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Abstract

For the numerical solution of linear systems that arise from discretized linear partial
differential equations, multigrid and domain decomposition methods are well established.
Multigrid methods are known to have optimal complexity and domain decomposition meth-
ods are in particular useful for parallelization of the implemented algorithm. For linear
random operator equations, the classical theory is not directly applicable, since condition
numbers of system matrices may be close to degenerate due to non-uniform random input.
It is shown that iterative methods converge in the strong, i.e., Lp, sense if the random input
satisfies certain integrability conditions. As a main result, standard multigrid and domain
decomposition methods are applicable in the case of linear elliptic partial differential equa-
tions with lognormal diffusion coefficients and converge strongly with deterministic bounds
on the computational work which are essentially optimal. This enables the application of
multilevel Monte Carlo methods with rigorous, deterministic bounds on the computational
work.

1 Introduction

Mathematical models of partial differential equations (PDEs) with random input receive increas-
ing attention in recent years. In particular, linear diffusion equations with random coefficients
to model random media are considered and respective system responses or quantities of interest
are studied, cf. [15, 34, 12, 13, 36, 25]. Generally, the random input is function valued and will
be referred to as random field. In the numerical analysis of these problems constants in error
estimates become random variables and may have a distribution with unbounded support. In
the case that quantities of interest are moments of system responses, numerical analysis has been
performed if certain integrability conditions are satisfied by the random system input. There,
the case of Gaussian random fields (GRFs) as random inputs is frequently considered. Multilevel
techniques such as multilevel Monte Carlo (MLMC) have been established to accelerate the ap-
proximation of moments. There, sample numbers are chosen in a greedy technique to optimize
the error versus the required computational cost, cf. [3, 13, 36, 23, 20, 21]. The requirement of
MLMC to be efficient is a small variance between higher levels or to put it differently, the strong
error between higher levels has to converge with an available rate. In the case that finite element
(FE) discretizations are used and the random input is unbounded such as GRFs, the numerical
analysis and numerical experiments presented in these references relied on sparse direct solvers,
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cf. [13, 36, 25]. Hence, the applicability of iterative methods which are known to be fast for
deterministic problems is of natural interest, e.g., so-called full multigrid is well-known to have
optimal complexity in the case of Poisson’s equation, cf. [2].

In this paper we establish rigorously the strong convergence of a wide class of standard
iterative solvers, which yields essentially optimal computational cost estimates also in the case of
GRF input with low spatial regularity. As an application, MLMC is discussed with deterministic,
essentially optimal estimates of the computation cost, which was previously unknown. By
optimal, we mean that solutions of linear systems under consideration with dimension O(N) may
be approximated in computational cost O(N) consistently with the overall discretization error.
In the computational uncertainty quantification (UQ) literature, iterative solvers have been
considered mostly in the context of stochastic collocation and stochastic Galerkin, cf. [38, 35, 17].
A particular variant of MLMC with multigrid for GRF inputs has been proposed in [29] and
computational experiments have been performed.

The present manuscript analyzes the applicability and strong convergence of well established
iterative methods for operator equations with unbounded random input in a general setting. Let
A be a random, continuous linear operator from V to V∗ on a probability space (Ω,F ,P) that
is P-almost surely (P-a.s.) boundedly invertible, where V is a Hilbert space and V∗ its dual
space. Let its expectation E(A) be well-defined. In the present paper we are interested in the
numerical analysis of approximations of the solution u to the random linear equation that for
P-almost every (P-a.e.) ω ∈ Ω

A(ω)u(ω) = f , (1)

where f ∈ V∗ is deterministic, in the strong sense by iterative methods such as multigrid and
domain decomposition methods. This can be rewritten in variational form to find u : Ω → V
such that for P-a.e. ω

aω(u(ω), v) := V∗〈A(ω)u(ω), v〉V = V∗〈f , v〉V ∀v ∈ V.

Let us assume that there are strictly positive random variables â and ǎ such that for P-a.e. ω

ǎ(ω) V∗〈E(A)v , v〉V ≤ V∗〈A(ω)v , v〉V ≤ â(ω) V∗〈E(A)v , v〉V ∀v ∈ V. (2)

We will be particularly interested in the case that â and ǎ−1 are unbounded random variables.
This is for example the case for elliptic PDEs with lognormal coefficients. Thus, preconditioned
finite dimensional discretizations suffer from random condition numbers that are unbounded
and respectively iterative methods contract with random contraction numbers, which may have
realizations arbitrarily close to one with positive probability. At first sight one may overcome
this with random iteration numbers specified by a threshold of residual errors with the disad-
vantage of the occurrence of large iteration numbers, when samples of the random contraction
number are close to one. Also, bounds on the computational work for such strategies would
be probabilistic. A main new contribution of this paper is that deterministic iteration numbers
exist that allow for strong convergence, i.e., convergence of well-known iterative methods in the
Lq(Ω;V)-norm, q ∈ [1,+∞), such as multigrid, multilevel preconditioned conjugate gradient, or
domain decomposition. This is possible due to tail bounds of the random contraction numbers,
which for example are satisfied in the important case of elliptic PDEs with lognormal coeffi-
cients. As a consequence, deterministic, essentially optimal complexity bounds are implied for
the solution of resulting random linear systems when multigrid or domain decomposition meth-
ods are applied. This enables also rigorous, deterministic, essentially optimal complexity bounds
for MLMC approximations of mean fields, which was previously unknown. Assumptions on the
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computational cost of PDE solvers that were made in previous papers [13, 36, 25] to obtain
complexity bounds of MLMC and partly to calibrate the MLMC estimator are pervaded by the
new theory presented in this manuscript. We will treat the case that aω(·, ·) is symmetric for
P-a.e. ω. However, the presented theory can be extended to certain non-symmetric operators,
see for example [11, Section 11].

In Section 2, we will review iterative methods as they were formulated in [39] in order to
discuss various multilevel method in a unified framework. It will also be highlighted which
parts in the framework and in the iterative methods are random. As a main result, we will
develop integrability conditions on the random contraction numbers in Section 3 that result in
sufficiently strong tail bounds in order to ensure strong convergence in the setting of multilevel
discretizations of (1). The integrability conditions posed in Section 3 are analyzed for several
multilevel methods such as multigrid, the so-called BPX preconditioner, cf. [9], and domain
decomposition methods in Sections 4 and 5. An important application of the presented theory are
lognormal diffusion problems, which are briefly reviewed in Section 6. In particular deterministic
bounds on the computational work without assumptions on the PDE solver of MLMC are
implied, which is concluded in Section 7.1. Numerical experiments with GRF input are presented
in Section 7.2 and confirm the theoretical analysis.

2 Iterative methods

In this section, we review iterative methods to approximate solutions to linear equations on a
finite dimensional inner product space (V, (·, ·)), where ‖ · ‖ denotes the norm that is induced by
(·, ·). Let us consider the random linear equation that for P-a.e. ω

A(ω)u(ω) = f, (3)

where A : V → V is a random linear operator that is P-a.s. symmetric positive definite with
respect to (·, ·). Hence, (3) is P-a.s. uniquely solvable. Note that we will often omit dependencies
of random quantities on ω for notational convenience. Let us denote the bilinear form that is
induced by A by (·, ·)A and let λmax(A), λmin(A) denote the maximal and minimal eigenvalue of
A. The condition number of A is denoted by κ(A) and ρ(A) denotes the spectral radius. This
notation will also be used for other linear operators that occur. Note that since A is random,
λmax(A), λmin(A), κ(A), and ρ(A) are random variables. In particular, the review article [39]
enables the discussion of multigrid and domain decomposition methods in an unified frame-
work. These methods allow in some cases for optimal preconditioning or uniform contraction
numbers with respect to the dimension of V . In this section, we will mainly follow [39] and
introduce abstract algorithms, which in later sections will be used as BPX or additive Schwarz
preconditioner, symmetric multigrid and overlapping domain decomposition method. We will
also highlight which of the occurring objects in this review section are random.

