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CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE*

JAKOB ZECH! AND CHRISTOPH SCHWAB?

Abstract. We analyse convergence rates of Smolyak integration for parametric maps u : U — X
taking values in a Banach space X, defined on the parameter domain U = [—1, 1]N. For parametric
maps which are sparse, as quantified by summability of their Taylor polynomial chaos coefficients,
dimension-independent convergence rates superior to IN-term approximation rates under the same
sparsity are achievable. We propose a concrete Smolyak algorithm to apriori identify integrand-adapted
sets of active multiindices (and thereby unisolvent sparse grids of quadrature points) via upper bounds
for the integrands’ Taylor gpc coefficients. For so-called “(b,)-holomorphic” integrands u with b €
£P(N) for some p € (0, 1), we prove the dimension-independent convergence rate 2/p — 1 in terms of the
number of quadrature points. The proposed Smolyak algorithm is proved to yield (essentially) the same
rate in terms of the total computational cost for both nested and non-nested univariate quadrature
points. Numerical experiments and a mathematical sparsity analysis accounting for cancellations in
quadratures and in the combination formula demonstrate that the asymptotic rate 2/p — 1 is realized
computationally for a moderate number of quadrature points under certain circumstances. By a refined
analysis of model integrand classes we show that a generally large preasymptotic range otherwise
precludes reaching the asymptotic rate 2/p — 1 for practically relevant numbers of quadrature points.

1991 Mathematics Subject Classification. 65D30.
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1. INTRODUCTION

Let X be a Banach space, set U = [—1,1]Y and let p be the infinite product (probability) measure ®jen A2
on U, where X\ denotes the Lebesgue measure on [—1,1]. The efficient numerical approximation of formally
infinite-dimensional integrals

f u(y)du(y), (1.1)
U
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of strongly p-measurable, parametric maps u : U — X is a key problem in computational uncertainty quantifi-
cation (“UQ” for short). In computational UQ, the integrand function u in (1.1) is implicitly given as solution
of a so-called forward model, typically an operator equation parametrized by a sequence y € U. The parame-
ter sequences y can, for example, describe distributed uncertain constitutive relations or uncertain geometric
shapes. Equation (1.1) then describes an “ensemble average” (with respect to p) of the parametric solution,
over all admissible realizations of the uncertainty.

The high (in this case infinite) dimension of the integration domain U demands the integrand to possess
appropriate sparsity properties in order to make a numerical computation feasible, and overcome the so-called
curse of dimensionality. For this reason, the integrand is typically assumed to be very smooth, e.g. to allow a
bounded holomorphic extension into certain cylindrical subsets of CN: here, as in [20], we consider parametric
integrands which are holomorphic in cartesian products of discs with increasing radii. The rate at which
those radii increase is a measure of the sparsity of the function, and as was observed in [20, 21, 30] governs
the (dimension-independent) rate of convergence of the quadrature. These assumptions on the integrand are
condensed in the notion of (b, €)-holomorphy for a sequence b = (b;) jen € ¢P(N), see Def. 3.1 and also cp. [10-12].
This function class comprises in particular functions of the following type: Let Z and X be two complex Banach
spaces and (¢;)jen S Z such that (|¢;]z)jen € P(N). Assume that u: Z — X is Fréchet differentiable (this
can be weakened to Fréchet differentiability on a certain subset of Z). Then, as we show in Lemma 3.3, the
function

u(y) = u (Z yﬂ/h‘) eX yeU (1.2)
JeN

is (b, e)-holomorphic with b; = [v;]|z. Functions of this type arise in the context of parametrized partial

differential equations (PDEs) for a large variety of linear and nonlinear equations see for example [10,13,23,25,

27]. Our new results, which imply the convergence rate 2/p — 1 for the numerical approximation of (1.1), may

consequently be applied to all such models.

One possibility to numerically approximate the integral (1.1) is with a Monte Carlo method. Its advantage is
that the convergence rate does not depend on the dimension of the integration domain. Its main disadvantage is
the notoriously slow convergence rate of 1/2. For this reason, quasi Monte Carlo (QMC) methods exploiting the
integrands’ sparsity to attain higher order dimension-independent rates have been developed; we refer to [14,15],
to the surveys [15,29] and to the references there. QMC quadrature is free from the curse of dimensionality, and
additionally retains the Monte-Carlo feature of “embarrassingly parallel” integrand evaluation at the quadrature
points. For high numbers of computationally intensive function evaluations (as is the case for numerical PDE
solutions in the context of computational UQ) this becomes an important feature.

The present error analysis is based on so-called generalized polynomial chaos (“gpc” for short) expansions
of the parametric integrand function. Expansions of gpc type have proved a valuable tool in regularity and
sparsity analysis of countably-parametric functions taking values in a Banach space X; we refer to [10-12, 306]
and to the survey [33] and the references there. The idea is to expand the integrand in a polynomial basis, and
approximate the integral (1.1) with an interpolatory quadrature rule that is exact for the terms contributing
most in the expansion. Such reasoning gives best N-term results, but in practice the optimal set of quadrature
points is not known. The effectiveness of the method is due to the high smoothness of the integrand, which is
why polynomial approximations converge very fast. We refer to [35] and [4,17] for a general description of sparse
grid quadrature. For our proofs, as a basis we shall use the monomials, i.e. as in [10,12,36], we consider Taylor
gpc expansions around 0 = (0,0,...) € U. Unconditional convergence of such Taylor gpc expansion stipulates
holomorphy of the integrand in polydiscs around 0. We choose the monomials for ease of presentation, but point
out that holomorphy assumptions can be weakened by considering expansions in orthogonal bases such as the
Legendre polynomials which merely require holomorphy on so-called Bernstein ellipses (cp. [10]). This results
in more technical arguments, but also in weaker holomorphy assumptions, as shown in [37], see also Rmk. 2.14.
The question remains on how to choose the quadrature points such that possibly few function evaluations result
in a minimal error. In [18] an adaptive strategy has been proposed. The algorithm does not allow for parallel
function evaluations in general however. Nonetheless, it delivers good results and has also been applied for
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parametrized PDEs in [32]. In the case of apriori chosen quadrature points, the convergence for isotropic and
anisotropic sparse grids was investigated in [2,30], and more recently in [20,21]. The last two papers can be
considered as the closest to ours. Numerical experiments in these works often revealed much better convergence
rates, than what the theoretical findings suggested, see in particular [21,32].

The first aim of the present paper is to establish new, dimension-independent convergence rate bounds.
These are stated in Thm. 4.3. This result will shed some new light on the previously observed discrepancy
between the observed convergence rates, and the proven ones. As a general idea, we use apriori knowledge
on size scaling of domains of holomorphic extension of the parametric integrand to estimate the norm of the
Taylor coefficients. Based on these estimates, a sparse grid is constructed apriori. The crucial observation,
allowing us to improve earlier estimates, is then the following: The linear term y — y has integral 0 over
[—1,1], and is integrated exactly by the midpoint rule (i.e. by an evaluation at y = 0 multiplied with the
weight 1 corresponding to the probability measure A\/2). As a consequence, any polynomial in the multivariate
Taylor expansion containing a linear term will always be integrated exactly by the Smolyak quadrature operator.
This implies higher, dimension-independent convergence rates since the sequence of the remaining Taylor gpc
coefficients has summability which is superior to the sequence of all Taylor gpc coefficients. Indeed, our new
results improve previously established, dimension-independent convergence rates, by more than a factor two;
see Rmk. 4.5 and Examples 5.2 and 5.3.

The second contribution concerns a novel apriori construction of gpc index sets which we prove to provide near
optimal, dimension-independent convergence rates. Whereas many authors consider the number of quadrature
points as a measure for the work, in fact, due to its structure based on differences of tensor product quadratures,
the actual cost of the Smolyak algorithm does not in general behave linearly in the number of quadrature points.
The mentioned convergence rates are proven with respect to the total number of quadrature points in case of
nested point sets such as Leja points. In addition, we show that essentially the same rate can be obtained
also for non-nested point sets, such as the Gauss points. Finally, this rate is also proven in terms of the total
number of floating point operations. The precise statements are given in Thm. 2.13 and in a bit more generality
in Thm. 4.3. The proven rates are asymptotic, and might not always be observable in the range of “small”
numbers of quadrature points that are realizable in practice, as our numerical experiments and further analysis
of particular model parametric integrand families in Section 5 reveal.

Structure of the Paper

In Section 2 we first set up notation and state a few assumptions used throughout. Subsequently the Smolyak
algorithm is recalled, and we present a short complexity analysis. This then provides sufficient preliminaries to
state our main result.

In Section 3 we formalize the concept of (b, €)-holomorphic, parametric maps from the parameter domain U
into a complex Banach space X. Maps of this type admit unconditionally convergent Taylor gpc expansions,
with a specific decay of the Taylor gpc coefficients (¢, )per € X. In Section 3.3, we prove novel summability
results for certain subsequences of (t,)yer. These results quantify the effect of cancellations of Taylor gpc
coefficients due to symmetries in the Smolyak quadrature operators. As they are abstract sequence summation
results, they play a role also in more general gpc approximation results. The main result of the section is
Thm. 3.15.

In Section 4, we prove a convergence result for the Smolyak algorithm in Thm. 4.3. The algebraic convergence
rate is stated in terms of the number of function evaluations for both nested and non-nested quadrature points,
and additionally in terms of the number of required floating point operations. Additionally, we provide explicit
constructions of suitable sets of multiindices, which allows to apriori devise a sparse-grid. This provides an
algorithm for which the integrand can be evaluated at all quadrature points in parallel.

Section 5 is devoted to numerical experiments. We give more details on the implementation in Section 5.1.
As already mentioned above, a large preasymptotic range is observed in certain situations. This is numeri-
cally investigated in Section 5.2, and we give (heuristic) arguments why it occurs. Finally, in Section 5.3 the
convergence of our algorithm is tested for two exemplary real valued functions.
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2. SMOLYAK ALGORITHM AND MAIN RESULT

2.1. Notation

Throughout we let N = {1,2,...} and Ny := NuU{0}. The symbol C will stand for a generic, positive constant
independent of any quantities determining the asymptotic behaviour of an estimate. It may change even within
the same formula.

Multiindices are denoted by v = (v;)jen € N}. The notation supp v stands for the support of the multiindex,
i.e. the set {j € N : v; # 0}. For the total order of a multiindex we write |v| := > . v; and introduce the
countable sets

jeN

Fi={veN : |y <} and Fr:={veF :v;=kVjesuppv} (2.1)
for all k € N. In particular F = F;. Note that F consists of all finitely supported multiindices in NY. For two
multiindices v, p € F, by p < v we mean mean p; < vj, for all j > 1.

For p > 0 we let (P (Fj) be the space of R-valued sequences a = (a, )ver,, satisfying |alw7,) = X, ez, ab)V/p
00. Similarly, ¢P(N) is defined for sequences indexed over N. By a decreasing rearrangement (a;‘»‘) jen of a se-
quence (ay)ver,, we mean that there exists a bijection 7 : N — Fj such that af = a;) for all j € N, and
additionally af > af,, for all j € N.

As a topology on CN we choose the product topology, and any subset such as [—1, 1] is equipped with the
subspace topology. For a ball of radius r > 0 in C we write BS := {z € C : |z| < r} £ C. Furthermore, if
p = (pj)jen < (0,0), then BS := X jen B;(,:j c CN. Moreover, the parameter set U = [—1,1]" endowed with
the Borel product sigma algebra and the uniform product probability measure p := X) jeN /2 is a probability
space. Here, A denotes the Lebesgue measure on [—1,1]. With this topology, for a Banach space X we write
C°(U, X) for the space of (bounded) continuous functions mapping from U to X. Denoting the norm on X by
|- |x, we let

lullcow,x) = sup |u(y)] x-
yeU

Elements of CN are denoted by boldface characters such as y = (y;)jen € [—1,1]N. For v € F, standard
multivariate notations y* := [ [y y;J and v! = [ [,y v;! will be employed.

For a complex Banach space (X, |- |x), z € X and € > 0, as above we write BX := {z€ X : |z|x <e€}. A
function u mapping from an open subset of CY to X will be called separately holomorphic, if it is holomorphic
in each variable. For such a function we denote by

d?!
o dyi’ldy? o

Oy u(y) u(y)
the partial derivatives of u w.r.t. the multiindex v € F where |v| < co. We write X’ for the topological dual
space of X (i.e. the continuous linear functionals). The space of bounded linear maps between two Banach
spaces X and Y is denoted by L(X,Y).

Finally, for a set A we denote by |A| the cardinality of the set.

2.2. Smolyak Quadrature

Let in the following X be a Banach space and w : U — X a pointwise defined function. For n € Ny, let
(Xn:j)i=o € [~1,1] be a sequence of pairwise distinct points in [~1,1]. The Smolyak algorithm is built on a
family of univariate quadrature rules Q,, : C°([—1,1], X) — X that we assume to be interpolatory quadrature
rules with quadrature points (Xn:0,. - ., Xn:n), and w.r.t. the probability measure A/2 on [—1,1]. That is, for all
f € CO([_L 1]7X)

" U T Y X
Qnf = Z J(Xni)ans; where Anij = 7J’ H IR (2:2)
j=0 2 )1 Xnsg = X
£
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with an empty product denoting the constant unit function, i.e. ag,0 = 1. We interpret (), in the following
both as an operator mapping from C%([-1,1],X) — X and C°([—1,1]) — R. The definition of Q,, implies
Quw = Sl_l w(y)dA(y)/2 for all polynomials w of degree at most n. Note that in general the quadrature weights
Qi of @, can be negative. Throughout we assume that there exists ¥ € [0, ) such that the condition of the
univariate quadratures @,, is polynomially bounded according to

VneNp: sup _Qnfl <(n+1)7. (2.3)

0 feco(—1.1]) 1fleo=1,1)

To introduce the Smolyak quadrature, first define Q_; := 0. For every v € F set @, := ®jeN Qy,, i.e. for
u:U— X

Quu = Z u((XVj;Hj)jGN) HO‘VJ‘?HJ‘ = Z u((XVJ‘Wj )jeN) H Qvjipg (24)

{pHeF : p<v} jeN {ueF : p<v} jEsupp v

where an empty product equals 1 by convention. For a downward closed index set A € F of finite cardinality,
the Smolyak quadrature @, is defined by

Qr =Y, Q(Qu, — Qu,1).

veA jeN

By induction over d = | supp v|, it is easily verified that Q4 allows the representation

Qa= ) saw@s  where <, = > (=)', (2.5)

veA {ec{0,1}N: v+e€eA}

We also refer to (ca,u)ven as the “combination coefficients”. The latter representation of @, in (2.5) is preferred
in implementations, since it skips evaluations of @, for all v € A with ¢4, = 0.

