
Deep learning-based numerical methods for

high-dimensional 

parabolic partial differential equations and

backward stochastic 

differential equations

W. E and J. Han and A. Jentzen

Research Report No. 2017-29
June 2017

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Deep learning-based numerical methods for

high-dimensional parabolic partial differential equations

and backward stochastic differential equations

Weinan E1, Jiequn Han2, and Arnulf Jentzen3

1Beijing Institute of Big Data Research (China), Princeton University (USA),

and Peking University (China), e-mail: weinan (at) math.princeton.edu

2Princeton University (USA), e-mail: jiequnh (at) princeton.edu

3ETH Zurich (Switzerland), e-mail: arnulf.jentzen (at) sam.math.ethz.ch

June 29, 2017

Abstract

We propose a new algorithm for solving parabolic partial differential equations
(PDEs) and backward stochastic differential equations (BSDEs) in high dimension,
by making an analogy between the BSDE and reinforcement learning with the gradi-
ent of the solution playing the role of the policy function, and the loss function given
by the error between the prescribed terminal condition and the solution of the BSDE.
The policy function is then approximated by a neural network, as is done in deep re-
inforcement learning. Numerical results using TensorFlow illustrate the efficiency
and accuracy of the proposed algorithms for several 100-dimensional nonlinear PDEs
from physics and finance such as the Allen-Cahn equation, the Hamilton-Jacobi-
Bellman equation, and a nonlinear pricing model for financial derivatives.
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1 Introduction

Developing efficient numerical algorithms for high dimensional (say, hundreds of di-
mensions) partial differential equations (PDEs) has been one of the most challenging tasks
in applied mathematics. As is well-known, the difficulty lies in the “curse of dimension-
ality” [1], namely, as the dimensionality grows, the complexity of the algorithms grows
exponentially. For this reason, there are only a limited number of cases where practical
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high dimensional algorithms have been developed. For linear parabolic PDEs, one can
use the Feynman-Kac formula and Monte Carlo methods to develop efficient algorithms
to evaluate solutions at any given space-time locations. For a class of inviscid Hamilton-
Jacobi equations, Darbon & Osher have recently developed an algorithm which performs
numerically well in the case of such high dimensional inviscid Hamilton-Jacobi equations;
see [9]. Darbon & Osher’s algorithm is based on results from compressed sensing and on
the Hopf formulas for the Hamilton-Jacobi equations. A general algorithm for (nonlinear)
parabolic PDEs based on the Feynman-Kac and Bismut-Elworthy-Li formula and a multi-
level decomposition of Picard iteration was developed in [11] and has been shown to be
quite efficient on a number examples in finance and physics. The complexity of the algo-
rithm is shown to be O(dε−4) for semilinear heat equations, where d is the dimensionality
of the problem and ε is the required accuracy.

In recent years, a new class of techniques, called deep learning, have emerged in machine
learning and have proven to be very effective in dealing with a large class of high dimen-
sional problems in computer vision (cf., e.g., [23]), natural language processing (cf., e.g.,
[20]), time series analysis, etc. (cf., e.g., [15, 24]). This success fuels in speculations that
deep learning might hold the key to solve the curse of dimensionality problem. It should
be emphasized that at the present time, there are no theoretical results that support such
claims although the practical success of deep learning has been astonishing. However, this
should not prevent us from trying to apply deep learning to other problems where the curse
of dimensionality has been the issue.

In this paper, we explore the use of deep learning for solving general high dimensional
PDEs. To this end, it is necessary to formulate the PDEs as a learning problem. Motivated
by ideas in [16] where deep learning-based algorithms were developed for high dimensional
stochastic control problems, we explore a connection between (nonlinear) parabolic PDEs
and backward stochastic differential equations (BSDEs) (see [26, 28, 25]) since BSDEs
share a lot of common features with stochastic control problems.

2 Main ideas of the algorithm

We will consider a fairly general class of nonlinear parabolic PDEs (see (30) in Subsec-
tion 4.1 below). The proposed algorithm is based on the following set of ideas:

(i) Through the so-called nonlinear Feynman-Kac formula, we can formulate the PDEs
equivalently as BSDEs.

(ii) One can view the BSDE as a stochastic control problem with the gradient of the
solution being the policy function. These stochastic control problems can then be
viewed as model-based reinforcement learning problems.

(iii) The (high dimensional) policy function can then be approximated by a deep neural
network, as has been done in deep reinforcement learning.

3



Instead of formulating initial value problems, as is commonly done in the PDE litera-
ture, we consider the set up with terminal conditions since this facilitates making connec-
tions with BSDEs. Terminal value problems can obviously be transformed to initial value
problems and vice versa.

In the remainder of this section we present a rough sketch of the derivation of the
proposed algorithm, which we refer to as deep BSDE solver. In this derivation we restrict
ourself to a specific class of nonlinear PDEs, that is, we restrict ourself to semilinear heat
equations (see (PDE) below) and refer to Subsections 3.2 and 4.1 below for the general
introduction of the deep BSDE solver.

2.1 An example: a semilinear heat partial differential equation
(PDE)

Let T ∈ (0,∞), d ∈ N, ξ ∈ R
d, let f : R × R

d → R and g : Rd → R be continuous
functions, and let u = (u(t, x))t∈[0,T ],x∈Rd ∈ C1,2([0, T ] × R

d,R) satisfy for all t ∈ [0, T ],
x ∈ R

d that u(T, x) = g(x) and

∂u

∂t
(t, x) +

1

2
(∆xu)(t, x) + f

(
u(t, x), (∇xu)(t, x)

)
= 0. (PDE)

A key idea of this work is to reformulate the PDE (PDE) as an appropriate stochastic
control problem.

2.2 Formulation of the PDE as a suitable stochastic control prob-
lem

More specifically, let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → R
d be

a d-dimensional standard Brownian motion on (Ω,F ,P), let F = (Ft)t∈[0,T ] be the nor-
mal filtration on (Ω,F ,P) generated by W , let A be the set of all F-adapted R

d-valued
stochastic processes with continuous sample paths, and for every y ∈ R and every Z ∈ A
let Y y,Z : [0, T ]×Ω → R be an F-adapted stochastic process with continuous sample paths
which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Y y,Z
t = y −

∫ t

0

f
(
Y y,Z
s , Zs

)
ds+

∫ t

0

〈Zs, dWs〉Rd . (1)

We now view the solution u ∈ C1,2([0, T ]×R
d,R) of (PDE) and its spatial derivative as the

solution of a stochastic control problem associated to (1). More formally, under suitable
regularity hypotheses on the nonlinearity f it holds that the pair consisting of u(0, ξ) ∈ R

and ((∇xu)(t, ξ+Wt))t∈[0,T ] ∈ A is the (up to indistinguishability) unique global minimum
of the function

R×A ∋ (y, Z) 7→ ❊
[
|Y y,Z

T − g(ξ +WT )|2
]
∈ [0,∞]. (2)
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One can also view the stochastic control problem (1)–(2) (with Z being the control) as a
model-based reinforcement learning problem. In that analogy, we view Z as the policy and
we approximate Z ∈ A using feedforward neural networks (see (11) and Section 4 below
for further details). The process u(t, ξ +Wt), t ∈ [0, T ], corresponds to the value function
associated to the stochastic control problem and can be computed approximatively by
employing the policy Z (see (9) below for details). The connection between the PDE (PDE)
and the stochastic control problem (1)–(2) is based on the nonlinear Feynman-Kac formula
which links PDEs and BSDEs (see (BSDE) and (3) below).

2.3 The nonlinear Feynman-Kac formula

Let Y : [0, T ]×Ω → R and Z : [0, T ]×Ω → R
d be F-adapted stochastic processes with

continuous sample paths which satisfy that for all t ∈ [0, T ] it holds P-a.s. that

Yt = g(ξ +WT ) +

∫ T

t

f(Ys, Zs) ds−
∫ T

t

〈Zs, dWs〉Rd . (BSDE)

Under suitable additional regularity assumptions on the nonlinearity f we have that the
nonlinear parabolic PDE (PDE) is related to the BSDE (BSDE) in the sense that for all
t ∈ [0, T ] it holds P-a.s. that

Yt = u(t, ξ +Wt) ∈ R and Zt = (∇xu)(t, ξ +Wt) ∈ R
d (3)

(cf., e.g., [25, Section 3] and [27]). The first identity in (3) is sometimes referred to as
nonlinear Feynman-Kac formula in the literature.

2.4 Forward discretization of the backward stochastic differential
equation (BSDE)

To derive the deep BSDE solver, we first plug the second identity in (3) into (BSDE)
to obtain that for all t ∈ [0, T ] it holds P-a.s. that

Yt = g(ξ +WT ) +

∫ T

t

f
(
Ys, (∇xu)(s, ξ +Ws)

)
ds−

∫ T

t

〈(∇xu)(s, ξ +Ws), dWs〉Rd . (4)

In particular, we obtain that for all t1, t2 ∈ [0, T ] with t1 ≤ t2 it holds P-a.s. that

Yt2 = Yt1 −
∫ t2

t1

f
(
Ys, (∇xu)(s, ξ +Ws)

)
ds+

∫ t2

t1

〈(∇xu)(s, ξ +Ws), dWs〉Rd . (5)

Next we apply a time discretization to (5). More specifically, letN ∈ N and let t0, t1, . . . , tN ∈
[0, T ] be real numbers which satisfy

0 = t0 < t1 < . . . < tN = T (6)
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and observe that (5) suggests for N ∈ N sufficiently large that

Ytn+1 (7)

≈ Ytn − f
(
Ytn , (∇xu)(tn, ξ +Wtn)

)
(tn+1 − tn) +

〈
(∇xu)(tn, ξ +Wtn),Wtn+1 −Wtn

〉

Rd .