Since A is P-a.s. symmetric positive definite, the conjugate gradient (CG) method implies
after n ∈ N iterations with initial guess U0 the error bound that for P-a.e. ω

‖u(ω)− Un(ω)‖A(ω) ≤ 2

(√
κ(A(ω))− 1√
κ(A(ω)) + 1

)n

‖u(ω)− U0(ω)‖A(ω).

Since the random condition number κ(A) may depend on the dimension of the linear space V ,
we consider the preconditioned linear system that for P-a.e. ω

B(ω)A(ω)u(ω) = B(ω)f, (4)
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where the random linear operator B is chosen to be symmetric positive definite with respect to
(·, ·). The random operator B shall satisfy that P-a.s. κ(BA) ≤ κ(A), which then accelerates the
convergence of the CG method. The combination of preconditioning and CG will be referred to
as preconditioned conjugate gradient (PCG) method.

Another method to be discussed is the linear iterative method of the form

Un+1(ω) = Un(ω) +B(ω)(f −A(ω)Un(ω)), n ∈ N0, (5)

for P-a.e. ω, where B is a suitable random operator that is not necessarily symmetric and U0

is given. Note that this linear iterative methods converges P-a.s. if ‖ Id−BA‖A < 1, P-a.s.
Alternatively, one could also introduce a relaxed version of B with relaxation parameter in
(0, 2/ρ(BA)) to guarantee convergence with random contraction number (κ(BA)−1)/(κ(BA)+
1), cf. [39, Proposition 2.3]. Also we remark that generally the contraction number of the PCG
method is smaller, cf. [39, Proposition 2.2], which is why one may say that PCG accelerates
convergence.

Lemma 2.1 Let Ã : V → V be a symmetric positive definite operator with respect to (·, ·) and
let B̃ : V → V be a symmetric positive definite preconditioner with respect to (·, ·) for Ã. If there
exists positive random variables c0, c1 such that for P-a.e. ω ∈ Ω

c0(ω)(v, v)Ã ≤ (v, v)A(ω) ≤ c1(ω)(v, v)Ã ∀v ∈ V,

then for P-a.e. ω ∈ Ω

κ(B̃A(ω)) ≤ κ(B̃Ã)
c1(ω)

c0(ω)
.

Proof. Since B̃Ã is symmetric positive definite with respect to (·, ·)Ã, it holds that

κ(B̃Ã) =
λmax(B̃Ã)

λmin(B̃Ã)

and for every v ∈ V ,

|λmax(B̃Ã)|−1(v, v)Ã ≤ (B̃−1v, v) ≤ |λmax(B̃Ã)|−1(v, v)Ã.

Thus, by the third equivalence in [39, Lemma 2.1],

λmax(B̃Ã)
−1(Av, v) ≤ (B̃−1v, v) ≤ λmin(B̃Ã)

−1(Av, v).

Then, the assumption of the lemma implies that

c−1
1 λmax(B̃Ã)

−1(Av, v) ≤ (B̃−1v, v) ≤ c−1
0 λmin(B̃Ã)

−1(Av, v),

which implies the claim by the condition number estimate in [39, Lemma 2.1]. ✷

For J ∈ N, let us assume a decomposition of V in subspaces (Vj : j = 1, . . . , J), i.e., it holds
that Vj ⊂ V , j = 1, . . . , J , and

V =
J∑

j=1

Vj . (6)

4



We define the orthogonal projections Qj , Pj : V → Vj for every v ∈ V by

(Qjv, wj) := (v, wj), (APjv, wj) := (Av,wj) ∀wj ∈ Vj

and the operator Aj : Vj → Vj for every v ∈ Vj by

(Ajv, wj) := (Av,wj) ∀wj ∈ Vj ,

j = 1, . . . , J . Consequently it holds for every j = 1, . . . , J that AjPj = QjA, which implies that
if u is the random solution of (3), then uj := Pju satisfied for P-a.e. ω

Aj(ω)uj(ω) = fj ,

where fj := Qjf , j = 1, . . . , J . Note that Aj , Pj are random whereas Qj is deterministic,
j = 1, . . . , J . Let Rj : Vj → Vj , j = 1, . . . , J , be random symmetric positive definite operators
with respect to (·, ·), which shall approximate the inverse of Aj respectively. Thus,

Ba :=
J∑

j=1

RjQj (7)

is also symmetric positive definite, cf. [39, Lemma 3.1], and shall be used as preconditioner for
A.

Algorithm 1 Apply the PCG method to (4) with the random preconditioner Ba defined in
(7).

A multilevel iteration can be defined under the assumption that there are nested subspaces
satisfying

M1 ⊂M2 ⊂ · · · ⊂MJ = V, (8)

where we also define operators Q̂j , P̂j : MJ → Mj and Âj : Mj → Mj for j = 1, . . . , J respec-
tively. The random multilevel iterations B̂s

j :Mj →Mj , j = 1, . . . , J with parameters m, k ∈ N

will be defined iteratively. Set B̂s
1 := Â−1

1 and assume that B̂s
j−1 : Mj−1 → Mj−1 is already

defined. For every g ∈Mj the multigrid V-cycle iteration B̂s
jg is defined by:

1. v := R̂jg

2. w := v + B̂s
j−1[Q̂j−1(g − Âjv)

3. B̂s
jg := w + R̂j(g − Âjw)

Algorithm 2 Let U0 be given, then Un is defined by the linear iteration in (5) with B = B̂s
J .

According to [8, Equation (2.14)] the residual operator is given by

Ês
J = (Id−B̂s

J ÂJ) = (Id−T̂J) · · · (Id−T̂1)(Id−T̂ ∗
1 ) · · · (Id−T̂ ∗

J ),

where
T̂j := R̂jÂjP̂j .

For the convergence of Algorithm 1 we have to prove bounds of κ(BA), whereas for Algorithm 2
we have to show that ‖Ês

J‖A ≤ δ for some random variable δ taking values in (0, 1) P-a.s.
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The additive preconditioner in Algorithm 1 will in later applications be the BPX, if the nested
decomposition (8) is considered, or the additive Schwarz preconditioner. Algorithm 2 is multigrid
by symmetric V-cycle.

In [39], assumptions are introduced involving two parametersK0 andK1 that allow to discuss
their convergence. Here K0 and K1 are positive random variables. We recall the two conditions
[39, Equations (4.2) and (4.3)]. There exists a positive random variables K0 such that for every
v ∈ V , there exists a decomposition v =

∑J
j=1 vj with vj ∈ Vj , j = 1, . . . , J , such that for

P-a.e. ω
J∑

j=1

(R−1
j (ω)vj , vj) ≤ K0(ω)(A(ω)v, v). (A.1)

There exists a positive random variables K1 such that for P-a.e. ω and for every S ⊂ {1, . . . , J}×
{1, . . . , J} and vj , wj ∈ V , j = 1, . . . , J ,

∑

(i,j)∈S

(Ti(ω)vi, Tj(ω)wj)A(ω)

≤ K1(ω)

(
J∑

i=1

(Ti(ω)vi, vi)A(ω)

)1/2



J∑

j=1

(Tj(ω)wj , wj)A(ω)




1/2

.

(A.2)

Theorem 2.2 Let assumptions (A.1) and (A.2) be satisfied. Let Ba be the random precondi-
tioner given by (7). Then, for P-a.e. ω

κ(Ba(ω)A(ω)) ≤ K0(ω)K1(ω). (9)

The residual operator Ês
J from Algorithm 2 satisfies for P-a.e. ω

‖Ês
J(ω)‖A(ω) ≤ 1− 2− ν

K0(ω)(1 +K1(ω))2
, (10)

where ν ≥ maxj=1,...,J{ρ(Rj(ω)Aj(ω))}.

Proof. The first assertion is explicitly [39, Theorems 4.1]. The second assertion follows by [39,
Theorems 4.4 and Proposition 3.5]. ✷

The random parameters K0 and K1 can be estimated in some cases with [39, Lemmas 4.5, 4.6,
and 4.7]. Let us state a specific case of [39, Lemma 4.6] as the following lemma.

