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Abstract

In the region between close-to-touching hard inclusions, the stress may be arbi-
trarily large as the inclusions get closer. The stress is represented by the gradient
of a solution to the Lamé system of linear elasticity. We consider the problem of
characterizing the gradient blow-up of the solution in the narrow region between two
inclusions and estimating its magnitude. We introduce singular functions which are
constructed in terms of nuclei of strain and hence are solutions of the Lamé system,
and then show that the singular behavior of the gradient in the narrow region can be
precisely captured by singular functions. As a consequence of the characterization,
we are able to regain the existing upper bound on the blow-up rate of the gradient,
namely, e /2 where € is the distance between two inclusions. We then show that it is
in fact an optimal bound by showing that there are cases where e ~!/2 is also a lower
bound on the gradient blow-up. This work is the first to completely reveal the singular
nature of the gradient blow-up in the context of the Lamé system with hard inclusions.
The singular functions introduced in this paper play essential roles to overcome the
difficulties in the methods of previous works. Main tools of this paper are the layer
potential techniques and the variational principle. The variational principle can be
applied because the singular functions of this paper are solutions of the Lamé system.
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1 Introduction

When two inclusions are close to touching, the physical field such as the stress or the
electric field may be arbitrarily large in the narrow region between the inclusions. It is
quite important to understand the field concentration precisely. Stress concentration may
occur in fiber-reinforced composites where elastic inclusions are densely packed [7]. The
electric field can be greatly enhanced in the conducting inclusions case. It can be utilized
to achieve subwavelength imaging and sensitive spectroscopy [34].

In response to such importance there has been much progress in understanding the
field concentration in the last decade or so. In the context of electrostatics (or anti-plane
elasticity), the field is the gradient of a solution to the Laplace equation and the precise
estimates of the gradient were obtained. It is discovered that when the conductivity of
the inclusions is oo, the blow-up rate of the gradient is ¢ /2 in two dimensions [5, 35],



where ¢ is the distance between two inclusions, and it is [eIne|~! in three dimensions [8].
There is a long list of literature in this direction of research, e.g., [3, 4, 11, 17, 18, 26, 27,
31, 32, 36, 37]. While these works are related to the estimate of the blow-up rate of the
gradient, there is other direction of research to characterize the singular behavior of the
gradient [1, 20, 21, 22, 29]. An explicit function, which is called a singular function, is
introduced and the singular behavior of the gradient is completely characterized by this
singular function. Since the singular function is closely related to this work, we include
a brief discussion on it at the beginning of subsection 3.1. All the work mentioned above
are related to the homogenous equation and inclusions with smooth boundaries. Recently
there have been important extensions to the inhomogeneous equation [15] and inclusions
with corners (the bow-tie shape) [24].

In this paper, we consdier a similar problem in the linear elasticity, i.e., the Lamé
system. We assume two hard inclusions, which have infinite shear modulus, are presented
with a small separation distance €. The stress is represented in terms of the gradient of a
solution to the Lamé system. We are interested in the asymptotic behavior of the stress
(or the gradient) when the distance € goes to zero.

Even though much progress has been made for the Laplace equation of the anti-plane
elasticity as mentioned above, not much is known about the gradient blow-up in the
context of the full elasticity, e.g., the Lamé system. Recently, a significant progress has
been made by Bao et al [9, 10]: it is proved in [9] that e /2 is an upper bound on the
blow-up rate of the gradient in the two-dimensional Lamé system. We emphasize that
there is significant difficulty in applying the methods for scalar equations to systems of
equations. For instance, the maximum principle does not hold for the system. In [9] they
come up with an ingenious iteration technique to overcome this difficulty and obtain the
upper bound on the blow-up rate. However, it was still not known if it is also a lower
bound.

The purpose of this paper is to construct singular functions for the two-dimensional
Lamé system, like the one for electrostatics, and to characterize the singular behavior of
the gradient using singular functions. In fact, we construct singular functions as elaborated
linear combinations of nuclei of strain, and show that they capture the singular behavior
of the gradient precisely. Nuclei of strain are the columns of the Kelvin matrix of the
fundamental solution to the Lamé system and their variants. As a consequence of such
characterization, we are able to reobtain the result of [9] with a different proof, which states
that €~1/2 is an upper bound on the blow-up rate of the gradient. More importantly, the
characterization enables us to show that the rate e /2 is actually optimal, optimal in
the sense that there are cases where ¢ /2 is a lower bound on the blow-up rate. To the
best of our knowledge, this work is the first to completely reveal the singular nature of
the gradient blow-up in the case of the Lamé system with hard inclusions. The singular
functions introduced in this paper play essential roles to overcome the difficulties in the
methods of previous works.

We emphasize that the nuclei of strain and singular functions are solutions of the Lamé
system. This has a significant implication. We heavily use the variational principle for
proving the characterization of the stress concentration in section 4, which is only possible
since singular functions are solutions of the Lamé system. This makes the method of
this paper significantly different from that of [9]. We include a brief comparison of two
methods at the end of subsection 4.1.



It is worth mentioning that the singular functions constructed in this paper are applied
to an important problem other than analysis of the gradient blow-up. In fact, quantitative
analysis of the gradient is closely related to the computation of the effective property of
densely packed composites. In [12], Beryland et al. provided the first rigorous justifica-
tion of the asymptotic formula for the effective conductivity, which was found by Keller
[25]. However, the corresponding formulas of Flaherty-Keller [16] for the effective elastic
properties have not been rigorously proved to the best of our knowledge. Using singular
functions of this paper we are able to prove the formulas in a mathematically rigorous
way. We emphasize that this is possible only because singular functions are solutions of
the Lamé system. We report this result in a separate paper [23].

Accurate numerical computation of the gradient in the presence of closely spaced hard
inclusions is a well-known challenging problem in computational mathematics and sciences.
When computing the gradient, a serious difficulty arises since a fine mesh is required to
capture the gradient blow-up in the narrow region. The precise characterization of the
gradient blow-up can be utilized for designing an efficient numerical scheme to compute
the gradient. This was done for the conductivity case in [21]. The result of this paper
may open up a way to do computation for the isotropic elasticity.

It is worth mentioning that, for the Lamé system where two inclusions are circular
holes, the gradient blow-up is recently characterized by a singular function in [30]. More-
over, the optimal blow-up rate of the gradient is obtained. The holes are characterized
by the vanishing traction condition on the boundary, and the blow-up rate is the same as
the hard inclusion case, namely, e 1/2. We emphasize that unlike the anti-plane elasticity,
the hole case is not the dual problem of the hard inclusion case, and a different method is
required to handle the hole case.

This paper consists of six sections including introduction and appendices. In section
2, we formulate the problem to be considered, derive some preliminary results which will
be used in later sections, and describe geometry of two inclusions. In section 3, singular
functions are constructed in terms of nuclei of strain and their properties are derived for
later use. Section 4 and 5 respectively deal with the problem of characterizing the stress
concentration in a bounded domain and in the free space. In section 6 we consider the
case when inclusions are symmetric, in particular, when inclusions are disks of the same
radius, and show that e 1/2 is a lower bound on the blow-up rate of the gradient when Lamé
constants satisfy a certain constraint. Since each section is rather long and its subject can
be viewed as independent, we include an introduction in each section. Appendices are to
prove some results used in the text, especially existence and uniqueness of the solution
to the exterior problem of the Lamé system and the layer potential representation of the
solution to the boundary value problem and the free space problem.

Throughout this paper, we use the expression A < B to imply that there is a constant
C independent of € such that A < CB. The expression A ~ B implies that both A < B
and B < A hold.

2 Problem formulation and preliminaries

In this section we formulate the problem of characterizing the stress concentration. The
main tools in dealing with the problem are the layer potential technique and the varia-



tional principle. We introduce them in this section. We then consider the existence and
uniqueness question of the exterior problem for the Lamé system with arbitrary Dirich-
let data. The final subsection is to describe the geometry of two inclusions in a precise
manner.

2.1 Lamé system with hard inclusions: a problem formulation

We consider two disjoint elastic inclusions D; and Dy which are embedded in R? occupied
by an elastic material. We assume that D; and Ds are simply connected bounded domains
with C*-smooth boundaries. We emphasize that the results of this paper are valid even
if boundaries are C*“ for some a > 0. But we assume that they are C* for convenience.
Advantage of assuming C* is made clear in subsection 2.5. We also assume some convexity
of the boundaries which is precisely described in the same subsection.

Let (A, 1) be the pair of Lamé constants of D¢ := R?\ Dj U Dy which satisfies the
strong ellipticity conditions ¢ > 0 and A 4+ & > 0. Then the elasticity tensor is given by
C= (Cz'jkl) with

Cijkl = N0ijor + p(0irdj1 + dubjn), 4,4, k, 1 =1,2,

where J;; denotes Kronecker’s delta. The Lamé operator L), of the linear isotropic
elasticity is defined by

Ly,u:=V-CVu=pAu+ A+ p)VV - u, (2.1)
where V denotes the symmetric gradient, namely,
Vu = % (Vu+ Vu®) (T for transpose).
The corresponding conormal derivative d,u on 0D is defined as
d,u = (CVu)n, (2.2)

where n is the outward unit normal vector to 0D; (j = 1,2).
Given a displacement field u = (uy,u2)”, Vu is the strain tensor while the stress tensor
o= (O’Z‘j)ijzl is defined to be

o = CVu = Mr(Vu)I + 2uVu, (2.3)
namely,

o11 = ()\ + 2,&)811“ + AOqug,
099 = \Ojuq + ()\ + 2#)62’[@, (24)
o12 = 021 = p(O2ur + Orug).

Here and throughout this paper, tr stands for the trace and 0; denotes the partial derivative
with respect to the z;-variable for j =1, 2.



Let ¥ be the collection of all functions v such that @1& = 0 in R?, i.e., the three-
dimensional vector space spanned by the displacement fields of the rigid motions {¥; }?:1
defined as follows:

_ |1 _ |0 _ |
Uy (x) = [O] , Ua(x) = L] , Us(x) = [ . ] : (2.5)
Throughout this paper we denote the point x in R? by either (z1,z2)7 or (z,y)? at its

convenience.

We assume D; and Ds are hard inclusions. This assumption is inscribed on the bound-
ary conditions on dD; in the following problem: Let €2 be a bounded domain in R? con-
taining Dy and Dy such that dist(0€2, D; U D) > C for some constant C' > 0. Let us
denote B

Q=0 \ D1 U Ds.

For a given Dirichlet data g we consider the following problem:

Ly,a=0 in ﬁ,
3
u = ZCU\I/]'(X) on 8Di, 1= 1, 2, (26)
7j=1
u=g on 052,

where the constants c;; are determined by the conditions

duly -Vdo=0, i=1,2j=1,23. (2.7)
oD;

Here and afterwards, the subscript + denotes the limit from outside 0D;.
Let
€= diSt(Dl, DQ) (28)

The gradient Vu of the solution u to (2.6) may become arbitrarily large as two inclusions
get closer, namely, as ¢ — 0. The main purpose of this paper is to characterize the blow-up
of Vu. Roughly speaking, we show that u can be decomposed as

u=-s-+b, (29)

where Vs has the main singularity of Vu while Vb is regular or less singular. So the
singular behavior of Vu is characterized by that of Vs. We will find s in an explicit form.
The characterization of the gradient blow-up enables us to show that the optimal blow-up
rate of Vu in terms of € is e /2. It is proved in [9] that ¢ /2 is an upper bound on the
blow-up rate of Vu as mentioned before.

The problem in the presence of hard inclusions may be considered as the limiting
problem of a high contrast elasticity problem when the shear modulus of the inclusions
degenerates to infinity [9]. When the shear modulus is the bounded away from zero
and infinity, it is known that the gradient is bounded regardless of the distance between
inclusions [28].



We also consider the free space problem: For a given function H satisfying £ ,H =
0 in R?, the displacement field u satisfies

Ly,u=0 in D°,

3

u=>y d;v, on dD;, i=1,2, (2.10)
j=1

u(x) - H(x) = O(]x|™) as |x| — oo,

where the constants d;; are determined by the condition (2.7). We will obtain the decom-
position of the form (2.9) and estimates of Vu for this problem as well.

2.2 Layer potentials for 2D Lamé system

2

The Kelvin matrix of fundamental solutions I" = (I';;) to the Lamé operator L) , is

i,j=1
given by
L35
F,’j(x) = a152~j In ’X| — Q9 (2.11)
x|
where
1 /1 4 1 q 1 /1 1 (2.12)
ap=— | — and apg=—|—— . .
"Tar \n T A+ 2 T ar\u A+2u
In short, I' can be expressed as
I'x) =a1In|x —y|I — asx® V(In|x|), (2.13)

where I is the identity matrix.
For a given bounded domain D with C? boundary, the single and double layer poten-
tials on 0D associated with the pair of Lamé parameters (A, i) are defined by

Sople)(x) == /a Tlx-y)el)doly). xR, (2.14)
Poplelix) = [ 0(x=y)ely)doly). xR \D, (2.15)

where the conormal derivative 0,I'(x — y) is defined by
9, L(x —y)b=0,(T(x —y)b)

for any constant vector b.
Let H'/2(OD) be the usual L2-Sobolev space of order 1/2 on D and H~Y/2(dD) be
its dual space. With functions ¥; in (2.5) we define

The following propositions for representations of the solutions to (2.6) and (2.10) can
be proved in a standard way (see, for example, [2]). We include brief proofs in Appendix.



Proposition 2.1. Let u be the solution to (2.6) and let f := d,u|_ on 9. Define
Hq(x) = =Soq[f](x) + Daqlg](x), x € Q. (2.17)
Then there is a unique pair (@, ¥s) € H;/Z(apl) X H‘;lﬂ(@Dg) such that

u(x) = Ho(x) + Sop, [#1](%) + Sop, [po] (%),  x € . (2.18)
In fact, @; is given by @; = d,uly on OD; for j=1,2.
Proposition 2.2. Let u be the solution to (2.10). Then there is a unique pair (@, ¥s) €
Hy(0Dy) x Hy'/*(0Dy) such that

u(x) = H(x) + Sop, [1](x) + Sop, [pa] (%),  x € D°. (2.19)

In fact, @; is given by @; = dyuly on OD; for j=1,2.

Note that faDj ®; = 0, which holds because ¢; belongs to H;1/2(8Dj). So, we have
Sop, [¢;](x) = O(]x| 1) as [x| = co. Thus u given by (2.19) satisfies the last condition in
(2.10).

Note that since the domains D; and D, are assumed to have C? boundaries, the
solutions to (2.6) and (2.10) are C** in Q \ (D; U D) including D1 U 0D, for any
0<a<l.

We now prove an analogue of the addition formula for I'(x — y). Let {e;,e2} be the
standard basis for R?. For n € Z let

P,(x) = rlmlem?, (2.20)

where (7,6) denotes the polar coordinates of x. Let

v (x) = a1 Py(x)e; — apa; VP, (x), i=1,2, (2.21)
Wi (x) = 2 VP, (x). (2.22)

Since P, is harmonic in R?, one can easily see that w,, is a solution to the Lamé system

in R2. To show that v7(f ) is a solution to the Lamé system in R?, we prove a more general
fact:

Lemma 2.3. If h is a harmonic function, then a vector-valued function v of the form
v(x) = arh(x)e; — axz; Vh(x) (2.23)
for j =1,2, is a solution of the Lamé system, namely, Ly ,v = 0.

Proof. We only prove the case when j = 1. Let us write v = (v, v2)”. Simple computa-
tions show that
Avl == —20[28%}%

and
Avg = —2a90102h.



We also have
V-v=a0h-— Ozg(:L’lAh + (‘91h) = (a1 — 042)81}1.

Therefore we obtain
[WAV + A+ p)V(V - V)] - e = —2ua0010kh + (A + 1) (a1 — az)010kh

_( 1 A+p 1 A+
N 2e A +2u 2w A+ 2p

)&mhzo

for k = 1,2. This completes the proof. O
We obtain the following proposition.

Proposition 2.4. The fundamental solution T' admits the following series expansion: for
x| > |y| and for any constant vector b in R?

