
Multiple Traces Formulation and

Semi-Implicit Scheme for Modeling

Biological Cells under Electrical Stimulation

F. Henriquez and C. Jerez-Hanckes

Research Report No. 2017-23
May 2017

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding: This work was partially funded by Fondecyt Regular 1171491, Conicyt Anillo ACT1417 and Chile CORFO Engineering

2030 program through grant OPEN-UC 201603.



MULTIPLE TRACES FORMULATION AND SEMI-IMPLICIT SCHEME FOR

MODELING BIOLOGICAL CELLS UNDER ELECTRICAL STIMULATION

FERNANDO HENRÍQUEZ AND CARLOS JEREZ-HANCKES

Abstract. We model the electrical behavior of several biological cells under external stimuli by extending
and computationally improving the semi-implicit multiple traces formulation presented in (Henŕıquez et al.,
Numerische Mathematik, 2016). Therein, the electric potential and current for a single cell are retrieved

through the coupling of boundary integral operators and non-linear ordinary differential systems of equations.
Yet, the low-order discretization scheme presented becomes impractical when accounting for interactions
among multiple cells. In this note, we consider multi-cellular systems and show existence and uniqueness
of the resulting non-linear evolution problem in finite time. Our main tools are analytic semigroup theory
along with mapping properties of boundary integral operators in Sobolev spaces. Thanks to the smoothness
of cellular shapes, solutions are highly regular at a given time. Hence, spectral spatial discretization can
be employed, thereby largely reducing the number of unknowns. Time-space coupling is achieved via a

semi-implicit time-stepping scheme shown to be stable and convergent. Numerical results in two dimensions
validate our claims and match observed biological behavior for the Hodgkin-Huxley dynamical model.

This work was partially funded by Fondecyt Regular 1171491, Conicyt Anillo ACT1417 and Chile CORFO Engineering 2030
program through grant OPEN-UC 201603.

1
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1. Introduction

Research and development in biomedical engineering as well as in biological sciences have greatly bene-
fited from our ever-increasing ability to simulate complex cellular processes [27, 28, 34]. As computational
resources and algorithmic efficiency improves, more realistic mathematical models can be used to better
understand and enhance techniques such as localization and stimulation of peripheral nerves for anesthesia
[9, 41, 7], cardiac defibrillation [46, 52], gene transfection [38, 13], membrane electro-permeabilization [50],
and electro-chemotherapy of tumors [47, 18]. Yet, the intertwinement of multi-scale time-space phenomena,
such as that which occurs when stimulating tissues containing several cells, remains a major challenge to the
applied and computational mathematics community.

Cellular electrical behavior is dictated by the movement of ions through channels across the cell membrane.
These channels are in turn composed of a large number of gates opening and closing randomly. Ion conduction
occurs when all channel gates are open, an event whose probability depends on the voltage jump at the
membrane. Several phenomenological descriptions of such random process have been offered [29]. The
pioneering work of Hodgkin and Huxley [26] stands out as being the first model capable of modeling axon
electrical activity and will constitute our model of choice without loss of generality. In order to obtain voltage
differences between intra- and extra-cellular domains, Maxwell equations are employed. As bioelectric signals
are significantly slower than electromagnetic ones, a quasi-static regime can be assumed that leads to the
solving of Laplace equations in each subdomain. Hence, one seeks to couple a dynamic model taking place
on cellular membranes with a static volumic one. The former is described by non-linear ordinary differential
equations while the latter by partial differential equations. In the case of multiple cells, non-local electrostatic
interactions need also to be duly accounted for.

Homogenization models present an alternative to simplify the above coupling [2, 1]. Here, the underlying
idea hinges on reducing the heterogenous domain into an homogenous or effective medium. Hence, the
methods rely on requiring a very large numbers of cells with respect to the physical scales of the quantities
of interest simulated. Since we seek to understand the interactions among a large but finite number of closely
interacting or packed cells, we opt for a different approach to homogenization though we cannot over stress
the usefulness of such models in many biological simulations [17].

In [24], we modeled the electrical activity of one biological cell under external stimuli by coupling the
local Multiple Traces Formulation (MTF) [25, 14, 15] with ionic dynamics at the membrane. Although the
MTF was introduced to model heterogenous penetrable structures as in composite materials, it lends itself
to solve scattering by multiple homogenous bodies. The gist of the MTF is to consider as unknowns Dirichlet
and Neumann traces on either side of the cellular membrane. These traces must satisfy two requirements:
Calderón identities per subdomain and transmission conditions. Hence, the volume problem is condensed
to one posed over the cell boundary. To numerically couple it with our nonlinear dynamical model, in
[24] we adopted a time-stepping semi-implicit Galerkin scheme for spatial low-order basis functions, with
proven stability independent of space discretization and second order convergence. Our approach showed a
considerable reduction of degrees of freedom when compared to previous methods as well as good agreement
with experimental data. However, scalability of the method when considering multiple interacting cells is
poor, as both the number of degrees of freedom and the conditioning numbers for the underlying matrices
increase exponentially. Extending our previous work to address closely interacting or packed cells case
constitutes the main goal of the present work.

As a first challenge, we are required to show that the resulting multi-cellular dynamic MTF system is well
posed on the continuous level. Due to our boundary reduction, we must perform the analysis of Dirichlet-
to-Neumann operators relating transmembrane voltages to currents given by the Hodgin-Huxley model. For
this, we heavily rely on: (i) the mapping properties of boundary integral operators in fractional Sobolev
spaces [16]; (ii) analytic group theory [40, 33, 36], and, (iii) linearity of the underlying system. The latter
will allow us to define a suitable splitting of the sources of transmembrane currents on a given cell and
analyze them individually. This result is valid in two and three dimensions and for a finite number of cells.

Computationally, one possible way to reduce the number of spatial unknowns relies on the observation
that cellular shapes are smooth. Indeed, cells seek to maximize their area-to-volume ratio as a means to pass
nutrients efficiently, which explains small cellular sizes and differentiable surfaces. Consequently, electric
potentials will portray high regularity as long as the external stimulus is also sufficiently regular and that
cells are touching each other. This scenario entails the possibility of replacing low-order basis by spectral
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ones –Fourier polynomials in two dimensions or spherical harmonics in 3D–, eventually yielding exponential
convergence rates, and consequently, greatly reducing the number of unknowns (cf. [23, 11, 31], [5, Section
6.5] or [44]). Still, cross interactions among cells potentials can foil computational performance regardless of
the discretization basis employed.

Several schemes have been proposed to tackle multiple interactions [20, 19, 4, 6, 35]. The book by Martin
[35] provides an extensive review of the main techniques in the subject. In [4], the two-dimensional time-
harmonic acoustic multiple scattering problem at high-frequencies is solved by using series expansion. The
method described hinges on the boundary decomposition technique introduced by Balabane [6] while the
resolution and preconditioning of the underlying linear system is improved through the identification of
particular matrix structures. In [20, 19, 21] the authors tackle Helmholtz and Maxwell multiple scattering
problems by proposing different boundary integral equations, usually coupled with other techniques such
as Balabane’s boundary decomposition method [6] or the T–matrix method [54]. However, and to our
knowledge, coupling such methods with nonlinear time dependent models as the one taking place in packed
cells stimulation has not been yet performed. We believe the present work will open the path for such
implementations.

This article is arranged as follows. In Section 2, we introduce necessary notation and tools to state the
mathematical model problem for the interaction of multiple biological cells. Section 3 introduces boundary
integral operators together with their main properties. In Section 4, the MTF is employed to recast the
original volume problem as a problem solely posed on the cellular membranes. Existence and uniqueness of
the boundary integral problem is presented in Section 5. The main tool in this case is analytic semigroup
theory. Our numerical discretization scheme is described in Section 6, with stability and convergence analyses
carried out in Sections 6.4 and 6.6, respectively. In Section 7, we show and discuss numerical results in the
light of previous theoretical and experimental insights, and then conclude in Section 8.

2. Preliminaries and Model Volume Problem

2.1. Notation. Following [24], we set some of the recurring notation used throughout, with exceptions duly
indicated. Let D ⊆ R

d, with d = 1, 2, 3, be open. We denote by Ck(D) the space of k-times differentiable
continuous functions over D with k ∈ N0. Also, let Lp(D) be the standard class of functions with bounded
Lp-norm over D. For s ∈ R, Hs(D) denotes standard Sobolev spaces with H0(D) ≡ L2(D) [37, Chapter 3].
For D bounded, we will also use the notation H1(∆, D) for functions u ∈ H1(D) with ∆u ∈ L2(D). For
s ≥ 0, we write Hs

loc(D) for the local Sobolev space of distributions whose restriction to every compact set
K ⋐ D lies in Hs(K). Similarly, we introduce the notation Hs

comp(D) for the space of compactly supported

Hs(D)-functions in D, for s ∈ R. For a Banach space V , k ∈ N0, functional spaces Ck([0, T ];V ) denote
k-times continuous functions in t with bounded V -norm for all t ∈ [0, T ]. An equivalent definition holds for
Lp([0, T ];V ) spaces with p ∈ [1,∞]. S ′(Rd) denotes the Schwarz functional space of tempered distributions
over Rd. For Banach spaces X and Y , we also introduce the space of linear mappings L(X,Y ) from X into
Y .

Duality products are denoted by angular brackets, 〈·, ·〉, while inner products by round brackets, (·, ·),
both with subscripts accounting for the domain of defnition. Dual adjoint operators are denoted by prime
superscripts, A′. Norms and semi-norms are denoted by ‖·‖, | · |, respectively, with subscripts indicating the
associated functional space. We use ‖·‖2 to denote the euclidean norm in R

d. Furthermore, time derivatives
and vectors are denoted by the symbol ∂t and by bold symbols, respectively.

2.2. Problem Geometry. Set J ∈ N. Let Ωj ⋐ R
d, d = 2, 3 and j = 1, . . . , J , be bounded Lipschitz

–eventually smooth– subdomains each one with a connected boundary Γj := ∂Ωj and complement Ωc
j :=

R
d \ Ωj . We assume that the set of subdomains is pairwise or mutually disjoint, i.e. Ωj ∩ Ωk = ∅ whenever

j 6= k, for j, k = 1, . . . , J . The exterior domain to all subdomains, Ω0, and its boundary Γ0 are defined as

Ω0 := R
d\

J⋃

j=1

Ωj and Γ0 :=

J⋃

j=1

Γj . (2.1)

2.3. Trace Operators and Multiple Trace Spaces. Let us denote by νj the outward unitary normal
vector to a subdomain Γj , for j = 1, . . . , J . Let γj be the interior trace operator acting from Hs

loc(Ωj) into
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Hs− 1
2 (Γj), for

1
2 < s < 3

2 if Ωj is Lipschitz, and if it is a Ck-domain, for 1
2 < s < k [45, Theorema 2.6.8 and

2.6.9]. For u ∈ H1
loc(∆,Ωj), we introduce the interior Dirichlet and Neumann traces:

γjDu := γju and γjNu := γj (νj · ∇u) , (2.2)

respectively. Analogously, we define exterior traces:

γj,cD u := γj,cu and γj,cN u := γj,c (νj · ∇u) , (2.3)

where γj,c is the exterior trace operator mappingHs
loc(Ω0) intoH

s− 1
2 (Γj) with conditions on s as those stated

for interior traces. For a given subdomain boundary ∂Ωj , we set the product trace spaces per subdomain:

Vs
j := H

1
2+s(∂Ωj)×H− 1

2+s(∂Ωj),

with |s| ≤ 1
2 for bounded Lipschitz domain Ωj or s ∈ R if Ωj is bounded and C∞. We identify Vj ≡ V0

j .
Also, for any ϕ, ξ in Vs

j , we define the cross or ×-duality product over Γj as (cf. [25, Section 2.2.1]):

〈ϕ, ξ〉×,j := 〈ϕD, ξN〉j + 〈ϕN, ξD〉j . (2.4)

Given an operator B : Vk → Vj , we can write

B =

(
BDD BDN

BND BNN

)
,

with obvious mapping properties, and obtain its ×-dual adjoint B† : Vj → Vk as

B† =

(
B′
NN B′

DN

B′
ND B′

DD

)
, (2.5)

since, for any λ ∈ Vk and ϕ ∈ Vj , it holds

〈Bλ,ϕ〉×,j = 〈BDDλD, ϕN〉j + 〈BDNλN, ϕN〉j + 〈BNDλD, ϕD〉j + 〈BNNλN, ϕD〉j

= 〈λD,B
′
DDϕN〉k + 〈λN,B

′
DNϕN〉k + 〈λD,B

′
NDϕD〉k + 〈λN,B

′
NNϕD〉k

=
〈
λ,B†ϕ

〉
×,k

.

