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Abstract

This paper is concerned with the inverse problem of reconstructing a small object from
far field measurements. The inverse problem is severally ill-posed because of the diffraction
limit and low signal to noise ratio. We propose a novel methodology to solve this type of
inverse problems based on an idea from plasmonic sensing. By using the field interaction
with a known plasmonic particle, the fine detail information of the small object can be
encoded into the shift of the resonant frequencies of the two particle system in the far
field. In the intermediate interaction regime, we show that this information is exactly the
generalized polarization tensors associated with the small object, from which one can perform
the reconstruction. Our theoretical findings are supplemented by a variety of numerical
results. The results in the paper also provide a mathematical foundation for plasmonic
sensing.
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1 Introduction

The inverse problem of reconstructing fine details of small objects by using far-field measure-
ments is severally ill-posed. There are two main reasons for this. The first reason is the diffraction
limit. When illuminated by an incident wave with wavelength λ, the scattered field excited from
the object which carries information on the scale smaller than λ are confined near the object
itself and only those with information on the scale greater than λ can propagate into the far-field
and be measured. As a result, from the far-field measurement one can only retrieve information
about the object on the scale greater than λ. Especially in the case when the object is small
(with a size smaller than λ), one can only obtain very few information. The second reason is
the low signal to noise ratio. We know that small objects scatter ”weakly”. This results in a
very weak measurement signal in the far-field. In the presence of measurement noise, one has
low signal to noise ratio and hence poor reconstruction.
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In this paper, we propose a new methodology to overcome the ill-posedness of this inverse
problem. Our method is motivated by plasmonic bio-sensing. The key is to use a plasmonic
particle to interact with the object and to propagate its near field information into far-field in
term of shifts of plasmonic resonant frequencies.

Plasmonic particles are metallic particles with size in the range from several nanometers to
hundreds of nanometers. Under the illumination of electromagnetic field in the infrared and
visible regime, the free-electrons in the particle may be strongly coupled to the electromagnetic
field for certain frequencies resulting in strong scattering and enhancement of local fields. This
phenomenon is called surface plasmon resonance [27, 19] and the associated frequencies are called
plasmonic resonant frequencies. Plasmonic resonance is extensively studied in the literature. A
driving motivation is the use of plasmonic particles as the labels for sensing in molecular biology;
see the review article [30] and the references therein. Besides sensing, there are other applications
such as thermotherapy where plasmonic particles act as nanometric heat-generators that can be
activated remotely by external electromagnetic fields [17]. We refer to [27] and the references
therein for these applications. We also refer to [9, 2, 15, 16, 24, 25, 20, 29] for other related
works of interest.

The plasmon resonant frequency is one of the most important characterization of a plasmonic
particle. It depends not only on the electromagnetic properties of the particle and its size and
shape, but also on the electromagnetic properties of the environment [9, 22, 23]. It is the last
property which enables the sensing application of plasmonic particles. Motivated by [30], we
perform in this paper a rigorous quantitative analysis for the sensing application. We show that
plasmonic resonance can be used to reconstruct fine details of small objects. We also remark
that plasmonic resonance can also be used to identify the shape of the plasmonic particle itself
[11].

The methodology we propose is closely related to super-resolution in imaging. Super-
resolution is about the separation of point sources. In near field microscopy, the basic idea
is to obtain the near field of sources which contains high resolution information. This is made
possible by propagating the near field information into the far field through certain near field
interaction mechanism. In a recent series of papers [12, 13, 14], we have shown mathematically
how to use subwavelength resonators to achieve super-resolution. The idea is to obtain the
near field information through the subwavelength resonant modes which can be excited by the
sources with the right frequency and which can propagate into the far-field. In this paper, we are
interested in reconstructing the fine details of small objects in comparison to their positions and
separability which are the focus of super-resolution. The idea is similar. The near field infor-
mation of the object is obtained from the near field interaction of the object and the plasmonic
particle.

In this paper, we consider the system composed of a known plasmonic particle and the
unknown object whose geometry and electromagnetic properties are the quantities of interest.
Under the illumination of incident waves with frequencies in certain range, we measure the
frequencies where the peaks in the scattering field occur. These are the resonant frequencies
or spectroscopic data of the system. By varying the relative position of the particles, we ob-
tain different resonant frequencies due to the varying interactions between the particles. We
assume that the unknown particle is small compared to the plasmonic particle. In the interme-
diate regime when the distance of the two particles is comparable to the size of the plasmonic
particle, we show that the presence of the small unknown particle can be viewed as a small
perturbation to the homogeneous environment of the plasmonic particle. As a result, it induces
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a small shift to the plasmonic resonant frequencies of the plasmonic particle, which can be read
from the observed spectroscopic data. By using rigorous asymptotic analysis, we obtain analyti-
cal formula for the shift which shows that the shift is determined by the generalized polarization
tensors [6] of the unknown object. Therefore, from the far-field measurement of the shift of res-
onant frequencies, we can reconstruct the fine information of the object by using its generalized
polarization tensors.

We note that plasmonic resonant frequencies also depend on the size of the plasmonic particle
[9, 10, 22, 28]. In this paper, for the sake of simplicity, we consider the quasi-static approximation
for the interaction between the electromagnetic field and the system of the two particles. Thus,
we shall use the conductivity equation instead of the Helmholtz equation and the Maxwell
equations. These more practical models will be analyzed in future works. In addition, we only
consider the intermediate interaction regime in the paper, the strong interaction regime when
the object is close to the plasmonic particle is also very interesting and will be reported in future
works.

This paper is organized in the following way. In Section 2, we provide basic results on layer
potentials and then explain the concept of plasmonic resonances and the (contracted) generalized
polarization tensors. In Section 3, we consider the forward scattering problem of the incident
field interaction with a system composed of an ordinary particle and a plasmonic particle. We
derive the asymptotic of the scattered field in the case of intermediate regime. In Section 4, we
consider the inverse problem of reconstructing the geometry of the ordinary particle. This is
done by constructing the generalized polarization tensors of the particles through the resonance
shift induced to the plasmonic particle. In Section 5, we provide numerical examples to justify
our theoretical results. The paper ends with some concluding remarks.