—zn@
F(X—y)b: ZQ’H‘ 7a|n| Z
+§:1 “ﬂw wa(y) -b) + a1 In|x|b (2.24)
2|7”L| 7"|n| WnlY 1 ) .

where x = (r,0) in the polar coordinates. Moreover, the series converges absolutely and
uniformly in x and 'y provided that there are numbers r1 and ro such that |y| <13 < ro <
x|

Proof. By (2.13), we have
F(x —y)b=ailnfx —yb —a(Vy(n[x —y|) - b)(x —y)(-1)
for any constant vector b. The addition formula for In |x — y| reads

1 e—ma

Infx—y| =Infx| =Y ~———Pu(y).
2|n| rinl
n#0
By substituting this formula to the one above, we obtain (2.24). O

2.3 The exterior problem and the variational principle

In this subsection we consider the following exterior Dirichlet problem for the Lamé system:
Ly,v=0 in D€,
{ " (2.25)

v=g on D¢ = 0D1 U 0Ds,
for g € H/2(0D®)? := HY?(0D,)? x HY/?(0D3)?. We seek a solution in the function

space A* defined as follows: Let A be the collection of all v € HL _(D¢) such that there
exists a 2 X 2 symmetric matrix B such that

@:ZWMWwﬁWW)%M%w (2.26)



where {e1, €2} is the standard basis of R?. We emphasize that v(x) = O(|x|™!) as |x| — oc.
We then define

3
A = u=v+ ij\llj | ve A, bj:constant p . (2.27)
j=1

A proof of the following theorem is given in Appendix.
Theorem 2.5. For any g € HY/?(0D¢)?, (2.25) admits a unique solution in A*.

This theorem in a different form is proved in [13] when D¢ is the compliment of a
simply connected domain. Here, D¢ has two components, namely, 0D¢ = 0D U 0Ds.
Moreover, the proof of this paper is completely different from that of [13]. It is worth
mentioning that the term 23:1 b;¥; plays the role of the solution corresponding to the
component of g spanned by ¥;, j =1,2,3.

The condition (2.26) is somewhat unfamiliar. To motivate it we prove the following
lemma. This lemma will be used in the proof of Theorem 2.5.

Lemma 2.6. (i) If ¢ = (¢, 9,) € HY2(0D1)? x H-Y/2(0D3)? and satisfies
/ ¢1\I’k+/ 902'\11.%:0’ k:1a2535 (228)
8D1 8D2
then v, defined by

v(x) = Sop, [p1](x) + Sap, [po](x), x € D, (2:29)
belongs to A.
(i) If 1 = (1, 2Py) belongs to H/2(0D1)? x HY/2(0Dy)?, then w, defined by
w(x) = Dop, [11](x) + Dop, [1h,](x), x € D, (2.30)
belongs to A.

Proof. If y € D¢ and |x| — oo, then by the Taylor expansion we have
2
T(x—y)=T(x)+ Y oT(x)y; + O(|x|?). (2.31)
j=1
So v defined by (2.29) takes the form
2
V6 =T6) [ o+ 006 [ uetOlx ). (2.32)
ope 4 aDe

Here and throughout this paper we use | ape ¥ to denote /. op, P1 T J oD, P2 for ease of
notation. The assumption (2.28) for k£ = 1,2 implies that the first term in the right-hand
side of (2.32) vanishes. Define the matrix B := (b;;) j=1,2 by

{511] ,_/ {512] ,_/
= Y1 and = Yoip.
b21 oDe b22 oDe

10



Then, we may rewrite (2.32) as

2
v(x) =) 9T (x)Be; + O(|x| ) as [x| - oo.
j=1

Note that the assumption (2.28) for k = 3 implies b2 = bo;, namely, B is symmetric.
To prove (ii), let u; be the solution to £, ,u; = 0 in D; and u; = %; on dD;. Then

dyuj € Hy, Y 2(8Dj) and Green’s formula for the Lamé system shows that the following
holds:

Dop, [$1](x) = Sop, [0,wi](x),  Dop, [2](x) = Sap, [0 ua](x), x € D

So, we have
w(x) = Sop, [Ohu1](x) + Sop, [0y u2](x), x € D,

So, (ii) follows from (i). O
The most important property of the function of the form 232‘:1 0,;T'(x)Be; lies in the
following fact.

Lemma 2.7. Let v(x) = Z§:1 0;I'(x)Be; for some symmetric matrix B. Then the
following holds for any simple closed Lipschitz curve C' such that 0 ¢ C':

/ OV -V, =0, k=123 (2.33)
C

Proof. Since the cases of k = 1,2 are easier to prove, we only consider the case of k = 3.
Let U be the bounded domain enclosed by C. If 0 ¢ U, then by Green’s formula for the

Lamé system, we have
/8,/V-\I’3:/C§VZ§\IJ3:0.
C U

Suppose that 0 € U. Then choose B,, the disk of radius r centered at 0, so that B, C U.
Then, we see that

/ 8,/V . \113 == 8,,V . \113.
C 0B,

Straightforward but tedious computations show that on 9B,

1 A+
Oyv-Wg=—(bo1 — b b
v W3 27r7“( 21 12)+>\+2,u

where (r,6) is the polar coordinates. So we obtain
8,,v . \1’3 = b21 - b12.
OBRr

Since b1y = boy, (2.33) follows. O

The following lemma shows that Green’s formula holds for u,v € A*. It is worth
mentioning that the — sign appears on the right-hand side of (2.34) below since the
normal vector on 0D¢€ is directed outward.

11



Lemma 2.8. Ifu,v € A* and L) ,u =0 in D, then

CVu: Vv = — duly - v, (2.34)
De aDe

where the left-hand side is understood to be

CVu: Vv = lim CVu: Vv. (2.35)
De R—00 JBp\(D1UD2)

Proof. We have
/ CVu:Vv =— Oyul4 - v+ dyuly - v.
Br\(D1UD>) oDe O0BRr

So, it suffices to prove that

lim dyuly -v =0.
R—o0 9Br
Let u = uj + uz + ug where u; is of the form Z?=1 9;T(x)Be;, uz(x) = O(|x|72), and
ug is of the form Zi:l ap¥y. We also let v = vq + v where vi(x) = O(|x|7!) and vy is
of the form Zzzl bp V. Since d,usz = 0 on 0BpR for any R, we have

8l,u]+ -V = ay(u1 + UQ)|+ . (V1 + V2).
0BR OBR

We see

lim [ Oy(ug +ug)|4 - vy + Oyus; - V2:| =0
O0BRr

R—o0 dBgr

by considering the decay at oo of the functions involved. We also have from (2.33)

8l,u1]+ Vo = 0.
OBRr
This completes the proof. O

The following variational principle for the exterior Dirichlet problem plays a crucial
role in what follows.

Lemma 2.9. Define

Epelw] = CVw : Vw. (2.36)
De

Let u be the solution in A* to (2.25) with g € H/?(0D¢)%. Then the following variational
principle holds:

Epelu] = ereliVIVlg Epe|w], (2.37)

where
We ={we A" :wlppe = g}.

12



Proof. Let w € Wg. By Lemma 2.8, we have
CVu:Vu=— ouly - g = CVu: Vw.
De aDe De
By the Cauchy-Schwartz inequality, we have
P PN 1 PN N N
CVu:Vu= CVu:Vw < (| CVu:Vu+ CVw : Vw).
DE DE 2 De De

Thus (2.37) holds. O

2.4 An estimate for the free space problem

The purpose of this subsection is to prove the following proposition which will be used in
section 5.

Proposition 2.10. Let u be the solution to (2.10) for a given H. Then for any disk B
centered at 0 containing D1 U Do and for k =0,1,2,..., there is a constant C}, independent
of € (and H) such that

IV*(a = H)| e @2\5) < Cil|Hl|z1(5). (2.38)

The main emphasis of (2.38) is that the estimate holds independently of €, the distance
between D and D,. It shows that even if u depends on €, the dependence is negligible
far away from the inclusions.

To prove Proposition 2.10, we begin with the following lemma.

Lemma 2.11. Let u be the solution to (2.10). There is a constant C independent of €
and H such that
Epe[u—H] < C|H|Fp 5), (2.39)

where Epe is defined in (2.36) and B is a disk centered at 0 containing D1 U Ds.

Proof. 'We first observe from (2.7) and the second condition in (2.10) that

dulf-u=0, i=1,2
oD;

Since £ ,H = 0 in R?, we also have

/ OH[, -u=0, i=12
oD;
So we have

Epelu—H] = . CV(u—H):V(u-H)

B ‘/ d(u—H)|. (u-H)= [ 8(u-H) H
aDe aDe
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Let R be the radius of B and let r be such that » < R and Dy U Dy C B,. Let x
be a smooth radial function such that y(x) = 1 if |x| < 7 and x(x) = 0 if |x| > R. Let
w = —yH. Then we have

CV(u-H):Vw=— | 9,(u-H), w= d,(u—H)|; - H.
De aDe oDe
It then follows that

Epeflu—H]= [ CV(u-H):Vw<
De

(Epe[u —H] + Epe[w]) .

N

So we have

Epe[u—H] < Epelw] < O[3 ).

The proof is completed. O
Proof of Proposition 2.10. By Proposition 2.2, the solution u is represented as
u=H+ Spp, 1] + Sop, (o] (2.40)
with ¢; = d,uly on 9Dy, j = 1,2. Proposition 2.4 yields
L™ @ (3)
w-H)x)=> — (an er — MPey + M x) . r=|x|>R, (241
2|n| rinl
n#0
where R is the radius of B and M,gi) is given by
M = / v .o do + / v gy do, i=1,2, (2.42)
8D1 8D2
M) = W, - do + Wy, - g do. (2.43)
8D1 8[)2

Observe that the dependence of u — H on € is contained only in the coefficients Mff),
i=1,2,3.

Let r be such that » < R and B, contains D; U Dy. We now show that there is a
constant C' independent of ¢ and n such that

M| < Clalr ™2 g1 5, (2.44)

foralln # 0 and i = 1,2, 3.

For simplicity, we consider only ¢ = 1. The other cases can be proved in the exactly

same way. Let v be the solution to (2.10) when H = v, Since ®; = dyuly on 9D; and

v]op; € ¥, we have using (2.7) that
M?SI) = / V,,(ll) . 8Vu‘+
aDe

—— [ v ol
oDe

— [ e aa-m s [ v o
oDe oDe

= CV(v—vily: @(u—H)—i—/ vV 9,H|,.

oDe

De
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So, by applying Lemma 2.11 to Epe[v — vr(ll)] and Epe[u — H| on B,, we obtain

2

1/2
ep-[u—H"? 4 3T IV ar2gop 100 H | -1/200p,
=1

’M’I(Ll)’ < Epe [v . V7(11)]1/2

2
< CIv Ny Il mi sy + > IV o) IHl 0y
=1
< v 1 s 1 H 1, -

Here and throughout this paper, the constant C appearing in the course of estimations
may differ at each occurrence. Since VS) is a homogeneous polynomial of order n, there

is a constant C' independent of n such that
vl r1(p,) < Clnlr™+2,

assuming that r > 1.
It follows from (2.41) and (2.44) that

11 .
ot = H gy < O3 e (el 2) [ i,
= 2|n| R

r\Inl
<CY (%) IHlmm) < ClH|mm,
n#0

This proves (2.38) for k = 0.
If £ > 0, we differentiate (2.41) to obtain (2.38). This completes the proof. O

2.5 Geometry of two inclusions

In this subsection, we describe geometry of two inclusions D; and Ds. See Figure 2.1.
Suppose that there are unique points z; € 0D and zy € 0D such that

|Z1 - ZQ‘ = diSt(Dl, D2) (245)

We assume that D; is strictly convex near z;, namely, there is a common neighborhood
U of z; and z3 such that D; NU is strictly convex for j = 1,2. Moreover, we assume that

diSt(Dl,Dz \ U) Z C and diSt(DQ,Dl \ U) Z C

for some positive constant C' independent of €. This assumption says that other than
neighborhoods of z; and zo, D7 and Dy are at some distance to each other. We need
one more assumption: the center of the circle which is osculating D; at z; lies inside D;
( = 1,2). This assumption is needed for defining the singular function qs in (3.15) later.
We emphasize that strictly convex domains satisfy all the assumptions.

Let x; be the curvature of dD; at z;. Let B; be the disk osculating to D; at z;
(j = 1,2). Then the radius r; of B; is given by r; = 1/k;. Let R; be the reflection with
respect to 0B; and let p; and po be the unique fixed points of the combined reflections
Ry 0 Ry and Ry o Ry, respectively.

15



Figure 2.1: Geometry of the two inclusions and osculating circles

Let n be the unit vector in the direction of ps — p1 and let t be the unit vector
perpendicular to n such that (n,t) is positively oriented. We set (z,y) € R? to be the
Cartesian coordinates such that p = (p1 + p2)/2 is the origin and the z-axis is parallel to
n. Then one can see (see [5]) that p; and py are written as

p1 = (—a,0) and p2=(a,0), (2.46)

where the constant a is given by

Ve /@ri+ e )@ra + €)(2r1 + 212 + €)
T 2(r1 + 712 +€) ’ (2.47)

from which one can infer
2

K1+ Ko

Ve+ 0(e¥/?). (2.48)

a =

Then the center ¢; of B; (i = 1,2) is given by

i = ((—1)@3/@2 n a2,0) = ((=1)'r; + O(e),0). (2.49)

So we have

z; = (1)t (ri — /T +a?, 0) = ((—1)1'%1 iz o + O(€?), 0) : (2.50)

Let us consider the narrow region between D; and Dy. See Figure 2.2. There exists
L > 0 (independent of €) and functions fi, f2 : [-L, L] — R such that

z1 = (— f1(0),0), 22 = (£2(0),0), fi(0) = f3(0) =0, (2.51)
and 0Dy and 0Dy are graphs of —f1(y) and fa(y) for |y| < L, i.e.,
x1(y) == (=fi(y),y) € 0Dy and x2(y) := (f2(y),y) € IDs. (2.52)

16



Figure 2.2: Geometry of the narrow gap region I,

Since Dj is strictly convex near zj, fi is strictly convex. Note that, for i = 1,2 and |y| < L,
fily) = M ey l/<ciy2 + lwiy?’ + O(e® + y*) (2.53)
K1+ K2 2! 3!

for some constant w;. Let us define for later use a constant 7 as

T:‘HI_K2‘+’w1‘+‘w2|' (254)
We denote by II; for 0 < | < L the narrow region between D and Dy defined as

I = {(z,y) € R’| - fily) <z < fa(y), |yl <1}. (2.55)

3 Singular functions and their properties

Let ¥;, j = 1,2,3, be the rigid motions defined in (2.5) and let h; be the solution to the
following problem:

Lyuh; =0 in D¢,
1
h; = —i\llj(x) on 0D, (3.1)
1
hj = iqu(x) on 8D2.

It turns out that h; (j = 1,2,3) captures the singular behavior of the solution u to
(2.10). In fact, u can be decomposed in the following form:

3
u= Z thj +b (32)
=1

for some constants cj, where Vb is bounded in a bounded domain containing the narrow
region II;, between D and Ds. In other words, the blow-up behavior of Vu is completely
characterized by that of Z?:1 ¢jVh;. We emphasize that |h;|op, —hj|op,| =1 for j = 1,2.
So one expect that [Vhj| ~ ¢! in the narrow region between D; and Dy. The function
h3 has a weaker singularity since |hs|sp, — hslap,| = |x].

The purpose of this section is to construct explicit singular functions, denoted by qj,
which yield good approximations of h; and to derive their important properties.

17



3.1 Construction of singular functions

We begin with a brief review of the singular function for the electro-static case. Let p;
( = 1,2) be the fixed points of the combined reflections given in (2.46) and let

45(x) = 5 (Inx — p1| ~ In|x — pa]). (3.3)
This function was introduced in [35] and used in an essential way for characterization of
the gradient blow-up in the context of electro-statics [1]. The most important property of
gp(x) is that it takes constant values on 0Bj, the circles osculating to 0D; at z;, j = 1,2.
It is because 0By and 0By are circles of Apollonius of p; and po.

Note that % In |x| is a fundamental solution of the Laplacian and represents a point
source of the electric field. So it is natural to expect that, even in the linear elasticity case,
the point source functions may also characterize the gradient blow-up. There are various
types of point source functions in linear elasticity which are often called nuclei of strain.
We will use the following nuclei of strain as basic building blocks of the singular functions:

<L
IF(x)e1, T(x)ey, =Z P (3.4)
where xt = (—y, ) for x = (r,y) € R% These nuclei of strain have physical meanings:

the function I'(x)e; represents the point force applied at the origin in the direction of e;,
and the functions x/|x| and x*/|x| represent the point source of the pressure and that of
the moment located at the origin, respectively (see, for example, [33]).

