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Abstract

In the region between close-to-touching hard inclusions, the stress may be arbi-
trarily large as the inclusions get closer. The stress is represented by the gradient
of a solution to the Lamé system of linear elasticity. We consider the problem of
characterizing the gradient blow-up of the solution in the narrow region between two
inclusions and estimating its magnitude. We introduce singular functions which are
constructed in terms of nuclei of strain and hence are solutions of the Lamé system,
and then show that the singular behavior of the gradient in the narrow region can be
precisely captured by singular functions. As a consequence of the characterization,
we are able to regain the existing upper bound on the blow-up rate of the gradient,
namely, ǫ−1/2 where ǫ is the distance between two inclusions. We then show that it is
in fact an optimal bound by showing that there are cases where ǫ−1/2 is also a lower
bound on the gradient blow-up. This work is the first to completely reveal the singular
nature of the gradient blow-up in the context of the Lamé system with hard inclusions.
The singular functions introduced in this paper play essential roles to overcome the
difficulties in the methods of previous works. Main tools of this paper are the layer
potential techniques and the variational principle. The variational principle can be
applied because the singular functions of this paper are solutions of the Lamé system.

AMS subject classifications. 35J47, 74B05, 35B40

Key words. stress concentration, gradient blow-up, closely spaced inclusions, hard inclusion, Lamé
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1 Introduction

When two inclusions are close to touching, the physical field such as the stress or the
electric field may be arbitrarily large in the narrow region between the inclusions. It is
quite important to understand the field concentration precisely. Stress concentration may
occur in fiber-reinforced composites where elastic inclusions are densely packed [7]. The
electric field can be greatly enhanced in the conducting inclusions case. It can be utilized
to achieve subwavelength imaging and sensitive spectroscopy [34].

In response to such importance there has been much progress in understanding the
field concentration in the last decade or so. In the context of electrostatics (or anti-plane
elasticity), the field is the gradient of a solution to the Laplace equation and the precise
estimates of the gradient were obtained. It is discovered that when the conductivity of
the inclusions is ∞, the blow-up rate of the gradient is ǫ−1/2 in two dimensions [5, 35],
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where ǫ is the distance between two inclusions, and it is |ǫ ln ǫ|−1 in three dimensions [8].
There is a long list of literature in this direction of research, e.g., [3, 4, 11, 17, 18, 26, 27,
31, 32, 36, 37]. While these works are related to the estimate of the blow-up rate of the
gradient, there is other direction of research to characterize the singular behavior of the
gradient [1, 20, 21, 22, 29]. An explicit function, which is called a singular function, is
introduced and the singular behavior of the gradient is completely characterized by this
singular function. Since the singular function is closely related to this work, we include
a brief discussion on it at the beginning of subsection 3.1. All the work mentioned above
are related to the homogenous equation and inclusions with smooth boundaries. Recently
there have been important extensions to the inhomogeneous equation [15] and inclusions
with corners (the bow-tie shape) [24].

In this paper, we consdier a similar problem in the linear elasticity, i.e., the Lamé
system. We assume two hard inclusions, which have infinite shear modulus, are presented
with a small separation distance ǫ. The stress is represented in terms of the gradient of a
solution to the Lamé system. We are interested in the asymptotic behavior of the stress
(or the gradient) when the distance ǫ goes to zero.

Even though much progress has been made for the Laplace equation of the anti-plane
elasticity as mentioned above, not much is known about the gradient blow-up in the
context of the full elasticity, e.g., the Lamé system. Recently, a significant progress has
been made by Bao et al [9, 10]: it is proved in [9] that ǫ−1/2 is an upper bound on the
blow-up rate of the gradient in the two-dimensional Lamé system. We emphasize that
there is significant difficulty in applying the methods for scalar equations to systems of
equations. For instance, the maximum principle does not hold for the system. In [9] they
come up with an ingenious iteration technique to overcome this difficulty and obtain the
upper bound on the blow-up rate. However, it was still not known if it is also a lower
bound.

The purpose of this paper is to construct singular functions for the two-dimensional
Lamé system, like the one for electrostatics, and to characterize the singular behavior of
the gradient using singular functions. In fact, we construct singular functions as elaborated
linear combinations of nuclei of strain, and show that they capture the singular behavior
of the gradient precisely. Nuclei of strain are the columns of the Kelvin matrix of the
fundamental solution to the Lamé system and their variants. As a consequence of such
characterization, we are able to reobtain the result of [9] with a different proof, which states
that ǫ−1/2 is an upper bound on the blow-up rate of the gradient. More importantly, the
characterization enables us to show that the rate ǫ−1/2 is actually optimal, optimal in
the sense that there are cases where ǫ−1/2 is a lower bound on the blow-up rate. To the
best of our knowledge, this work is the first to completely reveal the singular nature of
the gradient blow-up in the case of the Lamé system with hard inclusions. The singular
functions introduced in this paper play essential roles to overcome the difficulties in the
methods of previous works.

We emphasize that the nuclei of strain and singular functions are solutions of the Lamé
system. This has a significant implication. We heavily use the variational principle for
proving the characterization of the stress concentration in section 4, which is only possible
since singular functions are solutions of the Lamé system. This makes the method of
this paper significantly different from that of [9]. We include a brief comparison of two
methods at the end of subsection 4.1.
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It is worth mentioning that the singular functions constructed in this paper are applied
to an important problem other than analysis of the gradient blow-up. In fact, quantitative
analysis of the gradient is closely related to the computation of the effective property of
densely packed composites. In [12], Beryland et al. provided the first rigorous justifica-
tion of the asymptotic formula for the effective conductivity, which was found by Keller
[25]. However, the corresponding formulas of Flaherty-Keller [16] for the effective elastic
properties have not been rigorously proved to the best of our knowledge. Using singular
functions of this paper we are able to prove the formulas in a mathematically rigorous
way. We emphasize that this is possible only because singular functions are solutions of
the Lamé system. We report this result in a separate paper [23].

Accurate numerical computation of the gradient in the presence of closely spaced hard
inclusions is a well-known challenging problem in computational mathematics and sciences.
When computing the gradient, a serious difficulty arises since a fine mesh is required to
capture the gradient blow-up in the narrow region. The precise characterization of the
gradient blow-up can be utilized for designing an efficient numerical scheme to compute
the gradient. This was done for the conductivity case in [21]. The result of this paper
may open up a way to do computation for the isotropic elasticity.

It is worth mentioning that, for the Lamé system where two inclusions are circular
holes, the gradient blow-up is recently characterized by a singular function in [30]. More-
over, the optimal blow-up rate of the gradient is obtained. The holes are characterized
by the vanishing traction condition on the boundary, and the blow-up rate is the same as
the hard inclusion case, namely, ǫ−1/2. We emphasize that unlike the anti-plane elasticity,
the hole case is not the dual problem of the hard inclusion case, and a different method is
required to handle the hole case.

This paper consists of six sections including introduction and appendices. In section
2, we formulate the problem to be considered, derive some preliminary results which will
be used in later sections, and describe geometry of two inclusions. In section 3, singular
functions are constructed in terms of nuclei of strain and their properties are derived for
later use. Section 4 and 5 respectively deal with the problem of characterizing the stress
concentration in a bounded domain and in the free space. In section 6 we consider the
case when inclusions are symmetric, in particular, when inclusions are disks of the same
radius, and show that ǫ−1/2 is a lower bound on the blow-up rate of the gradient when Lamé
constants satisfy a certain constraint. Since each section is rather long and its subject can
be viewed as independent, we include an introduction in each section. Appendices are to
prove some results used in the text, especially existence and uniqueness of the solution
to the exterior problem of the Lamé system and the layer potential representation of the
solution to the boundary value problem and the free space problem.

Throughout this paper, we use the expression A . B to imply that there is a constant
C independent of ǫ such that A ≤ CB. The expression A ≈ B implies that both A . B
and B . A hold.

2 Problem formulation and preliminaries

In this section we formulate the problem of characterizing the stress concentration. The
main tools in dealing with the problem are the layer potential technique and the varia-
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tional principle. We introduce them in this section. We then consider the existence and
uniqueness question of the exterior problem for the Lamé system with arbitrary Dirich-
let data. The final subsection is to describe the geometry of two inclusions in a precise
manner.

2.1 Lamé system with hard inclusions: a problem formulation

We consider two disjoint elastic inclusions D1 and D2 which are embedded in R
2 occupied

by an elastic material. We assume that D1 and D2 are simply connected bounded domains
with C4-smooth boundaries. We emphasize that the results of this paper are valid even
if boundaries are C3,α for some α > 0. But we assume that they are C4 for convenience.
Advantage of assuming C4 is made clear in subsection 2.5. We also assume some convexity
of the boundaries which is precisely described in the same subsection.

Let (λ, µ) be the pair of Lamé constants of De := R
2 \ D1 ∪D2 which satisfies the

strong ellipticity conditions µ > 0 and λ + µ > 0. Then the elasticity tensor is given by
C = (Cijkl) with

Cijkl = λδijδkl + µ(δikδjl + δilδjk), i, j, k, l = 1, 2,

where δij denotes Kronecker’s delta. The Lamé operator Lλ,µ of the linear isotropic
elasticity is defined by

Lλ,µu := ∇ · C∇̂u = µ∆u+ (λ+ µ)∇∇ · u, (2.1)

where ∇̂ denotes the symmetric gradient, namely,

∇̂u =
1

2

(
∇u+∇uT

)
(T for transpose).

The corresponding conormal derivative ∂νu on ∂Dj is defined as

∂νu = (C∇̂u)n, (2.2)

where n is the outward unit normal vector to ∂Dj (j = 1, 2).

Given a displacement field u = (u1, u2)
T , ∇̂u is the strain tensor while the stress tensor

σ = (σij)
2
i,j=1 is defined to be

σ := C∇̂u = λtr(∇̂u)I+ 2µ∇̂u, (2.3)

namely,

σ11 = (λ+ 2µ)∂1u1 + λ∂2u2,

σ22 = λ∂1u1 + (λ+ 2µ)∂2u2, (2.4)

σ12 = σ21 = µ(∂2u1 + ∂1u2).

Here and throughout this paper, tr stands for the trace and ∂j denotes the partial derivative
with respect to the xj-variable for j = 1, 2.
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Let Ψ be the collection of all functions ψ such that ∇̂ψ = 0 in R
2, i.e., the three-

dimensional vector space spanned by the displacement fields of the rigid motions {Ψj}3j=1

defined as follows:

Ψ1(x) =

[
1
0

]
, Ψ2(x) =

[
0
1

]
, Ψ3(x) =

[
−y
x

]
. (2.5)

Throughout this paper we denote the point x in R
2 by either (x1, x2)

T or (x, y)T at its
convenience.

We assume D1 and D2 are hard inclusions. This assumption is inscribed on the bound-
ary conditions on ∂Dj in the following problem: Let Ω be a bounded domain in R

2 con-
taining D1 and D2 such that dist(∂Ω, D1 ∪ D2) ≥ C for some constant C > 0. Let us
denote

Ω̃ = Ω \D1 ∪D2.

For a given Dirichlet data g we consider the following problem:





Lλ,µu = 0 in Ω̃,

u =

3∑

j=1

cijΨj(x) on ∂Di, i = 1, 2,

u = g on ∂Ω,

(2.6)

where the constants cij are determined by the conditions

∫

∂Di

∂νu|+ ·Ψj dσ = 0, i = 1, 2, j = 1, 2, 3. (2.7)

Here and afterwards, the subscript + denotes the limit from outside ∂Dj .
Let

ǫ := dist(D1, D2). (2.8)

The gradient ∇u of the solution u to (2.6) may become arbitrarily large as two inclusions
get closer, namely, as ǫ → 0. The main purpose of this paper is to characterize the blow-up
of ∇u. Roughly speaking, we show that u can be decomposed as

u = s+ b, (2.9)

where ∇s has the main singularity of ∇u while ∇b is regular or less singular. So the
singular behavior of ∇u is characterized by that of ∇s. We will find s in an explicit form.
The characterization of the gradient blow-up enables us to show that the optimal blow-up
rate of ∇u in terms of ǫ is ǫ−1/2. It is proved in [9] that ǫ−1/2 is an upper bound on the
blow-up rate of ∇u as mentioned before.

The problem in the presence of hard inclusions may be considered as the limiting
problem of a high contrast elasticity problem when the shear modulus of the inclusions
degenerates to infinity [9]. When the shear modulus is the bounded away from zero
and infinity, it is known that the gradient is bounded regardless of the distance between
inclusions [28].
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We also consider the free space problem: For a given function H satisfying Lλ,µH =
0 in R

2, the displacement field u satisfies





Lλ,µu = 0 in De,

u =

3∑

j=1

dijΨj on ∂Di, i = 1, 2,

u(x)−H(x) = O(|x|−1) as |x| → ∞,

(2.10)

where the constants dij are determined by the condition (2.7). We will obtain the decom-
position of the form (2.9) and estimates of ∇u for this problem as well.

2.2 Layer potentials for 2D Lamé system

The Kelvin matrix of fundamental solutions Γ = (Γij)
2
i,j=1 to the Lamé operator Lλ,µ is

given by

Γij(x) = α1δij ln |x| − α2
xixj
|x|2 (2.11)

where

α1 =
1

4π

(
1

µ
+

1

λ+ 2µ

)
and α2 =

1

4π

(
1

µ
− 1

λ+ 2µ

)
. (2.12)

In short, Γ can be expressed as

Γ(x) = α1 ln |x− y|I− α2x⊗∇(ln |x|), (2.13)

where I is the identity matrix.
For a given bounded domain D with C2 boundary, the single and double layer poten-

tials on ∂D associated with the pair of Lamé parameters (λ, µ) are defined by

S∂D[ϕ](x) :=

∫

∂D
Γ(x− y)ϕ(y)dσ(y), x ∈ R

2, (2.14)

D∂D[ϕ](x) :=

∫

∂D
∂νΓ(x− y)ϕ(y)dσ(y), x ∈ R

2 \ ∂D, (2.15)

where the conormal derivative ∂νΓ(x− y) is defined by

∂νΓ(x− y)b = ∂ν(Γ(x− y)b)

for any constant vector b.
Let H1/2(∂D) be the usual L2-Sobolev space of order 1/2 on ∂D and H−1/2(∂D) be

its dual space. With functions Ψj in (2.5) we define

H
−1/2
Ψ (∂D) := {f ∈ H−1/2(∂D)2 :

∫

∂D
f ·Ψj = 0, j = 1, 2, 3}. (2.16)

The following propositions for representations of the solutions to (2.6) and (2.10) can
be proved in a standard way (see, for example, [2]). We include brief proofs in Appendix.
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Proposition 2.1. Let u be the solution to (2.6) and let f := ∂νu|− on ∂Ω. Define

HΩ(x) = −S∂Ω[f ](x) +D∂Ω[g](x), x ∈ Ω. (2.17)

Then there is a unique pair (ϕ1,ϕ2) ∈ H
−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2) such that

u(x) = HΩ(x) + S∂D1
[ϕ1](x) + S∂D2

[ϕ2](x), x ∈ Ω. (2.18)

In fact, ϕj is given by ϕj = ∂νu|+ on ∂Dj for j = 1, 2.

Proposition 2.2. Let u be the solution to (2.10). Then there is a unique pair (ϕ1,ϕ2) ∈
H

−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2) such that

u(x) = H(x) + S∂D1
[ϕ1](x) + S∂D2

[ϕ2](x), x ∈ De. (2.19)

In fact, ϕj is given by ϕj = ∂νu|+ on ∂Dj for j = 1, 2.

Note that
∫
∂Dj

ϕj = 0, which holds because ϕj belongs to H
−1/2
Ψ (∂Dj). So, we have

S∂Dj
[ϕj ](x) = O(|x|−1) as |x| → ∞. Thus u given by (2.19) satisfies the last condition in

(2.10).
Note that since the domains D1 and D2 are assumed to have C4 boundaries, the

solutions to (2.6) and (2.10) are C3,α in Ω \ (D1 ∪ D2) including ∂D1 ∪ ∂D2 for any
0 < α < 1.

We now prove an analogue of the addition formula for Γ(x − y). Let {e1, e2} be the
standard basis for R2. For n ∈ Z let

Pn(x) = r|n|einθ, (2.20)

where (r, θ) denotes the polar coordinates of x. Let

v(i)
n (x) = α1Pn(x)ei − α2xi∇Pn(x), i = 1, 2, (2.21)

wn(x) = α2∇Pn(x). (2.22)

Since Pn is harmonic in R
2, one can easily see that wn is a solution to the Lamé system

in R
2. To show that v

(i)
n is a solution to the Lamé system in R

2, we prove a more general
fact:

Lemma 2.3. If h is a harmonic function, then a vector-valued function v of the form

v(x) = α1h(x)ej − α2xj∇h(x) (2.23)

for j = 1, 2, is a solution of the Lamé system, namely, Lλ,µv = 0.

Proof. We only prove the case when j = 1. Let us write v = (v1, v2)
T . Simple computa-

tions show that
∆v1 = −2α2∂

2
1h,

and
∆v2 = −2α2∂1∂2h.
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We also have
∇ · v = α1∂1h− α2(x1∆h+ ∂1h) = (α1 − α2)∂1h.

Therefore we obtain

[µ∆v + (λ+ µ)∇(∇ · v)] · ek = −2µα2∂1∂kh+ (λ+ µ)(α1 − α2)∂1∂kh

=
(
− 1

2π

λ+ µ

λ+ 2µ
+

1

2π

λ+ µ

λ+ 2µ

)
∂1∂kh = 0

for k = 1, 2. This completes the proof.
We obtain the following proposition.

Proposition 2.4. The fundamental solution Γ admits the following series expansion: for
|x| > |y| and for any constant vector b in R

2

Γ(x− y)b = −
∑

n 6=0

1

2|n|
e−inθ

r|n|

2∑

i=1

(v(i)
n (y) · b)ei

+
∑

n 6=0

1

2|n|
xe−inθ

r|n|
(
wn(y) · b

)
+ α1 ln |x|b, (2.24)

where x = (r, θ) in the polar coordinates. Moreover, the series converges absolutely and
uniformly in x and y provided that there are numbers r1 and r2 such that |y| ≤ r1 < r2 ≤
|x|.

Proof. By (2.13), we have

Γ(x− y)b = α1 ln |x− y|b− α2(∇y(ln |x− y|) · b)(x− y)(−1)

for any constant vector b. The addition formula for ln |x− y| reads

ln |x− y| = ln |x| −
∑

n 6=0

1

2|n|
e−inθ

r|n|
Pn(y).

By substituting this formula to the one above, we obtain (2.24).

2.3 The exterior problem and the variational principle

In this subsection we consider the following exterior Dirichlet problem for the Lamé system:

{
Lλ,µv = 0 in De,

v = g on ∂De = ∂D1 ∪ ∂D2,
(2.25)

for g ∈ H1/2(∂De)2 := H1/2(∂D1)
2 × H1/2(∂D2)

2. We seek a solution in the function
space A∗ defined as follows: Let A be the collection of all v ∈ H1

loc(D
e) such that there

exists a 2× 2 symmetric matrix B such that

v(x) =

2∑

j=1

∂jΓ(x)Bej +O(|x|−2) as |x| → ∞, (2.26)
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where {e1, e2} is the standard basis of R2. We emphasize that v(x) = O(|x|−1) as |x| → ∞.
We then define

A∗ :=



u = v +

3∑

j=1

bjΨj | v ∈ A, bj : constant



 . (2.27)

A proof of the following theorem is given in Appendix.

Theorem 2.5. For any g ∈ H1/2(∂De)2, (2.25) admits a unique solution in A∗.

This theorem in a different form is proved in [13] when De is the compliment of a
simply connected domain. Here, ∂De has two components, namely, ∂De = ∂D1 ∪ ∂D2.
Moreover, the proof of this paper is completely different from that of [13]. It is worth
mentioning that the term

∑3
j=1 bjΨj plays the role of the solution corresponding to the

component of g spanned by Ψj , j = 1, 2, 3.
The condition (2.26) is somewhat unfamiliar. To motivate it we prove the following

lemma. This lemma will be used in the proof of Theorem 2.5.

Lemma 2.6. (i) If ϕ = (ϕ1,ϕ2) ∈ H−1/2(∂D1)
2 ×H−1/2(∂D2)

2 and satisfies
∫

∂D1

ϕ1 ·Ψk +

∫

∂D2

ϕ2 ·Ψk = 0, k = 1, 2, 3, (2.28)

then v, defined by

v(x) = S∂D1
[ϕ1](x) + S∂D2

[ϕ2](x), x ∈ De, (2.29)

belongs to A.