2 Preliminaries

2.1 Layer potentials and spectral theory of the NP operator

We denote by G(x, y) the Green function for the Laplacian in the free space. In R
2, we have

G(x, y) =
1

2π
log |x− y|.

Consider a domain D with C1,η boundary in R
2 for η > 0. Let ν(x) denote the outward

normal at x ∈ ∂D. Suppose that D contains the origin 0.
The single layer potential SD is given by

SD[ϕ](x) =

∫

∂D
G(x, y)ϕ(y)dσ(y), x ∈ R

2.

The Neumann-Poincaré (NP) operator K∗
D associated with D is defined as follows:

K∗
D[ϕ](x) =

∫

∂D

∂G

∂ν(x)
(x, y)ϕ(y)dσ(y), x ∈ ∂D.
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The following jump relations hold:

SD[ϕ]
∣∣
+
= SD[ϕ]

∣∣
−
, (2.1)

∂SD[ϕ]

∂ν

∣∣∣
±
= (±

1

2
I +K∗

D)[ϕ]. (2.2)

Let H1/2(∂D) be the usual Sobolev space and let H−1/2(∂D) be its dual space with respect

to the L2-pairing (·, ·)− 1

2
, 1
2

. We denote by H
−1/2
0 (∂D) the collection of all ϕ ∈ H−1/2(∂D) such

that (ϕ, 1)− 1

2
, 1
2

= 0.

The NP operator is bounded on H−1/2(∂D) and maps H−1/2(∂D) into itself. It can be
shown that the operator λI −K∗

D : L2(∂D) → L2(∂D) is invertible for any |λ| > 1/2. Although

the NP operator is not self-adjoint on L2(∂D), it can be symmetrized on H
−1/2
0 (∂D) by using

a new inner product. Let H∗(∂D) be the space H
−1/2
0 (∂D) equipped with the inner product

(·, ·)H∗(∂D) defined by
(ϕ, ψ)H∗(∂D) = −(ϕ,SD[ψ])− 1

2
, 1
2

,

for ϕ, ψ ∈ H−1/2(∂D). Then using the Plemelj’s symmetrization principle,

SDK
∗
D = KDSD,

it can be shown that the NP operator K∗
D is self-adjoint with respect to (·, ·)H∗(∂D). Furthermore,

K∗
D is compact, so its spectrum is discrete and contained in ]− 1/2, 1/2]; see for instance [6] for

more details. Therefore, the NP operator K∗
D admits the following spectral decomposition: for

ϕ ∈ H∗,

K∗
D[ϕ] =

∞∑

j=1

λj(ϕ,ϕj)H∗ϕj , (2.3)

where λj are the eigenvalues of K∗
D and ϕj are their associated eigenfunctions. Note that

|λj | < 1/2 for all j ≥ 1.

2.2 Plasmonic resonance

We are interested in the regime when a plasmonic resonance occurs, so the wavelength of the
incident field should be much greater than the size of the plasmonic particle. To further simplify
the analysis and better illustrate the main idea of our methodology, we use the quasi-static
approximation (by assuming the incident wavelength to be infinity) to model the interaction.

Given a harmonic function H in R
2, which represents an incident field, we consider the

following transmission problem:




∇ · (ε∇u) = 0 in R

2,

u−H = O(|x|−1) as |x| → ∞,
(2.4)

where ε = εDχ(D) + εmχ(R
2\D), and χ(D) and χ(R2\D) are the characteristic functions of D

and R
2\D, respectively. From [6], we have

u = H + SD[ϕ] , (2.5)
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where ϕ satisfies

(λI −K∗
D)[ϕ] =

∂H

∂ν

∣∣∣
∂D
. (2.6)

Here, λ is given by

λ =
εD + εm

2(εD − εm)
. (2.7)

Contrary to ordinary dielectric particles, the permittivities of plasmonic materials, such as
noble metals, have negative real parts. In fact, the permittivity εD depends on the operating
frequency ω and can be modeled by the Drude’s model given by

εD = εD(ω) = 1−
ω2
p

ω(ω + iγ)
, (2.8)

where ωp > 0 is called the plasma frequency and γ > 0 is the damping parameter. Since the
parameter γ is typically very small, the permittivity εD(ω) has a small imaginary part.

Now we discuss the plasmonic resonances. By applying the spectral decomposition (2.3) of
K∗

D to the integral equation (2.6), the density ϕ becomes

ϕ =

∞∑

j=1

(∂H∂ν , ϕj)H∗(∂D)

λD − λj
ϕj . (2.9)

Recall that λj are eigenvalues K∗
D and they satisfy |λj | < 1/2. For ω < ωp, Re{εD(ω)} can

take negative values. Then it holds that |Re{λ(ω)}| < 1/2. So, for a certain frequency ωj , the
value of λ(ωj) can be very close to an eigenvalue λj of the NP operator. Then, in (2.9), the
eigenfunction ϕj will be amplified provided that (∂H∂ν , ϕj)H∗(∂D) is non-zero. As a result, the
scattered field u − ui will show a resonant behavior. This phenomenon is called the plasmonic
resonance.

When D is an ellipse, we can compute the spectral properties of the NP operator K∗
D ex-

plicitly. Let D be an ellipse given by

D =
{
(x, y) ∈ R

2 :
x2

a2
+
y2

b2
≤ 1
}
, (2.10)

for some constants a, b with a < b. Then it is known that the eigenvalues of the NP operator
associated with the ellipse D on H∗ are

±
1

2

(b− a

b+ a

)j
, j = 1, 2, 3, · · · .

2.3 Contracted generalized polarization tensors

Here we explain the concept of the generalized polarization tensors (GPTs). The scattered field
u− ui has the following far-field behavior [6, p. 77]

(u− ui)(x) =
∑

|α|,|β|≥1

1

α!β!
∂αui(0)Mαβ(λ,D)∂βG(x), |x| → +∞, (2.11)

5



where Mαβ(λ,D) is given by

Mαβ(λ,D) :=

∫

∂D
yβ(λI −K∗

D)
−1[

∂xα

∂ν
](y) dσ(y), α, β ∈ N

d.