For shorthand, let us introduce the trace operators:

γju :=

(
γjDu

γjNu

)
: H1

loc(∆,Ωj) → Vj , γj,cu :=

(
γj,cD u

γj,cN u

)
: H1

loc(∆,Ω
c
j) → Vj . (2.6)

Moreover, we define trace and average jump operators across Γj as follows: for u ∈ H1
loc(∆,Ωj ∪ Ωc

j), then

[γu]j = γj,cu− γju, {γu}j =
1

2

(
γju+ γj,cu

)
, (2.7)

respectively. Finally, we introduce the space V
(2)
j := Vj ×Vj as well as the multiple traces space VJ as the

Cartesian product of interior and exterior trace spaces per subdomain boundary Γj :

VJ :=

J∏

j=1

V
(2)
j .

These spaces1 will be used in the MTF formulation of Section 3. For all Cartesian product spaces, inner
and duality products as well as norms are sums of individual components with cross duality pairings. For

example, for any λ
(2)
j = (λc

j ,λj)
⊤ and ϕ

(2)
j = (ϕc

j ,ϕj)
⊤ in V

(2)
j , their dual product is defined as

〈
λ
(2)
j ,ϕ

(2)
j

〉
×,j

=
〈
λc
j ,ϕ

c
j

〉
×,j

+
〈
λj ,ϕj

〉
×,j

, (2.8)

with norm ∥∥∥ϕ(2)
j

∥∥∥
V

(2)
j

:=
∥∥ϕc

j

∥∥
Vj

+
∥∥ϕj

∥∥
Vj

=
∥∥ϕc

D,j

∥∥
H

1
2 (Γj)

+
∥∥ϕc

N,j

∥∥
H

−
1
2 (Γj)

+ ‖ϕD,j‖
H

1
2 (Γj)

+ ‖ϕN,j‖
H

−
1
2 (Γj)

.
(2.9)

1Here, exterior traces are ordered differently from the multiple traces space provided in [25, 14, 15] wherein all exterior
traces are placed consecutively.
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For s ∈ R, let us also define

H
s
J := Hs(Γ1)× · · · ×Hs(ΓJ). (2.10)

The dual space of Hs
J is H

−s
J with duality pairing given as follows. Let u = (u1, u2, . . . , uJ) ∈ H

s
J and

w = (w1, w2, . . . , wJ) ∈ H
−s
J , then the duality pairing is

〈u,w〉Γ0
=

J∑

j=1

〈uj , wj〉Γj
(2.11)

where 〈·, ·〉Γj
is the duality pairing defined over Γj . We set

L
2
J ≡ H

0
J = L2(Γ1)× · · · × L2(ΓJ). (2.12)

2.4. Continuous Volume Problem. In what follows, we extend the continuous model presented in [24,
Section 2] from a single cell to multiple ones. We assume the electric potential u ∈ H1

loc(∆,∪
J
j=0Ωj) to satisfy

electrostatic equations in each subdomain Ωj , i.e. for each j = 0, . . . , J , if uj := u|Ωj
, it must hold

− div σj∇uj = 0 in Ωj ,

where σj ∈ L∞(Ωj) denotes the subdomain electrical conductivity [32, 53]. We further assume σj to be
positive constants for all j = 0, . . . , J .

We define the transmembrane potential vj as the electric potential jump across the membrane Γj , from
the inside to the outside, i.e. Ωj to Ωc

j . Furthermore, let us assume as given a potential field Φe, defined in
Ω0, such that −∆Φe = 0 in Ω0. This potential plays the role of an external source and in practice can be
produced, for instance, by charged electrodes.

As in [24], we assume that the current membrane follows a time-dependent model. For k = 1, . . . , J , the
current ik flowing across the membrane Γk is described as the sum of capacitive and ionic currents:

ik = cm,k∂tvk + iion,k on Γk, (2.13)

where cm,k is the membrane capacitance per unit area and iion,k stands for the ionic current of the k-th
cell. Mathematically, a rigorous description of the ionic term is rather challenging, and thus, several models
have been set forth based on experimental observations. Without loss of generality, we choose the so-called
Hodgkin–Huxley (HH) model [26, 17] for the formulation presented below as well as for our numerical
experiments (cf. [24]).

For a cellular membrane Γk, the HH model describes the ionic current iion,k as a function of the trans-
membrane voltage vk and a vector gate variable gk. In the following, we write iion,k(vk, gk) to explicitly state
such dependence. Each vector gate variable gk satisfies a system of ODEs in time over Γk, written as

∂tgk = HHk (vk, gk) on Γk, (2.14)

along with adequate initial conditions.
The functions iion,k(vk, gk), HHk (vk, gk) : R× R → R are analytic in both variables and one may extend

their action to Sobolev spaces on the boundary Γk, for k = 1, . . . , J (cf. [43, Chapter 5] and [36, Lemma
5.4]).

Remark 2.1. The HH model actually incorporates three gates variables to describe the ionic current. For the
sake of simplicity, throughout this work it is assumed the existence of solely one gate variable per biological
cell, namely gk. However, it is important to point out that in the computations presented in Section 7 the
full HH model is employed.

The coupling between the membrane model, namely (2.13)–(2.14), and the potential field u relies on the
membrane current:

ik = −σkγ
k
Nuk = −σ0γ

k,c
N u0 − σ0γ

k,c
N Φe, on Γk, (2.15)

for k = 1, . . . , J . We can now state the volume formulation of the problem considered here as a generalization
of [24, Problem 1]. We will assume cm,k ≡ cm to simplify analysis.
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Problem 2.2 (Continuous Volume Problem). Set a final time T ∈ R+ and initial conditions vj(0) = v0j ,

gj(0) = g0j . We seek suitably defined functions u0, uj , vj and gj , for j = 1, . . . , J , with support on Ω0, Ωj

and Γj , respectively, such that, for all t ∈ (0, T ], it holds

−∆u0 = 0 in Ω0, (2.16a)

−∆uj = 0 in Ωj , j = 1, . . . , J, (2.16b)

γjDuj − γj,cD u0 = vj + γj,cD Φe on Γj , j = 1, . . . , J, (2.16c)

σjγ
j
Nuj − σ0γ

j,c
N u0 = σ0γ

j,c
N Φe on Γj , j = 1, . . . , J, (2.16d)

−σjγ
j
Nuj = cm∂tvj + iion,j(vj , gj) on Γj , j = 1, . . . , J, (2.16e)

∂tgj = HH(vj , gj) on Γj , j = 1, . . . , J, (2.16f)

u0 satisfies decay conditions at infinity. (2.16g)

More details regarding decay conditions at infinity can be found in [37, Theorem 8.9].

3. Multiple Traces Formulation

3.1. Boundary Potentials and Integral Representation Formula. For d = 2, 3, let G(x,y) ∈ S ′(Rd)
be the fundamental solution to the Laplace operator in R

d (cf. [48, Chapter 5] or [45, Section 3.1]), whose
expression is

G(x,y) =

{
1
2π log ‖x− y‖−1

x 6= y ∈ R
2,

1
4π ‖x− y‖−1

x 6= y ∈ R
3.

(3.1)

For s ∈ R, we define the Newton potential N : Hs
comp(R

d) → Hs+2
loc (Rd) [45, Theorem 3.1.2] informally as

(N f) (x) :=

∫

Rd

G(x,y)f(y)dsy ∀ x ∈ R
d, (3.2)

with extension to Sobolev spaces based on density and duality arguments. Let us introduce the classic single
and double layer potentials, Sj and Dj , respectively, defined

2 over Γj as

Sj := N ◦
(
γjD

)′
and Dj := N ◦

(
γjN

)′
, (3.3)

for j = 1, . . . , J . We recall the following standard result:

Theorem 3.1 ([45], Theorema 3.1.16 & 3.1.12). For j = 1, . . . , J , the potentials Sj : H
− 1

2 (Γj) → H1
loc

(
R

d
)

and Dj : H
1
2 (Γj) → H1

loc

(
R

d \ Γj

)
are continuous. Moreover, for uj ∈ H1

loc

(
∆,Rd\Γj

)
satisfying the Laplace

equation −∆uj = 0 in R
d\Γj, the integral representation formula:

uj = −Sj

(
[γNuj ]j

)
+Dj

(
[γDuj ]j

)
in R

d \ Γj , (3.4)

holds for all j = 1, . . . , J .

Functions satisfying (3.4) yield null trace jumps at subdomain boundaries Γk as long as k 6= j.

Theorem 3.2. Let the function u0 ∈ H1
loc

(
∆,Rd \ Γ0

)
satisfy −∆u0 = 0 in R

d \ Γ0. Then, the following

integral representation formula holds

u0 =

J∑

j=1

−Sj

(
[γNu0]j

)
+Dj

(
[γDu0]j

)
in R

d \ Γ0. (3.5)

Proof. For j = 1, . . . , J , we define a family of functions uj ∈ H1
loc(R

d \ Γj) solutions of the problem:

−∆uj = 0 in R
d\Γj , (3.6a)

[γuj ]j = [γu0]j on Γj , (3.6b)

2Though one should use L
2-adjoints instead of dual adjoints as in the Helmholtz case, for Laplace operators both definitions

are equivalent as the kernel is symmetric and the inner and dual products are bilinear.
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plus adequate decay conditions. The above problem has a unique solution uj ∈ H1
loc(∆,R

d\Ωj) [45, Theorem
2.10.14]. Let us now sset

û0 :=

J∑

j=1

uj in R
d\Γ0. (3.7)

By Theorem 3.1, we obtain

û0 =

J∑

j=1

−Sj

(
[γNuj ]j

)
+Dj

(
[γDuj ]j

)
in R

d. (3.8)

Clearly, −∆û0 = 0 in R
d\Γ0 and by construction û0 ∈ H1

loc

(
∆,Rd\Γ0

)
. By trace jump continuity across Γℓ

for uj , with ℓ 6= j, it holds

[γû0]ℓ =

J∑

j=1

[γuj ]ℓ = [γuℓ]ℓ = [γu0]ℓ . (3.9)

Hence, ū0 := û0−u0 satisfies −∆ū0 = 0 in R
d\Γ0 with zero jump conditions over Γ0. By uniqueness, ū0 ≡ 0

leading to û0 ≡ u0. Thus, the integral representation formula (3.5) holds for u0. �

For simplicity, given λj = (λjD, λ
j
N)

⊤ ∈ Vj , we introduce the potential:

Ψj(λj) := −Sj

(
λjN

)
+Dj

(
λjD

)
. (3.10)

3.2. Boundary Integral Operators. We introduce the standard Boundary Integral Operators (BIOs) over
Γj [45]:

Vj := {γD ◦ Sj}j : H
− 1

2 (Γj) → H
1
2 (Γj), (3.11)

K′
j := {γN ◦ Dj}j : H

− 1
2 (Γj) → H− 1

2 (Γj), (3.12)

Kj := {γD ◦ Sj}j : H
1
2 (Γj) → H

1
2 (Γj), (3.13)

Wj := −{γN ◦ Dj}j : H
1
2 (Γj) → H− 1

2 (Γj). (3.14)

Theorem 3.3 ([48], Theorem 6.34). Let Γj be a bounded Lipschitz boundary in R
d, d = 2, 3 for j = 1, . . . , J

and s ∈
[
− 1

2 ,
1
2

]
, the BIOs are linear and generate the following bounded mappings:

Vj : H
− 1

2+s(Γj) → H
1
2+s(Γj), Kj : H

1
2+s(Γj) → H

1
2+s(Γj),

K′
j : H

− 1
2+s(Γj) → H− 1

2+s(Γj), Wj : H
1
2+s(Γj) → H− 1

2+s(Γj),

If Γj is a C∞-boundary, the statement is valid for all s ∈ R.