(ii) If ψ = (ψ1,ψ2) belongs to H1/2(∂D1)
2 ×H1/2(∂D2)

2, then w, defined by

w(x) = D∂D1
[ψ1](x) +D∂D2

[ψ2](x), x ∈ De, (2.30)

belongs to A.

Proof. If y ∈ ∂De and |x| → ∞, then by the Taylor expansion we have

Γ(x− y) = Γ(x) +
2∑

j=1

∂jΓ(x)yj +O(|x|−2). (2.31)

So v defined by (2.29) takes the form

v(x) = Γ(x)

∫

∂De

ϕ+
2∑

j=1

∂jΓ(x)

∫

∂De

yjϕ+O(|x|−2). (2.32)

Here and throughout this paper we use
∫
∂De ϕ to denote

∫
∂D1

ϕ1 +
∫
∂D2

ϕ2 for ease of
notation. The assumption (2.28) for k = 1, 2 implies that the first term in the right-hand
side of (2.32) vanishes. Define the matrix B := (bij)i,j=1,2 by

[
b11
b21

]
:=

∫

∂De

y1ϕ and

[
b12
b22

]
:=

∫

∂De

y2ϕ.

10



Then, we may rewrite (2.32) as

v(x) =
2∑

j=1

∂jΓ(x)Bej +O(|x|−2) as |x| → ∞.

Note that the assumption (2.28) for k = 3 implies b12 = b21, namely, B is symmetric.
To prove (ii), let uj be the solution to Lλ,µuj = 0 in Dj and uj = ψj on ∂Dj . Then

∂νuj ∈ H
−1/2
Ψ (∂Dj) and Green’s formula for the Lamé system shows that the following

holds:

D∂D1
[ψ1](x) = S∂D1

[∂νu1](x), D∂D2
[ψ2](x) = S∂D2

[∂νu2](x), x ∈ De.

So, we have
w(x) = S∂D1

[∂νu1](x) + S∂D2
[∂νu2](x), x ∈ De.

So, (ii) follows from (i).
The most important property of the function of the form

∑2
j=1 ∂jΓ(x)Bej lies in the

following fact.

Lemma 2.7. Let v(x) =
∑2

j=1 ∂jΓ(x)Bej for some symmetric matrix B. Then the
following holds for any simple closed Lipschitz curve C such that 0 /∈ C:

∫

C
∂νv ·Ψk = 0, k = 1, 2, 3. (2.33)

Proof. Since the cases of k = 1, 2 are easier to prove, we only consider the case of k = 3.
Let U be the bounded domain enclosed by C. If 0 /∈ U , then by Green’s formula for the
Lamé system, we have ∫

C
∂νv ·Ψ3 =

∫

U
C∇̂v : ∇̂Ψ3 = 0.

Suppose that 0 ∈ U . Then choose Br, the disk of radius r centered at 0, so that Br ⊂ U .
Then, we see that ∫

C
∂νv ·Ψ3 =

∫

∂Br

∂νv ·Ψ3.

Straightforward but tedious computations show that on ∂Br

∂νv ·Ψ3 =
1

2πr
(b21 − b12) +

λ+ µ

λ+ 2µ
(b11 −

b12
2

− b21
2

− b22)
sin 2θ

2πr
,

where (r, θ) is the polar coordinates. So we obtain

∫

∂BR

∂νv ·Ψ3 = b21 − b12.

Since b12 = b21, (2.33) follows.
The following lemma shows that Green’s formula holds for u,v ∈ A∗. It is worth

mentioning that the − sign appears on the right-hand side of (2.34) below since the
normal vector on ∂De is directed outward.
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Lemma 2.8. If u,v ∈ A∗ and Lλ,µu = 0 in De, then

∫

De

C∇̂u : ∇̂v = −
∫

∂De

∂νu|+ · v, (2.34)

where the left-hand side is understood to be

∫

De

C∇̂u : ∇̂v = lim
R→∞

∫

BR\(D1∪D2)
C∇̂u : ∇̂v. (2.35)

Proof. We have
∫

BR\(D1∪D2)
C∇̂u : ∇̂v = −

∫

∂De

∂νu|+ · v +

∫

∂BR

∂νu|+ · v.

So, it suffices to prove that

lim
R→∞

∫

∂BR

∂νu|+ · v = 0.

Let u = u1+u2+u3 where u1 is of the form
∑2

j=1 ∂jΓ(x)Bej , u2(x) = O(|x|−2), and

u3 is of the form
∑3

k=1 akΨk. We also let v = v1 + v2 where v1(x) = O(|x|−1) and v2 is
of the form

∑3
k=1 bkΨk. Since ∂νu3 = 0 on ∂BR for any R, we have

∫

∂BR

∂νu|+ · v =

∫

∂BR

∂ν(u1 + u2)|+ · (v1 + v2).

We see

lim
R→∞

[∫

∂BR

∂ν(u1 + u2)|+ · v1 +

∫

∂BR

∂νu2|+ · v2

]
= 0

by considering the decay at ∞ of the functions involved. We also have from (2.33)

∫

∂BR

∂νu1|+ · v2 = 0.

This completes the proof.
The following variational principle for the exterior Dirichlet problem plays a crucial

role in what follows.

Lemma 2.9. Define

EDe [w] :=

∫

De

C∇̂w : ∇̂w. (2.36)

Let u be the solution in A∗ to (2.25) with g ∈ H1/2(∂De)2. Then the following variational
principle holds:

EDe [u] = min
w∈Wg

EDe [w], (2.37)

where
Wg =

{
w ∈ A∗ : w|∂De = g

}
.

12



Proof. Let w ∈ Wg. By Lemma 2.8, we have

∫

De

C∇̂u : ∇̂u = −
∫

∂De

∂νu|+ · g =

∫

De

C∇̂u : ∇̂w.

By the Cauchy-Schwartz inequality, we have

∫

De

C∇̂u : ∇̂u =

∫

De

C∇̂u : ∇̂w ≤ 1

2
(

∫

De

C∇̂u : ∇̂u+

∫

De

C∇̂w : ∇̂w).

Thus (2.37) holds.

2.4 An estimate for the free space problem

The purpose of this subsection is to prove the following proposition which will be used in
section 5.

Proposition 2.10. Let u be the solution to (2.10) for a given H. Then for any disk B
centered at 0 containing D1 ∪D2 and for k = 0, 1, 2, . . ., there is a constant Ck independent
of ǫ (and H) such that

‖∇k(u−H)‖L∞(R2\B) ≤ Ck‖H‖H1(B). (2.38)

The main emphasis of (2.38) is that the estimate holds independently of ǫ, the distance
between D1 and D2. It shows that even if u depends on ǫ, the dependence is negligible
far away from the inclusions.

To prove Proposition 2.10, we begin with the following lemma.

Lemma 2.11. Let u be the solution to (2.10). There is a constant C independent of ǫ
and H such that

EDe [u−H] ≤ C‖H‖2H1(B), (2.39)

where EDe is defined in (2.36) and B is a disk centered at 0 containing D1 ∪D2.

Proof. We first observe from (2.7) and the second condition in (2.10) that

∫

∂Di

∂νu|+ · u = 0, i = 1, 2.

Since Lλ,µH = 0 in R
2, we also have

∫

∂Di

∂νH|+ · u = 0, i = 1, 2.

So we have

EDe [u−H] =

∫

De

C∇̂(u−H) : ∇̂(u−H)

= −
∫

∂De

∂ν(u−H)|+ · (u−H) =

∫

∂De

∂ν(u−H)|+ ·H.

13



Let R be the radius of B and let r be such that r < R and D1 ∪D2 ⊂ Br. Let χ
be a smooth radial function such that χ(x) = 1 if |x| ≤ r and χ(x) = 0 if |x| ≥ R. Let
w := −χH. Then we have

∫

De

C∇̂(u−H) : ∇̂w = −
∫

∂De

∂ν(u−H)|+ ·w =

∫

∂De

∂ν(u−H)|+ ·H.

It then follows that

EDe [u−H] =

∫

De

C∇̂(u−H) : ∇̂w ≤ 1

2
(EDe [u−H] + EDe [w]) .

So we have

EDe [u−H] ≤ EDe [w] ≤ C‖H‖2H1(B).

The proof is completed.

Proof of Proposition 2.10. By Proposition 2.2, the solution u is represented as

u = H+ S∂D1
[ϕ1] + S∂D2

[ϕ2] (2.40)

with ϕj = ∂νu|+ on ∂Dj , j = 1, 2. Proposition 2.4 yields

(u−H)(x) =
∑

n 6=0

1

2|n|
e−inθ

r|n|

(
−M (1)

n e1 −M (2)
n e2 +M (3)

n x
)
, r = |x| ≥ R, (2.41)

where R is the radius of B and M
(i)
n is given by

M (i)
n =

∫

∂D1

v(i)
n ·ϕ1 dσ +

∫

∂D2

v(i)
n ·ϕ2 dσ, i = 1, 2, (2.42)

M (3)
n =

∫

∂D1

wn ·ϕ1 dσ +

∫

∂D2

wn ·ϕ2 dσ. (2.43)

Observe that the dependence of u − H on ǫ is contained only in the coefficients M
(i)
n ,

i = 1, 2, 3.
Let r be such that r < R and Br contains D1 ∪D2. We now show that there is a

constant C independent of ǫ and n such that

|M (i)
n | ≤ C|n|r|n|+2‖H‖H1(Br) (2.44)

for all n 6= 0 and i = 1, 2, 3.
For simplicity, we consider only i = 1. The other cases can be proved in the exactly

same way. Let v be the solution to (2.10) when H = v
(1)
n . Since ϕj = ∂νu|+ on ∂Dj and

v|∂Dj
∈ Ψ, we have using (2.7) that

M (1)
n =

∫

∂De

v(1)
n · ∂νu|+

= −
∫

∂De

(v − v(1)
n ) · ∂νu|+

= −
∫

∂De

(v − v(1)
n ) · ∂ν(u−H)|+ +

∫

∂De

v(1)
n · ∂νH|+

=

∫

De

C∇̂(v − v(1)
n ) : ∇̂(u−H) +

∫

∂De

v(1)
n · ∂νH|+.
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So, by applying Lemma 2.11 to EDe [v − v
(1)
n ] and EDe [u−H] on Br, we obtain

|M (1)
n | ≤ EDe

[
v − v(1)

n

]1/2EDe

[
u−H

]1/2
+

2∑

i=1

‖v(1)
n ‖H1/2(∂Di)

‖∂νH‖H−1/2(∂Di)

≤ C‖v(1)
n ‖H1(Br)‖H‖H1(Br) +

2∑

i=1

‖v(1)
n ‖H1(Di)‖H‖H1(Di)

≤ C‖v(1)
n ‖H1(Br)‖H‖H1(Br).

Here and throughout this paper, the constant C appearing in the course of estimations

may differ at each occurrence. Since v
(1)
n is a homogeneous polynomial of order n, there

is a constant C independent of n such that

‖v(1)
n ‖H1(Br) ≤ C|n|r|n|+2,

assuming that r > 1.
It follows from (2.41) and (2.44) that

‖u−H‖L∞(R2\BR) ≤ C
∑

n 6=0

1

2|n|
1

R|n| (|n|r
|n|+2)‖H‖H1(Br)

≤ C
∑

n 6=0

( r

R

)|n|
‖H‖H1(B) ≤ C‖H‖H1(B).

This proves (2.38) for k = 0.
If k > 0, we differentiate (2.41) to obtain (2.38). This completes the proof.

2.5 Geometry of two inclusions

In this subsection, we describe geometry of two inclusions D1 and D2. See Figure 2.1.
Suppose that there are unique points z1 ∈ ∂D1 and z2 ∈ ∂D2 such that

|z1 − z2| = dist(D1, D2). (2.45)

We assume that Dj is strictly convex near zj , namely, there is a common neighborhood
U of z1 and z2 such that Dj ∩U is strictly convex for j = 1, 2. Moreover, we assume that

dist(D1, D2 \ U) ≥ C and dist(D2, D1 \ U) ≥ C

for some positive constant C independent of ǫ. This assumption says that other than
neighborhoods of z1 and z2, D1 and D2 are at some distance to each other. We need
one more assumption: the center of the circle which is osculating Dj at zj lies inside Dj

(j = 1, 2). This assumption is needed for defining the singular function q3 in (3.15) later.
We emphasize that strictly convex domains satisfy all the assumptions.

Let κj be the curvature of ∂Dj at zj . Let Bj be the disk osculating to Dj at zj
(j = 1, 2). Then the radius rj of Bj is given by rj = 1/κj . Let Rj be the reflection with
respect to ∂Bj and let p1 and p2 be the unique fixed points of the combined reflections
R1 ◦R2 and R2 ◦R1, respectively.
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D1
D2B1

B2

p1 p2

a−a
x

y

c1 c2z2z1

ε

Figure 2.1: Geometry of the two inclusions and osculating circles

Let n be the unit vector in the direction of p2 − p1 and let t be the unit vector
perpendicular to n such that (n, t) is positively oriented. We set (x, y) ∈ R

2 to be the
Cartesian coordinates such that p = (p1 +p2)/2 is the origin and the x-axis is parallel to
n. Then one can see (see [5]) that p1 and p2 are written as

p1 = (−a, 0) and p2 = (a, 0), (2.46)

where the constant a is given by

a :=

√
ǫ
√
(2r1 + ǫ)(2r2 + ǫ)(2r1 + 2r2 + ǫ)

2(r1 + r2 + ǫ)
, (2.47)

from which one can infer

a =

√
2

κ1 + κ2

√
ǫ+O(ǫ3/2). (2.48)

Then the center ci of Bi (i = 1, 2) is given by

ci =
(
(−1)i

√
r2i + a2, 0

)
=
(
(−1)iri +O(ǫ), 0

)
. (2.49)

So we have

zi = (−1)i+1
(
ri −

√
r2i + a2, 0

)
=

(
(−1)i

κi
κ1 + κ2

ǫ+O(ǫ2), 0

)
. (2.50)

Let us consider the narrow region between D1 and D2. See Figure 2.2. There exists
L > 0 (independent of ǫ) and functions f1, f2 : [−L,L] → R such that

z1 =
(
− f1(0), 0

)
, z2 =

(
f2(0), 0

)
, f ′

1(0) = f ′
2(0) = 0, (2.51)

and ∂D1 and ∂D2 are graphs of −f1(y) and f2(y) for |y| < L, i.e.,

x1(y) := (−f1(y), y) ∈ ∂D1 and x2(y) := (f2(y), y) ∈ ∂D2. (2.52)
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y
x = −f1(y) x = f2(y)

D1 D2

ε

ΠL

L

−L

x

Figure 2.2: Geometry of the narrow gap region ΠL

Since Di is strictly convex near zj , f1 is strictly convex. Note that, for i = 1, 2 and |y| < L,

fi(y) =
κi

κ1 + κ2
ǫ+

1

2!
κiy

2 +
1

3!
ωiy

3 +O(ǫ2 + y4) (2.53)

for some constant ωi. Let us define for later use a constant τ as

τ = |κ1 − κ2|+ |ω1|+ |ω2|. (2.54)

We denote by Πl for 0 < l ≤ L the narrow region between D1 and D2 defined as

Πl = {(x, y) ∈ R
2| − f1(y) < x < f2(y), |y| < l}. (2.55)

3 Singular functions and their properties

Let Ψj , j = 1, 2, 3, be the rigid motions defined in (2.5) and let hj be the solution to the
following problem: 




Lλ,µhj = 0 in De,

hj = −1

2
Ψj(x) on ∂D1,

hj =
1

2
Ψj(x) on ∂D2.

(3.1)

It turns out that hj (j = 1, 2, 3) captures the singular behavior of the solution u to
(2.10). In fact, u can be decomposed in the following form:

u =

3∑

j=1

cjhj + b (3.2)

for some constants cj , where ∇b is bounded in a bounded domain containing the narrow
region ΠL between D1 and D2. In other words, the blow-up behavior of ∇u is completely
characterized by that of

∑3
j=1 cj∇hj . We emphasize that |hj |∂D1

−hj |∂D2
| = 1 for j = 1, 2.

So one expect that |∇hj | ≈ ǫ−1 in the narrow region between D1 and D2. The function
h3 has a weaker singularity since |h3|∂D1

− h3|∂D2
| = |x|.

The purpose of this section is to construct explicit singular functions, denoted by qj ,
which yield good approximations of hj and to derive their important properties.
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3.1 Construction of singular functions

We begin with a brief review of the singular function for the electro-static case. Let pj

(j = 1, 2) be the fixed points of the combined reflections given in (2.46) and let

qB(x) =
1

2π
(ln |x− p1| − ln |x− p2|). (3.3)

This function was introduced in [35] and used in an essential way for characterization of
the gradient blow-up in the context of electro-statics [1]. The most important property of
qB(x) is that it takes constant values on ∂Bj , the circles osculating to ∂Dj at zj , j = 1, 2.
It is because ∂B1 and ∂B2 are circles of Apollonius of p1 and p2.

Note that 1
2π ln |x| is a fundamental solution of the Laplacian and represents a point

source of the electric field. So it is natural to expect that, even in the linear elasticity case,
the point source functions may also characterize the gradient blow-up. There are various
types of point source functions in linear elasticity which are often called nuclei of strain.
We will use the following nuclei of strain as basic building blocks of the singular functions:

Γ(x)e1, Γ(x)e2,
x

|x|2 ,
x⊥

|x|2 . (3.4)

where x⊥ = (−y, x) for x = (x, y) ∈ R
2. These nuclei of strain have physical meanings:

the function Γ(x)ej represents the point force applied at the origin in the direction of ej ,
and the functions x/|x| and x⊥/|x| represent the point source of the pressure and that of
the moment located at the origin, respectively (see, for example, [33]).

We emphasize that the functions given in (3.4) are solutions to the Lamé system for
x 6= 0. In fact, the first two are solutions since they are columns of the fundamental
solution, and so are the last two because of the following relations:





(α1 − α2)
x

|x|2 = ∂1(Γ(x)e1) + ∂2(Γ(x)e2),

(α1 + α2)
x⊥

|x|2 = ∂1(Γ(x)e2)− ∂2(Γ(x)e1),

(3.5)

where α1 and α2 are constants appearing in the definition (2.11) of the fundamental
solution. The identities in (3.5) can be proved by straightforward computations.

The singular functions of this paper are constructed as linear combinations of functions
given in (3.4). To motivate the construction, we temporarily assume that two inclusionsD1

and D2 are symmetric with respect to both x- and y-axes. If we write h1 = (h11, h12)
T ,

then thanks to the symmetry of the inclusions and boundary conditions in (3.1), the
following two functions are also solutions of (3.1) for j = 1:

[
h11(x,−y)
−h12(x,−y)

]
,

[
−h11(−x, y)
h12(−x, y)

]
.

By the uniqueness of the solution, we see that h1 has the following symmetric property
with respect to x- and y-axes:

{
h11(x, y) = h11(x,−y) = −h11(−x, y),

h12(x, y) = −h12(x,−y) = h12(−x, y).
(3.6)
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One can see that the following two functions have the same symmetry:

Γ(x− p1)e1 − Γ(x− p2)e1,
x− p1

|x− p1|2
+

x− p2

|x− p2|2
.

So the first singular function q1 is constructed as a linear combination of these functions.
On the other hand, one can see in a similar way that h2 = (h21, h22)

T has the following
symmetric property:

{
h21(x, y) = −h21(x,−y) = h21(−x, y),

h22(x, y) = h22(x,−y) = −h22(−x, y),
(3.7)

and the following two functions have the same symmetry:

Γ(x− p1)e2 − Γ(x− p2)e2,
(x− p1)

⊥

|x− p1|2
+

(x− p2)
⊥

|x− p2|2
.