2.5 Deep learning-based approximations

In the next step we employ a deep learning approximation for

(∇xu)(tn, x) ∈ R
d, x ∈ R

d, n ∈ {0, 1, . . . , N}, (8)

but not for u(tn, x) ∈ R, x ∈ R
d, n ∈ {0, 1, . . . , N}. Approximations for u(tn, x) ∈ R,

x ∈ R
d, n ∈ {0, 1, . . . , N}, in turn, can be computed recursively by using (7) together with

deep learning approximations for (8). More specifically, let ρ ∈ N, let U θ ∈ R, θ ∈ R
ρ, be

real numbers, let Vθ
n : R

d → R
d, n ∈ {0, 1, . . . , N − 1}, θ ∈ R

ρ, be continuous functions,
and let Yθ : {0, 1, . . . , N} × Ω → R, θ ∈ R

ρ, be stochastic processes which satisfy for all
θ ∈ R

ρ, n ∈ {0, 1, . . . , N − 1} that Yθ
0 = U θ and

Yθ
n+1 = Yθ

n − f
(
Yθ

n,Vθ
n(ξ +Wtn)

)
(tn+1 − tn) +

〈
Vθ
n(ξ +Wtn),Wtn+1 −Wtn

〉

Rd . (9)

We think of ρ ∈ N as the number of parameters in the neural network, for all appropriate
θ ∈ R

ρ we think of U θ ∈ R as suitable approximations

U θ ≈ u(0, ξ) (10)

of u(0, ξ), and for all appropriate θ ∈ R
ρ, x ∈ R

d, n ∈ {0, 1, . . . , N − 1} we think of
Vθ
n(x) ∈ R

1×d as suitable approximations

Vθ
n(x) ≈ (∇xu)(tn, x) (11)

of (∇xu)(tn, x).

2.6 Stochastic optimization algorithms

The “appropriate” θ ∈ R
ρ can be obtained by minimizing the expected loss function

through stochastic gradient descent-type algorithms. For the loss function we pick the
squared approximation error associated to the terminal condition of the BSDE (BSDE).
More precisely, assume that the function R

ρ ∋ θ 7→ ❊
[
|Yθ

N−g(XN)|2
]
∈ [0,∞] has a unique

global minimum and let Λ ∈ R
ρ be the real vector for which the function

R
ρ ∋ θ 7→ ❊

[
|Yθ

N − g(XN)|2
]
∈ [0,∞] (12)

is minimal. Minimizing the function (12) is inspired by the fact that

❊
[
|YT − g(XT )|2

]
= 0 (13)
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according to (BSDE) above (cf. (2) above). Under suitable regularity assumptions, we
approximate the vector Λ ∈ R

ρ through stochastic gradient descent-type approximation
methods and thereby we obtain random approximations Θ0,Θ1,Θ2, . . . : Ω → R

ρ of Λ ∈
R

ρϑ . For sufficiently large N, ρ,m ∈ N we then employ the random variable UΘm : Ω → R

as a suitable implementable approximation

UΘm ≈ u(0, ξ) (14)

of u(0, ξ) (cf. (10) above) and for sufficiently large N, ρ,m ∈ N and all x ∈ R
d, n ∈

{0, 1, . . . , N − 1} we use the random variable VΘm
n (x) : Ω → R

1×d as a suitable imple-
mentable approximation

VΘm

n (x) ≈ (∇xu)(tn, x) (15)

of (∇xu)(tn, x) (cf. (11) above). In the next section the proposed approximation method
is described in more detail.

To simplify the presentation we have restricted us in (PDE), (1), (2), (BSDE) above
and Subsection 3.1 below to semilinear heat equations. We refer to Subsection 3.2 and
Section 4 below for the general description of the deep BSDE solver.

3 Details of the algorithm

3.1 Formulation of the proposed algorithm in the case of semi-
linear heat equations

In this subsection we describe the algorithm proposed in this article in the specific
situation where (PDE) is the PDE under consideration, where batch normalization (see
Ioffe & Szegedy [21]) is not employed, and where the plain-vanilla stochastic gradient
descent approximation method with a constant learning rate γ ∈ (0,∞) and without mini-
batches is the employed stochastic algorithm. The general framework, which includes the
setting in this subsection as a special case, can be found in Subsection 3.2 below.

Framework 3.1 (Specific case). Let T, γ ∈ (0,∞), d, ρ,N ∈ N, ξ ∈ R
d, let f : R×R

d → R

and g : Rd → R be functions, let (Ω,F ,P) be a probability space, let Wm : [0, T ] × Ω →
R

d, m ∈ N0, be independent d-dimensional standard Brownian motions on (Ω,F ,P), let
t0, t1, . . . , tN ∈ [0, T ] be real numbers with

0 = t0 < t1 < . . . < tN = T, (16)

for every θ ∈ R
ρ let U θ ∈ R, for every θ ∈ R

ρ, n ∈ {0, 1, . . . , N − 1} let Vθ
n : R

d → R
d be

a function, for every m ∈ N0, θ ∈ R
ρ let Yθ,m : {0, 1, . . . , N} × Ω → R

k be the stochastic
process which satisfies for all n ∈ {0, 1, . . . , N − 1} that Yθ,m

0 = U θ and

Yθ,m
n+1 = Yθ,m

n − f
(
Yθ,m

n ,Vθ
n(ξ +Wm

tn )
)
(tn+1 − tn) +

〈
Vθ
n(ξ +Wm

tn ),W
m
tn+1

−Wm
tn

〉

Rd
, (17)
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for every m ∈ N0 let φm : Rρ ×Ω → R be the function which satisfies for all θ ∈ R
ρ, ω ∈ Ω

that

φm(θ, ω) =
∣
∣Yθ,m

N (ω)− g(ξ +Wm
T (ω))

∣
∣
2
, (18)

for every m ∈ N0 let Φm : Rρ × Ω → R
ρ be a function which satisfies for all ω ∈ Ω,

θ ∈ {v ∈ R
ρ : (Rρ ∋ w 7→ φm

s
(w, ω) ∈ R is differentiable at v ∈ R

ρ)} that

Φm(θ, ω) = (∇θφ
m)(θ, ω), (19)

and let Θ: N0 × Ω → R
ρ be a stochastic process which satisfy for all m ∈ N that

Θm = Θm−1 − γ · Φm(Θm−1). (20)

Under suitable further hypotheses (cf. Sections 4 and 5 below), we think in the case
of sufficiently large ρ,N,m ∈ N and sufficiently small γ ∈ (0,∞) of UΘm ∈ R as an
appropriate approximation

u(0, ξ) ≈ UΘm (21)

of the solution u(t, x) ∈ R, (t, x) ∈ [0, T ]× R
d, of the PDE

∂u

∂t
(t, x) +

1

2
(∆xu)(t, x) + f

(
u(t, x), (∇xu)(t, x)

)
= 0 (22)

for (t, x) ∈ [0, T ]× R
d.

3.2 Formulation of the proposed algorithm in the general case

Framework 3.2 (General case). Let T ∈ (0,∞), d, k, ρ, ̺,N, ς ∈ N, ξ ∈ R
d, let f : [0, T ]×

R
d×R

k×R
k×d → R, g : Rd → R

k, and Υ: [0, T ]2×R
d×R

d → R
d be functions, let (Ω,F ,P)

be a probability space, let Wm,j : [0, T ]×Ω → R
d, m, j ∈ N0, be independent d-dimensional

standard Brownian motions on (Ω,F ,P), let t0, t1, . . . , tN ∈ [0, T ] be real numbers with

0 = t0 < t1 < . . . < tN = T, (23)

for every θ ∈ R
ρ let U θ ∈ R

k, for every θ ∈ R
ρ, s ∈ R

ς , n ∈ {0, 1, . . . , N − 1}, j ∈ N0 let
Vθ,s
n,j : (R

d)N → R
k×d be a function, for every m, j ∈ N0 let Xm,j : {0, 1, . . . , N} × Ω → R

d

and Yθ,s,m,j : {0, 1, . . . , N} ×Ω → R
k, θ ∈ R

ρ, s ∈ R
ς , be stochastic processes which satisfy

for all θ ∈ R
ρ, s ∈ R

ς , n ∈ {0, 1, . . . , N − 1} that

Xm,j
0 = ξ, Yθ,s,m,j

0 = U θ, Xm,j
n+1 = Υ

(
tn, tn+1,Xm,j

n ,Wm,j
tn+1

−Wm,j
tn

)
, (24)

Yθ,s,m,j
n+1 = Yθ,s,m,j

n − f
(
tn,Xm,j

n ,Yθ,s,m,j
n ,Vθ,s

n,j({Xm,i
n }i∈N)

)
(tn+1 − tn)

+ Vθ,s
n,j({Xm,i

n }i∈N) (Wm,j
tn+1

−Wm,j
tn ), (25)
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for every m, j ∈ N0, s ∈ R
ς let φm,j

s
: Rρ × Ω → R be the function which satisfies for all

θ ∈ R
ρ, ω ∈ Ω that

φm,j
s

(θ, ω) = ‖Yθ,s,m,j
N (ω)− g(Xm,j

N (ω))‖2
Rk , (26)

for every m, j ∈ N0, s ∈ R
ς let Φm,j

s
: Rρ × Ω → R

ρ be a function which satisfies for all
ω ∈ Ω, θ ∈ {v ∈ R

ρ : (Rρ ∋ w 7→ φm,j
s

(w, ω) ∈ R is differentiable at v ∈ R
ρ)} that

Φm,j
s

(θ, ω) = (∇θφ
m,j
s

)(θ, ω), (27)

let S : Rς × R
ρ × (Rd){0,1,...,N−1}×N → R

ς be a function, for every m ∈ N let ψm : R̺ → R
ρ

and Ψm : R̺ × (Rρ)N → R
̺ be functions, and let S : N0 × Ω → R

ς , Ξ: N0 × Ω → R
̺, and

Θ: N0 × Ω → R
ρ be stochastic processes which satisfy for all m ∈ N that

Sm = S
(
Sm−1,Θm−1, {Xm−1,i

n }(n,i)∈{0,1,...,N−1}×N

)
, (28)

Ξm = Ψm

(
Ξm−1, {Φm−1,j

Sm
(Θm−1)}j∈N

)
, and Θm = Θm−1 − ψm(Ξm). (29)

3.3 Comments on the proposed algorithm

The dynamics in (24) associated to the stochastic processes (Xm,j
n )n∈{0,1,...,N} for m, j ∈

N0 allows us to incorporate different algorithms for the discretization of the considered
forward stochastic differential equation (SDE) into the deep BSDE solver in Subsection 3.2.
The dynamics in (29) associated to the stochastic processes Ξm, m ∈ N0, and Θm, m ∈ N0,
allows us to incorporate different stochastic approximation algorithms such as

• stochastic gradient descent with or without mini-batches (see Subsection 5.1 below)
as well as

• adaptive moment estimation (Adam) with mini-batches (see Kingma & Jimmy [22]
and Subsection 5.2 below) into the deep BSDE solver in Subsection 3.2.