2.3. Number of Function Evaluations

Denote in the following
X = ((Xnij)j=0)men- (2.6)
By (2.4) and (2.5) the computation of Qau requires to evaluate u at all points in

pts(A, x) = {(Xv;i;)jen : VEA, cpp #0, p<v}cU. (2.7)

Definition 2.1. The univariate points X = ((Xn;j)j=0)nen, < [—1, 1] are called nested if there evists a sequence
(Xj)jen, such that xpn,; = x; for every j € {0,...,n} and every n € Ny. Otherwise, the univariate points x are
non-nested.

Lemma 2.2. Let A S F be finite and downward closed. For nested points x holds |pts(A, x)| = |Al.

Lemma 2.2 is easily verified. For the general case, due to [{p € F : p < v} = [[;n(1 + v;), it follows
immediately that
pts(A, 0l < >, [ +w). (2.8)
{veA s, #0} jEN
To obtain good bounds on |pts(A, x)| for non-nested points x, we employ that the combination coefficients ¢y ,,
in (2.5) vanish for certain v € A. We formalize this via the notion of the set of admissible indices.

Assumption 2.3 (Admissible Indices). The set 3 = {i; : j € No} < Ny consists of the strictly monotonically
mcreasing, nonnegative sequence (ij)jeNO where ig = 0. There exists a constant K5 > 1 such that



6 TITLE WILL BE SET BY THE PUBLISHER

(1) L +1< Kj(ij + 1) for all j € Ny,

(ii) 252, (1 + 1) < Kgip, for allmeN.

Remark 2.4. Define 3, := {0} u{i; +1 : je No}. Fork, ne Ny it holds [k|; = [n]5 iff either k =n =0 or
there exists j € No such that k, n € (ij,111] " N. The latter is equivalent to k, n € [i; +1,i;41 +1) " N. Hence,
foranyv, pe F

Wz =[uly < |vla, =k,

For x > 0 denote in the following
|z]5 :=max{aeT : a <z} and [z]7 :=min{fa €T : a = z}. (2.9)

Application of these rounding operators to sequences is understood componentwise.

Remark 2.5. From Assumption 2.3 (i) we infer that for every n € Ny
n < Ki|n|s, and [n]3, < Kjn.
We will consider sets of multiindices satisfying
(veA and [plz=[v]s) = peA (2.10)

The below lemma in conjunction with (2.7) elucidate the significance of this property. The statement of the
lemma is visualized in Fig. 1. In the following we write

A ={reA:v;eJVjeN}L

Lemma 2.6. Let 3 < Ny. Let A be finite and downward closed with the property (2.10). Then for allv € A\A|5

SAv = Z (*l)le‘ =0.

{ee{0,1}N: v+ecA}
Proof. Fix v € A\(Aly). Since v ¢ Aly, there exists j € N with v; ¢ 3. Set 4; := {e = (e;)ien € {0,1}" :
v+eel, e; =0}, and let e € A; arbitrary. By (2.10) it holds [v + e]; € A since v + e € A. Furthermore, with
e; = (0i;)ien We get [V + e+ e;]5 = [V + e]y since v; ¢ J, and thus

Ajufete; ecA;}c{ec{0,1} : v+eecA}

On the other hand, if & = (6;);en € {e € {0,1}Y : v + e € A} and §; = 1, then due to the downward closedness
of A also v 4+ 6 — e; € A which implies § — e; € A; and consequently

Ajufete; ecA;}2{ec{0, 1} : v+eecA}
Thus

Z (_1)|e\ — Z (_1)\e\ + Z (_1)|e+ej| = Z (_1)|e\ _ Z (_1)Ie| - 0. 0

{ee{0,1}N: v+ecA} ecA; ecA; eEA; ecA;

For a finite set A € F of multi-indices, the effective dimension d(A) is given by

d(A) := sup|suppv|. (2.11)
veA

The proof of the following lemma is given in Appendix A.
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FIGURE 1. The sketch shows a set A = N2 of multiindices corresponding to the grey squares.
Equation (2.10) is satisfied for some set J = {0,2,5,9,...}. By Lemma 2.6, ¢ ,, # 0 can only
be true if v; € J for all j € N. The numbers in the squares show the values of g5, for each
ve A with gy, # 0.

Lemma 2.7. Let J < Ny satisfy Assumption 2.3. Let A € F be finite and downward closed. Then

MW+ <IAP and 3w +1) < K5™AL (2.12)

veA jeN veA|; jeN

A key element of the present paper is the apriori construction of (sequences of) finite index sets A  F which
capture provably the dominating part of gpc expansions of (b, €)-holomorphic maps. The index sets constructed
in the following will satisfy

d(A) = o(log(|A])) as |[A] — 0. (2.13)
In this case, the number of quadrature points (also for non-nested points x in the sense of Def. 2.1) grows only

slightly faster than linear in terms of the cardinality of the multiindex sets. This is a direct consequence of
(2.8), Lemma 2.6 and Lemma 2.7.

Lemma 2.8. Fiz § > 0. Let J satisfy Assumption 2.3. Let (A¢)eso be a family of finite downward closed index
sets satisfying (2.10) and (2.13). Let the quadrature points x be non-nested. Then

Ipts(Ae, x)| Z H (14 v5) = O(JAJ*) as |Ac| — co.
veA|; jeEN

Remark 2.9. The bounds (2.12) are sharp in the following sense: Let A = {v e F : suppv < {1,...,d}, v; <
N Vj} and set J:= {0} u {27 : j e Ng}. Then, with N = 2™ for some m € N, we have |A| = (N + 1) and

d N+1
Y Twi+1 1_[ Z i= (N’LU(M) > 274((N + 1)4)? = 274A)?, (2.14)

as well as

d m d
Y I[w+v=]] (1 + Y2+ 1)) >[[a+2m" —14m+1) = (22" +1))* = 24N + 1)? = 29|A].

vel|y jeN j=1 j=1
(2.15)

Letting N — o0 in (2.14) and d — o0 in (2.15), a better asymptotic behaviour than quadratic in |A| in the first
case, and linear in |A| with a constant depending exponentially on d(A) in the second case cannot be expected.
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However, these estimates may not accurately measure the actual number of function evaluations required in
(2.5), since they do not take into account the fact that some (further) combination coefficients in (2.5) might
vanish. Indeed, for the above example QA is the tensor product quadrature Q, withv; = N if j < d andv; =0
otherwise. The number of function evaluations is then equal to |A| = (N + 1)%.

2.4. Computational Cost

In the following let u : U — X be a pointwise defined function and let A € F be a finite downward closed
index set. While the number of function evaluations is in practice a good indicator of the computational cost (in
particular for PDEs where evaluating u is computationally intensive), we also analyse the error of the Smolyak
quadrature in terms of the number of floating point operations required to compute Qau.

To formalize this, we first make an assumption regarding the computational complexity of evaluating u.

Assumption 2.10. There exists a constant C' > 0 such that for every v € F, u can be evaluated at each
(Xv;in; )jen for p < v with a number of floating point operations that is bounded by |supp v|.

Remark 2.11. Consider a function as in (1.2) where u : C — C. If xo,0 = 0, then the computation of
ZjGN Xy, Vi = Zjesuppux’/j?l‘jwj requires |supp v| multiplications and |suppv| — 1 additions. If u can be
evaluated with O(1) floating point operations, then Assumption 2.10 is satisfied.

Less generally, if u(y) can be evaluated with complexity O(1) at every y € U, then clearly Assumption 2.10
18 also fulfilled.

Additional to the effective dimension d(A) in (2.11), the mazimal total order

m(A) := max |v| (2.16)
velA

has a certain significance when analysing the computational complexity.
To bound the cost of evaluating the Smolyak quadrature Qau, we use the representations (2.4) and (2.5).

e The coefficients (Ga »)per = Z{ee{o,l}N vteeh} (—1)‘e| can be computed with a number of floating point
operations bounded by Cd(A)|A|24M): this is achieved by looping over all v € A, and updating the
coefficient of all (at most 24(M)) neighbours in A of the type v — e for some e € {0,1}" (this implies
suppe < supp V). The computation of [e] = 3}, .1 requires at most |suppr|—1 < d(A) additions.

e Evaluating Q,u in (2.4) requires knowledge of the quadrature weights () for 7 = 0,...,n all
0 < n < maxyep v; < m(A). These weights can be computed by solving a linear system of dimension
n x n. Hence this part contributes at most C Z?:([S) n® < Cm(A)* floating point operations.

e To compute Q,u in (2.4) we need to evaluate u at all points in {(Xy;;,)jen @ p < v}. Under
Assumption 2.10 this requires at most Cd(A) [ [;on(1 + v;) floating point operations, since |{p € F :
u < v} = [];cn(1 +v;). The computation of the quadrature weight | [;c ,,p, vy, for all p < v
requires at most d(A) [ [;n(1 + v;) floating point operations. The summation over all p < v is again
of complexity [ [;on(1 + ;).

In all, we introduce

cost(A) := m(A)* + dA2' AL+ > AN ]+, (2.17)
NIl T~~~ {veA g, #0} jeN
comp. of ((an,j)}‘zo)::;(g) comp. of (sa,v)ven < ~ "~

evaluation of Quu

as a measure for the cost of evaluating the Smolyak quadrature Q@ u. As a consequence of Lemma 2.8 we obtain
an asymptotic bound on the computational complexity.
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Lemma 2.12. Fiz § > 0. Let J satisfy Assumption 2.53. Let (Ac)eso be a family of finite, downward closed
index sets satisfying (2.10). Let Assumption 2.10 be satisfied. Let further

d(Ae) = o(log |Ac]) and m(Ae) = O(log |Ac]) as |A¢| — oo. (2.18)

Then
cost(A,) = O(\AE|1+5) as |A¢| — o0.

2.5. Main Result

Let Z and X be two complex Banach spaces. Recall that BZ = {¢p € Z : ||¢|z < r}. A function u: B — X
is called holomorphic, if it is Fréchet differentiable. The following theorem is our main result. In the subsequent
sections, we prove a slight generalization of this statement, and also provide details on the explicit construction
of the index sets (see Thm. 4.3).

Theorem 2.13. Let (¢j)jen € Z, 7> 0 and p € (0,1). Fiz § > 0 arbitrarily small. Assume that

() Yjen 195z <7 and (|]2) jen € P(N) — £(N),
(i) u: BZ — X is holomorphic and bounded,
(iii) the quadrature points x (either nested or non-nested) satisfy (2.3).
ForyeU = [-1,1]N set u(y) := W(Xjen Yi¥5). Then, there exists a constant C > 0 such that for every e > 0
there exists a finite downward closed multiindex set A. © F with |A;] — o0 as € > 0 and such that

< Clpts(Ae, x)| 771 (2.19a)
X

f u(y)du(y) — Qa,u
U

as well as

< Ceost(A) 7149, (2.19b)
X

f u(y)duly) — Q.
U

Remark 2.14. More generally, in [37] we prove the following variant of Thm. 2.13, which merely assumes u
to be holomorphic on some open set containing all inputs rather than a ball (see (ii) below)
Let (¥j)jen © Z, 7> 0 and p € (0,1). Fiz § > 0 arbitrarily small. Assume that
(i) (Ijll2)jen € €2(N) — £1(N),
(ii) there is an open set O S Z such that {3;cyy;v; + y € U € O and u: O — X is holomorphic and
bounded,
(iii) the quadrature points x (either nested or non-nested) satisfy (2.3).
Forye U = [-1,1]" set u(y) := W(Xjen ¥i¥j). Then, there exists C > 0 such that for every € > 0 ezists a
finite downward closed multiindex set Ae € F such that |A| — 00 as € — 0 and (2.19) holds.
The proof in [37] also covers general Jacobi (probability) measures whose density on [—1,1] is given by
(1 —2)%(1 + 2)PCy 5 where o, B> —1 and Co 5 = ['(a + B+ 2)/(2 T (a + 1)T(B + 1)). For brevity, we
provide here a proof of Thm. 2.13 corresponding to a = 8 = 0, under stronger assumptions on the domain of
holomorphy of u. This allows to avoid certain technicalities.

In view of Lemma 2.8 and Lemma 2.12, it suffices to prove the asymptotic bounds (2.19) in terms of the
cardinality |A¢| of the multiindex sets, and to verify that A, complies with the assumptions of Lemma 2.8
and Lemma 2.12. Furthermore we shall see that in case of nested points (2.19a) also holds with 6 = 0 (as a
consequence of Lemma 2.2). We now give an example of a holomorphic function u as in Thm. 2.13.

Example 2.15. Let de N. Let D € R? be a bounded (nonempty) Lipschitz domain and set X := H}(D;C) so
that X' = H=Y(D;C). For ¢ € Z := L*(D;C) define the bounded linear operator A(y) € L(X,X’) by

A@W)u,v) = JD YVu' Vodz.
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Then A € L(Z,L(X,X")), and with the norm |u% := §, Vu"Vuda on X (here Vu is the complex conjugate)
it holds

”AHL(Z,L()QX’)): sup sup sup [(A(P)u,v)| = 1.
[¥]z=1]ulx=1]v|x=1

Suppose that ¥y € L*(D;R) satisfies 0 < 0 < o(x) < ¥ < 0 a.e. in D. Then by the (complex) Laxz-Milgram
Lemma, A(po) : X — X' is an isomorphism and |A(vo) ™ |L(x/,x) < 0~'9. For any 1 € Z it holds

|A() — Aol x,x) = AW —o)llLx,x) < ¥ — ol z.

Using a Neumann series, if [ — ol p(x,x) < [A(o) |71, then A(¥) : X — X' is also an isomorphism and

A@W)™H = (A(o) = Ao — ) ™" = (I = A(tho) " Ao — ) " Ao) ™" = Y (A(tho) T Ao — )" Alto) .

neNg

Since ((A(o)"LA(R))" A(po) 1™ € L(X, X) is an n-linear function of h € Z, this constitutes a Taylor series ex-
pansion (in Banach spaces) of 1 — A(¢) ™' € L(X', X) around 1. Due to |(A(1) " A(R))™ A(to) | r(xr,x) <
OHhHZ(X,X/)HA(wO)_le(X’,X) the Taylor series converges to a uniformly bounded function for all elements of
{heZ :|h—1tolz < HA(Q#O)*HZ(IX,’X)}, and it is holomorphic (i.e. Fréchet differentiable) there, which is
classical (see for example [7, 14.13]).