Lemma 2.3 Let K3 be a positive random variable that is independent of J and let γ ∈ (0, 1) be
deterministic. If for P-a.e. ω and for every v, w ∈ V and every i, j ∈ {1, . . . , J} it holds that

(Ti(ω)v, Tj(ω)w)A(ω) ≤ K3(ω)νγ
|i−j|(Ti(ω)v, v)

1/2
A(ω)(Tj(ω)w,w)

1/2
A(ω), (11)

then

K1(ω) ≤ K3(ω)ν
2

1− γ
.

Note that (11) is often called strengthened Cauchy–Schwarz inequality.
The operator B̂s

J can also be used as preconditioner in a PCG method to accelerate con-
vergence. The respective condition number can be bounded by the following proposition in
combination with Theorem 2.2.
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Proposition 2.4 Let δ be a random variable taking values in (0, 1). If for P-a.e. ω,

‖ Id−B̂s
J(ω)A(ω)‖A(ω) ≤ δ(ω),

then κ(B(ω)A(ω)) ≤ 1/(1− δ(ω)).

Proof. Since the operator Id−B̂s
JA can be written as E∗E, where E∗ denotes the adjoint op-

erator of E, for some appropriate E that was discussed above, it holds that ((Id−B̂s
JA)v, v)A =

‖E∗v‖2A ≥ 0 for every v ∈ V . Hence,

(B̂s
JAv, v)A ≤ (v, v)A ∀v ∈ V. (12)

The assumption implies that

(1− δ)(v, v)A ≤ (B̂s
JAv, v)A ∀v ∈ V, (13)

which then implies the assertion. ✷

3 Strong convergence of iterative methods

We recall the possibly infinite dimensional Hilbert space V and let (H, (·, ·)) be another Hilbert
spaces such that the embedding H ⊂ V is continuous. Let (Vℓ : ℓ ∈ N) be a nested sequence
of finite dimensional subspaces of V, i.e., V1 ⊂ V2 ⊂ · · · ⊂ V . Let the finite dimensional spaces
Vℓ have dimensions Nℓ := dim(Vℓ), ℓ ∈ N. Similar to Section 2, we introduce random operators
Aℓ, Pℓ, Rℓ, Tℓ, and Qℓ with respect to the inner product (·, ·) of H, ℓ ∈ N. The inner product
(·, ·)E(A) on V is given by

(v ,w)E(A) := V∗〈E(A)v ,w〉V ∀v ,w ∈ V.

The inner product (·, ·)A with respect to the random symmetric operator A will also be consid-
ered.

For every ℓ ∈ N, we consider the variational form of (1) on the subspace Vℓ. For every ℓ ∈ N,
this gives rise to the random linear equation: find uℓ : Ω → Vℓ such that for P-a.e. ω

V∗〈Aℓ(ω)uℓ(ω), vℓ〉V = V∗〈f , vℓ〉V ∀vℓ ∈ Vℓ.

This is uniquely solvable by the Lax–Milgram lemma using (2).
We assume that the random solution u : Ω → V of the problem in (1) is approximated by

the Galerkin approximations uℓ, ℓ ∈ N. such that for every ℓ ∈ N and for P-a.e. ω

‖u(ω)− uℓ(ω)‖A(ω) ≤ C(ω)hsℓ . (14)

We apply an iterative method such as Algorithm 1 or 2 with random contraction number δ,
that is independent of ℓ, with n iterations and solve exactly on level 1, i.e., starting with Un

ℓ−1

as initial guess for level ℓ we carry out n iterations of the algorithm with a random contraction
number δ that takes values in (0, 1). Hence, we obtain a sequence Un

ℓ , ℓ ∈ N, where we set
Un
1 := u1. This multilevel process was used in [2, Section 3] to derive optimal complexity

bounds for the solution of certain linear equations and is also commonly referred to as “full
multigrid”.
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Lemma 3.1 Let us assume that (uℓ : ℓ ∈ N) satisfies (14) for some s > 0 and let the sequence
(hℓ, ℓ ∈ N) satisfy that hℓ = γℓh0, ℓ ∈ N, for some fixed h0 > 0 and γ ∈ (0, 1). Then, for every
ℓ ∈ N, Un

ℓ and for P-a.e. ω

‖u(ω)− Un
ℓ (ω)‖A(ω) ≤ 2C(ω)

(
ℓ−1∑

k=0

hsℓ−kδ(ω)
nk

)

= 2C(ω)
(

ℓ−1∑

k=0

(γ−sδ(ω)n)k

)
hsℓ .

Proof. The argument is for example given in [6, Chapter 10]. ✷

For any Banach space (B, ‖ · ‖B) and any p ∈ [1,+∞), let us denote the space of strongly
measurable mappings X : Ω → B such that ‖X‖pB is integrable with respect to the probability
measure P by Lp(Ω;B). For B = R, we simply write Lp(Ω).

Theorem 3.2 Let the assumptions of Lemma 3.1 be satisfied. Let us assume that (C/
√
ǎ) ∈

Lp(Ω) for some p ∈ [1,+∞), where ǎ is defined in (2) and C is given in (14). Further, assume
that 1/(1− δ) ∈ Lp′(Ω) for some p′ ∈ [1,+∞). For every η ∈ (0, 1), every deterministic number
of iterations n ∈ N, q ∈ [1, p], and r := p′(p− q)/(pq) it holds that for every ℓ ≥ 2

‖u − Un
ℓ ‖Lq(Ω;V) ≤ Cr

(
hsℓ + n−r

)
,

where

Cr := 2max

{
‖C/

√
ǎ‖Lq(Ω)

1− η
, ‖C/

√
ǎ‖Lp(Ω)

hs1
1− γs

∥∥∥∥
1

1− δ

∥∥∥∥
r

Lp′ (Ω)

log

(
1

ηγs

)r
}
.

Proof. The idea of the proof is to decompose the probability space into Ω = Ωn ∪ (Ωn)
c, where

Ωn := {ω ∈ Ω : δ(ω)n < ηγs}

and therefore (Ωn)
c = {ω ∈ Ω : δ(ω)n ≥ ηγs}. Note that both sets are measurable. For

notational convenience, we omit ω in the following when discussing subsets of Ω. Our goal is to
show, how the probability of (Ωn)

c tends to zero for increasing values of n ∈ N, to be able to
justify the applicability of a classical argument on the sets Ωn, n ∈ N. Naturally, Ωn1

⊂ Ωn2
for

every choice of natural numbers n1 ≤ n2. We recall a version of the Markov inequality, cf. [5,
Equation (2.1)], i.e., for a random variable X taking values in (1,+∞) and a non-decreasing
function φ such that φ(t) > 0 it holds that

P(X ≥ t) ≤ P(φ(X) ≥ φ(t)) ≤ E(φ(X))

φ(t)
, t ∈ (1,+∞).

We select the non-decreasing positive function φ(t) := tp
′

. Then, for X = 1/(1 − δ) and every
t ∈ (1,+∞) it holds that

P

(
1

1− δ
≥ t

)
≤ E

((
1

1− δ

)p′
)

1

tp′
. (15)
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Since for every r ∈ (0, 1), {δ ≥ r} = {1/(1− δ) ≥ 1/(1− r)}, we conclude that

P((Ωn)
c) = P (δn ≥ ηγs) = P

(
δ ≥ (ηγs)1/n

)
= P

(
1

1− δ
≥ 1

1− (ηγs)1/n

)
.

We observe that the function x 7→ (1− (ηγs)1/x)x from (1,+∞) to (0,+∞) is increasing. Since
the rule of L’Hospital implies that limx→+∞(1 − (ηγs)1/x)x = log(1/(ηγs)), we conclude that
for every n ∈ N

1− (ηγs)1/n ≤ log

(
1

ηγs

)
1

n
.