Here, the coefficient Mαβ(λ,D) is called the generalized polarization tensor [6].
For a positive integer m, let Pm(x) be the complex-valued polynomial

Pm(x) = (x1 + ix2)
m = rm cosmθ + irm sinmθ, (2.12)

where we have used the polar coordinates x = reiθ.
We define the contracted generalized polarization tensors (CGPTs) to be the following linear

combinations of generalized polarization tensors using the polynomials in (2.12):

M cc
m,n(λ,D) =

∫

∂D
Re{Pn}(λI −K∗

D)
−1[

∂ Re{Pm}

∂ν
] dσ,

M cs
m,n(λ,D) =

∫

∂D
Im{Pn}(λI −K∗

D)
−1[

∂ Re{Pm}

∂ν
] dσ,

M sc
m,n(λ,D) =

∫

∂D
Re{Pn}(λI −K∗

D)
−1[

∂ Im{Pm}

∂ν
] dσ,

M ss
m,n(λ,D) =

∫

∂D
Im{Pn}(λI −K∗

D)
−1[

∂ Im{Pm}

∂ν
] dσ.

We refer to [6] for further details.
For convenience, we introduce the following notation. We denote

Mm,n(λ,D) =

(
M cc

m,n(λ,D) M cs
m,n(λ,D)

M sc
m,n(λ,D) M ss

m,n(λ,D)

)
.

When m = n = 1, the matrix M(λ,D) := M1,1(λ,D) is called the first order polarization
tensor. Specifically, we have

M(λ,D)lm =

∫

∂D
yj(λI −K∗

D)
−1[νi](y) dσ(y), l,m = 1, 2.

Since, from (2.11), we have

(u− ui)(x) =
∇ui ·M(λ,D)x

|x|2
+O(|x|−2), as |x| → ∞,

the first order polarization tensor M(λ,D) determines the dominant term in the far-field expan-
sion of the scattered field u− ui.

To see the plasmonic resonant behavior of the far field, it is helpful to represent M(λ,D) in
a spectral form. By the spectral decomposition (2.3), we obtain that

M(λ,D)lm =

∞∑

j=1

(ym, ϕj)− 1

2
, 1
2

(ϕj , νl)H∗(∂D)

λ− λj
.
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If D is the ellipse given by (2.10), then we have the explicit formula for M(λ,D)

M(λ,D) =




πab
λ− 1

2

a−b

a+b

0

0 πab
λ+ 1

2

a−b

a+b


 . (2.13)

Formula (2.13) indicates that, in the far field region, the plasmonic resonance occurs only if λ
is close to 1

2
a−b
a+b or −1

2
a−b
a+b .

3 The forward problem

We consider a system composed of a small ordinary particle and a plasmonic particle embedded
in a homogeneous medium; see Figure 1. The ordinary particle and the plasmonic particle
occupy a bounded and simply connected domain D1 ⊂ R

2 and D2 ⊂ R
2 of class C1,α for some

0 < α < 1, respectively. We denote the permittivity of the ordinary particleD1 (or the plasmonic
particle D2) by ε1 (or ε2), respectively. The permittivity of the background medium is denoted
by εm. In other words, the permittivity distribution ε is given by

ε := ε1χ(D1) + ε2χ(D2) + εmχ(R
2\(D1 ∪D2)).

As in Subsection 2.2, the permittivity ε2 of the plasmonic particle depends on the operating
frequency and is modeled as

ε2 = ε2(ω) = 1−
ω2
p

ω(ω + iγ)
.

We assume the following condition on the size of the particles D1 and D2.

Condition 1. The plasmonic particle D2 has size of order one and is centered at a position that
we denote by z; the ordinary particle D1 has size of order δ ≪ 1 and is centered at the origin.
Specifically, we write D1 = δB, where the domain B has size of order one.

The total electric potential u satisfies the following equation:





∇ · (ε∇u) = 0 in R
2\(∂D1 ∪ ∂D2),

u|+ = u|− on ∂D1 ∪ ∂D2,

εm
∂u

∂ν

∣∣∣
+
= ε1

∂u

∂ν

∣∣∣
−

on ∂D1,

εm
∂u

∂ν

∣∣∣
+
= ε2

∂u

∂ν

∣∣∣
−

on ∂D2,

(u− ui)(x) = O(|x|−1), as |x| → ∞,

(3.1)

where ui(x) = d · x is the incident potential with a constant vector d ∈ R
2.

3.1 The Green function in the presence of a small particle

Let GD1
(·, y) be the Green function at the source point y of a medium consisting of the particle

D1, which is embedded in the free space. For every y /∈ D1, GD1
(·, y) satisfies the following
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Figure 1: Scattering of an incident wave ui by a system of a plasmonic (D2) - non plasmonic
(D1) particles.

equation: 



∇ ·
(
ε1χ(D1) + εmχ(R

2\D1)
)
∇u = δy in R

2\∂D1,

u|+ = u|− on ∂D1,

εm
∂u

∂ν

∣∣∣∣
+

= ε1
∂u

∂ν

∣∣∣∣
−

on ∂D1,

u(x) = O(|x|−1), as |x| → ∞.

(3.2)

We look for a solution of the form:

GD1
(x, y) := G(x, y) + SD1

[ψ], x ∈ R
2\D1 . (3.3)

Note that GD1
satisfies the second and fourth conditions in (3.2). From the third condition in

(3.2) and the jump formula (2.2) for the single layer potential, the density ψ must satisfy the
following equation on ∂D1:

εm
(1
2
Id+K∗

D1

)
[ψ] + ε1

(1
2
Id−K∗

D1

)
[ψ] = (ε1 − εm)

∂

∂ν
G(·, y). (3.4)

So we obtain

ψ =
(
λD1

Id−K∗
D1

)−1
[ ∂
∂ν
G(·, y)

]
,

λD1
=

ε1 + εm
2(ε1 − εm)

.