Fiz F € X'. We showed that the solution operator u mapping a diffusion coefficient 1) € Z to the unique
solution u(y)) € X of

JD YVu() Vodz = F(v)

is locally a well-defined holomorphic map around 1y € Z, since it is given by u(y) = A(Y) " F and ¢ — A(y) !
is holomorphic (for more details see [37, Chap. 1]).
Assume that (V;)jen © Z and p € (0,1) are such that

D lslz < 1A@) it xy  and  ([ilz)jen € (N).

jeN

By Thm. 2.13, the Smolyak quadrature allows to approzimate the Bochner integral §,; u(to + 2 jen Y55 du(y) €
X with (essentially) the convergence rate 2/p — 1.

The argument in the above example was completely independent of the concrete differential operator. The
same calculation holds for any linear (differential) operator A(tg) € L(X,X’) which is an isomorphism and
depends linearly on the data 1y in some Banach space Z.

3. SUMMABILITY OF TAYLOR GPC COEFFICIENTS

With U := [~1,1]", consider u : U — X, for some fixed Banach space X over C. In this section we are
concerned with the Taylor expansion
u(y) = ), by’ (3.1)
veF
of u and the summability properties of the Taylor gpc coefficients (||t || x)ver-

3.1. (b,e)-Holomorphy and GPC Expansions

In the following Z and X are two complex Banach spaces. We now characterize the functions in Thm. 2.13
in terms of their domains of holomorphic extension. We show that they satisfy the conditions summarized in
the notion of (b, )-holomorphy, which is introduced next. This definition has similarly been used for example
in [10,13,25].
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Definition 3.1. Let ¢ > 0, p € (0,1) and M, > 0. For a given sequence b = (b;)en < (0,0), we say that
u:U — X is (b,e)-holomorphic, if

(i) u:U — X is continuous,

(ii) for every sequence p = (p;)jen < (1,00) which is (b,e)-admissible, i.e. satisfies

Dbl —1) <s, (3.2)
jeN

u allows a separately holomorphic extension onto the polydisc BS = Xjen ij (this extension is denoted
by the same symbol u in the following),
(iii) for every (b,e)-admissible sequence the extension from (ii) satisfies

sup [u(z)|x < My < 0, (3.3)

zeB,

and for two (b, €)-admissible sequences p1 and py the extensions from (ii) coincide on By n B, .

We start with a statement about continuity, and recall that any subset of S € CN (such as U = [—1,1]V) is
considered with the product topology. Hence

N
{Sm()( 0; x X (C) : NeN, OjC(Cisopeane{l,...,N}}

j=1 >N
is a basis of the topology on S.
Lemma 3.2. Let (¢;)jen € Z satisfy (|[¢0j]z)jen € 1 (N). Then y — 2 jen Yj¥; is continuous from U to Z.

Proof. Fix e > 0 and y € U. We need to find an open set O € U (open w.r.t. the topology on U) such that
| 2 jen¥is — 2jen 2i¥jllz < € for all z = (zj)jen € O. Let J € N be so large that >, ; [¢;]z < €/4. Let

0 :=¢/(2J). Then
Dyt — Yz

jeN jeN

J
€ €
< ) 21Ylz< =+ = =
Lo+ Taile <5+

j>J
for every z € O := X7_{z e [-1,1] : |z —y] <8} x X ;_,[-1,1]. 0
Lemma 3.3. Lete >0, pe (0,1) and M, > 0. For a sequence (1) jen S Z and a sequence b = (b;)jen assume
that [¢;]z < b; for all j € N, and b = (b;)jen € P(N). With r := b + € assume that u : B — X is
holomorphic (i.e. Fréchet differentiable) and supyepz [u(¢)|x < My. Fory € U define u(y) = u(X ey Y5%5)-
Then u is (b,e)-holomorphic.
Proof. The map u : U — X defined as u(y) = u(X ey y;¢;) is continuous, since u : BZ — X is continuous
(even holomorphic) and y — ZjeN y;%; is continuous from U to Z by Lemma 3.2.

Let p = (p;)jen < (1,0) be (b, €)-admissible, i.e. p satisfies (3.2). Fix z € Bg c CN. Then

Dzl < X Islz + 35 (o5 = Dlisllz < D365 + D (py < bl +e < (3-4)

jeN jeN jeN jeN jeN

Therefore ZjeN zj; € Z is well-defined. Moreover, deN zj1; € BZ.

Now fix j € N and (2;)iz; € X, ; BS.. Then z; — 2 jen %i%j is an affine bounded (and thus holomorphic)
map from ng — BZ < Z. Due to the holomorphy of u : BZ — X, we obtain that u(z) = W(Xjen 2%5) is
holomorphic as a function of z; € ij, which shows (ii).
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For two (b, £)-admissible sequences p; and ps, by definition their corresponding extensions agree on BSI mBSI.
Finally, (3.3) follows by {3 ;o 245 : z € Bg} C BZ < Z whenever p is (b, €)-holomorphic, and the assumption
supyepz ()| x < M. 0

Next, we recall bounds on the norms of the Taylor coefficients. The next lemma is essentially a consequence
of the Cauchy integral theorem [24, Thm. 2.1.2], see the proof of [11, Lemma 2.4].

Lemma 3.4. Let p = (p;)jen € (1,0) and assume that u : BS — X is separately holomorphic (i.e. holomorphic
in each variable), such that SUPye B |u(y)|x < M, < 0. Then for every v € F the Taylor gpc coefficient

Oy u(y)
L= yu! ly—0 € X (3.5)
satisfies the bound
Itollx < Mup™. (3.6)

In Sec. 3.3 we will show that (|t,]x)ver € £1(F) for (b,e)-holomorphic functions. This implies that the
series Y rt,y” € X is pointwise well-defined for every y € U. In this case the expansion converges to u(y),
as recalled in the next Lemma. For a proof see, e.g., [37, Prop. 2.1.4]. Absolute convergence of a series ZjGN z;
in a Banach space X means >y [|z;]x < .

Lemma 3.5. Letpe (0,1), ¢ > 0 and b = (bj)jen € P(N). Let u: U — X be (b,e)-holomorphic and assume
that (|[tu]|x )ver € €1(F). Then u(y) = X, cr tvy” with uniform and absolute convergence for all y € U.

3.2. Multiindex Sets

Lemma 3.5 states that (b,e)-holomorphic functions v : U — X allow representations as Taylor expansions
u = Y rtyy? in infinitely many variables. For a finite subset A < F, the function a(y) = > - t,y”
defines an approximation to u, and the error can be bounded by |u(y) — @(y)|x < X ez [tv/lx. This line of
argument leads to best N-term rates, and determining suitable index sets A (possibly minimizing }},c = 5 [tv[x)
is typically the first step required to prove convergence rates for numerical algorithms. In order to obtain good
bounds of the computational complexity, we aim to devise A in such a way that the asymptotics (2.18) as well
as (2.10) are satisfied. This is the topic of the current subsection.

Definition 3.6. We say that (a,)ver < [0,00) is a monotonically decreasing sequence if v < p implies a,, > a,,
forallv, pe F.

Definition 3.7. A subset A  F is called downward closed if for every v € A it holds {pe F : p<v} < A.

The following assumption gathers all properties required of (a,),cr, such that the set
Ac((ap)ver) ={veF : a, =€}

satisfies the assumptions of Lemma 2.8 and Lemma 2.12. This is shown subsequently.

Assumption 3.8. There exist constants Cy > 0, C,, > 0, 3 > 0, § > 1, a sequence (fq)aen S (0,00) with
fa — 0 asd — o and a set I = Ny satisfying Assumption 2.3 (i), such that the sequence (ay)yer S [0,00)
satisfies

(1) (aw)ver is monotonically decreasing (see Def. 3.6),
(ii) (ay)per has the property
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(iil) with a decreasing rearrangement (af)jen of (av)ver it holds

af >0 VjeN,

sup ay < Cpd™? Vd e N,
{veF:|v|=d} (3.8)

sup ay, < Coe ¥4 vydeN.
{veF :|suppv|=d}

Lemma 3.9. Let (ay)per S [0,00) satisfy Assumption 3.8 and assume that (ay)per € L1(F) for some g > 0.
Then, for every € > 0 the set Ac = Ac((av)ver) == {v € F : ay = €} satisfies

(1) A is finite and downward closed,
(ii) 4t holds
(veA. and [plz=[v]s) = peA,
(iii) 4t holds
d(Ae) = o(log(|Ac])) and  m(A) = O(log(]Ac])) as € — 0. (3.9)
Proof. Fix € > 0. Assume that v < g and p € A.. Then a,, > € and due to monotonicity a, > a, > € so that
v € A.. This and the fact that >, _raf < oo show (i). Item (ii) is an immediate consequence of (3.7) and the

veF v
definition of A..
To show the first statement in (3.9), note that by Assumption 3.8 (iii)

d(Ae) =dy = sup a, = mina, = C, |A|™".
{veF :|supprv|=do} veA.

Moreover, we may write SUD(yer:|suppw|zdo} W < Coexp(—dofa,) for some sequence (fq)ien that tends to
infinity as d — o0 and some Cy > 0. Hence

d(Ae) = max{dy e N : d(A.) = dp}
< max{dp € N : Coexp(—dofa,) = Ce|Ae| ™"}
=max{dy € N : dyfq, < —1log(C,./Co) + rlog(|A])}.
Set g(x) := max{dy € N : dofy, < x}. We claim that g(z) = o(x) as x — 0. Assume on the contrary

that limsup,_,, g(z)/x # 0. Then there exists a sequence (z;) ey with z; — oo and a constant C' such that
g(z;) = Cx; for all j € N. For every j € N, let d; := g(z;). Then

Cxjfa; < g(xj)fa, =djfa, <x;  VjeN,
which is a contradiction since fy, — 00 as d; — c0. Hence g(z) = o(z) as & — c0. This shows d(A¢) = o(log(|Ac))
as |A¢| — oo or equivalently as ¢ — 0.

For m(A.) we proceed similarly. It holds

m(A) =dy = sup a, = mina, = C,|A]™".
{veF :|v|=do} veA.

By assumption supg,cr. y|>d} v < Cod~% for some § > 1 and some Cy > 0. Hence

—log(C./Co) + rlog(|Ac])
log(0)

which concludes the proof. O

m(A.) <max{dye N : Cod~% > C |A "} < = O(log(|Ac])),
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The next lemma facilitates to construct sequences satisfying (3.7) (while leaving the asymptotic decay prop-
erties of the sequence unchanged). For its formulation recall the set 3, = {0} U {i; + 1 : j € Ny} introduced in
Rmk. 2.4.

Lemma 3.10. Let k € N and s > 0, let J satisfy Assumption 2.3 (i) and let J4 be as in Rmk. 2.4. Let
(au)ue]:k = [0700) Define

U= (U)jen where e

3.10
|vila, otherwise. ( )

{k if1<|vla, <k

Then there exists Ck. > 0 depending on k and K; such that with with a, := a; for allv e F,

Soap < D aso T (4w (3.11)

veF veFy jEsupp v

Proof. First note that o € F, for every v € F (cp. (2.1)). By Rmk. 2.5 it holds [1 + n|y, < K3(1 + n) for all
n € Ng. Fix p e F. Then for any v € F

) ) - vie{l,...,min{i; +1: i, +1 >k} -1} if g, =k
5
. ! iy < v <[1+fgla, otherwise.

Therefore, there exists a constant C, ; such that for every p e F

fveF:v=pll< [ Cxnll+v).

j€Esupp v
This implies the lemma. O

We now give an example of a sequence satisfying Assumption 3.8.

Example 3.11. Fiz k € N and let 3 and T satisfy Assumption 2.3. Let @ = (0;)jen S (1,0) be such that
(gj_l)jeN € l4(N) for some ¢ > 0 and additionally o; < C,.5* for some fized constants » > 0, C,, > 0 and all
jeN. With © as in (3.10) define
Chw = 0" Vv e F. (3.12)
We claim that (c,;},),,e}- € (9% (F) and the sequence satisfies Assumption 3.8.
First we show (C];L)UE]: € (9/*(F). By Lemma 3.10

Nak=Yet< Y (e [+ wy).

veF veF veFy jeN

Since (Qj_l)jeN < (0,1) and (Qj_l)jeN € t1(N), Lemma 3.13 ahead implies (c,:i,),,e}- e (VR(F).

Next we check Assumption 3.8. Items (i) and (ii) are immediate consequences of Remark 2.4 and (3.12). To
verify (i1i) we first note that (Q;k)jeN 1s a subsequence of (c,;}}),,ef and Q;k > C %= for all j € N, which
shows the first inequality in (3.8). For the third inequality in (3.8), we use Lemma 3.12 to obtain a constant
Cy such that Q;l < Coj~ V4. Ifv e F then Uj =0 orv; = k for all j € N. Therefore

d
-1 2 .— d _
sup Chp = sup 0; ' < H Coj~ e = Cy(d!)
{veF :|suppr|=d} {veF:|suppv|=d} jeN j=1



TITLE WILL BE SET BY THE PUBLISHER 15

due to d! = e~%d?. This implies that there exists a sequence (fq)aen as stated in Assumption 3.8. Finally,
for the second inequality in (3.8) we use that for all n € Ny it holds |n]3, = n/Ky by Rmk. 2.5. Thus with
0= infjeN 0; > 1

- ez —lv;ila _Y
sup  cpL =  sup H 0; "< sup H o; Tt < sup n 5 K3,
{veF :|v|=d} {veF:|v|=d} jeN {veF :|v|=d} jeN {veF :|v|=d} jesupp v

which equals (6/%3)=%. In total this verifies (3.8) and Assumption 3.8.

3.3. P-Summability of Taylor GPC Coefficients

We now show that for (b, €)-holomorphic functions with a sequence b € ¢P(N) for some 0 < p < 1, the norms of
the Taylor gpc coefficients of u belong to ¢7/%(F}). This summability is the essential property in order to verify
improved, dimension-independent algebraic convergence rates for suitably adapted Smolyak quadratures, see
Sec. 4. N-term approximation rate bounds for Taylor and other gpc expansions have previously been established
by several authors, we only mention [10-12] and the references therein. Our new contribution here is twofold:
first, instead of F we consider the smaller sets Fj and in particular F5. As we shall see in Section 4, the set
Fo is better suited for analyzing Smolyak-style quadrature algorithms, as it quantifies increased sparsity due
to cancellation by symmetry (in the Smolyak quadratures). Our second contribution concerns a computable
estimator bounding the norm of the Taylor gpc coefficients. We show that, without loss of convergence order,
it can be chosen constant on certain subsets of F. This is to be contrasted with greedy computational schemes
based on numerical solutions of knapsack problems as, for example, in [3,4]. Our new, apriori construction
allows to localize the multiindex set for the Smolyak quadrature in near linear complexity (work and memory),
as explained in [37, Sec. 3.1.3]. Before presenting the result we state three lemmata required in the proof.