For every n ∈ N, we choose t := 1/(1 − (ηγs)1/n) in (15), and conclude that for every n ∈ N it
holds that

P((Ωn)
c) ≤ E

((
1

1− δ

)p′
)
log

(
1

ηγs

)p′ ( 1

n

)p′

. (16)

Hence, we have established estimates for the probability of the sets (Ωn)
c, n ∈ N. We apply

Lemma 3.1, (2), and decompose the probability space into Ω = Ωn ∪ (Ωn)
c to obtain that for q

as in the statement of the theorem

E(‖u − Un
ℓ ‖qE(A)) ≤ E

((
2
C√
ǎ

ℓ−1∑

k=0

hsℓ−kδ
nk

)q)

= E

((
2
C√
ǎ

ℓ−1∑

k=0

(γ−sδn)k

)q

1Ωn

)
hspℓ

+ E

((
2
C√
ǎ

ℓ−1∑

k=0

hsℓ−kδ
nk

)q

1(Ωn)c

)
.

Since on Ωn holds that γ−sδn < η, we obtain with a geometric series argument that

E

((
2
C√
ǎ

ℓ−1∑

k=0

(γ−sδn)k

)q

1Ωn

)
hsqℓ ≤ 2q E

(( C√
ǎ

)q)( 1

1− η

)q

hsqℓ .

The relation hℓ = γℓh0, ℓ ∈ N, implies that for every ℓ ≥ 2 it holds that
∑ℓ−1

k=0 h
s
ℓ−k ≤∑

ℓ≥1 γ
ℓsh0 = hs1/(1− γs). The Hölder inequality with r1 = p/q and r2 = p/(p− q) implies with

the tail bound of δn in (16) that

E

((
2
C√
ǎ

ℓ−1∑

k=0

hsℓ−kδ
nk

)q

1(Ωn)c

)

≤ 2q
∥∥∥∥

C√
ǎ

∥∥∥∥
q

Lp(Ω)

(
hs1

1− γs

)q

E
(
1(Ωn)c

)1/r2

≤ 2q
∥∥∥∥

C√
ǎ

∥∥∥∥
q

Lp(Ω)

(
hs1

1− γs

)q ∥∥∥∥
1

1− δ

∥∥∥∥
rq

Lp′ (Ω)

log

(
1

ηγs

)rq ( 1

n

)rq

,

which finishes the proof of the theorem. ✷
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Remark 3.3 Let X be a random variable with values in (0, 1) such that 1/(1−X) ∈ Lp(Ω) for
some p ∈ [1,+∞), then (16) implies that for every η < 1 and n ∈ N

P (Xn ≥ η) ≤
∥∥∥∥

1

1−X

∥∥∥∥
p

Lp(Ω)

log
(
η−1
)p
n−p.

We illustrate the assumptions in Theorem 3.2 on C and ǎ in the following example.

Example 1 Consider the random coefficient function a given by a(ω, x) = exp(y(ω)ψ(x)) for
a.e. x ∈ D, P-a.e. ω ∈ Ω, where ψ ∈ W 1,∞(D) and y is standard normally distributed. It is
easy to see that ‖ǎ−1‖Lp(Ω) ≤ ‖a‖Lp(Ω;L∞(D)) ≤ exp(p‖ψ‖2L∞(D)/2) for every p ∈ [1,+∞), where

ǎ = ess infx∈D{a(x)}.
Let us consider the elliptic Dirichlet problem Au := −∇ · (a∇u) = f on a convex polygon

D with f ∈ L2(D), which has a unique solution u : Ω → H1
0 (D) that satisfies ‖u‖H1

0 (D) ≤
‖f‖H−1(D)/ǎ, P-a.s. The Sobolev spaces are denoted by Hk(D), k ∈ N, and H1

0 (D) := {v ∈
H1(D) : v|∂D = 0} with dual space H−1(D). Since ψ ∈W 1,∞(D), we may write −∆u = f/a+
y∇ψ ·∇u. Since the Dirichlet Laplacian is boundedly invertible from L2(D) to H2(D)∩H1

0 (D),
‖u‖H2(D) ≤ Cǎ−1(|y|‖ψ‖W 1,∞(D) + 1)‖f‖L2(D) P-a.s., where the constant C neither depends
on a nor on f . Then, Céa’s lemma implies with a standard approximation property in FE

spaces that (14) holds with C = C
√

‖a‖L∞(D)ǎ
−1(|y|‖ψ‖W 1,∞(D) + 1)‖f‖L2(D) and s = 1. By

a multiple application of the Cauchy–Schwarz inequality, we conclude that (C/
√
ǎ) ∈ Lp(Ω) for

every p ∈ [1,+∞).

The case p′ = +∞ in Theorem 3.2 is trivial, since then the random contraction number may
be upper bounded to be uniformly strictly less than one, i.e., if p′ = +∞ in Theorem 3.2, then
supω∈Ω δ(ω) < 1. In this case, the standard theory applies with δ = supω∈Ω δ(ω) < 1.

4 Multigrid methods

Here, we provide sufficient conditions under which the strengthened Cauchy–Schwarz inequality
holds with explicit dependence on the operator A. This will allow us to show Lq(Ω) bounds of
the condition numbers and tail bounds of the random contraction number in order to apply the
strong error bounds from Theorem 3.2.

We will provide a proof in the case of a random, symmetric elliptic differential operators. To
be specific, let H1

0 (D), Hs(D), s ∈ [−1, 2], be the Sobolev–Slobodeckij spaces for some polytopal
domain D ⊂ Rd, d ≥ 1 arbitrary, such that H−s(D) is the dual space of Hs(D), s ∈ [0, 1], and
H0(D) = L2(D). The reader is referred to [22, Chapter 1] for details on Sobolev spaces. We
consider the class of random symmetric operators

A := −
d∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+ a : H1

0 (D) → (H1
0 (D))∗, (17)

where (aij(x))i,j=1,...,d is a random symmetric matrices for a.e. x ∈ D. Let us assume that

D =
⋃K

k=1Dk, where the subdomains Dk are pairwise disjoint with a polytopal boundary.
Furthermore, we assume that the random fields a and aij are strongly measurable as mappings
from Ω to L∞(D), and aij |Dk

is strongly measurable as a mapping from Ω to W s,p(Dk) such
that s > d/p, k = 1, . . . ,K, i, j = 1, . . . , d, where W s,p(Dk), s ≥ 0, p ∈ [1,+∞), k = 1, . . . ,K,
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denote the Sobolev–Slobodeckij spaces, cf. [22, Definition 1.3.2.1]. We assume that for P-a.e. ω,
ess infx∈D{a(ω, x)} ≥ 0 and that there exists a strictly positive random variable ǎ such that for
P-a.e. ω

ess inf
x∈D





d∑

i,j=1

aij(ω, x)ξiξj



 ≥ ǎ(ω)|ξ|2 ∀ξ ∈ Rd.

The corresponding random bilinear form a(·, ·) is for P-a.e. ω given by

aω(v ,w) =

d∑

i,j=1

∫

D
aij(ω)

∂v

∂xj

∂w

∂xi
+ a(ω)vwdx ∀v ,w ∈ H1

0 (D).

Furthermore, let â be a positive random variable such that for P-a.e. ω

ǎ(ω)

∫

D
|∇v |2dx ≤ aω(v , v) ≤ â(ω)

∫

D
|∇v |2dx ∀v ∈ H1

0 (D). (18)

The following example is a class of random coefficients, which will be further discussed in Sec-
tions 6 and 7.2.

Example 2 The class of lognormal random coefficient fields aij = exp(Z)δij and a = 0, where
Z : Ω →W s,p(D), s > d/p, is a strongly measurable Gaussian random field and δij denotes the
Kronecker symbol, satisfy these conditions; see ahead in Section 7.2 for a class of instances of
such GRFs.

The proof of the strengthened Cauchy–Schwarz inequality, see (11), draws on [8, Sections 4
and 5] and [39, Section 4]. The setting in reference [8] allows for low Hölder regularity of the
coefficients of elliptic operators, but does not provide a strengthened Cauchy–Schwarz inequality
needed for the setting of assumptions (A.1) and (A.2). The strengthened Cauchy–Schwarz
inequality proved in [39, Lemmas 6.1 and 6.3] is limited to coefficients with W 1,∞(D) regularity.
Here, a strengthened Cauchy–Schwarz inequality will be proved with explicit dependence on the
coefficients that is valid for arbitrary low Hölder regularity of the coefficients and also allows
for jumps across ∂Dk (see ahead Proposition 4.2). We will identify estimates with explicit
dependence on the random coefficients of A.

