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Abstract We present a family of preconditioners based on the auxiliary

space method for a discontinuous Galerkin discretization on cubical meshes of

H(curl;Ω)- elliptic problems with possibly discontinuous coefficients. We address

the influence of possible discontinuities in the coefficients on the asymptotic perfor-

mance of the proposed solvers and present numerical results in two dimensions.

1 Introduction

Let Ω ⊂ R3 be a simply connected bounded domain with Lipschitz boundary and

let f ∈ L2(Ω)3. We consider the following H(curl;Ω)-elliptic problem

{

∇× (ν∇×u)+βu = f in Ω ,

u×n = 0 on ∂Ω .
(1)

where ν = ν(x) > 0 and β = β (x) > 0 are assumed to be in L∞(Ω) but possibly

discontinuous, and represent properties of the medium or material: ν is typically

the inverse of the magnetic permeability and β is proportional to the ratio of

electrical conductivity and the time step. Problem (1) arises in the modelling

of magnetic diffusion and also after implicit time discretization of resistive

magneto-hydrodynamics (MHD). In connection with the MHD application the
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use of hexahedral meshes is typically preferred over to family partitions made of

simplices [Pagliantini(2016)].

Finite element discretizations using edge elements of the first family

[Nédélec(1980)] are probably the most satisfactory methods to approximate

(1) from a theoretical point of view. Only recently, a new compatible element

(corresponding to an edge element of the second family) has been introduced

in [Arnold and Awanou(2014)]. Discontinuous Galerkin (DG) methods offer an

attractive alternative to conforming FE edge elements [Houston et al.(2005)] and al-

low for great flexibility in incorporating the discontinuities of the medium. For both

methods, the condition number of the resulting linear systems degrades with mesh

refinement and the discontinuities of the coefficients. Hence, designing a precondi-

tioner able to cope with the combined effect of the mesh width and of highly varying

coefficients turns out to be essential. For constant coefficients, efficient solvers for

FE edge discretizations have been successfully developed using domain decompo-

sition (DD) and the Auxiliary Space (AS) method [Hiptmair and Xu(2007)]. For

discontinuous coefficients, a non-overlapping BDDC algorithm has been proposed

and analyzed in [Dohrmann and Widlund(2016)], improving previous results in

the DD literature. Recently, in [Ayuso de Dios et al.(2017)], we have developed a

family of AS preconditioners for DG discretizations of (1), providing the analysis

for simplicial meshes and in the case of cubical meshes when edge elements of the

first kind are used as local spaces.

In this paper, we report on the construction of the AS preconditioners focusing on

the case of cubical meshes and further extending the discussion on their performance

to the case of jumping coefficients.

Throughout the paper c,C > 0 will denote generic positive constants, not necessarily

the same at all instances, possibly depending on the shape regularity, connectivity of

the partition and polynomial degree but always independent of the mesh regularity

and coefficients of the problem.

2 SIPG Discretization on Hexahedral Meshes

Let Th be a family of shape-regular partitions of Ω into cubes T . For each T ∈ Th,

let hT = diam(T ) and set h = maxT∈Th
hT . We assume that Th is conforming and

resolves the piece-wise constant coefficients β and ν . (i.e., νT ,βT ∈ P0(T ) for all

T ∈ Th).We denote by Fh the set of all faces of the partition; F o
h and F ∂

h refer

respectively, to the collection of all interior and boundary faces. Similarly, Eh =
E o

h ∪E ∂
h denote the set of all edges of the skeleton of Th; with E o

h and E ∂
h referring

to interior and boundary edges, respectively. Throughout, we will use the following

sets of mesh cells:

T (e) := {T ∈ Th : e ⊂ ∂T} ; E (T ) := {e ∈ Eh : e ∈ ∂T} ;

F (T ) := { f ∈ Fh : f ∈ ∂T} ; F (e) := { f ∈ Fh : e ∈ ∂ f} .
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We introduce the (family of) DG finite element spaces

VDG
h = {v ∈ L2(Ω)3 : v ∈ M (T ), T ∈ Th} , M (T )⊆Qk(T )

3 (2)

where the local spaceM (T ) of vector-valued polynomials can be of three types:

1. Nédélec elements of first family on cubical meshes [Nédélec(1980)]

M (T ) = N
I(T ) :=Qk−1,k,k(T )×Qk,k−1,k(T )×Qk,k,k−1(T ), k ≥ 1, (3)

where Qℓ,m,n(T ) is the space of polynomials of degree at most ℓ,m,n in each vector

component.