The traces of uj , namely solutions of Problem 2.2, satisfy the following property:

γju =

(
γjDuj
γjNuj

)
=

(
1
2 I− Kj Vj

Wj
1
2 I+ K′

j

)(
γjDuj
γjNuj

)
over Γj , j = 1, . . . , J. (3.15)

The block operator defined in (3.15), known as the interior Calderón projector and denoted by Cj , plays a
key role in our boundary integral formulation. Consider the following decomposition:

Cj =
1

2
I+ Aj , Aj :=

(
−Kj Vj

Wj K′
j

)
, (3.16)

with Aj : Vs
j → Vs

j continuously under the conditions given in Theorem 3.3. We also consider the exterior

Calderón operator Cc
j =

1
2 I− Aj .

Lemma 3.4 ([24], Lemma 2). For j = 1, . . . , J , the operator Aj : Vj → Vj is continuous and Vj-coercive,

i.e. it holds

〈Ajϕ,λ〉×,j
≤ αj ‖ϕ‖Vj

‖λ‖
Vj
, ∀ ϕ,λ ∈ Vj , (3.17)
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for a positive constant αj, and there exists a compact operator TAj
: Vj → Vj and a positive constant µj

such that

〈Ajϕ,ϕ〉×,j
+
〈
TAj

ϕ,ϕ
〉
×,j

≥ µj ‖ϕ‖
2
Vj
, ∀ ϕ ∈ Vj . (3.18)

3.3. Multiple Traces Formulation. For every k = 1, . . . , J , Theorem 3.1 allows the use of the following
integral representation for uk satisfying Laplace’s equation in Ωk:

uk = Sk

(
γkNuk

)
−Dk

(
γkDuk

)
in Ωk. (3.19)

Furthermore, if ũk denotes the extension of uk by zero over Ωc
k, i.e. ũk|Ωc

k
≡ 0, then (3.19) also holds over

R
d \ Γk. Taking interior traces yields

γkuk = Ck γkuk on Γk, (3.20)

which is equivalent to

1

2
γkuk = Ak γkuk on Γk. (3.21)

On the other hand, let u0 ∈ H1
loc (∆,Ω0) satisfy −∆u0 = 0 in Ω0 and be such that its extension ũ0 by zero

over Ωk, i.e. ũ0|Ωk
= 0, for all k = 1, . . . , J . Theorem 3.2 guarantees the representation:

u0 =

J∑

j=1

−Sj

(
γj,cN u0

)
+Dj

(
γj,cD u0

)
in R

d \ Γ0. (3.22)

Taking exterior traces γk,c on Γk, we obtain

γk,cu0 = Cc

k γk,cu0 +

J∑

j=1
j 6=k

Tk,j γ
j,cu0 on Γk, (3.23)

where

Tk,j :=

(
γk,cD ◦ Dj −γk,cD ◦ Sj

γk,cN ◦ Dj −γk,cN ◦ Sj

)
: Vj → Vk. (3.24)

Equation (3.23) may be written as follows

1

2
γk,cu0 = −Aj γ

k,cu0 +

J∑

j=1
j 6=k

Tk,j γ
j,cu0 on Γk. (3.25)

Let us set the excitation potential traces and transmembrane potential vectors:

γk,cΦe = (γk,cD Φe, γ
k,c
N Φe)

⊤ and Vk := (vk, 0)
⊤, (3.26)

respectively. With the above observations, for all cell membranes Γk, k = 1, . . . , J , transmission conditions
(2.16c) and (2.16d), may be written as

γkuk − Xkγ
k,cu0 = Xk

(
γk,cΦe + Vk

)
on Γk, (3.27)

wherein we have defined3

Xk :=

(
I 0
0 σ0

σk
I

)
: Vk → Vk. (3.28)

Merging (3.21) together with (3.27) yields

Akγ
kuk −

1

2
Xkγ

k,cu0 =
1

2
Xk

(
γk,cΦe + Vk

)
, (3.29)

whereas (3.23) in (3.27) renders

−Akγ
k,cu0 +

J∑

j=1
j 6=k

Tk,jγ
j,cu0 −

1

2
X
−1
k γkuk = −

1

2

(
γk,cΦe + Vk

)
. (3.30)

3Observe that this definition differs from that in [24, 25], as our work Neumann traces are directed along the outward normal
vector, and consequently, there is no minus sign.
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As shorthand, we denote the exterior and interior traces on a membrane Γj by λc
j := γj,cu0 and λj := γjuj ,

respectively. Moreover, since Neumann transmission conditions (2.16d) lead to ratios σj/σ0, we introduce
the notation:

Âj :=
σj
σ0

Aj and X̂j :=
σj
σ0

Xj , (3.31)

Define the block operator:

Mj :=

(
Aj

1
2X

−1
j

− 1
2 X̂j Âj

)
: V

(2)
j → V

(2)
j . (3.32)

Lemma 3.5. The operator Mj is continuous in V
(2)
j , injective and coercive, i.e. it satisfies the G̊arding-type

inequality:
〈
Mjλ

(2)
j ,λ

(2)
j

〉
×,j

+
〈
TMj

λ
(2)
j ,λ

(2)
j

〉
×,j

≥ µMj

∥∥∥λ(2)
j

∥∥∥
2

V
(2)
j

∀λ
(2)
j ∈ V

(2)
j , (3.33)

where µMj
> 0, with duality products given as in (2.8).

Proof. Conductivities σj , j = 1, · · · , J are positive, yielding the quotient
σj

σ0
positive as well. Therefore, by

Lemma 3.4, the operators Aj and Âj are continuous and coercive with

T̂Aj
:=

σj
σ0

TAj
and µ̂j := µj

σj
σ0
. (3.34)

Coercivity of Mj follows as cross terms vanish yielding

TMj
:=

(
TAj

0

0 T̂Aj

)
: V

(2)
j → V

(2)
j , µMj

:= µj min{1, σj/σ0}.

Injectivity is proved as in [25, Theorem 4]. �

Lemma 3.6. For j, k = 1, . . . , J with j 6= k, the operators Tk,j : Vj → Vk are continuously bounded for

|s| ≤ 1
2 . Furthermore, they are compact as mappings from Vj to Vk.

Proof. Since operators Tk,j for j 6= k consist of four BIOs with continuous kernels, boundaries for integration
and trace evaluation never coincide. Therefore, they map Vj → Vs

k for s > 0 and due to the compact
embedding Vs

k →֒ Vk [45, Theorem 2.5.5], the claim follows directly. �

Lemma 3.7. The ×-adjoint T
†
k,j = Tj,k for j, k = 1, . . . , J and j 6= k.

Proof. First, notice that S ′
j = γjD ◦N and D′

j = γjN ◦N , as N is self-adjoint. Then, by the definition of Tj,k

(3.24) and using (2.5), we obtain

T
†
k,j =


−S ′

j ◦
(
γk,cN

)′
−S ′

j ◦
(
γk,cD

)′

D′
j ◦
(
γk,cN

)′
D′

j ◦
(
γk,cD

)′


 =


−γjD ◦ N ◦

(
γk,cN

)′
−γjD ◦ N ◦

(
γk,cD

)′

γjN ◦ N ◦
(
γk,cN

)′
γjN ◦ N ◦

(
γk,cD

)′


 (3.35)

Observing that in this context γ·,cN = −γ·N and that γ·,cD = γ·D, we conclude

T
†
k,j = =

(
+γj,cD ◦ N ◦

(
γkN
)′

−γj,cD ◦ N ◦
(
γkD
)′

+γj,cN ◦ N ◦
(
γkN
)′

−γj,cN ◦ N ◦
(
γkD
)′
)

=

(
γj,cD ◦ Dk −γj,cD ◦ Sk

γj,cN ◦ Dk −γj,cN ◦ Sk

)
= Tj,k (3.36)

as stated. �

Let us introduce the block operator:

Qj,k :=

(
−Tj,k 0

0 0

)
: V

(2)
k → V

(2)
j , (3.37)

inheriting the same continuity and compactness properties of Tj,k. Moreover, it also holds Q
†
j,k = Qk,j .

Then, we can write down the boundary integral problem we seek to solve:
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Problem 3.8 (MTF for J Mutually Disjoint Subdomains). Find λ = (λc
1,λ1, . . . ,λ

c
J ,λJ)

⊤ ∈ VJ such that
the following variational problem:

mJ(λ,ϕ) := 〈MJλ,ϕ〉× = 〈fJ ,ϕ〉× , for all ϕ ∈ VJ , (3.38)

is satisfied, with duality pairing defined as sums of cross-pairings (2.4). The block operator on the left-hand-
side is defined using (3.32) and (3.37) as

MJ :=




M1 Q1,2 · · · Q1,J

Q2,1 M2 · · · Q2,J

...
...

. . .
...

QJ,1 QJ,2 · · · MJ


 : VJ → VJ , (3.39)

with source term fJ given in terms of the following components:

V := (V1,V1, . . . ,VJ ,VJ) ∈ VJ , (3.40)

φe := (γ1,cΦe,γ
1,cΦe, . . . ,γ

J,cΦe,γ
J,cΦe) ∈ VJ , (3.41)

Fj :=

(
I 0

0 X̂j

)
∈ V

(2)
j → V

(2)
j , (3.42)

so that

fJ(V1, . . . ,VJ ,φe) :=
1

2
diag (F1,F2, . . . ,FJ) (V + φe) ∈ VJ . (3.43)

We now prove the well–posedness of Problem 3.8 as a consequence of the Fredholm alternative.

Proposition 3.9. The operator MJ : VJ → VJ is injective, namely Problem 3.8 admits at most one solution.

Proof. The proof follows the same arguments as those presented in [25, Theorem 4], which we skip for the
sake of brevity. �

Proposition 3.10. Let Γj be Lipchitz boundaries for j = 1, . . . , J . The bilinear form mJ : Vs
J ×V

s
J → R is

continuously bounded for |s| ≤ 1
2 , i.e. for a constant αJ(s) > 0 there holds

|mJ (λ,ϕ)| ≤ αJ(s) ‖λ‖Vs
J
‖ϕ‖

Vs
J
, ∀ λ,ϕ ∈ V

s
J , (3.44)

and it is VJ–coercive, i.e. there exists another constant µmJ
> 0 and TJ : VJ → VJ compact such that

mJ(λ,λ) + 〈TJλ,λ〉× ≥ µmJ
‖ϕ‖2

VJ
, ∀ λ ∈ VJ . (3.45)

Proof. Splitting λ and ϕ into its J components in V
(2)
j , for j = 1, . . . , J , the bilinear form mJ can be cast

as follows

mJ (λ,ϕ) =

J∑

j=1

〈
Mjλ

(2)
j ,ϕ

(2)
j

〉
×,j

+

J∑

j=1

J∑

k=1
k 6=j

〈
Qj,kλ

(2)
k ,ϕ

(2)
j

〉
×,j

. (3.46)

Continuity follows from Lemmae 3.5 and 3.6 whereas coercivity is derived by combining Lemmae 3.5 and
compactness of Qj,k. Specifically, the operator TJ is given by

TJ :=




TM1
−Q1,2 · · · −Q1,J

−Q2,1 TM2

. . . −Q2,J

...
. . .