So q2 is constructed as a linear combination of these functions.
The singular functions of this paper are defined by

q1(x) := Γ(x− p1)e1 − Γ(x− p2)e1 + α2a

(
x− p1

|x− p1|2
+

x− p2

|x− p2|2
)
, (3.8)

and

q2(x) := Γ(x− p1)e2 − Γ(x− p2)e2 − α2a

(
(x− p1)

⊥

|x− p1|2
+

(x− p2)
⊥

|x− p2|2
)
, (3.9)

where a is the number appearing in (2.46). We emphasize that a depends on ǫ. In fact, we
repeatedly use the fact that a ≈ √

ǫ. The functions qj satisfy Lλ,µqj = 0 in R
2 \ {p1,p2},

and
qj(x) = O(|x|−1) as |x| → ∞, (3.10)

as one can easily see. We emphasize that the symmetry of D1 ∪D2 is not assumed here.
It will be proved later in Proposition 3.13 that

hj ≈
mj√
ǫ
qj (3.11)

where m1 and m2 are constants defined by

m1 :=
[
(α1 − α2)

√
2(κ1 + κ2)

]−1
, m2 :=

[
(α1 + α2)

√
2(κ1 + κ2)

]−1
. (3.12)

So blow-up of ∇hj is captured by an explicit function
mj√
ǫ
∇qj . This is a crucial fact for

investigating blow-up of ∇u in this paper.
We now construct the third singular function q3 which approximates h3. For that we

introduce Γ⊥ =
(
Γ⊥
ij

)2
i,j=1

which is defined by

Γ⊥(x) = α1 arg (x)

[
1 0
0 1

]
− α2

|x|2
[
−x1x2 −x22
x21 x1x2

]
. (3.13)
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We emphasize that Γ⊥ is a multi-valued function since arg (x) is. So Γ⊥ is defined in R
2

except a branch-cut starting from the origin.
Note that

Γ⊥(x)ej = α1 arg(x)ej − α2xj∇(arg(x)), j = 1, 2. (3.14)

Since arg(x) is a harmonic function, we infer from Lemma 2.3 that Γ⊥(x)ej is a solution
to the Lamé system (except on the branch-cut).

We now define the singular function q3 by

q3(x) = m3

(
Γ⊥(x− p1)− Γ⊥(x− c1)

)
e1 +m3

(
Γ⊥(x− p2)− Γ⊥(x− c2)

)
e1

+m3α2a

(
(x− p1)

⊥

|x− p1|2
− (x− p2)

⊥

|x− p2|2
)
, (3.15)

where
m3 :=

[
(α1 − α2)(κ1 + κ2)

]−1
, (3.16)

and c1 and c2 are centers of the osculating disks B1 and B2, respectively. It is worth men-
tioning that Γ⊥(x−pj)−Γ⊥(x−cj) is well-defined in R

2 except a branch-cut connecting
pj and cj . So, q3 is well-defined and a solution of the Lamé system in De. We will show
in Lemma 3.11 that q3 has the same local behavior as h3.

In subsections to follow we derive technical estimates of qj and its derivatives which
will be used in later sections.

3.2 Estimates of the function ζ

We show in the next subsection that the singular function qj (j = 1, 2) can be nicely
represented using the function qB given in (3.3). In fact, it is slightly more convenient to
use the function ζ(x) defined by

ζ(x) = 2πqB(x). (3.17)

The following lemma collects estimates for the function ζ to be used in the next subsection.
Some of the estimates are essentially proved in [1]. However, in that paper the estimates
are not explicitly written and derivations of estimates are smeared in other proofs. So we
include proofs.

Lemma 3.1. (i) Let ΠL be the narrow region defined in (2.55). It holds that

|ζ(x)| .
√
ǫ, x ∈ ΠL, (3.18)

and

|∂1ζ(x)| .
√
ǫ

ǫ+ y2
, |∂2ζ(x)| .

√
ǫ|y|

ǫ+ y2
, x = (x, y) ∈ ΠL. (3.19)

(ii) Let xj(y) be the defining functions for ∂Dj for j = 1, 2 as given in (2.52). For
|y| < L and j = 1, 2, we have

|ζ(xj(y))− ζ|∂Bj
| .

√
ǫ(|ωj ||y|+ |y|2), (3.20)

∣∣∣ d
dy

ζ(xj(y))
∣∣∣ .

√
ǫ, (3.21)

∣∣∣ d
2

dy2
ζ(xj(y))

∣∣∣ .
√
ǫ

ǫ+ y2
. (3.22)
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Proof. (i) Since p1 = (−a, 0) and p2 = (a, 0), we can rewrite ζ(x) as

ζ(x) =
1

2
ln

(x+ a)2 + y2

(x− a)2 + y2
=

1

2
ln

(
1 +

4ax

(x− a)2 + y2

)
. (3.23)

Since a ≈ √
ǫ, ǫ+ y2 ≈ (x± a)2 + y2, and |x| . ǫ+ y2 for (x, y) ∈ ΠL, we obtain

|ζ(x)| = 1

2
ln(1 +O(

√
ǫ)) = O(

√
ǫ) for x ∈ ΠL,

which yields (3.18).
Assume x = (x, y) ∈ ΠL. Since

|x| . ǫ+ y2 and ǫ+ y2 . (x± a)2 + y2,

we have from the first identity in (3.23) that

|∂1ζ(x)| =
∣∣∣ x+ a

(x+ a)2 + y2
− x− a

(x− a)2 + y2

∣∣∣

=
∣∣∣ 2a(a2 − x2 + y2)

((x+ a)2 + y2)((x+ a)2 + y2)

∣∣∣ .
√
ǫ(ǫ+ y2)

(ǫ+ y2)2
.

√
ǫ

ǫ+ y2
,

and

|∂2ζ(x)| = |y|
∣∣∣ 1

(x+ a)2 + y2
− 1

(x− a)2 + y2

∣∣∣

. |y|
∣∣∣ 4ax

((x+ a)2 + y2)((x− a)2 + y2)

∣∣∣ .
√
ǫ|y||x|

(ǫ+ y2)2
.

√
ǫ|y|

ǫ+ y2
.

So (3.19) is proved.
(ii) We now prove (3.20). For simplicity, we assume j = 1. Let us write the boundary

∂B1 of the osculating disk B1 as (−fB(y), y) for |y| < L. Recall from (2.53) that

f1(y)− fB(y) =
1

3!
ω1y

3 +O(y4). (3.24)

From (3.23), we have

|ζ(x1(y))− ζ|∂B1
| = 1

2

∣∣∣ ln
(
1− 4af1(y)

(f1(y) + a)2 + y2

)
− ln

(
1− 4afB(y)

(fB(y) + a)2 + y2

)∣∣∣

=
1

2

∣∣∣ ln
(
1− 4a

η1(y)

η2(y)

)∣∣∣, (3.25)

where

η1(y) =
f1(y)

(f1(y) + a)2 + y2
− fB(y)

(fB(y) + a)2 + y2
, (3.26)

η2(y) = 1− 4afB(y)

(fB(y) + a)2 + y2
. (3.27)

Since a ≈ √
ǫ, fB(y) ≈ ǫ+ y2, and (fB(y) + a)2 + y2 ≈ ǫ+ y2, we see that

|η2(y)| ≈ 1 for |y| < L. (3.28)
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From (3.24) and the facts that f1 ≈ ǫ+ y2, fB ≈ ǫ+ y2 and a ≈ √
ǫ, we have, for |y| < L,

|η1(y)| =
∣∣∣∣
(f1(y)− fB(y))(y

2 − f1(y)fB(y) + a2)

((f1(y) + a)2 + y2)((fB(y) + a)2 + y2)

∣∣∣∣

.
(ω1|y|3 + y4)(y2 + (ǫ+ y2)2 + ǫ)

(ǫ+ y2)2

. |ω1||y|+ y2. (3.29)

Since a ≈ √
ǫ, it follows from (3.25), (3.28), and (3.29) that

|ζ(x1(y))− ζ|∂B1
| .

√
ǫ(|ω1||y|+ y2).

Therefore (3.20) is proved.
We now prove (3.21) and (3.22) for j = 1. The cases for j = 2 can be handled similarly.

In view of (3.23), we have

d

dy
ζ(x1(y)) =

d

dy
ζ(−f1(y), y)

=
( −f1(y) + a

(−f1(y) + a)2 + y2
− −f1(y)− a

(−f1(y)− a)2 + y2

)
(−f ′

1(y))

+
y

(−f1(y) + a)2 + y2
− y

(−f1(y)− a)2 + y2

= 2a
N(y)

D+(y)D−(y)
, (3.30)

where N and D± are given by

N(y) := (−1)(a2 − f1(y)
2 + y2)f ′

1(y) + 2f1(y)y,

D±(y) := (−f1(y)± a)2 + y2.

It is easy to see that
D±(y) ≈ ǫ+ y2. (3.31)

As consequences of (2.48) and (2.53), we have

a2 =
2ǫ

κ1 + κ2
+O(ǫ2), f1(y) =

κ1

κ1 + κ2
ǫ+

1

2
κ1y

2 +O(ǫ2 + y3),

and hence

N(y) = (−1)
( 2ǫ

κ1 + κ2
+ y2

)
κ1y

+ 2
( κ1

κ1 + κ2
ǫ+

1

2
κ1y

2
)
y +O(ǫy3 + ǫ2y + y4)

= O(ǫy2 + ǫ2y + y4). (3.32)

Then, from (3.30) and the fact that a ≈ √
ǫ, we have

∣∣∣ d
dy

ζ(x1(y))
∣∣∣ . a

ǫy2 + ǫ2y + y4

(ǫ+ y2)2
.

√
ǫ.
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So, (3.21) is proved.
Now let us consider (3.22). We have

d2

dy2
ζ(x1(y)) =

d2

dy2
ζ(−f1(y), y) =

d

dy

(
2a

N(y)

D+(y)D−(y)

)

= 2a
N ′(y)

D+(y)D−(y)
− 2a

N(y)(D+)
′(y)

(D+(y))2D−(y)
− 2a

N(y)(D−)′(y)
D+(y)(D−(y))2

. (3.33)

We also have

N ′(y) = −a2f ′′
1 + 2f1(f

′
1)

2 + (f1)
2f ′′

1 − y2f ′′
1 + 2f1,

(D±)
′(y) = 2(−f1 ± a)(−f ′

1) + 2y.

Since f1(y) ≈ ǫ+ y2, f ′
1(y) = O(y) and f ′′

1 (y) = O(1), we have

|N ′(y)| . ǫ+ y2, |(D±)
′(y)| . |y|.

Then, from (3.31)-(3.33) and the fact that a ≈ √
ǫ, we obtain

∣∣∣ d
2

dy2
ζ(x1(y))

∣∣∣ . a

(
ǫ+ y2

(ǫ+ y2)2
+

(ǫy2 + ǫ2y + y4)|y|
(ǫ+ y2)3

)
.

√
ǫ

ǫ+ y2
.

The proof is completed.

3.3 Estimates of singular functions

This subsection is to derive estimates of the singular function qj in the narrow region ΠL

and on ∂D1 ∪ ∂D2, which will be used in the later part of the paper.
We begin by showing that singular functions can be explicitly represented by the

function ζ introduced in the previous subsection. Set

Aζ(x) :=

[
1− sinh2 ζ(x)

a2
y2
]1/2

, x = (x, y). (3.34)

If x = (x, y) ∈ ΠL, then it holds by (3.18) that |ζ(x)| . √
ǫ. Since a ≈ √

ǫ by (2.48), we
have

sinh2 ζ(x)

a2
. 1.

So there exists a constant 0 < L0 < L (independent of ǫ) such that

1− sinh2 ζ(x)

a2
y2 ≥ 1

2
, x = (x, y) ∈ ΠL0

. (3.35)

Note that
Aζ(x) = 1 +O(y2), x = (x, y) ∈ ΠL0

. (3.36)

Singular functions qj can be represented in terms of ζ as follows

23



Proposition 3.2. Let qi(x) = (qi1(x), qi2(x))
T for i = 1, 2. If x ∈ ΠL0

, then qij are given
by

q11(x) = α1ζ(x)− α2Aζ(x) sinh ζ(x), (3.37)

q12(x) = q21(x) = α2a
−1y sinh2 ζ(x), (3.38)

q22(x) = α1ζ(x) + α2Aζ(x) sinh ζ(x). (3.39)

Proof. From the definition (3.8) of q1 and the first identity in (3.23), we have

q11(x) = α1ζ(x)− α2

[
(x+ a)2

(x+ a)2 + y2
− (x− a)2

(x− a)2 + y2

]

+ α2a

[
x+ a

(x+ a)2 + y2
+

x− a

(x− a)2 + y2

]

= α1ζ(x)− α2

[
x(x+ a)

(x+ a)2 + y2
− x(x− a)

(x− a)2 + y2

]

= α1ζ(x)− α2
2ax(a2 − x2 + y2)

((x− a)2 + y2)((x+ a)2 + y2)
(3.40)

for x ∈ R
2 \ {p1,p2}.

Thanks to the first identity in (3.23) again, we have

sinh ζ(x) =
1

2

(√
(x+ a)2 + y2

(x− a)2 + y2
−
√

(x− a)2 + y2

(x+ a)2 + y2

)

=
2ax√

(x− a)2 + y2
√
(x+ a)2 + y2

. (3.41)

Then straightforward computations yield

Aζ(x) =
a2 − x2 + y2√

((x+ a)2 + y2)((x− a)2 + y2)
, x ∈ ΠL0

. (3.42)

This together with (3.40) yields (3.37).
The identity (3.38) can be proved similarly. In fact, one can see that

q12(x) = −α2

[
(x+ a)y

(x+ a)2 + y2
− (x− a)y

(x− a)2 + y2

]

+ α2a

[
y

(x+ a)2 + y2
+

y

(x− a)2 + y2

]

= α2
4ax2y

((x+ a)2 + y2)((x− a)2 + y2)
, (3.43)

and (3.38) follows from (3.41).
Similarly one can show that q21 = q12 and (3.39) hold. We omit the proof.

Proposition 3.2 already reveals an important property of the singular functions. They
are almost constant near the points z1 and z2. This can be seen more clearly if two
osculating disks have the same radii.
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Lemma 3.3. Assume B1 and B2 have the same radii r0. Then it holds for x ∈ ∂Bi,
i = 1, 2, that

q1(x) =

(√
ǫ

m1
+ t1

)
(−1)i

2
Ψ1 + α2

a

r20

[
x
y

]
, (3.44)

q2(x) =

(√
ǫ

m2
+ t2

)
(−1)i

2
Ψ2 + α2

a

r20

[
y
x

]
, (3.45)

where mj are constants defined by (3.12) and tj are constants satisfying

|tj | ≤ C(α1 + α2)ǫ
3/2 (3.46)

for some constant C independent of (α1, α2), or equivalently, independent of (λ, µ), as
well as ǫ.

Proof. If r1 = r2 = r0, (2.47) reads

a =

√
ǫ(4r0 + ǫ)

2
. (3.47)

We see from (3.23) that the constant value ζ(x) on ∂Bj are as follows:

ζ|∂Bi
= (−1)i sinh−1(a/r0), i = 1, 2. (3.48)

Let s = sinh−1(a/r0). Note that a = r0 sinh s. Then it follows from (3.47) that

r0 cosh s =
√
r20 + a2 = r0 + ǫ/2.

Since the center of ∂Bi is (−1)i(r0 + ǫ/2, 0), we have

∂Bi =
{
(x, y) ∈ R

2 :
(
x− (−1)ir0 cosh s

)2
+ y2 = r20

}
.

So, for (x, y) ∈ ∂Bi, we obtain

(x± a)2 + y2 = x2 ± 2xr0 sinh s+ r20 sinh
2 s+ y2

= (x− (−1)ir0 cosh s)
2 + y2 − r20 + (−1)i2xr0 cosh s± 2xr0 sinh s

= ((−1)i cosh s± sinh s)2r0x, (3.49)

and

a2 − x2 + y2 = (x− (−1)ir0 cosh s)
2 + y2 − r20 − 2x2 + (−1)i2xr0 cosh s

= ((−1)ir0 cosh s− x)2x =
(
(−1)i(r0 + ǫ/2)− x

)
2x.

Then, for (x, y) ∈ ∂Bi, we have

2ax√
(x− a)2 + y2

√
(x+ a)2 + y2

= (−1)i
a

r0
,

a2 − x2 + y2√
((x+ a)2 + y2)((x− a)2 + y2)

= 1 +
ǫ

2r0
− (−1)i

x

r0
. (3.50)
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Note that ζ|∂Bi
= (−1)is. So we obtain from (3.40) and (3.50) that

q11(x) = (−1)iα1s− α2(−1)i(1 +
ǫ

2r0
)
a

r0
+ α2

a

r0

x

r0
, x ∈ ∂Bi.

Since a =
√
r0ǫ + O(ǫ3/2), s =

√
ǫ/r0 + O(ǫ3/2), and m1 =

√
r0/[2(α1 − α2)], it follows

that

q11(x) = (−1)i
(
(α1 − α2)

√
ǫ/r0 + (α1 + α2)O(ǫ3/2)

)
+ α2

a

r20
x

= (−1)i
(1
2

√
ǫ

m1
+ (α1 + α2)O(ǫ3/2)

)
+ α2

a

r20
x, x ∈ ∂B1.

We also obtain from (3.43) and (3.49) that

q12(x) = α2
a

r20
y, x ∈ ∂B1 ∪ ∂B2.

This proves (3.44). One can prove (3.45) similarly.
We have the following lemma in ΠL0

.

Lemma 3.4. We have, for x ∈ ΠL0
,

|∂1q11(x)|+ |∂1q22(x)| .
√
ǫ

ǫ+ y2
, (3.51)

and

|∂2q11(x)|+ |∂2q22(x)|+ |∇q12(x)| .
√
ǫ|y|

ǫ+ y2
+
√
ǫ. (3.52)

Proof. We only consider q1. Estimates for q2 can be obtained similarly.
First we consider ∂1q11(x). By (3.37), we have

∂1q11(x) = α1∂1ζ(x)− α2 cosh(ζ(x))Aζ(x)∂1ζ(x)

+ α2 sinh
2(ζ(x)) cosh(ζ(x))

y2

a2
Aζ(x)

−1∂1ζ(x). (3.53)

Thanks to (3.35), we have
|Aζ(x)| ≈ 1. (3.54)

Then, using the fact that a ≈ √
ǫ, we obtain

|∂1q11(x)| . |∂1ζ(x)|+ |ζ(x)|2 y
2

ǫ
|∂1ζ(x)|.

We then infer from (3.18) and (3.19) that

|∂1q11(x)| .
√
ǫ

ǫ+ y2
+ ǫ

y2

ǫ

√
ǫ

ǫ+ y2
.

√
ǫ

ǫ+ y2
.

This proves (3.51).
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To prove (3.52) for q1, we compute using (3.37) and (3.38)

∂2q11(x) = α1∂2ζ(x)− α2 cosh(ζ(x))Aζ(x)∂2ζ(x)

+ α2 sinh(ζ(x))Aζ(x)
−1
(
sinh ζ(x)∂2ζ(x)

y2

a2
+ sinh2 ζ(x)

y

a2

)
,

and

∂1q12(x) = 2α2ay sinh ζ(x) cosh ζ(x)∂1ζ(x),

∂2q12(x) = 2α2ay sinh ζ(x) cosh ζ(x)∂2ζ(x) + α2a sinh
2 ζ(x).

So, (3.52) can be proved in the same way as above. The proof is completed.

Let h1 = (h11, h12)
T be the solution to (3.1) for j = 1. Then, we have h1(x2(y)) −

h1(x1(y)) = (1, 0)T . Since |x2(0)− x1(0)| = ǫ, one can expect
{
∂1h11(0, 0) = ǫ−1 +O(1),

|∂2h11(0, 0)|+ |∂1h12(0, 0)|+ |∂2h12(0, 0)| . 1.
(3.55)

One can expect a similar behavior for h2 as well. We now show that
mj√
ǫ
qj has the exactly

same behavior as ǫ → 0.

Lemma 3.5. It holds for small ǫ > 0 that



∂1q11(0, 0) =

1

m1
√
ǫ
+O(

√
ǫ),

|∂2q11(0, 0)|+ |∂1q12(0, 0)|+ |∂2q12(0, 0)| .
√
ǫ,

(3.56)

and 


∂1q22(0, 0) =

1

m2
√
ǫ
+O(

√
ǫ),

|∂1q21(0, 0)|+ |∂2q21(0, 0)|+ |∂2q22(0, 0)| .
√
ǫ.

(3.57)

Proof. Since ∂1ζ(0, 0) = 2/a and ζ(0, 0) = 0, it follows from (3.53) that

∂1q11(0, 0) =
2(α1 − α2)

a
.

Since a =
√
2ǫ/
√

(κ1 + κ2) +O(ǫ3/2), the first equality in (3.56) follows. From (3.52), we
have

|∂2q11(0, 0)|+ |∂1q12(0, 0)|+ |∂2q12(0, 0)| .
√
ǫ.

This proves (3.56). (3.57) can be proved similarly.