We emphasize that the functions given in (3.4) are solutions to the Lamé system for
x # 0. In fact, the first two are solutions since they are columns of the fundamental
solution, and so are the last two because of the following relations:

(o1 — 042)@ = 01(T'(x)e1) + % (T'(x)e2),
. (3.5)
(o1 + 042)@ = 01(T'(x)ez) — A (T'(x)e1),

where a1 and a9 are constants appearing in the definition (2.11) of the fundamental
solution. The identities in (3.5) can be proved by straightforward computations.

The singular functions of this paper are constructed as linear combinations of functions
given in (3.4). To motivate the construction, we temporarily assume that two inclusions Dy
and Dj are symmetric with respect to both z- and y-axes. If we write hy = (h1y, h12)7,
then thanks to the symmetry of the inclusions and boundary conditions in (3.1), the
following two functions are also solutions of (3.1) for j = 1:

it B o

By the uniqueness of the solution, we see that h; has the following symmetric property
with respect to z- and y-axes:

{hu(iﬁay) = h11(z, —y) = —h11(~2,9),

(3.6)
hia(z,y) = —hi2(x, —y) = hia(—z,y).
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One can see that the following two functions have the same symmetry:

X—Pp1 X — P2
x—p1?  [x—p2f?

I'(x —pi1)e1 —T'(x — p2)eq,

So the first singular function qp is constructed as a linear combination of these functions.
On the other hand, one can see in a similar way that hy = (ho1, hgg)T has the following
symmetric property:

ho1(%,y) = —ha1(z, —y) = ha1(—z,y), (3.7)
h22($>y) = h22($, _y) = —h22(_$,y),
and the following two functions have the same symmetry:
(x—p1)"  (x—p2)*
I'x — —T(x— .
(x — p1)ez (x — p2)e2, x — p1? x — pal?
So q9 is constructed as a linear combination of these functions.
The singular functions of this paper are defined by
X—p1 X — P2
x):=TI'(x — e —I'(x— e + asa + , 3.8
qi(x) (x —p1)er —I'(x — p2ler + a2 <‘X_p1’2 ’X_p2‘2> (3.8)
and
(x—p)" | (x—p2)*
=T(x— —T'(x-— — 3.9
() = T(x = prjes ~ Tx — pajes — e (X221 BEEP2 ) (g

where a is the number appearing in (2.46). We emphasize that a depends on e. In fact, we
repeatedly use the fact that a ~ y/e. The functions q; satisfy £, ,q; =0 in R2\ {p1,p2},
and

q;(x) = O(|x|™") as |x| = oo, (3.10)

as one can easily see. We emphasize that the symmetry of D U Dy is not assumed here.
It will be proved later in Proposition 3.13 that

(3.11)

where m, and mo are constants defined by

my = [(a1 — a9)V/2(k1 + r2) |1, ma = [(a1 + a2)v/2(k1 + ra) |- (3.12)

mg

So blow-up of Vh; is captured by an explicit function \/g'qu. This is a crucial fact for
investigating blow-up of Vu in this paper.
We now construct the third singular function g3 which approximates hs. For that we

introduce 't = (I‘f})?jzl which is defined by
10 ay [—xiz9 —23
Liwy _ 172 2
I'(x) = ag arg (x) [O 1] =2 [ 22 $1$2] . (3.13)
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We emphasize that T'* is a multi-valued function since arg (x) is. So I'" is defined in R?
except a branch-cut starting from the origin.
Note that
T'(x)e; = g arg(x)e; — azz;V(arg(x)), j=1,2. (3.14)
Since arg(x) is a harmonic function, we infer from Lemma 2.3 that T'l(x)e; is a solution
to the Lamé system (except on the branch-cut).
We now define the singular function qs by

q3(x) = mg (I‘L(x —p1) — I‘l(x — cl)) e +ms (I‘L(x —p2) — I‘L(x - 02)) e

(x—p1)"  (x—p2)*
—i—mgaga( ’X—p1|2 |X—p2‘2 > s (3.15)
where
ma = [(ozl —ag)(k1 + 52)]_1, (3.16)

and ¢ and co are centers of the osculating disks By and Bs, respectively. It is worth men-
tioning that T't(x — p;) — I'"(x — ¢;) is well-defined in R? except a branch-cut connecting
p; and c;. So, q3 is well-defined and a solution of the Lamé system in D¢. We will show
in Lemma 3.11 that q3 has the same local behavior as hs.

In subsections to follow we derive technical estimates of q; and its derivatives which
will be used in later sections.

3.2 Estimates of the function (

We show in the next subsection that the singular function q; (j = 1,2) can be nicely
represented using the function gp given in (3.3). In fact, it is slightly more convenient to
use the function ((x) defined by

((x) = 27qp(x). (3.17)

The following lemma collects estimates for the function ¢ to be used in the next subsection.
Some of the estimates are essentially proved in [1]. However, in that paper the estimates
are not explicitly written and derivations of estimates are smeared in other proofs. So we
include proofs.

Lemma 3.1. (i) Let I, be the narrow region defined in (2.55). It holds that
Cx)| S Ve, xellg, (3.18)

and

el S L foactl € 202,

(ii) Let x;(y) be the defining functions for OD; for j = 1,2 as given in (2.52). For
ly| < L and j = 1,2, we have

1€ (1)) — Clom; | S Vellwillyl + 1yl?), (3.20)

x = (z,y) € . (3.19)

\diaxj(y))] < Ve (3.21)
(d (%, ‘5 efy?. (3.22)
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Proof. (i) Since p1 = (—a,0) and p2 = (a,0), we can rewrite ((x) as

(m—l—a) y? 1 N dax
R e e R (328)

Since a ~ /e, e +y? ~ (v £ a)? + 9%, and |z| < e+ y? for (z,y) € II1, we obtain

In(1+ O(Ve)) = O(ye) forx e,

)l =

which yields (3.18).
Assume x = (z,y) € II1. Since

7| Set+y? and e+y® S (zEa)? +y7

we have from the first identity in (3.23) that

rT+a rT—a
(x +a)? +y2_(x—a)2+y2‘

‘ 2a(a? — 22 + 3?) ‘ 6+y)< NG
(z+a)?+2)((z+a)?+y2)1 ™~ (e+y2)? ~e+y?

el =

and

1 1
920691 = W ooy~ G e
4ax Velyllzl _ Velyl

(z+a)?+y2)((x—a)?®+y?) ‘N (e +y?)? Ne—i—yQ'

< Iy!)

So (3.19) is proved.
(ii) We now prove (3.20). For simplicity, we assume j = 1. Let us write the boundary
0B of the osculating disk By as (—fg(y),y) for |y| < L. Recall from (2.53) that

L +O(yh). (3.24)

hly) = fs(y) = 5

From (3.23), we have

1 dafi(y) dafp(y)
€)= cloml = 5| (1= o i)~ (U oy e )]

1 m(y)
_ 5\ In (1- ol (y)) , (3.25)
where
_ fiy) B fB(y)
N A0 E e (A e (320
o dafp(y)
n2(y) =1 TAOETEES (3.27)
Since a ~ /¢, fp(y) = e +y?, and (fg(y) + a)? + y* ~ € + y?, we see that
im(y)| =1 for [y| < L. (3.28)
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From (3.24) and the facts that f; ~ e + 32, fp ~ ¢ + 32 and a ~ /¢, we have, for |y| < L,

()] = (f1ly) - fB( ))(y — h)fa(y) +a?)
((f1(y) + v ((fB(y) +a)* +y?)
< (wl\y|3+y )( +(e+y°)* +¢)
~ (e +y2)?
< lwrllyl + 7. (3.29)

Since a = /¢, it follows from (3.25), (3.28), and (3.29) that

[CGer()) = Clom | < Vellwillyl +v7).

Therefore (3.20) is proved.
We now prove (3.21) and (3.22) for j = 1. The cases for j = 2 can be handled similarly.
In view of (3.23), we have

d d
@C(Xl(y)) = @C(_fl(y)ay>
_ “fily+a  —fily) —a o
~(Chw rar @~ TRt —ap 1) W)
y B y
TERG APt (CA() - @+
_ N(y)
=D y)D_(y)’ (3:30)
where N and D. are given by
N(y) = (=1)(a® = fi(y)* +y*)fi(y) +2f1(y)y,
Di(y) == (—fily) £ a)* + 4.
It is easy to see that
D (y) ~ e+ 3> (3.31)
As consequences of (2.48) and (2.53), we have
= L0, fil) = et gragt+ O ),
and hence
2¢
N) = (D) +97)maw
+ 2</<;1 ’11 et %myQ)y +O0(ey’ + €y + y*)
= O(ey?® + 2y + ). (3.32)

Then, from (3.30) and the fact that a ~ /€, we have

(y))‘ Saw < Ve

‘@C(Xl (e+y2)>
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So, (3.21) is proved.
Now let us consider (3.22). We have

d? B d? B d N(y)
dT/QC(Xl(Z/)) = TyQC(_fl(y)7y) = *y(Qam)
_ N . NyD)'y) , NyD-)y)
TR T R T R PR T R ER
We also have
N'(y) = =a®f{ + 2f1(f1)* + (f1)2f1 = v* 1 + 211,
(D+)'(y) = 2(—fr £ a)(—f1) + 2y.
Since fi(y) = € +y*, fi(y) = O(y) and f{(y) = O(1), we have
IN'(W) Se+v? (D) (W) S lyl.
Then, from (3.31)-(3.33) and the fact that a ~ /¢, we obtain
d? e+y? | (e +Ey+yhyl Ve
C@Qg(xl(y)>’§a<(e+y2)2 (e +y2)? ) S e+y2
The proof is completed. O

3.3 Estimates of singular functions

This subsection is to derive estimates of the singular function q; in the narrow region Iy,
and on dD1 U dDs, which will be used in the later part of the paper.

We begin by showing that singular functions can be explicitly represented by the
function ( introduced in the previous subsection. Set

x = (x,y). (3.34)

sinh? ((x) , 1/2
a2 Y )

Ac(x) = [1 -

If x = (z,y) € I, then it holds by (3.18) that [((x)| < /€. Since a ~ /e by (2.48), we
have
sinh? ¢(x)
a2
So there exists a constant 0 < Ly < L (independent of €) such that

< 1.

~

B sinh? ¢(x)

a2

1 y? > =, x=(2,y) € Iz,. (3.35)

N | =

Note that
Ac(x) =14+ 0(y?), x=(v,y)€lp,. (3.36)

Singular functions q; can be represented in terms of ¢ as follows
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Proposition 3.2. Let q;(x) = (¢i1(x), ¢i2(x))T fori=1,2. Ifx € Iy, then g;; are given

by

q11(x) = a1((x) — @ A¢(x) sinh ((x),
q12(X) = g21(x) = aza” 'y sinh? {(x),
¢22(x) = a1((x) + aa A¢(x) sinh ((x).

Proof. From the definition (3.8) of q; and the first identity in (3.23), we have

€T CL2 .’E—(I2
q11(x) = a1 ((x) — a2 _(a:(—kfj)z lyz - (x(—a)2 i_yQ_

r+a r—a
eraf+ Gty
:alg(x)—ag— z(r+a)  z(r—a)
L@ +a)?+y*  (v—a)®+y?]

2ax(a® — 22 + y?)

((z = a)* +y*)((x + a)* + y?)

= a1((x) — az

for x € R?\ {p1, p2}.
Thanks to the first identity in (3.23) again, we have

. 1 (z+a)* +y? (z —a)? +y°
sinh ¢(x) = 5 (\/(w—a)Q-f-yQ - \/($+a)2+92>
2ax
= \/(x_a)2+y2\/(x+a)2+y2'

Then straightforward computations yield

a2 — 22 4 12
V(lz+a)? +y2)((@ - a)? +1?)

This together with (3.40) yields (3.37).
The identity (3.38) can be proved similarly. In fact, one can see that

Ac(X) = , XEHLO.

_ [ ety (@-a)y
q12(x) = 2[(x+a)2+y2 (x—a)2+y2]
Y Y
+a2a[(x Tafty? | (@ ap +y2]
4a332y

P@+a2+ ) (@ —aZ+4?)

and (3.38) follows from (3.41).
Similarly one can show that ga2; = ¢12 and (3.39) hold. We omit the proof.

(3.37)
(3.38)
(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

O

Proposition 3.2 already reveals an important property of the singular functions. They
are almost constant near the points z; and zo. This can be seen more clearly if two

osculating disks have the same radii.
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Lemma 3.3. Assume By and By have the same radii ro. Then it holds for x € 0B;,
i =1,2, that

qQi(x) = (n‘f +t1> (_21)i\111 + 042:% m : (3.44)
a2(x) = (;{i +tz> (_21)i\112 + 0427% [ﬂ : (3.45)

where m; are constants defined by (3.12) and t; are constants satisfying
Itj] < Clon + ag)e®/? (3.46)

for some constant C' independent of (a1, 2), or equivalently, independent of (A, ), as
well as e.

Proof. If r1 = ro =19, (2.47) reads

a= W. (3.47)

We see from (3.23) that the constant value {(x) on 0B; are as follows:
Clop, = (—1)"sinh~(a/ro), i=1,2. (3.48)

Let s = sinh ™! (a/r). Note that a = rgsinh s. Then it follows from (3.47) that

rocoshs = /1 +a% =1y +¢€/2.

Since the center of dB; is (—1)*(rg + €/2,0), we have
OB; = {(z,y) € R? : (z — (=1)"ro cos.hs)2 + 9% = r%}.
So, for (z,y) € IB;, we obtain
(z 4+ a)* +y* = 2® £ 2zrgsinh s + rZ sinh? s + ¢
= (2 — (=1)"rgcosh 8)® + y* — rg 4+ (—1)"2xrq cosh s & 2zrg sinh s
= ((—1)" cosh s = sinh s)2ro, (3.49)

and

a®> — 22 +y* = (z — (=1)'rgcosh s)® + y? — rg — 22 + (—1)*227r¢ cosh
((=1)'rg cosh s — )2z = ((—1)"(ro + €/2) — x)2x.

Then, for (z,y) € 0B;, we have

2ax ;a
V@t /@ taZt (—1) o’
ag—x2+y2 1 € 1i33 3.50
N (R e (e B R s (3:50)
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Note that (|gp, = (—1)’s. So we obtain from (3.40) and (3.50) that

; i € a T
= (—1)’ons — ag(—1) (1 + —)— + ag—— Bi.
() = (~D'ors —op(-1'(1+ 5 )Lt L xeoB,

Since a = \/roe + O(e¥/2), s = \/e/ro + O(¥/2), and m1 = /ro/[2(c1 — az)], it follows
that

au(x) = (=1 (1 = a2)v/e/ro + (a1 +a2) O(¥?)) + a5
0

— (_1)¢ 1\ﬁ 3/2 a
=(-1) (§E+(a1+a2)0(6 ))+a27%x, x € OB;.

We also obtain from (3.43) and (3.49) that

a
q12(x) = 042172y, X € 0B1 U 0Bs.
0

This proves (3.44). One can prove (3.45) similarly. O
We have the following lemma in IIy,,.

Lemma 3.4. We have, for x € 11,

Oran (09| + Praea)| € . .51
and
|02q11 (x)| + [02g22(x)| + |Vqi2(x)| S E\/EzL + e (3.52)

Proof. We only consider q;. Estimates for q3 can be obtained similarly.
First we consider 01¢11(x). By (3.37), we have

01q11(x) = a101¢(x) — aa cosh({(x))A¢(x)01((x)
2
+ ag sinh?(¢(x)) cosh(((x))%AC (x) 191 ¢ (x). (3.53)

Thanks to (3.35), we have
[A¢(x)| ~ 1. (3.54)

Then, using the fact that a ~ /€, we obtain
2y2
[O1au(x)] S 1016(x)] + [C(x)["=- 016 (x)].

We then infer from (3.18) and (3.19) that
2
Ve |y Ve e

o < = .
| 1q11(x)|”’e+y2 ety ety?