Let (Tℓ, ℓ ∈ N) be a nested sequence of shape regular simplicial, uniformly refined meshes of
D, i.e., every τ ∈ Tℓ is a finite union of elements in Tℓ+1, ℓ ∈ N. Note that in one refinement step
one simplex is refined into 2d subsimplices. For every k = 1, . . . ,K and ℓ ∈ N, we require that
Dk =

⋃
τ∈Tℓ,Dk∩τ 6=∅ τ . Let Vℓ ⊂ V be the space of piecewise polynomial function with respect

to the mesh Tℓ, ℓ ∈ N. For simplicity, we will consider here only first order FE, i.e., polynomial
degree one. Define −∆ℓ : Vℓ → Vℓ by the bilinear form (wℓ, vℓ) 7→

∫
D ∇wℓ · ∇vℓdx over Vℓ × Vℓ,

ℓ ∈ N. By [8, Equation (5.1)], there exists a deterministic constant C > 0 such that for every
j ∈ N and every v ∈ Vj with v =

∑j
i=1 vi, vi ∈ Vi, such that

j∑

i=1

λmax(−∆i)‖vi‖2L2(D) ≤ C

∫

D
|∇v|2dx. (19)

Moreover, the following inverse estimates hold. There exists a constant C such that for every
v ∈ Vℓ

‖v‖H1(D) ≤ Ch−1
ℓ ‖v‖L2(D) and ‖v‖H1+s(D) ≤ Ch−s

ℓ ‖v‖H1(D), (20)

11



where
hℓ := max

τ∈Tℓ
{diam(τ)}

and s ∈ (0, 1/2), cf. [14, Theorem 3.2.6] and [10, Equation (10.1)]. These inverse estimates are
sharp, which can be seen by choosing v to be a nodal basis function of the FE space Vℓ. Since
by (18) for P-a.e. ω

ǎ(ω)λmax(−∆ℓ) ≤ λmax(Aℓ(ω)) ≤ â(ω)λmax(−∆ℓ), (21)

we also observe that for P-a.e. ω

λmax(Aℓ(ω)) ≥ Cǎ(ω)h−2
ℓ , (22)

which for −∆ℓ is a consequence of the sharpness of (20).
We require the following assumptions on the smoothers (Rj : j = 1, . . . , J). There exists a

deterministic ν ∈ (0, 2) such that for every j = 1, . . . , J , and P-a.e. ω

(Tj(ω)v, Tj(ω)v)A(ω) ≤ ν(Tj(ω)v, v)A(ω) ∀v ∈ Vj . (B)

There exists deterministic c0, c1 > 0 such that for every j = 1, . . . , J , and for P-a.e. ω

c0
‖v‖2L2(D)

λmax(Aj(ω))
≤ (Rj(ω)v, v) ≤ c1

‖v‖2L2(D)

λmax(Aj(ω))
∀v ∈ Vj . (C)

Assume that there exists γ ∈ (0, 1) such that for all i, j ∈ N satisfying i ≤ j it holds that

hj
hi

≤ γj−i, (D)

Note that (B) implies that ρ(RiAi) ≤ ν for every i. There exist smoothers that satisfy these
assumptions, cf. [11, Chapter 8] and [7, 9].

Lemma 4.1 Let s ∈ (0, 1/2) and p ∈ (d/s,+∞), then for P-a.e. ω, for every η > 0, φ ∈ H1(D),
and ψ ∈ H1+s(D) it holds that

|a(ω)(φ, ψ)| ≤ C̃(ω)(η−1‖φ‖2L2(D) + ηs/(1−s)‖φ‖2H1(D))
1/2‖ψ‖H1+s(D),

where for a deterministic constant C independent of (aij , a : i, j = 1, . . . , d)

C̃(ω) := C


 max

k=1,...,K

d∑

i,j=1

‖aij(ω)‖W s,p(Dk) + ‖a(ω)‖L∞(D)


 .

Proof. The following argument originates from the proof of [8, Lemma 4.3]. We will track
the dependence on the random elliptic coefficients (aij , a : i, j = 1, . . . , d). Let us fix k ∈
{1, . . . ,K}. There exists a bounded linear extension operator Ik : H1(Dk) → H1(Rd), e.g. cf.
[22, Theorem 1.4.3.1]. For every function v : Dk → R the zero extension to Rd is denoted by ṽ.
Let F denote the Fourier transform on Rd. We obtain with Plancherel’s theorem

∫

Dk

aij
∂φ

∂xi

∂ψ

∂xj
dx =

∫

Rd

∂(Ikφ)

∂xi

˜
aij

∂ψ

∂xj
dx

=

(
F

(
∂(Ikφ)

∂xi

)
,F

(
˜
aij

∂ψ

∂xj

))

L2(Rd)

.
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Recall that ‖(1 + |ξ|2)s/2F (v)‖L2(Rd) is the Bessel potential norm in the Hilbert case of order
s of a function v. The fact that in the Hilbert case Bessel potential and Slobodeckij spaces are
equal with equivalent norms, cf. [37, Definition 2.3.1(d), Theorem 2.3.2(d), Equation 4.4.1(8)],
and the boundedness of the zero extension as an operator from Hs(Dk) to Hs(Rd), cf. [22,
Corollary 1.4.4.5], imply with the Cauchy–Schwarz inequality and differentiation rules for F

that there exists a constant C such that
∫

Dk

aij
∂φ

∂xi

∂ψ

∂xj
dx

≤ C

(∫

Rd

|ξ|2
(1 + |ξ|2)sF (Ikφ)dξ

)1/2 ∥∥∥∥aij
∂ψ

∂xj

∥∥∥∥
Hs(Dk)

≤ C(η−1‖φ‖2L2(Dk)
+ ηs/(1−s)‖φ‖2H1(Dk)

)1/2
∥∥∥∥aij

∂ψ

∂xj

∥∥∥∥
Hs(Dk)

,

where the inequality |ξ|2/(1 − |ξ|2)s ≤ η−1 + ηs/(1−s)(1 + |ξ|2) is derived with elementary ma-
nipulations for every η > 0 and every ξ ∈ Rd. By [22, Theorem 1.4.4.2], the multiplication of
elements of W s,p(Dk) is a bounded linear operator on Hs(Dk). Thus, by summing over k and
by the Cauchy–Schwarz inequality there exists a constant C such that

∫

D
aij

∂φ

∂xi

∂ψ

∂xj
dx

≤ C max
k=1,...,K

‖aij‖W s,p(Dk)(η
−1‖φ‖2L2(D) + ηs/(1−s)‖φ‖2H1(D))

1/2‖ψ‖H1+s(D).

Since it also holds that
∫

D
aφψdx ≤ ‖a‖L∞(D)(η

−1‖φ‖2L2(D) + ηs/(1−s)‖φ‖2H1(D))
1/2‖ψ‖H1+s(D),

the assertion of the lemma follows. ✷

Proposition 4.2 Let Assumptions (B) and (C) be satisfied by the smoothers (Rj : j = 1 . . . , J),
let Assumption (D) hold, and let s ∈ (0, 1/2) and p ∈ (d/s,+∞). Then for some deterministic
constant C independent of J the inequality (A.2) holds with the random variable

K1 := C


 max

k=1,...,K

d∑

i,j=1

‖aij‖W s,p(Dk) + ‖a‖L∞(D)




2(
1

ǎ

)2

.

