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Abstract

We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite
Element (FE) Method for a scalar diffusion equation with log-Gaussian, isotropic coefficients
in a bounded, polytopal domainD ⊂ R

d. The multilevel algorithm Q∗

L
which we analyze here

was first proposed, in the case of parametric PDEs with sequences of independent, uniformly
distributed parameters in [Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan: Multi-
level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random
coefficients, Found. Comput. Math. 15 (2015) pp. 411–449]. The random coefficient
is assumed to admit a representation with locally supported coefficient functions, as arise
for example in spline- or multiresolution representations of the input random field. The
present analysis builds on and generalizes our single-level analysis in [Lukas Herrmann and
Christoph Schwab: QMC integration for lognormal-parametric, elliptic PDEs: local supports
and product weights, Numer. Math., published online 11 August 2018]. It also extends
the MLQMC error analysis in [Frances Y. Kuo, Robert Scheichl, Christoph Schwab, Ian H.
Sloan, and Elisabeth Ullmann: Multilevel quasi-Monte Carlo methods for lognormal diffusion
problems, Math. Comp. 86 (2017) pp. 2827–2860], to locally supported basis functions in
the representation of the Gaussian random field (GRF) in D, and to product weights in
QMC integration. In particular, in polytopal domains D ⊂ R

d, d = 2, 3, our analysis is
based on weighted function spaces to describe solution regularity with respect to the spatial
coordinates. These spaces allow GRFs and PDE solutions whose realizations become singular
at edges and vertices of D. This allows for non-stationary GRFs whose covariance operators
and associated precision operator are fractional powers of elliptic differential operators in
D with boundary conditions on ∂D. In the weighted function spaces in D, first order,
Lagrangean Finite Elements on regular, locally refined, simplicial triangulations of D yield
optimal asymptotic convergence rates. Comparison of the ε-complexity for a class of Matérn-
like GRF inputs indicates, for input GRFs with low path regularity, superior performance of
the present MLQMC-FEM with locally supported representation functions over alternative
representations, e.g. of Karhunen–Loève type. Our analysis yields general bounds for
the ε-complexity of the MLQMC algorithm, uniformly with respect to the dimension of the
parameter space.

∗This work was supported in part by the Swiss National Science Foundation under grant SNF 200021 159940/1.
The authors acknowledge the computational resources provided by the EULER cluster of ETH Zürich. They also
acknowledge the help of Magdalena Keller, a MSc student in the ETH MSc Applied Mathematics program, for
permission to use her C++ implementation of the fast CBC algorithm.
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1 Introduction

The numerical analysis of solution methods for partial differential equations (PDEs) and more
general operator equations with random input data has received increasing attention in recent
years, in particular with the development of computational uncertainty quantification and com-
putational science and engineering. There, particular models of randomness in the PDEs’ input
entail particular requirements to efficient computational uncertainty quantification algorithms.
A basic case arises when there are a finite (possibly large) number s of random variables whose
densities have bounded support and which parametrize uncertain input from function spaces,
such as diffusion coefficients or source terms in the forward PDE model: computation of statis-
tical moments of “responses” being (functionals of) solution families of these PDEs. Numerical
Bayesian inversion then amounts to numerical integration over a parameter domain of finite
parameter space dimension s, which itself is a discretization parameter. Statistical indepen-
dence and scaling reduces this task to numerical integration over the unit cube [0, 1]s, against a
product probability measure. In the context of PDEs, so-called distributed random inputs such
as spatially heterogeneous diffusion coefficients, uncertain physical domains, etc. imply, via un-
certainty parametrizations (such as Fourier-, Karhunen–Loève , B-spline or wavelet expansions)
in physical domains D, a countably-infinite number of random parameters (being, for example,
Fourier- or wavelet coefficients). This, in turn, renders the problem of numerical estimation
of response statistics of PDE solutions a problem of infinite-dimensional numerical integration.
Assuming statistical independence of the system of (countably many) random input parameters
results in the problem of numerical integration against a product probability measure. The case
of the uncertain PDE input being a Gaussian random field (GRF) is particularly important
in applications, and the numerical analysis has received considerable attention in recent years.
Here, the numerical estimation of statistical moments of PDE solutions amounts to integrating
parametric PDE solutions against Gaussian measures on function spaces of admissible input
data. Adopting uncertainty parametrizations of the input GRFs renders the domain Ω of inte-
gration a countable product of real lines RN, endowed with the Gaussian product measure (GM)
µ and with the product sigma algebra obtained by completing the finite dimensional cylinders
of Borel sets on R (we refer to [10] for details on GMs on R

N).
Here, as in [25, 35] and the references there, we analyze the combined discretization by quasi-

Monte Carlo (QMC) quadratures and the FE solution of linear, second order elliptic PDEs in
a bounded, polytopal domain D ⊂ R

d, d = 2, 3. Unlike the applications in [25, 35] and the
references there, and in [28], where stationarity enters the algorithms and the error analysis
in an essential way, here we consider isotropic (i.e. scalar), log-Gaussian diffusion coefficient
a = exp(Z), where Z is a possibly non-stationary GRF in D.

We place the present work in perspective with other recent recent work on the numerical
analysis of PDEs with GRF inputs. In [25, 35], an error analysis of single- and multilevel
algorithms was developed for Karhunen–Loève type representations of the GRF Z. Except
for rather special settings where Karhunen–Loève eigenfunctions are explicitly known (when D
is a torus or a sphere [31]), Karhunen–Loève type representations of GRFs are not explicitly
available but must be computed numerically. This entails the accurate numerical approximation
of a large number of eigenpairs of the covariance operator of the GRF Z in the domain D, a
significant computational overhead.

