
Convergence rates of high dimensional

Smolyak quadrature

J. Zech and Ch. Schwab

Research Report No. 2017-27

June 2017
Latest revision: November 2018

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding SNF: 159940



Mathematical Modelling and Numerical Analysis Will be set by the publisher
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CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE ˚

Jakob Zech1 and Christoph Schwab2

Abstract. We analyse convergence rates of Smolyak integration for parametric maps u : U Ñ X

taking values in a Banach space X, defined on the parameter domain U “ r´1, 1sN. For parametric
maps which are sparse, as quantified by summability of their Taylor polynomial chaos coefficients,
dimension-independent convergence rates superior to N -term approximation rates under the same
sparsity are achievable. We propose a concrete Smolyak algorithm to apriori identify integrand-adapted
sets of active multiindices (and thereby unisolvent sparse grids of quadrature points) via upper bounds
for the integrands’ Taylor gpc coefficients. For so-called “pb, εq-holomorphic” integrands u with b P
ℓppNq for some p P p0, 1q, we prove the dimension-independent convergence rate 2{p´ 1 in terms of the
number of quadrature points. The proposed Smolyak algorithm is proved to yield (essentially) the same
rate in terms of the total computational cost for both nested and non-nested univariate quadrature
points. Numerical experiments and a mathematical sparsity analysis accounting for cancellations in
quadratures and in the combination formula demonstrate that the asymptotic rate 2{p ´ 1 is realized
computationally for a moderate number of quadrature points under certain circumstances. By a refined
analysis of model integrand classes we show that a generally large preasymptotic range otherwise
precludes reaching the asymptotic rate 2{p ´ 1 for practically relevant numbers of quadrature points.

1991 Mathematics Subject Classification. 65D30.

October 31, 2018.

1. Introduction

Let X be a Banach space, set U “ r´1, 1sN and let µ be the infinite product (probability) measure
Â

jPN λ{2
on U , where λ denotes the Lebesgue measure on r´1, 1s. The efficient numerical approximation of formally
infinite-dimensional integrals

ż

U

upyqdµpyq, (1.1)
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of strongly µ-measurable, parametric maps u : U Ñ X is a key problem in computational uncertainty quantifi-
cation (“UQ” for short). In computational UQ, the integrand function u in (1.1) is implicitly given as solution
of a so-called forward model, typically an operator equation parametrized by a sequence y P U . The parame-
ter sequences y can, for example, describe distributed uncertain constitutive relations or uncertain geometric
shapes. Equation (1.1) then describes an “ensemble average” (with respect to µ) of the parametric solution,
over all admissible realizations of the uncertainty.

The high (in this case infinite) dimension of the integration domain U demands the integrand to possess
appropriate sparsity properties in order to make a numerical computation feasible, and overcome the so-called
curse of dimensionality. For this reason, the integrand is typically assumed to be very smooth, e.g. to allow a
bounded holomorphic extension into certain cylindrical subsets of CN: here, as in [20], we consider parametric
integrands which are holomorphic in cartesian products of discs with increasing radii. The rate at which
those radii increase is a measure of the sparsity of the function, and as was observed in [20, 21, 30] governs
the (dimension-independent) rate of convergence of the quadrature. These assumptions on the integrand are
condensed in the notion of pb, εq-holomorphy for a sequence b “ pbjqjPN P ℓppNq, see Def. 3.1 and also cp. [10–12].
This function class comprises in particular functions of the following type: Let Z and X be two complex Banach
spaces and pψjqjPN Ď Z such that p}ψj}ZqjPN P ℓppNq. Assume that u : Z Ñ X is Fréchet differentiable (this
can be weakened to Fréchet differentiability on a certain subset of Z). Then, as we show in Lemma 3.3, the
function

upyq “ u

˜

ÿ

jPN

yjψj

¸

P X y P U (1.2)

is pb, εq-holomorphic with bj “ }ψj}Z . Functions of this type arise in the context of parametrized partial
differential equations (PDEs) for a large variety of linear and nonlinear equations see for example [10,13,23,25,
27]. Our new results, which imply the convergence rate 2{p ´ 1 for the numerical approximation of (1.1), may
consequently be applied to all such models.

One possibility to numerically approximate the integral (1.1) is with a Monte Carlo method. Its advantage is
that the convergence rate does not depend on the dimension of the integration domain. Its main disadvantage is
the notoriously slow convergence rate of 1{2. For this reason, quasi Monte Carlo (QMC) methods exploiting the
integrands’ sparsity to attain higher order dimension-independent rates have been developed; we refer to [14,15],
to the surveys [15,29] and to the references there. QMC quadrature is free from the curse of dimensionality, and
additionally retains the Monte-Carlo feature of “embarrassingly parallel” integrand evaluation at the quadrature
points. For high numbers of computationally intensive function evaluations (as is the case for numerical PDE
solutions in the context of computational UQ) this becomes an important feature.

The present error analysis is based on so-called generalized polynomial chaos (“gpc” for short) expansions
of the parametric integrand function. Expansions of gpc type have proved a valuable tool in regularity and
sparsity analysis of countably-parametric functions taking values in a Banach space X; we refer to [10–12, 36]
and to the survey [33] and the references there. The idea is to expand the integrand in a polynomial basis, and
approximate the integral (1.1) with an interpolatory quadrature rule that is exact for the terms contributing
most in the expansion. Such reasoning gives best N -term results, but in practice the optimal set of quadrature
points is not known. The effectiveness of the method is due to the high smoothness of the integrand, which is
why polynomial approximations converge very fast. We refer to [35] and [4,17] for a general description of sparse
grid quadrature. For our proofs, as a basis we shall use the monomials, i.e. as in [10,12,36], we consider Taylor
gpc expansions around 0 “ p0, 0, . . . q P U . Unconditional convergence of such Taylor gpc expansion stipulates
holomorphy of the integrand in polydiscs around 0. We choose the monomials for ease of presentation, but point
out that holomorphy assumptions can be weakened by considering expansions in orthogonal bases such as the
Legendre polynomials which merely require holomorphy on so-called Bernstein ellipses (cp. [10]). This results
in more technical arguments, but also in weaker holomorphy assumptions, as shown in [37], see also Rmk. 2.14.
The question remains on how to choose the quadrature points such that possibly few function evaluations result
in a minimal error. In [18] an adaptive strategy has been proposed. The algorithm does not allow for parallel
function evaluations in general however. Nonetheless, it delivers good results and has also been applied for
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parametrized PDEs in [32]. In the case of apriori chosen quadrature points, the convergence for isotropic and
anisotropic sparse grids was investigated in [2, 30], and more recently in [20, 21]. The last two papers can be
considered as the closest to ours. Numerical experiments in these works often revealed much better convergence
rates, than what the theoretical findings suggested, see in particular [21, 32].

The first aim of the present paper is to establish new, dimension-independent convergence rate bounds.
These are stated in Thm. 4.3. This result will shed some new light on the previously observed discrepancy
between the observed convergence rates, and the proven ones. As a general idea, we use apriori knowledge
on size scaling of domains of holomorphic extension of the parametric integrand to estimate the norm of the
Taylor coefficients. Based on these estimates, a sparse grid is constructed apriori. The crucial observation,
allowing us to improve earlier estimates, is then the following: The linear term y ÞÑ y has integral 0 over
r´1, 1s, and is integrated exactly by the midpoint rule (i.e. by an evaluation at y “ 0 multiplied with the
weight 1 corresponding to the probability measure λ{2). As a consequence, any polynomial in the multivariate
Taylor expansion containing a linear term will always be integrated exactly by the Smolyak quadrature operator.
This implies higher, dimension-independent convergence rates since the sequence of the remaining Taylor gpc
coefficients has summability which is superior to the sequence of all Taylor gpc coefficients. Indeed, our new
results improve previously established, dimension-independent convergence rates, by more than a factor two;
see Rmk. 4.5 and Examples 5.2 and 5.3.

The second contribution concerns a novel apriori construction of gpc index sets which we prove to provide near
optimal, dimension-independent convergence rates. Whereas many authors consider the number of quadrature
points as a measure for the work, in fact, due to its structure based on differences of tensor product quadratures,
the actual cost of the Smolyak algorithm does not in general behave linearly in the number of quadrature points.
The mentioned convergence rates are proven with respect to the total number of quadrature points in case of
nested point sets such as Leja points. In addition, we show that essentially the same rate can be obtained
also for non-nested point sets, such as the Gauss points. Finally, this rate is also proven in terms of the total
number of floating point operations. The precise statements are given in Thm. 2.13 and in a bit more generality
in Thm. 4.3. The proven rates are asymptotic, and might not always be observable in the range of “small”
numbers of quadrature points that are realizable in practice, as our numerical experiments and further analysis
of particular model parametric integrand families in Section 5 reveal.

Structure of the Paper

In Section 2 we first set up notation and state a few assumptions used throughout. Subsequently the Smolyak
algorithm is recalled, and we present a short complexity analysis. This then provides sufficient preliminaries to
state our main result.

In Section 3 we formalize the concept of pb, εq-holomorphic, parametric maps from the parameter domain U
into a complex Banach space X. Maps of this type admit unconditionally convergent Taylor gpc expansions,
with a specific decay of the Taylor gpc coefficients ptνqνPF Ď X. In Section 3.3, we prove novel summability
results for certain subsequences of ptνqνPF . These results quantify the effect of cancellations of Taylor gpc
coefficients due to symmetries in the Smolyak quadrature operators. As they are abstract sequence summation
results, they play a role also in more general gpc approximation results. The main result of the section is
Thm. 3.15.

In Section 4, we prove a convergence result for the Smolyak algorithm in Thm. 4.3. The algebraic convergence
rate is stated in terms of the number of function evaluations for both nested and non-nested quadrature points,
and additionally in terms of the number of required floating point operations. Additionally, we provide explicit
constructions of suitable sets of multiindices, which allows to apriori devise a sparse-grid. This provides an
algorithm for which the integrand can be evaluated at all quadrature points in parallel.

Section 5 is devoted to numerical experiments. We give more details on the implementation in Section 5.1.
As already mentioned above, a large preasymptotic range is observed in certain situations. This is numeri-
cally investigated in Section 5.2, and we give (heuristic) arguments why it occurs. Finally, in Section 5.3 the
convergence of our algorithm is tested for two exemplary real valued functions.
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2. Smolyak Algorithm and Main Result

2.1. Notation

Throughout we let N “ t1, 2, . . . u and N0 :“ NYt0u. The symbol C will stand for a generic, positive constant
independent of any quantities determining the asymptotic behaviour of an estimate. It may change even within
the same formula.

Multiindices are denoted by ν “ pνjqjPN P N
N
0 . The notation suppν stands for the support of the multiindex,

i.e. the set tj P N : νj ‰ 0u. For the total order of a multiindex we write |ν| :“ ř

jPN νj and introduce the
countable sets

F :“ tν P N
N

0 : |ν| ă 8u and Fk :“ tν P F : νj ě k @j P suppνu (2.1)

for all k P N. In particular F “ F1. Note that F consists of all finitely supported multiindices in N
N
0 . For two

multiindices ν, µ P F , by µ ď ν we mean mean µj ď νj , for all j ě 1.

For p ą 0 we let ℓppFkq be the space of R-valued sequences a “ paνqνPFk
, satisfying }a}ℓppFkq :“ přνPFk

apνq1{p ă
8. Similarly, ℓppNq is defined for sequences indexed over N. By a decreasing rearrangement pa˚

j qjPN of a se-

quence paνqνPFk
, we mean that there exists a bijection π : N Ñ Fk such that a˚

j “ aπpjq for all j P N, and

additionally a˚
j ě a˚

j`1 for all j P N.

As a topology on C
N we choose the product topology, and any subset such as r´1, 1sN is equipped with the

subspace topology. For a ball of radius r ą 0 in C we write BC
r :“ tz P C : |z| ă ru Ď C. Furthermore, if

ρ “ pρjqjPN Ď p0,8q, then BC
ρ :“ Ś

jPNB
C
ρj

Ď C
N. Moreover, the parameter set U “ r´1, 1sN endowed with

the Borel product sigma algebra and the uniform product probability measure µ :“ Â

jPN λ{2 is a probability

space. Here, λ denotes the Lebesgue measure on r´1, 1s. With this topology, for a Banach space X we write
C0pU,Xq for the space of (bounded) continuous functions mapping from U to X. Denoting the norm on X by
} ¨ }X , we let

}u}C0pU,Xq :“ sup
yPU

}upyq}X .

Elements of C
N are denoted by boldface characters such as y “ pyjqjPN P r´1, 1sN. For ν P F , standard

multivariate notations yν :“ ś

jPN y
νj
j and ν! “ ś

jPN νj ! will be employed.

For a complex Banach space pX, } ¨ }Xq, x P X and ǫ ą 0, as above we write BXǫ :“ tz P X : }z}X ă ǫu. A
function u mapping from an open subset of CN to X will be called separately holomorphic, if it is holomorphic
in each variable. For such a function we denote by

Bν
yupyq “ d|ν|

dyν11 dy
ν2
2 ¨ ¨ ¨upyq

the partial derivatives of u w.r.t. the multiindex ν P F where |ν| ă 8. We write X 1 for the topological dual
space of X (i.e. the continuous linear functionals). The space of bounded linear maps between two Banach
spaces X and Y is denoted by LpX,Y q.

Finally, for a set A we denote by |A| the cardinality of the set.

2.2. Smolyak Quadrature

Let in the following X be a Banach space and u : U Ñ X a pointwise defined function. For n P N0, let
pχn;jqnj“0 Ď r´1, 1s be a sequence of pairwise distinct points in r´1, 1s. The Smolyak algorithm is built on a

family of univariate quadrature rules Qn : C0pr´1, 1s, Xq Ñ X that we assume to be interpolatory quadrature
rules with quadrature points pχn;0, . . . , χn;nq, and w.r.t. the probability measure λ{2 on r´1, 1s. That is, for all
f P C0pr´1, 1s, Xq

Qnf “
n
ÿ

j“0

fpχn;jqαn;j where αn;j “ 1

2

ż 1

´1

n
ź

i“0
i‰j

y ´ χn;i

χn;j ´ χn;i
dy, (2.2)
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with an empty product denoting the constant unit function, i.e. α0;0 “ 1. We interpret Qn in the following
both as an operator mapping from C0pr´1, 1s, Xq Ñ X and C0pr´1, 1sq Ñ R. The definition of Qn implies

Qnw “
ş1

´1
wpyqdλpyq{2 for all polynomials w of degree at most n. Note that in general the quadrature weights

αn;j of Qn can be negative. Throughout we assume that there exists ϑ P r0,8q such that the condition of the
univariate quadratures Qn is polynomially bounded according to

@n P N0 : sup
0‰fPC0pr´1,1sq

|Qnf |
}f}C0pr´1,1sq

ď pn` 1qϑ . (2.3)

To introduce the Smolyak quadrature, first define Q´1 :“ 0. For every ν P F set Qν :“ Â

jPNQνj , i.e. for
u : U Ñ X

Qνu “
ÿ

tµPF :µďνu

uppχνj ;µj
qjPNq

ź

jPN

ανj ;µj
“

ÿ

tµPF :µďνu

uppχνj ;µj
qjPNq

ź

jPsupp ν

ανj ;µj
, (2.4)

where an empty product equals 1 by convention. For a downward closed index set Λ Ď F of finite cardinality,
the Smolyak quadrature QΛ is defined by

QΛ :“
ÿ

νPΛ

â

jPN

pQνj ´Qνj´1q.

By induction over d “ | suppν|, it is easily verified that QΛ allows the representation

QΛ “
ÿ

νPΛ

ςΛ,νQν where ςΛ,ν :“
ÿ

tePt0,1uN : ν`ePΛu

p´1q|e|. (2.5)

We also refer to pςΛ,νqνPΛ as the “combination coefficients”. The latter representation of QΛ in (2.5) is preferred
in implementations, since it skips evaluations of Qν for all ν P Λ with ςΛ,ν “ 0.

2.3. Number of Function Evaluations

Denote in the following
χ “ ppχn;jqnj“0qnPN0

. (2.6)

By (2.4) and (2.5) the computation of QΛu requires to evaluate u at all points in

ptspΛ,χq :“
 

pχνj ;µj
qjPN : ν P Λ, ςΛ,ν ‰ 0, µ ď ν

(

Ď U. (2.7)

Definition 2.1. The univariate points χ “ ppχn;jqnj“0qnPN0
Ă r´1, 1s are called nested if there exists a sequence

pχjqjPN0
such that χn;j “ χj for every j P t0, . . . , nu and every n P N0. Otherwise, the univariate points χ are

non-nested.

Lemma 2.2. Let Λ Ď F be finite and downward closed. For nested points χ holds |ptspΛ,χq| “ |Λ|.
Lemma 2.2 is easily verified. For the general case, due to |tµ P F : µ ď νu| “ ś

jPNp1 ` νjq, it follows
immediately that

|ptspΛ,χq| ď
ÿ

tνPΛ : ςΛ,ν‰0u

ź

jPN

p1 ` νjq. (2.8)

To obtain good bounds on |ptspΛ,χq| for non-nested points χ, we employ that the combination coefficients ςΛ,ν
in (2.5) vanish for certain ν P Λ. We formalize this via the notion of the set of admissible indices.

Assumption 2.3 (Admissible Indices). The set I “ tij : j P N0u Ď N0 consists of the strictly monotonically
increasing, nonnegative sequence pijqjPN0

where i0 “ 0. There exists a constant KI ě 1 such that
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(i) ij`1 ` 1 ď KIpij ` 1q for all j P N0,
(ii)

řm
j“1pij ` 1q ď KIim for all m P N.

Remark 2.4. Define I` :“ t0u Y tij ` 1 : j P N0u. For k, n P N0 it holds rksI “ rnsI iff either k “ n “ 0 or
there exists j P N0 such that k, n P pij , ij`1s XN. The latter is equivalent to k, n P rij ` 1, ij`1 ` 1q XN. Hence,
for any ν, µ P F

rνsI “ rµsI ô tνuI` “ tµuI` .