The dynamics in (28) associated to the stochastic process Sm, m ∈ N0, allows us to
incorporate the standardization procedure in batch normalization (see Ioffe & Szegedy [21]
and also Section 4 below) into the deep BSDE solver in Subsection 3.2. In that case we
think of Sm, m ∈ N0, as approximatively calculated means and standard deviations.

4 Examples for nonlinear partial differential equations

(PDEs) and nonlinear backward stochastic differen-

tial equations (BSDEs)

In this section we illustrate the algorithm proposed in Subsection 3.2 using several
concrete example PDEs. In the examples below we will employ the general approximation
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method in Subsection 3.2 in conjunction with the Adam optimizer (cf. Example 5.2 below
and Kingma & Ba [22]) with mini-batches with 64 samples in each iteration step (see
Subsection 4.1 for a detailed description).

In our implementation we employ N−1 fully-connected feedforward neural networks to
represent Vθ

n,j for n ∈ {1, 2, . . . , N − 1}, j ∈ {1, 2, . . . , 64}, θ ∈ R
ρ (cf. also Figure 1 below

for a rough sketch of the architecture of the deep BSDE solver). Each of the neural networks
consists of 4 layers (1 input layer [d-dimensional], 2 hidden layers [both d+10-dimensional],
and 1 output layer [d-dimensional]). The number of hidden units in each hidden layer is
equal to d + 10. We also adopt batch normalization (BN) (see Ioffe & Szegedy [21]) right
after each matrix multiplication and before activation. We employ the rectifier function
R ∋ x 7→ max{0, x} ∈ [0,∞) as our activation function for the hidden variables. All the
weights in the network are initialized using a normal or a uniform distribution without any
pre-training. Each of the numerical experiments presented below is performed in Python

using TensorFlow on a Macbook Pro with a 2.90 Gigahertz (GHz) Intel Core i5
micro processor and 16 gigabytes (GB) of 1867 Megahertz (MHz) double data rate type
three synchronous dynamic random-access memory (DDR3-SDRAM). We also refer to the
Python code 1 in Subsection 6.1 below for an implementation of the deep BSDE solver
in the case of the 100-dimensional Allen-Cahn PDE (35).

4.1 Setting

Assume the setting in Subsection 3.2, assume for all θ = (θ1, . . . , θρ) ∈ R
ρ that k = 1,

ρ = d + 1 + (N − 1) (2d(d+ 10) + (d+ 10)2 + 4(d+ 10) + 2d), ̺ = 2ρ, U θ = θ1, Ξ0 = 0,
let µ : [0, T ] × R

d → R
d and σ : [0, T ] × R

d → R
d×d be functions, let u : [0, T ] × R

d → R

be a continuous and at most polynomially growing function which satisfies for all (t, x) ∈
[0, T )× R

d that u|[0,T )×Rd ∈ C1,2([0, T )× R
d,R), u(T, x) = g(x), and

∂u

∂t
(t, x) +

1

2
Trace

(
σ(t, x) [σ(t, x)]∗ (Hessx u)(t, x)

)
+ 〈µ(t, x), (∇xu)(t, x)〉

+ f
(
t, x, u(t, x), [(∇xu)(t, x)]

∗ σ(t, x)
)
= 0, (30)

let ε = 10−8, X = 9
10
, Y = 999

1000
, J = 64, (γm)m∈N ⊆ (0,∞), let Powr : R

ρ → R
ρ, r ∈ (0,∞),

be the functions which satisfy for all r ∈ (0,∞), x = (x1, . . . , xρ) ∈ R
ρ that

Powr(x) = (|x1|r, . . . , |xρ|r), (31)

and assume for all m ∈ N, x, y ∈ R
ρ, (ϕj)j∈N ∈ (Rρ)N that

Ψm(x, y, (ϕj)j∈N) =
(
Xx+ (1− X)

(
1
J

∑J
j=1 ϕj

)
,Yy + (1− Y) Pow2

(
1
J

∑J
j=1 ϕj

))
(32)

and

ψm(x, y) =

[

ε+ Pow1/2

(
y

(1− Ym)

)]−1
γmx

(1− Xm)
. (33)

(cf. Example 5.2 below and Kingma & Ba [22]).
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Remark 4.1. In this remark we illustrate the specific choice of the dimension ρ ∈ N of
θ = (θ1, . . . , θρ) ∈ R

ρ in the framework in Subsection 4.1 above.

(i) The first component of θ = (θ1, . . . , θρ) ∈ R
ρ is employed for approximating the real

number u(0, ξ) ∈ R.

(ii) The next d-components of θ = (θ1, . . . , θρ) ∈ R
ρ are employed for approximating the

components of the (1× d)-matrix ( ∂
∂x
u)(0, ξ) σ(0, ξ) ∈ R

1×d.

(iii) In each of the employed N − 1 neural networks we use d(d + 10) components of
θ = (θ1, . . . , θρ) ∈ R

ρ to describe the linear transformation from the d-dimensional
first layer (input layer) to the (d + 10)-dimensional second layer (first hidden layer)
(to uniquely describe a real (d+ 10)× d-matrix).

(iv) In each of the employed N − 1 neural networks we use (d + 10)2 components of
θ = (θ1, . . . , θρ) ∈ R

ρ to uniquely describe the linear transformation from the (d+10)-
dimensional second layer (first hidden layer) to the (d + 10)-dimensional third layer
(second hidden layer) (to uniquely describe a real (d+ 10)× (d+ 10)-matrix).

(v) In each of the employed N − 1 neural networks we use d(d + 10) components of θ =
(θ1, . . . , θρ) ∈ R

ρ to describe the linear transformation from the (d+ 10)-dimensional
third layer (second hidden layer) to the d-dimensional fourth layer (output layer) (to
uniquely describe a real d× (d+ 10)-matrix).

(vi) After each of the linear transformations in items (iii)–(v) above we employ a com-
ponentwise affine linear transformation (multiplication with a diagonal matrix and
addition of a vector) within the batch normalization procedure, i.e., in each of the em-
ployed N−1 neural networks, we use 2(d+10) components of θ = (θ1, . . . , θρ) ∈ R

ρ for
the componentwise affine linear transformation between the first linear transformation
(see item (iii)) and the first application of the activation function, we use 2(d + 10)
components of θ = (θ1, . . . , θρ) ∈ R

ρ for the componentwise affine linear transforma-
tion between the second linear transformation (see item (iv)) and the second applica-
tion of the activation function, and we use 2d components of θ = (θ1, . . . , θρ) ∈ R

ρ for
the componentwise affine linear transformation after the third linear transformation
(see item (v)).

Summing (i)–(vi) results in

ρ = 1 + d
︸ ︷︷ ︸

items (i)–(ii)

+(N − 1)
(
d(d+ 10) + (d+ 10)2 + d(d+ 10)

)

︸ ︷︷ ︸

items (iii)–(v)

+ (N − 1) (2(d+ 10) + 2(d+ 10) + 2d)
︸ ︷︷ ︸

item (vi)

= d+ 1 + (N − 1)
(
2d(d+ 10) + (d+ 10)2 + 4(d+ 10) + 2d

)
.

(34)
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Figure 1: Rough sketch of the architecture of the deep BSDE solver.

4.2 Allen-Cahn equation

In this section we test the deep BSDE solver in the case of an 100-dimensional Allen-
Cahn PDE with a cubic nonlinearity (see (35) below).

More specifically, assume the setting in the Subsection 4.1 and assume for all s, t ∈
[0, T ], x, w ∈ R

d, y ∈ R, z ∈ R
1×d, m ∈ N that γm = 5 · 10−4, d = 100, T = 3

10
,

N = 20, µ(t, x) = 0, σ(t, x)w =
√
2w, ξ = (0, 0, . . . , 0) ∈ R

d, Υ(s, t, x, w) = x +
√
2w,

f(t, x, y, z) = y − y3, and g(x) =
[
2 + 2

5
‖x‖2

Rd

]−1
. Note that the solution u of the PDE

(30) then satisfies for all t ∈ [0, T ), x ∈ R
d that u(T, x) = g(x) and

∂u

∂t
(t, x) + u(t, x)− [u(t, x)]3 + (∆xu)(t, x) = 0. (35)

In Table 1 we approximatively calculate the mean of UΘm , the standard deviation of UΘm ,
the relative L1-approximatin error associated to UΘm , the standard deviation of the relative
L1-approximatin error associated to UΘm , and the runtime in seconds needed to calculate
one realization of UΘm against m ∈ {0, 1000, 2000, 3000, 4000} based on 5 independent re-
alizations (5 independent runs) (see also the Python code 1 below). Table 1 also depicts
the mean of the loss function associated to Θm and the standard deviation of the loss func-
tion associated to Θm against m ∈ {0, 1000, 2000, 3000, 4000} based on 256 Monte Carlo
samples and 5 independent realizations (5 independent runs). In addition, the relative
L1-approximation error associated to UΘm against m ∈ {1, 2, 3, . . . , 4000} is pictured on
the left hand side of Figure 2 based on 5 independent realizations (5 independent runs) and
the mean of the loss function associated to Θm against m ∈ {1, 2, 3, . . . , 4000} is pictured
on the right hand side of Figure 2 based on 256 Monte Carlo samples and 5 independent
realizations (5 independent runs). In the approximative computations of the relative L1-
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approximation errors in Table 1 and Figure 2 the value u(0, ξ) = u(0, 0, . . . , 0) of the exact
solution u of the PDE (35) is replaced by the value 0.052802 which, in turn, is calculated
by means of the Branching diffusion method (see the Matlab code 2 below and see, e.g.,
[17, 19, 18] for analytical and numerical results for the Branching diffusion method in the
literature).

Number Mean Standard Relative Standard Mean Standard Runtime
of of UΘm deviation L1-appr. deviation of the deviation in sec.

iteration of UΘm error of the loss of the for one
steps m relative function loss realization

L1-appr. function of UΘm

error
0 0.4740 0.0514 7.9775 0.9734 0.11630 0.02953

1000 0.1446 0.0340 1.7384 0.6436 0.00550 0.00344 201
2000 0.0598 0.0058 0.1318 0.1103 0.00029 0.00006 348
3000 0.0530 0.0002 0.0050 0.0041 0.00023 0.00001 500
4000 0.0528 0.0002 0.0030 0.0022 0.00020 0.00001 647

Table 1: Numerical simulations for the deep BSDE solver in Subsection 3.2 in the case of
the PDE (35).