2. Compatible elements (of second kind) on cubical meshes

[Arnold and Awanou(2014)]: we set M (T ) = Sk(T ) defined as,

Sk(T ) := (Pk(T ))
3+ span{[yz(w2(x,z)−w3(x,y)) , zx(w3(x,y)−w1(y,z)) ,

xy(w1(y,z)−w2(x,z)) ]+∇s(x,y,z)} ,

where each wi ∈ Pk and s ∈ Pk(T ) has superlinear degree at most k+1, with k ≥ 1.

3. Full polynomials: We set the local space M (T ) = (Qk(T ))
3, and k ≥ 1.

For each choice of the resulting VDG
h space, the corresponding H0(curl,Ω)-

conforming finite element spaces are defined as:

Vc
h := VDG

h ∩H0(curl,Ω) = {v ∈ H0(curl,Ω) : v ∈ M (T ), T ∈ Th}. (4)

For a piecewise smooth vector-valued function v, we denote by v± the traces of v

taken from within T±. The tangential jump is defined by

[[v ]]τ := n+× v++n−× v− on f ∈ F
o
h , [[v ]]τ := n× v on f ∈ F

∂
h

where n+ and n− denote the unit normal vectors on f = ∂T+∩ ∈ ∂T− pointing

outwards from T+ and T−, respectively. We will also use the notation

(θu,v)Th
= ∑

T∈Th

∫

T
θT uvdx, 〈u,v〉Fh

= ∑
f∈Fh

∫

f
uvds ∀u,v ∈ VDG

h

where θ ∈ P0(Th) will be either θ = ν or θ = β .

The SIPG-DG method. We consider a symmetric Interior Penalty method (SIPG)

introduced recently in [Ayuso de Dios et al.(2017)] for approximating (1) robustly

(w.r.t the discontinuous coefficients). The method reads:

Find uh ∈ VDG
h such that aDG(uh,v) = ( f ,v)Th

∀v ∈ VDG
h , (5)

with aDG(·, ·) defined by
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aDG(u,v) := (ν∇×u,∇×v)Th
+(βu,v)Th

−〈{{ν∇×u}}γ , [[v ]]τ〉Fh

−〈[[u ]]τ ,{{ν∇×v}}γ〉Fh
+ ∑

T∈Th

αT (ν) ∑
e∈E (T )

∑
f∈F (e)

(s f [[u ]]τ , [[v ]]τ)0, f .
(6)

In (6), the weighted average {{·}}γ is defined as the plain trace for a boundary face,

whereas for ∂T+∩∂T− = f ∈ F o
h , is given by

{{u}}γ := γ+f u++ γ−f u− with γ±f =
ν∓

ν++ν−
, ν± := ν|

T±
.

The penalization is defined by s f := ch−1
f on all f ∈ Fh with some c > 0 and the

mesh function h f = min{hT+ ,hT−} on f ∈ F o
h and h f = hT on f = ∂T ∩∂Ω .

The coefficient function (αT (ν))T∈Th
∈ P0(Th) is defined by

αT (ν) := max
f∈F (T )

{{ν}}∗, f with {{ν}}∗, f :=















max
T∈T (e)

e∈∂ f

νT f ∈ F o
h ,

νT f ∈ F ∂
h .

(7)

Notice that αT (ν) picks the maximum conductivity coefficient over a patch

of elements surrounding T . In Figure 1 a 2D sketch of such patch is given.

T

e

Fig. 1: 2D sketch of the

patch involved in defini-

tion of αT (ν) .

We stress that the weighted average {{·}}γ together with

{{·}}∗, f and the definition of αT (ν) ensure robustness (with

respect to the coefficients) of both the approximation (5) and

the preconditioners (we refer to [Ayuso de Dios et al.(2017),

Pagliantini(2016)] for details in the analysis).

Observe that when the variational formulation (5) is re-

stricted to Vc
h in (4), the corresponding H0(curl,Ω)-

conforming discretization of (1) is obtained. In fact,

aW (u,v) := (ν∇×u,∇×v)Ω +(βu,v)Ω = aDG(u,v) ∀ u,v ∈ Vc
h. (8)

We denote by A : VDG
h −→ (VDG

h )′ the discrete operator (A u,w) = aDG(u,w) and

by A the matrix representation of A in the basis VDG
h (using any of the choices for

M (T )). It can be verified that the spectral condition number κ(A) is proportional

to

h−2 maxT αT (ν)

minT νT

+
maxT βT

minT βT

.

3 Auxiliary Space Preconditioning

The Auxiliary space method (ASM) was introduced in [Xu(1996), Oswald(1996)]

as an expansion of the Fictitious Space Method [Nepomnyaschikh(1991)] providing

a neat methodology for developing and analysing preconditioners. To describe the
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preconditioners we propose, based on the AS methodology, we first review the basic

ingredients behind the Fictitious Space Method:

(1) the fictitious space: a real finite dimensional Hilbert space V , endowed with an

inner product a(·, ·), induced operator A : V → V
′

and norm ‖·‖
A

.