This proves (3.51).
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To prove (3.52) for q1, we compute using (3.37) and (3.38)
d2q11(x) = a102((x) — az cosh(((x)) A¢ (x)D2((x)

2
%—agshﬂ(((xﬂ/k(x)_l(ﬂnh{(xﬁ%((x)yf4—$nh2§(x)§%),

a2
and
d1q12(x) = 2azay sinh ((x) cosh ¢ (x)1((x),
Doqr2(x) = 2anay sinh ¢(x) cosh ¢ (x)02¢ (x) 4+ agasinh? ((x).
So, (3.52) can be proved in the same way as above. The proof is completed. O

Let hy = (hy1,h12)T be the solution to (3.1) for j = 1. Then, we have h;(x2(y)) —
h;(x1(y)) = (1,0)”. Since |x2(0) — x1(0)| = ¢, one can expect

(3.55)

81h11(0,0) =¢ ! + O(l),
|82h11(0,0)| + ‘81}112(0,0)‘ + \82h12(0,0)y 5 1.

One can expect a similar behavior for hy as well. We now show that %qj has the exactly
same behavior as € — 0.

Lemma 3.5. It holds for small € > 0 that

1
d1q11(0,0) = —" +0(Ve), (3.56)

102¢11(0,0)| + [01412(0,0)| + |02¢12(0,0)| < Ve,

and

mav/€ (3.57)
101G21(0, 0)[ + [02¢21(0,0)| + [D2g22(0,0)| < V.

Proof. Since 01¢(0,0) = 2/a and ¢(0,0) = 0, it follows from (3.53) that

{316122((%0) ! + O0(Ve),

201 — o
01411(0,0) = (1a2)'

Since a = v/2¢/+/(k1 + k2) + O(€/?), the first equality in (3.56) follows. From (3.52), we
have
10211 (0, 0)[ + [0112(0, 0)| + [92¢12(0, 0)| < Ve

This proves (3.56). (3.57) can be proved similarly. O
Lemma 3.6. For j = 1,2, we have
9l Lo (peviy, ) + IVl oo (Dt ) < Ve. (3.58)

Proof. We only prove (3.58) for j = 1. The same proof applies to the case when j = 2.
Recall that

X —P1 I X—p2>

qi(x)=T'(x—p1)e1 —I'(x — p2 el—i—aga(
(x) =T( ) ( ) x—piE | x—pa?
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Note that if x € D\, then 1 < |x — p| for all p lying on the line segment p1p2. Since
a ~ /€, the second term on the right-hand side of the above and its derivative is less than

Ve
One can easily show that the first term also satisfies the same estimate. In fact, by
the mean value theorem, we have

IT(x —p1) = T(x = p2)| S [VI(x = p+)[|p1 — P2
for some p, on pip2. We also have
IV(D(x = p1) = T(x = p2))| S [V’T(x = pas)[[P1 — P2
for some p., on Pipz. Since |p1 — p2| = 2a =~ /¢, (3.58) follows. O
As a corollary, we have the following estimate for Vq;.

Corollary 3.7. For j = 1,2, we have
IVl oo ey & €2, (3.59)

Proof. The upper estimate ||Vl (pey S ¢~ 1/2 is a consequence of Lemma 3.4 and 3.6,
and the lower one is that of Lemma 3.5. ]
We have the following lemma on 90D U dDs.

Lemma 3.8. Let x;(y) be the defining functions for 0Dy, for k = 1,2 as given in (2.52).
For |y| < Ly, the following holds:

qu(xk(y)) = (—1)k(&1 —ag)kpa+ O (E), (3.60)
qi2(xk(y)) = g21(xk(y)) = aarjay + O (|y|E) (3.61)
QQQ(Xk(y)) = (—1)’“(041 + Oég)lik(l + O (E) , (362)
where
E = 4 Vey? + /eyl (3.63)

Proof. We see from (3.23) that
Clo, = (—1)"sinh™(kga) = (—1)'kga + O(a®).

Since a &~ /€, we infer from (3.20) that

C(xk(y) = (—1)'wpa + O (E), (3.64)

and '
sinh {(xx(y)) = (=1)'kga + O (E) . (3.65)
Combining (3.36), (3.64) and (3.65), one can see that (3.60), (3.61) and (3.62) follow from
(3.37), (3.38), and (3.39), respectively. O

Then, using (2.48) and the definitions (3.12) of m; and mg, we immediately obtain the
following corollary.
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Corollary 3.9. For |y| < Lo, we have

q11(x2(y)) — qu(x1(y)) = my ' Ve + O(E), (3.66)
q12(x2(y)) — qr2(x1(y)) = qa1(x2(y)) — g21(x1(y)) = O(Verlyl), (3.67)
g22(%2(y)) — q22(x1(y)) = my ' Ve + O(E), (3.68)

where E is given by (3.63).

We then obtain the following lemma for estimates of the derivatives of q;.

Lemma 3.10. Let x(y) be the defining functions for 0Dy, for k = 1,2 as given in (2.52).
For |y| < Ly, the following holds:

\diqxxk(y)) S Ve, (369
2 €
ijQH(Xk ‘-i- ‘d 5q22(%k(Y))| S 6_{;27 (3.70)
‘d sq12(xk(y))| S Ve (3.71)

Proof. We only prove inequalities corresponding to qi(x3(y)). Those for other cases,
namely, qi(x2(y)) and qa2(xx(y)), can be treated similarly.
For ease of notation, let us define ¢(y) and ®(y) by

p(y) = ((x1(y),  (y) = Ac(xa(y))-
We see from (3.20)-(3.22) that

€
PWIS Ve WOISVE 190 S 5 (3.72)
We also have
W)~ 1, @ISl 2w S 3.7

The first estimate in the above is an immediate consequence of (3.54), and the last two
can be proved using the definition (3.34) of A¢(x). In fact, straightforward computations

yield
1

d'(y) = ~5% (y*¢ sinh 2 + 2y sinh® ),

and

(4y¢' sinh 2¢ + y?¢" sinh 2¢ + 2y*(¢')? cosh 2 + 2 sinh® )

!/

"(y) = —

1
202

+ (y2<,0’ sinh 2¢ + 2y sinh? go) .

2022
Then, using (3.72) and the fact that |®| ~ 1, we obtain

1
12 (y)| < g(er + lyle) < lyl,

2" (y)] < %(Iy\ \/;ﬁ+y26+6> |y’(y€+ly|)
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We have from (3.37) and (3.38) that

d .
@Q11(X1(y)) = a1<,0' — a9 (<I><p' cosh ¢ + &’ sinh gp) ,
d —1/ . .
d—yqlg(xl(y)) = aga ! (sinh? ¢ 4 y¢' sinh 2¢p),
d2
dfyﬂn(Xl(y)) = a1 — ap (P’ + D" + '¢) coshp + (P9 + ") sinh ),
d2
Za@(x1(y)) = aza” ! (2¢" sinh 2p + y¢" sinh 20 + 2y cosh 2¢0).
Y
Since a ~ /€, (3.69)-(3.71) now follow from (3.72) and (3.73). O

We now estimate q3 whose behavior resembles that of the solution hs = (hs, h32)T to
(3.1) for j = 3. Since hs|gp, = (_—;y(—y,x)T for i = 1,2, we see that

fl(y)+f2(y)>'

ha(xa(s) ~ BaGra() = (-5 7

Since |x2(y) — x1(y)| = f1(y) + f2(y), one can expect that the following holds for small
€ > 0 and for (z,y) near the origin:

oy _ y
O1hs ~ AOE D) +O(1) + L0 1 )y +0(1) (3.74)

and
|O2h31 (2, )| 4 |01hsa(x, y)| + |O2hs2(z,y)| S 1. (3.75)

The following lemma shows that g3 has the exactly same local behavior.
Lemma 3.11. For x = (z,y) € I, we have

y
€+ (k1 + K2)y?

dgs1(x) = — +0(1), (3.76)

and
|02g31(%)| + |01g32(x)| + |D2g32(x)| S 1. (3.77)

Proof. Let mg be the number defined by (3.16). For ease of computation, we decompose
a3 as g3 = g3 + w where w(x) = —m3(TH(x — ¢1) + T'H(x — ¢2)). It is clear that
|[Vw(x)| <1 for x € 1.

Now we consider g3 = (§31,q32)”, which is given by

1 1
o = s (T = p1) 4 T (x = pa)) 4 o (X2, - DR,
x — p1] |x — p2|
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From the definition (3.13) of ', we have

g1 (x mgalzarg z— (—1)'a + iy)

2 1z+1
_mng((x(( o) >+ma2az LDy

=1 +y? (—1)'a)® +y*’
9 . 2 ;
. _ (2 — (—1)'a)? (=) (z — (=1)'a)
G32(x) = —mzaz ; (z — (—1)ia)? + 42 * m3a2a; (= (=1)'a)? + y?

Straightforward computations yield

01G31(x) = — (k1 + K2) L (%) — 2msanzy [wh4(x) + ah_(x)],
32431 (x) = m3(a1 + a2)xgy(x) + mgajag—(x) — 2msonxy’hy (x),
01@32(x) = —2mgagrgy (x) — maazag—_(x)

+ 2mzasz (2 + a®)hy (x) + 2azh_(x)],
DGz2(x) = 2mzaszy[zhy (x) + ah_(x)],

where f, g+ and hy are defined by

Yy Yy
X) = + ,
I =i Yoot 2
() 1 n 1
X) = 9
N R R CE RN
1 1

= + .
(x+a)*+92)?  ((z—a)*+y?)?
Since a =~ /e, |z| < e+y? and (z + a) + y? ~ € + y?, we see that

901 S g 1001 S
B daz Ve
’g‘(x)"‘<<x+a>2+y2><<x—a>2+y2> S
h ()] = ‘ daz((z + a)? + (x — a)? + 2¢) Ve
~I= G P 2 (@ =0 22| D e )

Therefore, we obtain

2\2 2
01 () + (s + )10 < ((iyyﬁ)f I s

e—l—y + Ve \f (6+y2)y2

|02G31(%)| < (6+y2)2 S
€ € 2)3 €e(€e 2 ele 2
|01G32(%)] S +y \[ \[ ( +y(€) ++y2§2—l—y ) (i _:yg); <1

(6+y )%y 6(6+y2)y

et 2 T ery? VT

[02G32(x)| S

N
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Now it remains to show that

+0(1). (3.78)

Since
' y(2? £ 2ax)
~ (£ a)? +y?)(a® + y?)
L e+ 52+ e+ i) -

y oy
(xta)?+y? a®+y?

1,
~ (e+y?)? ~
we see that
F) = 2+ 001)
a2 '
Since
1
A Y _ _almERy )
a?+y*  2¢/(k1+k2) +O(2) + 1y e+ Lk + Ko)y? ’
the desired estimate (3.78) follows. This completes the proof. O
Lemma 3.12. The following holds:
_'_
IVqs(0,0)] <1, Vas(0,a) = Y2126 9 e +0(1). (3.79)
V2e
Moreover, we have
[Vas||Los(peviy) S 1 (3.80)
and !
Vs Lo (pey & 7 (3.81)

Proof. The estimates in (3.79) are consequences of Lemma 3.11. The estimate (3.81) is
a consequence of Lemma 3.11 and (3.80).
To prove (3.80), recall that

q3(x) = ms (I‘l(x —p1) — I‘l(x — c1)> e +ms (I‘J‘(x —p2) — I‘J‘(x — cz)) e
— m3aga <(’X —p1) — (x — p2)L> .

x—pi> [x—p2f?

If x € D¢\ I, then 1 < |x — c| for all ¢ on the line segment ¢1¢c3. Note that p; and pe
are on c1cs. S0, all the terms in parentheses above and their gradients are bounded. So,
(3.80) follows. O

3.4 Approximations by singular functions

In this section we prove (3.11). More precisely, we prove the following proposition.
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Proposition 3.13. For j = 1,2, let h; be the solution to (3.1) in A* and m; be the
constant defined in (3.12). Then it holds that

m
hy = "Za; ;. (3.82)

where Vr; satisfies
CVr; : Vr; < 1. (3.83)
De
To prove Proposition 3.13 we apply the variational principle. We emphasize that this is
possible only because the singular function q; is the solution to the Lamé system, namely,
L ,q; =0 in D¢ and so is r;. Note that r; € A* and

1 .
rj=(~1) 0, - 2

5 i %q] on 6DZ, 1= 1, 2.

Let
* i1 m;
W= v A" [ Vlon, = (130 - Ty (3.84)

and let Epe be the energy functional defined in (2.36). By the variational principle (2.37),
we have

gDe [I'j] = JIEI%/{/I 5De [V] (385)

We define the test function r as follows: for (z,y) € Il let

rj(x2(y)) — rj(x1(y))

.

 (o,y) = e S e )]+ a () (3.86)
Note that .
o = (-1, - %qj —r; ondD;Ndly, i=1,2, (3.87)

and rJK is a linear interpolation of r;j|gpe in the z-direction. So, in IIy,, rf(aj, y) is a linear
function of x for each fixed y. Let By be a disk containing D1 U Ds, and extend rK to
D¢\ I, so that rK|R2\BO =0, ||rKHH1 (pe\I,,) < 1, and the boundary condition (3 87)
holds on 9D; for ¢ = 1,2. Then, r belongs to Wj.

We have the followmg lemma.

Lemma 3.14. We have, for (z,y) € I,

Tly
Vel (z,y)| S 1+ - Jl y’2' (3.88)

Proof. We prove (3 88) for j = 1. The case for j = 2 can be proved in a similar way.
Let us write r;* (x K(x)=(r Ig( ), T JQ(X))T. To keep the expressions simple, we introduce

d(y) == fi(y) + f2(y),

mq

¢(y) := \/E[QH(Xz(y))—ql1(X1(y))],

1 mi

ny) =—5 - ﬁfm(xl(y))- (3.89)

33



Then rf can be rewritten as

+n(y), (z,y) € lL,.

(3.90)

d d?

+ — - +n

Oorls = [gb' qbd/] T+ ¢/Jl ¢§1 ¢‘212d, ' (3.91)

Note that
diy) ~e+y* |dWI<lyl, 1d"y)] S 1 (3.92)

Note also that, from (3.12), Corollary 3.9 and Lemma 3.10, we have

o) Se+y*+7lyl, 19w N (W) S 1. (3.93)

From (3.90)-(3.93) and the fact that |z| < e+ y? for (z,y) € 11, we have

ety iyl o Tyl
€+ 9?2 ~ €+ y?’
1 (e +lyDlyl
ety (e+y?)?
ety® | (et+lyDlyl | (e+lyDe+y?)lyl |,
2 2 2)\2 +1N1
e+y e+y (e +9?)

ERENBS

02| S (e+y?)

_|_

In a similar way, one can see that

T’Z/‘ K
ol <1+ .o <1.

This completes the proof. O
Proof of Proposition 3.13. By the variational principle (3.85), we have

Epelrj] < Epelrf] S IIVEF T2 (pey.

It follows from Lemma 3.14 that

/|VrK\2</ VP 4 / ot
De De\ITyp,

0

// 6+|y‘ da dy + 1
e+y

Lo
5/ 7(6“3"2) dy +1<1.
Ly €TY

So the proof is complete. O
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4 Stress concentration-boundary value problem

This section deals with the stress concentration, ¢.e., the gradient blow-up of the solution
to the boundary value problem (2.6). We characterize the stress concentration in the
narrow region between two inclusions in terms of the singular functions q; defined in
(3.8), (3.9), and (3.15). The main results (Theorem 4.6 and 4.7) are stated and proved
in subsection 4.1. Preliminary results required for proving main ones are also stated in
the same subsection. Their proofs are given in subsequent subsections. At the end of
subsection 4.1 we include a brief comparison of this paper’s method with that of [9] where
the upper bound of the gradient blow-up is obtained.

4.1 Characterization of stress concentration-BVP

We first introduce functions hg ; for the boundary value problem, analogously to the
functions h; defined in (3.1) for the free space problem. They are solutions to the following
problem:

Ek,uhﬂ,j =0 in Q,

—1)?
hq ; = (Q)‘I’j on 0D;, i =1,2, (4.1)
ho; =0 on 9Q.