4.3 A Hamilton-Jacobi-Bellman (HJB) equation

In this subsection we apply the deep BSDE solver in Subsection 3.2 to a Hamilton-
Jacobi-Bellman (HJB) equation which admits an explicit solution that can be obtained
through the Cole-Hopf transformation (cf., e.g., Chassagneux & Richou [7, Section 4.2]
and Debnath [10, Section 8.4]).

Assume the setting in the Subsection 4.1 and assume for all s, t ∈ [0, T ], x, w ∈ R
d,

y ∈ R, z ∈ R
1×d, m ∈ N that d = 100, T = 1, N = 20, γm = 1

100
, µ(t, x) = 0,

σ(t, x)w =
√
2w, ξ = (0, 0, . . . , 0) ∈ R

d, Υ(s, t, x, w) = x +
√
2w, f(t, x, y, z) = −‖z‖2

R1×d ,
and g(x) = ln(1

2
[1 + ‖x‖2

Rd ]). Note that the solution u of the PDE (30) then satisfies for
all t ∈ [0, T ), x ∈ R

d that u(T, x) = g(x) and

∂u

∂t
(t, x) + (∆xu)(t, x) = ‖(∇xu)(t, x)‖2Rd . (36)

In Table 2 we approximatively calculate the mean of UΘm , the standard deviation of UΘm ,
the relative L1-approximatin error associated to UΘm , the standard deviation of the rel-
ative L1-approximatin error associated to UΘm , and the runtime in seconds needed to

13



(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 2: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 4000} in the case of the PDE (35). The deep BSDE approximation
UΘ4000 ≈ u(0, ξ) achieves a relative L1-approximation error of size 0.0030 in a runtime of
595 seconds.

calculate one realization of UΘm against m ∈ {0, 500, 1000, 1500, 2000} based on 5 indepen-
dent realizations (5 independent runs). Table 2 also depicts the mean of the loss function
associated to Θm and the standard deviation of the loss function associated to Θm against
m ∈ {0, 500, 1000, 1500, 2000} based on 256 Monte Carlo samples and 5 independent real-
izations (5 independent runs). In addition, the relative L1-approximation error associated
to UΘm against m ∈ {1, 2, 3, . . . , 2000} is pictured on the left hand side of Figure 3 based
on 5 independent realizations (5 independent runs) and the mean of the loss function asso-
ciated to Θm against m ∈ {1, 2, 3, . . . , 2000} is pictured on the right hand side of Figure 3
based on 256 Monte Carlo samples and 5 independent realizations (5 independent runs).
In the approximative computations of the relative L1-approximation errors in Table 2 and
Figure 3 the value u(0, ξ) = u(0, 0, . . . , 0) of the exact solution u of the PDE (35) is re-
placed by the value 4.5901 which, in turn, is calculated by means of Lemma 4.2 below
(with d = 100, T = 1, α = 1, β = −1, g = R

d ∋ x 7→ ln(1
2
[1 + ‖x‖2

Rd ]) ∈ R in the notation
of Lemma 4.2) and a classical Monte Carlo method (see the Matlab code 3 below).

Lemma 4.2 (Cf., e.g., Section 4.2 in [7] and Section 8.4 in [10]). Let d ∈ N, T, α ∈
(0,∞), β ∈ R\{0}, let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → R

d be a d-
dimensional standard Brownian motion, let g ∈ C2(Rd,R) be a function which satisfies
supx∈Rd [βg(x)] < ∞, let f : [0, T ] × R

d × R × R
d → R be the function which satisfies for

all t ∈ [0, T ], x = (x1, . . . , xd), z = (z1, . . . , zd) ∈ R
d, y ∈ R that

f(t, x, y, z) = β‖z‖2
Rd = β

∑d
i=1 |zi|2, (37)
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Number Mean Standard Relative Standard Mean Standard Runtime
of of UΘm deviation L1-appr. deviation of the deviation in sec.

iteration of UΘm error of the loss of the for one
steps m relative function loss realization

L1-appr. function of UΘm

error
0 0.3167 0.3059 0.9310 0.0666 18.4052 2.5090
500 2.2785 0.3521 0.5036 0.0767 2.1789 0.3848 116
1000 3.9229 0.3183 0.1454 0.0693 0.5226 0.2859 182
1500 4.5921 0.0063 0.0013 0.006 0.0239 0.0024 248
2000 4.5977 0.0019 0.0017 0.0004 0.0231 0.0026 330

Table 2: Numerical simulations for the deep BSDE solver in Subsection 3.2 in the case of
the PDE (36).

and let u : [0, T ]× R
d → R be the function which satisfies for all (t, x) ∈ [0, T ]× R

d that

u(t, x) =
α

β
ln

(

❊

[

exp
(βg(x+WT−t

√
2α)

α

)])

. (38)

Then

(i) it holds that u : [0, T ]× R
d → R is a continuous function,

(ii) it holds that u|[0,T )×Rd ∈ C1,2([0, T )× R
d,R), and

(iii) it holds for all (t, x) ∈ [0, T )× R
d that u(T, x) = g(x) and

∂u

∂t
(t, x) + α(∆xu)(t, x) + f

(
t, x, u(t, x), (∇xu)(t, x)

)

=
∂u

∂t
(t, x) + α(∆xu)(t, x) + β‖(∇xu)(t, x)‖2Rd

=
∂u

∂t
(t, x) + α(∆xu)(t, x) + β

d∑

j=1

∣
∣
∣
∂u

∂xj
(t, x)

∣
∣
∣

2

= 0.

(39)

Proof of Lemma 4.2. Throughout this proof let c = α
β
∈ R\{0} and let V : Rd → (0,∞)

and v : [0, T ]× R
d → (0,∞) be the functions which satisfy for all t ∈ [0, T ], x ∈ R

d that

V(x) = exp
(g(x)

c

)

= exp
(βg(x)

α

)

and v(t, x) = ❊
[
V
(
x+WT−t

√
2α
)]
. (40)
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(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 3: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 2000}. The deep BSDE approximation UΘ2000 ≈ u(0, ξ) achieves a relative
L1-approximation error of size 0.0017 in a runtime of 283 seconds.

Observe that the hypothesis that supx∈Rd [βg(x)] < ∞ ensures that for all ω ∈ Ω it holds
that

sup
t∈[0,T ]

sup
x∈Rd

∣
∣V
(
x+WT−t(ω)

√
2α
)∣
∣ ≤ sup

x∈Rd

|V(x)| = sup
x∈Rd

V(x)

= exp

(
supx∈Rd [βg(x)]

α

)

<∞.
(41)

Combining this with Lebesgue’s theorem of dominated convergence ensures that v : [0, T ]×
R

d → (0,∞) is a continuous function. This and the fact that

∀ (t, x) ∈ [0, T ]× R
d : u(t, x) = c ln(v(t, x)) (42)

establish Item (i). Next note that the Feynman-Kac formula ensures that for all t ∈ [0, T ),
x ∈ R

d it holds that v|[0,T )×Rd ∈ C1,2([0, T )× R
d, (0,∞)) and

∂v

∂t
(t, x) + α(∆xv)(t, x) = 0. (43)

This and (42) demonstrate Item (ii). It thus remains to prove Item (iii). For this note that
the chain rule and (42) imply that for all t ∈ [0, T ), x = (x1, . . . , xd) ∈ R

d, i ∈ {1, 2, . . . , d}
it holds that

∂u

∂t
(t, x) =

c

v(t, x)
· ∂v
∂t

(t, x) and
∂u

∂xi
(t, x) =

c

v(t, x)
· ∂v
∂xi

(t, x). (44)
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Again the chain rule and (42) hence ensure that for all t ∈ [0, T ), x = (x1, . . . , xd) ∈ R
d,

i ∈ {1, 2, . . . , d} it holds that

∂u2

∂x2i
(t, x) =

c

v(t, x)
· ∂v

2

∂x2i
(t, x)− c

[v(t, x)]2
·
[
∂v

∂xi
(t, x)

]2

. (45)

This assures that for all t ∈ [0, T ), x = (x1, . . . , xd) ∈ R
d, i ∈ {1, 2, . . . , d} it holds that

α(∆xu)(t, x) =
αc

v(t, x)
· (∆xv)(t, x)−

αc

[v(t, x)]2
·

d∑

i=1

[
∂v

∂xi
(t, x)

]2

=
αc(∆xv)(t, x)

v(t, x)
− αc ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2
.

(46)

Combining this with (44) demonstrates that for all t ∈ [0, T ), x ∈ R
d it holds that

∂u

∂t
(t, x) + α(∆xu)(t, x) + β ‖(∇xu)(t, x)‖2Rd

=
c

v(t, x)
· ∂v
∂t

(t, x) +
αc(∆xv)(t, x)

v(t, x)
− αc ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2
+ β ‖(∇xu)(t, x)‖2Rd .

(47)

Equation (43) hence shows that for all t ∈ [0, T ), x = (x1, . . . , xd) ∈ R
d it holds that

∂u

∂t
(t, x) + α(∆xu)(t, x) + β ‖(∇xu)(t, x)‖2Rd

= β ‖(∇xu)(t, x)‖2Rd −
αc ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2

= β

[
d∑

i=1

∣
∣
∣
∣

∂u

∂xi
(t, x)

∣
∣
∣
∣

2
]

− αc ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2
.

(48)

This and (44) demonstrate that for all t ∈ [0, T ), x = (x1, . . . , xd) ∈ R
d it holds that

∂u

∂t
(t, x) + α(∆xu)(t, x) + β ‖(∇xu)(t, x)‖2Rd

= β

[
d∑

i=1

∣
∣
∣
∣

c

v(t, x)
· ∂v
∂xi

(t, x)

∣
∣
∣
∣

2
]

− αc ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2

=
c2β

[v(t, x)]2

[
d∑

i=1

∣
∣
∣
∣

∂v

∂xi
(t, x)

∣
∣
∣
∣

2
]

− αc ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2

=
[c2β − cα] ‖(∇xv)(t, x)‖2Rd

[v(t, x)]2
= 0.