Proof. The proof of this proposition merges ideas of the proofs of [8, Lemma 4.2] and [39,
Lemma 6.3] to obtain a strengthened Cauchy–Schwarz inequality with explicit dependence on
the coefficients (aij , a : i, j = 1, . . . , d) in the setting considered here that allows for low spatial
regularity of (aij), i, j = 1, . . . , d. We may assume that j ≥ i due to the symmetry of (·, ·)A and
let w ∈ Vi and φ ∈ Vj be arbitrary, which are both elements of H1+s(D) due to s < 1/2. The
first inverse estimate in (20) and Lemma 4.1 imply that

|a(w, φ)| ≤ C̃(η−1 + ηs/(1−s)h−2
j )1/2‖φ‖L2(D)‖w‖H1+s(D),
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where we tacitly absorbed the deterministic constant in (20) into C̃. The random variable C̃ is

stated in Lemma 4.1. Then, the second inverse estimate in (20), (22), and the choice η := h
2(1−s)
j

results in

a(w, φ) ≤ C̃
√
λmax(Aj)

ǎ
2

(
hj
hi

)s

‖φ‖L2(D)‖w‖H1(D),

where we again tacitly absorbed the deterministic constant in (22) into C̃ as well as the constant
in (20). Since

‖Ajw‖2L2(D)

λmax(Aj)
= λmax(Aj)

−1

(
sup
φ∈Vj

a(w, φ)

‖φ‖L2(D)

)2

,

we conclude with (18) and the assumption of the lemma that for every w ∈ Vi

(Tjw,w)A ≤ c1
‖Ajw‖2L2(D)

λmax(Aj)
≤ c14C̃2

(
1

ǎ

)2(hj
hi

)2s

(w,w)A. (23)

We argue in a similar fashion as in the second part of the proof of [39, Lemma 6.3], i.e., we con-
clude with the Cauchy–Schwarz inequality, (23), and with the scaling property of the smoothers
in (B) that

(Tjv, Tiw)A ≤ (Tjv, v)
1/2
A (TjTiw, Tiw)

1/2
A

≤ C̃2

(
1

ǎ

)2

(Tjv, v)
1/2
A

(
hj
hi

)2s

(Tiw, Tiw)
1/2
A

≤ C̃2η

(
1

ǎ

)2(hj
hi

)2s

(Tjv, v)
1/2
A (Tiw,w)

1/2
A ,

where we again absorbed deterministic constants into C̃. Since hj/hi ≤ γj−i by assumption, the
assertion of the proposition follows with Lemma 2.3. ✷

Proposition 4.3 Let the smoothers (Rj : j = 1, . . . , J) satisfy Assumption (C) with a de-
terministic constant c0. There exists a deterministic constant C independent of j such that
inequality (A.1) holds with the random variable

K0 := C
â

ǎ
.

Proof. Since the assumption implies that (R−1
i vi, vi) ≤ λmax(Ai)/c0 (vi, vi), the assertion of

the proposition follows with (18), (19), and (21). ✷

5 Domain decomposition methods

We will mainly consider overlapping domain decomposition methods in the setting of assump-
tions (A.1) and (A.2) and for the random elliptic operator defined in (17). We denote by V0 ⊂ V
a coarse first order FE space with mesh width h0 of the type introduced in Section 4. The first
order FE space with a fine grid is denoted by Ṽ ⊂ V. For a given set of overlapping subdomains
(Dj : j = 1, . . . , J) of D such that D =

⋃J
j=1Dj . These subdomains result for example by

extending a given disjoint set of subdomains by a multiple of h0 in each spatial direction such
that the union of its closures contains D. Also we assume that the boundary ∂Dj aligns with
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the considered mesh, j = 1, . . . , J . The FE spaces Vj , j = 1, . . . , J , are subspaces of Ṽ and are
defined by

Vj := {v ∈ Ṽ : v(x) = 0 ∀x ∈ D\Dj}, j = 1, . . . , J

So, we consider the redundant space decomposition

Ṽ =
J∑

j=0

Vj .

We consider the case that symmetric multigrid solvers from Section 4 (Assumptions (B), (C),
and (D) are satisfied) are used as so-called subpaces solvers (Rj : j = 0, . . . , J), which are random
here. Therefore, suppose that the spaces Vj have nested subspaces Mj,1 ⊂ . . . ⊂ Mj,J ′(j) = Vj ,
j = 0, . . . , J . Naturally, only few levels are used on the subspace V0, i.e. J

′(0) = O(1). As in
Section 4, we seek for random variables K0 and K1 with explicit dependence on the random
operator A in (17), in order to obtain Lq(Ω)-estimates for the condition numbers using additive
Schwarz preconditioners.

Proposition 5.1 There exists a deterministic constant C > 0 that is independent of J and
J ′(j), j = 0, . . . , J , such that inequality (A.1) holds with the random variable

K0 := C

(
â

ǎ

)4 (â)2

(ǎ)6


1 +


 max

k=1,...,K

d∑

i,j=1

‖aij‖W s,p(Dk) + ‖a‖L∞(D)




4
 .

Proof. By (18) and [39, Lemmas 4.5 and 7.1],

K0 ≤
â

ǎ

1

minj=0,...,J λmin(RjAj)
.

Since the Rj ’s are chosen to be symmetric multigrid solvers, Propositions 4.3 and 4.2, The-
orem 2.2, and (13) imply there exists a deterministic constant c > 0 such that for every
j = 0, . . . , J ,

λmin(RjAj) ≥ c
(ǎ)5

â


1 +


 max

k=1,...,K

d∑

i,j=1

‖aij‖W s,p(Dk) + ‖a‖L∞(D)




4


−1

.

This implies the assertion of the proposition. ✷

Proposition 5.2 Inequality (A.2) holds with the deterministic number

K1 := (1 + |{(i, j) ∈ {1, . . . , J}2 : Di ∩Dj}|)
Proof. The assertion will follow by [39, Lemma 4.7] after we show an estimate of the form of
Assumption (B). By (12), it holds that λmax(RjAj) ≤ 1, j = 0, . . . , J . Let j = 0, . . . , J be
arbitrary. Since Rj is a symmetric multigrid solver, RjAj is symmetric and positive definite
with respect to (·, ·)A. There exists an orthonormal basis of eigenvectors of RjAj with respect
to (·, ·)A such that RjAjvi = λivi. Hence, for every v ∈ Vj , v =

∑
i(v, vi)Avi and

(RjAjv,RjAjv)A =
∑

i

λ2i ((v, vi)A)
2

≤ λmax(RjAj)
∑

i

λi((v, vi)A)
2 = (RjAjv, v)A,

which implies the estimate of the proposition with [39, Lemma 4.7]. ✷
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6 Application to lognormal diffusion problems

The presented theory in Sections 3, 4, and 5 is in particular applicable to lognormal diffusion
problems. Let Z be a GRF on D that takes values in Hölder spaces Ct(D) such that for some
t ∈ (0, 1]

Z ∈ Lq(Ω;Ct(D)) and exp(Z) ∈ Lq(Ω;C0(D)) ∀q ∈ [1,+∞), (E)

see ahead Section 7.2 for a class of instances of such GFRs. Since for every v ∈ Ct(D), t ∈ (0, 1],
‖ exp(v)‖Ct(D) ≤ ‖ exp(v)‖C0(D)(1 + ‖v‖Ct(D)), the assumption in (E) implies by the Cauchy–
Schwarz inequality

exp(Z) ∈ Lq(Ω;Ct(D)) ∀q ∈ [1,+∞)

For the lognomal coefficient a := exp(Z), we consider the elliptic diffusion problem with
Dirichlet boundary conditions in variational form: find u : Ω → V such that for P-a.e. ω

aω(u(ω), v) =

∫

D
a(ω)∇u(ω) · ∇v = V∗〈f , v〉V ∀v ∈ V. (24)

where V = H1
0 (D). Well-posedness and approximation by Finite Elements is well-known, cf. [12,

13, 36]. We use the FE spaces Vℓ from Section 4 with maximal mesh width hℓ of Tℓ, ℓ ∈ N, and
remark that for each ℓ, the space Vℓ may have the additional structure for overlapping domain
decomposition methods with multigrid subspace solvers as introduced in Section 5.

