like O(ε2). �

4.5. Concluding remarks

We summarize hereafter the main results obtained for each of the perturbations considered.
For this purpose we recall that Ω indicates an arbitrary Lipschitz domain in R

d, λ an eigenvalue
of the negative (Dirichlet or Neumann) Laplacian on Ω, u1, . . . , um an arbitrary orthonormal basis
in L2(Ω) of the eigenspace of λ, and λε,1 ≤ · · · ≤ λε,m the eigenvalues perturbed from λ.

• When a hole D of volume εd and centered at z is cut out of Ω and homogeneous Dirichlet
boundary conditions are imposed on ∂D we have

λε,m − λ = Cεd−1

m
∑

i=1

ui(z)
2 +O(εd),

λε,n − λ = O(εd) for n < m,

in the case where d ≥ 3 (see (14) for the case d = 2), where C is a constant which de-
pends only on the dimension d. Therefore we have that the largest eigenvalue splits at a
higher asymptotic order than all the others eigenvalues, as long as one among the quantities
u1(z), . . . , um(z) is non-zero.

• In the case of a conductivity inclusion we do not have such an explicit formula, but still
we can easily recover a first order approximation by computing the eigenvalues of a matrix.
More precisely, if we suppose to change the conductivity coefficient from 1 to k only in D, a
small disk of radius ε centered at a point z, then for any n ∈ {1, . . . ,m},

λε,n − λ = 2
k − 1

k + 1
εdµn +O(εd+1),

where µn is the n-th eigenvalue of the matrix with element ∇ui(z) · ∇uj(z) in position (i, j).

• In the case of a normal boundary deformation of Ω with shape w ∈ C∞(∂Ω), that is the
perturbed domain boundary is given locally by ∂Ω + εwν, to find λε,n − λ for any n ∈
{1, . . . ,m}, one has to find the minimizer vn of

J(v) :=

ˆ

∂Ω

(

|∇v|2 − λv2 − 2(∂νv)
2
)

w

among all v’s of unit L2-norm in the eigenspace of λ and perpendicular to v1, . . . , vn−1; then

λε,n − λ = εJ(vn).
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We notice that all the deformations considered were such that λε − λ was in bijection with ε,
for ε small enough. Therefore, if one could know a priori that a domain perturbation is of a certain
type and that it depends only on the size parameter ε, one could reconstruct an approximation of
ε from the knowledge of a single eigenvalue’s shift.

As a final remark, let us point out that similar formulae can be derived for many other types
of domain perturbations or other differential operators. For example, with the same approach of
Section 4.4, it is immediate to generalize the asymptotic expansion of eigenvalues in the case of
shape deformation of conductivity inclusions (see [22, Theorem 2.1]); or, with the same approach
of Section 4.3, to generalize the asymptotic formulae for eigenvalues of the Lamé operator in the
context of linear elasticity (see [23, Theorems 3.5 and 4.1] and [24, Theorem 2.1]).
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