(2) A continuous, linear and surjective transfer operator Π : V → VDG
h .

By virtue of [Nepomnyaschikh(1991)], an optimal preconditioner for A would re-

sult then in optimal preconditioner for A . The distinguishing feature of ASM is the

particular choice of the fictitious space V as a product space, including the original

space (here VDG
h ) as one of the components. Here, we set V = VDG

h ×W , endowed

with the inner product

a(v,v) = s(v0,v0)+a
W
(w,w), ∀v = (v0,w), v0 ∈ VDG

h , w ∈ W , (9)

where W is the (truly) so-called auxiliary space and a
W
(·, ·) is the auxiliary bi-

linear form. We will always take as W an H0(curl,Ω)-conforming space Vc
h. In

(9), s(·, ·) is the bilinear form associated with a relaxation operator S on VDG
h .

Denoting by A
W

the operator associated with a
W
(·, ·), the auxiliary space precon-

ditioner operator is B = S −1 +Π
W
◦A −1

W
◦Π ∗

W
where the linear transfer operator

Π
W

: W → VDG
h is the standard inclusion and its adjoint Π ∗

W
: VDG

h → W is defined

by a
W
(Π ∗

W
v,w) = a(v,Π

W
w), v ∈ VDG

h , w ∈ W . If S ∈ RN×N with N := dimVDG
h

and AW ∈ RNW×NW , NW := dimW , then the preconditioner in algebraic form reads

B= S−1 +PA−1
W PT, (10)

where P ∈ RN×NW is the matrix representation of the transfer operator Π
W

.

We now specify the precise components for the two preconditioners we propose:

1. Natural Preconditioner: We set W = Vc
h = VDG

h ∩H0(curl,Ω) for any choice

of the local space M (T ) and a
W
(·, ·) is as in (8). Notice that the associated

operator A
W

: Vc
h → (Vc

h)
′ is self-adjoint and positive definite. As relaxation

operator S it is sufficient to use a simple Jacobi or block Jacobi smoother (more

generally a non-overlapping additive Schwarz smoother) on VDG
h .

2. Coarser or Economical Preconditioner: When the local space is either

M (T ) = Sk(T ) or M (T ) = (Qk(T ))
3 in the construction of the VDG

h -space,

we consider a second possibility for the AS preconditioner. We take W as

W := W
c
h = {w ∈ H0(curl,Ω) : w|T ∈ N

I(T ), T ∈ Th} ⊂ Vc
h ⊂ VDG

h . (11)

As a relaxation operator, we demonstrate numerically that a non-overlapping

Schwarz smoother is not able to resolve the components in the kernel of curl(W )
and as a consequence an overlapping smoother is necessary. We will show nu-

merically that in the case M (T ) = (Qk(T ))
3, the resulting AS preconditioner

is not effective, independently of the choice of the smoother and the amount of
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domain overlaps involved in its construction. We suspect that this is connected to

the fact that the DG method using M (T ) = (Qk(T ))
3 is not spectrally correct,

while W
c
h is.

Next result provides the convergence of the Natural Preconditioner.

Theorem 1. Let B be the auxiliary space preconditioner in (10), with W = Vc
h and

simple Jacobi smoother on VDG
h . Let ∆h and ∆ ′

h denote the set of elements in the

curl-dominated regime and reaction-dominated region, respectively:

∆h := {T ∈ Th : h2
T βT < αT (ν)} , ∆ ′

h := {T ∈ Th : h2
T βT ≥ αT (ν)} . (12)

Then, the spectral condition number of the resulting preconditioned system satisfies

κ(BA)≤C (1+ c)max{1,Θ(ν ,β )} ,

with Θ(ν ,β ) := min

{

max
T∈Th

h2
T βT

νT

, max
T,T ′∈Th

∂T∩∂T ′ 6= /0

βT

βT ′
, max

T∈∆h,T
′∈∆ ′

h

∂T∩∂T ′ 6= /0

αT (ν)

αT ′(ν)

}

. (13)

The proof of Theorem 1 can be found in [Ayuso de Dios et al.(2017)] as well as the

analysis of the Coarser AS Preconditioner on simplicial meshes. The analysis of a

Coarser AS Preconditioner on hexahedral meshes is still an open problem.