One can easily see that the solution u to (2.6) admits the decomposition
3 ~
u=vq — Z(clj —cj)hg; inQ, (4.2)
j=1

where vq is the solution to £, ,vq =0 in Q with the boundary condition

3
1
Vo =g Z 1(013' +25)¥;  on 0Dy UID;. (43)
J:

Note that

1
valap, — valap, = =(c13 + ¢23)(¥3lap, — ¥3lap,) = O(|x]),
2

from which one expects that Vvg does not blow up even when ¢ — 0. In fact, it was
proved in [9] that

19vall @ < lgllcrnon. (4.4)

So the singular behavior of Vu is determined by the function Z;’Zl(clj — ¢25)hg ;.
In the sequel, we investigate asymptotic behavior of c¢i; — cz; and hg ; as € — 0. For
doing so, we introduce the following boundary integrals:

Ohy,

Sl H,, i k=1,2,3, 45
De o |+ Q) ) 4y ( )

Tik = (C@hj : ﬁhk and  Jq ::/
De 1o}
where h; is the solution to (3.1) in A* and Hgq is the function defined by (2.17). We

emphasize that Zj; is defined by h;, not by hg ;.
The relation among c1j — c25, Zj, and Jq i is given by the following lemma.
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Lemma 4.1. The constants c;; appearing in (2.6) satisfy

Zvw T2 Tig| |ci1 —co1 Jai
Lo Ios  Io3| |ci2—c2| = |Jaz2]| - (4.6)
T3 oz I33]| |c13—c23 Jo.3

By inverting (4.6), we will see that the asymptotic behavior of ¢i; — caj as € = 0 can
be described in terms of Kq ; which are defined by

Ja 313
133

Ja3L23
133

Jas
L Ko = 2923 4.7
03 =7 (4.7)

Koi = Ja1 — , Ka2=UJao —

In fact, the following propositions hold. Here, we mention that they are consequences of
Proposition 3.13, which is proved by the variational principle and the properties of singular
functions q;.

Proposition 4.2. For j =1,2,3, we have

1Ka,jl < llgllcrvan)- (4.8)
Proposition 4.3. We have
C11 — C21 = KQvlml_l\/g + O(\/EE), (49)
C12 — C22 = ICngmglﬁ + O(\@E’), (4.10)
C13 — C23 = ]Cng + O(E), (4.11)
where B
E = (Ve+ Vel Ine])||gllcrvoa)- (4.12)

As an immediate consequence of Propositions 4.2 and 4.3, we obtain the following
corollary.

Corollary 4.4. We have

lc11 — can| + |e12 — e22| S Vellgllervon) (4.13)

and
lc1s — cas| S Igllcrvan)- (4.14)

Regarding the asymptotic behavior of hg ;, we obtain the following proposition.

Proposition 4.5. Let m;, j = 1,2, be the constant defined by (3.12). We have for j = 1,2

Mo
hg; = 7201]' +ra, (4.15)
where ro ; satisfies
.
Vel s1+ 0 orxemy, .
Vra, ()| S 1 for x € @\ 10y,
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Here, T is the constant defined by (2.54). We also have

hQ’g =q3+trqs in €, (417)

where ro 3 satisfies
Vros| <1 in €. (4.18)

It is worth emphasizing that if two inclusions are symmetric with respect to both -
and y-axes, then 7 = 0. So we have |Vrq ;| < 1in Q for j = 1,2 as well.

With help of preliminary results presented above, we are now able to state and prove
the main results of this section.

Theorem 4.6. Let u be the solution to (2.6) for some g € CY(9Q). The following
decomposition holds

3
u(x) Z Ko+ saj)aj(x), xe€Q, (4.19)
7=1

where KCq j are the constants defined by (4.7) (so satisfies (4.8)), sq; are constants satis-
fying

[sa,i| S TVelInelllgllcraan): (4.20)

and the function bq satisfies
IVball @) S l8lleran)- (4.21)

Theorem 4.7. It holds that
232':1 Ko,

||chlw(aQ)

v ~lIVuleg s =7 (4.22)
The upper estimate in (4.22) was proved in [9]. The lower estimate shows that ¢~ 1/2
is also the lower bound on the blow-up rate of Vu as ¢ — 0, provided that
2
15 Koyl (4.23)
We will show in some special cases that this is the case (see section 6).
Proof of Theorem 4.6. According to Proposition 4.3, c1; — coj can be written as
c11 — e = Koimy e +mi Ve(sa1 + 50.1)5
c12 — 22 = Kaomy Ve +my 'We(sqa + 50.2);
c13 — c23 = Koz + s34+ 50,3,
where the constants sq,; and s, ; satisfy
|sa,j| < Vel Inelllgllcr o), (4.24)
sl S Vellgllerr oo (4.25)
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By substituting (4.15) and above three identities into (4.2), we have

u=vq— <i(c1j — ca5) (%qj + rQ,j)> — (c13 — c3)(q3 + 10 3)

7=1
3 3
=vo— ) (Ko, +saj+s0;)d — )_(c1j — cz)ra,. (4.26)
7j=1 j=1
Let
3
Z ]CQ it SQ,]
Then, from (4.26), we have
3 3
Vbg = Vvg — Z sgz,quj — Z(Clj — CQj)VI'Q,j =+ 1+ 1.
j=1 j=1

We now prove that I; are bounded. That |I1] < [|g]lc1.v(s) is already mentioned in
(4.4). By (3.59) and (3.81), we have

IVayll ey S €2 G=1,2,3. (4.27)

So, by (4.25), we have
12| < lglleraon)-

We have from (4.16) and (4.18) that
IVl oo @y + IVEQ2l ooy S 1+ 7/Ve

and
||VI'Q,3||LOO(§) < 1.

~

Therefore, it follows from Corollary 4.4 that

2
’13| < Z C1j — C25 VI'Q] + ’(613 — CQ3)VI‘Q 3’

< (\/5(1 +7/Ve) + 1)lIgllcrvon) S llgllcraon)-

The proof is complete. O

Proof of Theorem 4.7. The upper estimate in (4.22) is a consequence of Proposition 4.2,
Theorem 4.6, and (4.27). To derive the lower estimate, we consider Vu(0,0). It follows
from Lemma 3.5, Lemma 3.12 and Theorem 4.6 that

0,1 Ko,
Vu(0,0) = — : O(1 Ine).
u(0,0) mnﬁel@ 1— m2\/Ee2®el+ (1+ 7lne)
So we obtain the lower estimate. O
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As mentioned earlier, the upper bound in (4.22) was proved in [9]. So, it is helpful
to compare the method of that paper with that of this paper. In fact, some of results
obtained in [9] will be used for proofs in this section. There, the solution u to (2.6) is

expressed as follows:
2 3
Z Z CikVik + V3, (4.28)
=1 k=1
where v is the solution to

E)\,uvik =0 in ﬁ,
Vik = \I/k on 8Dl, (429)
vie =0 on ODJ-UOQ, j#i,

and vg is the solution to

ﬁ)\#Vg =0 in Q,

vy =0 on 9D U 0D,
v3=g on 0f).
Note that 1 1
hQJf = —§V1k + §V2k, k=1,23. (4.30)

The 6 x 6 linear system of equations for ¢;; is derived using (2.7). The linear system is
truncated to a 3 x 3 one and then the difference c1; — co; is expressed using the following
integrals:

Ak I:/ 8,,V1j|+ . \I/k = ﬁ (valj : Vvlk,
0D Q

bk = 8VV3’+ . \Ifk,
0Dy
for j,k = 1,2,3. Note that the integral aj; is similar to the quantity Z;, of this paper.
The difference lies in that Zj; is defined using the free space solution h;.
To investigate asymptotic behavior of a;, and by as € — 0, the function vy, is approx-
imated by V{,ﬁ , which is defined by

—r +
e = 75 R

2\Y (z,y) €, k=1,2,3. (4.31)

voy(z,y) = —x+f1( ) Uy

2R fiy) + foly) 7

In fact, it is proved that
K Y

Vvie(z,y) = Vv (z,y) + O (1 + . y2> for k=1,2, (4.32)
Vvis(x,y) = Vv (z,y) + O(1). (4.33)

From these approximations which are derived using a new iteration technique, the upper
bound on the blow-up rate, e~ '/2 of |Vu| is obtained in [9]. However, a lower bound has
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not been obtained. It is partly because the functions vf,g are mot solutions of the Lamé

System.

In this paper, we introduce new singular functions q;, which are solutions of the Lamé
system, as explained in section 3. Using singular functions, we are able to derive precise
asymptotic formulas for Vu as ¢ — 0. As a consequence we are able to reprove that
¢1/2 is indeed an upper bound on the blow-up rate. Moreover, the asymptotic formulas
enable to show that e /2 is a lower bound on the blow-up rate as well in some cases, as
presented in section 6. We emphasize that the asymptotic formulas are obtained using the
variational principle, which is possible only because q; are solutions of the Lamé system.

4.2 Preliminary estimates of boundary integrals

In this subsection, we characterize asymptotic behaviors of the following boundary inte-

grals as € — 0:
/ ovqj - Vg, / 0vq; - Q-
oD; oDe

These integrals appear in later sections.
We first prove the following lemma.

Lemma 4.8. (i) For k= 1,2, we have

/ ;- U= (=), d,5=12 (4.34)
aD;
(i) For k =3, we have
/ dyeqy - U5 = 0, (4.35)
oD;
/ s - U3 = (1) a(—1 4+ dmaopu), (4.36)
oD;

fori=1,2, where a is the constant defined by (2.47).

Proof. Suppose that k = 1,2. Since £, ,I'(x—p;)e; = d(x—p;)e;, Green’s formula yields

B &,XI‘(x — pl)ej : \I/k dO’(X) = / [:)\,#F(X - pl)ej . \I/k dO’(X) = 6115]']@-
Dz‘ Dz‘

Green’s formula also yields

X — P
0. [ =P Ly do(x) = 0.
/aDz. <rx—p112> ko ()

In fact, if i = I, then we apply Green’s formula to R?\ D;, and to D; if i # [. So, (4.34)
follows from (3.8) and (3.9).

We now prove (4.35) and (4.36) when ¢ = 1. The case when i = 2 can be proved in
the same way. Let us prove (4.36) first. In view of the definition (3.9) of qa, we have

aljx <(X — pl)J—
D1

O - V3 = Op (T(x — p1)ez) - V3 — aQa/ |x — p1]?

0Dq 0D 15)

) Wy, (4.37)
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Since L ,(T'(x — p1)e2) = dp, (x)e2, one can see that
/ O (L(x — p1)es) - U3 = ez - ¥3(p1) = —a, (4.38)
0Dy

where the last equality holds because p1 = (—a,0).
By using a change of variables x — x+p; and the fact that U3(x+p1) = U3(x) —a¥a,

we obtain
(X—pﬁl) /' <XL>
Oy, | —5 | - ¥3(x) = O | —5 ) - Us(x+p
L, (rx—p1|2 )= fopy e U ) Ve TP

_ —a/ o, <2> -xp2+/ 0. <2> Wy (x). (4.39)
0D1—p1 |X‘ 0D1—p1 ‘X’

One can show as before that

-
/ Oy <2> - Wy do(x) = 0. (4.40)
0D1—p1 |X|
Let B be a disk centered at 0 such that 0D; — p1 C B. Then Green’s formula yields

/E)Dlpl O <|j2> Wy(x) = /BB O <|j2> Wy ().

Straightforward computations show that
1 1
X X
Op | — | = (2u)—= 1 € 0B.
(fp) -~ o

So, we have

1 1
1
Oy, (X> - Us(x :/ Oy, (X> xt :/ —2u)— = —4mpu.
/aDlpl ) V)= [ O\ e A

It then follows from (4.39) and (4.40) that

(X—PﬁL)
Oy, ( - U3(x) = —4mp. 4.41)
f 2= (5) |
Combining (4.37)-(4.41), we obtain (4.36).

We now prove (4.35). Like (4.38) we have

8VX(F(X — pl)el) . \113 =e] - \Ifg(pl) =0.
0D1

In the same way to show (4.41) one can show that

/ O, <X—P12) Ty —0.
0D |X - p1|

Therefore, from the definition (3.8) of qi, we have (4.35), and the proof is completed. [
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Lemma 4.9. We have

9,9 - qj = —m; 'Ve+ O(rellne[ +¢), j=1,2, (4.42)
oDe

/ 0vqi - q2 = O(7e|Ine| + ¢). (4.43)
oDe

Before proving Lemma 4.9, we need to estimate the conormal derivatives 0,q; on
0D, U 0D5. We have the following lemma.

Lemma 4.10. For x = (z,y) € (0D1 U9dD32) N0IlL,, we have

€ Vely|
dan)-en S s ) el S Y05+ VE (4.44)
" il Ve
€
|0,a2(x) - e1| < €y S+ Ve  [0,a(x) e S vt (4.45)
Proof. We prove (4.44) only. (4.45) can be proved similarly. Let o! = (O'U)” 1 be the
stress tensor of qi, namely, o' = C@ql. According to (2.4), the entries of o' can be

written as
o1y = (A + 209111 + ADaqua,
032 = Mg + (A + 21)Daqua,
o1y = 05 = p(O2q11 + O1q12).
Thus we have the following estimates from Lemma 3.4:

Ve \f\yl

6+y2’

for (z,y) € I1g,.

o11| + |ogo] S lota] S

Note that 9,q; = o'n and the outward unit normal vector n on 9D; N OII Lo is given

as follows: )

VI W)

Moreover, we have |f/(y)| < |y|. Therefore, we obtain

((_1>i+17fi/(y))7 i = 172'

Do, + fily )oiy)

lal/ql(:my) ' e1| = | = ‘W
Ve VAR R

< b
~e+y? 6+y ~e+y?
and
1 i
0,q1(2,y) - e2] = |(0'm)| = ‘H(ﬂ(y))z((—l) oty + f(y)ods)
< Velyl Ly ve
€+ y?
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for x = (x,y) € 0D; N 0llL, and i = 1,2. The proof is completed. O
Proof of Lemma 4.9. To prove (4.42), we write

2

/ Ovar a1 = Y _(—1) (a1 — 042)/%@/ dvar - ¥y
0D1UOD> 6Di

i=1
2

5[ v o)
i=19D;

By Lemma 4.8 (i), we have

2

S (1on — i | D1 = ~(or = an)(m + o)

i=1
Then (2.48) and (3.12) yield

2
S (Dien —a)ria | Sy - Ty = —my Ve + O(e¥?).
i=1 9D;

It then remains to show that

dvar - (a1 — (—1) (o1 — a)kia U] =O(re|lne| +¢), i=1,2. (4.46)
oD;

To prove (4.46), let us write

/ Ovar - [a1 — (—1) (o1 — a2)k1a U1 = / +/ =11 + Is.
0D1 8D1ﬂ8HLO 8D1\8HLO

From Lemma 3.6 and the fact that a ~ /e, we see that |Is| < e. Note that
1] < / |0va1 - e1(qu1 + (o1 — az)k1a)| + |Ovay - €2 qual-
8D108HL0

From (3.60) and (3.61), we see that

|q11 + (a1 — az)kial €% + ey® + /eyl

and
\Q12\ S \E|y!.

It then follows from Lemma 4.10 that

€+ y? €+ y?

s [ @ Vet v+ (L V) Vel

Lo
,S/ iy!dy—l—efﬂ‘e\lnd—l—e.
_L06+y
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This proves (4.46) for i = 1. The case for i = 2 can be proved in the same way. So, (4.42)
is proved.
Next we prove (4.43). Thanks to (4.34) with j = 1 and k = 2, we can write

2
/ dvar - qz = Zazfcfa/ dvar - y¥s
oDe : )

+ Z/ dvan - [a2 — askiay U1 — (—1) (a1 + ao)kia Us)].  (4.47)
Green’s formula yields

/ Doy -y, — / sy — [ U@+ [ W) -
oD; oD; oD;

/ Lyuaq1-y¥i — / L, (y¥1)-qi + Ov(y¥1) - a1
D; oD;
/ Ly,a1 - y‘1’1+/ Oy (y¥y) -

Observe from (3.5) and the definition (3.8) of q; that

a2a

E)H;LQI = (5p1 5p2 e+ Z
7=1

o (815;,]81 + 62(5 82) (4.48)
1—

where dp; denotes the Dirac delta at p;. So, we see that

/ Lyuq1-y¥ =0.
D;

It follows from Lemma 3.6 and Lemma 3.8 that ||q1|(sp,) S V€ for i = 1,2. So we have

A (y¥1) - a1 = O(Ve),

oD;

and hence

/ By - y¥1 = 0(We), i=1,2. (4.49)
oD;

Let

0D4 8Dm81'[L0 8D1\8HLO

= J1 + Jo.