Lemma 3.6. For j = 1, 2, we have

‖qj‖L∞(De\ΠL0
) + ‖∇qj‖L∞(De\ΠL0

) .
√
ǫ. (3.58)

Proof. We only prove (3.58) for j = 1. The same proof applies to the case when j = 2.
Recall that

q1(x) = Γ(x− p1)e1 − Γ(x− p2)e1 + α2a

(
x− p1

|x− p1|2
+

x− p2

|x− p2|2
)
.
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Note that if x ∈ De \ΠL0
, then 1 . |x−p| for all p lying on the line segment p1p2. Since

a ≈ √
ǫ, the second term on the right-hand side of the above and its derivative is less than√

ǫ.
One can easily show that the first term also satisfies the same estimate. In fact, by

the mean value theorem, we have

|Γ(x− p1)− Γ(x− p2)| . |∇Γ(x− p∗)||p1 − p2|

for some p∗ on p1p2. We also have

|∇(Γ(x− p1)− Γ(x− p2))| . |∇2Γ(x− p∗∗)||p1 − p2|

for some p∗∗ on p1p2. Since |p1 − p2| = 2a ≈ √
ǫ, (3.58) follows.

As a corollary, we have the following estimate for ∇qj .

Corollary 3.7. For j = 1, 2, we have

‖∇qj‖L∞(De) ≈ ǫ−1/2. (3.59)

Proof. The upper estimate ‖∇qj‖L∞(De) . ǫ−1/2 is a consequence of Lemma 3.4 and 3.6,
and the lower one is that of Lemma 3.5.

We have the following lemma on ∂D1 ∪ ∂D2.

Lemma 3.8. Let xk(y) be the defining functions for ∂Dk for k = 1, 2 as given in (2.52).
For |y| < L0, the following holds:

q11(xk(y)) = (−1)k(α1 − α2)κka+O (E) , (3.60)

q12(xk(y)) = q21(xk(y)) = α2κ
2
kay +O (|y|E) , (3.61)

q22(xk(y)) = (−1)k(α1 + α2)κka+O (E) , (3.62)

where
E := ǫ3/2 +

√
ǫy2 + τ

√
ǫ|y|. (3.63)

Proof. We see from (3.23) that

ζ|∂Bk
= (−1)i sinh−1(κka) = (−1)iκka+O(a3).

Since a ≈ √
ǫ, we infer from (3.20) that

ζ(xk(y)) = (−1)iκka+O (E) , (3.64)

and
sinh ζ(xk(y)) = (−1)iκka+O (E) . (3.65)

Combining (3.36), (3.64) and (3.65), one can see that (3.60), (3.61) and (3.62) follow from
(3.37), (3.38), and (3.39), respectively.

Then, using (2.48) and the definitions (3.12) of m1 and m2, we immediately obtain the
following corollary.
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Corollary 3.9. For |y| < L0, we have

q11(x2(y))− q11(x1(y)) = m−1
1

√
ǫ+O(E), (3.66)

q12(x2(y))− q12(x1(y)) = q21(x2(y))− q21(x1(y)) = O(
√
ǫτ |y|), (3.67)

q22(x2(y))− q22(x1(y)) = m−1
2

√
ǫ+O(E), (3.68)

where E is given by (3.63).

We then obtain the following lemma for estimates of the derivatives of qj .

Lemma 3.10. Let xk(y) be the defining functions for ∂Dk for k = 1, 2 as given in (2.52).
For |y| < L0, the following holds:

∣∣∣ d
dy

qj(xk(y))
∣∣∣ .

√
ǫ, (3.69)

∣∣∣ d
2

dy2
q11(xk(y))

∣∣∣+
∣∣∣ d

2

dy2
q22(xk(y))

∣∣∣ .
√
ǫ

ǫ+ y2
, (3.70)

∣∣∣ d
2

dy2
q12(xk(y))

∣∣∣ .
√
ǫ. (3.71)

Proof. We only prove inequalities corresponding to q1(x1(y)). Those for other cases,
namely, q1(x2(y)) and q2(xk(y)), can be treated similarly.

For ease of notation, let us define ϕ(y) and Φ(y) by

ϕ(y) := ζ(x1(y)), Φ(y) := Aζ(x1(y)).

We see from (3.20)-(3.22) that

|ϕ(y)| .
√
ǫ, |ϕ′(y)| .

√
ǫ, |ϕ′′(y)| .

√
ǫ

ǫ+ y2
. (3.72)

We also have
|Φ(y)| ≈ 1, |Φ′(y)| . |y|, |Φ′′(y)| . 1. (3.73)

The first estimate in the above is an immediate consequence of (3.54), and the last two
can be proved using the definition (3.34) of Aζ(x). In fact, straightforward computations
yield

Φ′(y) = − 1

2a2Φ

(
y2ϕ′ sinh 2ϕ+ 2y sinh2 ϕ

)
,

and

Φ′′(y) = − 1

2a2Φ

(
4yϕ′ sinh 2ϕ+ y2ϕ′′ sinh 2ϕ+ 2y2(ϕ′)2 cosh 2ϕ+ 2 sinh2 ϕ

)

+
Φ′

2a2Φ2

(
y2ϕ′ sinh 2ϕ+ 2y sinh2 ϕ

)
.

Then, using (3.72) and the fact that |Φ| ≈ 1, we obtain

|Φ′(y)| . 1

ǫ
(y2ǫ+ |y|ǫ) . |y|,

|Φ′′(y)| . 1

ǫ

(
|y|ǫ+ y2

√
ǫ

ǫ+ y2
√
ǫ+ y2ǫ+ ǫ

)
+

|y|
ǫ

(
y2ǫ+ |y|ǫ

)
. 1.
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We have from (3.37) and (3.38) that

d

dy
q11(x1(y)) = α1ϕ

′ − α2

(
Φϕ′ coshϕ+Φ′ sinhϕ

)
,

d

dy
q12(x1(y)) = α2a

−1(sinh2 ϕ+ yϕ′ sinh 2ϕ),

d2

dy2
q11(x1(y)) = α1ϕ

′′ − α2

(
(Φ′ϕ′ +Φϕ′′ +Φ′ϕ′) coshϕ+ (Φϕ′2 +Φ′′) sinhϕ

)
,

d2

dy2
q12(x1(y)) = α2a

−1(2ϕ′ sinh 2ϕ+ yϕ′′ sinh 2ϕ+ 2yϕ′2 cosh 2ϕ).

Since a ≈ √
ǫ, (3.69)-(3.71) now follow from (3.72) and (3.73).

We now estimate q3 whose behavior resembles that of the solution h3 = (h31, h32)
T to

(3.1) for j = 3. Since h3|∂Di
= (−1)i

2 (−y, x)T for i = 1, 2, we see that

h3(x2(y))− h3(x1(y)) =

(
−y,

f1(y) + f2(y)

2

)
.

Since |x2(y) − x1(y)| = f1(y) + f2(y), one can expect that the following holds for small
ǫ > 0 and for (x, y) near the origin:

∂1h31 ≈
−y

f1(y) + f2(y)
+O(1) = − y

ǫ+ 1
2(κ1 + κ2)y2

+O(1) (3.74)

and
|∂2h31(x, y)|+ |∂1h32(x, y)|+ |∂2h32(x, y)| . 1. (3.75)

The following lemma shows that q3 has the exactly same local behavior.

Lemma 3.11. For x = (x, y) ∈ ΠL, we have

∂1q31(x) = − y

ǫ+ 1
2(κ1 + κ2)y2

+O(1), (3.76)

and
|∂2q31(x)|+ |∂1q32(x)|+ |∂2q32(x)| . 1. (3.77)

Proof. Let m3 be the number defined by (3.16). For ease of computation, we decompose
q3 as q3 = q̃3 + w where w(x) = −m3(Γ

⊥(x − c1) + Γ⊥(x − c2)). It is clear that
|∇w(x)| . 1 for x ∈ ΠL.

Now we consider q̃3 = (q̃31, q̃32)
T , which is given by

q̃3 = m3

(
Γ⊥(x− p1) + Γ⊥(x− p2)

)
+m3α2a

(
(x− p1)

⊥

|x− p1|2
− (x− p2)

⊥

|x− p2|2
)
.
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From the definition (3.13) of Γ⊥, we have

q̃31(x) = m3α1

2∑

i=1

arg
(
x− (−1)ia+ iy

)

−m3α2

2∑

i=1

(x− (−1)ia)(−y)

(x− (−1)ia)2 + y2
+m3α2a

2∑

i=1

(−1)i+1(−y)

(x− (−1)ia)2 + y2
,

q̃32(x) = −m3α2

2∑

i=1

(x− (−1)ia)2

(x− (−1)ia)2 + y2
+m3α2a

2∑

i=1

(−1)i+1(x− (−1)ia)

(x− (−1)ia)2 + y2
.

Straightforward computations yield

∂1q̃31(x) = −(κ1 + κ2)
−1f(x)− 2m3α2xy

[
xh+(x) + ah−(x)

]
,

∂2q̃31(x) = m3(α1 + α2)xg+(x) +m3α1ag−(x)− 2m3α2xy
2h+(x),

∂1q̃32(x) = −2m3α2xg+(x)−m3α2ag−(x)

+ 2m3α2x
[
(x2 + a2)h+(x) + 2axh−(x)

]
,

∂2q̃32(x) = 2m3α2xy
[
xh+(x) + ah−(x)

]
,

where f , g± and h± are defined by

f(x) =
y

(x+ a)2 + y2
+

y

(x− a)2 + y2
,

g±(x) =
1

(x+ a)2 + y2
± 1

(x− a)2 + y2
,

h±(x) =
1

((x+ a)2 + y2)2
± 1

((x− a)2 + y2)2
.

Since a ≈ √
ǫ, |x| . ǫ+ y2 and (x± a) + y2 ≈ ǫ+ y2, we see that

|g+(x)| .
1

ǫ+ y2
, |h+(x)| .

1

(ǫ+ y2)2
,

|g−(x)| =
∣∣∣∣

4ax

((x+ a)2 + y2)((x− a)2 + y2)

∣∣∣∣ .
√
ǫ

ǫ+ y2
,

|h−(x)| =
∣∣∣∣
4ax((x+ a)2 + (x− a)2 + 2y2)

((x+ a)2 + y2)2((x− a)2 + y2)2

∣∣∣∣ .
√
ǫ

(ǫ+ y2)2
.

Therefore, we obtain

|∂1q̃31(x) + (κ1 + κ2)
−1f(x)| . (ǫ+ y2)2y

(ǫ+ y2)2
+

ǫ(ǫ+ y2)y

(ǫ+ y2)2
. 1,

|∂2q̃31(x)| .
ǫ+ y2

ǫ+ y2
+
√
ǫ

√
ǫ

ǫ+ y2
++

(ǫ+ y2)y2

(ǫ+ y2)2
. 1,

|∂1q̃32(x)| .
ǫ+ y2

ǫ+ y2
+
√
ǫ

√
ǫ

ǫ+ y2
+

(ǫ+ y2)3 + ǫ(ǫ+ y2)

(ǫ+ y2)2
+

ǫ(ǫ+ y2)

(ǫ+ y2)2
. 1,

|∂2q̃32(x)| .
(ǫ+ y2)2y

(ǫ+ y2)2
+

ǫ(ǫ+ y2)y

(ǫ+ y2)2
. 1.
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Now it remains to show that

f(x) =
(κ1 + κ2)y

ǫ+ 1
2(κ1 + κ2)y2

+O(1). (3.78)

Since
∣∣∣∣

y

(x± a)2 + y2
− y

a2 + y2

∣∣∣∣ .
∣∣∣∣

y(x2 ± 2ax)

((x± a)2 + y2)(a2 + y2)

∣∣∣∣

.
y((ǫ+ y2)2 +

√
ǫ(ǫ+ y2))

(ǫ+ y2)2
. 1,

we see that

f(x) =
2y

a2 + y2
+O(1).

Since
y

a2 + y2
=

y

2ǫ/(κ1 + κ2) +O(ǫ2) + y2
=

1
2(κ1 + κ2)y

ǫ+ 1
2(κ1 + κ2)y2

+O(1),

the desired estimate (3.78) follows. This completes the proof.

Lemma 3.12. The following holds:

|∇q3(0, 0)| . 1, ∇q3(0, a) =

√
κ1 + κ2√

2ǫ
e1 ⊗ e1 +O(1). (3.79)

Moreover, we have
‖∇q3‖L∞(De\ΠL) . 1, (3.80)

and

‖∇q3‖L∞(De) ≈
1√
ǫ
. (3.81)

Proof. The estimates in (3.79) are consequences of Lemma 3.11. The estimate (3.81) is
a consequence of Lemma 3.11 and (3.80).

To prove (3.80), recall that

q3(x) = m3

(
Γ⊥(x− p1)− Γ⊥(x− c1)

)
e1 +m3

(
Γ⊥(x− p2)− Γ⊥(x− c2)

)
e1

−m3α2a

(
(x− p1)

⊥

|x− p1|2
− (x− p2)

⊥

|x− p2|2
)
.

If x ∈ De \ ΠL, then 1 . |x − c| for all c on the line segment c1c2. Note that p1 and p2

are on c1c2. So, all the terms in parentheses above and their gradients are bounded. So,
(3.80) follows.

3.4 Approximations by singular functions

In this section we prove (3.11). More precisely, we prove the following proposition.
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Proposition 3.13. For j = 1, 2, let hj be the solution to (3.1) in A∗ and mj be the
constant defined in (3.12). Then it holds that

hj =
mj√
ǫ
qj + rj , (3.82)

where ∇rj satisfies ∫

De

C∇̂rj : ∇̂rj . 1. (3.83)

To prove Proposition 3.13 we apply the variational principle. We emphasize that this is
possible only because the singular function qj is the solution to the Lamé system, namely,
Lλ,µqj = 0 in De, and so is rj . Note that rj ∈ A∗ and

rj = (−1)i
1

2
Ψj −

mj√
ǫ
qj on ∂Di, i = 1, 2.

Let

Wj =

{
v ∈ A∗ | v|∂Di

= (−1)i
1

2
Ψj −

mj√
ǫ
qj

}
, (3.84)

and let EDe be the energy functional defined in (2.36). By the variational principle (2.37),
we have

EDe [rj ] = min
v∈Wj

EDe [v]. (3.85)

We define the test function rKj as follows: for (x, y) ∈ ΠL0
let

rKj (x, y) :=
rj(x2(y))− rj(x1(y))

f1(y) + f2(y)
[x+ f1(y)] + rj(x1(y)). (3.86)

Note that

rKj = (−1)i
1

2
Ψj −

mj√
ǫ
qj = rj on ∂Di ∩ ∂ΠL0

, i = 1, 2, (3.87)

and rKj is a linear interpolation of rj |∂De in the x-direction. So, in ΠL0
, rKj (x, y) is a linear

function of x for each fixed y. Let B0 be a disk containing D1 ∪D2, and extend rKj to

De \ ΠL0
so that rKj |R2\B0

= 0, ‖rKj ‖H1(De\ΠL0
) . 1, and the boundary condition (3.87)

holds on ∂Di for i = 1, 2. Then, rKj belongs to Wj .
We have the following lemma.

Lemma 3.14. We have, for (x, y) ∈ ΠL0
,

|∇rKj (x, y)| . 1 +
τ |y|
ǫ+ y2

. (3.88)

Proof. We prove (3.88) for j = 1. The case for j = 2 can be proved in a similar way.
Let us write rKj (x) = (rKj1(x), r

K
j2(x))

T . To keep the expressions simple, we introduce

d(y) := f1(y) + f2(y),

φ(y) := 1− m1√
ǫ

[
q11(x2(y))− q11(x1(y))

]
,

η(y) := −1

2
− m1√

ǫ
q11(x1(y)). (3.89)
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Then rK11 can be rewritten as

rK11(x, y) =
φ(y)

d(y)
x+

φ(y)f1(y)

d(y)
+ η(y), (x, y) ∈ ΠL0

.

Straightforward computations show that

∂1r
K
11 =

φ

d
, (3.90)

∂2r
K
11 =

[
φ′

d
− φd′

d2

]
x+

φ′f1
d

+
φf ′

1

d
− φf1d

′

d2
+ η′. (3.91)

Note that
d(y) ≈ ǫ+ y2, |d′(y)| . |y|, |d′′(y)| . 1. (3.92)

Note also that, from (3.12), Corollary 3.9 and Lemma 3.10, we have

|φ(y)| . ǫ+ y2 + τ |y|, |φ′(y)|, |η′(y)| . 1. (3.93)

From (3.90)-(3.93) and the fact that |x| . ǫ+ y2 for (x, y) ∈ ΠL, we have

|∂1rK11| .
ǫ+ y2 + τ |y|

ǫ+ y2
. 1 +

τ |y|
ǫ+ y2

,

|∂2rK11| .
[

1

ǫ+ y2
+

(ǫ+ |y|)|y|
(ǫ+ y2)2

]
(ǫ+ y2)

+
ǫ+ y2

ǫ+ y2
+

(ǫ+ |y|)|y|
ǫ+ y2

+
(ǫ+ |y|)(ǫ+ y2)|y|

(ǫ+ y2)2
+ 1 . 1.

In a similar way, one can see that

|∂1rK12| . 1 +
τ |y|
ǫ+ y2

, |∂2rK12| . 1.

This completes the proof.

Proof of Proposition 3.13. By the variational principle (3.85), we have

EDe [rj ] ≤ EDe [rKj ] . ‖∇rKj ‖2L2(De).

It follows from Lemma 3.14 that
∫

De

|∇rKj |2 .
∫

ΠL0

|∇rKj |2 +
∫

De\ΠL0

|∇rKj |2

.

∫ L0

−L0

∫ f2(y)

−f1(y)

(ǫ+ |y|
ǫ+ y2

)2
dx dy + 1

.

∫ L0

−L0

(ǫ+ |y|)2
ǫ+ y2

dy + 1 . 1.

So the proof is complete.

34



4 Stress concentration-boundary value problem

This section deals with the stress concentration, i.e., the gradient blow-up of the solution
to the boundary value problem (2.6). We characterize the stress concentration in the
narrow region between two inclusions in terms of the singular functions qj defined in
(3.8), (3.9), and (3.15). The main results (Theorem 4.6 and 4.7) are stated and proved
in subsection 4.1. Preliminary results required for proving main ones are also stated in
the same subsection. Their proofs are given in subsequent subsections. At the end of
subsection 4.1 we include a brief comparison of this paper’s method with that of [9] where
the upper bound of the gradient blow-up is obtained.

4.1 Characterization of stress concentration-BVP

We first introduce functions hΩ,j for the boundary value problem, analogously to the
functions hj defined in (3.1) for the free space problem. They are solutions to the following
problem: 




Lλ,µhΩ,j = 0 in Ω̃,

hΩ,j =
(−1)i

2
Ψj on ∂Di, i = 1, 2,

hΩ,j = 0 on ∂Ω.

(4.1)

One can easily see that the solution u to (2.6) admits the decomposition

u = vΩ −
3∑

j=1

(c1j − c2j)hΩ,j in Ω̃, (4.2)

where vΩ is the solution to Lλ,µvΩ = 0 in Ω̃ with the boundary condition

vΩ =
1

2

3∑

j=1

(c1j + c2j)Ψj on ∂D1 ∪ ∂D2. (4.3)

Note that

vΩ|∂D1
− vΩ|∂D2

=
1

2
(c13 + c23)(Ψ3|∂D1

−Ψ3|∂D2
) = O(|x|),

from which one expects that ∇vΩ does not blow up even when ǫ → 0. In fact, it was
proved in [9] that

‖∇vΩ‖L∞(Ω̃)
. ‖g‖C1,γ(∂Ω). (4.4)

So the singular behavior of ∇u is determined by the function
∑3

j=1(c1j − c2j)hΩ,j .
In the sequel, we investigate asymptotic behavior of c1j − c2j and hΩ,j as ǫ → 0. For

doing so, we introduce the following boundary integrals:

Ijk :=

∫

De

C∇̂hj : ∇̂hk and JΩ,k :=

∫

∂De

∂hk

∂ν

∣∣∣
+
·HΩ, j, k = 1, 2, 3, (4.5)

where hj is the solution to (3.1) in A∗ and HΩ is the function defined by (2.17). We
emphasize that Ijk is defined by hj , not by hΩ,j .