For x ě 0 denote in the following

txuI :“ maxta P I : a ď xu and rxsI :“ minta P I : a ě xu. (2.9)

Application of these rounding operators to sequences is understood componentwise.

Remark 2.5. From Assumption 2.3 (i) we infer that for every n P N0

n ď KItnuI` and rnsI` ď KIn.

We will consider sets of multiindices satisfying

pν P Λ and rµsI “ rνsIq ñ µ P Λ. (2.10)

The below lemma in conjunction with (2.7) elucidate the significance of this property. The statement of the
lemma is visualized in Fig. 1. In the following we write

Λ|I :“ tν P Λ : νj P I @j P Nu.

Lemma 2.6. Let I Ď N0. Let Λ be finite and downward closed with the property (2.10). Then for all ν P ΛzΛ|I

ςΛ,ν “
ÿ

tePt0,1uN : ν`ePΛu

p´1q|e| “ 0.

Proof. Fix ν P ΛzpΛ|Iq. Since ν R Λ|I, there exists j P N with νj R I. Set Aj :“ te “ peiqiPN P t0, 1uN :
ν ` e P Λ, ej “ 0u, and let e P Aj arbitrary. By (2.10) it holds rν ` esI P Λ since ν ` e P Λ. Furthermore, with
ej “ pδijqiPN we get rν ` e ` ejsI “ rν ` esI since νj R I, and thus

Aj Y te ` ej : e P Aju Ď te P t0, 1uN : ν ` e P Λu.

On the other hand, if δ “ pδiqiPN P te P t0, 1uN : ν ` e P Λu and δj “ 1, then due to the downward closedness
of Λ also ν ` δ ´ ej P Λ which implies δ ´ ej P Aj and consequently

Aj Y te ` ej : e P Aju Ě te P t0, 1uN : ν ` e P Λu.

Thus
ÿ

tePt0,1uN : ν`ePΛu

p´1q|e| “
ÿ

ePAj

p´1q|e| `
ÿ

ePAj

p´1q|e`ej | “
ÿ

ePAj

p´1q|e| ´
ÿ

ePAj

p´1q|e| “ 0. �

For a finite set Λ Ď F of multi-indices, the effective dimension dpΛq is given by

dpΛq :“ sup
νPΛ

| suppν| . (2.11)

The proof of the following lemma is given in Appendix A.
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Figure 1. The sketch shows a set Λ Ď N
2
0 of multiindices corresponding to the grey squares.

Equation (2.10) is satisfied for some set I “ t0, 2, 5, 9, . . . u. By Lemma 2.6, ςΛ,ν ‰ 0 can only
be true if νj P I for all j P N. The numbers in the squares show the values of ςΛ,ν for each
ν P Λ with ςΛ,ν ‰ 0.

Lemma 2.7. Let I Ď N0 satisfy Assumption 2.3. Let Λ Ď F be finite and downward closed. Then

ÿ

νPΛ

ź

jPN

pνj ` 1q ď |Λ|2 and
ÿ

νPΛ|I

ź

jPN

pνj ` 1q ď K
dpΛq
I

|Λ|. (2.12)

A key element of the present paper is the apriori construction of (sequences of) finite index sets Λ Ď F which
capture provably the dominating part of gpc expansions of pb, εq-holomorphic maps. The index sets constructed
in the following will satisfy

dpΛq “ oplogp|Λ|qq as |Λ| Ñ 8. (2.13)

In this case, the number of quadrature points (also for non-nested points χ in the sense of Def. 2.1) grows only
slightly faster than linear in terms of the cardinality of the multiindex sets. This is a direct consequence of
(2.8), Lemma 2.6 and Lemma 2.7.

Lemma 2.8. Fix δ ą 0. Let I satisfy Assumption 2.3. Let pΛǫqǫą0 be a family of finite downward closed index
sets satisfying (2.10) and (2.13). Let the quadrature points χ be non-nested. Then

|ptspΛǫ,χq| ď
ÿ

νPΛ|I

ź

jPN

p1 ` νjq “ Op|Λǫ|1`δq as |Λǫ| Ñ 8.

Remark 2.9. The bounds (2.12) are sharp in the following sense: Let Λ “ tν P F : suppν Ď t1, . . . , du, νj ď
N @ju and set I :“ t0u Y t2j : j P N0u. Then, with N “ 2m for some m P N, we have |Λ| “ pN ` 1qd and

ÿ

νPΛ

ź

jPN

pνj ` 1q “
d
ź

j“1

N`1
ÿ

i“1

i “
ˆ pN ` 1qpN ` 2q

2

˙d

ě 2´dppN ` 1qdq2 “ 2´d|Λ|2, (2.14)

as well as

ÿ

νPΛ|I

ź

jPN

pνj ` 1q “
d
ź

j“1

˜

1 `
m
ÿ

i“0

p2i ` 1q
¸

ě
d
ź

j“1

p1 ` 2m`1 ´ 1 `m` 1q ě p2p2m ` 1qqd ě 2dpN ` 1qd “ 2d|Λ|.

(2.15)

Letting N Ñ 8 in (2.14) and d Ñ 8 in (2.15), a better asymptotic behaviour than quadratic in |Λ| in the first
case, and linear in |Λ| with a constant depending exponentially on dpΛq in the second case cannot be expected.
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However, these estimates may not accurately measure the actual number of function evaluations required in
(2.5), since they do not take into account the fact that some (further) combination coefficients in (2.5) might
vanish. Indeed, for the above example QΛ is the tensor product quadrature Qν with νj “ N if j ď d and νj “ 0
otherwise. The number of function evaluations is then equal to |Λ| “ pN ` 1qd.

2.4. Computational Cost

In the following let u : U Ñ X be a pointwise defined function and let Λ Ď F be a finite downward closed
index set. While the number of function evaluations is in practice a good indicator of the computational cost (in
particular for PDEs where evaluating u is computationally intensive), we also analyse the error of the Smolyak
quadrature in terms of the number of floating point operations required to compute QΛu.

To formalize this, we first make an assumption regarding the computational complexity of evaluating u.

Assumption 2.10. There exists a constant C ą 0 such that for every ν P F , u can be evaluated at each
pχνj ;µj

qjPN for µ ď ν with a number of floating point operations that is bounded by | suppν|.

Remark 2.11. Consider a function as in (1.2) where u : C Ñ C. If χ0;0 “ 0, then the computation of
ř

jPN χνj ;µj
ψj “ ř

jPsupp ν χνj ;µj
ψj requires | suppν| multiplications and | suppν| ´ 1 additions. If u can be

evaluated with Op1q floating point operations, then Assumption 2.10 is satisfied.
Less generally, if upyq can be evaluated with complexity Op1q at every y P U , then clearly Assumption 2.10

is also fulfilled.

Additional to the effective dimension dpΛq in (2.11), the maximal total order

mpΛq :“ max
νPΛ

|ν| (2.16)

has a certain significance when analysing the computational complexity.
To bound the cost of evaluating the Smolyak quadrature QΛu, we use the representations (2.4) and (2.5).

‚ The coefficients pςΛ,νqνPΛ “ ř

tePt0,1uN : ν`ePΛup´1q|e| can be computed with a number of floating point

operations bounded by CdpΛq|Λ|2dpΛq: this is achieved by looping over all ν P Λ, and updating the
coefficient of all (at most 2dpΛq) neighbours in Λ of the type ν ´ e for some e P t0, 1uN (this implies
supp e Ď suppν). The computation of |e| “ ř

jPsupp e
1 requires at most | suppν|´1 ď dpΛq additions.

‚ Evaluating Qνu in (2.4) requires knowledge of the quadrature weights pαn;jq for j “ 0, . . . , n all
0 ď n ď maxνPΛ νj ď mpΛq. These weights can be computed by solving a linear system of dimension

nˆ n. Hence this part contributes at most C
řmpΛq
n“0 n3 ď CmpΛq4 floating point operations.

‚ To compute Qνu in (2.4) we need to evaluate u at all points in tpχνj ;µj
qjPN : µ ď νu. Under

Assumption 2.10 this requires at most CdpΛqśjPNp1 ` νjq floating point operations, since |tµ P F :

µ ď νu| “ ś

jPNp1 ` νjq. The computation of the quadrature weight
ś

jPsupp ν ανj ;µj
for all µ ď ν

requires at most dpΛqśjPNp1 ` νjq floating point operations. The summation over all µ ď ν is again

of complexity
ś

jPNp1 ` νjq.
In all, we introduce

costpΛq :“ mpΛq4
l jh n

comp. of ppαn,jqnj“0q
mpΛq
n“0

` dpΛq2dpΛq|Λ|
l jh n

comp. of pςΛ,νqνPΛ

`
ÿ

tνPΛ : ςΛ,ν‰0u

dpΛq
ź

jPN

pνj ` 1q
l jh n

evaluation of Qνu

, (2.17)

as a measure for the cost of evaluating the Smolyak quadrature QΛu. As a consequence of Lemma 2.8 we obtain
an asymptotic bound on the computational complexity.
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Lemma 2.12. Fix δ ą 0. Let I satisfy Assumption 2.3. Let pΛǫqǫą0 be a family of finite, downward closed
index sets satisfying (2.10). Let Assumption 2.10 be satisfied. Let further

dpΛǫq “ oplog |Λǫ|q and mpΛǫq “ Oplog |Λǫ|q as |Λǫ| Ñ 8. (2.18)

Then
costpΛǫq “ Op|Λǫ|1`δq as |Λǫ| Ñ 8.

2.5. Main Result

Let Z and X be two complex Banach spaces. Recall that BZr “ tφ P Z : }φ}Z ă ru. A function u : BZr Ñ X

is called holomorphic, if it is Fréchet differentiable. The following theorem is our main result. In the subsequent
sections, we prove a slight generalization of this statement, and also provide details on the explicit construction
of the index sets (see Thm. 4.3).

Theorem 2.13. Let pψjqjPN Ď Z, r ą 0 and p P p0, 1q. Fix δ ą 0 arbitrarily small. Assume that

(i)
ř

jPN }ψj}Z ă r and p}ψj}ZqjPN P ℓppNq ãÑ ℓ1pNq,
(ii) u : BZr Ñ X is holomorphic and bounded,
(iii) the quadrature points χ (either nested or non-nested) satisfy (2.3).

For y P U “ r´1, 1sN set upyq :“ upřjPN yjψjq. Then, there exists a constant C ą 0 such that for every ǫ ą 0

there exists a finite downward closed multiindex set Λǫ Ď F with |Λǫ| Ñ 8 as ǫ Ñ 0 and such that

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď C|ptspΛǫ,χq|´ 2
p

`1`δ (2.19a)

as well as
›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď CcostpΛǫq´ 2
p

`1`δ. (2.19b)

Remark 2.14. More generally, in [37] we prove the following variant of Thm. 2.13, which merely assumes u

to be holomorphic on some open set containing all inputs rather than a ball (see (ii) below)
Let pψjqjPN Ď Z, r ą 0 and p P p0, 1q. Fix δ ą 0 arbitrarily small. Assume that

(i) p}ψj}ZqjPN P ℓppNq ãÑ ℓ1pNq,
(ii) there is an open set O Ď Z such that třjPN yjψj : y P Uu Ď O and u : O Ñ X is holomorphic and

bounded,
(iii) the quadrature points χ (either nested or non-nested) satisfy (2.3).

For y P U “ r´1, 1sN set upyq :“ upřjPN yjψjq. Then, there exists C ą 0 such that for every ǫ ą 0 exists a

finite downward closed multiindex set Λǫ Ď F such that |Λǫ| Ñ 8 as ǫ Ñ 0 and (2.19) holds.
The proof in [37] also covers general Jacobi (probability) measures whose density on r´1, 1s is given by

p1 ´ xqαp1 ` xqβCα,β where α, β ą ´1 and Cα,β “ Γpα ` β ` 2q{p2α`β`1Γpα ` 1qΓpβ ` 1qq. For brevity, we
provide here a proof of Thm. 2.13 corresponding to α “ β “ 0, under stronger assumptions on the domain of
holomorphy of u. This allows to avoid certain technicalities.

In view of Lemma 2.8 and Lemma 2.12, it suffices to prove the asymptotic bounds (2.19) in terms of the
cardinality |Λǫ| of the multiindex sets, and to verify that Λǫ complies with the assumptions of Lemma 2.8
and Lemma 2.12. Furthermore we shall see that in case of nested points (2.19a) also holds with δ “ 0 (as a
consequence of Lemma 2.2). We now give an example of a holomorphic function u as in Thm. 2.13.

Example 2.15. Let d P N. Let D Ď R
d be a bounded (nonempty) Lipschitz domain and set X :“ H1

0 pD;Cq so
that X 1 “ H´1pD;Cq. For ψ P Z :“ L8pD;Cq define the bounded linear operator Apψq P LpX,X 1q by

xApψqu, vy “
ż

D

ψ∇uJ
∇vdx.
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Then A P LpZ,LpX,X 1qq, and with the norm }u}2X :“
ş

D
∇uJ∇udx on X (here ∇u is the complex conjugate)

it holds
}A}LpZ,LpX,X1qq “ sup

}ψ}Z“1

sup
}u}X“1

sup
}v}X“1

|xApψqu, vy| “ 1.

Suppose that ψ0 P L8pD;Rq satisfies 0 ă ̺ ď ψ0pxq ď ϑ ă 8 a.e. in D. Then by the (complex) Lax-Milgram
Lemma, Apψ0q : X Ñ X 1 is an isomorphism and }Apψ0q´1}LpX1,Xq ď ̺´1ϑ. For any ψ P Z it holds

}Apψq ´Apψ0q}LpX,X1q “ }Apψ ´ ψ0q}LpX,X1q ď }ψ ´ ψ0}Z .

Using a Neumann series, if }ψ ´ ψ0}LpX,X1q ă }Apψ0q´1}´1, then Apψq : X Ñ X 1 is also an isomorphism and

Apψq´1 “ pApψ0q ´Apψ0 ´ ψqq´1 “ pI ´Apψ0q´1Apψ0 ´ ψqq´1Apψ0q´1 “
ÿ

nPN0

pApψ0q´1Apψ0 ´ ψqqnApψ0q´1.

Since ppApψ0q´1AphqqnApψ0q´1qn P LpX,Xq is an n-linear function of h P Z, this constitutes a Taylor series ex-
pansion (in Banach spaces) of ψ ÞÑ Apψq´1 P LpX 1, Xq around ψ0. Due to }pApψ0q´1AphqqnApψ0q´1}LpX1,Xq ď
C}h}n

LpX,X1q}Apψ0q´1}n
LpX1,Xq the Taylor series converges to a uniformly bounded function for all elements of

th P Z : }h ´ ψ0}Z ă }Apψ0q´1}´1
LpX1,Xqu, and it is holomorphic (i.e. Fréchet differentiable) there, which is

classical (see for example [7, 14.13]).
Fix F P X 1. We showed that the solution operator u mapping a diffusion coefficient ψ P Z to the unique

solution upψq P X of
ż

D

ψ∇upψqJ
∇vdx “ F pvq

is locally a well-defined holomorphic map around ψ0 P Z, since it is given by upψq “ Apψq´1F and ψ ÞÑ Apψq´1

is holomorphic (for more details see [37, Chap. 1]).
Assume that pψjqjPN Ď Z and p P p0, 1q are such that

ÿ

jPN

}ψj}Z ă }Apψ0q´1}´1
LpX1,Xq and p}ψj}ZqjPN P ℓppNq.

By Thm. 2.13, the Smolyak quadrature allows to approximate the Bochner integral
ş

U
upψ0 `ř

jPN yjψjqdµpyq P
X with (essentially) the convergence rate 2{p´ 1.

The argument in the above example was completely independent of the concrete differential operator. The
same calculation holds for any linear (differential) operator Apψ0q P LpX,X 1q which is an isomorphism and
depends linearly on the data ψ0 in some Banach space Z.

3. Summability of Taylor GPC Coefficients

With U :“ r´1, 1sN, consider u : U Ñ X, for some fixed Banach space X over C. In this section we are
concerned with the Taylor expansion

upyq “
ÿ

νPF

tνy
ν (3.1)

of u and the summability properties of the Taylor gpc coefficients p}tν}XqνPF .

3.1. pb, εq-Holomorphy and GPC Expansions

In the following Z and X are two complex Banach spaces. We now characterize the functions in Thm. 2.13
in terms of their domains of holomorphic extension. We show that they satisfy the conditions summarized in
the notion of pb, εq-holomorphy, which is introduced next. This definition has similarly been used for example
in [10, 13,25].
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Definition 3.1. Let ε ą 0, p P p0, 1q and Mu ą 0. For a given sequence b “ pbjqjPN Ď p0,8q, we say that
u : U Ñ X is pb, εq-holomorphic, if

(i) u : U Ñ X is continuous,
(ii) for every sequence ρ “ pρjqjPN Ď p1,8q which is pb, εq-admissible, i.e. satisfies

ÿ

jPN

bjpρj ´ 1q ď ε, (3.2)

u allows a separately holomorphic extension onto the polydisc BC
ρ “ Ś

jPNB
C
ρj

(this extension is denoted

by the same symbol u in the following),
(iii) for every pb, εq-admissible sequence the extension from (ii) satisfies

sup
zPBC

ρ

}upzq}X ď Mu ă 8, (3.3)

and for two pb, εq-admissible sequences ρ1 and ρ2 the extensions from (ii) coincide on BC
ρ1

XBC
ρ2
.

We start with a statement about continuity, and recall that any subset of S Ď C
N (such as U “ r´1, 1sN) is

considered with the product topology. Hence

#

S X
˜

N
ą

j“1

Oj ˆ
ą

jąN

C

¸

: N P N, Oj Ď C is open @j P t1, . . . , Nu
+

is a basis of the topology on S.