As before, from Lemma 3.6 and the fact that a ~ /e, we see that |J2| < €. From Lemma
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3.8, Lemma 4.10 and the fact that a =~ /¢, we have

BABS / |0var - V1 (g21 — cokiay) |+ |0var - U2 (22 + (a1 + a2)k1a) |
aDmal'ILO

S/ (2L + Y ) (2 4 Ve + rvely)
oD, €T YT €ty

Lo
< / 77—6@‘2 dy + €
—ILo € + Yy

S Tellne| + e

So we obtain
dyqs - (qg — ozgfi%ay U + (g + ag)k1a \112) S Tellne| + e (4.50)
0Dy

Similarly, one can see that

0,91 - (qz — agmgay V) — (a1 + ag)kaa \112) S 1ellne| + e (4.51)

0Do

Since a &~ /€, (4.43) follows from (4.47) and (4.49)-(4.51). The proof is completed. O

4.3 Proof of Lemma 4.1
We first show that

I = dyh - Wy = — bWy, j=1,2k=123. (4.52)
8D1 8D2

In fact, we see from Lemma 2.8 and the boundary conditions of h; that

1 1
aDe 9D D>

Since %lllk = 0, we obtain using Lemma 2.8 that
dhj Uy =— [ CVh;: V¥, =0. (4.53)
oDe De

So, (4.52) follows.
Since L) ,Hg = 0 in D;, we have

1
0,Ho h;= (1)~ [ 8,Hg ¥, =0.
oD; oD;

Thus we have

jm:/ auth-HQ:/ d,hj| . -Hg — 9,Hq - h;. (4.54)
oDe oDe
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One can easily see from (2.18) and Lemma 2.6 (i) that u — Hg can be extended to D€ so
that the extended function, still denoted by u—Hg, satisfies £, ,(u —Hgq) = 0 in D¢ and
u — Hg € A. Therefore, we have from Lemma 2.8

/3De<u_HQ) -8yhj‘+ —8V(u—HQ)|+-hj =0.

We then infer from (2.7) and (4.54) that

jQ’j = /aDe 8Vh]‘+ -u—&,uh h.7 = /aDe a,/h]}+ - 4.

Then the boundary condition in (2.6) and (4.52) yield

3
Joj = Clk/ O,h; '\I’k+02k;/ Oyhj| -y
! ; 0Dy Y ]}Jr 8Ds ) JM

3

= (c1r — con)Tjx

k=1

So, (4.6) follows. O

4.4 Estimates of integrals Z,, and J; and proof of Proposition 4.2

In this subsection we derive estimates of the integrals Z;, and Jq x, and prove Proposition
4.2 as a consequence. Some of estimates obtained in this subsection will be used in the
next subsection as well.

Lemma 4.11. The following holds:

Ty = mie 2+ O(r|lne| + 1), (4.55)
Zi2 = O(7|Ine| + 1), (4.56)
Toy = mae /2 + O(7|Ine| + 1), (4.57)

as € = 0.

Proof. According to (3.82), we have

Ijk = / C%hj : %hk = C@(ﬁqj + I'j) : 6hk
De De Ve
m; = = S -
= —< CVq,; : Vhy + CVr; : Vhy
vedpe pe
m; -~ = S = M
=2 [ CVq;:Vh+ [ CVr;:V(—aqx + 1)
Ve Jpe ! De ’ Ve
m; <

~ ~ mg ~ ~ ~
= —= .. Vh — - - .
N CVq; : Vhy + e /De CVr; : Vi + /De CVr; : Vry,

46



Since

my ~ ~ my ~ m; ~
— CVr; :Vqr = — CV(h; — —=q;) : Vai
\ﬁ De J \/E De ( J \/g J)
mp ~ ~ mimy ~ ~
= — CVqi : Vh; — CVq, : Vqg,
\/E De J € De J

it follows that

m; ~ ~ m ~ ~
Iw==;% DeCqu:th+~;% | CVai: Vi

_ Tk C%q]' : %qk +/ C%I‘j : §rk.
De

€ De

Then Lemma 2.8 yields

m; mg
T =—~2 d,q; -hy, — —= d,qx - h
” ﬁ/aDe TV Jope Y

m;m ~ o~
ik 0vq; - i —|—/ CVr; : Vry.
€ oDe De
Now, (4.55)-(4.57) follow from Lemma 4.8 and 4.9. In fact, we have from Proposition
3.13 that

CVr; : Vri| S E[r] 28] /2 < 1.

J,
Since h; = (—1)'3¥; on 0D;, we have

/ aI/CI] \I]k

mi 11/ mimg
- Oyqr -V, + dvq; - qr + O(1).
ﬁ; 2 Jop, ’ e Jope

2

%35

3

Tjp=—

[\

Then, from (4.34), (4.42) and (4.43), we have

2
S Ve )+ 2™ o) = |
In - ml—l—O(leneH—e) +2\/E+O( ) ﬁ—i-O(T]lneH- )
z—“@—ﬁ+mﬂmwﬂ+ﬁﬂvm—m+mmm+n
22 — € m2 \/E - \/E 9
Tis = "2 0 (re|Ine| + €) + O(1) = O(r|Ine| + 1).
€
This completes the proof. O
Lemma 4.12. We have
Zhsl, | Zos| S 1, (4.58)
and

47



Proof. We prove (4.59) first. For that we closely follow the proof of (4.12) in [9]. Let hi¢
be the function defined as follows: for (z,y) € I,

r+fi) g, (D)
h¥(z,y) = Vs + Vs, 4.60
R AR (4.60)
We emphasize that
1 1
hé( 2V{§ + 2V§§, (4.61)

where v;3 is defined by (4.31). We then extend h¥ to D¢\ II}, so that

1
hf = (—1)15113 on dD;,i=1,2,
h g2\ g, = 0, (4.62)

105 i1 (peviny) S 1

where By is a disk which contains D1 U Ds.
It is easy to see that, for (z,y) € Iz,

Y

O1hl = —
P Ly + ko)

+0(1), (4.63)

and
Dohd, 010, Dbk, = O(1). (4.64)

We mention that these estimates together with Lemma 3.11 show that th( and Vqs
have the same behavior in II;. In fact, we have

|Vqs — VhE| <1 in IIp. (4.65)

This estimate will be used in the proof of Proposition 4.5.
By Lemma 2.9, we have

Tus = Epelhg] < Epe[hk] < / hi 2

< [ renies [
De\TIp,
fa(y) 2
/ / \y| drdy+1
fl(y) 6+y

N/ v Sdy+151,
,Le—l—y

where the second to last inequality holds since fa(y) + f1(y) < € + y2.
To prove the opposite inequality, we invoke a result in [9]: For any v € H (I, \ I ,)
satisfying v = 0 on 9D N O(I1y, \ IIz,), it holds

/ \vV|2g/ v (4.66)
HL\HLO HL\HL

0
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(See the proof of (4.12) in [9].) N
Let hsg :=hs+ %\1’3. Then hg = 0 on 0D, ﬁa(HL \HLO) and hg = V3 on 0Dy ﬂa(HL\
I11,). Therefore, using (4.66), we have

Tys = Epe[hs] = Epe[hs] > / VR > 1 (4.67)
ISFAVIPN
So, (4.59) is proved.
To prove (4.58), let j =1 or 2. From Lemma 2.8 and (3.82), we have

Ijg = my §qj : %hg + C@I‘j : ﬁhg
De

Ve Jpe
:_n\;é/ 8qu-h3+/ C%I‘jzﬁhg
oDe De
1mj / < Vi
= GVQ'-‘I/?)_/ ovqj - Vs ) + CVr; : Vhs
2ﬁ< opy oDy ) De ’
::I+II.

From Lemma 4.8 (ii) and the fact that a = /e, we have

I= %(52]@(—1 + 4magp) = O(1).

It is clear from Proposition 3.13 and (4.59) that

11| < Epelr] a3/ < 1.
This proves (4.58). O
Lemma 4.13. We have

|Takl S lsllcrron), k=1,2,3.

Before proving Lemma 4.13, let us make a short remark on regularity of Hg. Recall
that Hq is defined by

Hqo = —Ss0 [&,ubg] + Dag[g] in Q.

As shown in [9], we have
190l e i) S lgllonony- (4.68)
In particular, we have

[0l L a0) < llgllerran)-

So, for any € such that Q; C €, we have

Hallc20,) S gl an)- (4.69)

We also have
Heallm100) < llglloroa)- (4.70)
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Importance of these inequalities is that they hold independently of e.

Proof of Lemma 4.13. Let us first consider the case when k& = 1,2. For simplicity, we
assume [|g||¢1y(a0) = 1. Since [ 9, Hq - hy, = 0, we have

Jok = Oyhy - Hg — 0,Hg - hy.
oDe oDe
Then (3.82) yields
m
Jok = k(/ ovqr-Ho — 0,Hq - %) + Oyry - Ho + (—1) 0,Hgq -1y,
Ve Jape aDe aDe

Green’s formula for the Lamé system and (4.48) yield

€
ih = / Ly a1 - Ho
my D1UD>
2

= (Ho(p1) — Ha(p2)) -e1— ) |

=1

a2a

(7(31Hﬂ(pj) -e1 + 0:Hq(pj) -e2).  (4.71)
a1 — a2)

Since a &~ /€ and (4.69) holds, we have
2
a2a
> m(&HQ(pj) -e1 + 0:Ho(p)) - e2) = O(Ve).
j=1

Since p1 = (—a,0) and p2 = (a,0), the mean value theorem shows that there is a point,
say p«, on the line segment p1p2 such that

|(Ha(p1) — Ha(p2)) - e1] < 2a|01Ho(px) - €.

So, we have
|(Ho(p1) — Ho(p2)) - e1] S Ve

Therefore, from (4.71), we obtain

Similarly, one can show

I = O(1).

Next we estimate II;. Let v € A* be the solution to the following exterior Dirichlet
problem

Ly,v=0  inDc
(4.72)
v = Hg on dD¢.
From (2.37), we have
Epe[v] = min Epe[w], (4.73)

weWw

where

W .= {w e A" wlgpe = HQ}
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Let w be a function such that

Wi, uape = Ho,
W(r2\B, = 0, (4.74)

Wl 2y S lI8llcra @0

where By is a disk which contains D U Ds. It is worth to mention that the third condition
in the above is fulfilled thanks to (4.69). Since w € W, we have

Epe[v] < Epew] < 1. (4.75)

Then, using Lemma 2.8 and Proposition 3.13, we obtain

IIk|:’ Oury - v
oDe

CVrg: Vv| < Epefrp)V2Epe V]2 <1, k=1,2. (4.76)

De

Let us now consider I11;. We see from Lemma 3.6 and 3.8 that

(—l)i m
| = U, — — | <1.
Irk|ap, | ' 5 Uk ﬁquapl N

So it follows from (4.70) that
11| S 10Hallr200) S 1, k=1,2.
Therefore, we have
|\Takl < Ikl + [ TIk| + 111, S 1, k=1,2.

To deal with the case when k = 3, let v be the solution to (4.72) as before. It follows
from (4.59) and (4.75) that

|Ta3| = O/h3 - v

oDe

C%hg Vv

ST Ep V]2 S 1.

J,
The proof is completed. O
Proposition 4.2 follows from Lemma 4.11, 4.12 and 4.13.

4.5 Proof of Proposition 4.3

Set
In Tio I3

1:= |12 I To3
T3 Iz 133
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From Lemma 4.11 and 4.12, we have
det T = T11 (T22Ts3 — I33) — Tha(TroTss — T13Ta3) + Tas(T12Zos — T13T22)
mim
= T11Z29133 + 0(671/2) ! 2133(1 + O(\[)) (4.77)

So, by (4.59), the matrix Z is invertible for sufficiently small e.
By Lemma 4.1 and Cramer’s rule, we have

Ja J
11— 021 = 2(122133 I33) — 1 2;(112133 — T13793)
Ja3
T1oTo3 — T131 4.
+ 1 tI( 12223 — T13T22). (4.78)

Recall from Lemma 4.11, 4.12 and 4.13 that
T, Too~ e V2 | Tig| S1+7|Ine], |Zj3 <1, Tz~ 1,

and
(Toil < lgllor )

for j = 1,2,3. For simplicity, we may assume [|g|lc1~@n)=1. Then, from (4.77) and
(4.78), we can easily check that

L TooTss — 2 Ti3Tan + O(e + 7e| Inel).

Ja,
det”Z

€11 — Co1 = Jos
11— C21 = do tI
Hence, by applying (4.55) and the second equality in (4.77), we obtain

e
c11 — 21 = ﬁ(ﬂg,l - m) + O(e + 7¢|Ine|).
mi 133
Similarly, we have
7
cl2 — €2 = ﬁ(jQ,Q - ‘791’2323) + O(e + 7e|Ine|),
T
€13 — C23 = IQS + O(Ve+ Ve[ ln¢]).

Finally, the definition (4.7) of Kq ; yield (4.9)-(4.11). The proof of Proposition 4.3 is
completed. ]

4.6 Proof of Proposition 4.5

To prove (4.16) we modify the function r’
C?(R?) such that

i+ introduced in (3.86). Let rg ; be a function in

K K .
roj = rj |, in T,
(1)’ m; .
T = 5 Y5~ 72% on dD;, i = 1,2, (4.79)
s
rh; = —72%' on J9,
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and
Hrg,jHHl(R?\HLO) S L (4.80)

We emphasize that rg ;= r]K is a linear interpolation in the gap region II7,. Note that

VrJK i1, is already estimated in Lemma 3.14.
Let
wji=Tq; — 14, j=12 (4.81)

where rg ; is the function defined by (4.15). We see that the function w; is the solution
to the following problem:

K 0
{ ‘C)vltwj = *,C)\#I'Q’j m Q,

(4.82)
W = 0 on 9D1 U Dy U 0.

The following lemma can be proved by arguments parallel to the proof of Lemma 3.6
in [9]. So, we omit the proof.

Lemma 4.14. Let v be a solution to Ly ,v = —L) ,f in Q withv =0 on 0D1U0DyU0M,
where £ is a given function belongs to C%(R?). Assume that the following conditions hold:

/ Vv < 1.
Q

(i) The function v satisfies

(i) The function f satisfies

[(Lx ), )| S for (z,y) € Tz

6+y2

Then we have, for 0 < L' < L,
[VVlpeoqm,) S 1-
Lemma 4.15. For j = 1,2, let w; be the solution to (4.82). Then we have
Vw;(x)] <1 for x € IIz,. (4.83)

Proof. It suffices to show that the hypotheses (i) and (ii) of Lemma 4.14 are fulfilled,
namely,

/~ Vw;[? < 1. (4.84)
Q
and 1

\(E,\,Mrg,j)(:n,yﬂ < Py for (z,y) € 1. (4.85)
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By the first Korn’s inequality, the variational principle and Lemma 3.14, we have

/'|VWJ'|2 § Z/V |§Wj|2 5/'C§W] . @Wj
Q Q Q

< /jC@rg,j : 61’9,]- + /~ C@rgj : @rgj
Q Q

§/~(CVrg,j:Vrg’j
Q

5/ Vr§<|2+/ VrK|2</ / Y g dy +1
I, O\l f1<y>€+y

0
Lo
S [Clermhay g
—Lo
So we obtain (4.84).

We now prove (4.85). Let d, ¢ and n be the function defined in (3.89). It follows from
(3.90) and (3.91) that, for (z,y) € I,

K K
ourgn = O0nryy =0,

¢ od
Orarly 1y = Orarfy = T2
¢// 9 ¢/ d’ ¢ d" 9 gbd/Q
8227“5[{11:8227"52 3—7— 7 B
o"fi | S (b/fld' of1
2 _
+ d + d d? + d
dl d// de
¢‘212 ¢J22 + 2(’5"23 +n. (4.86)
In addition to (3.92) and (3.93), we have
1
19" W], 1" ()] < g (4.87)

Then, using (3.92), (3.93), (4.86), (4.87) and the fact that |z| < e+ y? for (x,y) € I,
we have

1 (e+y)lyl o 1
ety?  (e+9?)? Tety?