(49)
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This and the fact that

∀ x ∈ R
d : u(T, x) = c ln(v(T, x)) = c ln(V(x)) = c ln

(

exp

(
g(x)

c

))

= g(x) (50)

establish Item (iii). The proof of Lemma 4.2 is thus completed.

4.4 Pricing of European financial derivatives with different in-
terest rates for borrowing and lending

In this subsection we apply the deep BSDE solver to a pricing problem of an European
financial derivative in a financial market where the risk free bank account used for the
hedging of the financial derivative has different interest rates for borrowing and lending
(see Bergman [4] and, e.g., [12, 2, 3, 5, 8, 11] where this example has been used as a test
example for numerical methods for BSDEs).

Assume the setting in Subsection 4.1, let µ̄ = 6
100

, σ̄ = 2
10
, Rl = 4

100
, Rb = 6

100
, and

assume for all s, t ∈ [0, T ], x = (x1, . . . , xd), w = (w1, . . . , wd) ∈ R
d, y ∈ R, z ∈ R

1×d,
m ∈ N that d = 100, T = 1/2, N = 20, γm = 5 · 10−3 = 0.005, µ(t, x) = µ̄x, σ(t, x) =
σ̄ diagRd×d(x1, . . . , xd), ξ = (100, 100, . . . , 100) ∈ R

d, and

g(x) = max

{[

max
1≤i≤100

xi

]

− 120, 0

}

− 2max

{[

max
1≤i≤100

xi

]

− 150, 0

}

, (51)

Υ(s, t, x, w) = exp

((

µ̄− σ̄2

2

)

(t− s)

)

exp
(
σ̄ diagRd×d(w1, . . . , wd)

)
x, (52)

f(t, x, y, z) = −Rly − (µ̄−Rl)

σ̄

d∑

i=1

zi + (Rb −Rl)max

{

0,

[

1

σ̄

d∑

i=1

zi

]

− y

}

. (53)

Note that the solution u of the PDE (30) then satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈
R

d that u(T, x) = g(x) and

∂u

∂t
(t, x) + f

(
t, x, u(t, x), σ̄ diagRd×d(x1, . . . , xd)(∇xu)(t, x)

)
+ µ̄

d∑

i=1

xi
∂u

∂xi
(t, x)

+
σ̄2

2

d∑

i=1

|xi|2
∂2u

∂x2i
(t, x) = 0. (54)

Hence, we obtain for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ R
d that u(T, x) = g(x) and

∂u

∂t
(t, x) +

σ̄2

2

d∑

i=1

|xi|2
∂2u

∂x2i
(t, x)

+ max
{

Rb
([
∑d

i=1 xi
(

∂u
∂xi

)
(t, x)

]

− u(t, x)
)

, Rl
([
∑d

i=1 xi
(

∂u
∂xi

)
(t, x)

]

− u(t, x)
)}

= 0.

(55)
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This shows that for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈ R
d it holds that u(T, x) = g(x)

and

∂u

∂t
(t, x) +

σ̄2

2

d∑

i=1

|xi|2
∂2u

∂x2i
(t, x)

−min

{

Rb

(

u(t, x)−
d∑

i=1

xi
∂u

∂xi
(t, x)

)

, Rl

(

u(t, x)−
d∑

i=1

xi
∂u

∂xi
(t, x)

)}

= 0. (56)

In Table 3 we approximatively calculate the mean of UΘm , the standard deviation of UΘm ,
the relative L1-approximatin error associated to UΘm , the standard deviation of the relative
L1-approximatin error associated to UΘm , and the runtime in seconds needed to calculate
one realization of UΘm against m ∈ {0, 1000, 2000, 3000, 4000} based on 5 independent
realizations (5 independent runs). Table 3 also depicts the mean of the loss function as-
sociated to Θm and the standard deviation of the loss function associated to Θm against
m ∈ {0, 1000, 2000, 3000, 4000} based on 256 Monte Carlo samples and 5 independent real-
izations (5 independent runs). In addition, the relative L1-approximation error associated
to UΘm against m ∈ {1, 2, 3, . . . , 4000} is pictured on the left hand side of Figure 4 based
on 5 independent realizations (5 independent runs) and the mean of the loss function asso-
ciated to Θm against m ∈ {1, 2, 3, . . . , 4000} is pictured on the right hand side of Figure 4
based on 256 Monte Carlo samples and 5 independent realizations (5 independent runs).
In the approximative computations of the relative L1-approximation errors in Table 3 and
Figure 4 the value u(0, ξ) = u(0, 0, . . . , 0) of the exact solution u of the PDE (56) is re-
placed by the value 21.299 which, in turn, is calculated by means of the multilevel-Picard
approximation method in E et al. [11] (see [11, ρ = 7 in Table 6 in Section 4.3]).

Number Mean Standard Relative Standard Mean Standard Runtime
of of UΘm deviation L1-appr. deviation of the deviation in sec.

iteration of UΘm error of the loss of the for one
steps m relative function loss realization

L1-appr. function of UΘm

error
0 16.964 0.882 0.204 0.041 53.666 8.957

1000 20.309 0.524 0.046 0.025 30.886 3.076 194
2000 21.150 0.098 0.007 0.005 29.197 3.160 331
3000 21.229 0.034 0.003 0.002 29.070 3.246 470
4000 21.217 0.043 0.004 0.002 29.029 3.236 617

Table 3: Numerical simulations for the deep BSDE solver in Subsection 3.2 in the case of
the PDE (56).

19



(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 4: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 4000} in the case of the PDE (56). The deep BSDE approximation
UΘ4000 ≈ u(0, ξ) achieves a relative L1-approximation error of size 0.0039 in a runtime of
566 seconds.

4.5 Multidimensional Burgers-type PDEs with explicit solutions

In this subsection we consider a high-dimensional version of the example analyzed
numerically in Chassagneux [6, Example 4.6 in Subsection 4.2].

More specifically, assume the setting in Subsection 4.1, and assume for all s, t ∈ [0, T ],
x = (x1, . . . , xd), w = (w1, . . . , wd) ∈ R

d, y ∈ R, z = (zi)i∈{1,2,...,d} ∈ R
1×d that µ(t, x) = 0,

σ(t, x)w = d√
2
w, ξ = (0, 0, . . . , 0) ∈ R

d, Υ(s, t, x, w) = x+ d√
2
w, and

g(x) =
exp(T + 1

d

∑d
i=1 xi)

(
1 + exp(T + 1

d

∑d
i=1 xi)

) , f(t, x, y, z) =

(

y − 2 + d

2d

)(
d∑

i=1

zi

)

. (57)

Note that the solution u of the PDE (30) then satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈
R

d that u(T, x) = g(x) and

∂u

∂t
(t, x) +

d2

2
(∆xu)(t, x) +

(

u(t, x)− 2 + d

2d

)(

d
d∑

i=1

∂u

∂xi
(t, x)

)

= 0 (58)

(cf. Lemma 4.3 below [with α = d2, κ = 1/d in the notation of Lemma 4.3 below]). On the
left hand side of Figure 5 we present approximatively the relative L1-approximatin error
associated to UΘm against m ∈ {1, 2, 3, . . . , 60 000} based on 5 independent realizations (5
independent runs) in the case

T = 1, d = 20, N = 80, ∀m ∈ N : γm = 10(✶[1,30000](m)+✶[1,50000](m)−4). (59)
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On the right hand side of Figure 5 we present approximatively the mean of the loss function
associated to Θm against m ∈ {1, 2, 3, . . . , 60 000} based on 256 Monte Carlo samples and
5 independent realizations (5 independent runs) in the case (59). On the left hand side of
Figure 6 we present approximatively the relative L1-approximatin error associated to UΘm

against m ∈ {1, 2, 3, . . . , 30 000} based on 5 independent realizations (5 independent runs)
in the case

T =
2

10
, d = 50, N = 30, ∀m ∈ N : γm = 10(✶[1,15000](m)+✶[1,25000](m)−4). (60)

On the right hand side of Figure 6 we present approximatively the mean of the loss function
associated to Θm against m ∈ {1, 2, 3, . . . , 30 000} based on 256 Monte Carlo samples and
5 independent realizations (5 independent runs) in the case (60).

(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 5: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 60 000} in the case of the PDE (58) with (59). The deep BSDE approx-
imation UΘ60 000 ≈ u(0, ξ) achieves a relative L1-approximation error of size 0.0073 in a
runtime of 20 389 seconds.

Lemma 4.3 (Cf. Example 4.6 in Subsection 4.2 in [6]). Let α, κ, T ∈ (0,∞), d ∈ N, let
u : [0, T ] × R

d → R be the function which satisfies for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d

that

u(t, x) = 1− 1

(1 + exp(t+ κ
∑d

i=1 xi))
=

exp(t+ κ
∑d

i=1 xi)

(1 + exp(t+ κ
∑d

i=1 xi))
, (61)

and let f : [0, T ]×R
d ×R

1+d → R be the function which satisfies for all t ∈ [0, T ], x ∈ R
d,

y ∈ R, z = (z1, . . . , zd) ∈ R
d that

f(t, x, y, z) =

(

ακy − 1

dκ
− ακ

2

)(
d∑

i=1

zi

)

. (62)
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(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 6: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 30 000} in the case of the PDE (58) with (60). The deep BSDE approx-
imation UΘ30 000 ≈ u(0, ξ) achieves a relative L1-approximation error of size 0.0035 in a
runtime of 4281 seconds.