The relation among c1j − c2j , Ijk and JΩ,k is given by the following lemma.
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Lemma 4.1. The constants cij appearing in (2.6) satisfy



I11 I12 I13
I12 I22 I23
I13 I23 I33





c11 − c21
c12 − c22
c13 − c23


 =



JΩ,1

JΩ,2

JΩ,3


 . (4.6)

By inverting (4.6), we will see that the asymptotic behavior of c1j − c2j as ǫ → 0 can
be described in terms of KΩ,j which are defined by

KΩ,1 = JΩ,1 −
JΩ,3I13
I33

, KΩ,2 = JΩ,2 −
JΩ,3I23
I33

, KΩ,3 =
JΩ,3

I33
. (4.7)

In fact, the following propositions hold. Here, we mention that they are consequences of
Proposition 3.13, which is proved by the variational principle and the properties of singular
functions qj .

Proposition 4.2. For j = 1, 2, 3, we have

|KΩ,j | . ‖g‖C1,γ(∂Ω). (4.8)

Proposition 4.3. We have

c11 − c21 = KΩ,1m
−1
1

√
ǫ+O(

√
ǫẼ), (4.9)

c12 − c22 = KΩ,2m
−1
2

√
ǫ+O(

√
ǫẼ), (4.10)

c13 − c23 = KΩ,3 +O(Ẽ), (4.11)

where
Ẽ := (

√
ǫ+ τ

√
ǫ| ln ǫ|)‖g‖C1,γ(∂Ω). (4.12)

As an immediate consequence of Propositions 4.2 and 4.3, we obtain the following
corollary.

Corollary 4.4. We have

|c11 − c21|+ |c12 − c22| .
√
ǫ‖g‖C1,γ(∂Ω) (4.13)

and
|c13 − c23| . ‖g‖C1,γ(∂Ω). (4.14)

Regarding the asymptotic behavior of hΩ,j , we obtain the following proposition.

Proposition 4.5. Let mj, j = 1, 2, be the constant defined by (3.12). We have for j = 1, 2

hΩ,j =
mj√
ǫ
qj + rΩ,j , (4.15)

where rΩ,j satisfies





|∇rΩ,j(x)| . 1 +
τ |y|
ǫ+ y2

for x ∈ ΠL0
,

|∇rΩ,j(x)| . 1 for x ∈ Ω̃ \ΠL0
.

(4.16)
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Here, τ is the constant defined by (2.54). We also have

hΩ,3 = q3 + rΩ,3 in Ω̃, (4.17)

where rΩ,3 satisfies

|∇rΩ,3| . 1 in Ω̃. (4.18)

It is worth emphasizing that if two inclusions are symmetric with respect to both x-
and y-axes, then τ = 0. So we have |∇rΩ,j | . 1 in Ω̃ for j = 1, 2 as well.

With help of preliminary results presented above, we are now able to state and prove
the main results of this section.

Theorem 4.6. Let u be the solution to (2.6) for some g ∈ C1,γ(∂Ω). The following
decomposition holds

u(x) = bΩ(x)−
3∑

j=1

(
KΩ,j + sΩ,j

)
qj(x), x ∈ Ω̃, (4.19)

where KΩ,j are the constants defined by (4.7) (so satisfies (4.8)), sΩ,j are constants satis-
fying

|sΩ,j | . τ
√
ǫ| ln ǫ|‖g‖C1,γ(∂Ω), (4.20)

and the function bΩ satisfies

‖∇bΩ‖L∞(Ω̃)
. ‖g‖C1,γ(∂Ω). (4.21)

Theorem 4.7. It holds that
∑2

j=1 |KΩ,j |√
ǫ

. ‖∇u‖
L∞(Ω̃)

.
‖g‖C1,γ(∂Ω)√

ǫ
. (4.22)

The upper estimate in (4.22) was proved in [9]. The lower estimate shows that ǫ−1/2

is also the lower bound on the blow-up rate of ∇u as ǫ → 0, provided that

1 .

2∑

j=1

|KΩ,j |. (4.23)

We will show in some special cases that this is the case (see section 6).

Proof of Theorem 4.6. According to Proposition 4.3, c1j − c2j can be written as

c11 − c21 = KΩ,1m
−1
1

√
ǫ+m−1

1

√
ǫ(sΩ,1 + s′Ω,1),

c12 − c22 = KΩ,2m
−1
2

√
ǫ+m−1

2

√
ǫ(sΩ,2 + s′Ω,2),

c13 − c23 = KΩ,3 + sΩ,3 + s′Ω,3,

where the constants sΩ,j and s′Ω,j satisfy

|sΩ,j | . τ
√
ǫ| ln ǫ|‖g‖C1,γ(∂Ω), (4.24)

|s′Ω,j | .
√
ǫ‖g‖C1,γ(∂Ω). (4.25)
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By substituting (4.15) and above three identities into (4.2), we have

u = vΩ −
( 2∑

j=1

(c1j − c2j)
(mj√

ǫ
qj + rΩ,j

))
− (c13 − c23)(q3 + rΩ,3)

= vΩ −
3∑

j=1

(KΩ,j + sΩ,j + s′Ω,j)qj −
3∑

j=1

(c1j − c2j)rΩ,j . (4.26)

Let

bΩ := u+
3∑

j=1

(KΩ,j + sΩ,j)qj .

Then, from (4.26), we have

∇bΩ = ∇vΩ −
3∑

j=1

s′Ω,j∇qj −
3∑

j=1

(c1j − c2j)∇rΩ,j =: I1 + I2 + I3.

We now prove that Ij are bounded. That |I1| . ‖g‖C1,γ(∂Ω) is already mentioned in
(4.4). By (3.59) and (3.81), we have

‖∇qj‖L∞(Ω̃)
. ǫ−1/2, j = 1, 2, 3. (4.27)

So, by (4.25), we have
|I2| . ‖g‖C1,γ(∂Ω).

We have from (4.16) and (4.18) that

‖∇rΩ,1‖L∞(Ω̃)
+ ‖∇rΩ,2‖L∞(Ω̃)

. 1 + τ/
√
ǫ

and
‖∇rΩ,3‖L∞(Ω̃)

. 1.

Therefore, it follows from Corollary 4.4 that

|I3| ≤

∣∣∣∣∣∣

2∑

j=1

(c1j − c2j)∇rΩ,j

∣∣∣∣∣∣
+ |(c13 − c23)∇rΩ,3|

.
(√

ǫ(1 + τ/
√
ǫ) + 1

)
‖g‖C1,γ(∂Ω) . ‖g‖C1,γ(∂Ω).

The proof is complete.

Proof of Theorem 4.7. The upper estimate in (4.22) is a consequence of Proposition 4.2,
Theorem 4.6, and (4.27). To derive the lower estimate, we consider ∇u(0, 0). It follows
from Lemma 3.5, Lemma 3.12 and Theorem 4.6 that

∇u(0, 0) = − KΩ,1

m1
√
ǫ
e1 ⊗ e1 −

KΩ,2

m2
√
ǫ
e2 ⊗ e1 +O(1 + τ ln ǫ).

So we obtain the lower estimate.
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As mentioned earlier, the upper bound in (4.22) was proved in [9]. So, it is helpful
to compare the method of that paper with that of this paper. In fact, some of results
obtained in [9] will be used for proofs in this section. There, the solution u to (2.6) is
expressed as follows:

u =
2∑

i=1

3∑

k=1

cikvik + v3, (4.28)

where vik is the solution to




Lλ,µvik = 0 in Ω̃,

vik = Ψk on ∂Di,

vik = 0 on ∂Dj ∪ ∂Ω, j 6= i,

(4.29)

and v3 is the solution to




Lλ,µv3 = 0 in Ω̃,

v3 = 0 on ∂D1 ∪ ∂D2,

v3 = g on ∂Ω.

Note that

hΩ,k = −1

2
v1k +

1

2
v2k, k = 1, 2, 3. (4.30)

The 6× 6 linear system of equations for cik is derived using (2.7). The linear system is
truncated to a 3× 3 one and then the difference c1j − c2j is expressed using the following
integrals:

ajk :=

∫

∂D1

∂νv1j |+ ·Ψk =

∫

Ω̃
C∇̂v1j : ∇̂v1k,

bk :=

∫

∂D1

∂νv3|+ ·Ψk,

for j, k = 1, 2, 3. Note that the integral ajk is similar to the quantity Ijk of this paper.
The difference lies in that Ijk is defined using the free space solution hj .

To investigate asymptotic behavior of ajk and bk as ǫ → 0, the function vik is approx-
imated by vK

ik , which is defined by





vK
1k(x, y) =

−x+ f2(y)

f1(y) + f2(y)
Ψk,

vK
2k(x, y) =

x+ f1(y)

f1(y) + f2(y)
Ψk,

(x, y) ∈ ΠL, k = 1, 2, 3. (4.31)

In fact, it is proved that

∇vik(x, y) = ∇vK
ik(x, y) +O

(
1 +

y

ǫ+ y2

)
for k = 1, 2, (4.32)

∇vi3(x, y) = ∇vK
i3(x, y) +O(1). (4.33)

From these approximations which are derived using a new iteration technique, the upper
bound on the blow-up rate, ǫ−1/2, of |∇u| is obtained in [9]. However, a lower bound has
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not been obtained. It is partly because the functions vK
ik are not solutions of the Lamé

system.
In this paper, we introduce new singular functions qj , which are solutions of the Lamé

system, as explained in section 3. Using singular functions, we are able to derive precise
asymptotic formulas for ∇u as ǫ → 0. As a consequence we are able to reprove that
ǫ−1/2 is indeed an upper bound on the blow-up rate. Moreover, the asymptotic formulas
enable to show that ǫ−1/2 is a lower bound on the blow-up rate as well in some cases, as
presented in section 6. We emphasize that the asymptotic formulas are obtained using the
variational principle, which is possible only because qj are solutions of the Lamé system.

4.2 Preliminary estimates of boundary integrals

In this subsection, we characterize asymptotic behaviors of the following boundary inte-
grals as ǫ → 0: ∫

∂Di

∂νqj ·Ψk,

∫

∂De

∂νqj · qk.

These integrals appear in later sections.
We first prove the following lemma.

Lemma 4.8. (i) For k = 1, 2, we have
∫

∂Di

∂νqj ·Ψk = (−1)i+1δjk, i, j = 1, 2. (4.34)

(ii) For k = 3, we have
∫

∂Di

∂νq1 ·Ψ3 = 0, (4.35)

∫

∂Di

∂νq2 ·Ψ3 = (−1)i+1a(−1 + 4πα2µ), (4.36)

for i = 1, 2, where a is the constant defined by (2.47).

Proof. Suppose that k = 1, 2. Since Lλ,µΓ(x−pl)ej = δ(x−pl)ej , Green’s formula yields

∫

∂Di

∂νxΓ(x− pl)ej ·Ψk dσ(x) =

∫

Di

Lλ,µΓ(x− pl)ej ·Ψk dσ(x) = δilδjk.

Green’s formula also yields
∫

∂Di

∂νx

(
x− pl

|x− pl|2
)
·Ψk dσ(x) = 0.

In fact, if i = l, then we apply Green’s formula to R
2 \Di, and to Di if i 6= l. So, (4.34)

follows from (3.8) and (3.9).
We now prove (4.35) and (4.36) when i = 1. The case when i = 2 can be proved in

the same way. Let us prove (4.36) first. In view of the definition (3.9) of q2, we have

∫

∂D1

∂νq2 ·Ψ3 =

∫

∂D1

∂νx(Γ(x− p1)e2) ·Ψ3 − α2a

∫

∂D1

∂νx

(
(x− p1)

⊥

|x− p1|2
)
·Ψ3. (4.37)
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Since Lλ,µ(Γ(x− p1)e2) = δp1
(x)e2, one can see that

∫

∂D1

∂νx(Γ(x− p1)e2) ·Ψ3 = e2 ·Ψ3(p1) = −a, (4.38)

where the last equality holds because p1 = (−a, 0).
By using a change of variables x → x+p1 and the fact that Ψ3(x+p1) = Ψ3(x)−aΨ2,

we obtain
∫

∂D1

∂νx

(
(x− p1)

⊥

|x− p1|2
)
·Ψ3(x) =

∫

∂D1−p1

∂νx

(
x⊥

|x|2
)
·Ψ3(x+ p1)

= −a

∫

∂D1−p1

∂νx

(
x⊥

|x|2
)
·Ψ2 +

∫

∂D1−p1

∂νx

(
x⊥

|x|2
)
·Ψ3(x). (4.39)

One can show as before that
∫

∂D1−p1

∂νx

(
x⊥

|x|2
)
·Ψ2 dσ(x) = 0. (4.40)

Let B be a disk centered at 0 such that ∂D1 − p1 ⊂ B. Then Green’s formula yields

∫

∂D1−p1

∂νx

(
x⊥

|x|2
)
·Ψ3(x) =

∫

∂B
∂νx

(
x⊥

|x|2
)
·Ψ3(x).

Straightforward computations show that

∂νx

(
x⊥

|x|2
)

= (−2µ)
x⊥

|x|3 for x ∈ ∂B.

So, we have

∫

∂D1−p1

∂νx

(
x⊥

|x|2
)
·Ψ3(x) =

∫

∂B
∂νx

(
x⊥

|x|2
)
· x⊥ =

∫

∂B
(−2µ)

1

|x| = −4πµ.

It then follows from (4.39) and (4.40) that

∫

∂D1

∂νx

(
(x− p1)

⊥

|x− p1|2
)
·Ψ3(x) = −4πµ. (4.41)

Combining (4.37)-(4.41), we obtain (4.36).
We now prove (4.35). Like (4.38) we have

∫

∂D1

∂νx(Γ(x− p1)e1) ·Ψ3 = e1 ·Ψ3(p1) = 0.

In the same way to show (4.41) one can show that

∫

∂D1

∂νx

(
x− p1

|x− p1|2
)
·Ψ3 = 0.

Therefore, from the definition (3.8) of q1, we have (4.35), and the proof is completed.
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Lemma 4.9. We have
∫

∂De

∂νqj · qj = −m−1
j

√
ǫ+O(τǫ| ln ǫ|+ ǫ), j = 1, 2, (4.42)

∫

∂De

∂νq1 · q2 = O(τǫ| ln ǫ|+ ǫ). (4.43)

Before proving Lemma 4.9, we need to estimate the conormal derivatives ∂νqj on
∂D1 ∪ ∂D2. We have the following lemma.

Lemma 4.10. For x = (x, y) ∈ (∂D1 ∪ ∂D2) ∩ ∂ΠL0
, we have

∣∣∂νq1(x) · e1
∣∣ .

√
ǫ

ǫ+ y2
,
∣∣∂νq1(x) · e2

∣∣ .
√
ǫ|y|

ǫ+ y2
+

√
ǫ, (4.44)

and ∣∣∂νq2(x) · e1
∣∣ .

√
ǫ|y|

ǫ+ y2
+
√
ǫ,

∣∣∂νq2(x) · e2
∣∣ .

√
ǫ

ǫ+ y2
. (4.45)

Proof. We prove (4.44) only. (4.45) can be proved similarly. Let σ1 = (σ1
ij)

2
i,j=1 be the

stress tensor of q1, namely, σ1 := C∇̂q1. According to (2.4), the entries of σ1 can be
written as

σ1
11 = (λ+ 2µ)∂1q11 + λ∂2q12,

σ1
22 = λ∂1q11 + (λ+ 2µ)∂2q12,

σ1
12 = σk

21 = µ(∂2q11 + ∂1q12).

Thus we have the following estimates from Lemma 3.4:

|σ1
11|+ |σ1

22| .
√
ǫ

ǫ+ y2
, |σ1

12| .
√
ǫ|y|

ǫ+ y2
+
√
ǫ for (x, y) ∈ ΠL0

.

Note that ∂νq1 = σ1n and the outward unit normal vector n on ∂Di ∩ ∂ΠL0
is given

as follows:

n =
1√

1 + (f ′
i(y))

2

(
(−1)i+1, f ′

i(y)
)
, i = 1, 2.

Moreover, we have |f ′
i(y)| . |y|. Therefore, we obtain

|∂νq1(x, y) · e1| = |(σ1n)1| =
∣∣∣∣∣

1√
1 + (f ′

i(y))
2
((−1)i+1σ1

11 + f ′
i(y)σ

1
12)

∣∣∣∣∣

.

√
ǫ

ǫ+ y2
+

√
ǫy2

ǫ+ y2
.

√
ǫ

ǫ+ y2
,

and

|∂νq1(x, y) · e2| = |(σ1n)2| =
∣∣∣∣∣

1√
1 + (f ′

i(y))
2
((−1)i+1σ1

12 + f ′
i(y)σ

1
22)

∣∣∣∣∣

.

√
ǫ|y|

ǫ+ y2
+
√
ǫ,
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for x = (x, y) ∈ ∂Di ∩ ∂ΠL0
and i = 1, 2. The proof is completed.

Proof of Lemma 4.9. To prove (4.42), we write

∫

∂D1∪∂D2

∂νq1 · q1 =
2∑

i=1

(−1)i(α1 − α2)κia

∫

∂Di

∂νq1 ·Ψ1

+

2∑

i=1

∫

∂Di

∂νq1 ·
[
q1 − (−1)i(α1 − α2)κiaΨ1

]
.

By Lemma 4.8 (i), we have

2∑

i=1

(−1)i(α1 − α2)κia

∫

∂Di

∂νq1 ·Ψ1 = −(α1 − α2)(κ1 + κ2)a.

Then (2.48) and (3.12) yield

2∑

i=1

(−1)i(α1 − α2)κia

∫

∂Di

∂νq1 ·Ψ1 = −m−1
1

√
ǫ+O(ǫ3/2).

It then remains to show that
∫

∂Di

∂νq1 ·
[
q1 − (−1)i(α1 − α2)κiaΨ1

]
= O(τǫ| ln ǫ|+ ǫ), i = 1, 2. (4.46)

To prove (4.46), let us write

∫

∂D1

∂νq1 ·
[
q1 − (−1)(α1 − α2)κ1aΨ1

]
=

∫

∂D1∩∂ΠL0

+

∫

∂D1\∂ΠL0

:= I1 + I2.

From Lemma 3.6 and the fact that a ≈ √
ǫ, we see that |I2| . ǫ. Note that

|I1| ≤
∫

∂D1∩∂ΠL0

∣∣∂νq1 · e1
(
q11 + (α1 − α2)κ1a

)∣∣+
∣∣∂νq1 · e2 q12

∣∣.

From (3.60) and (3.61), we see that

|q11 + (α1 − α2)κ1a| . ǫ3/2 +
√
ǫy2 + τ

√
ǫ|y|

and
|q12| .

√
ǫ|y|.

It then follows from Lemma 4.10 that

|I1| .
∫

∂D1∩∂ΠL0

√
ǫ

ǫ+ y2
(ǫ3/2 +

√
ǫy2 + τ

√
ǫ|y|) +

(√
ǫ|y|

ǫ+ y2
+

√
ǫ
)√

ǫ|y|

.

∫ L0

−L0

ǫτ |y|
ǫ+ y2

dy + ǫ . τǫ| ln ǫ|+ ǫ.
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This proves (4.46) for i = 1. The case for i = 2 can be proved in the same way. So, (4.42)
is proved.

Next we prove (4.43). Thanks to (4.34) with j = 1 and k = 2, we can write

∫

∂De

∂νq1 · q2 =

2∑

i=1

α2κ
2
i a

∫

∂Di

∂νq1 · yΨ1

+
2∑

i=1

∫

∂Di

∂νq1 ·
[
q2 − α2κ

2
i ayΨ1 − (−1)i(α1 + α2)κiaΨ2)

]
. (4.47)

Green’s formula yields

∫

∂Di

∂νq1 · yΨ1 =

∫

∂Di

∂νq1 · yΨ1 −
∫

∂Di

∂ν(yΨ1) · q1 +

∫

∂Di

∂ν(yΨ1) · q1

=

∫

Di

Lλ,µq1 · yΨ1 −
∫

Di

Lλ,µ(yΨ1) · q1 +

∫

∂Di

∂ν(yΨ1) · q1

=

∫

Di

Lλ,µq1 · yΨ1 +

∫

∂Di

∂ν(yΨ1) · q1.

Observe from (3.5) and the definition (3.8) of q1 that

Lλ,µq1 = (δp1
− δp2

)e1 +

2∑

j=1

α2a

α1 − α2

(
∂1δpje1 + ∂2δpje2

)
, (4.48)

where δpj denotes the Dirac delta at pj . So, we see that

∫

Di

Lλ,µq1 · yΨ1 = 0.