Elements of H1+s(D), s ∈ [0, 1], can be approximated by functions in Vℓ, cf. [14, Theo-
rem 3.2.1], i.e., there exists a deterministic constant C > 0 such that for every v ∈ H1+s(D)
there is wℓ ∈ Vℓ such that

‖v − wℓ‖V ≤ Chsℓ‖v‖H1+s(D). (25)

Note that the approximation property stated in [14, Theorem 3.2.1] can be interpolated to
also hold for non-integer order Sobolev spaces. The following regularity estimate makes the
dependence on the coefficient a explicit. For every s ∈ [0,min{t, t−∆})\{1/2} there exists a
deterministic constant C > 0 such that for P-a.e. ω

‖u(ω)‖H1+s(D) ≤ C
‖a(ω)‖C0(D)‖a(ω)‖2Ct(D)

(minx∈D a(ω, x))
4

‖f‖H−1+s(D), (26)

where t−∆ is the maximal value such that the inverse of the Dirichlet Laplacian satisfies (−∆)−1 :
H−1+t−∆(D) → V ∩H1+t−∆(D) is bounded. Recall that D ⊂ Rd is a polytope. For d = 2, the
estimate (26) is due to [36, Lemma 5.2] (for d = 3, the reader is referred to [36, Remark 5.2(c)]).
The solution u can be approximated in Vℓ by the FE approximation denoted by uℓ, in the
Lq(Ω,V)-norm, ℓ ∈ N. Specifically, by Céa’s lemma, (25), and (26), there exists a deterministic
constant C > 0 that is independent of a such that for P-a.e. ω and every ℓ ∈ N

‖u(ω)− uℓ(ω)‖Lq(Ω;V) ≤ C

∥∥∥∥∥
‖a(ω)‖2

C0(D)
‖a(ω)‖2

Ct(D)

(minx∈D a(ω, x))
5

∥∥∥∥∥
Lq(Ω)

‖f ‖H−1+s(D) h
s
ℓ .

Finiteness of the right hand side follows by the Cauchy–Schwarz inequality using the Assump-
tion (E). Since the embedding Ct(D) ⊂ W s,p(D) is continuous for every 0 < s < t and every
p ∈ [1,+∞), the conditions from Sections 4 and 5 are satisfied. Let

Un
ℓ : Ω → Vℓ (27)
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be the result of n ∈ N iterations of an iterative algorithm introduced in the previous sections,
with initial guess Un

ℓ−1, 2 ≤ ℓ ∈ N, and Un
1 = u1. The iterative methods are symmetric multigrid

(see Algorithms 2) or PCG using the BPX preconditioner (see Algorithm 1) in Section 4. In the
setting of Section 5, Un

ℓ : Ω → Vℓ in (27) may result from n ∈ N iterations of PCG using the
additive Schwarz preconditioner (see Algorithm 1), where symmetric multigrid (see Algorithm 2)
is used as subspace solvers.

Theorem 6.1 For 0 < s < t ≤ 1 and every q, r ∈ [1,+∞), there exists a constant C > 0 such
that for every number of iterations n ∈ N and ℓ ≥ 2,

‖u − Un
ℓ ‖Lq(Ω;V) ≤ C(hsℓ + n−r).

Proof. By the Cauchy–Schwarz inequality, ‖a‖2
C0(D)

‖a‖2
Ct(D)

(minx∈D a(x))
−5 ∈ Lp(Ω) for every

p ∈ [1,+∞), which is one of the conditions of Theorem 3.2.
It remains to verify the needed properties of the random contraction number in the conditions

of Theorem 3.2. In the framework of assumptions (A.1) and (A.2), by Theorem 2.2 the random
contraction number δ satisfies for the linear iteration 1/(1 − δ) ≤ K0(1 + K1)

2/(2 − ν). In
the case of multigrid, Propositions 4.2 and 4.3 and the Cauchy–Schwarz inequality imply that
1/(1 − δ) ∈ Lp′(Ω) for every p′ ∈ [1,+∞). For overlapping domain decomposition methods,
this statement is due to Propositions 5.1 and 5.2. If the additive preconditioner is applied with
PCG, the random contraction number δ satisfies by Theorem 2.2, 1/(1 − δ) ≤

√
K0K1 + 1.

By the same argument, 1/(1 − δ) ∈ Lp′(Ω) for every p′ ∈ [1,+∞). Hence, the parameter r in
Theorem 3.2 may be arbitrarily large, which implies the assertion. ✷

Corollary 6.2 In the setting of Theorem 6.1, let Un
ℓ result from n ∈ N iterations of PCG with

a deterministic preconditioner B̃j such that κ(B̃j E(Aj)) is bounded uniformly in j. Then, the
strong convergence estimate of Theorem 6.1 also holds.

Proof. By Lemma 2.1, for P-a.e. ω, κ(B̃jAj(ω)) ≤ â(ω)/ǎ(ω)κ(B̃j E(Aj)). Since â/ǎ ∈ Lq′(Ω)
for every q′ ∈ [1,+∞), the claim follows as in the proof of Theorem 6.1. ✷

Corollary 6.3 In the setting of Theorem 6.1, for every ε > 0 there exists a constant Cq,ε,s > 0
that is independent of hℓ such that for every ℓ ≥ 2

‖u − Un
ℓ ‖Lq(Ω;V) ≤ Cq,ε,s h

s
ℓ .

with a deterministic number of iterations given by n = ⌈n0h−ε
ℓ ⌉ for a deterministic constant

n0 > 0. The cost for one sample of Un
ℓ is

O(h−d−ε
ℓ )

with deterministic constants that are independent of hℓ, ℓ ≥ 0.

Proof. The cost of one iteration is O(h−d
ℓ ), since the matrix vector product has cost O(h−d

ℓ′ )
for the sparse stiffness matrices that result taking the nodal basis of Vℓ′ , ℓ

′ ≤ ℓ. The error
contributions in the estimate of Theorem 6.1 are equilibrated for this choice of iteration number,
since r in Theorem 6.1 can be chosen arbitrarily large, i.e., r = s/ε is admissible. ✷
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Remark 6.4 The established theory in this paper is also applicable for deterministic precondi-
tioners that do not imply uniform condition numbers. A possible class of examples are so-called
“algebraic multigrid” (AMG) preconditioners for which a multilevel convergence theory does not
seem to be available, cf. [40, Section 5]. However, if such a deterministic symmetric AMG pre-
conditioner could be tuned to E(Aj) or any operator which is spectrally equivalent in the sense
of (2), the respective iterative method also converges strongly as in Theorem 6.1 by a similar
argument applying Corollary 6.2. Note that in the example (24) (see also Example 2), if Z is
stationary, then E(A) is the Dirichlet Laplacian multiplied by E(exp(Z)), which is constant with
respect to x ∈ D.

7 Application to multilevel Monte Carlo

Multilevel Monte Carlo methods make the numerical approximation of moments of random
quantities feasible where sampling is computationally costly. The analysis of the computational
cost versus accuracy of MLMC that does not rely on additional assumptions on the used PDE
solver is an application of the presented theory in previous sections. The MLMC estimator with
L ∈ N levels to approximate the mean field E(u) is given by

EML
L (UnL

L ) :=
L∑

ℓ=1

EMℓ
(Unℓ

ℓ − U
nℓ−1

ℓ−1 ),

where (EMℓ
: ℓ = 1, . . . , L) are Monte Carlo estimators that are mutually independent. We used

the convention that Un0

0 := 0. Sample numbers Mℓ, ℓ = 1, . . . , L are chosen to optimize the
accuracy versus the computational cost.