Therefore, from (3.3) and the uniqueness of a solution to (3.2), we have the following represen-
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tation for the Green’s function GD1
:

GD1
(x, y) = G(x, y) + SD1

(
λD1

Id−K∗
D1

)−1
[ ∂
∂ν
G(·, y)

]
(x) for x, y ∈ R

2\D1. (3.5)

3.2 Representation of the total potential

Here we derive a layer potential representation of the total potential u, which is the solution to
(3.1).

Let uD1
be the total field resulting from the incident field ui and the ordinary particle D1

(without the plasmonic particle D2). Note that uD1
is given by

uD1
(x) = ui(x) + SD1

(
λD1

Id−K∗
D1

)−1
[
∂ui

∂ν1
](x), for x ∈ R

2\D1.

To consider the total potential u, we also need to represent the field generated by the plasmonic
particle D2. For this, we introduce a new layer potential SD2,D1

as follows:

SD2,D1
[ϕ](x) =

∫

∂D2

GD1
(x, y)ϕ(y)dσ(y).

The total potential u can be represented in the following form:

u = uD1
+ SD2,D1

[ψ], x ∈ R
2\D2. (3.6)

We need to find a boundary integral equation for the density ψ. It follows from (3.5) that, for
any ϕ,

SD2,D1
[ϕ](x) = SD2

[ϕ](x) + S1
D2,D1

[ϕ](x),

where S1
D2,D1

is given by

S1
D2,D1

[ϕ](x) :=

∫

∂D2

SD1

(
λD1

Id−K∗
D1

)−1
[
∂

∂ν1
G(·, y)](x)ϕ(y)dσ(y).

The expression of S1
D2,D1

[ϕ] can be further developed using the following spectral expansion of
the free-space Green function G [15]:

G(x, y) = −
∞∑

j=0

SD[ϕj ](x)SD[ϕj ](y) + SD[ϕ0](x), for x ∈ R
2\D and y ∈ D,

where ϕj , j = 1, 2, ... are eigenfunctions of K∗
D on H∗(∂D) and ϕ0 is an eigenfunction associated
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to the eigenvalue 1/2. Then, for any ϕ ∈ H∗, we get

∫

∂D2

G(·, y)ϕ(y)dσ(y) =

∞∑

j=1

SD2
[ϕj ](ϕ,ϕj)H∗(∂D2) + SD[ϕ0](x)

∫

∂D2

ϕ(y)

=

∞∑

j=1

SD2
[ϕj ](ϕ,ϕj)H∗(∂D2).

Therefore, for any ϕ ∈ H∗, we have,

S1
D2,D1

[ϕ](x) =

∫

∂D2

SD1

(
λD1

Id−K∗
D1

)−1
[
∂

∂ν1
G(·, y)](x)ϕ(y)dσ(y)

= SD1

(
λD1

Id−K∗
D1

)−1 ∂

∂ν1
SD2

[ ∞∑

j=0

(ϕ,ϕj)H∗ϕj

]
(x)

= SD1

(
λD1

Id−K∗
D1

)−1 ∂SD2
[ϕ]

∂ν1
(x),

where we have used the notation ∂
∂νi

to indicate the outward normal derivative on ∂Di.
Combining the boundary conditions in (3.1), the representation formula (3.6) and the jump

formula (2.2) yields the following equation for ψ

(AD2,0 +AD2,1) [ψ] =
∂uD1

∂ν2
,

where

AD2,0 = λD2
Id−K∗

D2
,

λD2
=

ε2 + εm
2(ε2 − εm)

, (3.7)

AD2,1 =
∂S1

D2,D1

∂ν2
=

∂

∂ν2
SD1

(
λD1

Id−K∗
D1

)−1 ∂SD2
[·]

∂ν1
. (3.8)

3.3 Intermediate regime and asymptotic expansion of the scattered field

Here we introduce the concept of intermediate regime and derive the asymptotic expansion of
the scattered field u− ui for small δ.

Definition 3.1 (Intermediate regime). We say that D2 is in the intermediate regime with
respect to the origin if there exist positive constants C1 and C2 such that C1 < C2 and

C1 ≤ dist(0, D2) ≤ C2.

Definition 3.1 says that the plasmonic particle D2 is located not too close to D1 nor far from
D1. Throughout this paper, we assume the plasmonic particle D2 is in the intermediate regime.
We have the following result.

Proposition 3.1. If D2 is in the intermediate regime, then ‖AD2,1‖H∗ = O(δ2) as δ → 0.
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Proof. Fix ϕ ∈ H∗(∂D2) and let

ϕ̃ := (λD1
Id−K∗

D1
)−1
[∂SD2

[ϕ]

∂ν1

]
.

Since SD2
[ϕ] is harmonic in D1, the Green’s identity gives

∫
∂D1

∂
∂ν1

SD2
[ϕ] = 0. Then it can be

proved that
∫
∂D1

ϕ̃ = 0. So we get

SD1
[ϕ̃](x) =

∫

∂D1

(log |x− y| − log |x|)ϕ̃(y)dσ(y) + log |x|

∫

∂D1

ϕ̃(y)dσ(y)

=

∫

∂D1

(log |x− y| − log |x|)ϕ̃(y)dσ(y).

Therefore, since |y − x| ≥ C ′ and |y| ≤ Cδ for (y, x) ∈ (∂D1, ∂D2), we obtain

‖AD2,1[ϕ]‖H∗(∂D2) =
∥∥ ∂

∂ν2
SD1

[ϕ̃]
∥∥
H∗(∂D2)

≤ Cδ‖ϕ̃‖H∗(∂D1).

Now it suffices to prove that
‖ϕ̃‖H∗(∂D1) ≤ Cδ. (3.9)

Recall that D1 = δB. Let fδ(y) = f(δy). Then the function fδ belongs to H∗(∂B) for f ∈
H∗(∂D1). Since it is known that K∗

Ω is scale-invariant for any Ω, we have K∗
D1

[f ] = K∗
B[fδ].