It follows from Lemma 3.6 and Lemma 3.8 that ‖q1‖L∞(∂Di) .
√
ǫ for i = 1, 2. So we have

∫

∂Di

∂ν(yΨ1) · q1 = O(
√
ǫ),

and hence ∫

∂Di

∂νq1 · yΨ1 = O(
√
ǫ), i = 1, 2. (4.49)

Let
∫

∂D1

∂νq1 ·
[
q2 − α2κ

2
1ayΨ1 + (α1 + α2)κ1aΨ2)

]
=

∫

∂D1∩∂ΠL0

+

∫

∂D1\∂ΠL0

:= J1 + J2.

As before, from Lemma 3.6 and the fact that a ≈ √
ǫ, we see that |J2| . ǫ. From Lemma
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3.8, Lemma 4.10 and the fact that a ≈ √
ǫ, we have

|J1| .
∫

∂D1∩∂ΠL0

∣∣∂νq1 ·Ψ1

(
q21 − α2κ

2
1ay
)∣∣+

∣∣∂νq1 ·Ψ2

(
q22 + (α1 + α2)κ1a

)∣∣

.

∫

∂D1∩∂ΠL0

( √
ǫ

ǫ+ y2
+

√
ǫ|y|

ǫ+ y2
+

√
ǫ
)
(ǫ3/2 +

√
ǫy2 + τ

√
ǫ|y|)

.

∫ L0

−L0

τǫ|y|
ǫ+ y2

dy + ǫ

. τǫ| ln ǫ|+ ǫ.

So we obtain
∣∣∣∣
∫

∂D1

∂νq1 ·
(
q2 − α2κ

2
1ayΨ1 + (α1 + α2)κ1aΨ2

)∣∣∣∣ . τǫ| ln ǫ|+ ǫ. (4.50)

Similarly, one can see that

∣∣∣∣
∫

∂D2

∂νq1 ·
(
q2 − α2κ

2
2ayΨ1 − (α1 + α2)κ2aΨ2

)∣∣∣∣ . τǫ| ln ǫ|+ ǫ. (4.51)

Since a ≈ √
ǫ, (4.43) follows from (4.47) and (4.49)-(4.51). The proof is completed.

4.3 Proof of Lemma 4.1

We first show that

Ijk =

∫

∂D1

∂νhj ·Ψk = −
∫

∂D2

∂νhj ·Ψk, j = 1, 2, k = 1, 2, 3. (4.52)

In fact, we see from Lemma 2.8 and the boundary conditions of hj that

Ijk = −
∫

∂De

∂νhj · hk =
1

2

∫

∂D1

∂νhj ·Ψk −
1

2

∫

∂D2

∂νhj ·Ψk.

Since ∇̂Ψk = 0, we obtain using Lemma 2.8 that

∫

∂De

∂νhj ·Ψk = −
∫

De

C∇̂hj : ∇̂Ψk = 0. (4.53)

So, (4.52) follows.
Since Lλ,µHΩ = 0 in Di, we have

∫

∂Di

∂νHΩ · hj = (−1)i
1

2

∫

∂Di

∂νHΩ ·Ψj = 0.

Thus we have

JΩ,j =

∫

∂De

∂νhj

∣∣
+
·HΩ =

∫

∂De

∂νhj

∣∣
+
·HΩ − ∂νHΩ · hj . (4.54)
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One can easily see from (2.18) and Lemma 2.6 (i) that u−HΩ can be extended to De so
that the extended function, still denoted by u−HΩ, satisfies Lλ,µ(u−HΩ) = 0 in De and
u−HΩ ∈ A. Therefore, we have from Lemma 2.8

∫

∂De

(u−HΩ) · ∂νhj

∣∣
+
− ∂ν(u−HΩ)

∣∣
+
· hj = 0.

We then infer from (2.7) and (4.54) that

JΩ,j =

∫

∂De

∂νhj

∣∣
+
· u− ∂νu

∣∣
+
· hj =

∫

∂De

∂νhj

∣∣
+
· u.

Then the boundary condition in (2.6) and (4.52) yield

JΩ,j =
3∑

k=1

c1k

∫

∂D1

∂νhj

∣∣
+
·Ψk + c2k

∫

∂D2

∂νhj

∣∣
+
·Ψk

=

3∑

k=1

(c1k − c2k)Ijk.

So, (4.6) follows.

4.4 Estimates of integrals Ijk and Jk and proof of Proposition 4.2

In this subsection we derive estimates of the integrals Ijk and JΩ,k, and prove Proposition
4.2 as a consequence. Some of estimates obtained in this subsection will be used in the
next subsection as well.

Lemma 4.11. The following holds:

I11 = m1ǫ
−1/2 +O(τ | ln ǫ|+ 1), (4.55)

I12 = O(τ | ln ǫ|+ 1), (4.56)

I22 = m2ǫ
−1/2 +O(τ | ln ǫ|+ 1), (4.57)

as ǫ → 0.

Proof. According to (3.82), we have

Ijk =

∫

De

C∇̂hj : ∇̂hk =

∫

De

C∇̂(
mj√
ǫ
qj + rj) : ∇̂hk

=
mj√
ǫ

∫

De

C∇̂qj : ∇̂hk +

∫

De

C∇̂rj : ∇̂hk

=
mj√
ǫ

∫

De

C∇̂qj : ∇̂hk +

∫

De

C∇̂rj : ∇̂(
mk√
ǫ
qk + rk)

=
mj√
ǫ

∫

De

C∇̂qj : ∇̂hk +
mk√
ǫ

∫

De

C∇̂rj : ∇̂qk +

∫

De

C∇̂rj : ∇̂rk.
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Since

mk√
ǫ

∫

De

C∇̂rj : ∇̂qk =
mk√
ǫ

∫

De

C∇̂(hj −
mj√
ǫ
qj) : ∇̂qk

=
mk√
ǫ

∫

De

C∇̂qk : ∇̂hj −
mjmk

ǫ

∫

De

C∇̂qj : ∇̂qk,

it follows that

Ijk =
mj√
ǫ

∫

De

C∇̂qj : ∇̂hk +
mk√
ǫ

∫

De

C∇̂qk : ∇̂hj

− mjmk

ǫ

∫

De

C∇̂qj : ∇̂qk +

∫

De

C∇̂rj : ∇̂rk.

Then Lemma 2.8 yields

Ijk = −mj√
ǫ

∫

∂De

∂νqj · hk −
mk√
ǫ

∫

∂De

∂νqk · hj

+
mjmk

ǫ

∫

∂De

∂νqj · qk +

∫

De

C∇̂rj : ∇̂rk.

Now, (4.55)-(4.57) follow from Lemma 4.8 and 4.9. In fact, we have from Proposition
3.13 that ∣∣∣∣

∫

De

C∇̂rj : ∇̂rk

∣∣∣∣ . E [rj ]1/2E [rk]1/2 . 1.

Since hj = (−1)i 12Ψj on ∂Di, we have

Ijk = −mj√
ǫ

2∑

i=1

(−1)i

2

∫

∂Di

∂νqj ·Ψk

− mk√
ǫ

2∑

i=1

(−1)i

2

∫

∂Di

∂νqk ·Ψj +
mjmk

ǫ

∫

∂De

∂νqj · qk +O(1).

Then, from (4.34), (4.42) and (4.43), we have

I11 =
m2

1

ǫ

(
−

√
ǫ

m1
+O(τǫ| ln ǫ|+ ǫ)

)
+ 2

m1√
ǫ
+O(1) =

m1√
ǫ
+O(τ | ln ǫ|+ 1),

I22 =
m2

2

ǫ

(
−

√
ǫ

m2
+O(τǫ| ln ǫ|+ ǫ)

)
+ 2

m2√
ǫ
+O(1) =

m2√
ǫ
+O(τ | ln ǫ|+ 1),

I12 =
m1m2

ǫ
O(τǫ| ln ǫ|+ ǫ) +O(1) = O(τ | ln ǫ|+ 1).

This completes the proof.

Lemma 4.12. We have
|I13|, |I23| . 1, (4.58)

and
I33 ≈ 1. (4.59)
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Proof. We prove (4.59) first. For that we closely follow the proof of (4.12) in [9]. Let hK
3

be the function defined as follows: for (x, y) ∈ ΠL,

hK
3 (x, y) =

x+ f1(y)

f2(y) + f1(y)
Ψ3 +

(−1)

2
Ψ3. (4.60)

We emphasize that

hK
3 = −1

2
vK
13 +

1

2
vK
23, (4.61)

where vi3 is defined by (4.31). We then extend hK
3 to De \ΠL so that





hK
3 = (−1)i

1

2
Ψ3 on ∂Di, i = 1, 2,

hK
3 |R2\B0

= 0,

‖hK
3 ‖H1(De\ΠL) . 1,

(4.62)

where B0 is a disk which contains D1 ∪D2.
It is easy to see that, for (x, y) ∈ ΠL,

∂1h
K
31 = − y

ǫ+ 1
2(κ1 + κ2)y2

+O(1), (4.63)

and
∂2h

K
31, ∂1h

K
32, ∂2h

K
32 = O(1). (4.64)

We mention that these estimates together with Lemma 3.11 show that ∇hK
3 and ∇q3

have the same behavior in ΠL. In fact, we have

|∇q3 −∇hK
3 | . 1 in ΠL. (4.65)

This estimate will be used in the proof of Proposition 4.5.
By Lemma 2.9, we have

I33 = EDe [h3] ≤ EDe [hK
3 ] .

∫

De

|∇hK
3 |2

.

∫

ΠL

|∇hK
3 |2 +

∫

De\ΠL

|∇hK
3 |2

.

∫ L

−L

∫ f2(y)

−f1(y)

( |y|
ǫ+ y2

)2
dx dy + 1

.

∫ L

−L

y2

ǫ+ y2
dy + 1 . 1,

where the second to last inequality holds since f2(y) + f1(y) . ǫ+ y2.
To prove the opposite inequality, we invoke a result in [9]: For any v ∈ H1(ΠL \ΠL0

)
satisfying v = 0 on ∂D1 ∩ ∂(ΠL \ΠL0

), it holds

∫

ΠL\ΠL0

|∇v|2 .
∫

ΠL\ΠL0

|∇̂v|2. (4.66)
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(See the proof of (4.12) in [9].)
Let h̃3 := h3+

1
2Ψ3. Then h̃3 = 0 on ∂D1∩∂(ΠL \ΠL0

) and h̃3 = Ψ3 on ∂D2∩∂(ΠL \
ΠL0

). Therefore, using (4.66), we have

I33 = EDe [h3] = EDe [h̃3] &

∫

ΠL\ΠL0

|∇h̃3|2 & 1. (4.67)

So, (4.59) is proved.
To prove (4.58), let j = 1 or 2. From Lemma 2.8 and (3.82), we have

Ij3 =
mj√
ǫ

∫

De

∇̂qj : ∇̂h3 +

∫

De

C∇̂rj : ∇̂h3

= −mj√
ǫ

∫

∂De

∂νqj · h3 +

∫

De

C∇̂rj : ∇̂h3

=
1

2

mj√
ǫ

(∫

∂D1

∂νqj ·Ψ3 −
∫

∂D2

∂νqj ·Ψ3

)
+

∫

De

C∇̂rj : ∇̂h3

=: I + II.

From Lemma 4.8 (ii) and the fact that a ≈ √
ǫ, we have

I =
mj√
ǫ
δ2ja(−1 + 4πα2µ) = O(1).

It is clear from Proposition 3.13 and (4.59) that

|II| . EDe [rj ]
1/2I331/2 . 1.

This proves (4.58).

Lemma 4.13. We have

|JΩ,k| . ‖g‖C1,γ(∂Ω), k = 1, 2, 3.

Before proving Lemma 4.13, let us make a short remark on regularity of HΩ. Recall
that HΩ is defined by

HΩ = −S∂Ω

[
∂νu

∣∣
∂Ω

]
+D∂Ω[g] in Ω.

As shown in [9], we have
‖∇u‖

L∞(Ω̃\ΠL)
. ‖g‖C1,γ(∂Ω). (4.68)

In particular, we have
‖∂νu‖L∞(∂Ω) . ‖g‖C1,γ(∂Ω).

So, for any Ω1 such that Ω1 ⊂ Ω, we have

‖HΩ‖C2(Ω1) . ‖g‖C1,γ(∂Ω). (4.69)

We also have
‖HΩ‖H1(∂Ω) . ‖g‖C1,γ(∂Ω). (4.70)
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Importance of these inequalities is that they hold independently of ǫ.

Proof of Lemma 4.13. Let us first consider the case when k = 1, 2. For simplicity, we
assume ‖g‖C1,γ(∂Ω) = 1. Since

∫
∂De ∂νHΩ · hk = 0, we have

JΩ,k =

∫

∂De

∂νhk ·HΩ −
∫

∂De

∂νHΩ · hk.

Then (3.82) yields

JΩ,k =
mk√
ǫ

(∫

∂De

∂νqk ·HΩ − ∂νHΩ · qk

)
+

∫

∂De

∂νrk ·HΩ + (−1)

∫

∂De

∂νHΩ · rk

:= Ik + IIk + IIIk.

Green’s formula for the Lamé system and (4.48) yield

√
ǫ

m1
I1 =

∫

D1∪D2

Lλ,µq1 ·HΩ

= (HΩ(p1)−HΩ(p2)) · e1 −
2∑

j=1

α2a

(α1 − α2)
(∂1HΩ(pj) · e1 + ∂2HΩ(pj) · e2). (4.71)

Since a ≈ √
ǫ and (4.69) holds, we have

2∑

j=1

α2a

(α1 − α2)
(∂1HΩ(pj) · e1 + ∂2HΩ(pj) · e2) = O(

√
ǫ).

Since p1 = (−a, 0) and p2 = (a, 0), the mean value theorem shows that there is a point,
say p∗, on the line segment p1p2 such that

|(HΩ(p1)−HΩ(p2)) · e1| ≤ 2a|∂1HΩ(p∗) · e1|.

So, we have
|(HΩ(p1)−HΩ(p2)) · e1| .

√
ǫ.

Therefore, from (4.71), we obtain
I1 = O(1).

Similarly, one can show
I2 = O(1).

Next we estimate IIk. Let v ∈ A∗ be the solution to the following exterior Dirichlet
problem {

Lλ,µv = 0 in De,

v = HΩ on ∂De.
(4.72)

From (2.37), we have
EDe [v] = min

w∈W
EDe [w], (4.73)

where
W :=

{
w ∈ A∗ : w|∂De = HΩ

}
.
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Let w be a function such that




w|ΠL∪∂De = HΩ,

w|R2\B0
= 0,

‖w‖H1(R2) . ‖g‖C1,γ(∂Ω),

(4.74)

where B0 is a disk which contains D1 ∪D2. It is worth to mention that the third condition
in the above is fulfilled thanks to (4.69). Since w ∈ W , we have

EDe [v] ≤ EDe [w] . 1. (4.75)

Then, using Lemma 2.8 and Proposition 3.13, we obtain

|IIk| =
∣∣∣∣
∫

∂De

∂νrk · v
∣∣∣∣

=

∣∣∣∣
∫

De

C∇̂rk : ∇̂v

∣∣∣∣ . EDe [rk]
1/2EDe [v]1/2 . 1, k = 1, 2. (4.76)

Let us now consider IIIk. We see from Lemma 3.6 and 3.8 that

|rk|∂Di
| =

∣∣∣∣
(−1)i

2
Ψk −

mk√
ǫ
qk|∂Di

∣∣∣∣ . 1.

So it follows from (4.70) that

|IIIk| . ‖∂νHΩ‖L2(∂Ω) . 1, k = 1, 2.

Therefore, we have

|JΩ,k| ≤ |Ik|+ |IIk|+ |IIIk| . 1, k = 1, 2.

To deal with the case when k = 3, let v be the solution to (4.72) as before. It follows
from (4.59) and (4.75) that

|JΩ,3| =
∣∣∣∣
∫

∂De

∂νh3 · v
∣∣∣∣

=

∣∣∣∣
∫

De

C∇̂h3 : ∇̂v

∣∣∣∣ . I1/2
33 EDe [v]1/2 . 1.

The proof is completed.

Proposition 4.2 follows from Lemma 4.11, 4.12 and 4.13.

4.5 Proof of Proposition 4.3

Set

I :=



I11 I12 I13
I12 I22 I23
I13 I23 I33


 .
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From Lemma 4.11 and 4.12, we have

det I = I11
(
I22I33 − I2

23

)
− I12

(
I12I33 − I13I23

)
+ I13

(
I12I23 − I13I22

)

= I11I22I33 +O(ǫ−1/2) =
m1m2

ǫ
I33(1 +O(

√
ǫ)). (4.77)

So, by (4.59), the matrix I is invertible for sufficiently small ǫ.
By Lemma 4.1 and Cramer’s rule, we have

c11 − c21 =
JΩ,1

det I
(
I22I33 − I2

23

)
− JΩ,2

det I
(
I12I33 − I13I23

)

+
JΩ,3

det I
(
I12I23 − I13I22

)
. (4.78)

Recall from Lemma 4.11, 4.12 and 4.13 that

I11, I22 ≈ ǫ−1/2, |I12| . 1 + τ | ln ǫ|, |Ij3| . 1, I33 ≈ 1,

and
|JΩ,j | . ‖g‖C1,γ(∂Ω),

for j = 1, 2, 3. For simplicity, we may assume ‖g‖C1,γ(∂Ω)=1. Then, from (4.77) and
(4.78), we can easily check that

c11 − c21 =
JΩ,1

det I I22I33 −
JΩ,3

det I I13I22 +O(ǫ+ τǫ| ln ǫ|).

Hence, by applying (4.55) and the second equality in (4.77), we obtain

c11 − c21 =

√
ǫ

m1

(
JΩ,1 −

JΩ,3I13
I33

)
+O(ǫ+ τǫ| ln ǫ|).

Similarly, we have

c12 − c22 =

√
ǫ

m2

(
JΩ,2 −

JΩ,3I23
I33

)
+O(ǫ+ τǫ| ln ǫ|),

c13 − c23 =
JΩ,3

I33
+O(

√
ǫ+ τ

√
ǫ| ln ǫ|).

Finally, the definition (4.7) of KΩ,j yield (4.9)-(4.11). The proof of Proposition 4.3 is
completed.

4.6 Proof of Proposition 4.5

To prove (4.16) we modify the function rKj introduced in (3.86). Let rKΩ,j be a function in

C2(R2) such that




rKΩ,j = rKj |ΠL0
in ΠL0

,

rKΩ,j =
(−1)i

2
Ψj −

mj√
ǫ
qj on ∂Di, i = 1, 2,

rKΩ,j = −mj√
ǫ
qj on ∂Ω,

(4.79)
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and
‖rKΩ,j‖H1(R2\ΠL0

) . 1. (4.80)

We emphasize that rKΩ,j = rKj is a linear interpolation in the gap region ΠL0
. Note that

∇rKj |ΠL0
is already estimated in Lemma 3.14.

Let
wj := rΩ,j − rKΩ,j , j = 1, 2, (4.81)

where rΩ,j is the function defined by (4.15). We see that the function wj is the solution
to the following problem:

{
Lλ,µwj = −Lλ,µr

K
Ω,j in Ω̃,

wj = 0 on ∂D1 ∪ ∂D2 ∪ ∂Ω.
(4.82)

The following lemma can be proved by arguments parallel to the proof of Lemma 3.6
in [9]. So, we omit the proof.

Lemma 4.14. Let v be a solution to Lλ,µv = −Lλ,µf in Ω̃ with v = 0 on ∂D1∪∂D2∪∂Ω,
where f is a given function belongs to C2(R2). Assume that the following conditions hold:

(i) The function v satisfies ∫

Ω̃
|∇v|2 . 1.

(ii) The function f satisfies

|(Lλ,µf)(x, y)| .
1

ǫ+ y2
for (x, y) ∈ ΠL.

Then we have, for 0 < L′ < L,
‖∇v‖L∞(ΠL′ ) . 1.

Lemma 4.15. For j = 1, 2, let wj be the solution to (4.82). Then we have

|∇wj(x)| . 1 for x ∈ ΠL0
. (4.83)

Proof. It suffices to show that the hypotheses (i) and (ii) of Lemma 4.14 are fulfilled,
namely, ∫

Ω̃
|∇wj |2 . 1. (4.84)

and

|(Lλ,µr
K
Ω,j)(x, y)| .

1

ǫ+ y2
for (x, y) ∈ ΠL. (4.85)
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By the first Korn’s inequality, the variational principle and Lemma 3.14, we have
∫

Ω̃
|∇wj |2 ≤ 2

∫

Ω̃
|∇̂wj |2 .