Lemma 3.2. Let pψjqjPN Ď Z satisfy p}ψj}ZqjPN P ℓ1pNq. Then y ÞÑ ř

jPN yjψj is continuous from U to Z.

Proof. Fix ǫ ą 0 and y P U . We need to find an open set O Ď U (open w.r.t. the topology on U) such that
}řjPN yjψj ´ ř

jPN zjψj}Z ă ǫ for all z “ pzjqjPN P O. Let J P N be so large that
ř

jąJ }ψj}Z ă ǫ{4. Let

δ :“ ǫ{p2Jq. Then
›

›

›

›

›

ÿ

jPN

yjψj ´
ÿ

jPN

zjψj

›

›

›

›

›

Z

ă
J
ÿ

j“1

δ `
ÿ

jąJ

2}ψj}Z ă ǫ

2
` ǫ

2
“ ǫ

for every z P O :“ ŚJ
j“1tz P r´1, 1s : |z ´ yj | ă δu ˆ Ś

jąJ r´1, 1s. �

Lemma 3.3. Let ε ą 0, p P p0, 1q and Mu ą 0. For a sequence pψjqjPN Ď Z and a sequence b “ pbjqjPN assume
that }ψj}Z ď bj for all j P N, and b “ pbjqjPN P ℓppNq. With r :“ }b}ℓ1pNq ` ε assume that u : BZr Ñ X is
holomorphic (i.e. Fréchet differentiable) and supφPBZ

r
}upφq}X ď Mu. For y P U define upyq “ upřjPN yjψjq.

Then u is pb, εq-holomorphic.

Proof. The map u : U Ñ X defined as upyq “ upřjPN yjψjq is continuous, since u : BZr Ñ X is continuous

(even holomorphic) and y ÞÑ ř

jPN yjψj is continuous from U to Z by Lemma 3.2.

Let ρ “ pρjqjPN Ď p1,8q be pb, εq-admissible, i.e. ρ satisfies (3.2). Fix z P BC
ρ Ď C

N. Then

ÿ

jPN

|zj |}ψj}Z ď
ÿ

jPN

}ψj}Z `
ÿ

jPN

pρj ´ 1q}ψj}Z ď
ÿ

jPN

bj `
ÿ

jPN

pρj ´ 1qbj ď }b}ℓ1pNq ` ε ď r. (3.4)

Therefore
ř

jPN zjψj P Z is well-defined. Moreover,
ř

jPN zjψj P BZr .
Now fix j P N and pziqi‰j P Ś

i‰j B
C
ρi
. Then zj ÞÑ ř

jPN zjψj is an affine bounded (and thus holomorphic)

map from BC
ρj

Ñ BZr Ď Z. Due to the holomorphy of u : BZr Ñ X, we obtain that upzq “ upřjPN zjψjq is

holomorphic as a function of zj P BC
ρj
, which shows (ii).



12 TITLE WILL BE SET BY THE PUBLISHER

For two pb, εq-admissible sequences ρ1 and ρ2, by definition their corresponding extensions agree on BC
ρ1

XBC
ρ1
.

Finally, (3.3) follows by třjPN zjψj : z P BC
ρu Ď BZr Ď Z whenever ρ is pb, εq-holomorphic, and the assumption

supφPBZ
r

}upφq}X ď Mu. �

Next, we recall bounds on the norms of the Taylor coefficients. The next lemma is essentially a consequence
of the Cauchy integral theorem [24, Thm. 2.1.2], see the proof of [11, Lemma 2.4].

Lemma 3.4. Let ρ “ pρjqjPN Ď p1,8q and assume that u : BC
ρ Ñ X is separately holomorphic (i.e. holomorphic

in each variable), such that supyPBC
ρ

}upyq}X ď Mu ă 8. Then for every ν P F the Taylor gpc coefficient

tν :“
Bν
yupyq
ν!

|y“0 P X (3.5)

satisfies the bound

}tν}X ď Muρ
´ν . (3.6)

In Sec. 3.3 we will show that p}tν}XqνPF P ℓ1pFq for pb, εq-holomorphic functions. This implies that the
series

ř

νPF tνy
ν P X is pointwise well-defined for every y P U . In this case the expansion converges to upyq,

as recalled in the next Lemma. For a proof see, e.g., [37, Prop. 2.1.4]. Absolute convergence of a series
ř

jPN xj
in a Banach space X means

ř

jPN }xj}X ă 8.

Lemma 3.5. Let p P p0, 1q, ε ą 0 and b “ pbjqjPN P ℓppNq. Let u : U Ñ X be pb, εq-holomorphic and assume
that p}tν}XqνPF P ℓ1pFq. Then upyq “ ř

νPF tνy
ν with uniform and absolute convergence for all y P U .

3.2. Multiindex Sets

Lemma 3.5 states that pb, εq-holomorphic functions u : U Ñ X allow representations as Taylor expansions
u “ ř

νPF tνy
y in infinitely many variables. For a finite subset Λ Ď F , the function ũpyq :“ ř

νPF tνy
ν

defines an approximation to u, and the error can be bounded by }upyq ´ ũpyq}X ď ř

νPFzΛ }tν}X . This line of

argument leads to best N -term rates, and determining suitable index sets Λ (possibly minimizing
ř

νPFzΛ }tν}X)

is typically the first step required to prove convergence rates for numerical algorithms. In order to obtain good
bounds of the computational complexity, we aim to devise Λ in such a way that the asymptotics (2.18) as well
as (2.10) are satisfied. This is the topic of the current subsection.

Definition 3.6. We say that paνqνPF Ď r0,8q is a monotonically decreasing sequence if ν ď µ implies aν ě aµ
for all ν, µ P F .

Definition 3.7. A subset Λ Ď F is called downward closed if for every ν P Λ it holds tµ P F : µ ď νu Ď Λ.

The following assumption gathers all properties required of paνqνPF , such that the set

ΛǫppaνqνPF q “ tν P F : aν ě ǫu

satisfies the assumptions of Lemma 2.8 and Lemma 2.12. This is shown subsequently.

Assumption 3.8. There exist constants C0 ą 0, Cκ ą 0, κ ą 0, δ ą 1, a sequence pfdqdPN Ď p0,8q with
fd Ñ 8 as d Ñ 8 and a set I Ď N0 satisfying Assumption 2.3 (i), such that the sequence paνqνPF Ď r0,8q
satisfies

(i) paνqνPF is monotonically decreasing (see Def. 3.6),
(ii) paνqνPF has the property

rνsI “ rµsI ñ aν “ aµ, (3.7)
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(iii) with a decreasing rearrangement pa˚
j qjPN of paνqνPF it holds

a˚
j ě Cκj

´κ @j P N,

sup
tνPF : |ν|ědu

aν ď C0δ
´d @d P N,

sup
tνPF : | supp ν|ědu

aν ď C0 e
´dfd @d P N.

(3.8)

Lemma 3.9. Let paνqνPF Ď r0,8q satisfy Assumption 3.8 and assume that paνqνPF P ℓqpFq for some q ą 0.
Then, for every ǫ ą 0 the set Λǫ “ ΛǫppaνqνPF q :“ tν P F : aν ě ǫu satisfies

(i) Λǫ is finite and downward closed,
(ii) it holds

pν P Λǫ and rµsI “ rνsIq ñ µ P Λǫ,

(iii) it holds

dpΛǫq “ oplogp|Λǫ|qq and mpΛǫq “ Oplogp|Λǫ|qq as ǫ Ñ 0. (3.9)

Proof. Fix ǫ ą 0. Assume that ν ď µ and µ P Λǫ. Then aµ ě ǫ and due to monotonicity aν ě aµ ě ǫ so that
ν P Λǫ. This and the fact that

ř

νPF a
q
ν ă 8 show (i). Item (ii) is an immediate consequence of (3.7) and the

definition of Λǫ.
To show the first statement in (3.9), note that by Assumption 3.8 (iii)

dpΛǫq ě d0 ñ sup
tνPF : | supp ν|ěd0u

aν ě min
νPΛǫ

aν ě Cκ |Λǫ|´r.

Moreover, we may write suptνPF : | supp ν|ěd0u aν ď C0 expp´d0fd0q for some sequence pfdqdPN that tends to
infinity as d Ñ 8 and some C0 ą 0. Hence

dpΛǫq “ maxtd0 P N : dpΛǫq ě d0u
ď maxtd0 P N : C0 expp´d0fd0q ě Cκ |Λǫ|´ru
“ maxtd0 P N : d0fd0 ď ´ logpCκ{C0q ` r logp|Λǫ|qu.

Set gpxq :“ maxtd0 P N : d0fd0 ď xu. We claim that gpxq “ opxq as x Ñ 8. Assume on the contrary
that lim supxÑ8 gpxq{x ‰ 0. Then there exists a sequence pxjqjPN with xj Ñ 8 and a constant C such that
gpxjq ě Cxj for all j P N. For every j P N, let dj :“ gpxjq. Then

Cxjfdj ď gpxjqfdj “ djfdj ď xj @j P N,

which is a contradiction since fdj Ñ 8 as dj Ñ 8. Hence gpxq “ opxq as x Ñ 8. This shows dpΛǫq “ oplogp|Λǫ|qq
as |Λǫ| Ñ 8 or equivalently as ǫ Ñ 0.

For mpΛǫq we proceed similarly. It holds

mpΛǫq ě d0 ñ sup
tνPF : |ν|ěd0u

aν ě min
νPΛǫ

aν ě Cκ |Λǫ|´r.

By assumption suptνPF : |ν|ěd0u aν ď C0δ
´d0 for some δ ą 1 and some C0 ą 0. Hence

mpΛǫq ď maxtd0 P N : C0δ
´d0 ě Cκ |Λǫ|´ru ď ´ logpCκ{C0q ` r logp|Λǫ|q

logpδq “ Oplogp|Λǫ|qq,

which concludes the proof. �
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The next lemma facilitates to construct sequences satisfying (3.7) (while leaving the asymptotic decay prop-
erties of the sequence unchanged). For its formulation recall the set I` “ t0u Y tij ` 1 : j P N0u introduced in
Rmk. 2.4.

Lemma 3.10. Let k P N and s ą 0, let I satisfy Assumption 2.3 (i) and let I` be as in Rmk. 2.4. Let
paνqνPFk

Ď r0,8q. Define

ν̂ :“ pν̂jqjPN where ν̂j :“
#

k if 1 ď tνjuI` ă k

tνjuI` otherwise.
(3.10)

Then there exists CKI,k ą 0 depending on k and KI such that with with âν :“ aν̂ for all ν P F ,

ÿ

νPF

âsν ď
ÿ

νPFk

asνC
| supp ν|
KI,k

ź

jPsupp ν

p1 ` νjq. (3.11)

Proof. First note that ν̂ P Fk for every ν P F (cp. (2.1)). By Rmk. 2.5 it holds r1 ` nsI` ď KIp1 ` nq for all
n P N0. Fix µ P F . Then for any ν P F

µ̂j “ ν̂j ô
#

νj P t1, . . . ,mintij ` 1 : ij ` 1 ą ku ´ 1u if µ̂j “ k

µ̂j ď νj ă r1 ` µ̂jsI` otherwise.

Therefore, there exists a constant CKI,k such that for every µ P Fk

|tν P F : ν̂ “ µu| ď
ź

jPsupp ν

CKI,kp1 ` νjq.

This implies the lemma. �

We now give an example of a sequence satisfying Assumption 3.8.

Example 3.11. Fix k P N and let I and I` satisfy Assumption 2.3. Let ̺ “ p̺jqjPN Ď p1,8q be such that

p̺´1
j qjPN P ℓqpNq for some q ą 0 and additionally ̺j ď Cκj

κ for some fixed constants κ ą 0, Cκ ą 0 and all

j P N. With ν̂ as in (3.10) define

ck,ν :“ ̺ν̂ @ν P F . (3.12)

We claim that pc´1
k,νqνPF P ℓq{kpFq and the sequence satisfies Assumption 3.8.

First we show pc´1
k,νqνPF P ℓq{kpFq. By Lemma 3.10

ÿ

νPF

c
´ q

k

k,ν “
ÿ

νPF

p̺´ν̂q q
k ď

ÿ

νPFk

p̺´νq q
kC

| supp ν|
KI,k

ź

jPN

p1 ` νjq.

Since p̺´1
j qjPN Ď p0, 1q and p̺´1

j qjPN P ℓqpNq, Lemma 3.13 ahead implies pc´1
k,νqνPF P ℓq{kpFq.

Next we check Assumption 3.8. Items (i) and (ii) are immediate consequences of Remark 2.4 and (3.12). To

verify (iii) we first note that p̺´k
j qjPN is a subsequence of pc´1

k,νqνPF and ̺´k
j ě C´k

κ j´κk for all j P N, which

shows the first inequality in (3.8). For the third inequality in (3.8), we use Lemma 3.12 to obtain a constant
C0 such that ̺´1

j ď C0j
´1{q. If ν P F then ν̂j “ 0 or ν̂j ě k for all j P N. Therefore

sup
tνPF : | supp ν|ědu

c´1
k,ν “ sup

tνPF : | supp ν|ědu

ź

jPN

̺
´ν̂j
j ď

d
ź

j“1

C0j
´ k

q “ Cd0 pd!q´ k
q ď Cd0 e

dk
q d´ dk

q
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due to d! ě e´d dd. This implies that there exists a sequence pfdqdPN as stated in Assumption 3.8. Finally,
for the second inequality in (3.8) we use that for all n P N0 it holds tnuI` ě n{KI by Rmk. 2.5. Thus with
δ :“ infjPN ̺j ą 1

sup
tνPF : |ν|ědu

c´1
k,ν “ sup

tνPF : |ν|ědu

ź

jPN

̺
´ν̂j
j ď sup

tνPF : |ν|ědu

ź

jPN

̺
´tνjuI`

j ď sup
tνPF : |ν|ědu

ź

jPsupp ν

δ
´

νj
KI ,

which equals pδ1{KIq´d. In total this verifies (3.8) and Assumption 3.8.

3.3. ℓp-Summability of Taylor GPC Coefficients

We now show that for pb, εq-holomorphic functions with a sequence b P ℓppNq for some 0 ă p ă 1, the norms of
the Taylor gpc coefficients of u belong to ℓp{kpFkq. This summability is the essential property in order to verify
improved, dimension-independent algebraic convergence rates for suitably adapted Smolyak quadratures, see
Sec. 4. N -term approximation rate bounds for Taylor and other gpc expansions have previously been established
by several authors, we only mention [10–12] and the references therein. Our new contribution here is twofold:
first, instead of F we consider the smaller sets Fk and in particular F2. As we shall see in Section 4, the set
F2 is better suited for analyzing Smolyak-style quadrature algorithms, as it quantifies increased sparsity due
to cancellation by symmetry (in the Smolyak quadratures). Our second contribution concerns a computable
estimator bounding the norm of the Taylor gpc coefficients. We show that, without loss of convergence order,
it can be chosen constant on certain subsets of F . This is to be contrasted with greedy computational schemes
based on numerical solutions of knapsack problems as, for example, in [3, 4]. Our new, apriori construction
allows to localize the multiindex set for the Smolyak quadrature in near linear complexity (work and memory),
as explained in [37, Sec. 3.1.3]. Before presenting the result we state three lemmata required in the proof.

Lemma 3.12. Let p P p0,8q and let ptjqjPN be nonnegative and monotonically decreasing. Then, for all N P N

tN ď
ˆ N
ÿ

j“1

t
p
j

˙
1
p

N´ 1
p .

Proof. Due to the monotonicity of ptpj qjPN it holds tpN ď N´1
řN
j“1 t

p
j which implies the lemma. �

The next two lemmata are a generalization of [11, Lemma 7.1] and [11, Thm. 7.2], in that they consider
(improved) summability over Fk for general k P N instead of just F1. The proofs are provided in Appendix B.

Lemma 3.13. Let b “ pbjqjPN Ď p0,8q, ϑ ě 0 and R ě 1. Set wν :“ R| supp ν|
ś

jPNp1 ` νjqϑ. Let p P p0,8q
and k P N. The sequence pwνb

νqνPFk
belongs to ℓp{kpFkq, iff }b}ℓppNq ă 8 and }b}ℓ8pNq ă 1.

Lemma 3.14. Let b “ pbjqjPN Ď p0,8q, ϑ ě 0 and R ě 1. Set wν :“ R| supp ν|
ś

jPNp1 ` νjqϑ. Let p P p0, 1s
and k P N. The sequence pwνb

ν |ν|!{ν!qνPFk
belongs to ℓp{kpFkq iff }b}ℓppNq ă 8 and }b}ℓ1pNq ă 1.

The following theorem is an extension of results in [11], [10], in particular of [11, Thm. 1.3], [10, Thm. 2.2].
Items four and five will provide explicit constructions of multiindex sets.

Theorem 3.15. Let k P N, 0 ď ϑ ă 8, p P p0, 1q and let the set of admissible indices I Ď N0 satisfy
Assumption 2.3 (i). Let u : U Ñ X be pb, εq-holomorphic for some b P ℓppNq (see Def. 3.1). For ν P F define
wν :“ ś

jPNp1 ` νjqϑ.
Then there exists C ą 0, C0 ą 0 and a sequence pak,νqνPF solely depending on I, b, ǫ and ϑ such that

(i) pak,νqνPF satisfies Assumption 3.8 (with the set of admissible indices I),

(ii) pak,νqνPF P ℓp{kpFq,
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(iii) the Taylor gpc coefficients tν of u in (3.5) satisfy

wν}tν}X ď CMuak,ν @ν P Fk (3.13)

so that in particular p}tν}XqνPFk
P ℓp{kpFkq.