Lemma 3.12. Let p € (0,00) and let (t;)jen be nonnegative and monotonically decreasing. Then, for all N € N

N 1
P
tN<<Zt:;> N_%.

j=1
Proof. Due to the monotonicity of () ey it holds i, < N~ Zjvzl t% which implies the lemma. O

The next two lemmata are a generalization of [11, Lemma 7.1] and [11, Thm. 7.2], in that they consider
(improved) summability over Fj, for general k € N instead of just F;. The proofs are provided in Appendix B.

Lemma 3.13. Let b = (b;)jen < (0,00), ¥ = 0 and R > 1. Set w, := RlswrY [Len(1+ v;)?. Let p e (0,00)
and k € N. The sequence (w,b")y,ex, belongs to (P/*(Fy), iff [B]l¢r vy < 00 and || gy < 1.

Lemma 3.14. Let b = (bj)jen < (0,0), ¥ = 0 and R = 1. Set w,, := RIswrVI [Lien(1+ v;)?. Let pe (0,1]
and k € N. The sequence (w,b”|v|!/v) ez, belongs to (P/F(Fy,) iff ||b] oy < o0 and [b]epy < 1.

The following theorem is an extension of results in [11], [10], in particular of [11, Thm. 1.3], [10, Thm. 2.2].
Items four and five will provide explicit constructions of multiindex sets.

Theorem 3.15. Let k € N, 0 < 9 < oo, p € (0,1) and let the set of admissible indices I < Ny satisfy
Assumption 2.3 (i). Let u: U — X be (b,e)-holomorphic for some b € £P(N) (see Def. 3.1). For v € F define
Wy, 1= HjeN(l +v;)Y.
Then there exists C > 0, Cy > 0 and a sequence (akp)ver solely depending on 3, b, € and ¥ such that
(1) (akw)ver satisfies Assumption 3.8 (with the set of admissible indices J),

(ii) (ak,u)ue}' € gp/k(]:)’
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(iii) the Taylor gpc coefficients t, of u in (3.5) satisfy
wylty|x < CMyay, — YveF (3.13)

so that in particular (|ty | x)ver, € P/F(F).
Moreover
(iv) there exist T > 1 and 10 > 0 such that with ¢k, as in (3.12) defined with

0j = max{T, 1o min{bj_l,jQ/p}}lfp,
it holds (ay ycku)ver € €*(F) and (C];},)ue]-' e (p/0=P) (F),

(v) in case ||b|pay < Co, there exist 71, 7o > 0 such that with ¥ as in (3.10) we have the explicit
representation

Tgﬁj Vi
v = , T - . 3.14
o, Hmax{e |u|max{bm]—2/p}} (3.14)

Proof. We proceed in four steps. In the first two steps aj, as stated in the theorem is constructed. In the
third step item (i) is shown, and finally we show (iv) in Step 4. For a constant 71 € (0, 1] (chosen subsequently
in Step 1) throughout this proof set

b; := max{b;, 7j 2/} (3.15)

and b = (Bj)jeN. Then Ej > b; for each j € N, and thus the (b,¢)-holomorphic function u is also (b, €)-
holomorphic (cp. Def. 3.1). Furthermore, w.l.o.g. we assume M, > 0 in Def. 3.1 (if M, = 0 then u = 0, in
which case (iii) becomes trivial).

Step 1. We introduce (ak,)ver and show that the sequence is monotonically decreasing (cp. Def. 3.6) and
that it holds (3.13). Let the constant Cx, x > 0 be as in Lemma 3.10. Observe that with b as in (3.15) (where
71 is to be chosen), it is possible to find constants 71 € (0,1], ko > 1, Cy = 1 and J € N with the properties

(1+n)? <Cyry  VYneN, (3.16a)
and with ¢ :=¢/3
& . - 5 - 5 -1
(Kig—l) b]‘-l-lil bj<€—(5, bj<7, bp<7, bJ<*Vj>J
j; ]g-:] Jg-:] Cﬂcz/f,k";oe J;f 7 CoCrynkioe 2
(3.16Db)

where e = exp(1) and

k1 = Cykge.
In the general case they are obtained as follows: first set 7, = 1. Employing |b|| oy < 9 we choose kg > 1
with (k3 — 1) >jen b; < & — 20 where § := £/3, then choose Cy such that (1 +n)? < Cys? for all n € N, and

afterwards choose J € N large enough such that 1 > .. ;b; < d and the last three conditions in (3.16b) hold.

At this point we note that if

2 5 5 Yr o
HbH[p(N) < min { < ) s 2} =: Co, (3.17)

) k D )
3 CﬁOK/:hk"{Oe CﬁCKﬁ,k’ioe

j=J

then we may choose J = 1 and fix 7, > 0 so small that with b; = max{b;, 71527} it also holds Hl;ng(N) < Cy.
In this case the conditions in (3.16b) are satisfied with J = 1. We will use this below to show (v).
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For v € F, in the following vg denotes the multiindex which coincides with v in the first J components and
is zero otherwise, and vg := v — vg. Set

K3 ifj<J,
Prid = max{fi Lﬁ} ifj=J
P =
Here and in the following we adhere to the notational convention v;/|vp| = 0 in case |vp| = 0. Then, with
(3.16),
~ J-1 . J-1 . »
Z(py;j—l)jé(ﬁg—l)ij+Zpy;jbjé(mg—l) b]+,‘€1 bj+(5 ﬁ<€
jeN j=1 i=J j=1 g=J j=J UF

Therefore p, = (pu.j)jen is (b, €)-admissible (in the sense of Def. 3.1). Hence, with M, as in Def. 3.1 and Cy
as in (3.16a), we obtain from (3.6)

Ju | x T+ v)? < M, (cz':“”’”' I1 néj)ﬂp;?

jeN JESuUpp v jeN
J—1 Sv Y
—2u. i
< MuClsuppulﬁ‘"‘ Ky 7 max < Ky, ——
[V 0 0 ) 3
j=1 j=J lvr| J
J—1 o S Vi
_ —v; 1 j
< M0yt 1_[ Ko 1_[ max , 1 . (3.18)
j=1 i=J Cyko ngl£0|l/p‘bj
. ~ —
=:fu

We point out that k1/(Cyko) = e by definition of x1.
We now prove that f,, is monotonically decreasing in v. For j < J and with e; := (J;i)ien, since ko > 1 we
have f, e, < malf,, < fp. Next, fix j = J. Note that

max < e, L = max < e, = ov; (3.19)
Cokolvr|b; Cokob;(vj + Xgisyiizgy Vi)

is monotonically increasing as a function of v;, and is always larger or equal to e. Therefore

v
-1 22 } ‘
. maxije, ———+—— [vr|
fu+ej ov; _ { " Cyrolvr|b; <e ! 1 <1.
)b;
J

f gmax{e’c (vr| + 1 5 A
v sRo(|VF . _ovi F
iz J max {e’ cMoﬂuF\H)bi}

For all v € F define ay, := fp with £ as in (3.14). Note that & < v for all v € Fj,. Due to the monotonicity
of (fu)ver it thus holds ay, = fo for all v € Fj,. Together with (3.18) this shows (3.13).
Finally we point out that if b ) < Co, then as explained after (3.17), we can choose J = 1 so that

o0 o
s ’ i . 3.20
! gmax{e CﬂH0|V|maX{bj77'1]2/p}} (320)

is of the type described in (v).
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Step 2. We now show (a . )uer € ¢P/%(F). By Lemma 3.10 it holds

Sat =Nt ST ez + v).

veF veF veFi jeN
In the following we use that by Stirling’s inequalities n™ < e" n! and thus

‘V||U‘ < ell/l M

YveF.
Vl/
Set Fg := {vg : v € F}, G € {E,F}. Employing the definition of f,, in (3.18), d; C Cg/ioel;j/é and
JJ = G+ J—1) ] € N, we get
Z ary < Z C|SUPPVE‘C‘I(S:3€PVF|f5/k 1_[(1 n Vj)
veFy veF jeN
< Y OGhen T+ w)
veF jeN
~ v p/k
J-1 vl CrP Cyrob; \
— — k v Ky, k00U
coih 3w (fuem) (M2 (% [Ja+)
MeFenFy i = veFrnFi jEsupp v Jj=J
J—1 —|ulp/k i v|! o/
< CK;,]C 2 Rg wip 1_[ 1 + ,Uzz Z <V|du> H(l + I/j)
MHEFENF i=1 veFrnFy : j=J
. /k
—|ulp/k vl -\"
Cpt S0 kg (H(Hm)) > ( d”) (H(Huj)). (3.21)
MEFE i=1 veFy JEN

We have \|(dj)jeN|\¢p(N) < CHEHEP(N) < o0. Furthermore, due to (3.16b) it holds

. CHP. Corpe -
1(d;) jenll e vy = % Z bj <1.
i=J

Therefore, both sums on the right-hand side of (3.21) are finite according to Lemma 3.13 and Lemma 3.14.

Step 3. We prove that (aj . )ver satisfies Assumption 3.8.

Since (fu)ver is monotonically decreasing, and since v < p implies & < fu (cp. (3.10)), also (ak.u)ver is
monotonically decreasing.

To see (3.7) assume that [v]; = [pn]5. By Rmk. 2.4 we then have |v|5, = |p|5,. By definition of &, this
implies & = f1 and therefore ay, = fo = fa = ap,p-

It remains to show Assumption 3.8 (iii). Denote e; = (0;;)ien. The sequence (ag.e;);j>s is a subsequence of
(ak)ver- By (3.18) and (3.15), it holds (since b; — 0 as j — o)

—k
g 7k -—2k
Uk,e; = féj = fkej = Mmax {Cv W}} = ij =0y e,

This shows the first inequality in (3.8) with s = 2k/p > 0.
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For the third property in (3.8) we use b € ¢?(N), so that by Lemma 3.12 we have Bj < Cyj~ VP for some
Cj < 0. Then for d > J with (3.18) and due to the monotonicity of (f,)ver

sup Uk < sup fo
{veF :|suppv|=d} {veF :|suppv|=d}

\H<md J> ﬁ( Cy(d — J)Ogjl/p

d—J+1
< (W) ¢ H FTVP < ((J = D)DMYPedad(dn) e,

where C' = (C;Cy)/6. By Stirling’s inequality, d! > d*e=? for all d € N. Therefore, there exists a constant
C > 0 such that for every d € N holds withe=1/p—1>0

sup akp < cdg—cd .
{veF :|suppv|=d}

This shows the third property in (3.8).
Finally, we show the second property in (3.8). By Rmk. 2.5 it holds [n|5, > n/Kj for all n € Ny. Using that
U > |v]y, and that (f,)uer, is monotonically decreasing we get

—d
SUp G = sup  fp < sup f[,,Jj+ sup H Ko ~vi/Ka H e Vil < (min{mo,e}l/Kj)
{veF:|v|=d} {veF:|v|=d} {veF :|v|=d} {veF:|v|=d} j=1 i=J

which shows the second property in (3.8).
Step 4. We show (iv). By definition a;, = fp and ¢, = 0” where

0; = max{T, 1 min{bj_l,jz/p}}lfp
and the constants T' > 1, 79 > 0 are still at our disposal. Lemma 3.10 gives

Z U Cry < Z foo V0|5uppll| (1+v;).

veF veFy jeN

Fix T € (1, min{nl/ 1) ,2}). Let 79 € (0,1] be so small that max{T, Tob W < T for all j < J. By (3.16b) we
have b; = max{b;, 71772/} < 1/2 and thus b Y'>2>7Tforall j>J. Due to 7, 71 € (0,1] we get

0; = max{T, 1o min{b;l,jQ/p}}l_p < min{b Lot 2/p}1 P = b Vi = J.

Then by definition of f,, in (3.18)

S eene < 3 o T1 aem) (T (%

veF veFy iEsupp v
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Using once more n! > n™e™", similar as before we get with d; := (Cyro e/é)l;?%]fl for je Nand d = (dj)en
| supp v/| el (17 (T7\" Coroes,\ "
Z kv Chy < Z CK;,,k 1_[ (1 + Vz') TF' 1_[ TO H 5 bj
veF veFy iEsupp v j=1 i=J
| | J-1 Tl—p [l |I/|' | |
supp p ’ supp v
peN: ! j=1 0 veFi jeN

By (3.16b) we have
=Y meﬁ“@%g <1
jeN i=J
Therefore both sums in (3.22) are finite by Lemma 3.13 and Lemma 3.14.
Finally, since (b;)jen € £/(N), with o; ' = max{T, 7o min{b; ', /%?}}*~, we have (g, ') en € £”/1=7)(N) and
infjey 0; > 1. Therefore (C];}/)Ve]: e (»/C0=p))(F) by Example 3.11. O

Remark 3.16. Whenever b € (P(N) is a positive sequence, and 1, 7o > 0, then the sequence (ak ., )ver defined
in (3.14) belongs to (P/*(F). This follows by similar arguments as used in the proof of Thm. 3.15.

4. SMOLYAK CONVERGENCE RATES

Hereafter the main results of this paper are established. First, we show some elementary properties of
the Smolyak quadrature operator. In particular it will be verified that any multivariate monomial y* with
v € F\F, is integrated exactly. Subsequently the dimension-independent convergence rate of 2/p — 1 for the
Smolyak quadrature with nested quadrature rules in terms of number of number of quadrature points is given
for (b, e)-holomorphic functions with b € ¢P(N) for some 0 < p < 1. For non-nested quadrature points, nearly
the same convergence rate is obtained. Similarly, we obtain the same algebraic convergence in terms of the cost
measure (which counts the number of required floating operations) introduced in Sec. 2.4.

4.1. Properties of the Smolyak Quadrature

Lemma 4.1. Let A € F be finite and downward closed. Then

(i) for v e F it holds Qay” = Qquen : p<}¥y”>
(i) QAP = 8[71,1]N P(y)du(y) for all P € span{y” : v e A},

(iil) if x0;0 = 0, then QxP = §, P(y)du(y) = 0 for all P € span{y” : v € F\Fa},
(iv) if (2.3) holds for some ¥ = 1, then for allv e F

Qay”| < [ [ +w)"*

jeN

Proof. Fix v € F. Due to Q,y* = Sl_l y*dy/2 for all n > k we have (@jen(Qp; = Quy—1))(y¥) = 0 whenever
there exists j € N such that u; > v;. Thus

QrY” = Z (@(Qw - QMjl)) Yy’ = Z <®(QM - QMI)) y”,
peA \JEN {ueA : u<v} \JEN
which shows (i). Next observe that due to the convention @_; =0

Z (@(Qm - Qll]‘—l)) = ® ZJ}(QZ - Qi—l) = ®QV]‘ = Qu-

{ueF : u<v} \JEN jeN =0 jeN
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Therefore, if v € A then by (i) it holds QAy” = QLy” = HjeN Qu, y;j = SU y’du(y).