Then it holds for all t ∈ [0, T ], x ∈ R
d that

∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + f

(
t, x, u(t, x), (∇xu)(t, x)

)
= 0. (63)

Proof of Lemma 4.3. Throughout this proof let β, γ ∈ (0,∞) be the real numbers given
by

β = ακ and γ =
1

dκ
+
ακ

2
(64)

and let w : [0, T ] × R
d → (0,∞) be the function which satisfies for all t ∈ [0, T ], x =

(x1, . . . , xd) ∈ R
d that

w(t, x) = exp

(

t+ κ
d∑

i=1

xi

)

. (65)

Observe that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d, i ∈ {1, 2, . . . , d} it holds that

u(t, x) = 1− [1 + w(t, x)]−1 =
[1 + w(t, x)]

[1 + w(t, x)]
− 1

[1 + w(t, x)]
=

w(t, x)

1 + w(t, x)
, (66)

∂u

∂t
(t, x) = [1 + w(t, x)]−2 · ∂w

∂t
(t, x) =

w(t, x)

[1 + w(t, x)]2
, (67)

and
∂u

∂xi
(t, x) = [1 + w(t, x)]−2 · ∂w

∂xi
(t, x) = κw(t, x) [1 + w(t, x)]−2 . (68)
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Note that (66), (67), and (68) ensure that for all t ∈ [0, T ], x ∈ R
d it holds that

∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + f

(
t, x, u(t, x), (∇xu)(t, x)

)

=
∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + (βu(t, x)− γ)

(
d∑

i=1

∂u

∂xi
(t, x)

)

=
∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + d

∂u

∂x1
(t, x)

(
βu(t, x)− γ

)

=
w(t, x)

[1 + w(t, x)]2
+
α

2
(∆xu)(t, x) +

dκw(t, x)

[1 + w(t, x)]2

(
βw(t, x)

[1 + w(t, x)]
− γ

)

.

(69)

Moreover, observe that (68) demonstrates that for all t ∈ [0, T ], x ∈ R
d it holds that

∂2u

∂x2i
(t, x) = κ

∂w

∂xi
(t, x) [1 + w(t, x)]−2 − 2κw(t, x) [1 + w(t, x)]−3 ∂w

∂xi
(t, x)

=
κ2w(t, x)

[1 + w(t, x)]2
− 2κ2|w(t, x)|2

[1 + w(t, x)]3
=

κ2w(t, x)

[1 + w(t, x)]2

[

1− 2w(t, x)

[1 + w(t, x)]

]

.

(70)

Hence, we obtain that for all t ∈ [0, T ], x ∈ R
d it holds that

α

2
(∆xu)(t, x) =

dα

2

∂2u

∂x21
(t, x) =

dακ2w(t, x)

2 [1 + w(t, x)]2

[

1− 2w(t, x)

[1 + w(t, x)]

]

. (71)

Combining this with (69) implies that for all t ∈ [0, T ], x ∈ R
d it holds that

∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + f

(
t, x, u(t, x), (∇xu)(t, x)

)

=
w(t, x) [1− dκγ]

[1 + w(t, x)]2
+
α

2
(∆xu)(t, x) +

dβκ|w(t, x)|2
[1 + w(t, x)]3

=
w(t, x) [1− dκγ]

[1 + w(t, x)]2
+

dακ2w(t, x)

2 [1 + w(t, x)]2

[

1− 2w(t, x)

[1 + w(t, x)]

]

+
dβκ|w(t, x)|2
[1 + w(t, x)]3

=
w(t, x)

[
1− dκγ + dακ2

2

]

[1 + w(t, x)]2
− dακ2|w(t, x)|2

[1 + w(t, x)]3
+
dβκ|w(t, x)|2
[1 + w(t, x)]3

.

(72)

The fact that ακ2 = βκ hence demonstrates that for all t ∈ [0, T ], x ∈ R
d it holds that

∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + f

(
t, x, u(t, x), (∇xu)(t, x)

)

=
w(t, x)

[
1− dκγ + dακ2

2

]

[1 + w(t, x)]2
.

(73)
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This and the fact that 1 + dακ2

2
= dκγ show that for all t ∈ [0, T ], x ∈ R

d it holds that

∂u

∂t
(t, x) +

α

2
(∆xu)(t, x) + f

(
t, x, u(t, x), (∇xu)(t, x)

)
= 0. (74)

The proof of Lemma 4.3 is thus completed.

4.6 An example PDE with quadratically growing derivatives and
an explicit solution

In this subsection we consider a high-dimensional version of the example analyzed nu-
merically in Gobet & Turkedjiev [13, Section 5]. More specifically, Gobet & Turkedjiev [13,
Section 5] employ the PDE in (76) below as a numerical test example but with the time
horizont T = 2/10 instead of T = 1 in this article and with the dimension d ∈ {3, 5, 7}
instead of d = 100 in this article.

Assume the setting in Subsection 4.1, let α = 4/10, let ψ : [0, T ]×R
d → R be the function

which satisfies for all (t, x) ∈ [0, T ]× R
d that ψ(t, x) = sin

(
[T − t+ ‖x‖2

Rd ]
α
)
, and assume

for all s ∈ [0, T ], t ∈ [0, T ), x, w ∈ R
d, y ∈ R, z ∈ R

1×d, m ∈ N that T = 1, d = 100,
N = 30, γm = 5 · 10−3 = 5

1000
= 0.005, µ(t, x) = 0, σ(t, x)w = w, ξ = (0, 0, . . . , 0) ∈ R

d,
Υ(t, s, x, w) = x+ w, g(x) = sin(‖x‖2α

Rd), and

f(t, x, y, z) = ‖z‖2
R1×d − ‖(∇xψ)(t, x)‖2Rd −

∂ψ

∂t
(t, x)− 1

2
(∆xψ)(t, x). (75)

Note that the solution u of the PDE (30) then satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈
R

d that u(T, x) = g(x) and

∂u

∂t
(t, x) + ‖(∇xu)(t, x)‖2Rd +

1

2
(∆xu)(t, x) =

∂ψ

∂t
(t, x) + ‖(∇xψ)(t, x)‖2Rd +

1

2
(∆xψ)(t, x).

(76)
On the left hand side of Figure 7 we present approximatively the relative L1-approximatin
error associated to UΘm against m ∈ {1, 2, 3, . . . , 4000} based on 5 independent realizations
(5 independent runs). On the right hand side of Figure 7 we present approximatively the
mean of the loss function associated to Θm against m ∈ {1, 2, 3, . . . , 4000} based on 256
Monte Carlo samples and 5 independent realizations (5 independent runs).

4.7 Time-dependent reaction-diffusion-type example PDEs with
oscillating explicit solutions

In this subsection we consider a high-dimensional version of the example PDE ana-
lyzed numerically in Gobet & Turkedjiev [14, Subsection 6.1]. More specifically, Gobet &
Turkedjiev [14, Subsection 6.1] employ the PDE in (78) below as a numerical test example
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(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 7: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 4000} in the case of the PDE (76). The deep BSDE approximation
UΘ4000 ≈ u(0, ξ) achieves a relative L1-approximation error of size 0.0009 in a runtime of
957 seconds.

but in two space-dimensions (d = 2) instead of in hundred space-dimensions (d = 100) as
in this article.

Assume the setting in Subsection 4.1, let κ = 6/10, λ = 1/
√
d, assume for all s, t ∈ [0, T ],

x = (x1, . . . , xd), w = (w1, . . . , wd) ∈ R
d, y ∈ R, z ∈ R

1×d, m ∈ N that γm = 1
100

= 0.01,
T = 1, d = 100, N = 30, µ(t, x) = 0, σ(t, x)w = w, ξ = (0, 0, . . . , 0) ∈ R

d, Υ(s, t, x, w) =
x+ w, g(x) = 1 + κ+ sin(λ

∑d
i=1 xi), and

f(t, x, y, z) = min
{

1,
[
y − κ− 1− sin

(
λ
∑d

i=1 xi
)
exp
(λ2d(t−T )

2

)]2
}

. (77)

Note that the solution u of the PDE (30) then satisfies for all t ∈ [0, T ), x = (x1, x2, . . . , xd) ∈
R

d that u(T, x) = g(x) and

∂u

∂t
(t, x)+min

{

1,
[
u(t, x)−κ−1−sin

(
λ
∑d

i=1 xi
)
exp
(λ2d(t−T )

2

)]2
}

+ 1
2
(∆xu)(t, x) = 0 (78)

(cf. Lemma 4.4 below). On the left hand side of Figure 7 we present approximatively the
relative L1-approximatin error associated to UΘm against m ∈ {1, 2, 3, . . . , 24000} based
on 5 independent realizations (5 independent runs). On the right hand side of Figure 7
we present approximatively the mean of the loss function associated to Θm against m ∈
{1, 2, 3, . . . , 24000} based on 256 Monte Carlo samples and 5 independent realizations (5
independent runs).

Lemma 4.4 (Cf. Subsection 6.1 in [14]). Let T, κ, λ ∈ (0,∞), d ∈ N and let u : [0, T ] ×
R

d → R be the function which satisfies for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d that

u(t, x) = 1 + κ+ sin
(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)
. (79)
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(a) Relative L
1-approximation error (b) Mean of the loss function

Figure 8: Relative L1-approximation error of UΘm and mean of the loss function against
m ∈ {1, 2, 3, . . . , 24000} in the case of the PDE (78). The deep BSDE approximation
UΘ24000 ≈ u(0, ξ) achieves a relative L1-approximation error of size 0.0060 in a runtime of
4872 seconds.

Then it holds for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d that u ∈ C1,2([0, T ] × R

d,R),
u(T, x) = 1 + κ+ sin(λ

∑d
i=1 xi), and

∂u

∂t
(t, x)+min

{

1,
[
u(t, x)−κ−1−sin

(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)]2
}

+ 1
2
(∆xu)(t, x) = 0. (80)

Proof of Lemma 4.4. Note that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d it holds that

∂u

∂t
(t, x) =

λ2d

2
sin
(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)
. (81)

In addition, observe that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d, k ∈ {1, 2, . . . , d} it holds

that
∂u

∂xk
(t, x) = λ cos

(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)
. (82)

Hence, we obtain that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d, k ∈ {1, . . . , d} it holds that

∂2u

∂x2k
(t, x) = −λ2 sin

(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)
. (83)

This ensures that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d it holds that

(∆xu)(t, x) = − d λ2 sin
(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)
. (84)
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Combining this with (81) proves that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d it holds that

∂u

∂t
(t, x) +

1

2
(∆xu)(t, x) = 0. (85)

This demonstrates that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d it holds that

∂v

∂t
(t, x) + min

{

1,
[
v(t, x)− κ− 1− sin

(
λ
∑d

i=1 xi
)
exp
(
λ2d(t−T )

2

)]2
}

+ 1
2
(∆xv)(t, x)

=
∂v

∂t
(t, x) +

1

2
(∆xv)(t, x) = 0.

(86)

The proof of Lemma 4.4 is thus completed.