. . .
...

−QJ,1 −QJ,2 · · · TMJ



. (3.47)

Therefore,

mJ(λ,λ) + (TJλ,λ)× ≥ min
j=1,...,J

µMj
‖λ‖2

VJ
(3.48)

with µmJ
:= minj=1,...,J µMj

> 0. �
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4. MTF for Several Biological Cells

In what follows, we explain how the MTF given in Problem 3.8 relates to the transmembrane current
in the HH model for many cells. Hence, from this point onwards all currents and potentials are time-
dependent quantities. Yet, for the sake of brevity we forgo momentarily to write down such dependence.
The transmembrane current across a cell boundary Γj can be expressed as contributions originated by the
exterior potential Φe, ion currents iion,j and potential jumps vj and vk present at the surrounding J − 1
cells. Explicitly, if we consider the unknown trace vector λ ∈ VJ in (3.38), and recall the current equation
(2.15), we deduce

−2ij = σjλj,N + σ0λ
c
j,N + σ0γ

j,c
N Φe, on Γj , ∀ j = 1, . . . , J, (4.1)

or, equivalently,

ij = −
1

2

(
0 σ0 0 σj

)
λ
(2)
j −

1

2
σ0γ

j,c
N Φe, on Γj , ∀ j = 1, . . . , J. (4.2)

By linearity of Problem 3.8, we consider contributions for each term in (4.2) by switching on each component
in fJ (3.43) while setting to zero off all other sources. Recalling the definition of fJ , we can write the linear
combination:

fJ (V1, . . .VJ ,φe) =
J∑

j=1

f
j
J(φe) +

J∑

j=1

f
j
J (vj) ∈ VJ , (4.3)

with components:

f
j
J(φe) :=

1

2

(
0, . . . ,0,

(
γj,cΦe

X̂jγ
j,cΦe

)
,0, . . . ,0

)
∈ VJ , (4.4)

f
j
J(vj) :=

1

2

(
0, . . . ,0,

(
Vj

X̂jVj

)
, . . . ,0

)
∈ VJ , (4.5)

as vj appears in the term Vj . Each term leads to a corresponding solution of the MTF system given by the

application of M−1
J onto each right-hand side (4.4) and (4.5). From the statement of Problem 3.8, we can

easily derive from the j-th block equation:

λ
(2)
j =

1

2
M

−1
j f

j
J(φe) +

1

2
M

−1
j f

j
J(vj)−M

−1
j

J∑

k=1
k 6=j

Qj,kλ
(2)
k ∈ V

(2)
j . (4.6)

Let us adopt the notation λ
(2)
j (vk,φe) to explicitly show the dependence on a particular source, e.g.,

λ
(2)
j (vk,0) is the solution of the traces pair over the j-th axon solely due to the transmembrane poten-

tial vk. Plugging solutions (4.6) into (4.2) yields the electric current decomposition:

ij = ij(φe) + ij(vj) +

J∑

k=1
k 6=j

ij(vk) on Γj , (4.7)

wherein

ij(φe) := −
1

2
σ0γ

j,c
N Φe −

1

2

(
0 σ0 0 σj

)


1

2
M

−1
j f

j
J(φe)−M

−1
j

J∑

k=1
k 6=j

Qj,kλ
(2)
k (0,φe)


 , (4.8)

ij(vj) := −
1

2

(
0 σ0 0 σj

)


1

2
M

−1
j f

j
J(vj)−M

−1
j

J∑

k=1
k 6=j

Qj,kλ
(2)
k (vj ,0)


 , (4.9)

ij(vk) := +
1

2

(
0 σ0 0 σj

)
M

−1
j Qj,kλ

(2)
k (vk,0). (4.10)

Recall each term represents the electric current generated by a given source. We start by obtaining the
contribution ij(vj) due to one transmembrane potential vj , or equivalently, set the external potential traces
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φe as well as vk, for all k 6= j, equal to zero. Hence, by defining the following maps:

Jj(vj) :=
1

4σ0

(
0 σ0 0 σj

)
M

−1
j




σ0
0
σj
0


 vj : H

1
2 (Γj) → H− 1

2 (Γj), (4.11)

Jk(vj) :=
1

2

(
0 σ0 0 σj

)
M

−1
j Qj,kλ

(2)
k (vj ,0) : H

1
2 (Γj) → H− 1

2 (Γj), k 6= j, (4.12)

we can also write (4.9) as the sum of contributions:

ij(vj) = −Jj(vj) +

J∑

k=1
k 6=j

Jk(vj). (4.13)

Lemma 4.1. For j = 1, . . . , J , the operators Jj : H
1
2+s(Γj) → H− 1

2+s(Γj) defined in (4.11) are continuous

for s ∈ R. Moreover, they are H
1
2 (Γj)-coercive, i.e. it holds

〈(
Jj + TJj

)
v, v
〉
Γj

≥ cJj
‖v‖2

H
1
2 (Γj)

, for all v ∈ H
1
2 (Γj), (4.14)

where cJj
is a positive constant and TJj

: H
1
2+s(Γj) → H− 1

2+s(Γj) is compact. Besides, the operator Jj is

self-adjoint.

For k = 1, . . . , J with k 6= j, the operators Jk : H
1
2+s(Γj) → H− 1

2+s(Γj), are continuous for s ≥ 0 and,

furthermore, compact.

Proof. Continuity of Jj and Jk, for k 6= j, comes from the fact that both operators are by definition the
composition of continuous operators (cf. Lemmae 3.5 and 3.6). In particular, the operator Jk is defined as
the composition of continuous and a compact operator, therefore it is compact as well.

From Lemma 3.5, Mj is invertible. Let ϕ
(2)
j ∈ V

(2)
j , then it holds

〈
Mjϕ

(2)
j ,ϕ

(2)
j

〉
×,j

=

〈
Mj

(
M

†
j

)−1

M
†
jϕ

(2)
j ,ϕ

(2)
j

〉

×,j

=

〈(
M

†
j

)−1

M
†
jϕ

(2)
j ,M†

jϕ
(2)
j

〉

×,j

.

(4.15)

By using (2.8) and (2.5) one can easily derive M
†
j = −Mj . Then,

〈(
M

†
j

)−1

M
†
jϕ

(2)
j ,M†

jϕ
(2)
j

〉

×,j

= −
〈
M

−1
j M

†
jϕ

(2)
j ,M†

jϕ
(2)
j

〉
×,j

= −
〈
M

−1
j M

†
jϕ

(2)
j ,M†

jϕ
(2)
j

〉
×,j

= +
〈
M

−1
j M

†
jϕ

(2)
j ,M†

jϕ
(2)
j

〉
×,j

.

(4.16)

Defining λ
(2)
j = M

†
jϕ

(2)
j ∈ V

(2)
j we have

〈
(Mj + TMj

)ϕ
(2)
j ,ϕ

(2)
j

〉
×,j

=
〈
M

−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

+
〈
TMj

M
−1
j λ

(2)
j ,M−1

j λ
(2)
j

〉
×,j

=
〈
M

−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

+
〈(

M
−1
j

)†
TMj

M
−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

=
〈
M

−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

+
〈
M

−1
j TMj

M
−1
j λ

(2)
j ,λ

(2)
j

〉
×,j

≥ µMj

∥∥∥ϕ(2)
j

∥∥∥
2

V
(2)
j

≥
µMj∥∥∥M†

j

∥∥∥
L
(

V
(2)
j

,V
(2)
j

)

∥∥∥λ(2)
j

∥∥∥
2

V
(2)
j

(4.17)



14 FERNANDO HENRÍQUEZ AND CARLOS JEREZ-HANCKES

with µMj
given by Lemma 3.6. Therefore, if we define

µ
M

−1
j

:=
µMj∥∥∥M†

j

∥∥∥
L
(

V
(2)
j

×V
(2)
j

)

and T
M

−1
j

:= M
−1
j TMj

M
−1
j : V

(2)
j → V

(2)
j , (4.18)

the operator M−1
j satisfies

〈(
M

−1
j + T

M
−1
j

)
λ
(2)
j ,λ

(2)
j

〉
×,j

≥ µ
M

−1
j

∥∥∥λ(2)
j

∥∥∥
2

V
(2)
j

, ∀ λ
(2)
j ∈ V

(2)
j . (4.19)

Clearly, the operator T
M

−1
j

is compact being the composition of compact and continuous operators. For the

particular choice:

λ
(2)
j =




σ0
0
σj
0


 vj (4.20)

where vj ∈ H
1
2 (Γj), we have

〈
(
0 σ0 0 σj

)
M

−1
j




σ0
0
σj
0


 vj , vj

〉

Γj

+

〈
(
0 σ0 0 σj

)
T
M

−1
j




σ0
0
σj
0


 vj , vj

〉

Γj

(4.21)

≥ µ
M

−1
j

∥∥∥∥∥∥∥∥




σ0
0
σj
0


 vj

∥∥∥∥∥∥∥∥

2

V
(2)
j

(4.22)

≥ 4µ
M

−1
j

‖vj‖
2

H
1
2 (Γj)

. (4.23)

Therefore, the operator Jj satisfies the following G̊arding inequality:

〈(
Jj + TJj

)
vj , vj

〉
Γj

≥ 4c
M

−1
j

‖vj‖
2

H
1
2 (Γj)

(4.24)

for all vj ∈ H
1
2 (Γj) and wherein

TJj
:=
(
0 σ0 0 σj

)
T
M

−1
j




σ0
0
σj
0


 : H

1
2 (Γj) → H− 1

2 (Γj) (4.25)

is a compact operator. �

Define v = (v1, . . . vJ)
⊤ and g = (g1, . . . , gJ)

⊤ and recall all quantities are time-dependent. Let J :

H
1
2+s

J → H
− 1

2+s

J for s ∈ R be the operator defined as

J := diag (J1,J2, . . . ,JJ)−



J1,1 · · · J1,J

...
. . .

...
JJ,1 · · · JJ,J


 . (4.26)

Based on (4.8) and (2.13), we also set the following:

iφe
:=



i1(φe)

...
iJ(φe)


 and iion (v, g) :=



iion,1 (v1, g1)

...
iion,J (vJ , gJ)


 . (4.27)



MULTIPLE TRACES FORMULATION FOR MODELING BIOLOGICAL CELLS 15

For the HH model we define

HH(v, g) :=




HH1(v1, g1)
...

HHJ(vJ , gJ),


 (4.28)

where HHk are as in (2.14) and Remark 2.1 applies.
With the above definitions we are now in position to set the continuous boundary problem we aim to

solve.

Problem 4.2 (MTF for Packed Cells Problem). Let s > 3
2 , initial given data v0 ∈ H

1
2+s

J , g0 ∈ H
− 1

2+s

J and

T ∈ R+. We seek v ∈ C1
(
[0, T ];H

− 1
2+s

J

)
∩ C

(
[0, T ];H

1
2+s

J

)
and g ∈ C1

(
[0, T ];H

− 1
2+s

J

)
such that for all

t ∈ [0, T ] it holds

cm∂tv = −J v + iφe
(t)− iion (v, g) , (4.29a)

∂tg = HH(v, g), (4.29b)

where iφe
∈ C

(
[0, T ];H

− 1
2+s

J

)
and initial conditions

v(0) = v0 and g(0) = g0. (4.30)

As a consequence of Lemma 4.1 we have the following result:

Lemma 4.3. For s ≥ 0, the operator J : H
1
2+s

J → H
− 1

2+s

J is continuous and coercive, i.e. there exists a

compact operator TJ : H
1
2+s

J → H
− 1

2+s

J such that
〈
(J + TJ )v,v

〉
Γ0

≥ µ ‖v‖2
H

1
2
, for all v ∈ H

1
2

J , (4.31)

and self–adjoint in the 〈·, ·〉Γ0
duality product.