∫

Ω̃
C∇̂wj : ∇̂wj

.

∫

Ω̃
C∇̂rΩ,j : ∇̂rΩ,j +

∫

Ω̃
C∇̂rKΩ,j : ∇̂rKΩ,j

.

∫

Ω̃
C∇̂rKΩ,j : ∇̂rKΩ,j

.

∫

ΠL0

|∇rKj |2 +
∫

Ω̃\ΠL0

|∇rKj |2 .
∫ L0

−L0

∫ f2(y)

−f1(y)

ǫ+ |y|
ǫ+ y2

dxdy + 1

.

∫ L0

−L0

(ǫ+ |y|) dy + 1 . 1.

So we obtain (4.84).
We now prove (4.85). Let d, φ and η be the function defined in (3.89). It follows from

(3.90) and (3.91) that, for (x, y) ∈ ΠL0
,

∂11r
K
Ω,11 = ∂11r

K
11 = 0,

∂12r
K
Ω,11 = ∂12r

K
11 =

φ′

d
− φd′

d2
,

∂22r
K
Ω,11 = ∂22r

K
11 =

[
φ′′

d
− 2φ′d′

d2
− φd′′

d2
+

2φd′2

d3

]
x

+
φ′′f1
d

+ 2
φ′f ′

1

d
− 2

φ′f1d′

d2
+

φf ′′
1

d

− 2
φf ′

1d
′

d2
− φf1d

′′

d2
+ 2

φf1d
′2

d3
+ η′′. (4.86)

In addition to (3.92) and (3.93), we have

|φ′′(y)|, |η′′(y)| . 1

ǫ+ y2
. (4.87)

Then, using (3.92), (3.93), (4.86), (4.87) and the fact that |x| . ǫ + y2 for (x, y) ∈ ΠL0
,

we have

|∂12rKΩ,11| .
1

ǫ+ y2
+

(ǫ+ y2)|y|
(ǫ+ y2)2

.
1

ǫ+ y2
,

and

|∂22rKΩ,11| .
[

1

ǫ+ y2
+

|y|
(ǫ+ y2)2

+
ǫ+ y2

(ǫ+ y2)2
+

(ǫ+ y2)y2

(ǫ+ y2)3

]
(ǫ+ y2)

+
1

ǫ+ y2
ǫ+ y2

ǫ+ y2
+

|y|
ǫ+ y2

+
(ǫ+ y2)|y|
(ǫ+ y2)2

+
ǫ+ y2

ǫ+ y2

+
(ǫ+ y2)y2

(ǫ+ y2)2
+

(ǫ+ y2)(ǫ+ y2)

(ǫ+ y2)2
+

(ǫ+ y2)(ǫ+ y2)y2

(ǫ+ y2)3
+

1

ǫ+ y2

.
1

ǫ+ y2
.
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The proof is completed.
Now we are ready to prove Proposition 4.5.

Proof of Proposition 4.5. Let us look into estimates in Ω̃\ΠL first. Let vij be the function
defined in (4.29). It is proved in [9] that

‖∇vij‖L∞(Ω̃\ΠL)
. 1, i = 1, 2, j = 1, 2, 3.

Since hΩ,j = −1
2v1j +

1
2v2j , we have

‖∇hΩ,j‖L∞(Ω̃\ΠL0
)
. 1, j = 1, 2, 3.

This estimate together with (3.58) and (3.80) yields the second part of (4.16) and (4.18)
on Ω̃ \ΠL0

.
By (3.88) and the first line of (4.79), we have

|∇rKΩ,j(x)| = |∇rKj (x)| . 1 +
τ |y|
ǫ+ y2

for x ∈ ΠL0
.

Then, the first part of (4.16) follows from (4.81) and (4.83).
The estimate (4.18) on ΠL follows from (4.30), (4.33), (4.61) and (4.65). In fact, we

have on ΠL

∇hΩ,3 = −1

2
∇v13 +

1

2
∇v23

= −1

2
∇vK

13 +
1

2
∇vK

23 +O(1)

= ∇hK
3 +O(1) = ∇q3 +O(1).

This completes the proof.

5 Stress concentration-the free space problem

In this section we consider the free space problem (2.10) and characterize the singular
behavior of its solution.

Analogously to JΩ,j in (4.5), we define

Jj =

∫

∂De

∂νhj ·H, j = 1, 2, 3, (5.1)

where H is the background solution of the problem (2.10). It is worth emphasizing that
Jj is defined using H while JΩ,j uses HΩ. Analogously to KΩ,j in (4.7), we define

K1 = J1 −
J3I13
I33

, K2 = J2 −
J3I23
I33

, K3 =
J3

I33
. (5.2)

Then the constants Kj are bounded regardless of ǫ (see (5.11)).
The following is the main result of this section

55



Theorem 5.1. Let u be the solution to (2.10). Then we have the following decomposition
of u−H:

(u−H)(x) = b(x)−
3∑

j=1

(
Kj + sj

)
qj(x), x ∈ De, (5.3)

where the constants sj, j = 1, 2, 3, satisfy

|sj | . τ
√
ǫ| ln ǫ|‖H‖H1(B), (5.4)

and the function b satisfies

‖∇b‖L∞(De) . ‖H‖H1(B). (5.5)

Here, B is a disk containing D1 ∪D2.

By the proof analogous to that of Theorem 4.7, we can derive the following theorem
from Theorem 5.1.

Theorem 5.2. It holds that
∑

j=1,2 |Kj |√
ǫ

. ‖∇(u−H)‖L∞(De) .
‖H‖H1(B)√

ǫ
. (5.6)

We prove Theorem 5.1 based on Theorem 4.6. Let B be a disk containing D1 ∪D2.
We assume for convenience that the center of B is 0. Then the solution u to (2.10) is the
solution to (2.6) with Ω = B and g = u|∂B. So we obtain the following decomposition of
the solution u in B by applying Theorem 4.6:

u = bB −
3∑

j=1

(KB,j + sB,j)qj in De ∩B, (5.7)

where the constants sB,j and the function bB satisfy

|sB,j | . τ
√
ǫ| ln ǫ|‖u‖C1,γ(∂B). (5.8)

and
‖∇bB‖L∞(De∩B) . ‖u‖C1,γ(∂B), (5.9)

Although (5.7) looks similar to (5.3), there are three things to be clarified. First, the
coefficient of qj in (5.7) is given by KB,j , not by Kj . Second, the right-hand sides of
(5.8) and (5.9) depend on ǫ since ‖u‖C1,γ(∂B) does. We need to prove the ‖u‖C1,γ(∂B) is
bounded regardless of ǫ. Third, the decomposition is valid only in B, not in the whole
region De. In the following we elaborate on these issues to show that (5.7)-(5.9) actually
yield (5.3)-(5.5).

Lemma 5.3. KB,j = Kj for j = 1, 2, 3.
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Proof. By Green’s formula and the fact that u−H ∈ A, we have

−S∂B

[
∂ν(u−H)|∂B

]
(x) +D∂B[(u−H)|∂B](x) = 0, x ∈ B.

Then, by Green’s formula again, we have

HB(x) = −S∂B

[
∂νu

∣∣
∂B

]
(x) +D∂B[u|∂B](x)

= −S∂B

[
∂νH

∣∣
∂B

]
(x) +D∂B[H|∂B](x) = H(x),

for x ∈ B. Therefore, Lemma 5.3 follows from (4.5), (4.7) and (5.2).

Lemma 5.4. Let B1 be a disk containing B. We have

‖u‖C1,γ(∂B) . ‖H‖H1(B1), (5.10)

and
|Kj | . ‖H‖H1(B1), j = 1, 2, 3. (5.11)

Proof. By Proposition 2.10, we have

‖u‖C1,γ(∂B) ≤ ‖u−H‖C1,γ(∂B) + ‖H‖C1,γ(∂B) . ‖H‖H1(B1).

By Proposition 4.2 and Lemma 5.3, we have

|Kj | = |KB,j | . ‖u‖C1,γ(∂B).

So, (5.11) follows from (5.10).

Proof of Theorem 5.1. Let sj := sB,j . Then it follows from (5.8) and (5.10) that

|sj | . τ
√
ǫ| ln ǫ|‖H‖H1(B1). (5.12)

Let

b := u−H+
3∑

j=1

(Kj + sj)qj . (5.13)

To estimate b in De, we split the region De into De ∩B and De \B. Using (5.7), Lemma
5.3 and the fact that sj = sB,j , we have

b =
(
u+

3∑

j=1

(KB,j + sB,j)qj

)
−H = bB −H in De ∩B.

So, we infer from (5.9) and (5.10) that

‖∇b‖L∞(De∩B) = ‖∇bB‖L∞(De∩B) + ‖∇H‖L∞(De∩B)

. ‖u‖C1,γ(∂B) + ‖∇H‖L∞(De∩B) . ‖H‖H1(B1).
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Let us now consider estimates on the region De \B. From Proposition 2.10 and (5.13),
we see that

‖∇b‖L∞(De\B) =
∥∥∥∇(u−H) +

3∑

j=1

(Kj + sj)∇qj

∥∥∥
L∞(De\B)

≤ ‖∇(u−H)‖L∞(De\B) +
∥∥∥

3∑

j=1

(Kj + sj)∇qj

∥∥∥
L∞(De\B)

≤ ‖H‖H1(B1) +
∥∥∥

3∑

j=1

(Kj + sj)∇qj

∥∥∥
L∞(De\B)

.

Lemma 3.6 and (3.80) show that

‖∇qj‖L∞(De\B) . 1, j = 1, 2, 3.

Therefore, from (5.11) and (5.12), we obtain

‖∇b‖L∞(De\B) ≤ ‖H‖H1(B1) + (1 +
√
ǫ| ln ǫ|)‖H‖H1(B1) ≤ ‖H‖H1(B1).

So we have
‖∇b‖L∞(De) . ‖H‖H1(B1),

and the proof of Theorem 5.1 is completed (with B replaced by B1).

6 Symmetric inclusions and optimality of the blow-up rate

In this section, we show that (5.3) can be further simplified by assuming some symmetry
of the inclusions D1 and D2. More importantly, we show that the blow-up rate ǫ−1/2 of
|∇u| is optimal by considering two circular inclusions. The singular functions qj play an
essential role here as well.

Let us first assume that the background field H can be decomposed as

H = He +Ho, (6.1)

where He = (He1, He2)
T and Ho = (Ho1, Ho2)

T respectively have the following symmetric
properties: {

He1(x, y) = He1(x,−y) = −He1(−x, y),

He2(x, y) = −He2(x,−y) = He2(−x, y),
(6.2)

and {
Ho1(x, y) = −Ho1(x,−y) = Ho1(−x, y),

Ho2(x, y) = Ho2(x,−y) = −Ho2(−x, y).
(6.3)

IfH is a uniform loading, that is,H(x) = (Ax,By)T+C(y, x)T for some real coefficients
A,B and C, then we may take He = (Ax,By)T and Ho = C(y, x)T .
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6.1 Symmetric inclusions

Let us assume that D1 ∪ D2 is symmetric with respect to both x- and y-axes. Then we
have the following theorem.

Theorem 6.1. Let u be the solution to (2.10) under the assumption that D1 ∪ D2 is
symmetric with respect to both x- and y-axes. Then, it holds that

(u−H)(x) = b(x) + J1q1(x) + J2q2(x), x ∈ De, (6.4)

where the function b satisfies

|∇b(x)| . ‖H‖H1(B) for all x ∈ De. (6.5)

Here, B is a disk containing D1 ∪D2. Moreover, if H = He, i.e., H satisfies (6.2), then
J2 = 0; If H satisfies (6.3), then J1 = 0.

Proof. Since D1 and D2 are symmetric, the number τ defined by (2.54) is 0. So it follows
from (5.4) that sj = 0 for j = 1, 2, 3.

Now it remains to show that K1 = J1, K1 = J2 and K3 = 0, for which it is enough to
show that J3 = 0 by the definition (5.2) of Kj . Recall that

J3 =

∫

∂De

∂νh3 ·H.

Let h3 = (h31, h32)
T . Thanks to the symmetry of the inclusions and the boundary condi-

tion of h3, one can see that the following two functions are also solutions of (3.1):

[
−h31(x,−y)
h32(x,−y)

]
,

[
−h31(−x, y)
h32(−x, y)

]
.

So, by the uniqueness of the solution we see that h3 satisfies the following symmetry:

{
h31(x, y) = −h31(x,−y) = −h31(−x, y),

h32(x, y) = h32(x,−y) = h32(−x, y).
(6.6)

The outward normal n = (n1, n2)
T to ∂De satisfies

{
n1(x, y) = n1(x,−y) = −n1(−x, y),

n2(x, y) = −n2(x,−y) = n2(−x, y).
(6.7)

So, the conormal derivative f := ∂νh3 on ∂De enjoys the following symmetry:

{
f1(x, y) = −f1(x,−y) = −f1(−x, y),

f2(x, y) = f2(x,−y) = f2(−x, y).
(6.8)

Let H = He +Ho be the decomposition as in (6.1). We write J3 as

J3 =

∫

∂De

f ·He +

∫

∂De

f ·Ho =: I + II.
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Using the symmetry with respect to the y-axis in (6.2) and (6.8), we have

I =

∫

∂D1

(f1, f2) · (He1, He2) +

∫

∂D2

(f1, f2) · (He1, He2)

=

∫

∂D1

(f1, f2) · (He1, He2) +

∫

∂D1

(−f1, f2) · (−He1, He2)

= 2

∫

∂D1

f1He1 + f2He2.

Then, the symmetry with respect to the x-axis in (6.2) and (6.8), we obtain

I = 2

∫

∂D1∩{y≥0}

(
f1He1 + f2He2

)
+ 2

∫

∂D1∩{y<0}

(
f1He1 + f2He2

)

= 2

∫

∂D1∩{y≥0}

(
f1He1 + f2He2

)
+ 2

∫

∂D1∩{y≥0}

(
(−f1)He1 + f2(−He2)

)
= 0.

By the exactly same way, we can show II = 0.
Suppose that H has the symmetry property (6.2). Let g := ∂νh2. Then (3.7) and

(6.7) show that g has the following symmetry properties:

{
g1(x, y) = −g1(x,−y) = g1(−x, y),

g2(x, y) = g2(x,−y) = −g2(−x, y).
(6.9)

So one can see as before that

J2 =

∫

∂De

g ·He = 0.

Similarly, one can show that J1 = 0 if H has the symmetry property (6.3). This completes
the proof.

Corollary 6.2. Under the same hypothesis as in Theorem 6.1, we have

(|J1|+ |J2|)
1√
ǫ
. ‖∇(u−H)‖L∞(De) .

1√
ǫ
. (6.10)

We emphasize that J1 and J2 do depend on ǫ. In the next subsection we show that
there are some cases such that 1 . |J1|+ |J2| by considering circular inclusions. It implies
that ǫ−1/2 is the optimal blow-up rate of the gradient.

6.2 Circular inclusions and optimality of the blow-up rate

In this subsection we show that ǫ−1/2 is a lower bound on the blow-up rate of the gradient
by considering two circular inclusions under a uniform loading.

Proposition 6.3. Suppose that D1 and D2 are disks with the same radius r0 and let u
be the solution to (2.10). Let

α∗ = α∗(λ, µ) :=
λ+ µ

µ
. (6.11)
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(i) If H(x, y) = (Ax,By)T with A 6= 0, then there are ǫ0 > 0 and α0 > 0 independent
of ǫ such that for any (λ, µ) satisfying α∗(λ, µ) ≤ α0 and ǫ ≤ ǫ0 the following holds:

1 . |J1| and J2 = 0. (6.12)

(ii) If H(x, y) = C(y, x)T with C 6= 0, then there are ǫ0 > 0 and α0 > 0 independent of
ǫ such that for any (λ, µ) satisfying α∗(λ, µ) ≤ α0 and ǫ ≤ ǫ0 the following holds:

J1 = 0 and 1 . |J2|. (6.13)

We emphasize that the condition α∗(λ, µ) ≤ α0 can be satisfied even if α0 is small. In
fact, the strong convexity condition requires µ > 0 and λ+ µ > 0. So, by taking negative
λ, the condition is satisfied.

Proof. We only prove (i) since (ii) can be proved similarly.
Since H(x, y) = (Ax,By)T satisfies (6.2), J2 = 0 by Theorem 6.1. To prove 1 . |J1|,

we define r1 by

(1 +
m1√
ǫ
t1)h1 =

m1√
ǫ
q1 + r1, (6.14)

where t1 is the constant appearing in Lemma 3.3. Then r1 satisfies Lλ,µr1 = 0 in De and
r1 ∈ A∗. It also satisfies, according to Lemma 3.3, the boundary condition

r1 = −m1α2a√
ǫr20

[
x
y

]
on ∂D1 ∪ ∂D2. (6.15)

Since

J1 =

∫

∂De

∂νh1 ·H,

we may write, using (6.14), (1 + m1√
ǫ
t1)J1 as

(1 +
m1√
ǫ
t1)J1 =

∫

∂De

∂ν((1 +
m1√
ǫ
t1)h1) ·H−

∫

∂De

∂νH · ((1 + m1√
ǫ
t1)h1)

=

∫

∂De

∂ν(
m1√
ǫ
q1 + r1) ·H−

∫

∂De

∂νH · (m1√
ǫ
q1 + r1)

=
m1√
ǫ

(∫

∂De

∂νq1 ·H− ∂νH · q1

)
+

∫

∂De

∂νr1 ·H−
∫

∂De

∂νH · r1

=: I1 + I2 + I3. (6.16)

To estimate I1, we first recall that m1 :=
[
(α1 −α2)

√
2(κ1 + κ2)

]−1
. Since κ1 = κ2 =

1/r0, we have
m1√
ǫ
=

√
r0

2(α1 − α2)
√
ǫ
. (6.17)

Then Green’s formula for the Lamé system and (4.48) yield

I1 =
m1√
ǫ

∫

D1∪D2

Lλ,µq1 ·H

=

√
r0

2(α1 − α2)
√
ǫ


(H(p1)−H(p2)) · e1 −

2∑

j=1

α2a

α1 − α2
(∂1H(pj) · e1 + ∂2H(pj) · e2)


 .
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Since p1 = (−a, 0), p2 = (a, 0) and H(x, y) = (Ax,By)T , we arrive at

I1 = − a
√
r0

2(α1 − α2)
√
ǫ

[
2A+

2α2(A+B)

α1 − α2

]
. (6.18)

Since α1 =
λ+3µ

4πµ(λ+2µ) and α2 =
λ+µ

4πµ(λ+2µ) , we have

1

α1 − α2
= 2π(λ+ 2µ) = 2πµ(1 + α∗), (6.19)

α2

α2 − α2
=

λ+ µ

2µ
=

α∗

2
. (6.20)

Since a =
√
r0ǫ+O(ǫ3/2), we have

a
√
r0√
ǫ

= r0 +O(ǫ). (6.21)

Substituting (6.19)-(6.21) into (6.18), we obtain

I1 = −2πµ(1 + α∗)(r0 +O(ǫ)) [2A+ α∗(A+B)]

= −2πr0µ
(
2A+O(α∗ + ǫ+ α∗ǫ)

)
. (6.22)

To estimate I2, let Br be the disk of radius r centered at the origin containing D1 ∪D2.
Choose r and R so that r < R. Let χ be a smooth radial function such that χ(x) = 1 if
|x| ≤ r and χ(x) = 0 if |x| ≥ R. Let v := χH. Then, using Green’s formula, we obtain

|I2| =
∣∣∣∣
∫

∂De

∂r1
∂ν

· v
∣∣∣∣ =

∣∣∣∣
∫

De

C∇̂r1 : ∇̂v

∣∣∣∣ ≤ EDe [r1]
1/2EDe [v]1/2. (6.23)

Let w(x) := χ(x)x for x ∈ De. Then

−m1α2a√
ǫr20

w = r1 on ∂De. (6.24)

Then, the variational principle (2.37) yields

EDe [r1] ≤
(
m1α2a√

ǫr20

)2

EDe [w]. (6.25)

We emphasize that the variational principle holds since r1 is a solution of the Lamé system.
So, we arrive at

|I2| ≤
m1α2a√

ǫr20
EDe [w]1/2EDe [v]1/2. (6.26)

Note that ‖∇w‖2L2(De) . 1 and

EDe [w] =

∫

De

C∇̂w : ∇̂w . (λ+ 2µ)‖∇w‖2L2(De) . λ+ 2µ.