5 Appendix A: Special cases of the proposed algo-

rithm

In this subsection we illustrate the general algorithm in Subsection 3.2 in several special
cases. More specifically, in Subsections 5.1 and 5.2 we provide special choices for the
functions ψm, m ∈ N, and Ψm, m ∈ N, employed in (29) and in Subsections 5.3 and 5.4
we provide special choices for the function Υ in (24).

5.1 Stochastic gradient descent (SGD)

Example 5.1. Assume the setting in Subsection 3.2, let (γm)m∈N ⊆ (0,∞), and assume
for all m ∈ N, x ∈ R

̺, (ϕj)j∈N ∈ (Rρ)N that

̺ = ρ, Ψm(x, (ϕj)j∈N) = ϕ1, and ψm(x) = γmx. (87)

Then it holds for all m ∈ N that

Θm = Θm−1 − γmΦm−1,1(Θm−1). (88)

5.2 Adaptive Moment Estimation (Adam) with mini-batches

In this subsection we illustrate how the so-called Adam optimizer (see [22]) can be em-
ployed in conjunction with the deep BSDE solver in Subsection 3.2 (cf. also Subsection 4.1
above).

Example 5.2. Assume the setting in Subsection 3.2, assume that ̺ = 2ρ, let Powr : R
ρ →

R
ρ, r ∈ (0,∞), be the functions which satisfy for all r ∈ (0,∞), x = (x1, . . . , xρ) ∈ R

ρ that

Powr(x) = (|x1|r, . . . , |xρ|r), (89)
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let ε ∈ (0,∞), (γm)m∈N ⊆ (0,∞), (Jm)m∈N0 ⊆ N, X,Y ∈ (0, 1), let m,M : N0 × Ω → R
ρ

be the stochastic processes which satisfy for all m ∈ N0 that Ξm = (mm,Mm), and assume
for all m ∈ N, x, y ∈ R

ρ, (ϕj)j∈N ∈ (Rρ)N that

Ψm(x, y, (ϕj)j∈N) =
(
Xx+ (1− X)

(
1
Jm

∑Jm
j=1 ϕj

)
,Yy + (1− Y) Pow2

(
1
Jm

∑Jm
j=1 ϕj

))
(90)

and

ψm(x, y) =

[

ε+ Pow1/2

(
y

(1− Ym)

)]−1
γmx

(1− Xm)
. (91)

Then it holds for all m ∈ N that

Θm = Θm−1 −
[

ε+ Pow1/2

(
Mm

(1− Ym)

)]−1
γmmm

(1− Xm)
,

mm = Xmm−1 +
(1− X)

Jm

(
Jm∑

j=1

Φm−1,j
Sm

(Θm−1)

)

,

Mm = YMm−1 + (1− Y) Pow2

(

1

Jm

Jm∑

j=1

Φm−1,j
Sm

(Θm−1)

)

.

(92)

5.3 Geometric Brownian motion

Example 5.3. Assume the setting in Section 3.2, let µ̄, σ̄ ∈ R, and assume for all s, t ∈
[0, T ], x = (x1, . . . , xd), w = (w1, . . . , wd) ∈ R

d that

Υ(s, t, x, w) = exp

((

µ̄− σ̄2

2

)

(t− s)

)

exp(σ̄ diagRd×d(w1, . . . , wd)) x. (93)

Then it holds for all m, j ∈ N0, n ∈ {0, 1, . . . , N} that

X θ,m,j
n = exp

((

µ̄− σ̄2

2

)

tn IdRd +σ̄ diagRd×d(W
m,j
tn )

)

ξ. (94)

In the setting of Example 5.3 we consider under suitable further hypotheses (cf. Sub-
section 4.4 above) for every sufficiently large m ∈ N0 the random variable UΘm as an
approximation of u(0, ξ) where u : [0, T ]× R

d → R
k is a suitable solution of the PDE

∂u
∂t
(t, x) + σ̄2

2

d∑

i=1

|xi|2
(
∂2u
∂x2

i

)
(t, x) + µ̄

d∑

i=1

xi
(

∂u
∂xi

)
(t, x)

+ f
(
t, x, u(t, x), σ̄ (∂u

∂x
)(t, x) diagRd×d(x1, . . . , xd)

)
= 0 (95)

with u(T, x) = g(x) for t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d.
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5.4 Euler-Maruyama scheme

Example 5.4. Assume the setting in Section 3.2, let µ : [0, T ]× R
d → R

d and σ : [0, T ]×
R

d → R
d be functions, and assume for all s, t ∈ [0, T ], x, w ∈ R

d that

Υ(s, t, x, w) = x+ µ(s, x) (t− s) + σ(s, x)w. (96)

Then it holds for all m, j ∈ N0, n ∈ {0, 1, . . . , N − 1} that

Xm,j
n = Xm,j

n + µ(tn,Xm,j
n ) (tn+1 − tn) + σ(tn,Xm,j

n ) (Wtn+1 −Wtn). (97)

In the setting of Example 5.4 we consider under suitable further hypotheses for every
sufficiently large m ∈ N0 the random variable UΘm as an approximation of u(0, ξ) where
u : [0, T ]× R

d → R
k is a suitable solution of the PDE

∂u
∂t
(t, x) + 1

2

d∑

j=1

(∂
2u

∂x2 )(t, x)
(
σ(t, x) e

(d)
j , σ(t, x) e

(d)
j

)
+ (∂u

∂x
)(t, x)µ(t, x)

+ f
(
t, x, u(t, x), (∂u

∂x
)(t, x) σ(t, x)

)
= 0 (98)

with u(T, x) = g(x), e
(d)
1 = (1, 0, . . . , 0), . . . , e

(d)
d = (0, . . . , 0, 1) ∈ R

d for t ∈ [0, T ],
x = (x1, . . . , xd) ∈ R

d (cf. (PDE) in Section 2 above).

6 Appendix B: Python and Matlab source codes

6.1 Python source code for an implementation of the deep BSDE
solver in the case of the Allen-Cahn PDE (35) in Subsec-
tion 4.2

1 import time

2 import math

3 import tensorflow as tf

4 import numpy as np

5 from tensorflow.python.training.moving_averages \

6 import assign_moving_average

7 from scipy.stats import multivariate_normal as normal

8 from tensorflow.python.ops import control_flow_ops

9 from tensorflow import random_normal_initializer as norm_init

10 from tensorflow import random_uniform_initializer as unif_init

11 from tensorflow import constant_initializer as const_init

12

13 class SolveAllenCahn(object ):

14 """ The fully -connected neural network model ."""

15 def __init__(self , sess):
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16 self.sess = sess

17 # parameters for the PDE

18 self.d = 100

19 self.T = 0.3

20 # parameters for the algorithm

21 self.n_time = 20

22 self.n_layer = 4

23 self.n_neuron = [self.d, self.d+10, self.d+10, self.d]

24 self.batch_size = 64

25 self.valid_size = 256

26 self.n_maxstep = 4000

27 self.n_displaystep = 100

28 self.learning_rate = 5e-4

29 self.Yini = [0.3, 0.6]

30 # some basic constants and variables

31 self.h = (self.T+0.0)/ self.n_time

32 self.sqrth = math.sqrt(self.h)

33 self.t_stamp = np.arange(0, self.n_time )*self.h

34 self._extra_train_ops = []

35

36 def train(self):

37 start_time = time.time()

38 # train operations

39 self.global_step = \

40 tf.get_variable(’global_step ’, [],

41 initializer=tf.constant_initializer (1),

42 trainable=False , dtype=tf.int32)

43 trainable_vars = tf.trainable_variables ()

44 grads = tf.gradients(self.loss , trainable_vars)

45 optimizer = tf.train.AdamOptimizer(self.learning_rate)

46 apply_op = \

47 optimizer.apply_gradients(zip(grads , trainable_vars),

48 global_step=self.global_step)

49 train_ops = [apply_op] + self._extra_train_ops

50 self.train_op = tf.group(* train_ops)

51 self.loss_history = []

52 self.init_history = []

53 # for validation

54 dW_valid , X_valid = self.sample_path(self.valid_size)

55 feed_dict_valid = {self.dW: dW_valid ,

56 self.X: X_valid ,

57 self.is_training: False}

58 # initialization

59 step = 1

60 self.sess.run(tf.global_variables_initializer ())

61 temp_loss = self.sess.run(self.loss ,

62 feed_dict=feed_dict_valid)

63 temp_init = self.Y0.eval ()[0]

64 self.loss_history.append(temp_loss)
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65 self.init_history.append(temp_init)

66 print "step: %5u, loss: %.4e, " % \

67 (0, temp_loss) + \

68 "Y0: %.4e, runtime: %4u" % \

69 (temp_init , time.time()- start_time+self.t_bd)

70 # begin sgd iteration

71 for _ in range(self.n_maxstep +1):

72 step = self.sess.run(self.global_step)

73 dW_train , X_train = self.sample_path(self.batch_size)

74 self.sess.run(self.train_op ,

75 feed_dict ={self.dW: dW_train ,

76 self.X: X_train ,

77 self.is_training: True})

78 if step % self.n_displaystep == 0:

79 temp_loss = self.sess.run(self.loss ,

80 feed_dict=feed_dict_valid)

81 temp_init = self.Y0.eval ()[0]

82 self.loss_history.append(temp_loss)

83 self.init_history.append(temp_init)

84 print "step: %5u, loss: %.4e, " % \

85 (step , temp_loss) + \

86 "Y0: %.4e, runtime: %4u" % \

87 (temp_init , time.time()- start_time+self.t_bd)

88 step += 1

89 end_time = time.time()

90 print "running time: %.3f s" % \

91 (end_time -start_time+self.t_bd)

92

93 def build(self):

94 start_time = time.time()

95 # build the whole network by stacking subnetworks

96 self.dW = tf.placeholder(tf.float64 ,

97 [None , self.d, self.n_time],

98 name=’dW’)

99 self.X = tf.placeholder(tf.float64 ,

100 [None , self.d, self.n_time +1],

101 name=’X’)

102 self.is_training = tf.placeholder(tf.bool)

103 self.Y0 = tf.Variable(tf.random_uniform ([1],

104 minval=self.Yini[0],

105 maxval=self.Yini[1],

106 dtype=tf.float64 ));