5. Existence and Uniqueness of Solutions for the Multiple Cell Problem

We now aim to prove existence and uniqueness of the multiple cells problem, Problem 4.2. We follow
the approach presented for the single cell problem in [36], relying heavily on the use of analytic semigroup
theory [33].

5.1. Analytic Semigroups. We present the required concepts on analytic semigroups to study the well–
posedness of Problem 4.2. We refer to [33, Chapter 2] for further details. Let X be a complex Banach space
with norm ‖·‖X with dual X ′ and let L(X) be the space of linear endomorphisms on X.

Definition 5.1. [33, Definition 2.0.1] Let A : D(A) ⊂ X → X be a linear operator with domain D(A). Recall
the resolvent set ρ(A) := {λ ∈ C : ∃ (λI − A)−1 ∈ L(X)} and resolvent operator R(λ,A) := (λI − A)−1 for

λ ∈ ρ(A). The operator A is said to be sectorial if there are constants ω ∈ R, θ ∈ (π/2, π) and M > 0 such

that

(i) Sθ,ω := {λ ∈ C : λ 6= ω ∧ |arg(λ− ω)| < θ} ⊂ ρ(A),

(ii) ‖R(λ,A)‖L(X) ≤
M

|λ−ω| for all λ ∈ Sθ,ω.

For t > 0, the properties stated in Definition 5.1 allow us to define a linear bounded operator exp(tA) in
X by using the Dunford integral as follows

exp(tA) =
1

2πı

∫

ω+γr,η

exp(tλ)R(λ,A)dλ, ∀ t > 0, (5.1)

where, for r > 0, η ∈ (π/2, θ), γr,η is the curve {λ ∈ C : |arg λ| = η, |λ| ≥ r}∪ {λ ∈ C : |arg λ| ≤ η, |λ| = r}
oriented counterclockwise. Besides, we set

exp(0A)x = x, ∀ x ∈ X. (5.2)

Definition 5.2. [33, Definition 2.0.2] Let A : D(A) ⊂ X → X be a sectorial operator. The family

{exp(tA) : t > 0} defined by (5.1) and (5.2) is said to be the analytic semigroup generated by A in X.

The following proposition states sufficient conditions for an operator to be sectorial.
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Proposition 5.3. [33, Proposition 2.1.11] Let A : D(A) ⊂ X → X be a linear operator such that ρ(A)
contains a half plane {λ ∈ C : Reλ ≥ ω}, and

‖λR(λ,A)‖L(X) ≤M, Re λ ≥ ω, (5.3)

with ω ∈ R, M > 0. Then the operator A is sectorial.

Now let us now consider the following abstract evolution problem:

u′(t) = Au(t) + f(t, u(t)), t > 0, u(0) = u0 (5.4)

where A : D(A) ⊂ X → X is a linear sectorial operator, f is a continuous function defined in [0, T ] × X
with values in X. One may define the different solution categories for the abstract evolution problem (5.4)
as follows.

Definition 5.4. [33, Definitions 7.0.1 and 7.0.2] We distinguish the following classes of solution for the

abstract evolution problem (5.4):

(i) A continuous function u : (0, T ] → X such that u(t) ∈ X for every t ∈ (0, T ] and f(·, u(·)) ∈
L1([0, T ];X), is said to be a mild solution of (5.4) in the interval [0, T ] if u satisfies

u(t) = exp(tA)u0 +

t∫

0

exp [(t− s)A] f(s, u(s))ds, t ∈ [0, T ]. (5.5)

(ii) A function u ∈ C1((0, T ];X) ∩ C((0, T ];D(A)) ∩ C([0, T ];X) such that u(t) ∈ X for all t ∈ [0, T ] is
said to be a classical solution in the interval [0, T ] if (5.4) is satisfied for each t ∈ (0, T ].

(iii) A function u ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) such that u(t) ∈ X for all t ∈ [0, T ] is said to be a

strict solution in the interval [0, T ] if (5.4) is satisfied for each t ∈ [0, T ].

Existence and uniqueness results together with conditions on the initial data u0 and the non–linear
function f have been established for mild, classical and strict solutions of (5.4) [33, Theorem 7.1.2 and
Proposition 7.1.10].

5.2. Existence and Uniqueness of the Multiple Cells Boundary Problem. Using the previous defini-
tions and results, we first prove that the operator −J , defined in (4.26), is actually sectorial, thus generating

an analytic semigroup exp(−tJ ) in H
− 1

2+s

J , for s ≥ 1
2 .

Throughout this section, we work with complex valued Sobolev spaces, denoted also by H
s
J , to fit in

the framework for analytic semigroups presented previously. This impacts directly coercivity estimates in
4.3. For complex valued Sobolev spaces we should take the real part on the left hand side of the coercivity
estimates. However, since the fundamental solution to the Laplace operator (3.1) is real valued, it holds

Re

{〈(
J + TJ

)
v,v

〉
Γ0

}
=
〈(

J + TJ

)
v,v

〉
Γ0

≥ µ ‖v‖2
H

1
2
J

, for all v ∈ H
1
2

J . (5.6)

Proposition 5.5. Let s ≥ 0 and f ∈ H
− 1

2+s

J as in (2.10). Then, there exists a unique v ∈ H
1
2+s

J satisfying
(
J + TJ

)
v = f , (5.7)

where TJ is the same as in Lemma 4.3.

Proof. By the Lax–Milgram lemma and Lemma 4.3, the assertion holds for s = 0. The result for s > 0
follows from the regularity properties of boundary integral equations and mapping properties of the BIOs in
smooth boundaries, [45, Theorem 3.2.2] and Theorem 3.3, respectively. �

Lemma 5.6. For s ≥ 1
2 , the operator J : H

1
2+s

J → H
− 1

2+s

J generates an analytic semigroup exp(−tJ ) on

H
− 1

2+s

J .

Proof. We take our cue from [40, Theorem 7.2.7]. Set R := −(J + TJ ). According to Proposition 5.5, for

s = 1
2 , the operator R has the following mapping property R : H1

J ⊂ L
2
J → L

2
J with domain D(R) = H

1
J .

We define the set S(R) as

S(R) :=
{
〈Ru,u〉Γ0

: u ∈ H
1
J , such that ‖u‖

L2
J
= 1
}
. (5.8)
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From Lemma 4.3 one can conclude that

S(R) ⊂ S := {λ ∈ R : λ < 0} ⊂ C. (5.9)

Indeed we have for u ∈ H
1
J

−〈Ru,u〉Γ0
≥ µ ‖u‖2

H

1
2
J

≥ µ ‖u‖2
L2
J
, (5.10)

and therefore

〈Ru,u〉Γ0

‖u‖2
L2
J

≤ −µ < 0. (5.11)

On the other hand, it holds

ρ(R) ⊃ Σ := {λ ∈ C : Re{λ} ≥ 0} (5.12)

Besides, we have that

Re
{
〈(λI−R)v,v〉Γ0

}
= Re

{〈(
λI+ J + TJ

)
v,v

〉
Γ0

}
(5.13)

=
〈
(J + TJ )v,v

〉
Γ0

+Re{λ} 〈v,v〉Γ0
(5.14)

≥ µ ‖v‖2
H

1
2
J

+Re {λ} ‖v‖2
L2
J

(5.15)

≥ µ ‖v‖2
H

1
2
J

(5.16)

holds for all v ∈ H
1
2

J if λ ∈ Σ. In this case, the complex version of Lax–Milgram Lemma ensures that λI−R
has a bounded inverse for λ ∈ Σ. One may conclude that

d(λ, S) = |λ| , for λ ∈ Σ, (5.17)

where d(λ, S) is the distance between λ and the closure of the set S. Moreover, for λ ∈ Σ and u ∈ H
1
J such

that ‖u‖
L2
J
= 1, we have

d(λ, S) ≤
∣∣λ− 〈Ru,u〉Γ0

∣∣ ≤
∣∣〈(λI−R)u,u〉Γ0

∣∣ ≤ ‖(λI−R)u‖
L2
J
. (5.18)

Therefore, we have

∥∥R(λ,−(J + TJ )
∥∥
L(L2

J
,L2

J)
= ‖R(λ,R)‖L(L2

J
,L2

J)
≤

1

|λ|
, λ ∈ Σ. (5.19)

By Proposition 5.3 we conclude thatR is a sectorial operator and generates an analytic semigroup of bounded
linear operators in L

2
J . Being H

1
J dense in L

2
J and TJ : H1

J → L
2
J a compact operator, from Proposition

2.4.3 in [33] we conclude that −J itself is sectorial and also generates an analytic semigroup in L
2
J . Finally,

the mapping properties of the operator J (cf. Lemma 4.3) guarantee the existence of an analytic semigroup

in H
− 1

2+s

J , for s ≥ 1
2 . �

We now recall the following result regarding the smoothness of the mappings HH(v, g) and iion (v, g).

Lemma 5.7. [36, Lemma 5.4] Let R > 0 and s > 3
2 , then for all v ∈ H

− 1
2+s

J and g ∈ H
− 1

2+s

J such that

‖v‖
H

−
1
2
+s

J

≤ R and ‖g‖
H

−
1
2
+s

J

≤ R, there exist constants C0 depending on HH and iion and C1 depending

on R and the derivatives of HH and iion such that

‖HH(v, g)‖
H

−
1
2
+s

J

+ ‖iion (v, g)‖
H

−
1
2
+s

J

≤ C0 + C1(R)

(
‖v‖

H
−

1
2
+s

J

+ ‖g‖
H

−
1
2
+s

J

)
. (5.20)
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Besides, for v,v′, g, g′ ∈ H
− 1

2+s

J such that ‖v‖
H

−
1
2
+s

J

, ‖v′‖
H

−
1
2
+s

J

, ‖g‖
H

−
1
2
+s

J

, ‖g′‖
H

−
1
2
+s

J

≤ R, there exists a

constant C2(R) depending on R and the derivatives of HH and iion such that

‖HH(v, g)−HH(v′, g′)‖
H

−
1
2
+s

J

+ ‖iion(v, g)−HH(v′, g′)‖
H

−
1
2
+s

J

(5.21)

≤ C2(R)

(
‖v − v′‖

H
−

1
2
+s

J

+ ‖g − g′‖
H

−
1
2
+s

J

)
. (5.22)

We are now in position to enunciate the local existence and uniqueness results for 4.2.

Theorem 5.8 (Local Existence and Uniqueness of Problem 4.2). For s > 3
2 , let v0 ∈ H

− 1
2+s

J and g0 ∈

H
− 1

2+s

J be the initial conditions in Problem 4.2. Then, Problem 4.2 admits a unique mild solution v, g ∈

C([0, T ],H
− 1

2+s

J ) depending continuously on the initial data. Besides, Problem 4.2 also admits a unique

classical solution which coincides with the mild solution. Finally, if v0 ∈ H
1
2+s

J then the solution is strict.