Moreover, the covariance eigenfunctions in Karhunen–Loève representations of GRFs in do-
mains or manifolds D typically have global support in D. This was shown in [25, 35] to imply
in the error analysis of QMC quadrature rules so-called product-and-order dependent (POD)
weights. Constructing QMC points with POD weights introduces, via the corresponding fast
component-by-component (CBC) algorithm, a quadratic scaling w.r. to the QMC integration
dimension s of the construction cost for QMC rules, see [42, 15] and the references there. For this
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reason, the QMC construction cost is not explicitly accounted for in recent complexity estimates
of QMC-FE algorithms for PDEs.

To bypass the need for numerical Karhunen–Loève eigenfunction computation, under (strong)
assumptions on stationarity of the GRF Z, fast, FFT-based numerical methods have been pro-
posed for efficient numerical realization of stationary GRFs. We refer to [16] and the references
there for details. FFT based techniques have recently been used in conjunction with QMC and
FE for elliptic PDEs with coefficients given by (exponentials of) stationary GRFs Z in [28].
While allowing essentially linear scaling w.r. to the number of FE degrees of freedom in the
domain D, stationarity of the GRF Z is a key condition for the applicability of FFT-based, so-
called “circulant embedding” methods. Being essentially Fourier-based techniques, the QMC-FE
error analysis in [28] involves QMC weight sequences with POD structure and, hence, quadratic
w.r. to QMC integration dimension s scaling of the cost for QMC rule construction via the fast
CBC construction (see [28, Equation (3.16), Remark 9]).

In recent years, computational modelling of noisy spatial data has increasingly employed
non-stationary GRFs in bounded domains D. We mention recently used random field models in
spatial statistics (see [39, 18] and the references there), GRFs on manifolds such as the sphere
(see [31] and the references there), and deep Gaussian processes (see [17] and the references
there). As proposed in [39], rather general non-stationary GRFs Z in bounded domains or on
manifolds D can be modelled and sampled as solutions of stochastic (integro) PDE (SPDE).
A widely used equation which generalizes the classical Whittle–Matérn [49, 40] covariances of
stationary Gaussian random fields reads as

(−div(A(x)∇) + κ2(x))α/2Z = W in D . (1)

Here W denotes spatial white noise on D, and α > 0 is suitably chosen. If D = R
d, A(x) ≡ Id,

and κ(x) ≡ const, the solution Z to (1) (we assume Z to be centered throughout this paper) is
stationary with so-called Matérn-type covariance, cp. [48, 49]. For a variable coefficient matrix
A(x) and variable κ(x), or in bounded domains D with homogeneous Dirichlet or Neumann
boundary conditions, equation (1) results in non-stationary, “Matérn-like” Gaussian random
fields. On bounded domains D, boundary conditions for Z are mandatory for the unique solv-
ability of the SPDE (1). Imposition of boundary conditions on ∂D generally entails nonsta-
tionarity of the GRF Z, cp. [39, Section A.4]. Then, FFT-based methods are generally not
available, and computation of Karhunen–Loève eigenbases for (1) will entail, again, prohibitive
cost. Alternative, covariance independent representations of GRFs via multiresolution systems
in D allow us to circumvent the numerical solution of Karhunen–Loève eigenproblems, the clas-
sical example being the Brownian bridge in D = (0, 1), going back to P. Lévy and Z. Ciesielski.
The basis functions in corresponding representation systems are well-localized in D (either com-
pactly supported or exponentially decaying) and allow for fast evaluation of the GRF in D,
similar to FFTs. While retaining linear scaling w.r. to the spatial resolution of the approxi-
mate GRF in D, the hierarchical nature of multiresolution analyses (MRAs) naturally enables
multilevel QMC algorithms with a discretization level dependent resolution of GRF and QMC
integration. In addition, as observed by us recently in [20, 32], the localization of the supports
of the representation system in D allows us to use QMC quadrature with product weights. This,
in turn, is known to afford linear scaling of the work with respect to the parameter dimension
s to compute the QMC generating vectors (see [43, 15] and the references there). To provide a
complete error vs. work analysis of a multilevel QMC FE algorithm for the numerical solution
of a linear, second order elliptic PDE with GRF input and locally supported basis functions
in a bounded, polytopal domain D ⊂ R

d, d = 2, 3, where the GRF satisfies (1) with suitable
boundary conditions on ∂D is the purpose of the present paper. Recently, independent of the
present work, in [34] a combined QMC and wavelet-based discretization of log-Gaussian ran-
dom fields was proposed and error bounds were presented. The present results go in several
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respects beyond those in [34]. We consider, in particular, multilevel QMC-FE discretizations,
and use sharper bounds than those in [34] on the error caused by truncating the expansion of
the GRF, from our single-level analysis in [32]. We also generalize, based on [32], the QMC
error analysis by admitting Gaussian type weight functions in the anisotropic QMC norms, as
opposed to the exponential weights used in [25, 35]. We prove that this extends the summability
range of Karhunen–Loève and wavelet expansions of the admissible GRFs for the applicability
of QMC with product weights, in addition to obviating stationarity, as compared to [25, 35].
Furthermore, in the present paper, we provide a full regularity analysis of the PDE as required
for the MLQMC-FE. As is well-known, this requires a form of “mixed regularity” analysis, with
possibly sharp, quantitative bounds of the sensitivities of the parametric integrand functions
with respect to the coordinates in the GRF Z, in weighted H2(D) norms. In the present paper,
we also develop these norm bounds.