107 self.Z0 = tf.Variable(tf.random_uniform ([1, self.d],

108 minval=-.1,

109 maxval =.1,

110 dtype=tf.float64 ))

111 self.allones = \

112 tf.ones(shape=tf.pack([tf.shape(self.dW)[0], 1]),

113 dtype=tf.float64)
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114 Y = self.allones * self.Y0

115 Z = tf.matmul(self.allones , self.Z0)

116 with tf.variable_scope(’forward ’):

117 for t in xrange(0, self.n_time -1):

118 Y = Y - self.f_tf(self.t_stamp[t],

119 self.X[:, :, t], Y, Z)*self.h

120 Y = Y + tf.reduce_sum(Z*self.dW[:, :, t], 1,

121 keep_dims=True)

122 Z = self._one_time_net(self.X[:, :, t+1],

123 str(t+1))/ self.d

124 # terminal time

125 Y = Y - self.f_tf(self.t_stamp[self.n_time -1],

126 self.X[:, :, self.n_time -1],

127 Y, Z)*self.h

128 Y = Y + tf.reduce_sum(Z*self.dW[:, :, self.n_time -1], 1,

129 keep_dims=True)

130 term_delta = Y - self.g_tf(self.T,

131 self.X[:, :, self.n_time ])

132 self.clipped_delta = \

133 tf.clip_by_value(term_delta , -50.0, 50.0)

134 self.loss = tf.reduce_mean(self.clipped_delta **2)

135 self.t_bd = time.time()- start_time

136

137 def sample_path(self , n_sample ):

138 dW_sample = np.zeros([n_sample , self.d, self.n_time ])

139 X_sample = np.zeros ([n_sample , self.d, self.n_time +1])

140 for i in xrange(self.n_time ):

141 dW_sample [:, :, i] = \

142 np.reshape(normal.rvs(mean=np.zeros(self.d),

143 cov=1,

144 size=n_sample )*self.sqrth ,

145 (n_sample , self.d))

146 X_sample[:, :, i+1] = X_sample[:, :, i] + \

147 np.sqrt (2) * dW_sample[:, :, i]

148 return dW_sample , X_sample

149

150 def f_tf(self , t, X, Y, Z):

151 # nonlinear term

152 return Y-tf.pow(Y, 3)

153

154 def g_tf(self , t, X):

155 # terminal conditions

156 return 0.5/(1 + 0.2*tf.reduce_sum(X**2, 1, keep_dims=True))

157

158 def _one_time_net(self , x, name):

159 with tf.variable_scope(name):

160 x_norm = self._batch_norm(x, name=’layer0_normal ’)

161 layer1 = self._one_layer(x_norm , self.n_neuron [1],

162 name=’layer1 ’)
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163 layer2 = self._one_layer(layer1 , self.n_neuron [2],

164 name=’layer2 ’)

165 z = self._one_layer(layer2 , self.n_neuron [3],

166 activation_fn=None , name=’final ’)

167 return z

168

169 def _one_layer(self , input_ , out_sz ,

170 activation_fn=tf.nn.relu ,

171 std=5.0, name=’linear ’):

172 with tf.variable_scope(name):

173 shape = input_.get_shape (). as_list ()

174 w = tf.get_variable(’Matrix ’,

175 [shape [1], out_sz], tf.float64 ,

176 norm_init(stddev= \

177 std/np.sqrt(shape [1]+ out_sz )))

178 hidden = tf.matmul(input_ , w)

179 hidden_bn = self._batch_norm(hidden , name=’normal ’)

180 if activation_fn != None:

181 return activation_fn(hidden_bn)

182 else:

183 return hidden_bn

184

185 def _batch_norm(self , x, name):

186 """ Batch normalization """

187 with tf.variable_scope(name):

188 params_shape = [x.get_shape ()[ -1]]

189 beta = tf.get_variable(’beta’, params_shape ,

190 tf.float64 ,

191 norm_init (0.0, stddev =0.1,

192 dtype=tf.float64 ))

193 gamma = tf.get_variable(’gamma ’, params_shape ,

194 tf.float64 ,

195 unif_init (0.1, 0.5,

196 dtype=tf.float64 ))

197 mv_mean = tf.get_variable(’moving_mean ’,

198 params_shape ,

199 tf.float64 ,

200 const_init (0.0, tf.float64),

201 trainable=False)

202 mv_var = tf.get_variable(’moving_variance ’,

203 params_shape ,

204 tf.float64 ,

205 const_init (1.0, tf.float64),

206 trainable=False)

207 # These ops will only be preformed when training

208 mean , variance = tf.nn.moments(x, [0], name=’moments ’)

209 self._extra_train_ops.append (\

210 assign_moving_average(mv_mean , mean , 0.99))

211 self._extra_train_ops.append (\
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212 assign_moving_average(mv_var , variance , 0.99))

213 mean , variance = \

214 control_flow_ops.cond(self.is_training ,

215 lambda: (mean , variance),

216 lambda: (mv_mean , mv_var ))

217 y = tf.nn.batch_normalization(x, mean , variance ,

218 beta , gamma , 1e-6)

219 y.set_shape(x.get_shape ())

220 return y

221

222 def main ():

223 tf.reset_default_graph ()

224 with tf.Session () as sess:

225 tf.set_random_seed (1)

226 print "Begin to solve Allen -Cahn equation"

227 model = SolveAllenCahn(sess)

228 model.build ()

229 model.train ()

230 output = np.zeros((len(model.init_history), 3))

231 output[:, 0] = np.arange(len(model.init_history )) \

232 * model.n_displaystep

233 output[:, 1] = model.loss_history

234 output[:, 2] = model.init_history

235 np.savetxt ("./ AllenCahn_d100.csv",

236 output ,

237 fmt=[’%d’, ’%.5e’, ’%.5e’],

238 delimiter =",",

239 header ="step , loss function , " + \

240 "target value , runtime",

241 comments=’’)

242

243 if __name__ == ’__main__ ’:

244 np.random.seed (1)

245 main()

Matlab code 1: A Python code for the deep BSDE solver in Subsection 3.2 in the case
of the PDE (35).

6.2 Matlab source code for the Branching diffusion method used
in Subsection 4.2

1 function Branching_Matlab ()

2 % Parameters for the model

3 T = 0.3; t0 = 0; x0 = 0; d = 100; m = d;

4 mu = zeros(d,1); sigma = eye(d)*sqrt (2);

5 a = [0 2 0 -1]’;
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6 g = @(x) 1./(1+0.2* norm(x)^2)*1/2;

7

8 % Parameters for the algorithm

9 rng(’default ’); M = 10^7; beta = 1; p = [0 0.5 0 0.5] ’;

10

11 % Branching method

12 tic;

13 [mn,sd] = MC_BM( mu, sigma , beta , p, a, t0, x0, T, g, M );

14 runtime = toc;

15

16 % Output

17 disp([’Terminal condition: u(T,x0) = ’ num2str(g(x0)) ’;’]);

18 disp([’Branching method: u(0,x0) ~ ’ num2str(mn) ’;’]);

19 disp([’Estimated standard deviation: ’ num2str(sd) ’;’]);

20 disp([’Estimated L2 -appr. error = ’ num2str(sd/sqrt(M)) ’;’]);

21 disp([’Elapsed runtime = ’ num2str(runtime) ’;’]);

22 end

23

24 function [mn,sd] = MC_BM(mu, sigma , beta , p, a, t0, x0, T, g, M)

25 mn = 0; sd = 0;

26 for m=1:M

27 result = BM_Eval(mu , sigma , beta , p, a, t0 , x0 , T, g);

28 mn = mn + result;

29 sd = sd + result ^2;

30 end

31 mn = mn/M; sd = sqrt( (sd - mn^2/M)/M );

32 end

33

34 function result = BM_Eval(mu, sigma , beta , p, a, t0, x0, T, g)

35 bp = BP(mu, sigma , beta , p, t0 , x0 , T);

36 result = 1;

37 for k=1: size(bp{1},2)

38 result = result * g( bp{1}(:,k) );

39 end

40 if norm(a-p) > 0

41 for k=1: length(a)

42 if p(k) > 0

43 result = result * ( a(k)/p(k) )^( bp{2}(k) );

44 elseif a(k) ~= 0

45 error(’a(k) zero but p(k) non -zero’);

46 end

47 end

48 end

49 end

50

51 function bp = BP(mu, sigma , beta , p, t0, x0, T)

52 bp = cell (2 ,1);

53 bp{2} = p*0;

54 tau = exprnd (1/ beta);
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55 new_t0 = min( tau + t0 , T );

56 delta_t = new_t0 - t0;

57 m = size(sigma ,2);

58 new_x0 = x0 + mu*delta_t + sigma*sqrt(delta_t )* randn(m,1);

59 if tau >= T - t0

60 bp{1} = new_x0;

61 else

62 [tmp ,nonlinearity] = max(mnrnd(1,p));

63 bp{2}( nonlinearity) = bp{2}( nonlinearity) + 1;

64 for k=1: nonlinearity -1

65 tmp = BP(mu , sigma , beta , p, new_t0 , new_x0 , T);

66 bp{1} = [ bp{1} tmp {1} ];

67 bp{2} = bp{2} + tmp {2};

68 end

69 end

70 end

Matlab code 2: A Matlab code for the Branching diffusion method in the case of the
PDE (35) based on M = 107 independent realizations.

6.3 Matlab source code for the classical Monte Carlo method
used in Subsection 4.3

1 function MonteCarlo_Matlab ()

2 rng(’default ’);

3

4 % Parameters for the model

5 d = 100;

6 g = @(x) log( (1+ norm(x)^2)/2 );

7 T = 1;

8 M = 10^7;

9 t = 0;

10

11 % Classical Monte Carlo

12 tic;

13 MC = 0;

14 for m=1:M

15 dW = randn(1,d)*sqrt(T-t);

16 MC = MC + exp( - g( dW * sqrt (2) ) );

17 end

18 MC = -log(MC/M);

19 runtime = toc;

20

21 % Output

22 disp([’Solution: u(T,0) = ’ num2str(g(0)) ’;’]);

23 disp([’Solution: u(0,0) = ’ num2str(MC) ’;’]);
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24 disp([’Time = ’ num2str(runtime) ’;’]);

25 end

Matlab code 3: A Matlab code for a Monte Carlo method related to the PDE (36)
based on M = 107 independent realizations.
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