Therefore,

ϕ̃ =
(
λD1

Id−K∗
D1

)−1
[f ]d(δσ(y)) = (λD1

Id−K∗
B)

−1 [fδ]d(δσ(y)).

Again, since |y − x| ≥ C ′ for (y, x) ∈ (∂D1, ∂D2) and |∂D1| = O(δ), we arrive at

‖ϕ̃‖H∗(∂D1) = ‖ (λD1
Id−K∗

B)
−1
[(∂SD2

[ϕ]

∂ν1

)

δ

]
‖H∗(∂B)

≤ C‖
∂

∂ν1
SD2

[ϕ]‖H∗(∂D1) ≤ Cδ.

The proof is completed.

From Proposition 3.1, we can view AD2,1 as a perturbation of AD2,0. Using standard per-
turbation theory [18], we can derive the perturbed eigenvalues and associated eigenfunctions.

Let λj and ϕj be the eigenvalues and eigenfunctions of K∗
D2

on H∗(∂D2). For simplicity, we
consider the case when λj is a simple eigenvalue of the operator K∗

D2
. Let us define

Rjl =
(
AD2,1[ϕl], ϕj

)
H∗(∂D2)

, (3.10)

where AD2,1 is given by (3.8). Note that Rjl = O(δ2).
The perturbed eigenvalues have the following form:

τj(δ) = λD2
− λj + Pj ,

11



where Pj are given by

Pj = Rjj +
∑

l 6=j

RjlRlj

λj − λl
+

∑

(l1,l2) 6=j

Rjl2Rl2l1Rl1j

(λj − λl1)(λj − λl2)

+
∑

(l1,l2,l3) 6=j

Rjl3Rl3l2Rl2l1Rl1j

(λj − λl1)(λj − λl2)(λj − λl3)
+ · · · . (3.11)

Also, the perturbed eigenfunctions have the following form:

ϕj(δ) = ϕj +O(δ2). (3.12)

Here the remainder term is with respect to the norm ‖ · ‖H∗(∂D2).

Remark 3.1. Note that Pj depends not only on the geometry and material properties of D1,
but also on D2’s properties, in particular its position z.

Theorem 3.1. If D2 is in the intermediate regime, the scattered field usD2
= u − uD1

by the
plasmonic particle D2 has the following representation:

usD2
= SD2,D1

[ψ],

where ψ satisfies

ψ =

∞∑

j=1

(
∇ui(z) · ν, ϕj

)
H∗(∂D2)

ϕj +O(δ2)

λD2
− λj + Pj

with λD2
being given by (3.7).

As a corollary, we have the following asymptotic expansion of the scattered field u− ui.

Theorem 3.2. We have the following far field expantion:

(u− ui)(x) = ∇ui(z) ·M(λD1
, λD2

, D1, D2)∇G(x, z) +O(δ2) +O

(
δ3

dist(λD2
, σ(K∗

D2
))

)
,

as |x| → ∞. Here, M(λD1
, λD2

, D1, D2) is the polarization tensor satisfying

M(λD1
, λD2

, D1, D2)l,m =
∞∑

j=1

(νl, ϕj)H∗(∂D2)(ϕj , xm)− 1

2
, 1
2

+O(δ2)

λD2
− λj + Pj

, (3.13)

for l,m = 1, 2.

We remark that the scattered field in the above expression depends on the frequency (since
λD2

does so) and exhibit local peaks at certain frequencies when one of the denominators is close
to zero and is minimized while the associated nominator is not zero. These frequencies are called
the resonant frequencies of the system. It is clear that these resonant frequencies also depend
on the geometry and the electric permittivity of D1 through the perturbative terms Pj ’s. We

12



shall use this fact in the next section to solve the associated inverse problem of reconstructing
D1 by using those frequencies.

3.4 Representation of the shift Pj using CGPTs

Here we show that the term Pj in the plasmonic resonances can be expressed in terms of the
CGPTs. The CGPTs carry information on the geometry and material properties of D1. See [6]
for a detailed reference. We shall reconstruct the ordinary particle D1 from the measurement of
the shift Pj .

Proposition 3.2. If D2 is in the intermediate regime, then the perturbative terms Rjl can be
represented using CGPTs Mm,n(λD1

, D1) associated with D1 as follows:

Rjl =

(
1

2
− λj

) M∑

m=1

N∑

n=1

ajmMm,n(λD1
, D1)(a

l
n)

t +O(δM+N+1), (3.14)

where the superscript t denotes the transpose and ajm = (ajm,c, a
j
m,s) with

ajm,c = −
1

2πm

∫

∂D2

cos(mθy)

rmy
ϕj(y)dσ(y),

ajm,s = −
1

2πm

∫

∂D2

sin(mθy)

rmy
ϕj(y)dσ(y).

Here, (ry, θy) denote the polar coordinates of y and {ϕj}j is an orthonormal basis of eigenfunc-
tions of K∗

D2
on H∗.

Proof. To simplify the notation, let us denote

Fl = SD1

(
λD1

Id−K∗
D1

)−1 ∂SD2
[ϕl]

∂ν1
.

Then, from the Green’s identity and the jump formula (2.2), we obtain

Rjl =
(
Fl, ϕj

)
H∗ = −

(∂Fl

∂ν2
,SD2

[ϕj ]
)

1

2
,− 1

2

= −
(
Fl,

∂SD2
[ϕj ]

∂ν2

∣∣∣∣
−

)
1

2
,− 1

2

= −
(
Fl, (−

1

2
+K∗

D2
)[ϕj ]

)
1

2
,− 1

2

.

Since ϕj is an eigenfunction of K∗
D2

with an eigenvalue λj , we have

Rjl =
(1
2
− λj

)(
Fl, ϕj

)
1

2
,− 1

2

.