’8127"{2{,11| N

and

L ] e+y? (e )y

e+y?  (e+y2)?  (e+y?)?  (e+y?)?
1 e+y® |y +(6+y2)ly\ e+
e+yety? ety (e+y?)? e+ y?

(e+v°)

18227"5[2(,11| S

(e+y2)y?  (e+y?)(e+y?)  (e+yH)(e+y?)y? 1
(e +y?)? (e +y?)? (e+y?)3 €+ y>
1

Ne—i—yQ'
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The proof is completed. O
Now we are ready to prove Proposition 4.5.

Proof of Proposition 4.5. Let us look into estimates in (NZ\H r, first. Let v;; be the function
defined in (4.29). It is proved in [9] that

||vvij||Loo(g~2\HL) 5 17 L= 1727 .] = 17273'

Since hQ’j = —%Vlj + %ng, we have

[Vhe SL =123

il @iy
This estimate together with (3.58) and (3.80) yields the second part of (4.16) and (4.18)
on O\ IIg,.

By (3.88) and the first line of (4.79), we have

§1+Ly’2

Y

Then, the first part of (4.16) follows from (4.81) and (4.83).
The estimate (4.18) on II;, follows from (4.30), (4.33), (4.61) and (4.65). In fact, we
have on IIj,

|Vrgj(x)| = ]Vr][-((x)| for x € I1y,.

1 1
Vhg 3 = —§VV13 + §VV23

1 1
= —§Vv1[§, + §Vv§3 +0(1)

= VhE +0(1) = Vaz + O(1).

This completes the proof. O

5 Stress concentration-the free space problem

In this section we consider the free space problem (2.10) and characterize the singular
behavior of its solution.
Analogously to Jq ; in (4.5), we define

\7j = auh] : H7 .7 = 172737 (51)
aDe

where H is the background solution of the problem (2.10). It is worth emphasizing that
Jj is defined using H while Jq ; uses Hg. Analogously to KCq j in (4.7), we define

J3T13 J3Lo3 I3
o= o — Ky = 23
Toy 2 =T Tos 3 Tos

Ki=J01— (5.2)

Then the constants KC; are bounded regardless of € (see (5.11)).
The following is the main result of this section
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Theorem 5.1. Let u be the solution to (2.10). Then we have the following decomposition
ofu—H:

3
(u—H)(x) =b(x) ~ 3 (K; +5,)q;(x), x€ D, (5.3)
7=1

where the constants sj, j = 1,2, 3, satisfy

[sj| S Vel Inel|[H| g1 (p), (5.4)
and the function b satisfies

VD] Lo (pey S H 71(m)- (5.5)
Here, B is a disk containing D1 U Ds.

By the proof analogous to that of Theorem 4.7, we can derive the following theorem
from Theorem 5.1.

Theorem 5.2. It holds that

Ej:l,Q |’Cj| < HV(u )|| ||H”H1
7& ~ Loo De) 7\/€ .

We prove Theorem 5.1 based on Theorem 4.6. Let B be a disk containing Dy U Ds.
We assume for convenience that the center of B is 0. Then the solution u to (2.10) is the
solution to (2.6) with Q2 = B and g = u|gp. So we obtain the following decomposition of
the solution u in B by applying Theorem 4.6:

(5.6)

3
u=bp— > (Kp;+sp;)q; inD°NB, (5.7)
j=1

where the constants sp ; and the function bp satisfy

sp,j| S TVelInel||ullcrnom)- (5.8)

and
[Vbgl e (penny < lullervom), (5.9)
Although (5.7) looks similar to (5.3), there are three things to be clarified. First, the
coefficient of q; in (5.7) is given by Kp j, not by ;. Second, the right-hand sides of
(5.8) and (5.9) depend on e since [[ul|c1.+(9p) does. We need to prove the [[ullci+(sp) is
bounded regardless of €. Third, the decomposition is valid only in B, not in the whole

region D In the following we elaborate on these issues to show that (5.7)-(5.9) actually
yield (5.3)-(5.5).

Lemma 5.3. Kp; =K, for j =1,2,3.
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Proof. By Green’s formula and the fact that u — H € A, we have

~Spp[u(u — H)|o5] (x) + Dopl(u ~ H)lpp)(x) =0, x € B.

Then, by Green’s formula again, we have

Hp (X) = _SBB [81111‘83] (X) + Dsp [ulaB](X)
= —Sop[0,H|, ] (x) + Don[Hlop)(x) = H(x),

for x € B. Therefore, Lemma 5.3 follows from (4.5), (4.7) and (5.2).
Lemma 5.4. Let By be a disk containing B. We have
lalletros) S IHI 718,

and
VCJ| SJ HHHHl(Bl)7 J=12,3.

Proof. By Proposition 2.10, we have
lullcrrvomy < lu—Hllerv o) + Hllcrvos) S 1H g1 s,)-
By Proposition 4.2 and Lemma 5.3, we have

IKjl = 1KB,;

< lullera@om)-

So, (5.11) follows from (5.10).

Proof of Theorem 5.1. Let s; := sp j. Then it follows from (5.8) and (5.10) that

5| S TVelnel|[H g1(5,)-
Let

3
b:=u-—H+ Z(/Cj + 55)q;.
=1

(5.10)

(5.11)

(5.12)

(5.13)

To estimate b in D¢, we split the region D into D° N B and D¢\ B. Using (5.7), Lemma

5.3 and the fact that s; = sp ;, we have

3
b= (u—i—Z(ICBJ +sB7j)qj> —H=bg-H inD‘NBKB.
j=1

So, we infer from (5.9) and (5.10) that

IVb|l oo (perny = (VDB oo (DenBy + [IVH| oo (DenB)

S lallervos) + IVH peo (pensy S 1H 518,
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Let us now consider estimates on the region D¢\ B. From Proposition 2.10 and (5.13),
we see that

IV (pey = | V(0= H) + D2 (K + 5,)Va |

=1

3
=

Leo(De\B)

3
< 19 (= H)lmoa + | S0 +s)va,
j=1

< [Hl| g1, + H i(le + Sj)vquLoo(DE\B)'
=

Lemma 3.6 and (3.80) show that

IVajllzepemy S 1, J7=1,2,3.

Therefore, from (5.11) and (5.12), we obtain

VD[ Lo (pevn) < B gpy) + (1+ Vel ne) [[Hl gz, < [H m1s,)-
So we have
VDo (pey S 1H| 51 (8y),
and the proof of Theorem 5.1 is completed (with B replaced by Bj). O

6 Symmetric inclusions and optimality of the blow-up rate

In this section, we show that (5.3) can be further simplified by assuming some symmetry
of the inclusions D; and D,. More importantly, we show that the blow-up rate e /2 of
|Vu| is optimal by considering two circular inclusions. The singular functions q; play an
essential role here as well.

Let us first assume that the background field H can be decomposed as

H=H, + H,, (6.1)

where He = (He1, He2)T and H, = (Hy1, Hy2)? respectively have the following symmetric
properties:

{Hel(%?/) = Hel(liv _y) = el(_1:7y)a (62)
He?(x7y) == 52($, _y) = H52<—17,y),
and
{Ho1(:1:,y) = —Ho(z, —y) = Ho1(—,y), (6.3)
Ho?(xay) = Ho2(337 _y) = - 02(_1:7?/)'

If H is a uniform loading, that is, H(x) = (Ax, By)T+C(y, z)* for some real coefficients
A, B and C, then we may take H, = (Ax, By)” and H, = C(y,z)7.
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6.1 Symmetric inclusions

Let us assume that Dj U Do is symmetric with respect to both z- and y-axes. Then we
have the following theorem.

Theorem 6.1. Let u be the solution to (2.10) under the assumption that Dy U Do is
symmetric with respect to both x- and y-axes. Then, it holds that

(u—H)(x) = b(x) + Jiq1(x) + Faz(x), x € D°, (6.4)
where the function b satisfies
IVb(x)| < [[H|| g1y for all x € D°. (6.5)

Here, B is a disk containing D1 U Dy. Moreover, if H = He, i.e., H satisfies (6.2), then
J2 = 0; If H satisfies (6.3), then J1 = 0.

Proof. Since Dy and D9 are symmetric, the number 7 defined by (2.54) is 0. So it follows
from (5.4) that s; =0 for j =1,2,3.

Now it remains to show that 1 = J7, K1 = J2 and K3 = 0, for which it is enough to
show that J3 = 0 by the definition (5.2) of ;. Recall that

J3 = 0,hs - H.
oDe

Let hg = (h31, h3a)?. Thanks to the symmetry of the inclusions and the boundary condi-
tion of hs, one can see that the following two functions are also solutions of (3.1):

|:_h31(x7 —y)] 7 {_hm(—x,y)] .

h3a(z, —y) h3a(—x,y)

So, by the uniqueness of the solution we see that hs satisfies the following symmetry:

h31(x7y) = 7h31(x7 *y) = 7h31(7x)y)7 (6 6)
hsa (2, y) = haa(z, —y) = hsa(—2,y).
The outward normal n = (n1,n2)7 to D¢ satisfies
m(z,y) =m(z, —y) = —m(-2,y), 6.7)
na(,y) = —na(z, —y) = na(—z,y).
So, the conormal derivative f := d,h3s on 0D°¢ enjoys the following symmetry:
fl(xay):_fl(xa_y):_fl(_l‘ay)a (6 8)
fo(z,y) = fa(z, —y) = fo(—=,y).

Let H=H, + H, be the decomposition as in (6.1). We write J3 as

ng/ f-He+/ f-H, =1+1I.
oDe oDe
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Using the symmetry with respect to the y-axis in (6.2) and (6.8), we have

I:/ (fl,fg) 61, + f17f2 elaHe2)
0Dy

0D3

:/ (f1, f2) - (He, H +/ (—f1, f2) - (—He1, Heo)
0D1 0D

=2 leel+f2He2-
0Dq

Then, the symmetry with respect to the z-axis in (6.2) and (6.8), we obtain
I= 2/ (fiHe + foHe) + 2/ (fiHer + foHeo)
OD1N{y>0} 0D1N{y<0}

22/ (leel+f2H€2)+2/ ((=f1)He1 + f2(—He2)) = 0.
OD1N{y>0} OD1N{y>0}

By the exactly same way, we can show I1 = 0.
Suppose that H has the symmetry property (6.2). Let g := d,hs. Then (3.7) and
(6.7) show that g has the following symmetry properties:

{gl(rc,y) = —g1(z, ~y) = g1(—2,y),

(6.9)
92(z,y) = g2(x, —y) = —ga(—,y).

So one can see as before that

7= [ gH-0
oDe

Similarly, one can show that J; = 0 if H has the symmetry property (6.3). This completes
the proof. 0

Corollary 6.2. Under the same hypothesis as in Theorem 6.1, we have

(I + Ile) (u—H) (6.10)

1
SV oo (pe) S —=-
Ve e
We emphasize that J; and J> do depend on e. In the next subsection we show that
there are some cases such that 1 < | 71|+ |J2| by considering circular inclusions. It implies
that e /2 is the optimal blow-up rate of the gradient.

6.2 Circular inclusions and optimality of the blow-up rate

In this subsection we show that ¢~1/2 is a lower bound on the blow-up rate of the gradient

by considering two circular inclusions under a uniform loading.

Proposition 6.3. Suppose that D1 and Do are disks with the same radius ro and let u
be the solution to (2.10). Let

o =af(\p) = /\:H (6.11)
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(i) If H(z,y) = (Az, By)" with A # 0, then there are ¢g > 0 and ag > 0 independent
of € such that for any (X, n) satisfying o (A, ) < ag and € < €y the following holds:

1< |J| and J2=0. (6.12)

(i) If H(z,y) = C(y,z)T with C # 0, then there are eg > 0 and oy > 0 independent of
€ such that for any (A, u) satisfying a*(\, pu) < o and € < ey the following holds:

Ji=0 and 15|7 (6.13)

We emphasize that the condition a* (A, 1) < a can be satisfied even if g is small. In
fact, the strong convexity condition requires g > 0 and A 4+ p > 0. So, by taking negative
A, the condition is satisfied.

Proof. We only prove (i) since (ii) can be proved similarly.

Since H(z,y) = (Ax, By)? satisfies (6.2), J2 = 0 by Theorem 6.1. To prove 1 < |71,
we define ry by
(1 + %tl)hl = %(h +ry, (614)
where t; is the constant appearing in Lemma 3.3. Then r; satisfies £ ,r1 = 0 in D¢ and
r; € A*. It also satisfies, according to Lemma 3.3, the boundary condition

miosa |x
= — 0Dy U dDs. 6.15
" Verg M oo ? (6.15)
Since
jl - az/hl : Ha
oDe

we may write, using (6.14), (1 + %tl)jl as

mi mq my
1+ —=t = o, ((1+ —%=t1)hy) -H— o,H-((1+ —=t1)h
( +\ﬁ 1) - (( +\ﬁ 1)hy) - (( +\£ 1)hi)
mi my
= O(—=qi+r1) -H—- OoH - (—&=q; +r
oDe (\/E ! 1> oDe (\/g ! 1)
m
= \/2< e 61,(]1 -H—OZ,H-q1> + e o,r1-H— e o,H r;
=11 + 1+ I3. (616)

To estimate I1, we first recall that mq := [(al —a9)\/2(k1 + /12)]71. Since kK1 = Ko =
1/rg, we have
mo_ VI (6.17)

Ve 2(ar —ag)/eE

Then Green’s formula for the Lamé system and (4.48) yield

miq
IL=— Ly,uqi-H
' \/E D1UD> Mot
\/% a0
=Y __ |(H(p1)— H(ps))-e1 — H(p,) - Hio) -
2(a1 — az)y/e (H(p1) (p2)) -e1 Zal—QQ(al (pj) -1+ 02H(pj) - e2)

J=1
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Since p1 = (—a,0), p2 = (a,0) and H(z,y) = (Az, By)T, we arrive at

I — oy 24 + 202(A+ B) (6.18)
! 2(a1 — ag)v/€ o —ay | '
Since o = % and ap = m7 we have
1
=2m(A+2p) = 2mp(l + o), (6.19)
ap — o
a2 _Atp_ o (6.20)

a9 — Q9 2u 2
Since a = ,/Tge + O(€3/2), we have

a\\/[v?o = o+ O(e). (6.21)

Substituting (6.19)-(6.21) into (6.18), we obtain

I = =2mpu(1+ a*)(ro + O(e)) [2A + a* (A + B)]
= —2mrop(24 4 O(a* + €+ a*e)). (6.22)

To estimate Io, let B, be the disk of radius r centered at the origin containing D1 U Ds.
Choose r and R so that » < R. Let x be a smooth radial function such that y(x) = 1 if
|x| <rand x(x) =0 if x| > R. Let v := yH. Then, using Green’s formula, we obtain

9 SN
L] = / Tyl =| [ CVry: Vv| < Epefra])/?Epe [v]/2. (6.23)
oDe 8V De
Let w(x) := x(x)x for x € D¢. Then
mioaoa e
— NG w=r; on dD". (6.24)
Then, the variational principle (2.37) yields
2
miaoa
Epe < Epe|w]. 6.25
len) < (P25 ) eoriw (6.29)

We emphasize that the variational principle holds since r; is a solution of the Lamé system.
So, we arrive at

mpaza 1/2 1/2
L < e e . 2
12| < NG Epe[w]/Epe|v] (6.26)
Note that HVWH%Q(DG) <1 and
Epelw] = [ CVYW:Vw S (A+20) VW[ T2 pe) S A+ 2.

DE

Here and throughout this proof, X <Y implies X < CY for some constant C' independent
of (A, p) and e. Similarly, one can see that

Epe[v] S A+ 2pu.
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So we infer from (6.26) that

miaoa
2] S

e
It then follows from (6.17), (6.19)—(6.21) that

(A +2p).

| < —2

(A +20) S @'l +a%) S ™.
a1 — Q2

Since H = (Ax, By), it is easy to see that
‘atuaD‘i’ 5 A+ 2#'
So, by (6.15) and the fact that a ~ /¢, we see that

a2
a1 — Q2

1I3) € myan(A +2p1) (A +2p) S pa”

Combining (6.16), (6.22), (6.28) and (6.29), we have

1+ 2Ly
€

Ve

Recall from (3.46) that |t;| < (a1 4+ a2)e’/2. So, using (6.20), we have

)1 = —Arrop(A + O(a* + € + a*e)).

mi < 209

V|3

Therefore, we finally arrive at

Oé1+0426§(1+
a1 — 09 a1 — Qg

Je S (1+a)e

_Arrop(A+ O(a” + e+ a'e))

JN1= 1+ O(e + a*e)

Since A # 0, there are o and €y such that
IBSAVA

for all (A, p) satisfying o < ag and € < €. This completes the proof.