We confine QMC integration error analysis to first order, randomly shifted lattice rules
proposed originally in [37], and to continuous, piecewise linear “Courant” FEM in D. We adopt
the setting of our analysis [32] of the single-level QMC-FE algorithm: in a bounded, polytopal
domain D ⊂ R

d, d = 2, 3 we consider a model Dirichlet problem

−∇ · (a∇u) = f, u
∣∣∣
∂D

= 0 . (2)

As in [32], we assume that the GRF Z = log(a) : Ω → L∞(D) is (formally) represented as

Z :=
∑

j≥1

yjψj , (3)

where (ψj)j≥1 is a sequence of real-valued, bounded, and measurable functions in D. In
particular, with respect to the GM µ, the terms in the sequence y = (yj)j≥1 in (3) are i.i.d
standard normal, yj ∼ N (0, 1), i.i.d. for j ∈ N. The lognormal coefficient a in (2) is given by

a := exp(Z) . (4)

Here, (3) converges in Lq(Ω;L∞(D)), q ∈ [1,∞), under the assumption that there exists a
positive sequence (bj)j≥1 ∈ ℓp(N) for some p ∈ (0,∞) such that

K0 :=

∥∥∥∥∥∥

∑

j≥1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

<∞ . (A1)

In the setting of (3) and (4), the expectation with respect to the GM µ of the solution to (2) can
be computed with QMC by randomly shifted lattice rules and product weights with dimension-
independent convergence rates under the assumption (A1) with p < 2, cp. [32]. The assumption
in (A1) can account for locality in the support of the functions ψj . This may also be achieved
by exponentially decaying ψj , which are not compactly supported, see [8, 30]. An assumption
of the type of (A1) in the case of so called affine-parametric coefficients in conjunction with the
application of QMC with product weights was already discussed by us in [20]. In the present
work, we extend our analysis of [32] to a multilevel QMC FE algorithm with log-Gaussian inputs
to reduce the overall work. The perspective of multilevel QMC integration with product weights
for random inputs ψj with localized supports was originally introduced in [19] for the case of
so-called affine-parametric coefficients. Multilevel QMC for elliptic PDEs with affine coefficients
was first introduced in [36] (there for globally supported Karhunen–Loève eigenfunctions and
with POD weights). As we showed there, localization of supports allows to obtain in certain
cases estimates for the work of the evaluation of the multilevel QMC quadrature, which are
asymptotically equal to the work to solve one instance of the corresponding deterministic PDE
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with the same error tolerance also in the case that the FE convergence rate is higher than 1/2
with respect to the number of FE degrees of freedom. The convergence rate of first order FEM
is higher than 1/d if, for example, the spatial error is considered in a weaker Sobolev norm for
d = 2, 3. In contrast to [35], the present complexity analysis does account for the cost of the
CBC algorithm of [43, 44] for the computation of the generating vector of the QMC points.
This is due to product weights affording CBC construction with linear scaling in terms of the
dimension s of the integration domain. The work estimates of multilevel QMC quadrature
obtained here are compared to previous results from [35] for the same underlying GRF. For
locally supported representations of random field inputs, multilevel QMC with product weights
requires asymptotically less work to obtain a certain accuracy than global supports and POD
weights. To facilitate comparison with [35] (where a Karhunen–Loève expansion is truncated to
a fixed number of terms on all FE mesh levels and analyzed assuming the cost to evaluate one
Karhunen–Loève function is O(1)), in the present paper the error analysis from [35, Section 5]
is sharpened in Appendices A and B. There, novel parametric regularity and error vs. work
estimates are proved that also cover variable Karhunen–Loève truncation dimensions and fast
(e.g. FFT) methods to sample the GRF in the case of globally supported representation systems
with QMC POD weights accounting for the cost of the CBC algorithm. As a byproduct, we
show that multilevel QMC with global supports and POD weights requires in certain cases
asymptotically the same work as the corresponding deterministic PDE, which constitutes an
extension of the theory in [35] on multilevel QMC with global supports and POD weights.

The outline of this paper is as follows. In Section 2, we recapitulate known results on the
well-posedness of problem (2) - (4) under assumption (A1), and on the integrability of random
solution with respect to the GM. We also present bounds on the error incurred in the random
solution when the expansion (3) is truncated to a finite number of s terms. As we combine QMC
quadrature approximation of the GM with continuous, piecewise linear FE discretization of (2) of
the random solution in polytopal domains D ⊂ R

d, d = 2, 3, we also review in Section 2 elements
of elliptic regularity theory and FE approximation theory in D; notably, handling corner and
(in space dimension d = 3) edge singularities induced by D we review weighted Sobolev spaces
in D in which (2) admits a full regularity shift. Corresponding weighted spaces also appear in
our convergence rate analysis of the expansion (3) of the GRF. In Section 3, we review QMC
convergence theory from [42, 32]. Suitable (weighted) spaces on R

s of integrand functions with
mixed first derivatives which ensure (nearly) first order convergence with dimension-independent
constants are introduced. Section 4 presents the key mathematical results: parametric regularity
analysis for the integrand functions which arise from the dimensionally truncated, FE discretized
problem, generalizing the single level QMC analysis in [32] by admitting locally supported
functions ψj in the representation (3) of the GRF; while similar in spirit to the multilevel analysis
in [25], there are significant technical differences due to accounting for local supports of ψj ,
analogous to the recent gpcN -term approximation rate analysis in [7]. The error bounds are then
combined in Section 5 to a novel, MLQMC convergence rate bound in terms of the (sequences
of) truncation dimensions (sℓ)ℓ=0,...,L, numbers (Mℓ)ℓ≥0 of FE degrees of freedom and of QMC
sample numbers (Nℓ)ℓ=0,...,L, where L denotes the number of discretization levels. Judicious
choices of these parameters for concrete MLQMC-FE algorithms are derived in Section 6.1 by
the “usual” error vs. work analysis through optimization, of the error bounds in Section 5,
derived analogously to [36, 35]. Several cases of these error vs. work estimates are discussed in
Section 6.2 and compared to error vs. work estimates for multilevel QMC with global supports
and POD weights in Section 6.3. Numerical experiments of this multilevel QMC algorithm for
non-stationary GRF input represented by a multiresolution function system are presented in the
univariate case in Section 7.
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2 Well-posedness and spatial approximation