Moreover

(iv) there exist T ą 1 and τ0 ą 0 such that with ck,ν as in (3.12) defined with

̺j :“ maxtT, τ0 mintb´1
j , j2{puu1´p,

it holds pak,νck,νqνPF P ℓ1pFq and pc´1
k,νqνPF P ℓp{p2p1´pqqpFq,

(v) in case }b}ℓppNq ă C0, there exist τ1, τ2 ą 0 such that with ν̂ as in (3.10) we have the explicit
representation

ak,ν :“
ź

jPN

max

"

e,
τ2ν̂j

|ν̂|maxtbj , τ1j´2{pu

*´ν̂j

. (3.14)

Proof. We proceed in four steps. In the first two steps ak,ν as stated in the theorem is constructed. In the
third step item (i) is shown, and finally we show (iv) in Step 4. For a constant τ1 P p0, 1s (chosen subsequently
in Step 1) throughout this proof set

b̃j :“ maxtbj , τ1j´2{pu (3.15)

and b̃ “ pb̃jqjPN. Then b̃j ě bj for each j P N, and thus the pb, εq-holomorphic function u is also pb̃, εq-
holomorphic (cp. Def. 3.1). Furthermore, w.l.o.g. we assume Mu ą 0 in Def. 3.1 (if Mu “ 0 then u ” 0, in
which case (iii) becomes trivial).

Step 1. We introduce pak,νqνPF and show that the sequence is monotonically decreasing (cp. Def. 3.6) and

that it holds (3.13). Let the constant CKI,k ą 0 be as in Lemma 3.10. Observe that with b̃ as in (3.15) (where
τ1 is to be chosen), it is possible to find constants τ1 P p0, 1s, κ0 ą 1, Cϑ ě 1 and J P N with the properties

p1 ` nqϑ ď Cϑκ
n
0 @n P N, (3.16a)

and with δ :“ ε{3

pκ20 ´ 1q
J´1
ÿ

j“1

b̃j ` κ1
ÿ

jěJ

b̃j ă ε´ δ,
ÿ

jěJ

b̃j ă δ

CϑC
k{p
KI,k

κ0 e
,

ÿ

jěJ

b̃
p
j ă δ

CϑCKI,kκ0 e
, b̃j ď 1

2
@j ě J

(3.16b)
where e “ expp1q and

κ1 :“ Cϑκ0e.

In the general case they are obtained as follows: first set τ1 “ 1. Employing }b̃}ℓ1pNq ă 8 we choose κ0 ą 1

with pκ20 ´ 1qřjPN b̃j ă ε ´ 2δ where δ :“ ε{3, then choose Cϑ such that p1 ` nqϑ ď Cϑκ
n
0 for all n P N, and

afterwards choose J P N large enough such that κ1
ř

jěJ b̃j ă δ and the last three conditions in (3.16b) hold.
At this point we note that if

}b}ℓppNq ă min

#

2ε

3
,

δ

CϑC
k{p
KI,k

κ0 e
,

ˆ

δ

CϑCKI,kκ0 e

˙1{p

,
1

2

+

“: C0, (3.17)

then we may choose J “ 1 and fix τ1 ą 0 so small that with b̃j “ maxtbj , τ1j´2{pu it also holds }b̃}ℓppNq ă C0.
In this case the conditions in (3.16b) are satisfied with J “ 1. We will use this below to show (v).



TITLE WILL BE SET BY THE PUBLISHER 17

For ν P F , in the following νE denotes the multiindex which coincides with ν in the first J components and
is zero otherwise, and νF :“ ν ´ νE . Set

ρν;j :“
#

κ20 if j ă J ,

max
!

κ1,
δνj

|νF |b̃j

)

if j ě J .

Here and in the following we adhere to the notational convention νj{|νF | “ 0 in case |νF | “ 0. Then, with
(3.16),

ÿ

jPN

pρν;j ´ 1qb̃j ď pκ20 ´ 1q
J´1
ÿ

j“1

b̃j `
ÿ

jěJ

ρν;j b̃j ď pκ20 ´ 1q
J´1
ÿ

j“1

b̃j ` κ1
ÿ

jěJ

b̃j ` δ
ÿ

jěJ

νj

|νF | ă ε.

Therefore ρν “ pρν;jqjPN is pb̃, εq-admissible (in the sense of Def. 3.1). Hence, with Mu as in Def. 3.1 and Cϑ
as in (3.16a), we obtain from (3.6)

}uν}X
ź

jPN

p1 ` νjqϑ ď Mu

˜

C
| supp ν|
ϑ

ź

jPsupp ν

κ
νj
0

¸

ź

jPN

ρ
´νj
ν;j

ď MuC
| supp ν|
ϑ κ

|ν|
0

J´1
ź

j“1

κ
´2νj
0

ź

jěJ

max

#

κ1,
δνj

|νF |b̃j

+´νj

ď MuC
J´1
ϑ

J´1
ź

j“1

κ
´νj
0

ź

jěJ

max

#

κ1

Cϑκ0
,

δνj

Cϑκ0|νF |b̃j

+´νj

l jh n

“:fν

. (3.18)

We point out that κ1{pCϑκ0q “ e by definition of κ1.
We now prove that fν is monotonically decreasing in ν. For j ă J and with ej :“ pδjiqiPN, since κ0 ą 1 we

have fν`ej
ď κ´1

0 fν ď fν . Next, fix j ě J . Note that

max

#

e,
δνj

Cϑκ0|νF |b̃j

+

“ max

#

e,
δνj

Cϑκ0b̃jpνj ` ř

tiěJ : i‰ju νiq

+

(3.19)

is monotonically increasing as a function of νj , and is always larger or equal to e. Therefore

fν`ej

fν
ď max

#

e,
δνj

Cϑκ0p|νF | ` 1qb̃j

+´1
ź

iěJ

max
!

e, δνi
Cϑκ0|νF |b̃i

)νi

max
!

e, δνi
Cϑκ0p|νF |`1qb̃i

)νi ď e´1

ˆ

1 ` 1

|νF |

˙|νF |

ď 1.

For all ν P F define ak,ν :“ fν̂ with ν̂ as in (3.14). Note that ν̂ ď ν for all ν P Fk. Due to the monotonicity
of pfνqνPF it thus holds ak,ν ě fν for all ν P Fk. Together with (3.18) this shows (3.13).

Finally we point out that if }b}ℓppNq ă C0, then as explained after (3.17), we can choose J “ 1 so that

ak,ν “ fν̂ “
ź

jPN

max

"

e,
δν̂j

Cϑκ0|ν̂|maxtbj , τ1j´2{pu

*´ν̂j

(3.20)

is of the type described in (v).
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Step 2. We now show pak,νqνPF P ℓp{kpFq. By Lemma 3.10 it holds

ÿ

νPF

a
p{k
k,ν “

ÿ

νPF

f
p{k
ν̂ ď

ÿ

νPFk

fp{k
ν C

| supp ν|
KI,k

ź

jPN

p1 ` νjq.

In the following we use that by Stirling’s inequalities nn ď en n! and thus

|ν||ν|

νν
ď e|ν| |ν|!

ν!
@ν P F .

Set FG :“ tνG : ν P Fu, G P tE,F u. Employing the definition of fν in (3.18), dj :“ C
k{p
KI,k

Cϑκ0eb̃j{δ and

d̃j :“ dj`J´1, j P N, we get

ÿ

νPFk

ak,ν ď
ÿ

νPFk

C
| supp νE |
KI,k

C
| supp νF |
KI,k

fp{k
ν

ź

jPN

p1 ` νjq

ď
ÿ

νPFk

CJ´1
KI,k

C
|νF |
KI,k

fp{k
ν

ź

jPN

p1 ` νjq

ď CJ´1
KI,k

ÿ

µPFEXFk

κ
´|µ|p{k
0

˜

J´1
ź

i“1

p1 ` µiq
¸

ÿ

νPFF XFk

¨

˝

|ν||ν|

νν

ź

jPsupp ν

˜

C
k{p
KI,k

Cϑκ0b̃j

δ

¸νj
˛

‚

p{k
˜

ź

jěJ

p1 ` νjq
¸

ď CJ´1
KI,k

ÿ

µPFEXFk

κ
´|µ|p{k
0

˜

J´1
ź

i“1

p1 ` µiq
¸

ÿ

νPFF XFk

ˆ |ν|!
ν!

dν

˙p{k
˜

ź

jěJ

p1 ` νjq
¸

“ CJ´1
KI,k

ÿ

µPFE

κ
´|µ|p{k
0

˜

J´1
ź

i“1

p1 ` µiq
¸

ÿ

νPFk

ˆ |ν|!
ν!

d̃ν

˙p{k
˜

ź

jPN

p1 ` νjq
¸

. (3.21)

We have }pd̃jqjPN}ℓppNq ď C}b̃}ℓppNq ă 8. Furthermore, due to (3.16b) it holds

}pd̃jqjPN}ℓ1pNq “
C
k{p
KI,k

Cϑκ0e

δ

ÿ

jěJ

b̃j ă 1.

Therefore, both sums on the right-hand side of (3.21) are finite according to Lemma 3.13 and Lemma 3.14.
Step 3. We prove that pak,νqνPF satisfies Assumption 3.8.
Since pfνqνPF is monotonically decreasing, and since ν ď µ implies ν̂ ď µ̂ (cp. (3.10)), also pak,νqνPF is

monotonically decreasing.
To see (3.7) assume that rνsI “ rµsI. By Rmk. 2.4 we then have tνuI` “ tµuI` . By definition of ν̂, this

implies ν̂ “ µ̂ and therefore ak,ν “ fν̂ “ fµ̂ “ ak,µ.
It remains to show Assumption 3.8 (iii). Denote ej “ pδijqiPN. The sequence pak,ej

qjěJ is a subsequence of

pak,νqνPF . By (3.18) and (3.15), it holds (since b̃j Ñ 0 as j Ñ 8)

ak,ej
“ fêj

“ fkej
“ max

#

e,
δ

Cϑκ0b̃j

+´k

ě Cb̃kj ě Cj´2k{p.

This shows the first inequality in (3.8) with κ “ 2k{p ą 0.
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For the third property in (3.8) we use b̃ P ℓppNq, so that by Lemma 3.12 we have b̃j ď Cb̃j
´1{p for some

Cb̃ ă 8. Then for d ą J with (3.18) and due to the monotonicity of pfνqνPF

sup
tνPF : | supp ν|ědu

ak,ν ď sup
tνPF : | supp ν|ědu

fν

ď
d
ź

j“J

ˆ

Cϑκ0pd´ Jq
δ

˙

b̃j ď
d
ź

j“J

ˆ

Cϑpd´ Jq
δ

˙

Cb̃j
´1{p

ď
ˆ

Cb̃Cϑκ0pd´ Jq
δ

˙d´J`1

dd
d
ź

j“J

j´1{p ď ppJ ´ 1q!q1{pCdddpd!q´1{p,

where C “ pCb̃Cϑq{δ. By Stirling’s inequality, d! ě dd e´d for all d P N. Therefore, there exists a constant
C ą 0 such that for every d P N holds with c “ 1{p´ 1 ą 0

sup
tνPF : | supp ν|ědu

ak,ν ď Cdd´cd .

This shows the third property in (3.8).
Finally, we show the second property in (3.8). By Rmk. 2.5 it holds tnuI` ě n{KI for all n P N0. Using that

ν̂ ě tνuI` and that pfνqνPFk
is monotonically decreasing we get

sup
tνPF : |ν|ědu

ak,ν “ sup
tνPF : |ν|ědu

fν̂ ď sup
tνPF : |ν|ědu

ftνuI`
ď sup

tνPF : |ν|ědu

J´1
ź

j“1

κ
´νj{KI

0

ź

jěJ

e´νj{KI ď
´

mintκ0, eu1{KI

¯´d

,

which shows the second property in (3.8).
Step 4. We show (iv). By definition ak,ν “ fν̂ and ck,ν “ ̺ν̂ where

̺j “ maxtT, τ0 mintb´1
j , j2{puu1´p

and the constants T ą 1, τ0 ą 0 are still at our disposal. Lemma 3.10 gives

ÿ

νPF

ak,νck,ν ď
ÿ

νPFk

fν̺
νC

| supp ν|
KI,k

ź

jPN

p1 ` νjq.

Fix T P p1,mintκ1{p1´pq
0 , 2uq. Let τ0 P p0, 1s be so small that maxtT, τ0b̃´1

j u ď T for all j ă J . By (3.16b) we

have b̃j “ maxtbj , τ1j´2{pu ď 1{2 and thus b̃´1
j ě 2 ě T for all j ě J . Due to τ0, τ1 P p0, 1s we get

̺j “ maxtT, τ0 mintb´1
j , j2{puu1´p ď mintb´1

j , τ´1
1 j2{pu1´p “ b̃

p´1
j @j ě J.

Then by definition of fν in (3.18)

ÿ

νPF

ak,νck,ν ď
ÿ

νPFk

C
| supp ν|
KI,k

˜

ź

iPsupp ν

p1 ` νiq
¸˜

J´1
ź

j“1

ˆ

T 1´p

κ0

˙νj
¸˜

ź

jěJ

ˆ

Cϑκ0

δ

|νF |
νj

b̃
p
j

˙νj
¸

.
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Using once more n! ě nn e´n, similar as before we get with dj :“ pCϑκ0 e {δqb̃pj`J´1 for j P N and d “ pdjqjPN

ÿ

νPF

ak,νck,ν ď
ÿ

νPFk

C
| supp ν|
KI,k

˜

ź

iPsupp ν

p1 ` νiq
¸

|νF |!
νF !

˜

J´1
ź

j“1

ˆ

T 1´p

κ0

˙νj
¸˜

ź

jěJ

ˆ

Cϑκ0 e

δ
b̃
p
j

˙νj
¸

ď

¨

˝

ÿ

µPNJ´1
0

C
| suppµ|
KI,k

J´1
ź

j“1

p1 ` µjq
ˆ

T 1´p

κ0

˙|µ|
˛

‚

˜

ÿ

νPFk

|ν|!
ν!

dνC
| supp ν|
KI,k

ź

jPN

p1 ` νjq
¸

. (3.22)

By (3.16b) we have
ÿ

jPN

dj “
ÿ

jěJ

CKI,kCϑκ0 e

δ
b̃
p
j ă 1.

Therefore both sums in (3.22) are finite by Lemma 3.13 and Lemma 3.14.

Finally, since pb̃jqjPN P ℓppNq, with ̺´1
j “ maxtT, τ0 mintb´1

j , j2{puu1´p, we have p̺´1
j qjPN P ℓp{p1´pqpNq and

infjPN ̺j ą 1. Therefore pc´1
k,νqνPF P ℓp{p2p1´pqqpFq by Example 3.11. �

Remark 3.16. Whenever b P ℓppNq is a positive sequence, and τ1, τ2 ą 0, then the sequence pak,νqνPF defined

in (3.14) belongs to ℓp{kpFq. This follows by similar arguments as used in the proof of Thm. 3.15.

4. Smolyak Convergence Rates

Hereafter the main results of this paper are established. First, we show some elementary properties of
the Smolyak quadrature operator. In particular it will be verified that any multivariate monomial yν with
ν P FzF2 is integrated exactly. Subsequently the dimension-independent convergence rate of 2{p ´ 1 for the
Smolyak quadrature with nested quadrature rules in terms of number of number of quadrature points is given
for pb, εq-holomorphic functions with b P ℓppNq for some 0 ă p ă 1. For non-nested quadrature points, nearly
the same convergence rate is obtained. Similarly, we obtain the same algebraic convergence in terms of the cost
measure (which counts the number of required floating operations) introduced in Sec. 2.4.

4.1. Properties of the Smolyak Quadrature

Lemma 4.1. Let Λ Ď F be finite and downward closed. Then

(i) for ν P F it holds QΛy
ν “ QtµPΛ :µďνuy

ν ,

(ii) QΛP “
ş

r´1,1sN
P pyqdµpyq for all P P spantyν : ν P Λu,

(iii) if χ0;0 “ 0, then QΛP “
ş

U
P pyqdµpyq “ 0 for all P P spantyν : ν P FzF2u,

(iv) if (2.3) holds for some ϑ ě 1, then for all ν P F

|QΛy
ν | ď

ź

jPN

p1 ` νjqϑ`1.

Proof. Fix ν P F . Due to Qny
k “

ş1

´1
ykdy{2 for all n ě k we have pÂjPNpQµj

´ Qµj´1
qqpyνq “ 0 whenever

there exists j P N such that µj ą νj . Thus

QΛy
ν “

ÿ

µPΛ

˜

â

jPN

pQµj
´Qµj´1

q
¸

yν “
ÿ

tµPΛ :µďνu

˜

â

jPN

pQµj
´Qµj´1

q
¸

yν ,

which shows (i). Next observe that due to the convention Q´1 ” 0

ÿ

tµPF :µďνu

˜

â

jPN

pQµj
´Qµj´1

q
¸

“
â

jPN

νj
ÿ

i“0

pQi ´Qi´1q “
â

jPN

Qνj “ Qν .
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Therefore, if ν P Λ then by (i) it holds QΛy
ν “ Qνy

ν “ ś

jPNQνjy
νj
j “

ş

U
yνdµpyq.

For (iii) consider the univariate quadrature operator Qn : C0pr´1, 1sq Ñ R, employing n` 1 distinct quadra-

ture points in r´1, 1s. The monomial y ÞÑ y satisfies Qny “
ş1

´1
ydy{2 “ 0 for all n P N0: this is true for n ě 1,

as stated at the beginning of the proof. It is true for n “ 0, because Q0y “ χ0;0 “ 0. For ν P F and µ P FzF2

arbitrary there exists j with µj “ 1 and thus

Qνy
µ “

˜

â

jPN

Qνj

¸

yµ “
ź

jPN

Qνjy
µj

j “ 0 “
ż

U

yµdµpyq,

which by (2.5) gives QΛy
µ “ 0 “

ş

U
yνdµpyq for all µ P FzF2.