Let (rx, θx) be the polar coordinates of x. It is known from [4] that, for |x| < |y|,

G(x, y) =
∞∑

n=0

(−1)

2πn

cos(nθy)

rny
rnx cos(nθx) +

(−1)

2πn

sin(nθy)

rny
rnx sin(nθx). (3.15)

13



By interchanging x and y and the fact that G(x, y) = G(y, x), we have, for |x| > |y|,

G(x, y) =

∞∑

n=0

(−1)

2πn

cos(nθx)

rnx
rny cos(nθy) +

(−1)

2πn

sin(nθx)

rnx
rny sin(nθy). (3.16)

If x ∈ ∂D1 and y ∈ ∂D2, then |x| < |y|. So, applying (3.15) gives

∂SD2
[ϕl]

∂ν1
(x) =

∂

∂ν1

∫

∂D2

G(x, y)ϕldσ(y)

=

∞∑

n=1

∂rnx cos(nθx)

∂ν1
aln,c +

∂rnx sin(nθx)

∂ν1
aln,s.

On the contrary, if y ∈ ∂D1 and x ∈ ∂D2, then |x| > |y|. We have from (3.16) that, for any f ,

SD1
[f ](x) =

∫

∂D1

G(x, y)[f ](y)dσ(y)

=
∞∑

m=0

−
1

2πm

cos(mθx)

rmx

∫

∂D1

rmy cos(mθy)[f ](y)dσ(y)

+
∞∑

m=0

−
1

2πm

sin(mθx)

rmx

∫

∂D1

rmy sin(mθy)[f ](y)dσ(y).

Therefore, from the definition of Mm,n, we get

Rjl =

(
1

2
− λj

)(
SD1

(
λD1

Id−K∗
D1

)−1 ∂SD2
[ϕl]

∂ν1
, ϕj

)
1

2
,− 1

2

=

(
1

2
− λj

) ∞∑

m=0,n=1

(ajm,c, a
j
m,s)Mm,n(λD1

, D1)(a
l
n,c, a

l
n,s)

t.

For any λ ∈ C and D = δB, it is easy to check that Mm,n(λ,D) = δm+nMm,n(λ,B). Since D2

is in the intermediate regime, aln,c and a
l
n,s satisfy

|ajm,c|, |a
j
m,s| ≤

1

m
C−m, |aln,c|, |a

l
n,s| ≤

1

n
C−n,

for some constant C > 1 independent of δ. Moreover, it can be shown that (see [7])

∞∑

n=1

(aj0,c, a
j
0,s)M0,n(λD1

, D1)(a
l
n,c, a

l
n,s)

t = 0.

Then the conclusion immediately follows.
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Corollary 3.1. We have

Pj(z)−
∑

l 6=j

Rjl(z)Rlj(z)

λj − λl
−

∑

(l1,l2) 6=j

Rjl2Rl2l1Rl1j

(λj − λl1)(λj − λl2)
. . .

=

(
1

2
− λj

) M∑

m=1

N∑

n=1

ajmMm,n(λD1
, D1)(a

l
n)

t +O(δM+N+1).

In the LHS, the summation should be truncated so that all the terms which contain Rjlk · · ·Rlkj =
O(δ2(k+1)) with 2(k + 1) ≤M +N + 1 are ignored.

4 The inverse problem

In this section, we consider the inverse problem associated with the forward system (3.1). We
assume that the plasmonic particleD2 is known, i.e., we know its electric permittivity ε2 = ε2(ω),
its shape D2 and position z. The ordinary particle D1 is unknown. For simplicity, we assume
that its permittivity ε1 is known. For each of many different positions z of the plasmonic particle
D2, we measure the resonant frequency and use these resonant frequencies to reconstruct the
shape of the ordinary particle D1.

As illustrated by Theorem 3.2, the resonance in the scattered field occurs when λD2
(ω) −

λj + Pj is minimized and (νl, ϕj)H∗(ϕj , xm)− 1

2
, 1
2

6= 0. So by varying the frequency ω, we can

measure the value of λj − Pj . Moreover, in the absence of the ordinary particle, the resonance
occurs when λD2

(ω) − λj is minimized and (νl, ϕj)H∗(ϕj , xm)− 1

2
, 1
2

6= 0. Since we assume that

the plasmonic particle D2 is known, we can get the value of λj a priori. Therefore, by comparing
λj − Pj and λj , we can measure the shift Pj of the eigenvalue.

Finding Pj for many different positions of D2 will yield a linear system of equations that
will allow the recovery of the CGPTs associated with D1. From the recovered CGPTs, we
will reconstruct the ordinary particle D1. Here, we only consider the shape reconstruction
problem. Nevertheless, by using the CGPTs associated with D1, it is possible to reconstruct
the permittivity ε1 of D1 in the case it is not a priori given [4].

From now on, we denote Mm,n =Mm,n(λD1
, D1).

4.1 Contracted GPTs recovery algorithm

We propose a recurrent algorithm to recover the GPTs of order less or equal to k up to an order
δ2k−1, using measurements of Pj at different positions of D2. For simplicity, we only consider
the shift of a single eigenvalue λj with a fixed j. To gain robustness and efficiency, the shift in
other resonant frequencies could also be considered.

We now explain our method for reconstructing GPTs Mm,n,m + n ≤ K for a given K ∈ N

from the measurements of the shift Pj .
Suppose we measure precisely Pj for three different positions z1, z2, z3 of the plasmonic

particle D2. First we reconstruct M1,1 approximately. Since M t
1,1 = M1,1, the matrix M1,1 is
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symmetric. We look for a symmetric matrix M
(2)
1,1 satisfying

Pj(z1) =

(
1

2
− λj

)
aj1(z1)M

(2)
1,1 (a

j
1)

t(z1)

Pj(z2) =

(
1

2
− λj

)
aj1(z2)M

(2)
1,1 (a

j
1)

t(z2)

Pj(z3) =

(
1

2
− λj

)
aj1(z3)M

(2)
1,1 (a

j
1)

t(z3).

The above equations can be seen as a linear system of equations for three independent compo-

nents (M
(2)
1,1 )11, (M

(2)
1,1 )12 and (M

(2)
1,1 )22. We emphasize that ajm(zi) can be a priori given because

the particle D2 is known. Since, from Corollary 3.1 and the fact that Rjl = O(δ2), we have

Pj(zk) =

(
1

2
− λj

)
aj1(zk)M1,1(a

j
1)

t(zk) +O(δ3), k = 1, 2, 3,

we see that M1,1 is well approximated by M
(2)
1,1 . Specifically, we have M1,1 −M

(2)
1,1 = O(δ3).