Here and throughout this proof, X . Y implies X ≤ CY for some constant C independent
of (λ, µ) and ǫ. Similarly, one can see that

EDe [v] . λ+ 2µ.
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So we infer from (6.26) that

|I2| .
m1α2a√

ǫr20
(λ+ 2µ). (6.27)

It then follows from (6.17), (6.19)–(6.21) that

|I2| .
α2

α1 − α2
(λ+ 2µ) . α∗µ(1 + α∗) . µα∗. (6.28)

Since H = (Ax,By), it is easy to see that

|∂νH|∂De | . λ+ 2µ.

So, by (6.15) and the fact that a ≈ √
ǫ, we see that

|I3| . m1α2(λ+ 2µ) .
α2

α1 − α2
(λ+ 2µ) . µα∗. (6.29)

Combining (6.16), (6.22), (6.28) and (6.29), we have

(1 +
m1√
ǫ
t1)J1 = −4πr0µ

(
A+O(α∗ + ǫ+ α∗ǫ)

)
.

Recall from (3.46) that |tj | . (α1 + α2)ǫ
3/2. So, using (6.20), we have

∣∣∣∣
m1√
ǫ
t1

∣∣∣∣ .
α1 + α2

α1 − α2
ǫ . (1 +

2α2

α1 − α2
)ǫ . (1 + α∗)ǫ.

Therefore, we finally arrive at

J1 = −4πr0µ(A+O(α∗ + ǫ+ α∗ǫ))
1 +O(ǫ+ α∗ǫ)

.

Since A 6= 0, there are α0 and ǫ0 such that

1 . |J1|

for all (λ, µ) satisfying α∗ ≤ α0 and ǫ ≤ ǫ0. This completes the proof.

Corollary 6.2 and Proposition 6.3 shows that ǫ−1/2 is a lower bound on ∇u as ǫ → 0.
In fact, we have

‖∇u‖L∞(B\(D1∪D2)) ≈ ǫ−1/2 (6.30)

as ǫ → 0, provided that α∗ ≤ α0. In fact, we have a more refined estimate for ∇u(0, 0).

Theorem 6.4. Let u be the solution to (2.10) when D1 and D2 are disks with the same
radius. Suppose that the Lamé parameters (λ, µ) satisfy α∗ ≤ α0. Then the following holds
as ǫ → 0.

(i) If H(x, y) = (Ax,By) with A 6= 0, then

|∂1u1(0, 0)| ≈ ǫ−1/2 and |∂2u1(0, 0)|+ |∂1u2(0, 0)|+ |∂2u2(0, 0)| . 1. (6.31)
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(ii) If H(x, y) = C(y, x) with C 6= 0, then

|∂1u2(0, 0)| ≈ ǫ−1/2 and |∂1u1(0, 0)|+ |∂2u1(0, 0)|+ |∂2u2(0, 0)| . 1. (6.32)

Proof. Suppose that H(x, y) = (Ax,By) with A 6= 0. It then follows from (6.4) and
(6.12) that

∇(u−H)(x) = ∇b(x) + J1∇q1(x). (6.33)

Then (3.56), (6.5) and (6.12) yield (6.31). (ii) can be proved similarly.

The estimates (6.31) and (6.32) yield, in particular,

|∇ · u(0, 0)| ≈ ǫ−1/2 and |∂2u1(0, 0)|+ |∂1u2(0, 0)| . 1 (6.34)

if H(x, y) = (Ax,By) with A 6= 0, and

|∂1u2(0, 0)|+ |∂2u1(0, 0)| ≈ ǫ−1/2 and |∇ · u(0, 0)| . 1 (6.35)

if H(x, y) = C(y, x) with C 6= 0. Note that ∇ · u represents the bulk force while |∂1u2|+
|∂2u1| the magnitude of the shear force. These estimates are in accordance with results of
numerical experiments in [19].

Conclusion

We investigate the problem of characterizing the stress concentration in the narrow region
between two hard inclusions and deriving optimal estimates of the magnitude of the stress
in the context of the isotropic linear elasticity. We introduce singular functions which
are constructed using nuclei of strain, and then show that they capture precisely the
singular behavior of the stress as the distance between two inclusions tends to zero. As
consequences we are able to derive an upper bound of the blow-up rate of the stress,
namely, ǫ−1/2 where ǫ is the distance between two inclusions. We then show that ǫ−1/2 is
an optimal blow-up rate in the sense that it is also a lower bound on the rate of the stress
blow-up in some cases. We show that it is a lower bound in the case when inclusions are
disks of the same radii.

To show that ǫ−1/2 is a lower bound in the case of circular inclusions, we impose a
certain condition on the Lamé parameters. This condition does not seem natural and may
be removed. In fact, it is likely, as suggested in numerical experiments in [19], that ǫ−1/2

is a lower bound without any assumption on Lamé parameters if the background field is
a uniform loading. It is quite interesting and challenging to clarify this.

A The Neumann-Poincaré operator and the exterior prob-

lem

In this section we prove Propositions 2.1 and 2.2, and Theorem 2.5. The proofs are based
on the layer potential technique.
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A.1 The NP operator

Let us begin by reviewing well-known results on the layer potentials on simple closed
curves. Let D be a simply connected bounded domain in R

2 with the C1,α (α > 0)
smooth boundary. The co-normal derivative of the single layer potential and the double
layer potential satisfy the following jump formulas:

∂νS∂D[ϕ]|±(x) =
(
±1

2
I +K∗

∂D

)
[ϕ](x), x ∈ ∂D, (A.1)

D∂D[ϕ]|±(x) =
(
∓1

2
I +K∂D

)
[ϕ](x), x ∈ ∂D, (A.2)

where K∂D is the boundary integral operator defined by

K∂D[ϕ](x) := p.v.

∫

∂D
∂νyΓ(x− y)ϕ(y)dσ(y), x ∈ ∂D, (A.3)

and K∗
∂D is the adjoint operator of K∂D on L2(∂D)2. Here, p.v. stands for the Cauchy

pricincipal value. The operators K∂D and K∗
∂D are called the Neumann-Poincaré (NP)

operators.
It is known that the operator −1/2I + K∗

∂D is a Fredholm operator of index 0, it is
invertible on H−1/2(∂D)2, and its kernel is of three dimensions (see, for example, [14]).
It is worth mentioning that the NP operator can be realized as a self-adjoint operator on
H−1/2(∂D)2 by introducing a new inner product, and it is polynomially compact (see [6]).

We now consider De = R
2 \ (D1 ∪D2), whose boundary ∂De consists of two disjoint

curves ∂D1 and ∂D2. To define the NP operator in this case, we consider the solution to
(2.10) in the form of (2.19), namely,

u(x) = H(x) + S∂D1
[ϕ1](x) + S∂D2

[ϕ2](x).

The boundary condition on ∂De in (2.10) amounts to

∂ν (H+ S∂D1
[ϕ1] + S∂D2

[ϕ2]) |− = 0 on ∂De,

which, according to (A.1), is equivalent to the following system of integral equations:





(
−1

2
I +K∗

∂D1

)
[ϕ1] + ∂νS∂D2

[ϕ2]|∂D1
= −∂νH on ∂D1,

∂νS∂D1
[ϕ1]|∂D2

+

(
−1

2
I +K∗

∂D2

)
[ϕ2] = −∂νH on ∂D2.

This system of integral equations can be rewritten as

(
−1

2
I+K

∗
)[
ϕ1

ϕ2

]
= −

[
∂νH|∂D1

∂νH|∂D2

]
, (A.4)

where I is the identity operator and K
∗, which is the NP operator on ∂De, is defined by

K
∗ :=

[
K∗

∂D1
∂ν1S∂D2

∂ν2S∂D1
K∗

∂D2

]
. (A.5)
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A special attention is necessary for the off-diagonal entries in the above: For example,
∂ν1S∂D2

means that the single layer potential is defined on ∂D2 and the co-normal deriva-
tive is evaluated on ∂D1, so the operator maps H−1/2(∂D2)

2 into H−1/2(∂D1)
2. One can

see that the adjoint operator K of K∗ on L2(∂De)2 is given by

K =

[
K∂D1

D∂D2
|∂D1

D∂D1
|∂D2

K∂D2

]
. (A.6)

Here D∂D2
|∂D1

means the double layer potential on ∂D2 evaluated on ∂D1. We emphasize
that

(D∂D1
[ϕ1] +D∂D2

[ϕ2])|+ =

(
−1

2
I+K

)[
ϕ1

ϕ2

]
on ∂De. (A.7)

Lemma A.1. The operator −1/2I+K
∗ is of Fredholm index 0 on H−1/2(∂De)2.

Proof. We express −1/2I+K
∗ as

−1/2I+K
∗ =

[
−1/2I +K∗

∂D1
0

0 −1/2I +K∗
∂D2

]
+

[
0 ∂ν1S∂D2

∂ν2S∂D1
0

]
. (A.8)

Since −1/2I+K∗
∂Dj

is of Fredholm index 0 for j = 1, 2, so is the first operator on the right-
hand side above. Since ∂D1 and ∂D2 are apart, the second operator on the right-hand
side is compact. Since the Fredholm index is invariant under a compact perturbation,
−1/2I+K

∗ is of Fredholm index 0.

In the following we prove Propositions 2.1 and 2.2, and Theorem 2.5. We prove Propo-
sition 2.2 first since it is simpler.

A.2 Proof of Proposition 2.2

We first prove the following lemma.

Proposition A.2. The operator −1/2I+K
∗ is invertible on H

−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2).

Proof. As we see from (A.8) that −1/2I + K
∗ is a compact perturbation of an operator

which is invertible onH
−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2). So by the Fredholm alternative it suffices

to prove the injectivity of −1/2I+K
∗.

Suppose that (
−1

2
I+K

∗
)[
ϕ1

ϕ2

]
= 0 (A.9)

for some (ϕ1,ϕ2) ∈ H
−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2) and let

u(x) := S∂D1
[ϕ1](x) + S∂D2

[ϕ2](x), x ∈ R
2.

Then (A.9) implies that Lλ,µu = 0 in Di and ∂νu = 0 on ∂Di for i = 1, 2. So

u =

3∑

j=1

aijΨj in Di (A.10)
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for some constants aij . Since the single layer potential is continuous across ∂Di, we have
u|+ =

∑3
j=1 aijΨj on ∂Di. Moreover, by the jump formula (A.1) for the single layer

potential, we have

∫

∂Di

∂νu|+ ·Ψj =

∫

∂Di

(ϕi + ∂νu|−) ·Ψj =

∫

∂Di

ϕi ·Ψj = 0

since ϕi ∈ H
−1/2
Ψ (∂Di). So u is a solution to (2.10) with H = 0. It is worth mentioning

that the decay condition at ∞ is satisfies because ϕj ∈ H
−1/2
Ψ (∂Dj). We then have

∫

De

C∇̂u : ∇̂u =

∫

∂De

∂νu|+ · u =

3∑

j=1

2∑

i=1

aij

∫

∂Di

∂νu ·Ψj = 0,

where the last equality follows from (2.7). Hence u = 0 in De. By the jump formula (A.1)
for the single layer potential, we have

ϕj = ∂νu|+ − ∂νu|− = 0 on ∂Di

for i = 1, 2. This completes the proof.

Proof of Proposition 2.2. Note that since Lλ,µH = 0 in R
2, ∂νH|∂Di

∈ H
−1/2
Ψ (∂Di) for

i = 1, 2. So we solve (A.4) for (ϕ1,ϕ2) on H
−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2). Then u defined by

(2.19) is the solution to (2.10).

A.3 Proof of Proposition 2.1

Let u be the solution to (2.6) and let f := ∂νu on ∂Ω. Let HΩ be the function defined by
(2.17). We emphasize that HΩ(x) is defined not only for x ∈ Ω, but also for x ∈ R

2 \ Ω.
Moreover, one can see from (A.1) and (A.2) that the following holds:

HΩ|− −HΩ|+ = g, ∂νHΩ|− − ∂νHΩ|+ = f on ∂Ω. (A.11)

Let (ϕ1,ϕ2) ∈ H
−1/2
Ψ (∂D1) × H

−1/2
Ψ (∂D2) be the unique solution to (A.4) with H

replaced by HΩ, and let

v1(x) = HΩ(x) + S∂D1
[ϕ1](x) + S∂D2

[ϕ2](x), x ∈ De \ ∂Ω. (A.12)

Then v1 is a solution to





Lλ,µv = 0 in De \ ∂Ω,

v =

3∑

j=1

aijΨj(x), on ∂Di, i = 1, 2,

v|− − v|+ = g, ∂νv|− − ∂νv|+ = f on ∂Ω,

v(x) = O(|x|−1) as |x| → ∞,

(A.13)

where the constants aij are determined by the condition (2.7).
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Let

v2(x) :=

{
u(x) x ∈ Ω \D1 ∪D2,

0 x ∈ R
2 \ Ω.

Then v2 is also a solution to (A.13) with the same g and f .
Let v := v1 − v2. Then v is a solution to (A.13) with g = 0 and f = 0. So, we have

∫

De

C∇̂v : ∇̂v =

∫

∂De

∂νv|+ · v =
3∑

j=1

2∑

i=1

cij

∫

∂Di

∂νu ·Ψj = 0,

where the last equality follows from (2.7). So we infer v = 0 in De. In particular, u = v1

in Ω \D1 ∪D2 as desired.

A.4 Proof of Theorem 2.5

Let

V =

{
f ∈ H1/2(∂De)2 : K[f ] =

1

2
f

}

and

W =

{
f ∈ H−1/2(∂De) : K∗[f ] =

1

2
f

}
,

which are null spaces of −1/2I + K and −1/2I + K
∗, respectively. In particular, we have

dimV = dimW . For j = 1, 2, 3, let

α1
j (x) =

{
Ψj(x) if x ∈ ∂D1,

0 if x ∈ ∂D2,

and

α2
j (x) =

{
0 if x ∈ ∂D1,

Ψj(x) if x ∈ ∂D2.

Lemma A.3. The following holds:

(i) dimV = dimW = 6.

(ii) {α1
j , α

2
j : j = 1, 2, 3} is a basis of V .

Proof. If x ∈ R
2 \Di, then

D∂Di
[Ψj ](x) =

∫

Di

C∇̂yΓ(x− y) : ∇̂Ψj(y) = 0, (A.14)

for i = 1, 2 and j = 1, 2, 3. In particular, we have (−1/2I +K∂Di
)[Ψj ] = 0 on ∂Di. So, we

infer that {α1
j , α

2
j} ⊂ V . Since α1

j and α2
j , j = 1, 2, 3, are linearly independent, we infer

dimV ≥ 6.
On the other hand, since −1/2I + K

∗ is a Fredholm operator of index 0, we have

H−1/2(∂De)2 = Range(−1/2I + K
∗) ⊕W . According to Proposition A.2, H

−1/2
Ψ (∂D1) ×

H
−1/2
Ψ (∂D2) ⊂ Range(−1/2I+K

∗). SinceH−1/2
Ψ (∂Di)

2 has co-dimension 3 inH−1/2(∂Di).
we infer that the co-dimension of Range(−1/2I + K

∗) in H−1/2(∂De)2 is larger than or
equals to 6. So, dimW ≤ 6. This completes the proof.
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Lemma A.4. Let

WΨ :=
{
f = (f1, f2) ∈ W :

∫

∂D1

f1 ·Ψj +

∫

∂D2

f2 ·Ψj = 0 for j = 1, 2, 3
}
. (A.15)

Then, dimWΨ = 3.

Proof. For i = 1, 2, define βi
j by

βi
j :=

{
αi
j if j = 1, 2,

αi
3 + ciα

i
1 + diα

i
2 if j = 3,

(A.16)

where the constants ci and di are chosen so that

〈βi
j , β

k
l 〉 = 0 if (i, j) 6= (k, l). (A.17)

Then there is an eigenfunction f ij ∈ W such that

〈f ij , βk
l 〉 =

{
1 if (i, j) = (k, l),

0 if (i, j) 6= (k, l).
(A.18)

In fact, since (−1/2I + K
∗)[βi

j ] ∈ H
−1/2
Ψ (∂D1) × H

−1/2
Ψ (∂D2), there is a unique g =

(g1,g2) ∈ H
−1/2
Ψ (∂D1)×H

−1/2
Ψ (∂D2) such that

(
−1

2
I+K

∗
)
[g] =

(
−1

2
I+K

∗
)
[βi

j ].

Let f := βi
j − g. Then, f ∈ W . Moreover, we have

〈f , βk
l 〉 = 〈βi

j , β
k
l 〉.

So f ij := 〈βi
j , β

i
j〉−1f is the desired function.

Let for i = 1, 2
gi
1 := f i1 − cif i3, gi

2 := f i2 − dif i3, gi
3 := f i3.

Then, one can see that

〈gi
j , α

k
l 〉 =

{
1 if (i, j) = (k, l),

0 if (i, j) 6= (k, l).
(A.19)

Then g1
j − g2

j (j = 1, 2, 3) three linearly independent functions belonging to WΨ, while

g1
j + g2

j (j = 1, 2, 3) does not belong to WΨ. So dimWΨ = 3.

Define the operator S : H−1/2(∂De)2 → H1/2(∂De)2 as follows: for f = (f1, f2) ∈
H−1/2(∂De) let

v(x) := S∂D1
[f1](x) + S∂D2

[f2](x), (A.20)

and

S[f ] :=

[
v|∂D1

v|∂D2

]
. (A.21)

69



Lemma A.5. Let
V + := span {Ψ1,Ψ2,Ψ3}. (A.22)

Then, the following holds:

(i) S maps W into V , and S is injective on WΨ.

(ii) V = S(WΨ)⊕ V +.

Proof. Let f ∈ W and define v by (A.20). Then we have

∂νv|− = (−1/2I+K
∗)[f ] = 0 on ∂De.

Since Lλ,µv = 0 in Di (i = 1, 2), we infer that v =
∑

j aijΨj on ∂Di for some constants
aij . So S[f ] ∈ V .

If further f ∈ WΨ, then v(x) = O(|x|−1) as |x| → 0. So, if S[f ] = 0, then v = 0 in De,
and hence v = 0 in R

2. Thus we have f = ∂νv|+ − ∂νv|− = 0 on ∂De. This proves (i).
We now show that S(WΨ) ∩ V + = {0}. In fact, if f = (f1, f2) ∈ WΨ satisfies S[f ] =∑

j ajΨj on ∂De, let

v(x) := S∂D1
[f1](x) + S∂D2

[f2](x), x ∈ R
2.

Then v ∈ A, and
∫

De

C∇̂v : ∇̂v = −
∫

∂De

∂νv|+ · v

= −
∫

∂De

f · (
∑

j

ajΨj)−
∫

∂De

∂νv|− · (
∑

j

ajΨj) = 0.

So, v = 0 in De, and hence
∑

j ajΨj = 0 on ∂De.

Since S is injective on WΨ, dim S(WΨ) = 3. So dim S(WΨ) ⊕ V + = 6. This yields
(ii).

Since −1/2I+K is fredholm, we have H1/2(∂De)2 = Range(−1/2I+K)⊕ V +. So we
obtain the following proposition.

Proposition A.6. H1/2(∂De)2 = Range(−1/2I+K)⊕ S(WΨ)⊕ V +.

Proof of Theorem 2.5. Let g ∈ H1/2(∂De)2. According to the previous proposition, there
is f = (f1, f2) ∈ H1/2(∂De)2, ϕ = (ϕ1,ϕ2) ∈ WΨ, and constants a1, a2, a3 such that

g =

(
−1

2
I+K

)
[f ] + S[ϕ] +

3∑

j=1

ajΨj .

Then the solution u is given by

u =

2∑

i=1

(D∂Di
[fi] + S∂Di

[ϕi]) +

3∑

j=1

ajΨj in De.

Note that
∑2

i=1 (D∂Di
[fi] + S∂Di

[ϕi]) ∈ A by Lemma 2.6. So u ∈ A∗.
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For uniqueness, assume that u and v are two solutions in A∗, and let w := u−v. Then
w ∈ A∗ and w = 0 on ∂De. Let w = w1+w2 be such that w1 ∈ A and w2 =

∑3
j=1 ajΨj .

Then by Lemma 2.8, we have

0 =

∫

De

C∇̂w : ∇̂w =

∫

De

C∇̂w1 : ∇̂w1.

Since w1(x) → 0 as |x| → ∞, w1 = 0 in De. So,
∑3

j=1 ajΨj = 0 on ∂De, which implies
aj = 0, j = 1, 2, 3. This completes the proof.
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