Corollary 6.2 and Proposition 6.3 shows that e~1/2
In fact, we have
SN e

(6.27)

(6.28)

(6.29)

O]

is a lower bound on Vu as € — 0.

(6.30)

as € — 0, provided that o < «p. In fact, we have a more refined estimate for Vu(0,0).

Theorem 6.4. Let u be the solution to (2.10) when Dy and Dy are disks with the same
radius. Suppose that the Lamé parameters (A, u) satisfy a* < ag. Then the following holds

as € — 0.

(i) If H(z,y) = (Ax, By) with A # 0, then

|81U1(0, 0)‘ ~ 6_1/2 and ’82U1(0,0)| + |81U2(0,0)| + ‘322@(0,0)’ S 1.
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(ii) If H(z,y) = C(y,x) with C # 0, then

‘81U2<0, O)‘ ~ 6_1/2 and ]81u1(0, 0)’ + |82u1(0,0)\ + ‘82”2(07 O)’ S 1. (6.32)

Proof.  Suppose that H(z,y) = (Az, By) with A # 0. It then follows from (6.4) and
(6.12) that
V(u—H)(x) = Vb(x) + J1Vqi(x). (6.33)

Then (3.56), (6.5) and (6.12) yield (6.31). (ii) can be proved similarly. O
The estimates (6.31) and (6.32) yield, in particular,

IV -u(0,0)] = e /2 and |8yuq(0,0)] + |81u2(0,0)] < 1 (6.34)
if H(z,y) = (Az, By) with A # 0, and
01u2(0,0)| + |02u1 (0,0)| ~ ¢ /2 and |V -u(0,0)] <1 (6.35)

if H(z,y) = C(y,x) with C' # 0. Note that V - u represents the bulk force while |0yusa| +
|O2ui| the magnitude of the shear force. These estimates are in accordance with results of
numerical experiments in [19].

Conclusion

We investigate the problem of characterizing the stress concentration in the narrow region
between two hard inclusions and deriving optimal estimates of the magnitude of the stress
in the context of the isotropic linear elasticity. We introduce singular functions which
are constructed using nuclei of strain, and then show that they capture precisely the
singular behavior of the stress as the distance between two inclusions tends to zero. As
consequences we are able to derive an upper bound of the blow-up rate of the stress,
namely, e 1/2 where € is the distance between two inclusions. We then show that e /2 is
an optimal blow-up rate in the sense that it is also a lower bound on the rate of the stress
blow-up in some cases. We show that it is a lower bound in the case when inclusions are
disks of the same radii.

To show that e /2 is a lower bound in the case of circular inclusions, we impose a
certain condition on the Lamé parameters. This condition does not seem natural and may
be removed. In fact, it is likely, as suggested in numerical experiments in [19], that e 1/2
is a lower bound without any assumption on Lamé parameters if the background field is
a uniform loading. It is quite interesting and challenging to clarify this.

A The Neumann-Poincaré operator and the exterior prob-
lem

In this section we prove Propositions 2.1 and 2.2, and Theorem 2.5. The proofs are based
on the layer potential technique.
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A.1 The NP operator

Let us begin by reviewing well-known results on the layer potentials on simple closed
curves. Let D be a simply connected bounded domain in R? with the C1® (a > 0)
smooth boundary. The co-normal derivative of the single layer potential and the double
layer potential satisfy the following jump formulas:

OuSaplielle () = (31 +Kip ) [ella). x € 0D, (A1)

Doplepl|:(x) = ( I+zcdD)[ l(z). xe oD, (A.2)

where Kgp is the boundary integral operator defined by
Kopleli@) = pv. | 0, Dlx=y)e(y)io(y). xeoD. (A3

and K}, is the adjoint operator of Kyp on L*(dD)%. Here, p.v. stands for the Cauchy
pricincipal value. The operators Kop and K}, are called the Neumann-Poincaré (NP)
operators.

It is known that the operator —1/21 + K}, is a Fredholm operator of index 0, it is
invertible on H~1/2(9D)?2, and its kernel is of three dimensions (see, for example, [14]).
It is worth mentioning that the NP operator can be realized as a self-adjoint operator on
H~Y2(0D)? by introducing a new inner product, and it is polynomially compact (see [6]).

We now consider D¢ = R? \ (D1 U D), whose boundary D¢ consists of two disjoint
curves 0D and 0Dy. To define the NP operator in this case, we consider the solution to
(2.10) in the form of (2.19), namely,

u(x) = H(x) + Sop, [1](x) + Sap, [#a] (%)-

The boundary condition on D¢ in (2.10) amounts to
9y (H + Sop, [¢1] + Sop,[wa]) |- =0 on 6D,
which, according to (A.1), is equivalent to the following system of integral equations:
1 *
(=57 +Xom,) le1] + uSom,liallon, = -0,F on oD,

1 *
BuSom []loms + (—21 " /cm) 0] ——0,H on oDy
This system of integral equations can be rewritten as
aVH‘aD
< 902 BVH‘aDz ( )
where I is the identity operator and K*, which is the NP operator on 9D°¢, is defined by

61/ SBD :|
K* := 9Dy ! 2. A5
[%SGDI K5, (4.5)
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A special attention is necessary for the off-diagonal entries in the above: For example,
0y, Sop, means that the single layer potential is defined on 0Dy and the co-normal deriva-
tive is evaluated on dDy, so the operator maps H~'/2(9D3)? into H~'/2(9D;)?. One can
see that the adjoint operator K of K* on L?(0D¢)? is given by

Kap Dop,|ap }
K= ! 2195710 A6
{D8D1 lop,  Kop, (A.6)

Here Dyp,|gp, means the double layer potential on 0D evaluated on 9D;. We emphasize
that

(Dol + PavsleaDls = (-51+K) [£1) - on oD (A7)

Lemma A.1. The operator —1/21 + K* is of Fredholm index 0 on H~Y/2(0D¢)?.

Proof. We express —1/21 + K* as

—1/2I+K* =

—1/21 + K3 p, 0 } [ 0 6V183D2]_ (AS)

0 121+ Kyp,| * |OnSon, 0

Since —1/2I+KC%,  is of Fredholm index 0 for j = 1,2, so is the first operator on the right-
hand side above. Since 0D1 and 0Ds are apart, the second operator on the right-hand

side is compact. Since the Fredholm index is invariant under a compact perturbation,
—1/21 + K* is of Fredholm index 0. O

In the following we prove Propositions 2.1 and 2.2, and Theorem 2.5. We prove Propo-
sition 2.2 first since it is simpler.

A.2 Proof of Proposition 2.2

We first prove the following lemma.
Proposition A.2. The operator —1/21+K* is invertible on H;l/Q(aDl) X H;”Q(apg).

Proof. As we see from (A.8) that —1/2I + K* is a compact perturbation of an operator

which is invertible on Hy, 1/2 (0D1)x Hy, Y 2(6D2). So by the Fredholm alternative it suffices
to prove the injectivity of —1/2I + K*.

Suppose that
1 * (pl:|
—I+K =0 A9
(o) 2 +9

for some (¢, ;) € H\El/Q(aDl) X H\;,l/Q(E)Dg) and let

u(x) = Sopy [01)(x) + Sop,lpa) (x),  x € B2,

Then (A.9) implies that £) ,u =0 in D; and 9,u =0 on dD; for i =1,2. So

3
u = Z aij\I/j in l)z (AIO)
j=1
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for some constants a;;. Since the single layer potential is continuous across 9D;, we have

uly = Z?Zl a;jV; on 0D;. Moreover, by the jump formula (A.1) for the single layer

potential, we have

ayuu‘wj:/ (wauur_)-%:/ i W5 =0
oD; oD; o

[

since ¢, € H\;l/z(aDi). So u is a solution to (2.10) with H = 0. It is worth mentioning
that the decay condition at oo is satisfies because ¢; € Hy, Y 2(é)Dj). We then have

3 2
CVu:Vu= duly -u= a-l/ ou-v; =0,
De oDe v ;; Y oD; v !

where the last equality follows from (2.7). Hence u = 0 in D¢. By the jump formula (A.1)
for the single layer potential, we have

p; =0l —9ul- =0 on dD;

for ¢ = 1,2. This completes the proof. O

Proof of Proposition 2.2. Note that since £, ,H = 0 in R2, 9,H|sp, € H;l/Q(E)DZ-) for

i =1,2. So we solve (A.4) for (¢;,5) on H£1/2(8D1) X H£1/2(8D2). Then u defined by
(2.19) is the solution to (2.10).

A.3 Proof of Proposition 2.1

Let u be the solution to (2.6) and let f := d,u on 0. Let Hg be the function defined by
(2.17). We emphasize that Hq(x) is defined not only for x € Q, but also for x € R? \ Q.
Moreover, one can see from (A.1) and (A.2) that the following holds:

HQ|, — HQ‘+ =g, 8,,HQ|, — 0,,HQ|+ =f on 0. (A.ll)

Let (¢1,¢9) € H;1/2(8D1) X H;l/z(aDg) be the unique solution to (A.4) with H
replaced by Hgq, and let

vi(x) = Ho(x) + Sop, [01](x) + S, 9](x),  x € D\ 00 (A.12)

Then vy is a solution to

(Lo, v =0 in D°\ 09,
3
V:jz::laij\pj(x)a on 8D17 1=1,2, (A13)
V’— - V’—i— =8, auv‘— - 81/V’—i- =f on 0,
v(x) = O(|x|™) as |x| — oo,

where the constants a;; are determined by the condition (2.7).
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o u(x) x€N \ D1 U Do,
vl ’_{ 0 x € R2\ Q.

Then vy is also a solution to (A.13) with the same g and f.
Let v := v; — va. Then v is a solution to (A.13) with g =0 and f = 0. So, we have

3 2
(C%v:@v:/ vy -v= c--/ ou-v; =0,
. o MYV 2 [ e
where the last equality follows from (2.7). So we infer v =0 in D°. In particular, u = vy
in Q\ D; U Dy as desired. O
A.4 Proof of Theorem 2.5
Let

V= {f e H'/?(9D%)? : K[f] = ;f}

and )
W= {f e HV2(0D°) : K*[f] = 2f} :

which are null spaces of —1/2I + K and —1/21 + K*, respectively. In particular, we have
dimV =dimW. For j = 1,2, 3, let

Ozl(X) _ {\IJJ(X) if x € 9Dy,

0 if x € 0D>,
and
2 0 if x € 9Dy,
aj(X) = o .
j(X) if x € 0Ds.

Lemma A.3. The following holds:

(i) dimV =dim W = 6.

(ii) {a},af :j=1,2,3} is a basis of V.
Proof. If x € R?\ D;, then

Pon W)(x) = [ CTT(x—y): T9,(y) =0, (A14)

for i =1,2 and j = 1,2,3. In particular, we have (—1/21 + Ksp,)[¥;] = 0 on dD;. So, we
infer that {a},a?} C V. Since %1 and 04]2-, j = 1,2,3, are linearly independent, we infer
dimV > 6.

On the other hand, since —1/2I + K* is a Fredholm operator of index 0, we have
H~Y2(dD¢)? = Range(—1/2I + K*) @ W. According to Proposition A.2, H;1/2(8D1) X
H;l/z(aDQ) C Range(—1/2I+K"*). Since H;l/Z(ODi)z has co-dimension 3 in H~'/2(9D;).
we infer that the co-dimension of Range(—1/2I + K*) in H~Y/2(9D®)? is larger than or
equals to 6. So, dim W < 6. This completes the proof. O
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Lemma A.4. Let
Wy = {f: (fr,B)eW: [ £, +/ £y ;=0 forj= 1,2,3}. (A.15)
8D1 aD2

Then, dim Wy = 3.

Proof. For i =1,2, define ﬁ; by

, i if 7=1,2

=g T (A.16)
as + ¢ + d;ah if j =3,

where the constants ¢; and d; are chosen so that

(B5,B8f) =0 if (i,5) # (k,1). (A.17)

Then there is an eigenfunction f; € W such that

: 1 if (i,5) = (k, 1),
(6,60 =< (h9) = (k) (A.18)

0 i (1,9) # (h,1).
In fact, since (—1/2I + K*)[ﬁ;] € H;l/Q((?Dl) X H;1/2(8D2), there is a unique g =
(81,82) € H£1/2(3D1) X H\I_,I/Z(ﬁDg) such that

(-51+5 ) g = (50 + ) 43

Let f := ,8; — g. Then, f € W. Moreover, we have

So fj’f = ( ]?7 ﬁ§>_1f is the desired function.
Let for i = 1,2 4 4 o ) ) . ) .
gi=1f] —c'fy, gy:=f-d'fy, g=1f
Then, one can see that

i ey )1 i) = (kD)
<gj,0q>—{0 it (i) % (k). (A.19)

Then gjl. — gj2- (j = 1,2,3) three linearly independent functions belonging to Wy, while
g]l + g? (j = 1,2,3) does not belong to Wy. So dim Wy = 3. O

Define the operator S : H-Y/2(0D¢)? — HY2(dD®)? as follows: for f = (f,f) €
H~Y2(0D°) let

v(x) == Sop, [f1](x) + Sop, [f2] (%), (A.20)
and
S[f] := mggj . (A.21)

69



Lemma A.5. Let
VT = span{¥y, Uy, U3}, (A.22)

Then, the following holds:
(1) S maps W into V', and S is injective on Wy.
(ii) V. =S(Wyg) V™.
Proof. Let f € W and define v by (A.20). Then we have
Oyv|_ = (—1/2I+K*)[f] =0 on 0D°".

Since £, ,v = 0 in D; (i = 1,2), we infer that v = >, a;;¥; on 0D; for some constants
Qg So S[f] ceV.
If further £ € Wy, then v(x) = O(|x|™!) as |[x| — 0. So, if S[f] = 0, then v = 0 in D¢,
and hence v = 0 in R?. Thus we have f = 9, v|+ — 8,v|_ = 0 on dD®. This proves (i).
We now show that S(Wg) NVt = {0}. In fact, if f = (fi,fz) € Wy satisfies S[f] =
>_;a;¥; on 0D, let

V(X) = 88D1 [fl](X) + 53D2 [fg] (X), x € R2.

Then v € A, and

C@v:@v:—/ vy v
oDe

/BDe Z a; W /aDe Oyv|- Z a; W

So, v.=0in D°, and hence }_;a;¥; =0 on 0D°.
Since S is injective on Wy, dimS(Wyg) = 3. So dimS(Wy) & V*t = 6. This yields
(ii). O
Since —1/2I 4 K is fredholm, we have H'/2(9D¢)? = Range(—1/2I+K) ® V*. So we
obtain the following proposition.

De

Proposition A.6. H'/2(9D¢)? = Range(—1/2I + K) @ S(Wy) @ V+.

Proof of Theorem 2.5. Let g € H'/? (0D®)2. According to the previous proposition, there
is f = (f,f) € HY/2(0D°)?, ¢ = (¢1,py) € Wy, and constants ay, ag, a3 such that

gz(—H—HK) +Za]

Then the solution u is given by

2
Z Dop, [fi] + Sap,[w;]) + Z a;¥; in D°.
i=1 7j=1

Note that 23:1 (Dop,[fi] + Sap,[pi]) € A by Lemma 2.6. So u € A*.
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For uniqueness, assume that u and v are two solutions in A*, and let w := u—v. Then
w € A" and w = 0 on 9D°€. Let w = w1 +wy be such that w; € A and wy = 22:1 a;¥;.
Then by Lemma 2.8, we have

0= CVw: Vw = (C@wl : @wl.
De De
Since wi(x) — 0 as |x| = oo, w; = 0 in D®. So, Z?:l a;¥; = 0 on 0D°, which implies
a; =0, j =1,2,3. This completes the proof. ]
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