For item (iv), fix ν P F . By (i) and (2.3) we can bound |QΛy
ν | by

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

µďν

ź

jPN

pQµj
´Qµj´1qyνjj

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

µďν

ź

jPN

`

p1 ` µjqϑ ` µϑj
˘

“
ź

jPN

νj
ÿ

i“0

`

p1 ` iqϑ ` iϑ
˘

.

So we need to show
řm
i“0pp1` iqϑ ` iϑq ď p1`mqϑ`1. The statement is true for m “ 0. For the induction step

we get
řm`1
i“0 pp1 ` iqϑ ` iϑq ď p1 ` mqϑ`1 ` p2 ` mqϑ ` p1 ` mqϑ. It suffices to show that pp1 ` mqϑ`1 ` p2 `

mqϑ ` p1 ` mqϑq{p2 ` mqϑ ď 2 ` m. The latter is equivalent to pp1 ` mq{p2 ` mqqϑp2 ` mq ď 1 ` m. This is
satisfied because ϑ ě 1. �

Remark 4.2. Let ´8 ď a ă b ď 8 and let η be a probability measure on pa, bq equipped with the Borel

σ-Algebra. The idea of Lemma 4.1 (iii) is generalized as follows. Set χ0,0 :“
şb

a
ydηpyq. Then the one point

quadrature rule Q0 : f ÞÑ fpχ0,0q w.r.t. the measure η is exact on spant1, yu: it holds Q01 “ 1 “
şb

a
1dηpyq and

Q0y “ χ0,0 “
şb

a
ydηpyq.

4.2. Convergence Rates

We now turn to the proof of Thm. 2.13. Due to Lemma 3.3, Thm. 2.13 is implied by the following, stronger
statement.

Theorem 4.3. Let X be a Banach space, U “ r´1, 1sN and let u : U Ñ X be pb, εq-holomorphic (see Def. 3.1)
for a sequence b “ pbjqjPN P ℓppNq and some p P p0, 1q. Let the quadrature points χ in (2.6) satisfy the bound
(2.3) for some ϑ ě 0, and let the set of admissible indices I Ď N0 satisfy Assumption 2.3.

Then for any δ ą 0 there exists a constant C such that

(i) with pa2,νqνPF as in Thm. 3.15 for ϑ̃ :“ ϑ ` 1, for every ǫ ą 0 the set Λǫ :“ tν P F : a2,ν ě ǫu is
finite and downward closed and (cp. (2.7))

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď C|ptspΛǫ,χq|´p 2
p

´1q`δ (4.1)

as well (cp. (2.17))

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď CcostpΛǫq´p 2
p

´1q`δ, (4.2)

(ii) with pc2,νqνPF as in Thm. 3.15 for ϑ̃ :“ ϑ` 1, for every ǫ ą 0 the set Λǫ :“ tν P F : c´1
2,ν ě ǫu is finite

and downward closed, and (cp. (2.7))

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď C|ptspΛǫ,χq|´p 2
p

´2q`δ (4.3)
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as well (cp. (2.17))

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď CcostpΛǫq´p 2
p

´2q`δ, (4.4)

(iii) if the points χ are nested, then (4.1) and (4.3) remain true for δ “ 0, and Assumption 2.3 (ii)
(exponential increase of the admissible indices) on I can be dropped.

Proof. We start with (i) and let Λǫ “ Λǫppa2,νqνPF q, where pa2,νqνPF is as in Thm. 3.15
By Thm. 3.15 (iii), the Taylor gpc coefficients ptνqνPF Ď X of u satisfy p}tν}XqνPF P ℓppFq ãÑ ℓ1pFq. By

Lemma 3.5, upyq “ ř

νPF tνy
ν converges absolutely in C0pU,Xq. Fix ǫ ą 0. As QΛǫ

: C0pUq Ñ X is a bounded
linear operator, by Lemma 4.1 (ii) and (iii)

QΛǫ
u “ QΛǫ

ÿ

νPF

tνy
ν “

ÿ

νPF

tνQΛǫ
yν “

ż

U

ÿ

νPΛǫ

tνy
νdµpyq `

ÿ

νPF2zΛǫ

tνQΛǫ
yν , (4.5)

where the latter sum is absolutely convergent inX. Lemma 4.1 (iii) also implies
ş

U
upyqdµpyq “

ş

U

ř

νPF2
tνy

νdµpyq.
Using Thm. 3.15 (iii) and Lemma 4.1 (iv) we get that there exists a constant C ą 0 such that for every ǫ ą 0

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď

›

›

›

›

›

›

ż

U

ÿ

νPF2zΛǫ

tνy
νdµpyq

›

›

›

›

›

›

X

`
ÿ

νPF2zΛǫ

}tν}X |QΛǫ
yν |

ď
ÿ

νPF2zΛǫ

}tν}X}yν}C0pU,Rq

˜

1 `
ź

jPN

pνj ` 1qϑ`1

¸

ď C
ÿ

νPF2zΛǫ

a2,ν ď C
ÿ

tνPF : a2,νăǫu

a2,ν . (4.6)

Exploiting pa2,νqνPF P ℓp{2pFq allows to bound the last sum by C|Λǫ|1´2{p. This follows by rearranging the

sequence pa2,νqνPF as a monotonically decreasing sequence pa˚
j qjPN, so that Lemma 3.12 gives a˚

j ď Cj´2{p and

consequently
ř

jąN a
˚
j ď C

ş8

N
x´2{pdx ď CN1´2{p.

In case the points are nested we have |ptspΛǫ,χq| “ |Λǫ| by Lemma 2.2, which shows (4.1) for δ “ 0, and
thus the statement in (iii) in this case. If the points are non-nested, then we use that for any δ ą 0 it holds
|ptspΛǫ,χq| “ Op|Λǫ|1`δq as ǫ Ñ 0. This is an immediate consequence of Thm. 3.15 (i), Lemma 3.9 and Lemma
2.8. In all this shows (4.1) also for non-nested points.

For (4.2) we argue similarly by invoking Thm. 3.15 (i), Lemma 3.9 and Lemma 2.8.
Next we prove (ii), i.e. in the following Λǫ “ Λǫppc´1

2,νqνPF q “ tν P F : c´1
2,ν ě ǫu, where pc2,νqνPF is as in

Thm. 3.15 (iv). As in (4.6) we obtain

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď C
ÿ

νPF2zΛǫ

a2,ν ď C

˜

sup
νPFzΛǫ

c´1
2,ν

¸

¨

˝

ÿ

µPF2zΛǫ

a2,µc2,µ

˛

‚.

Since pc´1
2,νqνPF P ℓp{p2p1´pqqpFq and pa2,νc2,νqνPF P ℓ1pFq by Thm. 3.15 (iv), Lemma 3.12 implies

›

›

›

›

ż

U

upyqdµpyq ´QΛǫ
u

›

›

›

›

X

ď C sup
νPFzΛǫ

c´1
2,ν ď C|Λǫ|´2{p´2.

For nested points, Lemma 2.2 then implies (4.3), which also shows (iii) in this case. In order to prove (4.3) for
non-nested points and (4.4), we use the fact that pc´1

2,νqνPF satisfies Assumption 3.8 by Example 3.11, so that
we can employ Lemma 3.9, Lemma 2.8 and Lemma 2.12 as above. �
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Remark 4.4. The convergence rate for Λǫppc´1
2,νqνPF q in Thm. 4.3 is off by a factor 1 compared to the index sets

Λǫppa2,νqνPF q. In [37, Lemma 1.4.19] we give an example which shows that this is not due to a rough estimate,

but the index sets Λǫppc´1
2,νqνPF q are in fact suboptimal in general. However, in our numerical experiments we

shall see that the index sets Λǫppc´1
2,νqνPF q seem to perform better in practice than Λǫppa2,νqνPF q.

Remark 4.5. In the papers [20, 21], rather than pb, εq-holomorphy, a requirement of the following type is
presumed:

u is separately holomorphic and uniformly bounded on some polydisc
BC

ρ Ď C
N, where ρj ą 1 for all j P N and pρ´1

j qjPN P ℓppNq, p P p0, 1q. (4.7)

In these references, under assumptions similar to (4.7), dimension-independent convergence rates p1{p´ 1q and
p1{p ´ 1q{2, respectively, are established (see [20, Cor. 5.9], [21, Assumption 4.2, Thm. 5.5] for the precise
assumptions and statements).

Let u be pb, εq-holomorphic for some b P ℓppNq and some p P p0, 1q, ε ą 0. Let κ ą 1 be so small and
J P N be so large that pκ ´ 1qřjPN bj ` ř

jąJ b
p
j ă ε. This is possible because }b}ℓ1pNq, }b}ℓppNq ă 8. Set

ρj :“ κ for j ď J and ρj :“ maxtκ, bp´1
j u for j ą J . Then

ř

jPN bjpρj ´ 1q ď ř

jPNpκ ´ 1qbj ` ř

jąJ b
p
j ď ε.

Thus pb, εq-holomorphy implies (4.7) with this ρ. Note that pρ´1
j qjPN P ℓp{p1´pqpNq and p{p1 ´ pq ą p. On the

other hand, (4.7) implies pb̃, 1q-holomorphy, with b̃j :“ pρj ´ 1q´1 and pb̃jqjPN P ℓppNq: if ρ̃ is arbitrary with
ř

jPN b̃jpρ̃j ´ 1q ă 1, then b̃jpρ̃j ´ 1q ă 1, and thus pρ̃j ´ 1q{pρj ´ 1q ă 1 implying ρ̃j ă ρj for each j P N. Since

u allows a bounded holomorphic extension to BC
ρ by (4.7), it also allows a bounded holomorphic extension to

BC

ρ̃ Ď BC
ρ . Hence pb, εq-holomorphy is more general than (4.7).

In summary, Thm. 4.3 improves the dimension-independent convergence rates 1{p ´ 1, p1{p ´ 1q{2 for the
anisotropic Smolyak quadrature proved in [20,21] to 2{p´1, i.e. by more than a factor 2 and 4, respectively, and
under weaker assumptions regarding the domain of holomorphy (namely pb, εq-holomorphy rather than (4.7)).
We explain this in more detail in Examples 5.2, 5.3 ahead.

5. Numerical Experiments

This section reports on the numerical testing, which we have performed for the presented algorithm. More
details on the construction of the index sets will be given in Sec. 5.1. We shall see, that there is a large
preasymptotic range, which is addressed in Sec. 5.2. Afterwards, in Sec. 5.3 we consider the integration of two
real valued test functions.

We now introduce the two test integrands and discuss the proven convergence rate of the Smolyak quadrature
implied by Thm. 4.3. Additionally, we compare it with the results of [20, 21].

Remark 5.1. Some of the convergence rates presented in Thm. 4.3 only hold up to some (arbitrarily small)
δ ą 0. Throughout what follows, the mentioned convergence rates are usually understood up to δ ą 0. We omit
to state this at every instance.

Example 5.2. Let p P p0, 1q and assume that b “ pbjqjPN Ď p0,8q satisfies }b}ℓ8pNq ă 1 and }b}ℓppNq ă 8.
Define

u1pyq :“
ź

jPN

p1 ` bjyjq´1
y P U. (5.1)

(i) Fix ε P p0, 1 ´ }b}ℓ8pNqq and let ρ “ pρjqjPN Ď p1,8q be pb, εq-admissible, i.e.
ř

jPN bjpρj ´ 1q ă ε

(cp. Def. 3.1). Fix z P BC
ρ Ď C

N and set δ :“ ε ` }b}ℓ8pNq ă 1. We can find a constant Cδ such that
for 0 ď x ď δ it holds logp1{p1 ´ xqq ď Cδx. Since bjρj “ bjpρj ´ 1q ` bj ď δ ă 1, we get

|u1pzq| “
ˇ

ˇ

ˇ

ˇ

ˇ

ź

jPN

p1 ` bjzjq´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ź

jPN

p1 ´ bjρjq´1 ď exp

˜

Cδ
ÿ

jPN

bjρj

¸

.
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The last term is finite (independent of ρ) because
ř

jPN bjρj “ ř

jPN bjpρj´1q`ř

jPN bj ď ε`}b}ℓ1pNq ă
8. Therefore u allows a well-defined uniformly bounded extension to BC

ρ . Clearly upzq is holomorphic

in each zj P BC
ρj
. Continuity of U Q y ÞÑ u1pyq is easily checked, and thus u is pb, εq-holomorphic. By

Thm. 4.3, the asymptotic convergence rate of the Smolyak quadrature is at least 2{p´ 1.
(ii) Consider now assumption (4.7), i.e. the requirement which was similarly presumed in [20,21]. We wish

to find ρ “ pρjqjPN such that u allows a uniformly bounded holomorphic extension onto the polydisc

BC
ρ . In view of Rmk. 4.5, the sequence ρ should be chosen such that pρ´1

j qjPN P ℓp̃pNq for some possibly
small p̃ ą 0.

For 0 ď x ă 1 we have 1{p1´xq ě 1`x and furthermore logp1`xq ě x{2, which gives ´ logp1´xq ě
x{2. Thus for z :“ p´ρj{2qjPN P BC

ρ

|u1pzq| “
ź

jPN

p1 ´ bjρj{2q´1 “ exp

˜

´
ÿ

jPN

logp1 ´ bjρj{2q
¸

ě exp

˜

1

4

ÿ

jPN

bjρj

¸

.

Hence ρ must satisfy
ř

jPN ρjbj ă 8. This implies ρ´1
j “ bj{cj for some sequence pcjqjPN P ℓ1pNq.

Suppose that pρ´1
j qjPN P ℓp̃pNq for some 0 ă p̃ ă 1. Then with p̂ :“ p̃{p1 ` p̃q ă 1

ÿ

jPN

b
p̂
j “

ÿ

jPN

ˆ

bj

cj

˙p̂

c
p̂
j ď

˜

ÿ

jPN

ˆ

bj

cj

˙
p̂

1´p̂

¸1´p̂˜
ÿ

jPN

cj

¸p̂

“
˜

ÿ

jPN

ˆ

bj

cj

˙p̃
¸1´p̂˜

ÿ

jPN

cj

¸p̂

and we obtain b P ℓp̂pNq. Assuming that p ą 0 was an optimal choice, in the sense that b P ℓppNq but
b R ℓqpNq with q ă p, it must hold p̂ “ p̃{p1 ` p̃q ě p, and therefore p̃ ě p{p1 ´ pq. Hence pρ´1

j qjPN, can

at best be in ℓp{p1´pqpNq. One possible choice achieving this is ρj :“ maxtκ, bp´1
j u, with κ ą 1 fulfilling

κ}b}ℓ8pNq ă 1. One checks that u then allows a uniformly bounded extension onto BC
ρ and it holds

pρ´1
j q P ℓp̃pNq with p̃ :“ p{p1´pq. The statements in [20, Cor. 5.9] and [21, Assumption 4.2, Thm. 5.5],

then essentially give the convergence rates s1 :“ p̃´1 ´ 1 “ 1{p´ 2 and s2 :“ pp̃´1 ´ 1q{2 “ 1{p2pq ´ 1.
In comparison, Thm. 4.3 gives the convergence rate 2{p´ 1 “ 2s1 ` 3 “ 4s2 ` 3.

Example 5.3. Let b “ pbjqjPN Ď p0,8q satisfy }b}ℓ1pNq ă 1, and define

u2pyq :“
˜

1 `
ÿ

jPN

bjyj

¸´1

y P U. (5.2)

With upzq :“ 1{p1` zq we have u2pyq “ upřjPN yjbjq. Hence, Lemma 3.3 implies u to be pb, εq-holomorphic for

any fixed ε P p0, 1 ´ }b}ℓ1pNqq.
Similar as in Example 5.2, the corresponding results in [20, Cor. 5.9], [21, Assumption 4.2, Thm. 5.5]

give the convergence rates s1 “ 1{p ´ 2 and s2 “ 1{p2pq ´ 1, while Thm. 4.3 implies the convergence rate
2{p´ 1 “ 2s1 ` 3 “ 4s2 ` 3 in terms of the number of quadrature points.

Remark 5.4. Differentiating u1, u2 in (5.1), (5.2) for some ν P F we find

1

ν!
Bν
yu1pyq|y“0 “ p´1q|ν|bν and

1

ν!
Bν
yu2pyq|y“0 “ p´1q|ν| |ν|!

ν!
bν .

Thus the modulus of the Taylor gpc coefficients of u1, u2 agree with the sequences in Lemmata 3.13, 3.14 (for
ϑ “ 0 and R “ 1).
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5.1. Apriori Construction of Quadrature Rules

We consider two different types of quadrature points: sections of a Leja sequence serve as an example of nested
quadrature points, and the Gauss-Legendre points will be used as an example of non-nested quadrature points.
To construct a quadrature rule for pb, εq-holomorphic functions, throughout Sec. 5.1 the sequence pψjqjPN Ď Z

in Def. 3.1 is assumed to satisfy

}ψj}Z ď Cbj where bj “ θj´r @j P N, (5.3)

for some fixed values of θ P p0, 1q, r ą 1 and a constant C. Then b “ pθj´rqjPN P ℓppNq for any p ą 1{r.

5.1.1. Leja Quadrature

So called Leja sequences provide nested quadrature points which possess polynomial bounds on the growth
of the Lebesgue constant. We use the following construction given in [9, Section 3]. Set ϕ0 :“ 0, ϕ1 :“ π,
ϕ2 :“ π{2 and

ϕ2n`1 :“ ϕn`1

2
, ϕ2n`2 :“ ϕ2n`1 ` π @n ě 1.