For (iii) consider the univariate quadrature operator @, : Co([—1,1]) — R, employing n + 1 distinct quadra-
ture points in [—1,1]. The monomial y — y satisfies Q,y = Sl_l ydy/2 = 0 for all n € Ny: this is true for n > 1,
as stated at the beginning of the proof. It is true for n = 0, because Qoy = x0.0 = 0. For v € F and p € F\F,
arbitrary there exists j with y; = 1 and thus

jeN JeN v

which by (2.5) gives Qay* = 0 = §, y”du(y) for all p e F\F,.
For item (iv), fix v € F. By (i) and (2.3) we can bound |Qxy”| by

D 1@u = Qu—)yy | < XTI+ p)” +uf) =11 ZJ] (1 +4)7 +4").

p<v jeN p<V jeN JeNi=0

So we need to show Y.i" (1 41)” +47) < (1 +m)?*!. The statement is true for m = 0. For the induction step
we get Y71 +49)7 +47%) < (1+m)? T + (2 +m)? + (1 +m)?. Tt suffices to show that ((1 +m)?+! + (2 +
m)? + (1 4+m)?)/(2+m)? <2+ m. The latter is equivalent to ((1 +m)/(2 +m))?(2 + m) < 1+ m. This is
satisfied because ¥ > 1. O
Remark 4.2. Let —0 < a < b < o and let n be a probability measure on (a,b) equipped with the Borel
o-Algebra. The idea of Lemma 4.1 (i) is generalized as follows. Set xo0 := Sz ydn(y). Then the one point
quadrature rule Qo : f — f(xo0,0) w.r.t. the measure n is exact on span{l,y}: it holds Qol =1 = SZ 1dn(y) and

Qoy = Xo0,0 = SZ ydn(y).
4.2. Convergence Rates

We now turn to the proof of Thm. 2.13. Due to Lemma 3.3, Thm. 2.13 is implied by the following, stronger
statement.

Theorem 4.3. Let X be a Banach space, U = [~1,1]N and let u : U — X be (b, €)-holomorphic (see Def. 5.1)
for a sequence b = (b;)jen € £P(N) and some p € (0,1). Let the quadrature points x in (2.6) satisfy the bound
(2.3) for some ¥ = 0, and let the set of admissible indices I < Ny satisfy Assumption 2.3.
Then for any § > 0 there exists a constant C' such that
(i) with (a2u)ver as in Thm. 8.15 for U =10+ 1, for every € > 0 the set A, := {veF :ay, =€ is
finite and downward closed and (cp. (2.7))

< Clpts(Ae, x)|~(G7D)+0 (4.1)
X

f u(y)du(y) — Qa.u
U

as well (ep. (2.17))

< C'cost(AE)f(%fl)M7 (4.2)
X

J u(y)du(y) — Qa.u
U

(ii) with (cau)wer asin Thm. 3.15 for 0 := 0+ 1, for every € > 0 the set A, := {v e F : 62_,1/ > €} is finite
and downward closed, and (cp. (2.7))

< Clpts(Ae, x)[" G2+ (4.3)
X

J u(y)du(y) — Qa, v
U
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as well (cp. (2.17))

< Ceost(A) (27249, (4.4)

J~UQD®Ny%—Qmu
U

X

(iii) if the points x are nested, then (4.1) and (4.3) remain true for 6 = 0, and Assumption 2.3 (ii)
(exponential increase of the admissible indices) on J can be dropped.
Proof. We start with (i) and let Ac = Ac((az,p)ver), where (a2, )ver is as in Thm. 3.15
By Thm. 3.15 (iii), the Taylor gpc coefficients (t,),er S X of u satisfy (|t,|x)ver € (P(F) — (Y(F). By

Lemma 3.5, u(y) = Y, » tuy” converges absolutely in C°(U, X). Fix e > 0. As Q,, : C°(U) — X is a bounded
linear operator, by Lemma 4.1 (ii) and (iii)

QAEU = C)A6 Z tuyu = Z tuQA f Z tuy d,u Z tuQAeyyv (45)
veF veF UEA ue]—'g\A6
where the latter sum is absolutely convergent in X. Lemma 4.1 (iii) also implies §,; u(y)du(y) = §;; X ez, toy”du(y).

Using Thm. 3.15 (iii) and Lemma 4.1 (iv) we get that there exists a constant C' > 0 such that for every € > 0

fu@w@—mw
U

f Y onytduly) + Y ItlxlQay]

veFa\A, v VEF\A.

Y “tu|X|yVCOULR)<1‘+:[I(Vj4‘1)ﬁ+1>

veFo\A. jeN

<C ), a,<C ) az.. (4.6)

veF2\Ace {VEF : az,, <€}

Exploiting (a2, )uer € (P/?(F) allows to bound the last sum by C|A|'~??. This follows by rearranging the
sequence (as,)ver as a monotonically decreasing sequence (a] *)jen, so that Lemma 3.12 gives ay < Cj ~2/P and
consequently >\ a¥ CSN x~2Pdy < ON1-2/p,

In case the points are nested we have |pts(Ae, x)| = |A¢| by Lemma 2.2, which shows (4.1) for § = 0, and
thus the statement in (iii) in this case. If the points are non-nested, then we use that for any ¢ > 0 it holds
Ipts(Ae, x)| = O(|A|*+9) as € — 0. This is an immediate consequence of Thm. 3.15 (i), Lemma 3.9 and Lemma
2.8. In all this shows (4.1) also for non-nested points.

For (4.2) we argue similarly by invoking Thm. 3.15 () Lemma 3.9 and Lemma 2.8.

Next we prove (ii), i.e. in the following Ae = Ac((cy Der) ={veF: cg,lj > ¢}, where (c2)ver is as in
Thm. 3.15 (iv). As in (4.6) we obtain

JU@W@—%J
U

1
<C Z az, < (bup c2V> Z a2,,C2,

I/E]‘-Q\A VE]:\A [LE.FQ\Ae

Since (ci},)ue]: e P/C0=P)(F) and (az,c2.0)ver € £1(F) by Thm. 3.15 (iv), Lemma 3.12 implies

<C sup ¢, < CJA™ /=2,
X veF\Ae

J~MyMM@%—QmU
U

For nested points, Lemma 2.2 then implies (4.3), which also shows (iii) in this case. In order to prove (4.3) for
non-nested points and (4.4), we use the fact that (C;),lj)ue]: satisfies Assumption 3.8 by Example 3.11, so that
we can employ Lemma 3.9, Lemma 2.8 and Lemma 2.12 as above. O
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Remark 4.4. The convergence rate for Ae((cz_},),,e}-) i Thm. 4.3 is off by a factor 1 compared to the index sets
Ac((a2p)ver). In [37, Lemma 1.4.19] we give an example which shows that this is not due to a rough estimate,
but the index sets Ac((c3, UYver) are in fact suboptimal in general. However, in our numerical experiments we
shall see that the index sets Ac((cy, D)ver) seem to perform better in practice than A ((as,y)ver)-

Remark 4.5. In the papers [20, 21], rather than (b,e)-holomorphy, a requirement of the following type is
presumed:
u 1s separately holomorphic and uniformly bounded on some polydisc
BS = CN, where p; > 1 for all j € N and (pj_l)jeN e ?(N), pe (0,1).

In these references, under assumptions similar to (4.7), dimension-independent convergence rates (1/p—1) and
(1/p — 1)/2, respectively, are established (see [20, Cor. 5.9], [21, Assumption 4.2, Thm. 5.5] for the precise
assumptions and statements).

Let u be (b,e)-holomorphic for some b € ¢P(N) and some p € (0,1), ¢ > 0. Let K > 1 be so small and

J € N be so large that (k — 1),y bj + X5 ;b7 < e. This is possible because [b]p ), [bleryy < 00. Set

pj ==k for j < J and p; := max{r,b;" Y for j > J. Then Z]GN iP5 — 1) < jen(k — )by + 325, ;b7
Thus (b, €)-holomorphy implies (4.7) wzth this p. Note that (p; Y jen € P/A=P)(N) and p/(1 — p) > p. On the
other hand, (4.7) implies (l~) 1)-holomorphy, with b; = (p; —1)~" and (bj)jen € P(N): if p is arbitrary with
Z]er (p; —1) <1, then b; i(p; —1) <1, and thus (p; — 1)/(p; — 1) < 1 implying p; < p; for each j € N. Since
u allows a bounded holomorphic extension to BS by (4.7), it also allows a bounded holomorphic extension to
B% c Bg. Hence (b, €)-holomorphy is more general than (4.7).

In summary, Thm. 4.8 improves the dimension-independent convergence rates 1/p — 1, (1/p — 1)/2 for the
anisotropic Smolyak quadrature proved in [20,21] to 2/p—1, i.e. by more than a factor 2 and 4, respectively, and
under weaker assumptions regarding the domain of holomorphy (namely (b, e)-holomorphy rather than (4.7)).
We explain this in more detail in Examples 5.2, 5.3 ahead.

(4.7)

5. NUMERICAL EXPERIMENTS

This section reports on the numerical testing, which we have performed for the presented algorithm. More
details on the construction of the index sets will be given in Sec. 5.1. We shall see, that there is a large
preasymptotic range, which is addressed in Sec. 5.2. Afterwards, in Sec. 5.3 we consider the integration of two
real valued test functions.

We now introduce the two test integrands and discuss the proven convergence rate of the Smolyak quadrature
implied by Thm. 4.3. Additionally, we compare it with the results of [20, 21].

Remark 5.1. Some of the convergence rates presented in Thm. 4.8 only hold up to some (arbitrarily small)
0 > 0. Throughout what follows, the mentioned convergence rates are usually understood up to 6 > 0. We omit
to state this at every instance.

Example 5.2. Let p € (0,1) and assume that b = (b;)jen S (0,0) satisfies [blgomy < 1 and by < 0.
Define
wi(y) =[O +bu)""  yel (5.1)
jeN
(i) Fiz e € (0,1 — [b] o)) and let p = (pj)jen S (1,0) be (b,e)-admissible, i.e. 1;nbi(p; — 1) < ¢
(cp. Def. 3.1). Fiz z € BS = CN and set § := ¢ + |b] ey < 1. We can find a constant Cy such that
for 0 < x <6 it holds log(1/(1 — z)) < Csx. Since bjp; =bj(p; —1)+b; < <1, we get

< H (1- bjﬂj)il < exp (C§ Z bj/)j) .

JeN jeN

ur () = [ [ (1 +by25) 7"

jeN
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The last term is finite (independent of p) because Y iy bipj = Dien bi(pj —1)+ 2 e bj < e+[[bllaqy) <
0. Therefore u allows a well-defined uniformly bounded extension to BS. Clearly u(z) is holomorphic
in each z; € B;():j. Continuity of U 3y — uq1(y) is easily checked, and thus u is (b, €)-holomorphic. By
Thm. 4.3, the asymptotic convergence rate of the Smolyak quadrature is at least 2/p — 1.

(ii) Consider now assumption (4.7), i.e. the requirement which was similarly presumed in [20,21]. We wish
to find p = (pj)jen such that u allows a uniformly bounded holomorphic extension onto the polydisc
Bg, In view of Rmk. 4.5, the sequence p should be chosen such that (,oj_l)jeN € (P(N) for some possibly
small p > 0.

For0 <z <1 we have 1/(1—z) = 14z and furthermore log(1+x) = x/2, which gives —log(l—z) >
2/2. Thus for z := (—p;/2)jen € By

lui(2)| = H (1—b;p;/2)"" = exp (— Z log(1 — bjpj/2)> > exp (i Z bjpj> :

jeN jeN jeN

Hence p must satisfy 3 ey pjbj < 0. This implies ,0;1 = b;/cj for some sequence (c;)jen € ¢*(N).
Suppose that (pj_l)jeN € (P(N) for some 0 < p < 1. Then with p:=p/(1 +p) <1

2e-2(0)4=(2(4)7) (34) - () (ze)

and we obtain b € (P(N). Assuming that p > 0 was an optimal choice, in the sense that b e (P(N) but
b ¢ (1(N) with ¢ < p, it must hold p = p/(1 + p) = p, and therefore p = p/(1 — p). Hence (p}l)jeN, can
at best be in ¢P/(7=P)(N). One possible choice achieving this is p; := max{, bﬁ_l}, with k > 1 fulfilling
k||blgeqyy < 1. One checks that u then allows a uniformly bounded extension onto BS and it holds
(pj_l) € (P(N) with p := p/(1—p). The statements in [20, Cor. 5.9] and [21, Assumption 4.2, Thm. 5.5],
then essentially give the convergence rates s; :=p L —1=1/p—2 and s := (p~' —1)/2 =1/(2p) — 1.
In comparison, Thm. 4.3 gives the convergence rate 2/p — 1 = 251 + 3 = 4sy + 3.

Example 5.3. Let b = (b;)jen S (0,0) satisfy [blp < 1, and define

up(y) = (1 + 3] bjyj> yeU. (5.2)

jeN

With u(z) := 1/(1+ 2) we have us(y) = w(X ey y;jb;). Hence, Lemma 3.3 implies u to be (b, €)-holomorphic for
any fized € € (0,1 — |[b] ().

Similar as in Example 5.2, the corresponding results in [20, Cor. 5.9], [21, Assumption 4.2, Thm. 5.5]
give the convergence rates s1 = 1/p — 2 and sy = 1/(2p) — 1, while Thm. 4.8 implies the convergence rate
2/p—1=2s1 + 3 =4sy + 3 in terms of the number of quadrature points.

Remark 5.4. Differentiating uy, us in (5.1), (5.2) for some v € F we find

L Wlyeo = (DM and L (gl = (1
V!ylyy=07 U!y2yy=07 ol .

Thus the modulus of the Taylor gpc coefficients of uy, us agree with the sequences in Lemmata 3.13, 3.1} (for
9=0and R=1).
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5.1. Apriori Construction of Quadrature Rules

We consider two different types of quadrature points: sections of a Leja sequence serve as an example of nested
quadrature points, and the Gauss-Legendre points will be used as an example of non-nested quadrature points.
To construct a quadrature rule for (b, €)-holomorphic functions, throughout Sec. 5.1 the sequence (¢;)jeny S Z
in Def. 3.1 is assumed to satisfy

¥jllz < Cb; where b; =657" VjeN, (5.3)

for some fixed values of # € (0,1), r > 1 and a constant C. Then b = (65 ")en € P(N) for any p > 1/r.
5.1.1. Leja Quadrature

So called Leja sequences provide nested quadrature points which possess polynomial bounds on the growth

of the Lebesgue constant. We use the following construction given in [9, Section 3]. Set o := 0, 1 = m,
g :=m/2 and
1
Pon+1 = <,0n2+ ) P2n42 = P2p41 T T Vn = 1.