2.1 Well-posedness

We consider the variational formulation of the PDE (2) with lognormal coefficient a = exp(Z),
i.e., to find u : Ω → V such that

∫

D
a∇u · ∇vdx = f(v), v ∈ V, (5)

where V := H1
0 (D) with dual space V ∗. Throughout, we identify L2(D) with its dual space

L2(D)∗, i.e., V ⊂ L2(D) ≃ L2(D)∗ ⊂ V ∗. Under the assumption that for some p0 ∈ (0,∞),
(bj)j≥1 ∈ ℓp0(N) it holds that Z ∈ Lq(Ω;L∞(D)) for every q ∈ [1,∞), cp. [32, Theorem 2].
Hence, 0 < ess infx∈D{a(x)} ≤ ‖a‖L∞(D) < ∞, µ-a.s. . As in previous works [32, 35, 25], in the
ensuing error analysis, the quantities

amin := ess inf
x∈D

{a(x)} and amax := ‖a‖L∞(D)

will play an important role. Under Assumption (A1), amin and amax are random variables
on the probability space (Ω,

⊗
j≥1 B(R), µ) (see, for example, [10, Example 2.3.5]). Therefore,

continuity and coercivity of the random bilinear form (w, v) 7→
∫
D a∇w · ∇vdx in (5) on V × V

holds with coercivity constant amin and continuity constant amax, µ-a.s. By the Lax–Milgram
Lemma, a unique solution u to (5) exists µ-a.s. By [32, Proposition 3] (see also [12]), for every
q ∈ [1,∞),

‖u‖Lq(Ω;V ) ≤ ‖1/amin‖Lq(Ω)‖f‖V ∗ <∞,

where the strong measurability of u : Ω → V follows, since the V -valued random solution u of
(5) depends continuously on the L∞(D)-valued coefficent a (via a Strang type argument).

Numerical approximation of (functionals of) the random solution by QMC quadratures re-
quires a finite dimensional domain of integration. To this end, the expansion of the GRF Z in
(3) is truncated to a finite number s of terms: the s-term truncated lognormal random field as is
defined by as := exp(Zs) = exp(

∑s
j=1 yjψj), for every s ∈ N. With as, we associate the random

variables
asmin := ess inf

x∈D
{as(x)} and asmax := ‖as‖L∞(D).

By us we denote the solution of the variational formulation (5) with the s-term truncated,
parametric coefficient as in place of a, i.e.,

us : Ω → V s.t.

∫

D
as∇us · ∇vdx = f(v), v ∈ V . (6)

The truncation error can be controlled if the sequence (bj)j≥1 is p-summable. Specifically, if
(bj)j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞), [32, Proposition 7] implies that for every ε > 0 there
exists a constant Cε > 0 such that for every G(·) ∈ V ∗ and for every s ∈ N

|E(G(u))− E(G(us))| ≤ Cε‖G(·)‖V ∗‖f‖V ∗

{
supj>s{b1−ε

j } if p0 > 2,

supj>s{b2−p0/2
j } if p0 ≤ 2.

(7)

2.2 Pathwise Regularity in D. Weighted Function Spaces

Approximations of second order, elliptic PDEs with regular, simplicial FEs in a Lipschitz poly-
tope D ⊂ R

d, d = 2, 3, on regular, simplicial families of uniformly refined triangulations may
produce suboptimal convergence rates, due to the occurrence of singularities in the parametric
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solutions u and us at vertices and, in space dimension d = 3, also at edges of ∂D. In such do-
mains, linear elliptic PDEs admit regularity shifts in certain weighted Sobolev spaces, cp. [5, 41]
which we now recapitulate as we require the precise definition of the weighted norms in D in
the ensuing QMC error analysis. We assume the polygon resp. polyhedron D to have straight
edges resp. plane faces and J corners C := {c1, . . . , cJ} ⊂ ∂D.

For d = 2, let β = (β1, . . . , βJ) be a J-tuple of weight exponents, we define the corner weight
function

Φβ(x) :=

J∏

i=1

|x− ci|βi , x ∈ D,

where βi ∈ [0, 1), i = 1, . . . , J . Here and in the following, the Euclidean norm in R
d is denoted

by | · |. The weighted function spaces Lq
β(D) and H2

β(D) are defined as closures of C∞(D) with
respect to the norms

‖v‖Lq
β
(D) := ‖vΦβ‖Lq(D), q ∈ [1,∞],

and
‖v‖2H2

β
(D) := ‖v‖2H1(D) +

∑

|α|=2

‖|∂αx v|Φβ‖2L2(D).

For d = 3, let the polyhedron D have J ′ straight edges E := {e1, . . . , eJ ′} ⊂ ∂D and define
Xj := {k : cj ∈ ek} as the index set of edges that meet at corner cj , j = 1, . . . , J . Let rk denote
the distance to the edge ek and let ρj denote the distance to the corner cj . Let (Vj : j = 1, . . . , J)
be a finite, open covering of D such that

D ⊂
J⋃

j=1

Vj , ci /∈ V j , if i 6= j, and V j ∩ ek = ∅ if k /∈ Xj .