Now let χn :“ cospϕnq for all n P N0. For every n P N0 and j P t0, . . . , nu we define χleja
n;0 :“ 0, χleja

n;1 :“ 1,

χ
leja
n;2 :“ ´1 and χleja

n;j :“ χn for j ě 3. As shown in [9, Thm. 3.1] there holds a bound of the type (2.3), also

see [5, 6]. This yields nested one dimensional quadrature points (cp. Def. 2.1).
Thm. 4.3 proposes two strategies to determine sets of multiindices Λǫ providing proven asymptotic conver-

gence of the Smolyak quadrature. First, let pc̃2,νqνPF be as in (3.12) with ̺j “ maxtT, τ0 mintb´1
j , j2{puu1´p as

in Thm. 3.15 (iv). Here the constants T ą 1 and τ0 ą 0 are in practice unknown. We simplify this by setting

̺j “ b
p´1
j . With I “ N0 in (3.12) and with (5.3) we arrive at

c̃2,ν “
ź

jPN

pθj´rqpp´1qν̂j where ν̂j “
#

2 if νj “ 1

νj otherwise.
(5.4)

Note that I “ N0 satisfies Assumption 2.3 (i), but not Assumption 2.3 (ii). Due to the nestedness of the
univariate points χ, Thm. 4.3, item (iii) is applicable. With Λǫppc̃´1

2,νqνPF q “ tν P F : c̃´1
2,ν ě ǫu, Thm. 4.3

suggests the convergence rate 2r ´ 2 for pb, εq-holomorphic functions, where b is as in (5.3). Due to

tν P F : c̃´1
2,ν ě ǫu “ tν P F : c̃´s

2,ν ě ǫsu

for any s ą 0, the choice of exponent 1 ´ p in (5.4) is irrelevant for the definition of the index sets Λǫ. Thus we
set

c
leja
2,ν :“

ź

jPN

pθj´rq´ν̂j where ν̂j “
#

2 if νj “ 1

νj otherwise
(5.5a)

and

Λǫpppcleja2,ν q´1qνPF q “ tν P F : pcleja2,ν q´1 ě ǫu. (5.5b)

Next we employ Thm. 3.15 (v) to construct a second choice of indexsets. Simplifying (3.14) by choosing
τ1 “ τ2 “ 1, we get

a
leja
2,ν :“

ź

jPN

max

"

e,
ν̂j

|ν̂|θj´r

*´ν̂j

where ν̂j “
#

2 if νj “ 1

νj otherwise
(5.6a)

and

Λǫppalejak,ν qνPF q “ tν P F : aleja2,ν ě ǫu. (5.6b)
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In this case Thm. 4.3 and Thm. 3.15 (v) imply the convergence rate 2r´1 for the Smolyak quadrature, provided
that θ is small enough depending on u (and provided that the above choice of τ1 “ τ2 “ 1 was viable according
to Thm. 3.15 (v)).

5.1.2. Gauss-Legendre Quadrature

For every n P N0 denote by pχgauss
n;j qnj“0 the n` 1 unique roots of the nth Legendre polynomial in the interval

r´1, 1s. The one dimensional quadrature Qn in (2.2) then integrates exactly all polynomials of degree 2n` 1 as
is well-known. With I “ t2j ´ 1 : j P N0u and I` “ t0u Y t2j : j P N0u (cp. Rmk. 2.4 and note that I satisfies
Assumption 2.3), set

c
gauss
2,ν :“

ź

jPN

pθjq2rtνjuI` (5.7a)

and
Λǫpppcgauss2,ν q´1qνPF q “ tν P F : pcgauss2,ν q´1 ě ǫu. (5.7b)

This definition deviates from the formula in (3.12): the factor 2 in the exponent in (5.7a) accounts for the fact
that Qn integrates exactly polynomials of degree 2n`1 (and not just n`1). The sets in (5.7) can be considered
as a heuristic choice here, but we also refer to [37, Sec. 5.1.1] which provides a justification for this definition.

For the second choice of indexsets suggested by Thm. 3.15 (v), we similarly define

a
gauss
2,ν :“

ź

jPN

max

"

e,
2tνjuI`

2|tνuI` |θj´r

*´2tνjuI`

(5.8a)

and
Λǫppagauss2,ν qνPF q “ tν P F : agauss2,ν ě ǫu. (5.8b)

5.1.3. Decay of the Taylor GPC Coefficients

Consider the two sequences ppcleja2,ν q´1qνPF and paleja2,ν qνPF from Sec. 5.1.1. By Example 3.11 and Rmk. 3.16

it holds ppcleja2,ν q´1qνPF P ℓp{2pFq and paleja2,ν qνPF P ℓp{2pFq for any p ą 1{r. Denote by ppc˚
2,jq´1qjPN and pa˚

2,jqjPN

two monotonically decreasing rearrangements. By Lemma 3.12, for any δ ą 0 there exists a constant C such
that for all j P N

pc˚
2,jq´1 ď Cj´2r`δ and a˚

2,j ď Cj´2r`δ. (5.9)

Fig. 2 depicts the decay of these sequences for different values of r and θ. The rates in (5.9) are in general
not obtained in Fig. 2, as there appears to be a large preasymptotic range for larger θ. Decreasing θ improves
the situation in the plotted range of j. For very small θ, the rates come close to the ones predicted by (5.9).

By Rmk. 5.4 and by definition of cleja2,ν , it holds |tν | “ pcleja2,ν q´1 for all ν P F2 for the Taylor coefficient

Bν
yu1pyq|y“0{ν! of the function u1 from Example 5.2. Similarly, by Thm. 3.15, it holds }tν}X ď Ca

leja
2,ν for the

Taylor gpc coefficients ptνqνPF Ď X of any pb, εq-holomorphic function, provided that }b}ℓ1pNq is small enough
as stated in Thm. 3.15 (v). Fig. 2 suggests that there is a preasymptotic range, where the norms of the Taylor
gpc coefficients decay slower than implied by Lemma 3.12 and the fact that p}tν}XqνPFk

P ℓp{kpFkq as stated in
Thm. 3.15 (iii). Since the proof of Thm. 4.3 heavily relies on this decay (for k “ 2), we expect to have a range
of preasymptotic convergence with subpar convergence of the Smolyak quadrature.

5.2. Preasymptotic Behaviour

In the range shown in Fig. 2, for values of the scaling parameter θ P p0, 1q close to 1, the observed convergence
rates appear to contradict the predicted asymptotic rates as noted in Sec. 5.1.3. To understand this, we
investigate in more detail the decay of the (modulus of the) Taylor gpc coefficients pśjPNpθj´rqνj qνPF of the

function in Example 5.2 for bj “ θj´r and some fixed values of θ and r. This sequence can be written as

pθ|ν|ρ´rνqνPF where ρ “ pjqjPN. (5.10)
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Figure 2. Decay of monotonically decreasing rearrangements pa˚
2,jqjPN and ppc˚

2,jq´1qjPN of

paleja2,ν qνPF and ppcleja2,ν q´1qνPF in (5.6), (5.5). In all cases, the asymptotic algebraic decay rate is

2r ´ δ for any δ ą 0 as stated in (5.9).

We partition Fk, k P t1, 2u, into subsets of m-homogeneous multiindices

F
m
1 :“ tν P F1 : |ν| “ mu and F

m
2 :“ tν P F2 : |ν| “ mu. (5.11)
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For k P t1, 2u denote

pxk;jqjPN, a decreasing rearrangement of pθ|ν|ρ´rνqνPFk
(5.12)

and for m P N

pxk;m;jqjPN, a decreasing rearrangement of pθmρ´rνqνPFm
k
. (5.13)

The next lemma describes the asymptotic decay of these sequences.

Lemma 5.5. Fix k, m P N and θ P p0, 1q, r ą 0 in (5.13). For every δ ą 0 exists C ą 0 (depending on δ, k,
m, θ and r) such that

@j P N : xk;j ď Cj´kr`δ and xk;m;j ď Cj´kr`δ . (5.14)

Proof. By Lemma 3.13, ppθρ´rqνqνPFk
P ℓ1{pkrq`δpFkq. Lemma 3.12 implies (5.14) for pxk;jqjPN. Since pxk;m;jqjPN

is a subsequence of pxk;jqjPN, also the second bound in (5.14) is satisfied. �

In Sec. 5.2.1 we will show that certain logarithmic factors are involved in the decay of px1;m;jqjPN, so that
the algebraic rate r in (5.14) (for k “ 1) is observed only for large values of j. The case k “ 1 is more relevant
for stochastic collocation (i.e. interpolation rather than quadrature), but the analysis in Sec. 5.2.1 explains to
some extent the preasymptotic behaviour of these sequences. In Sec. 5.2.2, we establish a formula for a lower
bound of the sequence px2;jqjPN (i.e. k “ 2). A plot of this lower bound (see Fig. 5) will show that (for large θ)
the asymptotic regime is reached only for very large values of j.

5.2.1. Decay w.r.t. Fm
1

In the following, log denotes the natural logarithm.

Lemma 5.6. Let r ą 0, ρ “ pjqjPN and m P N. For R ě 0 set

AmpRq :“
ÿ

tνPFm
1 :ρ´rνěR´ru

|ν|!
ν!

.

Then AmpRq “ 0 if R ă 1 and with c0 :“ 1 ´ logp2q P p0, 1q for all R ě 1

cm0 R

m´1
ÿ

i“0

pc´1
0 logpRqqi

i!
ď AmpRq ď 2m´1R

m´1
ÿ

i“0

logpRqi
i!

. (5.15)

Proof. For R P r0, 1q the sum is over the empty set, so let R ě 1 in the following. Then

AmpRq “
ÿ

tνPF : |ν|“m, ρ´rνěR´ru

|ν|!
ν!

“
ˇ

ˇ

ˇ

ˇ

ˇ

#

pi1, . . . , imq P N
m :

m
ź

j“1

i´rj ě R´r

+ˇ

ˇ

ˇ

ˇ

ˇ

,

since for every ν P F with |ν| “ m, there exist exactly |ν|!{ν! elements pi1, . . . , imq of Nm such that |tj P
t1, . . . ,mu : ij “ lu| “ νl for all l P N. With N :“ tRu P N we have

Am`1pRq “
N
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

tpi1, . . . , imq : j´r
m
ź

l“1

i´rl ě R´ru
ˇ

ˇ

ˇ

ˇ

ˇ

“
N
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

tpi1, . . . , imq :
m
ź

l“1

i´rl ě pR{jq´ru
ˇ

ˇ

ˇ

ˇ

ˇ

“
N
ÿ

j“1

AmpR{jq.

(5.16)
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To prove the upper bound in (5.15), we proceed by induction over m. For m “ 1 it holds i´r1 ě R´r iff
i1 ď R, so that A1pRq “ tRu and the estimate is satisfied. Next, employing (5.16) and the induction hypothesis

Am`1 ď 2m´1
N
ÿ

j“1

R

j

m´1
ÿ

i“0

logpR{jqi
i!

“ 2m´1
N
ÿ

j“1

m´1
ÿ

i“0

1

i!

logpR{jqi
j

.

For any i P N and all x P r1, Rs

d

dx

ˆ

logpR{xqi
x

˙

“ ´i logpR{xqi´1 ´ logpR{xqi
x2

ď 0.

Therefore fpxq :“ 2m´1
řm´1
i“0 logpR{xqi{px ¨ i!q is monotonically decreasing for x P r1, Rs. Thus

řN
j“1 fpjq ď

fp1q `
şR

1
fpxqdx, giving

N
ÿ

j“1

2m´1
m´1
ÿ

i“0

1

i!

logpR{jqi
j

ď fp1q `
ż R

1

m´1
ÿ

i“0

2i

i!

logpR{xqi
x

dx “ fp1q ` 2m´1
m´1
ÿ

i“0

1

i!

ż logpRq

0

plogpRq ´ yqidy

“ 2m´1
m´1
ÿ

i“0

logpRqi
i!

` 2m´1
m´1
ÿ

i“0

1

i!

logpRqi`1

i` 1
ď 2m

m
ÿ

i“0

logpRqi
i!

, (5.17)

which concludes the proof of the upper bound.
For the lower bound, the case m “ 1 follows by Rc0 ď tRu “ A1pRq where c0 “ p1 ´ logp2qq ă 1{2. With

(5.16), due to the induction hypothesis

Am`1pRq “
N
ÿ

j“1

AmpR{jq ě R

N
ÿ

j“1

R

j

m´1
ÿ

i“0

cm´i
0 logpR{jqi

i!
.

Note that for tRu “ N ě 1

N
ÿ

j“1

1

j
ě 1 `

ż N`1

2

1

x
dx ě 1 ´

ż 2

1

1

x
dx`

ż R

1

1

x
dx “ c0 ` logpRq.

Hence, using (as above) that fpxq :“ řm´1
i“0 cm´i

0 logpR{xqi{x is monotonically decreasing for x P r1, Rs so that
řN
j“1 fpjq ě

şR

1
fpxqdx, similar as in (5.17) we get

N
ÿ

j“1

m´1
ÿ

i“0

1

i!

cm´i
0 logpR{jqi

j
“

N
ÿ

j“1

cm0
j

`
N
ÿ

j“1

m´1
ÿ

i“1

cm´i
0

i!

logpR{jqi
j

ě cm`1
0 ` cm0 logpRq `

m´1
ÿ

i“1

ż R

1

cm´i
0

i!

logpR{xqi
x

dx

“
m
ÿ

i“0

cm`1´i
0 logpRqi

i!
,

which proves the lower bound in (5.15). �
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With Lemma 5.6 and c0 :“ 1 ´ logp2q P p0, 1q, we observe for R ě 1

fmpRq :“ cm0
m!
R

m´1
ÿ

i“0

pc´1
0 logpRqqi

i!
ď |tν P F

m
1 : ρ´rν ě R´ru| ď 2m´1R

m´1
ÿ

i“0

logpRqi
i!

“: gmpRq, (5.18)

which immediately gives:

Lemma 5.7. For j P N let Rj ě 1 and Sj ě 1 be such that fmpRjq “ j and gmpSjq “ j. Then with x1;m;j as
in (5.13)

θmR´r
j ď x1;m;j ď θmS´r

j @j P N. (5.19)

Lemma 5.7, gives the parametrized curves

pfmpRq, θmR´rq and pgmpRq, θmR´rq (5.20)

for R ě 1, which are lower and upper bounds of px1;m;jq at every Rj , Sj where fmpRjq “ j and gmpSjq “ j.
To estimate the local algebraic decay of the upper bound for m in Lemma 5.7, we need to compute the slope

of the curve plogpgmpRqq, logpθmR´rqq. At plogpgmpRqq, logpθmR´rqq it equals

d
dR

logpθmR´rq
d
dR

logpgmpRqq
“ ´r

řm´1
i“0

logpRqi

i!

g1
mpRq “ ´ r

řm´1
i“0

logpRqi

i!
řm´1
i“0

logpRqi

i!
` řm´2

i“0
logpRqi

i!

“ ´ r

1 `
řm´2

i“0

logpRqi

i!
řm´1

i“0

logpRqi

i!

.

For example, if m “ 2, then the upper bound at position j “ g2pSjq “ Sjp1 ` logpSjqq locally decreases at the
algebraic rate

r

1 ` 1
1`1 logpSjq

. (5.21)

A similar deliberation for the lower bound in (5.19) gives the rate r{p1 ` c´1
0 {p1 ` c´1

0 logpRjqqq at position
j “ f2pRjq “ Rjpc0 ` logpRjqqc0{2. The logarithmic term logpSjq in (5.21) explains why a rate close to r is
only observed for large j. Due to the additional (higher order) logarithmic terms in (5.18), in a given, fixed
range of j, the rate of decay becomes worse as m grows.

Fig. 3 shows the sequence px1;2;jqjPN (i.e. m “ 2) for r “ 3 together with the lower and upper bounds in
(5.20). For small j, the behaviour of px1;m;jqjPN is far from j´r. The plot of the bounds for larger values of j
shows that the rate will eventually approach r.

5.2.2. Decay w.r.t. F2

For the convergence rate analysis of the Smolyak quadrature, we are mainly interested in the sequence x2;j in

(5.13), i.e. the decreasing rearrangement of pθ|ν|
ś

jPNpj´rνj qqνPF2
. Here and in the following, we fix θ P p0, 1q

and r ą 0.
We first discuss the decay of px2;m;jqjPN (cp. (5.13)) for different m P N. Recall that by (5.14), for any δ ą 0

there exists C such that px2;m;jqjPN ď Cj´2r for all j P N.

‚ m “ 1: Since F1
2 “ tν P F2 : |ν| “ 1u “ H this case is trivial.

‚ m “ 2: With ej “ pδijqiPN we have F2
2 “ t2ej : j P Nu and tρ´rν : ν P F2

2 u “ tj´2r : j P Nu so that
x2;2;j “ j´2r, and the decay predicted by (5.14) is apparent also for small j.

‚ m “ 3: It holds F3
2 “ t3ej : j P Nu and thus tρ´rν : ν P F3

2 u “ tj´3r : j P Nu. Hence m “ 3 can be
considered as a special case, since x2;3;j “ j´3r and the decay is even faster than j´2r.

‚ m “ 4: We have

ˇ

ˇtν P F
4
2 : ρ´rν ě R´ru

ˇ

ˇ “
ˇ

ˇtν P F
2
1 : ρ´r2ν ě R´ru

ˇ

ˇ “
ˇ

ˇ

ˇ
tν P F

2
1 : ρ´rν ě R´r{2u

ˇ

ˇ

ˇ
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Figure 3. Decay of px1;2;jqjPN in (5.13) (i.e. m “ 2 and k “ 1), for r “ 3, θ “ 1. Additionally,
the lower and upper bounds of x1;2;j in (5.20) (cp. (5.19)) are depicted. For any δ ą 0 there
exists C ą 0 such that x1;2;j ď Cj´3`δ for all j P N. For small j, a worse, preasymptotic rate
is observed.

and thus with (5.18)

f2pR1{2q ď
ˇ

ˇtν P F
4
2 : ρ´rν ě R´ru

ˇ

ˇ ď g2pR1{2q.

Considering the parametrized curves pf2pR1{2q, θ4R´rq, pg2pR1{2q, θ4R´rq for R ě 1, a computation
similar to the one before (5.21) implies that the decay of px2;4;jqjPN in the preasymptotic range is worse
than what (5.14) suggests, due to the logarithmic factors occurring in f2, g2.