Now let x, := cos(p,) for all n € Ny. For every n € Ny and j € {0,...,n} we define Xleja = 0, Xleja =1,
ijg := —1 and XleJa = xpn for j = 3. As shown in [9, Thm. 3.1] there holds a bound of the type (2.3), also
see [5,6]. This y1€1db nested one dimensional quadrature points (cp. Def. 2.1).

Thm. 4.3 proposes two strategies to determine sets of multiindices A, providing proven asymptotic conver-
gence of the Smolyak quadrature. First, let (€2 )uer be as in (3.12) with ¢; = max{T, min{bj_l,jz/p}}lfp as
in Thm. 3.15 (iv). Here the constants 7' > 1 and 79 > 0 are in practice unknown. We simplify this by setting

= b?il. With J = Ny in (3.12) and with (5.3) we arrive at

N 2 ifrv, =1
Con = H(gj*r)(pfl)w where ;= AN (5.4)
jei v; otherwise.

Note that J = Ny satisfies Assumption 2.3 (i), but not Assumption 2.3 (ii). Due to the nestedness of the
univariate points x, Thm. 4.3, item (iii) is applicable. With A((&; Ver) ={verF: 02,, > €}, Thm. 4.3
suggests the convergence rate 2r — 2 for (b, €)-holomorphic functions, where b is as in (5.3). Due to

{veF: et ={veF :c, =c}

for any s > 0, the choice of exponent 1 — p in (5.4) is irrelevant for the definition of the index sets A.. Thus we
set

: N 2 ifyv, =1
e — H(Qj_T)_”f where v = 0 ) (5.5a)
’ ! v; otherwise
JeN J
and ‘
Ac((es) Nper) ={w e F : (c58) ™ = ). (5.5b)

Next we employ Thm. 3.15 (v) to construct a second choice of indexsets. Simplifying (3.14) by choosing
71 =T2 =1, we get

7 2 ify;=1
aleis h ) — J 5.6
1_[ e { |9j } where Y { otherwise ( a)

jeN vj

and
Ac(af)per) ={v e F : azly > ¢} (5.6b)
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In this case Thm. 4.3 and Thm. 3.15 (v) imply the convergence rate 2r — 1 for the Smolyak quadrature, provided
that 6 is small enough depending on u (and provided that the above choice of 71 = 75 = 1 was viable according
to Thm. 3.15 (v)).

5.1.2. Gauss-Legendre Quadrature

For every n € Ny denote by (x57;™)_o the n + 1 unique roots of the nth Legendre polynomial in the interval

[—1,1]. The one dimensional quadrature Q,, in (2.2) then integrates exactly all polynomials of degree 2n +1 as
is well-known. With 3 = {29 —1 : j e No} and J4 = {0} U {27 : j € No} (cp. Rmk. 2.4 and note that J satisfies

Assumption 2.3), set
gauss — H 27‘ lvilas (573)

jeN
and
Ac(((85™) Nwer) = {veF i (53,7) 7 > ¢} (5.7b)
This definition deviates from the formula in (3.12): the factor 2 in the exponent in (5.7a) accounts for the fact
that @,, integrates exactly polynomials of degree 2n+ 1 (and not just n+1). The sets in (5.7) can be considered
as a heuristic choice here, but we also refer to [37, Sec. 5.1.1] which provides a justification for this definition.
For the second choice of indexsets suggested by Thm. 3.15 (v), we similarly define

) —2lvjla,
gauss . H max { lVJJZLr } (58&)

jeN []a, 165

and
A((@50%)er) = v e F + a5 > o). (5.8b)

5.1.3. Decay of the Taylor GPC Coefficients

leja leja

Consider the two sequences ((¢y5, ) ")ver and (agy)ver from Sec. 5.1.1. By Example 3.11 and Rmk. 3.16
it holds ((clgejf) DY er € P12(F) and (alfjf)yef € EP/Q(]:) for any p > 1/r. Denote by ((c5;)™")jen and (a3 ;) jen
two monotomcally decreasing rearrangements. By Lemma 3.12, for any 6 > 0 there exists a constant C such
that for all j e N

(c5,)7 "< Cj=2r+e and ay ; < Cj=2r+9, (5.9)

Fig. 2 depicts the decay of these sequences for different values of r and 6. The rates in (5.9) are in general
not obtained in Fig. 2, as there appears to be a large preasymptotic range for larger 6. Decreasing 6 improves
the situation in the plotted range of j. For very small 0, the rates come close to the ones predicted by (5.9).

By Rmk. 5.4 and by definition of clff , it holds |t,| = (clgej,fL )=t for all v € Fy for the Taylor coefficient

Oyu1(Y)|y=o/v! of the function u; from Example 5.2. Similarly, by Thm. 3.15, it holds ||, ||x < C’alijf for the
Taylor gpc coefficients (t,),er S X of any (b, €)-holomorphic function, provided that |[bl|ey is small enough
as stated in Thm. 3.15 (v). Fig. 2 suggests that there is a preasymptotic range, where the norms of the Taylor
gpc coefficients decay slower than implied by Lemma 3.12 and the fact that (|t | x)wer, € £7/*(Fy) as stated in
Thm. 3.15 (iii). Since the proof of Thm. 4.3 heavily relies on this decay (for k = 2), we expect to have a range
of preasymptotic convergence with subpar convergence of the Smolyak quadrature.

5.2. Preasymptotic Behaviour

In the range shown in Fig. 2, for values of the scaling parameter 6 € (0,1) close to 1, the observed convergence
rates appear to contradict the predicted asymptotic rates as noted in Sec. 5.1.3. To understand this, we
investigate in more detail the decay of the (modulus of the) Taylor gpc coefficients ([ [;c(657")" )uer of the

function in Example 5.2 for b; = 857" and some fixed values of § and . This sequence can be written as

(9|"|p_”’)uef where p = (j)jen- (5.10)
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FIGURE 2. Decay of monotonically decreasing rearrangements (a3 ;)jen and ((c’2k7j)*1)j€N of

( leja leja

ayy Jver and ((cyo) " wer in (5.6), (5.5). In all cases, the asymptotic algebraic decay rate is

2r — § for any 6 > 0 as stated in (5.9).

We partition Fy, k € {1, 2}, into subsets of m-homogeneous multiindices

F'i={veF : |v|=m}

Fti={veF : |v|=m} (5.11)
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For k € {1,2} denote
(Zk:j) jen, a decreasing rearrangement of (§%/p=™),cx, (5.12)

and for m e N
(@ksmsj)jen, a decreasing rearrangement of (Hmp_”’),,efga. (5.13)

The next lemma describes the asymptotic decay of these sequences.

Lemma 5.5. Fix k, me N and 0 € (0,1), r > 0 in (5.13). For every § > 0 exists C > 0 (depending on 9, k,
m, 0 and r) such that

VieN: xy; <Cj ko and Ty < Cj7FH0 (5.14)

Proof. By Lemma 3.13, ((0p™")" ez, € (Y*)+9(F}). Lemma 3.12 implies (5.14) for (z.;) jen. Since (Tr.m.j) jen
is a subsequence of (x,;) jen, also the second bound in (5.14) is satisfied. O

In Sec. 5.2.1 we will show that certain logarithmic factors are involved in the decay of (%1.m.;),en, S0 that
the algebraic rate r in (5.14) (for & = 1) is observed only for large values of j. The case k = 1 is more relevant
for stochastic collocation (i.e. interpolation rather than quadrature), but the analysis in Sec. 5.2.1 explains to
some extent the preasymptotic behaviour of these sequences. In Sec. 5.2.2, we establish a formula for a lower
bound of the sequence (z2;;) en (i.e. & = 2). A plot of this lower bound (see Fig. 5) will show that (for large 6)
the asymptotic regime is reached only for very large values of j.

5.2.1. Decay w.r.t. Fi"

In the following, log denotes the natural logarithm.

Lemma 5.6. Letr >0, p = (j)jen and m e N. For R > 0 set

A (R) = > vl

v!
{veFm . p~v=R"}

Then Ap(R) =0 if R <1 and with ¢y :=1—1og(2) € (0,1) for all R > 1

RZ (co log (o log(R))" _ (R)<2m_1RmZ_11 log(R)' (5.15)
S = '
=

Proof. For R € [0,1) the sum is over the empty set, so let R > 1 in the following. Then

)

' m
An(R) = > |Z!'=‘{(i1,...,im)eNm : H@T;R—T}
! At

{veF:|v|=m, p~"V=R~ "}

since for every v € F with |v] = m, there exist exactly |v|!/v! elements (i1,...,%n) of N™ such that |{j €
{1,...,m} : i; =1} =y for all [ e N. With N := |R| € N we have
N m N m N
m+1 Z 7/17"'7 :j_rnil Z 7/17"', : HZ;T>(R/])_T} :ZAW(R/])
j=1 =1 j=1 =1 j=1

(5.16)
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To prove the upper bound in (5.15), we proceed by induction over m. For m = 1 it holds i7" > R™" iff
i1 < R, so that A1(R) = |R| and the estimate is satisfied. Next, employing (5.16) and the induction hypothesis

N m-—1 N
Apyr < 2771 Z Z ' log R/J gm—1 Zl ZE) Z.l!log(f/ﬁz_
j=1 i=

]1‘710

For any i € N and all z € [1, R]

N

d (log(R/x)i> _ —ilog(R/z)""1 — log(R/x)’ 0.

dx T 2

Therefore f( ) = 2m~1 Z?Z)l log(R/z)!/(z - i!) is monotonically decreasing for z € [1, R]. Thus Zjvzl fy) <
)+ Sl x)dz, giving

o Rm—1 o; o " m—1 log(R) )
22m 12 UgR/] f(1)+.[1 Z 2M :v=f(1)+2m_1Z%J;J (log(R) —y)"dy

7! T

=0 i=0
"o ( 1 log(R)"" R)*+! o log(R)?
m—1 m—1 < om
=2 E +2 ; z+1 <2 ;:0 T (5.17)

which concludes the proof of the upper bound.
For the lower bound, the case m = 1 follows by Rcy < |R| = A1 (R) where ¢ = (1 —log(2)) < 1/2. With
(5.16), due to the induction hypothesis

N N R ™S m i O

—_

Note that for |R| = N >

N N+1 2 Ry

Zf,>1+J fdx>1—J fd;v—&-f —dz = ¢g + log(R).
j x

Hence, using (as above) that f(z) := 3" 01 ey "log(R/x)"/x is monotonically decreasing for = € [1, R] so that
Zj L fU Sl x)dz, similar as in (5.17) we get

N m—1i Y N m N -1 m—i “\i
3 mz L " log(R/j)" _ 3 @ 3 mz cg' " log(R/4)
L L) j Lij L Ly J

j=11i=0 Jj=1 j=11i=1

m—1 ~R m—i i
m+1 m C0 lOg(R/l')
>c + ¢t log(R) + i_gl L I dz

o cf ! log(R)! llog(R)

_ Z ’

which proves the lower bound in (5.15). O
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With Lemma 5.6 and ¢g := 1 —log(2) € (0, 1), we observe for R > 1

m m=1l, — i
fupy = B QBB gy gy comoig § Ry (s
=0 ' =0

which immediately gives:

Lemma 5.7. For jeNlet Rj > 1 and S; > 1 be such that f,,(R;) = j and ¢, (S;) = j. Then with 1,m;; as
n (5.13)
HmRJ_T < xl;m;j < emsj—r Vj e N. (519)

Lemma 5.7, gives the parametrized curves
(fm(R),0"R™")  and  (gm(R),0™R™") (5.20)

for R > 1, which are lower and upper bounds of (z1,m.;) at every R;, S; where f,,(R;) = j and g (S;) = J.
To estimate the local algebraic decay of the upper bound for m in Lemma 5.7, we need to compute the slope
of the curve (log(gm(R)),log(0™R™")). At (log(gm(R)),log(0™R™")) it equals

i log(0m R) _ 3yt e DY
LR log(gm(R)) g;n(R) Zm 1 log(R)’ + ZnL 2 log R)L 14 Y 2 W

ST los(R)T

For example, if m = 2, then the upper bound at position j = g2(S;) = S;(1 + log(S;)) locally decreases at the

algebraic rate
r

S — 5.21
1+ m (5.21)
A similar deliberation for the lower bound in (5.19) gives the rate r/(1 + ¢ /(1 + cg ' log(R;))) at position
Jj = f2(R;) = Rj(co + log(R;))co/2. The logarithmic term log(S;) in (5.21) explains why a rate close to r is
only observed for large j. Due to the additional (higher order) logarithmic terms in (5.18), in a given, fixed
range of j, the rate of decay becomes worse as m grows.

Fig. 3 shows the sequence (z1.2;j)jen (i.e. m = 2) for r = 3 together with the lower and upper bounds in
(5.20). For small j, the behaviour of (Z1,m.j)jen is far from j~". The plot of the bounds for larger values of j
shows that the rate will eventually approach r.

5.2.2. Decay w.r.t. Fo

For the convergence rate analysis of the Smolyak quadrature, we are mainly interested in the sequence x»,; in
(5.13), i.e. the decreasing rearrangement of (6!”! [Lien(G™"))ver,. Here and in the following, we fix 6 € (0,1)
and r > 0.

We first discuss the decay of (z2;m.;)jen (cp. (5.13)) for different m € N. Recall that by (5.14), for any ¢ > 0
there exists C' such that (z2.,,;)jen < Cj~2" for all j € N.

e m = 1: Since F} = {v e Fy: |v| = 1} = F this case is trivial.

e m =2: With e; = (;;)ien we have 73 = {2e; : je N} and {p™™ : v e F3} = {j 72" : j € N} so that
Ta.2,; = j~ 2", and the decay predicted by (5.14) is apparent also for small j.

e m = 3: It holds 75 = {3e; : j € N} and thus {p~™ : ve F3} = {j 73" : j € N}. Hence m = 3 can be
considered as a special case, since 2,35 = J =37 and the decay is even faster than j72".

e m = 4: We have

{v e Fi:ip ™= R} =|{ve Fiip > R} = ‘{l/ eF::p ™ =R
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FIGURE 3. Decay of (z1;2;;)jen in (5.13) (i.e. m = 2 and k = 1), for » = 3, § = 1. Additionally,
the lower and upper bounds of z1.2.; in (5.20) (cp. (5.19)) are depicted. For any § > 0 there
exists C' > 0 such that x1,2,; < Cj=3%9 for all j € N. For small j, a worse, preasymptotic rate
is observed.

and thus with (5.18)
fg(Rl/Q) < ’{I/E]:él CpTY > R—7'}| < gz(Rl/Z)'

Considering the parametrized curves (fo(RY?),0*R™"), (g2(RY?),0*R™") for R > 1, a computation
similar to the one before (5.21) implies that the decay of (22.4;;) jen in the preasymptotic range is worse
than what (5.14) suggests, due to the logarithmic factors occurring in fa, go.

e m > 4: Similar arguments as in the case m = 4 apply, and we expect the decay rate to further
diminish as m grows. The precise behaviour depends on the number of possibilities to write m as a
sum of integers in N\{1}: for example {zo,5.; : j € N} = {k72173 : k # | € N} decreases faster than
{945 : j€ N} ={k™217% : k <l €N}, as Fig. 4 right panel shows.