For a real-valued J-tuple β ∈ [0, 1)J and a real-valued J ′-tuple δ ∈ [0, 1)J
′
, define the corner-edge

weight function

Φ(β,δ)(x) :=
J∑

j=1

ρ
βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)δk

✶Vj
(x), x ∈ D. (8)

With this weight, we associate the weighted Sobolev spaces L2
β,δ(D) and H2

β,δ(D), cp. [41,

Section 4.1.2] as closures of C∞
0 (D\(C ∪ E)) with respect to the norms

‖v‖L2
(β,δ)

(D) := ‖vΦβ,δ‖L2(D)

and for ι = 0, 1, 2,

‖v‖Hι
(β,δ)

(D) :=




J∑

j=1

∑

|α|≤ι

∫

D∩Vj

ρ
2(βj−ι+|α|)
j (x)

∏

k∈Xj

(
rk(x)

ρj(x)

)2(δj−ι+|α|)
|∂αx v|2dx




1/2

.

We note that the spaces L2
β,δ(D) and H0

β,δ(D) are isomorphic with equivalent norms: for every
x ∈ D,

J∑

j=1

ρ
2βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)2δk

✶Vj
(x) ≤ (Φ(β,δ)(x))

2 ≤ J
J∑

j=1

ρ
2βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)2δk

✶Vj
(x),

Also, we define the weighted seminorm

|v|H2
(β,δ)

(D) :=




J∑

j=1

∑

|α|=2

∫

D∩Vj

ρ
2βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)2δj

|∂αx v|2dx




1/2

.
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Lemma 2.1 For a polygon D (i.e. in spatial dimension d = 2), there exists a constant C > 0
such that for every f ∈ L2

β(D),
‖f‖V ∗ ≤ C‖f‖L2

β
(D).

For a polyhedron D (i.e. in spatial dimension d = 3), there exists a constant C > 0 such that
for every f ∈ L2

(β,δ)(D),

‖f‖V ∗ ≤ C‖f‖L2
(β,δ)

(D).

Proof. The case d = 2 is proven in [33, Lemma 1]. The case d = 3 follows by [41, Lemma 4.1.4].
Specifically, in the notation of [41] the assertion of this lemma reads that the embedding
V 0,2
β,δ(D) ⊂ V −1,2

0,0 (D) is continuous, if βj < 1 and δk < 1, j = 1, . . . , J , k = 1, . . . , J ′. We note

that here the space V 0,2
β,δ(D) of [41] coincides with our spacesH0

(β,δ)(D) = L2
(β,δ)(D) and the space

V −1,2
0,0 (D) is isomorphic to V ∗. In the definition of the weighted space L2

(β,δ)(D) = H0
(β,δ)(D), it

has been assumed that βj < 1 and δk < 1, j = 1, . . . , J , k = 1, . . . , J ′. ✷

In polygons D in space dimension d = 2 and for functions in H2
β(D), a full regularity shift

for the Laplacian is available, cp. for example [5, Theorem 3.2]: there exists a constant C > 0
such that for every w ∈ V with ∆w ∈ L2

β(D),

‖w‖H2
β
(D) ≤ C‖∆w‖L2

β
(D), (9)

where we assume that the weight exponent sequence β satisfies max{0, 1 − π/ωi} < βi < 1,
i = 1, . . . , J . Here, ωi denotes the interior angle of the polygon D at corner ci, i = 1, . . . , J .
Since [5] considers the Poisson boundary value problem with a zero order term, i.e., −∆u+u = f ,
we note that Lemma 2.1 implies that there exists a constant C such that for every w ∈ V ∩H2

β(D),
‖w‖L2

β
(D) ≤ C‖∆w‖L2

β
(D).

In space dimension d = 3, when D is a polyhedral domain with plane sides and for functions
in H2

(β,δ)(D) ∩ V , there holds a corresponding regularity shift of the Dirchlet Laplacian by [41,

Lemma 4.3.1] and by the inverse mapping theorem, cp. [13, Theorem 5.6-2]: there exists a
constant C > 0 such that for every w ∈ H2

(β,δ)(D) ∩ V holds

‖w‖H2
(β,δ)

(D) ≤ C‖∆w‖L2
(β,δ)

(D), (10)

where we assume that

1

2
− λj < βj < 1, j = 1, . . . , J, and 1− π

ωk
< δk < 1, k = 1, . . . , J ′,

where ωk is the interior angle between two faces meeting at edge ek and λj is given by

λj := −1

2
+

√
Λj +

1

4
,

where Λj is the smallest, strictly positive eigenvalue of the Dirichlet Laplace–Beltrami operator
on the intersection of the unit sphere centered at cj and the infinite, interior polyhedral tangent
cone to ∂D with vertex cj , cp. [41, Section 4.3.1].

2.3 FE convergence theory

Let {Tℓ}ℓ≥0 denote a sequence of regular, simplicial triangulations of D with proper mesh
refinements near vertices and, if d = 3, also near edges of D. Let further P

1(K) denote
the affine functions on a subset K of R

d, i.e., the polynomial degree r = 1. In FE spaces

7



Vℓ := {v ∈ V : v|K ∈ P
1(K),K ∈ Tℓ} of continuous, piecewise affine functions on {Tℓ}ℓ≥0,

optimal asymptotic convergence rates are achievable, also in the presence of singularities. We
state these for subsequent reference, recapitulating from [5, 21, 4, 1] approximation properties
in H1(D) of the FE spaces Vℓ.