‚ m ą 4: Similar arguments as in the case m “ 4 apply, and we expect the decay rate to further
diminish as m grows. The precise behaviour depends on the number of possibilities to write m as a
sum of integers in Nzt1u: for example tx2;5;j : j P Nu “ tk´2l´3 : k ‰ l P Nu decreases faster than
tx2;4;j : j P Nu “ tk´2l´2 : k ă l P Nu, as Fig. 4 right panel shows.

Implications for px2;jqjPN are as follows. All terms belonging to Fm
2 , i.e.

pθρ´rqν “ θmρ´rν @ν P F
m
2 , (5.22)

are scaled by the common factor θm: the smaller θ, the fewer multiindices of high total order m (which, in
the preasymptotic range, decay slower than expected as we have noticed) will be among the N largest ones.
This is depicted in Fig. 4 which shows the sequences px2;m;jqjPN for m P t2, . . . , 8u and two different values
θ P t0.25, 0.005u.

If 0 ă θ ă 1 is small then, due to the factor θm in (5.22), only few multiindices of order m ě 4 occur among
the largest, and essentially ppθρ´rqνqνPF2

2 YF3
2
governs the decay of xj for small j, thus yielding the expected

rate 2r´ δ. On the other hand, as θ draws closer to 1, more higher order multiindices contribute to the largest
j terms, resulting in a longer preasymptotic range with slower decay.
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Figure 4. Decay of px2;m;jqjPN in (5.13) for r “ 3 and different values of θ. For any δ ą 0 and
all m ě 2 there exists C ą 0 such that x2;m;j ď Cj´6`δ for all j P N.

To numerically verify these heuristic considerations, we determine a lower bound of x2;j . With fm as in
(5.18), for R ě 1 there holds

fmpRq ď |tν P F
m
1 : ρ´r2ν ě R´2ru| ď |tν P F

2m
2 : ρ´rν ě R´2ru|. (5.23)

We extend fm via fmpRq :“ 0 for all R P r0, 1q, and (5.23) then remains true also for R ă 1. Then

F pRq :“ 1 `
ÿ

mPN

fmpθ2m{2rRq ď |t0u| `
ÿ

mPN

|tν P F
2m
2 : ρ´rν ě pθ2m{2rRq´2ru|

“ |t0u| `
ÿ

mPN

|tν P F
2m
2 : pθρ´rqν ě R´2ru| ď |tν P F2 : pθρ´rqν ě R´2ru|, (5.24)

which gives:

Lemma 5.8. For j P N let Rj ě 1 be such that F pRjq “ j. For the sequence x2;j it holds R´2r
j ď x2;j.

Fig. 5 depicts the decay of px2;jqjPN as well as the lower bound in Lemma 5.8 for r “ 3 and θ “ 0.25. The
measured rate of px2;jqjPN in the observed range of j is merely 4.96 and not close to 6 as suggested by (5.14).
For the plotted range of j in Fig. 5 (A) up to about j “ 106, the lower bound from Lemma 5.8 seems to capture
well the preasymptotic behaviour of px2;jqjPN. Plotting the lower bound for larger values of j up to about
j “ 1055, we observe that its algebraic decay rate eventually increases to approach 2r “ 6, however only very
slowly. This suggests, that if θ ą 0 is not small enough, then the range where the Taylor gpc coefficients of u1
from Example 5.2 will show the predicted algebraic decay only occurs for j so large that it is not relevant in
practice.

Finally, for general pb, εq-holomorphic functions, in the proof of Thm. 3.15 we derived estimates of the norms
of the Taylor gpc coefficients which were of the type bν |ν|!{ν! (also see Rmk. 5.4). In this section we have
analysed in more detail a sequence of the type pbνqνPF , which corresponds to the Taylor gpc coefficients of u1
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Figure 5. Decay of px2;jqjPN in (5.12) for θ “ 0.25 and r “ 3. The lower bound is given in
Lemma 5.8. For any δ ą 0 there exists C ą 0 such that x2;j ď Cj´2r`δ “ Cj´6`δ for all j P N.
In the preasymptotic range a worse rate is observed.

in Example 5.2. Due to the additional term |ν|!{ν!, it can be expected that the preasymptotic effect is even
stronger in the general case.

Remark 5.9. The case k “ 1 is relevant for stochastic collocation algorithms (i.e. interpolation instead
of quadrature). Similar as in (5.24), we can define GpRq :“ 1 ` ř

mPN gmpθm{rRq and deduce that the
curve pGpRq, R´rq provides an upper bound for the behaviour of px1;jqjPN in (5.13). By Lemma 5.6 it holds

gmpθm{rRq ď 2m´1θ2m{rR2 ď p2θ2{rqmR2 for all m P N, and therefore GpRq ď 1 ` p2θ2{rq{p1 ´ 2θ2{rqR2.
For u1 in Example 5.2 (cp. Rmk. 5.4), we conclude that as long as θ is small enough such that the constant
p2θ1{rq{p1 ´ 2θ1{rq is (moderately) bounded, the preasymptotic error convergence of the interpolation error will
be at worst half of the proven convergence rate, which is in this case pr ´ 1q{2.

This can be generalized to general pb, εq-holomorphic functions, by constructing indexsets based on the se-

quence c1;ν as stated in Thm. 3.15 (iv) (for k “ 1): if I “ N0 in (3.12), then c1;ν is exactly of the type
ś

jPN ̺
´νj
j

(i.e. like the sequence analysed in the current section).

5.3. Real Valued Model Parametric Integrand Functions

We now test the convergence of the Smolyak quadrature for the functions u1, u2 in Examples 5.2, 5.3. For u2
we also refer to [21] where computations for almost the same integrand were done with the method suggested
in their paper.

5.3.1. Model Integrand u1

Let

u1pyq “
ź

jPN

1

1 ` yjθj´r
y P U (5.25)

be as in (5.1) with bj :“ θj´r, 0 ă θ ă 1, r ą 1. As explained in Example 5.2, u1 is pb, εq-holomorphic, and
by Thm. 4.3 the Smolyak quadrature can achieve the convergence rate 2r ´ 1 (cp. Rmk. 5.1) in terms of the
number of quadrature points if optimal indexsets are chosen.
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Fig. 6 shows the absolute error |
ş

U
u1pyqdµpyq ´ QΛǫ

u1| for different values of r and θ, and with Λǫ as
in Sec. 5.1.1 and Sec. 5.1.2. Note that (up to the guessing of constants and simplifications in Sec. 5.1.1
and Sec. 5.1.2), Thm. 4.3 implies the convergence rates 2r ´ 1 for Λǫppa2,νqνPF q as in (5.6) or (5.8) and

2r ´ 2 for Λǫppc´1
2,νqνPF q as in (5.5) or (5.7). The reference value for

ş

U
u1pyqdµpyq was computed directly as

ş

U
u1pyqdµpyq “ ś

jPN logpp1 ` bjq{p1 ´ bjqq{p2bjq.
Even though the Gauss-Legendre points are not nested, we observe that the Leja points and the Gauss-

Legendre points perform equally well in terms of the total number of function evaluations. Furthermore, the
index sets Λǫppc´1

2,νqνPF q deliver slightly better error convergence than Λǫppa2,νqνPF q. This is not surprising, as
pc´1

2;νqνPF is a sequence resembling the Taylor gpc coefficients of u1, see Rmk. 5.4. As expected, the convergence

rate (which asymptotically only depends on r), strongly depends on θ. For large θ a preasymptotic range of
subpar convergence is observed. This can be explained by the preasymptotic behaviour of the decay of the
Taylor gpc coefficients which we analysed in Sec. 5.2. For very small θ, we get close to the proven convergence
rate 2r ´ 1, e.g. for r “ 2 and θ “ 0.005 we observe convergence rates of about 2.68 and 2.81 depending on the
chosen index sets. The plots confirm that considerably faster convergence than the previously proved rate r´ 1
is in principle attainable.

5.3.2. Model Integrand u2

Let

u2pyq “ 1

1 ` θ
ř

jPN yjj
´r

(5.26)

be as in (5.2) with bj :“ θj´r, r ą 1 and θ ą 0 small enough such that θ
ř

jPN j
´r ă 1. By Example 5.3, u2 is

pb, εq-holomorphic, and Thm. 4.3 implies that the Smolyak quadrature can achieve the convergence rate 2r´ 1
in terms of the number of quadrature points if optimal index sets are chosen. Fig. 7 shows the convergence of
the absolute error |

ş

U
u2pyqdµpyq ´ QΛǫ

u| for different values of r and θ. Again we compare the convergence
for either nested Leja quadrature points or non-nested Gauss-Legendre quadrature points, and different apriori
constructions of multiindices as explained in Sec. 5.1.1 and Sec. 5.1.2. As before, (up to the guessing of constants
and simplifications in Sec. 5.1.1 and Sec. 5.1.2), Thm. 4.3 implies the convergence rates 2r´1 for Λǫppa2,νqνPF q
as in (5.6) or (5.8) and 2r ´ 2 for Λǫppc´1

2,νqνPF q as in (5.5) or (5.7).

The reference value for
ş

U
u2pyqdµpyq has been computed with a higher order quasi Monte Carlo rule (a

so-called high-order, Interlaced Polynomial Lattice rule adapted to the model integrand, with suitable digit
interlacing parameter, see [16] and the references there) utilizing 220 „ 106 quadrature points applied to the
function u restricted to the first 1024 dimensions.

The observations are similar as for u1. The (preasymptotic) convergence rate strongly depends on the scaling
parameter θ. Leja and Gauss-Legendre quadrature deliver almost the same error w.r.t. the number of function
evaluations, and the index sets Λǫppc´1

2,νqνPF q perform (slightly) better than Λǫppa2;νqνPF q.

5.3.3. Comparison with an Adaptive Method

We consider the model parametric integrand u2 defined in (5.2), with bj :“ θj´r for r “ 2 and θ ą 0. In
the following, our method is compared with a variant of the dimension adaptive algorithm described in [18]
which we outline briefly for completeness. For some finite, downward closed set of multiindices t0u ‰ Λ Ď F ,
following [8] we introduce the reduced set of neighbours

N pΛq :“ tν P F :ν R Λ, ν ´ ej P Λ @j P suppν, νj “ 0 @j ą max
µPΛ

maxti P N : µi ‰ 0u ` 1u,

with the special case N pt0uq :“ tp1, 0, 0, . . . qu. Algorithm 1 shows the used adaptive method. Also recall, that
Q´1 :“ 0 and for notational convenience also Q´2 :“ 0 in the following. As in (2.2), for n P N0, Qn stands for
the one dimensional interpolatory quadrature employing the n ` 1 points pχjqnj“0 in r´1, 1s. In the following
the quadrature points for the adaptive method and for the apriori choice of index sets consist of the Leja points
introduced in Sec. 5.1.1.
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Figure 6. Quadrature error |
ş

U
u1pyqdµpyq ´ QΛǫ

u1| for u1 in (5.25), for different values
of r and θ. The plot shows the absolute error in terms of the number of quadrature points
|ptspΛǫ,χq| (cp. (2.7)).

Fig. 8 shows a comparison of the error convergence for adaptive Smolyak algorithm, and the Smolyak algo-

rithm with the apriori index sets Λǫpppcleja2;ν q´1qνPF q from Sec. 5.1.1. The plots show the error vs. number of
quadrature points. In case of the adaptive algorithm, we plot the curve for the set of accepted indices Λact and
for the set of total indices Λtot, as computed by Alg. 1.
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Figure 7. Quadrature error |
ş

U
u2pyqdµpyq ´ QΛǫ

u2| for u2 in (5.25), for different values
of r and θ. The plot shows the absolute error in terms of the number of quadrature points
|ptspΛǫ,χq| (cp. (2.7)).

In order to find the set Λact, Alg. 1 also requires to evaluate the integrand at quadrature points belonging
to the total set Λtot. Thus, the curve for the accepted multiindices Λact should be considered as a benchmark,
whereas the curve for the total set of indices Λtot can be seen as a practically obtainable computation in terms
of error vs. number of quadrature points (i.e. number of function evaluations). We observe, that our apriori
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Algorithm 1 AdaptiveSmolyak(integrand u : r´1, 1sN Ñ R, number of multiindices M P N)

Λact Ð t0u
Λtot Ð t0u
∆0 Ð Â

jPNQ0u

while |Λact| ă M do

Λnew Ð N pΛactqzΛtot

Λtot Ð Λtot Y Λnew

for ν P Λnew do

∆ν Ð Â

jPNpQ2νj ´Q2pνj´1qqu
end for

µ Ð argmaxt|∆ν | : ν P ΛtotzΛactu
Λact Ð Λact Y tµu

end while

QΛact
u Ð ř

νPΛact
∆νu

QΛtot
u Ð ř

νPΛtot
∆νu

chosen quadrature points are as good, as the ones obtained by the adaptive method and denoted by Λact above.
This implies, that the apriori choice captures well the most important multiindices.

Comparing with Λtot, our method even outperforms the adaptive algorithm when θ becomes small. We
mention that it was already reported earlier that apriori choices of index sets can perform superior to adaptive
methods, see, e.g., [3]. We note that the convergence for the apriori choice (and for the adaptive algorithm in
terms of Λact) improves as θ decreases, while the convergence rate of the adaptive algorithm in terms of Λtot

does not increase as θ decreases. For θ “ 0.005, the convergence rate of the adaptive algorithm w.r.t. Λtot, is
only about half the convergence rate obtained with the apriori chosen set. This is not a coincidence, and we
explain this in more detail in [37, Chap. 5]. We point out that one of the main advantages of determining the
quadrature rule apriori instead of adaptively, is that it allows to compute all function evaluations in parallel,
which is in general not possible for the adaptive algorithm in [18].

6. Conclusions and Generalizations

We have analysed convergence rates of Smolyak quadratures for classes of smooth, Banach space valued,
parametric functions with a suitable sparsity as stated in Def. 3.1. We proved that exploiting certain cancellation
properties implied by the combination coefficients and the symmetry of the marginal probability measures allow
for the dimension independent convergence rate 2{p ´ 1 for p-summable sequences of (norms of) Taylor gpc
coefficients of the parametric integrand functions. This is superior to previously known rates established,
for example, in [20, 22], of N -term gpc approximation of the integrand obtained in [12], or for Higher Order
Quasi-Monte Carlo integration in [14], under analogous sparsity assumptions on the parametric integrands. We
also provided an apriori construction algorithm of integrand-adapted sparse grids whose complexity (work and
memory) scales near linearly with respect to the number quadrature points. Additionally, all convergence rate
bounds were shown w.r.t. the number of quadrature points, showing in particular that essentially the same
convergence rates can be obtained for both nested and non-nested univariate quadrature points χ. Numerical
experiments showed that the dimension-independent convergence rates are achieved with a moderate number of
quadrature points provided that the scaling parameter θ ą 0 was small enough. For the considered test functions,
this amounts to the integrand having small deviation from their ‘nominal’, average, values. We explain, by
a refined analysis of the error bounds for a class of model parametric integrands, that the asymptotic range
where the (dimension-independent) convergence rate 2{p´1 is visible could appear only for a prohibitively large
number of quadrature points.
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Figure 8. Absolute quadrature error for u2 in (5.26), with r “ 2 and different values of θ. We
compare convergence of the adaptive algorithm in Alg. 1 with the Smolyak quadrature based on
our apriori choice of index sets. In both cases the same Leja quadrature points (see Sec. 5.1.1)
are used.

Convergence rates which are superior to N -term approximation bounds for the parametric integrands have
been reported in numerical experiments for example in [32]. Concrete apriori estimates on gpc coefficients that
may be exploited to apriori determine suitable index sets by e.g. greedy searches or by knapsack solvers were also
given in these references. The presently proposed variants of the Smolyak algorithm, in particular exploiting
multiindices containing a 1, appear to be new. As we prove and verify in numerical experiments, this results in
an algorithm that performs comparably to the currently best (heuristic) adaptive algorithms, from [17, 18] as
shown in in Fig. 8.

The complexity of the Smolyak quadrature was investigated under p-summability of sequences of (X-norms
of) Taylor gpc coefficients, as implied by pb, εq-holomorphy. This condition is known to hold for broad classes
of holomorphic-parametric operator equations as shown in [10], and also for the corresponding Bayesian inverse
problems [32,34]. We emphasize that our key findings, notably the observation that all linear terms are integrated
exactly by any Smolyak quadrature, remain valid for other measures µ, presuming that the one point rule in the
Smolyak construction integrates linear polynomials exactly (cp. Rmk. 4.2). In particular, similar improvements
as shown in this paper also hold in other contexts. For example, for linear, affine-parametric diffusion problems
with coefficient functions ψjpxq that exhibit localized supports (as occur for example in a wavelet expansion),
improved summability of the Taylor gpc coefficients of the parametric solution was verified in [1, Thm. 1.2].
In [37, Chap. 3] we show that this entails a corresponding improvement of the convergence rate for Smolyak
quadratures.

Another particular case in point are Gaussian measures µ. Here, for certain PDEs bounds on Hermite Chaos
coefficients can be obtained by real-variable bootstrapping on the parametric PDE (see [19, 26, 28]), so that
similar conclusions for the corresponding Smolyak algorithms could be expected.

In many practical settings the evaluation of the integrand is presumed to be far more costly than performing
the quadrature itself. For integrands exhibiting low sparsity, using a large number of quadrature points becomes
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inevitable. The near linear scaling of the cost in terms of the number of quadrature points makes the algorithm
feasible also for such problems.

In this paper we assumed the integrand to allow exact evaluation at each quadrature point. In general,
for UQ problems the integrand is given as the solution to some PDE, which needs to be approximated by a
numerical scheme. This is addressed in [38], where we perform a fully discrete error analysis taking into account
the cost of approximating the function values at the quadrature points.