Proof. For s ≥ 1
2 , let us consider the augmented operator defined as

G :=

(
J
0

)
: H

1
2+s

J ×H
− 1

2+s

J → H
− 1

2+s

J ×H
− 1

2+s

J (5.23)

with domain D(G) = H
1
2+s

J × H
− 1

2+s

J . Being J sectorial, we have that G is sectorial as well, therefore

generating an analytic semigroup in H
− 1

2+s

J × H
− 1

2+s

J . The claim on mild, classical and strict solutions is
a consequence of the analyticity of the semigroup generated by G [33, Chapter 7]. The condition s > 3

2
comes from Lemma 5.7, which provides requirements in order to obtain the required smoothness of the
nonlinearities HH(v, g) and iion (v, g) in the right Sobolev Spaces. �

Finally, for u,v ∈ H
1
2

J , we define the following bilinear form:

J(u,v) := 〈Ju,v〉Γ0
: H

1
2

J ×H
1
2

J 7→ R. (5.24)

6. Numerical Discretization

Though Problem 4.2 is valid in two and three dimensions, in what follows we present an efficient two-
dimensional discretization scheme proved to be stable and convergent. Our numerical scheme is relies on two
key elements. On one hand, we take advantage of smoothness inherent to biological cells by using Fourier
polynomials for space discretization, which yields exponential convergence rates. On the other hand, we use
a semi-implicit strategy in time to deal with the non–linearities arising in the terms iion(v, g) and HH(v, g).

6.1. Fourier Expansion. We recall some useful results of Fourier analysis and refer to [30, Chapter 8] and
[5, Section 6.5] for more details. Define the equivalence class of square integrable complex-valued functions
as

L2[0, 2π] :=

{
ϕ : [0, 2π] → C such that

∫ 2π

0

|f(θ)|2 dθ <∞

}
. (6.1)

As usual, the L2[0, 2π]–norm is induced by the inner product:

(ϕ, ψ)L2[0,2π] =

∫ 2π

0

ϕ(θ)ψ(θ)dθ. (6.2)

The Fourier series of ϕ ∈ L2[0, 2π] is

ϕ(θ) =
∑

k∈Z

ak exp(ıkθ). (6.3)

Let us define the Fourier polynomials ϕk := exp(ıkθ), for k ∈ Z. Then, Fourier coefficients ak in (6.3) are
given by

ak :=
1

2π
(ϕ,ϕk)L2[0,2π] =

1

2π

2π∫

0

ϕ(θ) exp(−ıkθ)dθ, (6.4)
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and Parseval’s equality holds, i.e.

‖ϕ‖2L2[0,2π] = 2π
∑

k∈Z

|ak|
2
. (6.5)

Definition 6.1 (Definition 8.1, [30]). Let 0 ≤ p <∞. By Hp[0, 2π] we denote the space of all complex-valued

functions ϕ ∈ L2[0, 2π] with the property

∑

k∈Z

(1 + k2)p |ak|
2
<∞, (6.6)

for the Fourier coefficients ak of ϕ. Notice that H0[0, 2π] is equivalent to L2[0, 2π].

Theorem 6.2 (Theorem 8.2, [30]). The Sobolev space Hp[0, 2π] is a Hilbert space with the scalar product

defined by

(ϕ, ψ)Hp[0,2π] =
∑

k∈Z

(1 + k2)pakbk, (6.7)

for ϕ, ψ ∈ Hp[0, 2π] with Fourier coefficients ak and bk, respectively. We can also define a semi–norm in

Hp[0, 2π] as follows

|ϕ|2Hp[0,2π] =
∑

k∈Z

|k|2p |ak|
2
. (6.8)

Finally, the set of Fourier polynomials is dense in Hp[0, 2π].

Set SK := span{ϕk : k = −K, . . . ,K} as the finite dimensional space of Fourier polynomials up to degree
K. We define the partial Fourier summation up to order K as follows

(PKϕ)(θ) :=
∑

|k|≤K

ak exp(ıkθ) ∈ SK . (6.9)

Lemma 6.3. Let 0 ≤ s ≤ p. For ϕ ∈ Hp[0, 2π] there exists a constant c(s, p) such that

‖ϕ− PKϕ‖Hs[0,2π] ≤ c(s, p)K−(p−s) |ϕ|Hp[0,2π] . (6.10)

Proof. Let ϕ ∈ Hp[0, 2π]. Then

‖ϕ− PKϕ‖
2
Hs[0,2π] =

∑

|m|>K

(1 +m2)s |am|2 (6.11)

≤
1

(1 +K2)p−s

∑

|m|>K

(1 +m2)p |am|2 (6.12)

≤ 2pK−2(p−s) |ϕ|2Hp[0,2π] , (6.13)

and the claim follows. �

Exponential convergence rates can be achieved when assuming analyticity as the next result shows [49]
or [12, Sect. 5.1].

Lemma 6.4. If ϕ is 2π-periodic analytic, with analyticity strip of width 2η0, i.e. for |Im(z)| ≤ η0, ϕ(z)
admits the absolutely convergent expansion

ϕ(z) =
∑

k∈Z

ϕk exp(ıkz).

Then, for any η, 0 < η < η0, it holds

‖ϕ− PKϕ‖Hs[0,2π] ≤ a(s, η)Ks exp(−ηK), (6.14)

with a and η independent of K.
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Assume that Γ is the boundary of a simply connected bounded Ck-domain, k ∈ N and that χ(θ) for
θ ∈ [0, 2π) is a k–times regular and continuously differentiable 2π–periodic parametric representation of Γ.
Then, for 0 ≤ p ≤ k, we have the following characterization of the Sobolev space Hp(Γ):

Hp(Γ) :=
{
ϕ ∈ L2 (Γ) : τχϕ ∈ Hp[0, 2π]

}
, (6.15)

where τχ : Hp(Γ) → Hp[0, 2π] is defined as τχϕ := ϕ ◦ χ for ϕ ∈ Hp(Γ) and p ≥ 0 and with inner product

(ϕ, ψ)Hp(Γ) := (τχϕ, τχψ)Hp[0,2π] . (6.16)

for all ϕ, ψ ∈ Hp(Γ). In particular, it holds

‖ϕ‖Hp(Γ) = ‖τχϕ‖Hp[0,2π] , ∀ ϕ ∈ Hp(Γ), 0 ≤ p ≤ k. (6.17)

Moreover, the definition of Sobolev spaces Hp(Γ) is independent of the chosen parametric representation of
the boundary Γ [30, Theorem 8.14].

6.2. Semi-Implicit Time Stepping Scheme. Define ΥN := {tn}
N
n=0 as the uniform partition of the time

interval [0, T ], for T ∈ R+ and N ∈ N, where tn := nτ and τ := T/N is the time step. Let

tn+ 1
2
:= tn +

τ

2
, n = 0, . . . , N − 1, (6.18)

be a midstep between tn and tn+1. For a time dependent quantity φ(t), we denote φn := φ(tn) and, for
n = 1, . . . , N − 1, we consider the following quantities:

∂̄φn :=
φn+1 − φn

τ
, φn+

1
2 := φ

(
tn+ 1

2

)
, (6.19)

φ̄n+
1
2 :=

φn+1 + φn

2
, φ̂n+

1
2 :=

3φn − φn−1

2
. (6.20)

With these definitions one may derive the following time-local estimates:

Lemma 6.5. [24, Lemma 7] Let ϕ ∈ C2([0, T ];L2[0, 2π]), then it holds
∥∥∥ϕ̄n+ 1

2 − ϕn+ 1
2

∥∥∥
L2[0,2π]

≤
1

4
τ2 max

t∈[tn,tn+1]

∥∥∂2t ϕ(t)
∥∥
L2[0,2π]

, (6.21)

∥∥∥ϕ̂n+ 1
2 − ϕn+ 1

2

∥∥∥
L2[0,2π]

≤
5

16
τ2 max

t∈[tn−1,tn+1]

∥∥∂2t ϕ(t)
∥∥
L2[0,2π]

. (6.22)

Furthermore, if ϕ ∈ C3([0, T ];L2[0, 2π]),

∥∥∥∂̄ϕn − ∂tϕ
n+ 1

2

∥∥∥
L2[0,2π]

≤
τ2

48
max

t∈[tn,tn+1]

∥∥∂2t ϕ(t)
∥∥
L2[0,2π]

. (6.23)

6.3. Fully Discrete Scheme. In what follows, we assume that each subdomain boundary Γj , for j =
1, . . . , J admits a 2π–periodic C∞-parametric representation denoted by χj . Given K ∈ N, on each boundary

we define the subspaces SK(Γj) := τ−1
χj

◦ SK , for j = 1, . . . , J and

SJ,K := SK(Γ1)× · · · × SK(ΓJ).

At each time step tn ∈ ΥN , we seek sets of functions vn
K and gn

K ∈ SJ,K . Each one of them is an
approximation at times tn of the vector of continuous membrane potentials membrane potential v and gate
variables g, respectively.

With these elements, we state the semi-implicit time-space numerical discretization of Problem 4.2:

Problem 6.6 (Fully Discrete Boundary Integral Problem). Let v0
K , v1

K , g0
K and g1

K , belonging to SJ,K , be
given. Then, for time steps n = 1, . . . , N − 1 we seek vn

K , gn
K in SJ,K solutions of

〈
cm∂̄v

n
K ,ϕK

〉
Γ0

+ J

(
v̄
n+ 1

2

K ,ϕK

)
=
〈
i
n+ 1

2

Φe
,ϕK

〉
Γ0

−
〈
iion

(
v̂
n+ 1

2

K , ĝ
n+ 1

2

K

)
,ϕK

〉
Γ0

, (6.24a)

〈
∂̄gn

K ,ϕK

〉
Γ0

=
〈
HH
(
v̂
n+ 1

2

K , ĝ
n+ 1

2

K

)
,ϕK

〉
Γ0

, (6.24b)

for all ϕK ∈ SJ,K , where the bilinear form J is defined in (5.24).
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To properly solve Problem 6.6 values for v0
K , v1

K , g0
K and g1

K must be provided. A straightforward choice

for v0
K and g0

K comes from initial conditions v0 and g0. For instance, one may choose v0
K := P̂Kv0 and

g0
K := P̂Kg0, where P̂K : Hp

J → SJ,K is defined as P̂K := (P̂K,1, · · · , P̂K,J) and P̂K,j := τ−1
χj

◦ PK ◦ τχj
, for

j = 1, . . . , J and p ≥ 0.
Values for v1

K and g1
K are estimated by solving the following predictor–corrector algorithm summarized

in Algorithm 6.7 (cf. [51, Chapter 13] and [22]), as it has been done in [24] for the single biological cell case:

Algorithm 6.7 (Predictor–Corrector method). Set w0
h := v0

h and r0h := g0
h, then we proceed as follows:

(I) Predictor. We first construct predictions w1
h and r1h, for v1

h and g1
h, respectively, by solving the

linear system:
〈
cm∂̄w

0
K ,ϕK

〉
Γ0

+ J

(
w̄

1
2

K ,ϕK

)
=
〈
i

1
2

Φe
,ϕK

〉
Γ0

−
〈
iion

(
v0
K , g

0
K

)
,ϕK

〉
Γ0
,

〈
∂̄r0K ,ϕK

〉
Γ0

=
〈
HH
(
w0

K , r
0
K

)
,ϕK

〉
Γ0
,

for all ϕK ∈ SJ,K . Notice that both w1
h and r1h appear through the definitions given in Subsection

6.2.
(II) Corrector. We now correct w1

K and r1K , to obtain final values for v1
K and g1

K through
〈
cm∂̄v

0
K ,ϕK

〉
Γ0

+ J

(
v̄

1
2

h ,ϕK

)
=
〈
i

1
2

Φe
,ϕK

〉
−
〈
iion

(
w̄

1
2

K , r̄
1
2

K

)
,ϕK

〉
Γ0

,

〈
∂̄g0

K ,ϕk

〉
Γ0

=
〈
HH
(
w̄

1
2

K , r̄
1
2

K

)
,ϕK

〉
,

for all ϕK ∈ SJ,K . Again, both v1
K and g1

K are implicit in the previous equations through the
quantities defined in Subsection 6.2.