Next we reconstruct and update the higher order GPTs Mn,m in a recursive way. Towards
this, we need more measurement data of the shift Pj . Let k ≥ 3. Due to the symmetry of
harmonic combinations of the non contracted GPTs (see [6]), we have Mm,n = M t

n,m. One can
see that, by using this symmetry property, the set of GPTs Mm,n satisfying m+ n ≤ k contains
ek independent variables where ek is given by

ek =

{
k(k − 1) + k/2, if k is even,
k(k − 1) + (k − 1)/2, if k is odd.

Therefore, we need ek measurement data for Pj to reconstruct the GPTs Mm,n for m+ n ≤ k.
Suppose we have ek − 2 more measurement data Pj at different positions z4, z5, ..., zek . Let

{M
(k)
m,n}m+n≤k be the set of matrices satisfying [M

(k)
n,m]t =M

(k)
m,n and the following linear system:

P̃
(k−1)
j (z1) =

(
1

2
− λj

) ∑

m+n≤k

ajm(z1)M
(k)
m,n(a

j
n)

t(z1)

P̃
(k−1)
j (z2) =

(
1

2
− λj

) ∑

m+n≤k

ajm(z2)M
(k)
m,n(a

j
n)

t(z2)

... =
...

P̃
(k−1)
j (zek) =

(
1

2
− λj

) ∑

m+n≤k

ajm(zek)M
(k)
m,n(a

j
n)

t(zek), (4.1)

where

P̃
(k−1)
j (zi) := Pj(zi)−

∑

l 6=j

R
(k−1)
jl (zi)R

(k−1)
lj (zi)

λj − λl
− . . . , i = 1, 2, ..., ek, (4.2)
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and

R
(k−1)
jl (z) :=

(
1

2
− λj

) ∑

m+n≤k−1

ajm(z)M (k−1)
m,n (aln)

t(z).

Note that M
(k)
m,n are defined recursively. In (4.2), the summation should be truncated as in

Corollary 3.1.

Then M
(k)
m,n becomes a good approximation of the GPT Mm,n for m+ n ≤ k. Moreover, the

accuracy improves as the iteration goes on. Indeed, we can see that

Mm,n −M (k)
m,n = O(δ2k−1), m+ n ≤ k. (4.3)

In fact, (4.3) can be verified by induction. We already know that this is true when k = 2. Let

us assume Mm,n −M
(k−1)
m,n = O(δ2k−3), m+ n ≤ k − 1. Then, from Proposition 3.2, we have

Rjl(z)−R
(k−1)
jl (z) = O(δ2k−3).

Hence, from Corollary 3.1 and the fact that Rjl = O(δ2), we obtain

P̃
(k−1)
j (zi)−


Pj(zi)−

∑

l 6=j

Rjl(zi)Rlj(zi)

λj − λl
− · · ·


 = O(δ2k−1).

Therefore, in view of Corollary 3.1 and the linear system (4.1), we obtain (4.3). In conclusion,

M
(k)
m,n is indeed precise up to an order δ2k−1.

Remark 4.1. In practice, Pj might be subject to noise and could not be measured precisely. In
this case only the low order CGPTs could be recovered.

4.2 Shape recovery from contracted GPTs

To recover the shape of D1 from its contracted GPTs, we search to minimize the following shape
functional ([4])

J (l)
c [B] :=

1

2

∑

n+m≤k

∣∣∣N (1)
mn(λD1

, B)−N (1)
mn(λD1

, D1)
∣∣∣
2
, (4.4)

where

N (1)
m,n(λ,D) = (M cc

m,n −M ss
m,n) + i(M cs

m,n −M sc
m,n).

To minimize J (l)[B] we need to compute the shape derivative, dSJ
(l)
c , of J

(l)
c .

For ǫ small, let Bǫ be an ǫ-deformation of B, i.e., there is a scalar function h ∈ C1(∂B), such
that

∂Bǫ := {x+ ǫh(x)ν(x) : x ∈ ∂B}.

Then, according to [4, 5, 8], the perturbation of a harmonic sum of GPTs due to the shape

17



deformation is given as follows:

N (1)
m,n(λD1

, Bǫ)−N (1)
m,n(λD1

, D1)

= ǫ(kλD1
− 1)

∫

∂B
h(x)

[
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−
+

1

kλD1

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) +O(ǫ2),

where
kλD1

= (2λD1
+ 1)/(2λD1

− 1), (4.5)

and u and v are respectively the solutions to the problems:





∆u = 0 in B ∪ (R2\B) ,

u|+ − u|− = 0 on ∂B ,

∂u

∂ν

∣∣∣
+
− kλD1

∂u

∂ν

∣∣∣
−
= 0 on ∂B ,

(u− (x1 + ix2)
m)(x) = O(|x|−1) as |x| → ∞ ,

(4.6)

and 



∆v = 0 in B ∪ (R2\B) ,

kλD1
v|+ − v|− = 0 on ∂B ,

∂v

∂ν

∣∣∣
+
−
∂v

∂ν

∣∣∣
−
= 0 on ∂B ,

(v − (x1 + ix2)
n)(x) = O(|x|−1) as |x| → ∞ .

(4.7)

Here, ∂/∂T is the tangential derivative.
Let

wm,n(x) = (kλD1
− 1)

[
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−
+

1

kλD1

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x), x ∈ ∂B .

The shape derivative of J
(l)
c at B in the direction of h is given by

〈dSJ
(l)
c [B], h〉 =

∑

m+n≤k

δN 〈wm,n, h〉L2(∂B) ,

where
δN = N (1)

m,n(λD1
, B)−N (1)

m,n(λD1
, D1) .

Next, using a gradient descent algorithm we can minimize, at least locally, the functional J
(l)
c .