Appendix A. Proof of Lemma 2.7

Proof of Lemma 2.7. The first inequality follows by the downward closedness of Λ so that

ÿ

νPΛ

ź

jPsupp ν

pνj ` 1q “
ÿ

νPΛ

|tµ P Λ : µ ď νu| ď
ÿ

νPΛ

|Λ| “ |Λ|2.

We claim that if Γ Ď F is finite and satisfies for some n P N and A Ď N with |A| “ n that

psuppν “ A @ν P Γq and ppµ ď ν and suppµ “ Aq ñ µ P Γq (A.1)

then
ÿ

νPΓ|I

ź

jPN

p1 ` νjq ď Kn
I |Γ|. (A.2)

Suppose that (A.2) is true. Partitioning Λ in t0u and finitely many disjoint sets Γ of the type (A.1), this
immediately implies the second inequality in (2.12).

We show (A.2) by induction. For n “ 1 assume w.l.o.g. that A “ t1u. Then by Assumption 2.3 (ii)

ÿ

νPΓ|I

ź

jPN

p1 ` νjq “
ÿ

νPΓ|I

p1 ` ν1q ď KI|Γ|.

For the induction step assume that the statement is true for n´1 ě 1, and assume w.l.o.g. that A “ t1, . . . , nu.
For every i P N set Γi :“ tµ P F : pi,µq P Γu. Then each Γi is of the type (A.1) for the set Ã “ t1, . . . , n´ 1u,
so that we can apply the induction hypothesis to it. Therefore

ÿ

νPΓ|I

ź

jPN

p1 ` νjq “
ÿ

0ăiPI

p1 ` iq
ÿ

µPΓi|I

ź

jPN

p1 ` µjq ď
ÿ

0ăiPI

p1 ` iqKn´1
I

|Γi|

“ Kn´1
I

ÿ

0ăiPI

p1 ` iq
ÿ

µPΓi

1 “ Kn´1
I

ÿ

µPF

ÿ

t0ăiPI : pi,µqPΓu

p1 ` iq

ď Kn´1
I

ÿ

µPF

KI|ti P N : pi,µq P Γu| “ Kn
I |Γ|,

where we used again Assumption 2.3 (ii) for the last inequality. �

Appendix B. Proof of Lemma 3.13 and Lemma 3.14

Proof of Lemma 3.13. We start with ϑ “ 0 and R “ 1 (i.e. wν “ 1 for all ν P F). Fix k P N. Observe that
}b}ℓ8pNq ă 1 and }b}ℓppNq ă 8 are necessary in order for pbνqνPFk

P ℓp{kpFkq to hold: For every fixed j P N

the sequence pblp{k
j qlěk is a subsequence of pbνp{kqνPFk

, which implies necessity of }b}ℓ8pNq ă 1. Furthermore

pbpj qjPN is a subsequence of pbνp{kqνPFk
so that }b}ℓppNq ă 8 is also a necessary condition.
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On the other hand, since logp1 ` xq ď x for all x ě 0 we have

}pbνqνPFk
}

p
k

ℓ
p
k pFkq

“
ÿ

νPFk

pbνq p
k “

ź

jPN

¨

˝1 `
ÿ

tlPN : lěku

b
lp
k

j

˛

‚“
ź

jPN

¨

˝1 `
b

pk
k

j

1 ´ b
p
k

j

˛

‚

“ exp

¨

˝

ÿ

jPN

log

¨

˝1 `
b
p
j

1 ´ b
p
k

j

˛

‚

˛

‚ď exp

¨

˝

ÿ

jPN

b
p
j

1 ´ b
p
k

j

˛

‚ď exp

˜

1

1 ´ }b}
p
k

ℓ8

}b}p
ℓppNq

¸

. (B.1)

This proves the lemma for ϑ “ 0 and R “ 1. To finish the proof it suffices to show that under the assumptions
}b}ℓ1pNq ă 8 and }b}ℓ8pNq ă 1 it holds for any ϑ ą 0 that pwνb

νqνPFk
P ℓp{kpFkq where wν “ R| supp ν|

ś

jPNp1`
νjqϑ.

Fix ϑ ą 0 and R ě 1. Let ϑ̃ ą ϑ be so large that 2ϑ̃´ϑ ě R. Then R| supp ν|
ś

jPNp1 ` νjqϑ ď ś

jPNp1 ` νjqϑ̃.
Let δ ą 1 be so large that p1 ` nqϑ̃ ď δn for all n P N, let J P N be so large that bj ă 1{p2δq for all j ą J , and

let κ ą 1 be so small that bjκ ă 1 for all j ď J . Define b̃ P ℓppNq by b̃j :“ κbj if j ď J and b̃j :“ δbj otherwise.

Then }b̃}ℓ8pNq ă 1 and }b̃}ℓppNq ă 8. Moreover, with C0 :“ supnPNp1 ` nqϑ̃{κn ă 8, for all ν P F

wν “
ź

jPN

p1 ` νjqϑ̃ ď
J
ź

j“1

C0κ
νj
ź

iąJ

δνi “ CJ0

J
ź

j“1

κνj
ź

iąJ

δνi .

Thus
ř

νPFk
pwνb

νqp{k ď C
Jp{k
0

ř

νPFk
pb̃νqp{k which is finite by what we have shown above. �

Lemma B.1. Let ρ ą 1 and fix k P N. Then there exists a constant Ck,ρ depending on ρ, k, such that for all
ν P Fzt0u the multiindex kν :“ pkνjqjPN P Fk Ď F satisfies

p2πq 1´k
2

ˆ |ν|!
ν!

˙k

ď |kν|!
pkνq! ď C

| supp ν|
k,ρ ρ|ν|

ˆ |ν|!
ν!

˙k

. (B.2)

Proof. We begin with the lower bound. Recall that
?
2πnn` 1

2 e´n ď n! ď nn` 1
2 e´n`1 for all n P N by Stirling’s

approximation, see for example [31]. Thus

|kν|!
pkνq! ě

?
2πpk|ν|qk|ν|` 1

2 expp´k|ν|q
ś

jPsupp νpkνjqkνj` 1
2 expp´kνj ` 1q

“
?
2π

expp| suppν|q
kk|ν|` 1

2

kk|ν|` | supp ν|
2

|ν|k|ν|` 1
2 expp´k|ν|q

ś

jPsupp ν ν
kνj` 1

2

j expp´kνjq

“
?
2πk

1´| supp ν|
2

expp| suppν|q
p2πq´ k

2 |ν| 1´k
2

´?
2π|ν||ν|` 1

2 expp´|ν|q
¯k

ś

jPsupp ν expp´kqν
1´k
2

j

´

ν
νj` 1

2

j expp´νj ` 1q
¯k

ě p2πq 1´k
2

ˆ

exppkq
k

1
2 e

˙| supp ν| ˆ
ś

jPsupp ν νj

|ν|

˙

k´1
2

ˆ |ν|!
ν!

˙k

. (B.3)

We claim that

fpνq :“
ˆ

exppk ´ 1q
k

1
2

˙| supp ν| ˆ
ś

jPsupp ν νj

|ν|

˙

k´1
2

ě 1, (B.4)
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for all 0 ‰ ν P F , which then gives the lower bound in (B.2). In order to see this we use induction on n “ |ν|.
The case n “ 1 is trivial because exppk ´ 1q{k1{2 ě 1 for all k P N and

ś

jPN νj “ |ν| in this case. For the

induction step let ei “ pδijqjPN, fix an integer n ą 1 and suppose that fpνq ě 1 for all ν P F with |ν| “ n.
First assume i P suppν so that | suppν| “ | supppν ` eiq|. Then

fpν ` eiq ě fpνq ô
pνi ` 1qśj‰i νj

|ν| ` 1
ě

ś

j νj

|ν| ô νi ` 1

|ν| ` 1
ě νi

|ν| ,

which is true so that fpν ` eiq ě fpνq ě 1. Next let i R suppν. Then
ś

jPsupp ν νj “ ś

jPsupppν`eiqpν ` eiqj
and with n “ |ν|

fpν ` eiq
fpνq “ exppk ´ 1q

k
1
2

ˆ

n

n` 1

˙
k´1
2

ě exppk ´ 1q
k

1
2

ˆ

1

2

˙
k´1
2

:“ ngpkq. (B.5)

We have gp1q “ 1. Moreover for k ě 1

g1pkq “ 2´ 1`k
2 exppk ´ 1q pp2 ´ logp2qqk ´ 1q

k
3
2

ě 0,

which shows gpkq ě gp1q ě 1 for all k P N and therefore fpν ` eiq ě fpνq ě 1 by (B.5). This concludes the
proof of the claim (B.4) which further implies the lower bound in (B.2).

For the upper bound, we fix 0 ‰ ν P F and use again Stirling’s inequalities to obtain

|kν|!
pkνq! ď pk|ν|qk|ν|` 1

2 expp´k|ν| ` 1q
ś

jPsupp ν

?
2πpkνjqkνj` 1

2 expp´kνjq

“
ep2πq´ k

2 |ν| 1´k
2

´?
2π|ν||ν|` 1

2 expp´|ν|q
¯k

ś

jPsupp ν

?
2π expp´kqν

1´k
2

j

´

ν
νj` 1

2

j expp´νj ` 1q
¯k

kk|ν|` 1
2

kk|ν|` 1
2

| supp ν|

ď ep2πq´ k
2 |ν| 1´k

2

`?
2π expp´kq

˘| supp ν| ś

jPsupp ν ν
1´k
2

j

ˆ |ν|!
ν!

˙k

ď ep2πq´ k
2

ˆ

exppkq?
2π

˙| supp ν|
ź

jPsupp ν

ν
k´1
2

j

ˆ |ν|!
ν!

˙k

. (B.6)

Since ρ ą 1, there exists a constant C̃ρ such that npk´1q{2 ď C̃ρρ
n for all n P N. Thus

ś

jPsupp ν ν
pk´1q{2
j ď

C̃
| supp ν|
ρ ρ|ν|. The upper bound in (B.2) then follows via (B.6), for instance with Ck,ρ :“ C̃ρ exppk`1qp2πq´ 1

2 . �

Proof of Lemma 3.14. We start again with the case ϑ “ 0. W.l.o.g. we assume throughout bj ą 0 for all j P N.
Step 1. For k “ 1, p “ 1 we have

ÿ

νPF

|ν|!
ν!

bν “
ÿ

lPN0

˜

ÿ

jPN

bj

¸l

“ 1

1 ´ }b}ℓ1pNq
ă 8, (B.7)

which, due to F1 “ F , gives pbνqνPF1
P ℓ1pF1q iff }b}ℓ1 ă 1.

Step 2. We show that for any p P p0, 1s and k P N the conditions }b}ℓppNq ă 8 and }b}ℓ1pNq ă 1 are necessary

in order for pbν |ν|!{ν!qνPFk
P ℓp{kpFkq to hold. It is clear that }b}ℓppNq ă 8 must be satisfied, since pbpj qjPN is
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a subsequence of ppbν |ν|!{ν!qp{kqνPFk
. Next, it suffices to verify necessity of }b}ℓ1pNq ă 1 for p “ 1. Let k P N.

With Lemma B.1 it holds

ÿ

νPFk

ˆ

bν
|ν|!
ν!

˙
1
k

ě
ÿ

νPF

ˆ

bkν
|kν|!
kν!

˙
1
k

ě C
ÿ

νPF

˜

bkν
ˆ |ν|!

ν!

˙k
¸

1
k

“ C
ÿ

νPF

bν
|ν|!
ν!

.

According to (B.7), the last sum is finite iff }b}ℓ1pNq ă 1. This shows that for any value of p P p0, 1s and k P N,
the stated conditions are necessary.

Step 3. Fix an integer k ą 1. We claim that for every ν P Fk, there exists µ P F such that

pµj P tki : i P N0u and |νj ´ µj | ă kq @j P N, bν
|ν|!
ν!

ď kk| supp ν|bµ
|µ|!
µ!

. (B.8)

To show this claim fix ν P Fk and assume for the moment that there exists j0 P N such that νj0 R tki : i P N0u
and νi P tki : i P N0u for all i ‰ j0. By definition of Fk, this implies νj0 ą k. Assume first that

b´1
j0

νj0
|ν| ě 1. (B.9)

Then for r P t1, . . . , k ´ 1u

b´1
j0

νj0 ´ r

|ν| ´ r
“ b´1

j0

νj0
|ν|

|ν|
|ν| ´ r

νj0 ´ r

νj0
ě νj0 ´ r

νj0
ě 1

k
, (B.10)

because νj0 ą k and r ă k. Define µ “ pµj0qjPN P F by

µi :“
#

νi if i ‰ j

maxtnk : n P N, nk ď νj0u if i “ j

for all i P N. Then |νj0 ´ µj0 | ă k and by (B.10)

bν
|ν|!
ν!

ď bν
|ν|!
ν!

kνj0´µj0

νj0´µj0
´1

ź

r“0

b´1
j0

νj0 ´ r

|ν| ´ r
“ kνj0´µj0bµ

|µ|!
µ!

ď kkbµ
|µ|!
µ!

,

which shows that µ satisfies (B.8).
Next, suppose that (B.9) does not hold. Then bj0 |ν|{νj0 ą 1 and therefore for r P t1, . . . , k ´ 1u

bj0
|ν| ` r

νj0 ` r
ě bj0

|ν|
νj0

|ν| ` r

|ν|
νj0

νj0 ` r
ě νj0
νj0 ` r

ě 1

k
.

With µ “ pµj0qjPN P F defined by

µi :“
#

νi if i ‰ j

mintnk : n P N, nk ě νj0u if i “ j

we then have |µj0 ´ νj0 | ă k and similar as before

bν
|ν|!
ν!

ď bν
|ν|!
ν!

kµj0
´νj0

µj0
´νj0´1
ź

r“0

bj0
|ν| ` r

νj0 ` r
“ kµj0

´νj0bµ
|µ|!
µ!

ď kkbµ
|µ|!
µ!

,
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which again shows that µ satisfies (B.8).
For the general case, where there might exist several indices j with νj R tki : i P N0u, we repeat the above

procedure for all such j to find µ satisfying (B.8). This verifies the claim.
Step 4. In this step we prove that for p “ 1 and 1 ă k P N, the conditions }b}ℓppNq ă 8 and }b}ℓ1pNq ă 1

imply pbν |ν|!{ν!qνPFk
P ℓp{kpFkq.

If µ P F with µj P tki : i P N0u for all j P N then

|tν P Fk : |νj ´ µj | ă k, @ j P Nu| ď p2k ´ 1q| suppµ|. (B.11)

With µν denoting the multiindex constructed in Step 3 and satisfying (B.8), we get with (B.11)

ÿ

νPFk

ˆ

bν
|ν|!
ν!

˙
1
k

ď
ÿ

νPFk

k| supp ν|

ˆ

bµν
|µν |!
µν !

˙
1
k

ď
ÿ

νPF

p2k ´ 1q| supp ν|k| supp ν|

ˆ

bkν
|kν|!
pkνq!

˙
1
k

. (B.12)

Now let ρ ą 1 be so small that }ρ1{kb}ℓ1pNq ă 1, which is possible because }b}ℓ1pNq ă 1 by assumption. Then,
employing Lemma B.1, the right-hand side of (B.12) is bounded by

ÿ

νPF

pkp2k ´ 1qq| supp ν|C
| supp ν|

k

k,ρ

´

ρ
1
k b

¯ν |ν|!
ν!

ď
ÿ

νPF

C̃
| supp ν|
k,ρ

´

ρ
1
k b

¯ν |ν|!
ν!

, (B.13)

where C̃k,ρ :“ kp2k ´ 1qC1{k
k,ρ . Now let J P N be so large that with b̃j :“ ρ

1
k bj if j ď J and b̃j :“ C̃k,ρρ

1
k bj if

j ą J , it holds }b̃}ℓ1pNq ă 1. With this choice, by (B.12), (B.13) we arrive at

ÿ

νPFk

ˆ

bν
|ν|!
ν!

˙
1
k

ď C̃J´1
k,ρ

ÿ

νPF

b̃ν
|ν|!
ν!

ă 8, (B.14)

where the last series is finite by (B.7) and because }b̃}ℓ1 ă 1. This concludes the proof for k ą 1, p “ 1.
Step 5. It remains to show that }b}ℓppNq ă 8 and }b}ℓ1pNq ă 1 imply pbν |ν|!{ν!qνPFk

P ℓp{kpFkq for k ě 1
and p P p0, 1q. As shown in the proof of [11, Thm. 7.2], with p1 :“ p{p1 ´ pq one can construct sequences
γ “ pγjqjPN, δ “ pδjqjPN such that

}γ}ℓ1pNq ă 1, }δ}ℓ8pNq ă 1, }δ}ℓp1 pNq ă 8 and bj ď δjγj @ j P N (B.15)

(essentially γj „ b
p
j and δj „ b

1´p
j ). We get

ÿ

νPFk

ˆ

bν
|ν|!
ν!

˙
p
k

ď
ÿ

νPFk

ˆ

γν |ν|!
ν!

˙
p
k

δ
p
k ď

˜

ÿ

νPFk

ˆ

γν |ν|!
ν!

˙
1
k

¸p˜
ÿ

νPFk

δ
ν

p

kp1´pq

¸1´p

.

Using (B.15), the first sum is finite by the statement of the current Lemma for p “ 1 (already shown in Step 4),

and the second sum is finite since pδνqνPFk
P ℓp1{kpFkq according to Lemma 3.13. This proves pbν |ν|!{ν!qνPFk

P
ℓp{kpFkq.

Step 6. We have shown the lemma for ϑ “ 0. In order to finish the proof, it suffices to verify that under the
assumptions }b}ℓppNq ă 8 and }b}ℓ1pNq ă 1, for any fixed k P N and ϑ ą 0 with wν “ R| supp ν|

ś

jPNp1 ` νjqϑ it

holds pwνb
ν |ν|!{ν!qνPF P ℓp{kpFkq. This can be shown by the same argument used at the end of the proof of

Lemma 3.13. �
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