6.4. Convergence Analysis. We seek to prove bounds for the total approximation error for the transmem-
brane potential and gate variables. In particular, we are interested in measuring the errors v(tn) − vn and
g(tn)− gn in the L

2
J–norm for all tn ∈ ΥN .

For v ∈ C1([0, T ],H
1
2

J ) and λ ∈ R+, let us define vλ := exp(−λt)v, for t ∈ [0, T ]. Then

∂tv = λ exp(λt)vλ + exp(λt)∂tvλ. (6.25)

Consequently, one can rewrite Problem 4.2 in terms vλ as presented in Problem 6.8.

Problem 6.8. Let s > 3
2 and λ > 0, v0 ∈ H

1
2+s

J , g0 ∈ H
− 1

2+s

J and T ∈ R+. We seek v ∈ C1([0, T ],H
− 1

2+s

J ) ∩

C([0, T ],H
1
2+s

J ) and g ∈ C1([0, T ],H
− 1

2+s

J ) such that for all t ∈ [0, T ] it holds

cm∂tvλ = −J
λ
vλ + exp(−λt) (i(t)− iion (exp(λt)vλ, g)) , (6.26a)

∂tg = HH (exp(λt)vλ, g) , (6.26b)

where iφe
∈ C

(
[0, T ];H

− 1
2+s

J

)
and J

λ
:= cmλ I+ J .

Remark 6.9. We can choose λ large so that J
λ
becomes elliptic. In fact, it is enough to pick

λ ≥ λmin :=

∥∥∥TJ

∥∥∥
L

(

H

1
2
J
,L2

J

)

cm
. (6.27)

Indeed, we have
〈
J

λ
v,v

〉
Γ0

=
〈
(J + cmλ I+ TJ − TJ )v,v

〉
Γ0

≥ µ ‖v‖2
H

1
2
J

+

(
cmλ−

∥∥∥TJ

∥∥∥
L

(

H

1
2
J
,L2

J

)

)

︸ ︷︷ ︸
≥0

‖v‖2
L2
J
≥ µ ‖v‖2

H

1
2
J

, (6.28)

with µ coming from (5.6), and where the mapping boundedness of the map TJ : H
1
2

J → L
2
J is a consequence

of the smoothing properties of the BIOs (cf. [48, Section 6.1] and [45, Theorem 3.5.5]).
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The use of the H
1
2

J –ellipticity of J
λ
, for λ large enough, requires first to compute the error in the L2

J–norm
of vλ(tn)− vn

λ and gλ(tn)− gn
λ for tn ∈ ΥN . Indeed, it holds

‖v(tn)− vn‖
L2
J
= exp(λtn) ‖vλ(tn)− vn

λ‖L2
J
, and (6.29a)

‖g(tn)− gn‖
L2
J
= exp(λtn) ‖gλ(tn)− gn

λ‖L2
J
. (6.29b)

We drop momentarily the explicit time-dependence in n, reintroducing the corresponding superscript in
Section 6.5. The forthcoming error analysis relies on the one presented in [24, Section 6] and hinges on the
so–called elliptic projection wλ, defined as the solution of the following variational problem:

Jλ(vλ −wλ,ϕ) = 0, for all ϕ ∈ H
1
2

J . (6.30)

One may similarly define the discrete elliptic projection wλ,K , unique solution of

Jλ(vλ −wλ,K ,ϕK) = 0, for all ϕK ∈ SJ,K . (6.31)

In particular, we notice that if vλ ∈ SJ,K , then vλ ≡ wλ,K . We decompose the error between the exact
solution vλ and the discrete approximation vλ,K ∈ SJ,K as

vλ − vλ,K = vλ −wλ,K +wλ,K − vλ,K (6.32)

and study each contribution independently.

6.4.1. Properties of the Elliptic Projector Jλ. Let us consider the following auxiliary problem:

Problem 6.10. For a given f ∈ H
− 1

2

J , find wλ ∈ H
1
2

J such that

Jλ(wλ,ϕ) = 〈f ,ϕ〉Γ0
, for all ϕ ∈ H

1
2

J . (6.33)

For a parameter λ ∈ R+ large as in Remark 6.9, continuity and ellipticity of Jλ is ensured by Lemma 4.3
together with Remark 6.9. Consequently, the Lax–Milgram lemma [48, Theorem 3.4] guarantees existence
and uniqueness for Problem 6.10. It also holds

‖wλ‖
H

1
2
J

≤
1

µ
‖f‖

H
−

1
2

J

, (6.34)

where µ is the ellipticiy constant of Jλ in (6.28). Cea’s Lemma [48, Theorem 8.1] allows us to extend those
properties to the discrete setting in SJ,K . It provides as well the best approximation error estimate:

‖wλ −wλ,K‖
H

1
2
J

≤
αλ

µ
inf

ϕK∈SJ,K

‖wλ −ϕK‖
H

1
2
J

, (6.35)

where αλ := cmλ+ ‖J ‖
L

(

H

1
2
J
,H

−
1
2

J

) is the continuity constant of Jλ.

Lemma 6.11. Assume f ∈ H
− 1

2+s

J and boundaries Γj to be of class C∞, for j = 1, . . . , J . Then, for s > 0,

the solution wλ of Problem 6.10 belong to H
− 1

2+s

J and the following a priori estimate is valid

‖wλ‖
H

1
2
+s

J

≤ c(s)

(
‖wλ‖

H

1
2
J

+ ‖f‖
H

−
1
2
+s

J

)
, (6.36)

where c(s) is a positive constant depending on s.

Proof. Follows directly from BIOs regularity properties for smooth domains (cf. [45, Theorem 3.2.2]). �

6.4.2. Elliptic Projection – Error Estimates. The triangle inequality yields

‖vλ −wλ,K‖
H

1
2
J

≤ ‖vλ −wλ‖
H

1
2
J

+ ‖wλ −wλ,K‖
H

1
2
J

. (6.37)

However, from the definition of elliptic projection, namely equation (6.30), and the ellipticity of the bilinear
form Jλ(·, ·) we have ‖vλ −wλ‖

H

1
2
J

= 0. Therefore, it holds

‖vλ −wλ,K‖
H

1
2
J

≤ ‖wλ −wλ,K‖
H

1
2
J

. (6.38)
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Using estimates (6.38) and (6.35) we obtain

‖vλ −wλ,K‖
H

1
2
J

≤ ‖wλ −wλ,K‖
H

1
2
J

≤
αλ

µ
inf

ϕK∈SJ,K

‖wλ −ϕK‖
H

1
2
J

, (6.39)

Recall χj is the 2π–periodic parametric representation of the boundary Γj , for j = 1, . . . , J . Expanding the
total error bound (6.39) into its components over each boundary Γj and recalling (6.17) we have

‖vλ −wλ,K‖
H

1
2
J

≤
αλ

µ

J∑

j=1

inf
ϕj,K∈SK(Γj)

∥∥∥τχj
wλ

j − τχj
ϕj,K

∥∥∥
H

1
2 [0,2π]

, (6.40)

wherewλ = (wλ
1 , . . . , w

λ
J) with elements wλ

j ∈ H
1
2 [0, 2π],wλ,K = (wλ

1,K , . . . , w
λ
J,K) andϕK = (ϕ1,K , . . . , ϕJ,K)

are such that wλ
j,K , ϕj,K ∈ SK(Γj), for j = 1, . . . , J . By Lemma 6.11, we can employ the Aubin-Nitsche

trick [45, Sect. 4.2.5] to shift the error norm from H
1
2

J to L
2
J . Then, by Lemma6.3, we obtain the following

error estimate
‖vλ −wλ,K‖

L2
J

≤
αλ

µ
c(p)JK−p

∣∣vλj
∣∣
Hp[0,2π]

, (6.41)

by acknowledging that vλ = wλ. Furthermore, if the solution is 2π-periodic analytic, we can use Lemma
6.4 to derive the following bound

‖vλ −wλ,K‖
L2
J

≤
αλ

µ
JΘexp(−ηK), (6.42)

where Θ and η are positive constants independent of K and the number of cells J . Finally, using (6.29a),
(6.29b) to retrieve vλ from v, we can state the following theorem:

Theorem 6.12. Let v be the solution of Problem 4.2 and assume that it satisfies the analyticity conditions

of Lemma 6.4. Then, for all times t ∈ [0, T ], the following error estimate holds

‖v −wK‖
L2
J
≤
αλ

µ
JΘexp(λT ) exp(−ηK), (6.43)

where Θ and η are positive constants independent of K and the number of cells J .

6.5. Convergence estimates. We now return our attention to the time discretization. At a time tn ∈ ΥN ,
we split the full error vn − vn

K as follows

vn − vn
K = (vn −wn

K)︸ ︷︷ ︸
=:ρn

+(wn
K − vn

K)︸ ︷︷ ︸
=:θn

, (6.44)

where wn
K is defined as in (6.31) for each time step tn, n = 0, . . . , N . Due to Lemma 6.4, one concludes that

ρn is bounded in the L
2
J–norm by Theorem 6.12. Following the error analysis presented [24, Section 6.3],

one can derive the next result for θn, for n = 0, . . . , N .

Lemma 6.13. Let v and g be the solution of Problem 4.2 for initial data v0 and g0. Besides, let v
n
K and gn

K

be the solution of Problem 6.6 for initial boundary data v0
K , v1

K , g0
K and g1

K in SJ,K , for n = 1, . . . , N − 1.
Then, it holds:

∥∥θn+1
∥∥2
L2
J

≤ c1


∥∥θ1

∥∥2
L2
J

+ τ
∥∥θ0

∥∥2
L2
J

+ τ
n∑

j=1

(1 + δ1τ)
−(j+1)

∥∥∥ĝj+ 1
2

K − P̂Kgj+ 1
2

∥∥∥
2

L2
J

+
(
exp(−ηK) + τ2

)2

 ,

and
∥∥gn+1 − gn+1

K

∥∥
L2
J

≤ c2

(∥∥g1 − g1
K

∥∥
L2
J

+ τ
∥∥g0 − g0

K

∥∥
L2
J

+τ
n∑

j=1

(1 + δ2τ)
−(j+1)

∥∥∥v̂j+ 1
2

K − P̂Kvj+ 1
2

∥∥∥
L2
J

+ τ2




where c1, c2, δ1 and δ2 are positive constants independent of τ and K and depending on the constants αλ,

µ, J and Θ from Theorem 6.12.

With this last result, we can now state the main convergence result of our numerical scheme:
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Parameters Symbol Value Units
Extracellular conductivity σe 20 mS/cm
Intracellular conductivity σi 5 mS/cm

Membrane capacitance cm 1 µF/cm2

Cell radius R 7.5× 10−4 cm

Table 1. Simulation parameters

Theorem 6.14. Under the same hypotheses of Lemma 6.13, if v1
K and g1

K are chosen according to Algorithm

6.7, the following error estimates hold

‖vn − vn
K‖

L2
J
≤ cC

(∥∥v0
K − v0

∥∥
L2
J

+
∥∥g0 − g0

K

∥∥
L2
J

+ exp(−ηK) + τ2
)
,

and

‖gn − gn
K‖

L2
J
≤ cC

(∥∥v0
K − v0

∥∥
L2
J

+
∥∥g0 − g0

K

∥∥
L2
J

+ exp(−ηK) + τ2
)
,

for n = 2, . . . , N , with cC and δ are positive constants independent of τ and K and depending on the constants

αλ, µ, J and Θ from Theorem 6.12.

Proof. The proof is a direct consequence of Lemma 6.13, Theorem 6.12 and approximation properties of v1
K

and g1
K given in Algorithm 6.7. For details, we refer to [51, Theorem 13.5]. and [24, Theorem 4]. �

6.6. Stability Analysis. We now provide stability conditions for the numerical scheme given in Problem
6.6. As shown in [24, Section 5], two time-dependent systems are coupled: one describing the evolution of
HH gate variables (6.24b), while the second model depicts the transmembrane voltage and current (6.24a).
We establish bounds for the time-spacing τ in both cases and define a global criterion to be later used in
numerical simulations.