7.1 Computational cost vs. accuracy

In the literature [21, 13], generic asymptotic bounds of the required computational cost for a cer-
tain accuracy with MLMC are given that pose assumptions on the behavior of ‖u −uℓ‖L2(Ω;V) =
O(hsℓ) and on the required computational cost to sample uℓ. In [13], the assumption on the
decay of ‖u − uℓ‖L2(Ω;V) = O(hsℓ) was verified without investigating the computational cost to
sample uℓ. In the present paper this is achieved by Corollary 6.3, i.e., ‖u −Unℓ

ℓ ‖L2(Ω;V) = O(hsℓ)

with computational cost O(h−d−ε
ℓ ) to sample Unℓ

ℓ for any ε > 0, where the implied constants
depend on ε. Thus, by [13, Theorem 4.1], an error threshold 0 < TOL, i.e.,

‖E(u)− EML
L (UnL

L )‖L2(Ω;V) = O(TOL),

can be achieved with computational cost

workL =

{
O(TOL−2) if 2s > d+ ε,

O(TOL−(d+ε)/s) if 2s < d+ ε,
(28)

where d = 1, 2, 3 is the dimension of the domain D. We have assumed that a fast method is
available to sample the random coefficient a. This is for example the case for certain stationary
Gaussian random fields (GRFs), which can be sampled by truncated Karhunen Loève series or
circulant embedding which are fast, FFT based techniques, cf. [33, Chapter 7].
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7.2 Numerical experiments

We consider a class of centered, stationary GRFs that are solutions to the white noise stochastic
PDE

(−∆+ κ2)α/2Z =W on D̃, (29)

where D̃ is a superset of the domain D, W is spatial white noise on D̃ (cf. [1]), ν = α−d/2 > 0,
and κ > 0. It is well-known that for D̃ = Rd, the GRF Z has so-called Matérn covariance with
smoothness parameter ν and length scale parameter λ =

√
ν/κ, cf. [32].

In our numerical experiments, we will choose d = 2 and D = [0, 1]2. A stationary GRF
as a solution to (29) results by restricting Z to the domain D. It is convenient to choose
D̃ = [−1/2, 3/2]2 with periodic boundary conditions. Note that dist(D, ∂D̃) = 1/2, and we
consider values of the correlation length, which are smaller or equal than this window size,
cf. [28]. The solution Z to (29) can be obtained by a spectral Galerkin method using the
eigenfunctions of the Laplacian with periodic boundary conditions on D̃ normalized in L2(D̃).
Since these eigenfunctions separate, we denote them with double indices (ψk1,k2)k1,k2∈N0

. We
observe that white noise W applied to any ONB yields a sequence of independent standard
normally distributed random variables. Since this ONB diagonalizes the operator (−∆+κ2)α/2,
the stationary GRF Z can be explicitly expanded with respect to this basis. The random
coefficients with respect to this ONB are given by

1

(π2(k21 + k22) + κ2)α/2
yk1,k2 , k1, k2 ∈ N0,

where (yk1,k2)k1,k2∈N0
is a sequence of independent, standard normally distributed random vari-

ables. For σ > 0, to be determined later, the GRF Z will be rescaled such that the pointwise
variance satisfies

E(Z(x)2) = σ2, ∀x ∈ D.

The expansion of Z can be truncated for numerical purposes and efficiently implemented with
FFT. For any k̃ ∈ N, let us denote the truncation of the expansion of Z to the terms such that

k1, k2 ≤ k̃ by Z k̃. By an argument similar to the proof of [25, Theorem 2.2], for every t ∈ (0, ν),
ε ∈ (0, ν−t), and every q ∈ [1,+∞), there exists a constant C > 0 such that for every truncation
k̃ ∈ N

‖Z − Z k̃‖
Lq(Ω;Ct(D̃))

≤ Ck̃−(ν−t−ε).

The additional error introduced by truncating the expansion of Z is consistent with the FE
discretization error if k̃ is chosen level-dependently such that k̃ℓ = ⌈k̃1h−ν

ℓ ⌉ for some k̃1 > 0 at our
disposal and FE mesh width hℓ. The reader is referred to the discussion in [25, Sections 3 and 5].
As a consequence of Fernique’s theorem, we may conclude similarly as in [12, Proposition 3.10].
that exp(Z) ∈ Lq(Ω;C0(D)) for every q ∈ [1,+∞); see also [25, Proposition B.1]. Thus, the
assumptions in (E) are verified by the GRF Z and the developed theoretical error estimates of
this paper, in particular Corollary 6.3 and (28), hold.

The GRF Z is taken as a random input and we seek to approximate the expectation of the
solution to (24) with a MLMC estimator, where a = exp(Z) and right hand side f(x1, x2) =
sin(πx1) sin(πx2). We use the sample numbers according to [26, Equations (44) and (47)], i.e.,
for M∗ ∈ N

Mℓ = ⌈M1h
(2s+d+ε)/2)
ℓ ⌉, ℓ = 2, . . . , L, (30)
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and

M1 =M∗

{
⌈2sL/2⌉ if d+ ε < 2s,

⌈2(2s+d+ε)L/2⌉ if d+ ε > 2s.
(31)

here withM∗ = 5 and L = 1, . . . , 8 levels. For the level dependent truncation of the expansion of
the GRF, we use k̃ℓ = ⌈k̃1h−ν

ℓ ⌉ with k̃1 = 2. We consider a full multigrid cycle with PCG using
BPX with Jacobi smoothers and a direct solver on the lowest level. We recall that the iteration
numbers depend mildly on the level of the MLMC estimator and will be chosen by nℓ = ⌈n0h−ε

ℓ ⌉
for 0 < ε ≪ 1. We use a triangulation of D, which is uniformly refined, resulting in FE spaces
Vℓ ⊂ V , ℓ ≥ 1, with maximal mesh width hℓ, which incorporate Dirichlet boundary conditions.
The FE spaces are spanned by a nodal basis. The implementation uses the FE C++ library BETL,
cf. [27], the GRF is implemented using FFTW, cf. [16], and the execution of MLMC is parallelized
using the MPI-based wrapper gMLQMC, cf. [18]. Since the GRF Z may be periodically extended,
[0, 2]2 can be used as a computational domain, which eases implementation. The L2(Ω;V)-
norm will be estimated by ‖E(u)−EML

L (UnL

L )‖2L2(Ω;V) ≈
∑R

j=1 ‖E(u)− ̂EML
L (UnL

L )
(j)

‖2V/(R−1)

where R i.i.d. realizations of EML
L (UnL

L ) are used. The reference solution is approximated by the
average of R = 20 realizations of EML

L (UnL

L ) with L = 9, sample numbers (30) and (31) with
M∗ = 40, and a sparse direct solver.

In Figures 1(a) and 1(b), the error is plotted versus the degrees of freedom in the FE space of
the highest level that is active in the MLMC estimator. The empirical rate is computed by least
squares taking into account the five data pairs corresponding to finer resolution. The fitted lines
are shifted down for better visability. We remark that the relation to the total required work is
asymptotically workL = O(h−d−ε

L ). Thus, the rate implied by (28) is for ν = 0.5 approximately
0.25. We observe that the performance of the iterative solver is in the required range of accuracy
as good as a sparse direct solver. In Figures 1(a) and 1(b), the rate seems to depend on the value
of the correlation length. Sometimes for practitioners, a smaller value for the correlation length
is of interest. However, the performance of the iterative solver is still as good as the sparse
direct solver. These numerical tests were performed with iteration numbers nℓ = ⌈n0h−ε

ℓ ⌉ for
0 < ε ≪ 1. The presented theory also underpins the strategy to apply PCG with a stopping
criterion and use nℓ as an upper bound of the iteration numbers. This way, one may benefit
from certain superlinear convergence effects of CG, cf. [4], which were for ease of exposition not
accounted for in the presented theory.

8 Conclusions and extensions

In the study of linear random operator equations with non-uniform input a rigorous framework
has been established to verify strong convergence of a wide range of iterative solvers. This in-
cludes standard solvers such as multigrid, domain decomposition, and preconditioned conjugate
gradient. In the case of lognormal random input, essentially optimal, deterministic complex-
ity bounds are implied. This offers an alternative to direct solvers for this type of problems.
For MLMC, we concluded deterministic, essentially optimal computational cost vs. accuracy
estimates, which is a novel result. Numerical experiments with CG preconditioned by BPX con-
firmed these asymptotic bounds and we conclude that standard iterative solvers are applicable in
the case of lognormal Hölder continuous input. Assumptions on the computational cost of PDE
solvers are also common in the context of multilevel quasi-Monte Carlo methods (MLQMC) for
PDE problems, cf. [31, 30, 19, 26]. Applicability of iterative solvers for MLQMC in a certain
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Figure 1: Comparison of Full Multigrid Cycle using PCG with BPX with n0 = 5, ε = 0.05 to a
sparse direct solver

setting has been analyzed by the author in [24].
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