4 Numerical Results

In the following numerical simulations we will restrict to the two dimensional prob-

lem (1) on a square. We set the constant entering in the penalty parameter s f in

(6) to c = 10. The tolerance for the CG and PCG is set to 10−7. In the tables we

always report the number of iterations required for convergence. We refer to the

AS preconditioners by VDG
h −W , or more precisely by the local spaces M (T ) in

the construction of each VDG
h and W . Since the experiments are in 2D we use the

rotated Nédélec elements of the first family N I(T ) = RT 0; the rotated version

of the space S1 := RT 0 + {curl(x2y),curl(xy2),curl(x2),curl(y2)}, and the 2D

full polynomials space Q1(T )
2. For the Natural AS Preconditioner a simple Jacobi

smoother is always used. For the Coarser or Economical AS Preconditioner we will

specify the smoother used at each time.

Test Cases with Continuous Coefficients. We consider first the constant coeffi-

cient case β = ν = 1. As shown in Table 1, the natural AS preconditioner is indeed

optimal in all the cases, as predicted by Theorem 1. In contrast, the coarser AS

preconditioner, performs optimally for S1 −RT 0 only if an overlapping smoother

is included. However, the coarser AS preconditioner Q1 −RT 0 is not efficacious

regardless the smoother involved in the construction.

To get some insight on the failure of the coarser AS preconditioner for Q1, we

explore the spectral approximation of the considered DG methods to (1) on Ω =
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♯Th 16×16 32×32 64×64 128×128 256×256

RT 0 Unpreconditioned 128 204 376 753 1504

(Q1)
2 Unpreconditioned 410 815 1454 2796 4554

S1 Unpreconditioned 543 1083 2031 4056 7316

RT 0-RT 0 Jacobi 9 9 9 9 9

Q1-Q1 Jacobi 22 21 20 19 19

Q1-RT 0: Jacobi
∣

∣ overlapping 259
∣

∣ 61 471
∣

∣ 113 844
∣

∣ 202 1622
∣

∣ 337 2936
∣

∣ 618

S1-RT 0: Jacobi
∣

∣ overlapping 88
∣

∣ 18 72
∣

∣ 19 49
∣

∣ 20 34
∣

∣ 20 36
∣

∣ 19

Table 1: Number of iterations for test case with constant coefficients.

[0,π]2 with ν = 1 and β = 0. The exact eigenvalues are given by n2 +m2 for n and

m positive integers. In Figure 2 is given the lower part of the spectrum using a DG

discretization based on the three possible choices of local spaces M (T ). As it can

be observed in in Figure 2, the DG discretization based on the full polynomial space

(Q1)
2, is not spectrally correct. Therefore, a preconditioner built on an auxiliary

space where the H0(curl,Ω)-conforming discretization is spectrally correct (e.g.

Nédélec elements of the first family) is not effective.
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Fig. 2: Lower part of the spectrum for different DG discretizations: rotated Nédélec elements of

the first family RT 0 (left), rotated S1 (center), and the full polynomial space (Q1)
2 (right).

Test Case with Discontinuous Coefficients. We consider now the more challenging

case of β and ν both discontinuous following a checkerboard distribution according

to the partition Ω1 := [0,0.5]2 ∪ [0.5,1]2 ⊂ Ω = [0,1]2. We define

ν(x) =







102 if x ∈ Ω1 ,

1 otherwise ,
and β (x) =







10−3 if x ∈ Ω1 ,

10 otherwise .

In Table 2 we report the iteration counts of the different preconditioners and in Fig-

ure 3 are given graphically the estimated condition numbers of the preconditioned

systems. As it can be observed in Figure 3 and Table 2, the natural AS precondi-

tioner performs optimally in the presence of discontinuous coefficients, as predicted
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by Theorem 1. The coarser AS preconditioner S1-RT 0 is also efficacious in this

case, when using an overlapping relaxation. As regards to (Q1)
2 DG discretization,

the coarser AS preconditioner is totally ineffective.

♯Th 16×16 32×32 64×64 128×128 256×256

RT 0-RT 0 Jacobi 11 10 10 10 10

Q1-Q1 Jacobi 23 22 21 21 20

S1-RT 0: overlapping 24 24 24 25 24

Q1-RT 0: overlapping 69 129 248 425 −

Table 2: Number of iterations for test case with discontinuous coefficients.
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Q1-RT - Schwarz
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Fig. 3: Test case with discontinuous co-

efficients. Condition number vs. number

of elements: S1 DG discretization with

ASM based on rotated RT 0 elements

with overlapping additive Schwarz smoother

(black); DG discretization with rotated

RT 0 discontinuous elements and rotated

RT 0 as auxiliary space with pointwise Ja-

cobi smoother (blue); discontinuous bilin-

ear Lagrangian elements with H(curl,Ω)-
conforming full polynomial auxiliary space

and Jacobi smoother (orange).
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