Specifically, there exists C > 0 such that for every w ∈ H2
β(D) ∩ V for d = 2, resp. for

every w ∈ H2
(β,δ)(D) ∩ V for d = 3, and for every ℓ ≥ 0 there exists wℓ ∈ Vℓ such that, with

Mℓ := dim(Vℓ),

‖w − wℓ‖V ≤ CM
−1/d
ℓ




‖w‖H2

β
(D) if d = 2,

‖w‖H2
(β,δ)

(D) if d = 3.
(11)

For d = 2, the convergence rate bound (11) is due to [5, Lemmas 4.1 and 4.5] for regular, graded
simplicial meshes, resp. due to [21] for simplicial bisection tree meshes. In polyhedral domains
D in space dimension d = 3, this estimate follows by [4, Theorem 4.6] for every w ∈ H2

(β,δ)(D)

(in [4] denoted by W 2,2
~β,~δ

(D)). Specifically, in the proof of [4, Theorem 4.6] an interpolation error

bound on H1(D) for functions in H2
(β,δ)(D) is obtained for an interpolant Zhℓ

defined on [4,

p. 1212] based on [4, Lemma 4.4]. Inspecting the proof of [4, Lemma 4.4], for every v ∈ H2
(β,δ)(D),

v|∂D = 0 implies Zhℓ
(v)|∂D = 0, Zhℓ

: H2
(β,δ)(D)∩V → Vℓ, i.e., the interpolant in [4, Lemma 4.4]

preserves homogeneous boundary values. We also assume βj < 2/3, j = 1, . . . , J , and δk < 2/3,
k = 1, . . . , J ′. Since 1/2−λj ≤ 1/2, j = 1, . . . , J , and 1−π/ωk ≤ 1/2, k = 1, . . . , J ′, this does not
restrict generality. See also [3, 38] for further approximation results of FEM on anisotropically
refined meshes in a polyhedral domain.

In the case of quasi-uniform mesh refinement, the convergence rates are well known to be
limited by the strongest singularity. For example for d = 2, the FE approximation wh of
the solution w to the diffusion equation −∇ · (exp(Ẑ)∇w) = f , w|∂D = 0, with deterministic
Ẑ ∈ Ct(D) and f ∈ C∞(D) satisfies

‖w − wh‖V ≤ CM
−min{τ,r}/d
h ,

where r ∈ N is the polynomial degree of the FE space with dimensionMh and τ ∈ (0,min{t, π/βmax}),
βmax := max{ω1, . . . , ωJ}1. The Hölder spaces Ct(D), t ∈ [0,∞), are sometimes also denoted
by C⌊t⌋,t−⌊t⌋(D).

2.4 Combined Dimension Truncation FE error bound

We now derive an error bound for the combined effect of truncating the GRF Z to a finite
number of parameters s, and to FE discretization in D of the resulting s-parametric problem
(6).

Let accordingly us,Tℓ : Ω → Vℓ denote the FE solution, i.e.,

∫

D
as∇us,Tℓ · ∇vdx = f(v), ∀v ∈ Vℓ. (12)

For notational convenience, we introduce

β :=

{
β if d = 2,

(β, δ) if d = 3.
(13)

1Please note a misprint in [32, Proposition 15 and Theorem 17], max{t, π/βmax} should be replaced by
min{t, π/βmax} which is inconsequential for the preceding derivations and conclusions of [32].
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The Banach space W 1,∞
β

(D) is the space of all measurable functions v : D → R that have finite

W 1,∞
β

(D)-norm, where

‖v‖
W 1,∞

β
(D)

:= max{‖v‖L∞(D), ‖|∇v|Φβ‖L∞(D)}.

In order for the ML algorithm Q∗
L to yield improved (w.r. to the single-level algorithm) error vs.

work bounds, we require stronger assumptions than in the single-level analyses of [25, 32] on the
function system (ψj)j≥1. This corresponds to what was found for uniform random parameters
in [36] and in the lognormal case for ψj with global supports in [35]. The “local support”
condition (A1) is, in the multilevel QMC-FE algorithm, strengthened as follows: there exist a
constant K1 > 0 and a positive sequence (b̄j)j≥1 such that

K1 :=

∥∥∥∥∥∥

∑

j≥1

max{|∇ψj |Φβ, |ψj |}
b̄j

∥∥∥∥∥∥
L∞(D)

<∞ . (A2)

Remark 2.1 When the precision operator of Z is a positive power of a shifted Dirichlet Laplacian
on D the Karhunen–Loève eigenfunctions vj are, by the spectral mapping theorem, eigenfunc-
tions of the Dirichlet Laplacian on D: −∆vj = νjvj, vj |∂D = 0, j ∈ N. Here, the eigenvalues νj
are related to the ones appearing in the Karhunen–Loève expansion of the GRF Z by the spectral
mapping theorem. Elliptic regularity shifts for the Dirichlet Laplacian are also known in certain
weighted Hölder spaces in D: for d = 3, [41, Lemma 4.3.1.2)], implies that vj ∈W 1,∞

(β,δ)(D) pro-

vided that 1−λj < βj < 1, j = 1, . . . , J , and 1−π/θk < δk < 1, k = 1, . . . , J ′, where we used here

that the weighted C1+ε(D)-type space N1,ε
β,δ(D) (in the notation of [41, Sections 4.2 and 4.3])

embeds continuously into W 1,∞
(β,δ)(D). Note that this condition on β for the KL eigenfunctions

is stronger than in Assumption (A2). Similar statements hold for d = 2. Here, singularities at
corners and (for d = 3) along edges of the Karhunen–Loève eigenfunctions appear as a conse-
quence of regularity shifts for the Dirichlet Laplacian in weighted Hölder spaces. The structure
of the weight functions Φβ (which depend only on D and on the (Dirichlet) Laplacian) in the
assumption (A2) on the Karhunen–Loève eigenfunctions is identical to the weights in the elliptic
regularity shift (10). In the case of Matérn-type covariance functions, as induced by solutions to
(1), there is neither dependence of the functional form of the weight functions on the regularity
nor on the positive correlation length of the respective GRF. Note, however, that in general,
Karhunen–Loève eigenfunctions have global support in D.