In the HH model, the system of gating variables (6.24b) can be arranged as follows [17]:

∂tgj = −
gj − g∞j (vj)

τj(vj)
, gj(0) = gj,0,

where gj represents the gate variable related to the cellular membrane Γj , j = 1, . . . , J , with

g∞j (vj) =
αj(vj)

αj(vj) + βj(vj)
and τj(vj) =

1

αj(vj) + βj(vj)
,

for a given transmembrane potential vj . Moreover, assume that the ionic current iion,j can be written as the
product of a function depending solely on gj and vj , i.e.

iion,j(vj , gj) = Hj(gj) vj . (6.45)

Based on this assumption, we can state the following result regarding the stability of Problem 6.6 (cf. [24,
Theorem 3]).

Theorem 6.15. Let vn
K , gn

K for n = 2, . . . , N−1, denote solutions of the fully discrete Problem 6.6 at times

tn ∈ ΥN . If vmax > 0 denotes the bounded maximum value for the transmembrane potential for all biological

cells, the numerical scheme proposed is stable for all positive time-spacings τ such that

τ < min

{
cm

H1,max
, · · · ,

cm
HJ,max

,
2

3
min

|v1|≤vmax

1

α1(v1) + β1(v1)
, . . . ,

2

3
min

|vJ |≤vmax

1

αJ(vJ) + βJ(vJ)

}

where αj , βj, m = 1, . . . , J denote the vj-dependent gate model variables and Hj,max is the maximum value

for Hj.

7. Numerical Results

The numerical scheme presented in Section 6 was implemented in C++ with basic linear algebra routines
coming from Lapack [3]. Simulations where run on a AMD FX-8350 Eight-Core processor at 2.8 GHz. In
all the simulations the biological cells are assumed to be circles of equal radius. Table 1 contains a list of
parameters employed in the computations presented here.
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Figure 1. Configurations used in the convergence analysis. We consider the three following
settings wherein all cells are of radius R. The distance d between cells will be specified later.
Figure (i) portrays a single cell centered at the origin of the coordinate system; Figure (ii)
portrays two cells separated by a distance d to be specified later; and, Figure (ii) portrays
three cells separated by a distance d to be specified later. In the three scenarios we assume
that the electric field E is as in (7.1) constant in space and time.

K τ Error Single Cell Error Two Cells Error Three Cells

1 1.64 ×10−3 7.36×10−1 4.98×10−1 3.77×10−1

2 1.00 ×10−3 2.98×10−2 9.27×10−2 2.45×10−1

3 6.06 ×10−4 4.37×10−2 5.06×10−2 1.02×10−1

4 3.67 ×10−4 5.84×10−4 2.74×10−2 6.82×10−2

5 2.23 ×10−4 2.23×10−5 1.55×10−2 3.82×10−2

6 1.35 ×10−4 1.25×10−5 8.99×10−3 2.49×10−2

7 8.20 ×10−5 3.03×10−6 5.26×10−3 1.55×10−2

8 4.97 ×10−5 2.80×10−7 3.10×10−3 1.06×10−2

9 3.01 ×10−5 1.59×10−8 1.83×10−3 6.53×10−3

10 1.83 ×10−5 6.75×10−9 1.08×10−3 4.27×10−3

Table 2. Convergence results for a single axon setting τ = 0.001 exp(−K
2 + 1) in order to

keep the relation τ ∝ exp(−K). The rates of exponential convergence are 1.9114, 0.5486
and 0.4534 for the single, two and three cell cases, respectively.

Simulations are carried out assuming a membrane behavior given by the HH model [26, 17]. Besides, in
the computations presented here, we consider the following external source

Φe(x) = −E · x, (7.1)

which represents the potential produced by an electric field E. The electric field E is assumed to be constant
in space and time. The error is measured in the following norm

‖u‖L∞(ΥN ,L2
J
) := max

tn∈ΥN

‖u(tn)‖L2
J
. (7.2)

7.1. Convergence Results. We present convergence results of the numerical scheme presented in Section
6. We consider three different configurations, as depicted in Figure 1. Figures 1i, 1ii and 1iii show one,
two and three biological cell configurations, respectively. Convergence analysis is performed with a number
of Fourier modes K ranging from 1 up to 10 and time steps are chosen such that τ ∝ exp(−K

2 ) for the
simulation time window [0, 1] ms.

Table 2 shows convergence results for the configurations described in Figures (1i), (1ii) and (1iii) as-
suming d = 0.1R and E = (5000, 0, 0)⊤ mV/cm. The first column in Table 2 is the number of Fourier
modes K, the second column corresponds to the time step τ , which has been chosen according to the
rule τ = 0.001 exp(−K

2 + 1). Finally, the third, fourth and fifth columns present the error measured in
the ‖·‖L∞(ΥN ,L2

J
)–norm as defined in (7.2), with J = 1, 2, 3, for the single, two and three biological cells

configurations presented in Figure 1, respectively.

7.2. Transmembrane Voltage. We now present the profile of transmembrane voltages at different points
over the biological cell for the three configurations described in Figure 1. Figure 2 shows the transmembrane
voltage for the single biological cell configuration at points (a) and (b) defined in Figure 1i. The electric
field employed in this computation is E = (5000, 0, 0)⊤ mV/cm. Figures 3 – 6 shown results for the two cells
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Figure 2. Transmembrane potential of the single biological cell setting at points (a)
and (b) as defined in Figure (1i). The electric field used in this computation is E =
(5000, 0, 0)⊤ mV/cm.
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Figure 3. Transmembrane potential of the two biological cells setting. The electric field
is this computation is E = (5000, 0, 0)⊤ mV/cm and the distance between cells is d = 5R.
Figure 6i portrays the transmembrane voltage at points (a) and (b) and Figure 6ii at points
(c) and (d), as defined in Figure 1ii.

scenario. In Figure 3 the distance between cells is d = 5R and the electric field is E = (5000, 0, 0)⊤ mV/cm.
In Figure 4 the electric field remains the same, however the distance between cells is reduced to d = 0.1R.
In Figures 5 and (6) the distance between cells is still d = 0.1R, nevertheless the electric field is increased to
E = (6000, 0, 0)⊤ mV/cm and E = (7500, 0, 0)⊤ mV/cm, respectively. Figures 7 and 8 portray the results for
the three biological configuration, presented in Figure 1iii. In both figures, the distance between biological
cells is d = 0.1R however in the Figure 7 the electric field is E = (5000, 0, 0)⊤ mV/cm, while in Figure 8 it
is set to E = (7500, 0, 0)⊤ mV/cm.
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Figure 4. Transmembrane potential of the two biological cells setting. The electric field
used int this computation is E = (5000, 0, 0)⊤ mV/cm and the distance between cells is
d = 0.1R. Figure 6i portrays the transmembrane voltage at points (a) and (b) and Figure
6ii at points (c) and (d), as defined in Figure 1ii.
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Figure 5. Transmembrane potential of the two biological cells setting. The electric field
is this computation is E = (6000, 0, 0)⊤ mV/cm and the distance between cells is d = 0.1R.
Figure 6i portrays the transmembrane voltage at points (a) and (b) and Figure 6ii at points
(c) and (d), as defined in Figure (1ii).

We now present results for the electrical interaction of 25 biological cells distributed in a homogeneous
lattice of size 5× 5, as shown in Figure 9. Cells are numbered following the scheme presented in Figure 9i.
As in previous computations, all the cells are of equal radius R with a distance between them is d = 0.2R,
as portrayed in Figure 10. Figure for 9 out the 25 biological cells we have considered in the computation.
The transmembrane potential at the left and rightmost points, respectively points (a) and (b) as described
in Figure 10, are plotted. Figures 10i–10iii show results for the biological cells in positions 1× 1, 1× 3 and
1 × 5. Figures 10iv–10vi show results for the biological cells in positions 3 × 1, 3 × 3 and 3 × 5. Figures
10vii–10ix show results for the biological cells in positions 5× 1, 5× 3 and 5× 5.

7.3. Discussion. The results validate the expected exponential convergence rates of when taking τ ∝
exp(−K/2) for both linear and nonlinear membrane dynamics. Based on this observation, we calibrate our
quadrature scheme for the nonlinear terms using the same spatial nodes. Indeed, higher order quadratures
would not improve convergence rates though perhaps proportionality constants. In terms of computational
effort, we observe a rapid increase in computational times as expected as no acceleration routines were im-
plemented. Interestingly, we observed that as cells came closer to each other exponential rates decreased.
This can be explained by a loss of analyticity in the solutions, which disappears once cells touch each other.

From a biological perspective, our numerical results support the claim for membrane potentials depending
on both axon geometry and position with respect to external electrical excitations. Such interrelations are
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Figure 6. Transmembrane potential of the two biological cells setting. The electric field
is this computation is E = (7500, 0, 0)⊤ mV/cm and the distance between cells is d = 0.1R.
Figure 6i portrays the transmembrane voltage at points (a) and (b) and Figure 6ii at points
(c) and (d), as defined in Figure (1ii).
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Figure 7. Transmembrane potential of the three biological cells setting. The electric field
is this computation is E = (5000, 0, 0)⊤ mV/cm and the distance between cells is d = 0.1R.
Figure (7i) portrays the transmembrane voltage at points (a) and (b); Figure (7ii) at points
(c) and (d); and Figure (7iii) at points (e) and (f), as defined in Figure (1iii).
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Figure 8. Transmembrane potential of the three biological cells setting. The electric field
is this computation is E = (7500, 0, 0)⊤ mV/cm and the distance between cells is d = 0.1R.
Figure (8i) portrays the transmembrane voltage at points (a) and (b); Figure (8ii) at points
(c) and (d); and Figure (8iii) at points (e) and (f), as defined in Figure (1iii).

extremely relevant when analyzing and modeling closely packed cells and their interactions [39]. For instance,
cells lying between the excitation and a given target cell can delay or even block the stimulation.

Furthermore, our model is capable of portraying oscillatory behavior under pre-polarization regime for
sinusoidal external excitations. As in the case of constant fields, there exists a jump in main voltage when
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Figure 9. Configuration of 25 interacting biological cells. The cells are arranged in a
grid of size 5 × 5 as depicted in Figure 9i. The distance between cells is d = 0.2R and
transmembrane voltage is measured at points and (a) and b, as depicted in 10.

threshold values are achieved for a sufficient periods. Interestingly, when increasing the excitation frequency
thresholds are achieved sooner in agreement with experimental results [10, 8, 42]. Numerically, the method
remains stable when considering with time-varying excitations but careful attention should be given to
sampling rates of the sources applied.

8. Conclusions and Future Work

We have presented a novel numerical method to compute the temporal evolution of cellular membrane
potentials under electrical excitation. Key to the success of the scheme is the boundary reduction via
the MTF along with the coupling of the Hodgin-Huxley model for transmembrane voltages. The resulting
problem is proven to be well posed via analytic semigroup theory. In time-domain, the proposed semi-implicit
method was shown to possess a time-step stability condition independent of the spatial discretization, relying
solely on problem parameters. Moreover, for analytic solutions exponential convergence rates were found for
suitable chosen time and space steps, which was validated numerically for two-dimensional cells. Simulations
are found to agree with experimental observations. In particular, our numerical results depict the blocking
effect that surrounding axons can yield onto a particular one as well as the change of excitation phase due
to the multiple cellular interactions. Future work includes the extension to 3D simulations as well as further
acceleration for cross interactions including the use iterative solvers by implementing preconditioners based
on Calderón identities or mass matrices.
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