Implications for (zs,;) en are as follows. All terms belonging to F3*, i.e.
Op™ ") =0mp™" Vve FJ, (5.22)

are scaled by the common factor 6™: the smaller 0, the fewer multiindices of high total order m (which, in
the preasymptotic range, decay slower than expected as we have noticed) will be among the N largest ones.
This is depicted in Fig. 4 which shows the sequences (Z2.m.;)jen for m € {2,...,8} and two different values
0 € {0.25,0.005}.

If 0 < 6 < 1 is small then, due to the factor §™ in (5.22), only few multiindices of order m > 4 occur among
the largest, and essentially ((0p~")"),erzurg governs the decay of z; for small j, thus yielding the expected
rate 2r — §. On the other hand, as 6 draws closer to 1, more higher order multiindices contribute to the largest
j terms, resulting in a longer preasymptotic range with slower decay.
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FIGURE 4. Decay of (22,m;j)jen in (5.13) for r = 3 and different values of §. For any § > 0 and
all m > 2 there exists C > 0 such that 2,,,; < Cj =% for all j € N.

To numerically verify these heuristic considerations, we determine a lower bound of z3;. With f,, as in
(5.18), for R = 1 there holds

fm(R) < v eF" : p7™ 2 R} < [{ve F5™ : p7™V = R77}. (5.23)
We extend f,, via fi,,(R) := 0 for all R € [0,1), and (5.23) then remains true also for R < 1. Then

F(R):=1+ ) fm(6®"R) <|{0}| + Y {re F3™ : p™™ = (0°"/*" R)~*"}]

meN meN
=[{0}| + X, v e B™ : (0p™ ) 2 R} <[{veF: (0p7") = R}, (5.24)
meN

which gives:
Lemma 5.8. For j e N let R; > 1 be such that F(R;) = j. For the sequence xo.; it holds Rj_Qr < xg;5.

Fig. 5 depicts the decay of (z2,;),en as well as the lower bound in Lemma 5.8 for 7 = 3 and 6 = 0.25. The
measured rate of (22.;)jen in the observed range of j is merely 4.96 and not close to 6 as suggested by (5.14).
For the plotted range of j in Fig. 5 (A) up to about j = 105, the lower bound from Lemma 5.8 seems to capture
well the preasymptotic behaviour of (22,;)jen. Plotting the lower bound for larger values of j up to about
j = 10°°, we observe that its algebraic decay rate eventually increases to approach 2r = 6, however only very
slowly. This suggests, that if & > 0 is not small enough, then the range where the Taylor gpc coefficients of w4
from Example 5.2 will show the predicted algebraic decay only occurs for j so large that it is not relevant in
practice.

Finally, for general (b, €)-holomorphic functions, in the proof of Thm. 3.15 we derived estimates of the norms
of the Taylor gpc coefficients which were of the type b|v|!/v! (also see Rmk. 5.4). In this section we have
analysed in more detail a sequence of the type (b”),cr, which corresponds to the Taylor gpc coefficients of uq
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FIGURE 5. Decay of (22,5)jen in (5.12) for § = 0.25 and r = 3. The lower bound is given in
Lemma 5.8. For any § > 0 there exists C' > 0 such that xs.; < Cj=2r+0 = 0§69 for all j € N.
In the preasymptotic range a worse rate is observed.

in Example 5.2. Due to the additional term |v|!/v!, it can be expected that the preasymptotic effect is even
stronger in the general case.

Remark 5.9. The case k = 1 is relevant for stochastic collocation algorithms (i.e. interpolation instead
of quadrature). Similar as in (5.24), we can define G(R) = 1+ Y. y9m(0™"R) and deduce that the
curve (G(R),R™") provides an upper bound for the behaviour of (x1j)jen in (5.13). By Lemma 5.6 it holds
gm (0T R) < 27102/ R2 < (20%7)™R? for all m € N, and therefore G(R) < 1 + (20%7)/(1 — 26%/")R?.
For wy in Ezample 5.2 (cp. Rmk. 5.4), we conclude that as long as 6 is small enough such that the constant
(20Y7) /(1 — 207 is (moderately) bounded, the preasymptotic error convergence of the interpolation error will
be at worst half of the proven convergence rate, which is in this case (r —1)/2.

This can be generalized to general (b,e)-holomorphic functions, by constructing indexsets based on the se-
quence c1y as stated in Thm. 5.15 (iv) (for k = 1): if 3 = No in (3.12), then c1,, is exactly of the type | [;cy Q;Uj
(i.e. like the sequence analysed in the current section).

5.3. Real Valued Model Parametric Integrand Functions

We now test the convergence of the Smolyak quadrature for the functions ui, us in Examples 5.2, 5.3. For us
we also refer to [21] where computations for almost the same integrand were done with the method suggested
in their paper.

5.3.1. Model Integrand u;y
Let

1
u = _ eU 5.25
1(y) glwﬂj—r y (5.25)
be as in (5.1) with b; := 67", 0 < 8 < 1, r > 1. As explained in Example 5.2, u; is (b, ¢)-holomorphic, and
by Thm. 4.3 the Smolyak quadrature can achieve the convergence rate 2r — 1 (cp. Rmk. 5.1) in terms of the
number of quadrature points if optimal indexsets are chosen.
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Fig. 6 shows the absolute error |, ui(y)du(y) — Qa,u1| for different values of r and 6, and with A as
in Sec. 5.1.1 and Sec. 5.1.2. Note that (up to the guessing of constants and simplifications in Sec. 5.1.1
and Sec. 5.1.2), Thm. 4.3 implies the convergence rates 2r — 1 for A.((az.)ver) as in (5.6) or (5.8) and
2r — 2 for AE((CZ}/),,G;) as in (5.5) or (5.7). The reference value for §, u1(y)du(y) was computed directly as
fiy w1 (y)duy) = TTyenlog((L + by)/(1 — ;))/(2b,).

Even though the Gauss-Legendre points are not nested, we observe that the Leja points and the Gauss-
Legendre points perform equally well in terms of the total number of function evaluations. Furthermore, the
index sets AE((CZ_}/),,E}-) deliver slightly better error convergence than Ac((az2.)ver). This is not surprising, as
((:2_;11,),,E F is a sequence resembling the Taylor gpc coefficients of w1, see Rmk. 5.4. As expected, the convergence
rate (which asymptotically only depends on r), strongly depends on 6. For large 6 a preasymptotic range of
subpar convergence is observed. This can be explained by the preasymptotic behaviour of the decay of the
Taylor gpc coefficients which we analysed in Sec. 5.2. For very small 6, we get close to the proven convergence
rate 2r — 1, e.g. for r = 2 and 6 = 0.005 we observe convergence rates of about 2.68 and 2.81 depending on the
chosen index sets. The plots confirm that considerably faster convergence than the previously proved rate r — 1
is in principle attainable.

5.3.2. Model Integrand us

Let
1

1+ GZjeN yig"
be as in (5.2) with b; := 657", r > 1 and 6 > 0 small enough such that szgNj_T < 1. By Example 5.3, ug is
(b, &)-holomorphic, and Thm. 4.3 implies that the Smolyak quadrature can achieve the convergence rate 2r — 1
in terms of the number of quadrature points if optimal index sets are chosen. Fig. 7 shows the convergence of
the absolute error | §,; ua(y)du(y) — Qa, u| for different values of 7 and #. Again we compare the convergence
for either nested Leja quadrature points or non-nested Gauss-Legendre quadrature points, and different apriori
constructions of multiindices as explained in Sec. 5.1.1 and Sec. 5.1.2. As before, (up to the guessing of constants
and simplifications in Sec. 5.1.1 and Sec. 5.1.2), Thm. 4.3 implies the convergence rates 2r — 1 for A.((az2v)ver)
as in (5.6) or (5.8) and 2r — 2 for Ae((ci,lj)yef) as in (5.5) or (5.7).

The reference value for SU u2(y)du(y) has been computed with a higher order quasi Monte Carlo rule (a
so-called high-order, Interlaced Polynomial Lattice rule adapted to the model integrand, with suitable digit
interlacing parameter, see [16] and the references there) utilizing 22° ~ 10% quadrature points applied to the
function u restricted to the first 1024 dimensions.

The observations are similar as for u;. The (preasymptotic) convergence rate strongly depends on the scaling
parameter 6. Leja and Gauss-Legendre quadrature deliver almost the same error w.r.t. the number of function
evaluations, and the index sets AE((CQ,}J),,E}-) perform (slightly) better than A.((az.)ver)-

uz(y) (5.26)

5.3.3. Comparison with an Adaptive Method

We consider the model parametric integrand us defined in (5.2), with b; := 657" for r = 2 and § > 0. In
the following, our method is compared with a variant of the dimension adaptive algorithm described in [1§]
which we outline briefly for completeness. For some finite, downward closed set of multiindices {0} # A < F,
following [8] we introduce the reduced set of neighbours

NA)={veF :v¢A v—ejeAVjesuppr, Vj:0Vj>maK(max{ieN Doy # 0} + 13,
e

with the special case N'({0}) := {(1,0,0,...)}. Algorithm 1 shows the used adaptive method. Also recall, that
@—1 = 0 and for notational convenience also @_2 := 0 in the following. As in (2.2), for n € Ny, @,, stands for
the one dimensional interpolatory quadrature employing the n 4+ 1 points (Xj)?:o in [—1,1]. In the following
the quadrature points for the adaptive method and for the apriori choice of index sets consist of the Leja points
introduced in Sec. 5.1.1.
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FIGURE 6. Quadrature error |{, ui(y)du(y) — Qa,u1| for uy in (5.25), for different values
of r and #. The plot shows the absolute error in terms of the number of quadrature points

Ipts(Ae, x)| (cp- (2.7)).

Fig. 8 shows a comparison of the error convergence for adaptive Smolyak algorithm, and the Smolyak algo-
rithm with the apriori index sets AE(((clz?j)_l),,e}-) from Sec. 5.1.1. The plots show the error vs. number of
quadrature points. In case of the adaptive algorithm, we plot the curve for the set of accepted indices At and

for the set of total indices Atot, as computed by Alg. 1.
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In order to find the set A,ct, Alg. 1 also requires to evaluate the integrand at quadrature points belonging
to the total set Ato;. Thus, the curve for the accepted multiindices A, should be considered as a benchmark,
whereas the curve for the total set of indices Aiot can be seen as a practically obtainable computation in terms
of error vs. number of quadrature points (i.e. number of function evaluations). We observe, that our apriori
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Algorithm 1 AdaptiveSmolyak(integrand u : [—1, 1] — R, number of multiindices M € N)

Aact — {0}
Ator < {0}
Ag — ®jeN Qou
while |A,t| < M do
Anew <~ N(Aact)\Atot
Atot A Atot o Anew
for v e A do
Ay ®jeN(Q2Vj - Q2(uj71))u
end for
p — argmax{|A,| : v € Ayot\Aact }
Aact < Nacr U {IJ}
end while
QAactu - ZVGAaCt Ayu
QAtotu - ZueAmt Al’u

chosen quadrature points are as good, as the ones obtained by the adaptive method and denoted by A, above.
This implies, that the apriori choice captures well the most important multiindices.

Comparing with A, our method even outperforms the adaptive algorithm when 6 becomes small. We
mention that it was already reported earlier that apriori choices of index sets can perform superior to adaptive
methods, see, e.g., [3]. We note that the convergence for the apriori choice (and for the adaptive algorithm in
terms of A,.) improves as 6 decreases, while the convergence rate of the adaptive algorithm in terms of Aot
does not increase as 0 decreases. For § = 0.005, the convergence rate of the adaptive algorithm w.r.t. Ay, is
only about half the convergence rate obtained with the apriori chosen set. This is not a coincidence, and we
explain this in more detail in [37, Chap. 5]. We point out that one of the main advantages of determining the
quadrature rule apriori instead of adaptively, is that it allows to compute all function evaluations in parallel,
which is in general not possible for the adaptive algorithm in [18].

6. CONCLUSIONS AND GENERALIZATIONS

We have analysed convergence rates of Smolyak quadratures for classes of smooth, Banach space valued,
parametric functions with a suitable sparsity as stated in Def. 3.1. We proved that exploiting certain cancellation
properties implied by the combination coefficients and the symmetry of the marginal probability measures allow
for the dimension independent convergence rate 2/p — 1 for p-summable sequences of (norms of) Taylor gpc
coefficients of the parametric integrand functions. This is superior to previously known rates established,
for example, in [20,22], of N-term gpc approximation of the integrand obtained in [12], or for Higher Order
Quasi-Monte Carlo integration in [14], under analogous sparsity assumptions on the parametric integrands. We
also provided an apriori construction algorithm of integrand-adapted sparse grids whose complexity (work and
memory) scales near linearly with respect to the number quadrature points. Additionally, all convergence rate
bounds were shown w.r.t. the number of quadrature points, showing in particular that essentially the same
convergence rates can be obtained for both nested and non-nested univariate quadrature points x. Numerical
experiments showed that the dimension-independent convergence rates are achieved with a moderate number of
quadrature points provided that the scaling parameter 8 > 0 was small enough. For the considered test functions,
this amounts to the integrand having small deviation from their ‘nominal’, average, values. We explain, by
a refined analysis of the error bounds for a class of model parametric integrands, that the asymptotic range
where the (dimension-independent) convergence rate 2/p—1 is visible could appear only for a prohibitively large
number of quadrature points.
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compare convergence of the adaptive algorithm in Alg. 1 with the Smolyak quadrature based on
our apriori choice of index sets. In both cases the same Leja quadrature points (see Sec. 5.1.1)
are used.

Convergence rates which are superior to N-term approximation bounds for the parametric integrands have
been reported in numerical experiments for example in [32]. Concrete apriori estimates on gpc coefficients that
may be exploited to apriori determine suitable index sets by e.g. greedy searches or by knapsack solvers were also
given in these references. The presently proposed variants of the Smolyak algorithm, in particular exploiting
multiindices containing a 1, appear to be new. As we prove and verify in numerical experiments, this results in
an algorithm that performs comparably to the currently best (heuristic) adaptive algorithms, from [17,18] as
shown in in Fig. 8.