Assumption (A2) implies W 1,∞
β

(D)-regularity of the GRF Z and strong approximation by its

truncated expansion. This is made precise in the following proposition. Its proof is completely
analogous to [32, Theorem 2] and therefore not detailed.

Proposition 2.2 Let the assumption in (A2) be satisfied for some sequence (b̄j)j≥1 such that
(b̄j)j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞). For every ε > 0 and q ∈ [1,∞) there exists a constant
C > 0 such that for every s ∈ N,

‖Z − Zs‖
Lq(Ω:W 1,∞

β
(D))

≤ C sup
j>s

{b̄1−ε
j } .

Since (∇a)Φβ = (a∇Z)Φβ holds in L∞(D)d, µ-a.s., Proposition 2.2 and [32, Corollary 6] imply
with the Cauchy–Schwarz inequality that for every q ∈ [1,∞) there exists a constant C > 0
such that for every s ∈ N,

‖a‖
Lq(Ω;W 1,∞

β
(D))

<∞ and ‖as‖
Lq(Ω;W 1,∞

β
(D))

≤ C <∞. (14)
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To obtain an estimate of the Laplacian of u, we note that in any compact subset D̃ ⊂⊂ D
it holds −a∆u = f −∇a · ∇u, µ-a.s., where we assume that f ∈ L2

β
(D). This equation may be

tested with −∆uΦ2
β
/a, which implies with Lemma 2.1

‖∆u‖L2
β
(D) ≤

‖f‖L2
β
(D)

amin
+ ‖Z‖

W 1,∞

β
(D)

‖u‖V ≤ C
‖f‖L2

β
(D)

amin
(1 + ‖Z‖

W 1,∞

β
(D)

). (15)

An Aubin–Nitsche duality argument, (7), (9), (11), Proposition 2.2, (14), and (15) imply that
for every ε > 0 exists a constant C > 0 such that for every s ∈ N, ℓ ∈ N0

|E(G(u))− E(G(us,Tℓ))| ≤ C

(
sup
j>s

{btj}+M
−2/d
ℓ

)
‖f‖L2

β
(D)‖G‖L2

β
(D), (16)

where t = 2 − p0/2 if p0 ≤ 2 and t = 1 − ε otherwise. Recall that (bj)j≥1 ∈ ℓp0(N) for some
p0 ∈ (0,∞). In this setting, p0 ∈ (0, 2) is the range of applicability of QMC, cp. [32, Theorem 11].

Remark 2.2 By interpolation, the error estimate in (16) extends to the case that f ∈ (V ∗, L2
β
(D))t,∞

and G(·) ∈ (V ∗, L2
β
(D))t′,∞ for some t, t′ ∈ [0, 1]. Then the estimate in (16) holds with the term

M
−2/d
ℓ replaced by M

−(t+t′)/d
ℓ . To see this, we observe that the real method of interpolation can

be applied to the regularity shifts in (9) and in (15). Specifically, the linear operator relating
the solution u ∈ V to its approximation error with a V -bounded, and quasioptimal projector
Πℓ : V → Vℓ, where Πℓ is, for example, the H1

0 (D)-projection. From the approximation property
in (11), the interpolation couple L2

β
(D) ⊂ V ∗ then yields the fractional convergence order. Here

and throughout what follows, interpolation spaces shall be understood with respect to the real
method of interpolation; we refer to [46, Chapter 1].

3 QMC integration

With convergence rate bounds on the dimension truncation and the FE discretization error at
hand, we address the numerical approximation of the expectations in (16) with respect to the
GM µ. Due to dimension truncation, we evaluate its s-variate section, i.e. we integrate w.r. to
the GM on R

s. As in [25], we approximate the s-variate integrals by so-called randomly shifted
lattice rules proposed in [42]. Accordingly, we review QMC error estimates of randomly shifted
lattice rules for high-dimensional integrals with respect to the s-variate normal distribution. The
construction of generating vectors for such QMC rules in particular with respect to Gaussian
and exponentially decaying weight functions with a fast CBC construction have been found in
[42]. There, concrete error estimates of the resulting QMC rules in the mean-square sense (with
respect to the random shift) have been derived, cp. [42, Theorem 8]. See also [37, Examples 4
and 5] for the estimation of constants appearing in the error bound of [42, Theorem 8] for
Gaussian and exponential weight functions, respectively.

The error analysis of randomly shifted lattice rules requires, for sequences of positive weights
γ = (γu)u, indexed by all finite subsets u ⊂ N, the weighted Sobolev space Wγ(R

s) of mixed
first order derivatives, which is defined by the following norm

‖F‖Wγ(Rs) :=


 ∑

u⊂{1:s}
γ−1
u

∫

R|u|

∣∣∣∣∣∣

∫

Rs−|u|

∂uF (y)
∏

j∈{1:s}\u
φ(yj)dy{1:s}\u

∣∣∣∣∣∣

2
∏

j∈u
w

2
j (yj)dyu




1/2

.