5 Numerical Illustrations

In this section, we support our theoretical results by numerical examples. In the sequel, we
assume that D2 is an ellipse with semi-axes a = 1 and b = 2, as shown in Figure 2. In this case,
as explained in Subsection 2.3, the resonances in the far-field can only occur at λ1 =

1
2
a−b
a+b = −1

6
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and λ2 = −1
2
a−b
a+b = 1

6 . Thus, for a fixed position of D2, we can measure two shifts of the
plasmonic resonance: P1 and P2.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 2: Plasmonic partcile D2.

We consider the case of D1 being a triangular-shaped and a rectangular-shaped particle with
known contrast λD1

= 1, as shown in Figure 3.
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Figure 3: Non plasmonic partciles D1. Triangular-shaped (left) and rectangular-shaped (right).

Figure 4 shows the shift in the plasmonic resonance around λ1, for random positions of
D2 around a triangular-shaped particle D1. From these measurements, P1 can be precisely
estimated from the resonance peaks and the equation Pj = λj − λr, where λr is the value at
which we achieve the maximum of the resonant peak.

It is worth mentioning that, for the sake of simplicity and clarity, we plot the graph not
by varying the frequency but the parameter λ directly. We assume Re(λD2

) ranges from −1/2
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to 1/2 and Im(λD2
) = 10−4. In a more realistic setting, corrections in the peaks of resonances

should be included, by considering the Drude model for λD2
. But they are essentially equivalent.
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Figure 4: (right) Modulus of the entry (1,1) of the first order polarization tensor given in
Theorem 3.2, for different positions of D2 around a triangular-shaped particle D2 (left).

To recover geometrical properties of D1 from measurements of P1, we recover the contracted
GPTs using the algorithm described in 4.1 and then minimize functional (4.4) to reconstruct an
approximation of D1.

To recover the first contracted GPTs of order 5 or less we make 22 measurements around
D1 as shown in Figure 5, and measure the shift from λ1 = −1

6 .
In the following, we show a comparison between the recovered contracted GPTs of order less

or equal to 4 and their theoretical values, for each iteration.

Triangle-shaped D1:

Theoretical values:

M11 =

(
0.2426 0

0 0.2426

)
M12 =

(
0 −0.0215

−0.0215 0

)
M22 =

(
0.043 0
0 0.043

)

M13 =

(
0 0
0 0

)
;
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Figure 5: Positions of D2 for which we measure P1. (left) Triangular-shaped particle D1, (right)
rectangular-shaped particle D1.

Recovered:

M
(2)
11 =

(
0.2444 −0.0007
−0.0007 0.2408

)
M

(3)
11 =

(
0.2438 0

0 0.2414

)
M

(4)
11 =

(
0.2429 −0.0001
−0.0001 0.2430

)

M
(5)
11 =

(
0.2426 0

0 0.2426

)

M
(3)
12 =

(
0.0008 −0.2414
−0.0212 −0.0087

)
M

(4)
12 =

(
0 −0.2413

−0.0213 0

)
M

(5)
12 =

(
0 −0.2415

−0.0215 0

)

M
(4)
22 =

(
0.0180 0.2204
0.2204 0.0389

)
M

(5)
22 =

(
0.0368 0.0010
0.0010 0.0497

)
M

(4)
13 =

(
0.0093 −0.1126
−0.1123 −0.0019

)

M
(5)
13 =

(
0.0032 −0.0005
−0.0005 −0.0032

)
.

Rectangular-shaped D1:

Theoretical values:

M11 =

(
0.2682 0.0000

0 0.2682

)
M12 =

(
0 0
0 0

)
M22 =

(
0.0544 0

0 0.0402

)

M13 =

(
0.0054 0

0 −0.0054

)
;
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Recovered:

M
(2)
11 =

(
0.2703 0.0001
0.0001 0.2661

)
M

(3)
11 =

(
0.2696 0

0 0.2662

)
M

(4)
11 =

(
0.2682 0

0 0.2681

)

M
(5)
11 =

(
0.2682 0

0 0.2681

)

M
(3)
12 =

(
0.0038 −0.0001

0 −0.0112

)
M

(4)
12 =

(
0 0
0 0

)
M

(5)
12 =

(
0 0
0 0

)

M
(4)
22 =

(
0.0530 −0.0007
−0.0007 0.0425

)
M

(5)
22 =

(
0.0537 0.0006
0.0006 0.0416

)
M

(4)
13 =

(
0.0064 0.0003
0.0004 −0.0063

)

M
(5)
13 =

(
0.0060 −0.0003
−0.0003 −0.0059

)
.

The results of minimizing the functional (4.4) with a gradient descent approach and using
the recovered contracted GPTs of order less or equal to 5 are shown in Figures 6 and 7. We
take as initial point the equivalent ellipse to D1, given by the first order polarization recovered

with Algorithm 4.1, i.e M
(5)
11 .

0

0

0

0

0

0

Figure 6: Shape recovery of a triangular-shaped particle D1. From left to right, we show
both, the original shape and the recovered one after 0 iterations, after 8 iterations and after 30
iterations.

6 Conclusion

In this paper, using the quasi-static model, we have shown that the fine details of a small object
can be reconstructed from the shift of resonant frequencies it induces to a plasmonic particle
in the intermediate regime. This provides a solution for the ill-posed inverse problem of recon-
structing small objects from far-field measurements and also laid a mathematical foundation for
plasmonic bio-sensing. The idea can be extended in several directions: (i) to investigate the
strong interaction regime when the small object is close to the plasmonic particle; (ii) to study
the case when the size of object is comparable to the size of plasmonic particle; (iii) to analyze
the case with multiple small objects and multiple plasmonic particles; (iv) to consider the more
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0

0

0

0

0

0

Figure 7: Shape recovery of a rectangular-shaped particle D1. From left to right, we show both,
the original shape and the recovered one after 0 iterations, after 30 iterations and after 100
iterations.

practical model of Maxwell equations, and (v) to investigate other types of subwavelength res-
onances such as Minnaert resonance [3, 26] in bubbly fluids. These new developments will be
reported in forthcoming works.
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