The complexity of the Smolyak quadrature was investigated under p-summability of sequences of (X-norms
of) Taylor gpc coefficients, as implied by (b, €)-holomorphy. This condition is known to hold for broad classes
of holomorphic-parametric operator equations as shown in [10], and also for the corresponding Bayesian inverse
problems [32,34]. We emphasize that our key findings, notably the observation that all linear terms are integrated
exactly by any Smolyak quadrature, remain valid for other measures u, presuming that the one point rule in the
Smolyak construction integrates linear polynomials exactly (cp. Rmk. 4.2). In particular, similar improvements
as shown in this paper also hold in other contexts. For example, for linear, affine-parametric diffusion problems
with coefficient functions v;(x) that exhibit localized supports (as occur for example in a wavelet expansion),
improved summability of the Taylor gpe coefficients of the parametric solution was verified in [1, Thm. 1.2].
In [37, Chap. 3] we show that this entails a corresponding improvement of the convergence rate for Smolyak
quadratures.

Another particular case in point are Gaussian measures p. Here, for certain PDEs bounds on Hermite Chaos
coefficients can be obtained by real-variable bootstrapping on the parametric PDE (see [19, 26, 28]), so that
similar conclusions for the corresponding Smolyak algorithms could be expected.

In many practical settings the evaluation of the integrand is presumed to be far more costly than performing
the quadrature itself. For integrands exhibiting low sparsity, using a large number of quadrature points becomes
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inevitable. The near linear scaling of the cost in terms of the number of quadrature points makes the algorithm
feasible also for such problems.

In this paper we assumed the integrand to allow exact evaluation at each quadrature point. In general,
for UQ problems the integrand is given as the solution to some PDE, which needs to be approximated by a
numerical scheme. This is addressed in [38], where we perform a fully discrete error analysis taking into account
the cost of approximating the function values at the quadrature points.

APPENDIX A. PROOF OF LEMMA 2.7
Proof of Lemma 2.7. The first inequality follows by the downward closedness of A so that

Z 1_[ (VJ'+1):Z|{“€A5“<V}|<Z|A\=|A|Q.

veA jesupp v veA velA

We claim that if I' € F is finite and satisfies for some n € N and A € N with |A| = n that
(suppr =A VYvel) and (W<v and suppp=A) = pel) (A1)

then
T +v) < K3r). (A.2)
vel'|; jeN

Suppose that (A.2) is true. Partitioning A in {0} and finitely many disjoint sets I' of the type (A.1), this
immediately implies the second inequality in (2.12).
We show (A.2) by induction. For n = 1 assume w.l.o.g. that A = {1}. Then by Assumption 2.3 (ii)

ST +v) = D) (1+m) <EK;T.

vel'|; jeN vel|;

For the induction step assume that the statement is true for n—1 > 1, and assume w.l.o.g. that A = {1,...,n}.
For every i e Nset I'; := {pe F : (i,pu) € I'}. Then each I'; is of the type (A.1) for the set A = {1,...,n — 1},
so that we can apply the induction hypothesis to it. Therefore

MolTa+vy= > a+i) X [J0+p)< Y A+)E; T

vel'|; jeN 0<ied pel';|y jeN 0<ied
=EK3N Y (14id) D 1=Kyt 3 (1+9)
0<i€d pel; peF {0<ieT : (i,pn)el'}
<KP' Y Ksl{ie N (i,p) e T} = K3|T,
peF
where we used again Assumption 2.3 (ii) for the last inequality. O

APPENDIX B. PROOF OF LEMMA 3.13 AND LEMMA 3.14

Proof of Lemma 3.13. We start with 9 = 0 and R =1 (i.e. wp, = 1 for all v € F). Fix k € N. Observe that
16] gy < 1 and [[b]ey) < o0 are necessary in order for (b%),ex, € P/¥(F,) to hold: For every fixed j € N
the sequence (bé-p / k)l)k is a subsequence of (b*?/¥),cx,, which implies necessity of |b|s ) < 1. Furthermore
(0%)jen is a subsequence of (b¥P/F) e 7, so that [b]l¢r vy < 00 is also a necessary condition.
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On the other hand, since log(1 + ) < x for all > 0 we have

pk
k

ip b.
emlfy = D @F=TT {1+ X of |-T]|1+—>

veF, jeN (leN: 1=k} jeN 1-b;

b b
= exp log |1+ —L+ || <exp | <exp | ————|bll} % (B.1)
2 1 bf 2 1- ubum o

jeN - Y jeN 1- bj

This proves the lemma for 99 = 0 and R = 1. To finish the proof it suffices to show that under the assumptions
[B]l 2y < 00 and [[b]gx ) < 1 it holds for any @ > 0 that (w,b")yer, € (#/F(F)) where w, = RIsurp¥l [Len(1+
v;)?. N -

Fix ¥ > 0and R > 1. Let 9 > 19 be so large that 2/~ > R. Then RIswppvI [Len(1+ v;)? < [Len(1+ v;)?.
Let 6 > 1 be so large that (1 + n) < 6™ for all n € N, let J € N be so large that b; < 1/(26) for all j > J, and
let £ > 1 be so small that bjx < 1 for all j < J. Define be ¢P(N) by b = kb; if j < J and b := 6b; otherwise.
Then HEHE@(N) <1 and HBHZP(N) < 00. Moreover, with Cy := sup,,cy(1 + n)’g/m" <o, forallve F

J J
Wy = H1+V] n Cor" Hé”i:C@]n/{”j H(sw.

jeN i>J j=1 i>J

Thus >, 7, (w, b¥)P/* < C(')]p/k e, (b¥)P/* which is finite by what we have shown above. O

ve

Lemma B.1. Let p > 1 and fix k € N. Then there exists a constant Cy, , depending on p, k, such that for all
v € F\{0} the multiindex kv := (kv;);jen € Fi, © F satisfies

(2m) wI® _ Jk! < clsweewl ) (V! ' (B.2)
v! < (kv)! = "k P vl ) .

Proof. We begin with the lower bound. Recall that v/27n""2 e™™ < n! < n"t2 e="*! for all n € N by Stirling’s
approximation, see for example [31]. Thus

kvl V2R exp(—klp))
(kv)! Hjesuppu(kuj)k”ﬁ% exp(—kv; + 1)

B V2 kR4 lv[F¥1+ 2 exp(—k|v|)
|suppv| 1
eXp(supp ) Al B v exp(—h)

k
3 1—k
Vamkime n) ' (Varly 1 exp(— )

exp(|supp v/|) I

S (Lt *
jesupp v EXP(—K)V; (l/j exp(—v; + 1))

© s (230 )IW' (H) ()" (B39

kze V| v!

We claim that

fv) = (m’(li_l))lsuppy (HJ“P"”VJ> S o (B.4)
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for all 0 # v € F, which then gives the lower bound in (B.2). In order to see this we use induction on n = |v].
The case n = 1 is trivial because exp(k — 1)/k'/2 > 1 for all k € N and [Ljenvj = |v| in this case. For the
induction step let e; = (d;;)jen, fix an integer n > 1 and suppose that f(v) > 1 for all v € F with |v| = n.

First assume 4 € supp v so that |suppv| = | supp(v + e;)|. Then
Wi+ DLy _ Ty vi+1l _ oy
v+e;) = f(v < J > - N d > L
flvre)= 1) CET ERaP

which is true so that f(v +e;) = f(v) > 1. Next let i ¢ suppr. Then []
and with n = |v|

jesuppr Vi = Hjesupp(u-&-ei)(y + ei)j

fv) ke n+1 X 2 1= ng(k). (B.5)

We have ¢g(1) = 1. Moreover for k > 1

f(u+ei)_exp(k1)< n >’“;1>@(p(k1)(l>k;1

275" exp(k — 1) ((2 — log(2))k — 1) -
k2 -

g'(k) =

which shows g(k) = ¢g(1) = 1 for all k € N and therefore f(v + €;) = f(v) = 1 by (B.5). This concludes the
proof of the claim (B.4) which further implies the lower bound in (B.2).
For the upper bound, we fix 0 # v € F and use again Stirling’s inequalities to obtain

kvt _ (k)R exp(—k|v| + 1)
(B)! ™ Tcouppw V2 (kv)*¥i+ 3 exp(—kv;)

. _ k
e(27r)*%|y|¥ (\/27r|u||u|+% exp(—|1/|)) LI+ 3
\/7 S5 vits
HjGSpru 2 eXp(_k)Vj (Vj exp(—v; + 1)

e(2m) "5 |y T <|V|!>k

)’C Lklvl+ 5| supp v|

< 1—k

) | PO
<e(2r)” <e><p<k>)'5‘mp“ M. <|,,|,) »

/ |
2 jEsupp v v
Since p > 1, there exists a constant C'p such that n(*=1/2 < C’pp" for all n € N. Thus HjESupp,,VJ('k_l)/Q

<
C‘LSUppu‘p‘”L The upper bound in (B.2) then follows via (B.6), for instance with Cj, , := C'p exp(k+1)(2r)~2. O
N.

Proof of Lemma 3.14. We start again with the case ¥ = 0. W.l.o.g. we assume throughout b; > 0 for all j €
Step 1. For £k =1, p = 1 we have

l
Wy _ R
Z vl b” = Z (Z bJ) 1— Hbel(N) < 0, (B.7)

veF leNg \jeN

which, due to F; = F, gives (b”)yer, € £1(Fy) iff [b]pn < 1.
Step 2. We show that for any p € (0,1] and k € N the conditions | by < 0 and [bg vy < 1 are necessary
in order for (b”|v|!/v!),ex, € (P/F(Fy) to hold. Tt is clear that Ibllg» vy < o0 must be satisfied, since (b%)jen is
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a subsequence of ((b”|v|!l/v!)P/*),cx, . Next, it suffices to verify necessity of ||b] sy < 1 for p = 1. Let k € N.
With Lemma B.1 it holds

3 () s 3 () s ey (bku<vl> ) oyl

veFy veF veF

According to (B.7), the last sum is finite iff |b]s1 ) < 1. This shows that for any value of p € (0,1] and k € N,
the stated conditions are necessary.
Step 3. Fix an integer k > 1. We claim that for every v € Fy, there exists u € F such that

(nje{ki:ieNg} and |v; —p,| <k) VjeN, w1 <kk‘5upp"lbﬂ|"l. (B.8)
v! !

To show this claim fix v € Fj, and assume for the moment that there exists jo € N such that v, ¢ {ki : i € No}
and v; € {ki : i € Ny} for all ¢ # jo. By definition of Fy, this implies v, > k. Assume first that

v
bl > 1 B.9
B0 Ty (B.9)
Then for r e {1,...,k — 1}
-1V =T _ flﬁ |V| Vjo_r>yjo_r>l (B.10)
S '

because v;, > k and r < k. Define pp = (p1,) jen € F by
| if i £ j
Hi= {max{nk :neN, nk<v;} ifi=j
for all 4 € N. Then |v;, — u;,| < k and by (B.10)
Vo —Hio—1

bu|V‘ bu‘ |]€V70 — It H b*lyjo B = kYo~ ,ujobp,“‘l’l' kkbp,“l"
v! ! w!

Jo ‘V| _

r=0

which shows that p satisfies (B.8).
Next, suppose that (B.9) does not hold. Then b;,|v|/v;, > 1 and therefore for r € {1,...,k — 1}

wltr ., v+ v, v, 1
Jo

Vj, + 7 vy V| v, +r T v+

Jo

With p = (u,)jen € F defined by
w if i # j
Hit= {min{nk :neN, nk>v;} ifi=j
we then have |u;, — vj,| < k and similar as before
1o —Vig—1 I

|
L | (T < E
v! =0 Vi, +r /—l/

kkb;t'l'l"

Jo
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which again shows that p satisfies (B.8).

For the general case, where there might exist several indices j with v; ¢ {ki : i € No}, we repeat the above
procedure for all such j to find p satisfying (B.8). This verifies the claim.

Step 4. In this step we prove that for p = 1 and 1 < k € N, the conditions [[b||er) < 00 and [b]n ) < 1
imply (b []l/))uer, € 075 (F).

If pe F with pj € {ki : i e No} for all j € N then

v e Fi: v —py| <k, VjeN}| < (2k—1)suppal, (B.11)

With g, denoting the multiindex constructed in Step 3 and satisfying (B.8), we get with (B.11)

IJ|V|! x | supp V| p.,,|ll’V| x | supp v| 1.| supp v| kv |kV|' x
> (b o < Dk b ™ < > (2k—1) k b i) (B.12)

veFy veFy veF

Now let p > 1 be so small that le/’“pr(N) < 1, which is possible because |[b]|;1 () < 1 by assumption. Then,
employing Lemma B.1, the right-hand side of (B.12) is bounded by

N

S (k(2k — 1)) vl o E (p%b)" |Z—1' 3 ¢jzovel (p%b)" vlt (B.13)

' 9
veF : veF v:

where C'k,p = k(2k — 1)0;’/5. Now let J € N be so large that with l;j = p%bj if 7 < J and Bj = C’k,pp%bj if
j > J, it holds HEH@(N) < 1. With this choice, by (B.12), (B.13) we arrive at

|
3 (b“'” ) <Gl Y b’fM < o, (B.14)
v!

veF veF
where the last series is finite by (B.7) and because |b|s < 1. This concludes the proof for k> 1, p = 1.

Step 5. It remains to show that [b]e ) < o0 and [b]e gy < 1 imply (0% |v|)/v!)yer, € P/¥(Fy) for k > 1
and p € (0,1). As shown in the proof of [11, Thm. 7.2], with p’ := p/(1 — p) one can construct sequences
~ = (7j)jen; 0 = (J;)en such that

vl <1, 10 g0 vy < 1, |6lgrr )y <0 and  b; <djy; VjeN (B.15)

(essentially ; ~ b} and §; ~ bjlfp). We get

52) < 5.0)"

veFy veFy

B

(36 (o)

Using (B.15), the first sum is finite by the statement of the current Lemma for p = 1 (already shown in Step 4),
and the second sum is finite since (8*),cr, € £#'/%(Fy) according to Lemma 3.13. This proves (b”|v]!/v!),ex, €
IR (F).

Step 6. We have shown the lemma for ¢ = 0. In order to finish the proof, it suffices to verify that under the
assumptions [l < 00 and [b]g vy < 1, for any fixed k € N and ¢ > 0 with w, = RIS"PYITT (1 +2;)” it
holds (w,b”|v|!/v!),ex € (P/*(F}). This can be shown by the same argument used at the end of the proof of
Lemma 3.13. U
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