(17)
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Here, φ denotes the univariate normal density

φ(y) :=
1√
2π
e−

y2

2 , y ∈ R.

The norm in (17) is considered with respect to Gaussian and exponential weight functions

w
2
g,j(y) := e

− y2

2αg,j , y ∈ R, j ∈ N, and w
2
exp,j(y) := e−αexp,j |y|, y ∈ R, j ∈ N . (18)

The parameters αg,j > 1 and αexp,j > 0 will be determined in the ensuing error analysis. If the
parameters αg,j or αexp,j are constant with respect to j, we omit j for ease of presentation. In
the following we consider the case αg,j = αg > 1 and αexp,j = αexp > 0 for every j ∈ N. In this
work, we consider in (17) product weights γ = (γu)u⊂N, determined by a positive QMC weight
sequence (γj)j≥1, i.e.,

γu =
∏

j∈u
γj , u ⊂ N, |u| <∞.

We will denote the QMC approximation in s dimensions with N points by Qs,N (·). It shall
approximate integrals with respect to the multivariate normal distribution which we denote for
every integrand F ∈ L1(Rs, µ) by

Is(F ) :=

∫

Rs

F (y)
∏

j∈{1:s}
φ(yj)dy.

For a sequence of dimension truncations (sℓ)ℓ=0,...,L and a sequence (Nℓ)ℓ=0,...,L, L ∈ N0, the
multilevel QMC quadrature algorithm of [36] is defined by

Q∗
L(G(u

L)) :=
L∑

ℓ=0

Qsℓ,Nℓ
(G(uℓ)−G(uℓ−1)), L ≥ 0, (19)

with the understanding that G(u−1) := 0. we used the notation that uℓ := usℓ,Tℓ , ℓ ≥ 0.
Multilevel QMC algorithms stemming from randomly shifted lattice rules have been considered
in [36, 35]. The following error estimate (see [36, Equation (23)] or [35, Equation (3.2)]) holds
due to the independence of the random shifts on the different levels

E
∆(|Is(G(uL))−Q∗

L(G(u
L))|2) =

L∑

ℓ=0

E
∆(|Is(G(uℓ − uℓ−1))−Qsℓ,Nℓ

(G(uℓ − uℓ−1))|2), (20)

where we apply a randomly shifted lattice rule with respect to (possibly) a different QMC weight
sequence on the PDE discretization level ℓ = 0. The expectation with respect to the random
shifts is denoted by E

∆(·).
In [32], convergence of randomly shifted lattice rules with product weights is investigated,

which relies on parametric regularity estimates of a particular form We summarize the QMC
convergence theory in the following theorem.

Theorem 3.1 Let (̃bj)j≥1 be a positive sequence and κ > 0 such that for some F : RN → R

there exists a constant C > 0 and a positive function H(y) such that for every y ∈ {y ∈ R
N :

∃s ∈ N, yj = 0 : ∀j > s},

∑

u⊂N,|u|<∞
|∂uF (y)|2

∏

j∈u

(
κ

b̃j

)2

≤ CH(y)2 .
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1. Let (̃bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2). For ε ∈ (0, 3/4−1/(2p)), set p′ = p/4+1/2−εp ∈
(0, 1). Consider the Gaussian weight functions (wg,j)j≥1 with parameter αg and QMC
integration weight sequence

αg ∈
(

p

2(p− p′)
,

p

p− 2(1− p′)

)
and γj = b̃2p

′

j , j ≥ 1.

Then, there exists a constant C (independent of F ) such that for q0 = 2qq′/(q′− q), where
q = p/(2(1− p′)) and q′ ∈ (q, αg/(1− αg)),

√
E∆(|Is(F )−Qs,N (F )|2) ≤ C(ϕ(N))−1/(2p)−1/4+ε‖H‖Lq0 (Rs,µ).

2. Let (̃bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 1]. Assume that H(y) ≤ η1 exp(η2
∑

j≥1 b̃j |yj |) for
some η1, η2 > 0. Set p′ = 1 − p/2. Consider the exponential weight functions (wexp,j)j≥1

with parameter αexp and QMC integration weight sequence

αexp > 2η2 and γj = b̃2p
′

j , j ≥ 1.

Then, there exists a positive constant C (independent of η1) such that

√
E∆(|Is(F )−Qs,N (F )|2) ≤ C (ϕ(N))−1/p+1/2 η1.

The Euler totient function is denoted by ϕ(·).

This theorem was, in the case of Gaussian weight functions, obtained in [32, Theorems 9 and 11]
and in the case of exponential weight functions in [32, Theorems 9 and 12]. The main ingredient
of the proof of [32, Theorem 9] is a parametric regularity estimate of the form assumed in
Theorem 3.1. The parametric regularity estimates derived in [25, 35] for globally supported
ψj afforded bounds for each partial derivative separately. In [32], we used the bound from [7,
Theorem 4.1] which does account for local supports and affords control of “bulk” sums of (norms
of) solution derivatives with respect to the parameters yj . We also note that in applications,

the sequence (̃bj)j≥1 may be arbitrarily scaled by a factor κ in order to satisfy such a regularity
estimate.

4 Parametric regularity

In this section we derive parametric regularity estimates that allow to prove dimension inde-
pendent convergence rates of multilevel QMC. We extend the argument that results in the
estimate in [7, Theorem 4.1] to dimensionally truncated and FE differences. The estimate in [7,
Theorem 4.1] was used in our single-level QMC analysis in [32] to prove dimension indepen-
dent convergence rates of QMC with product weights in the case of local supports. In view of
the parametric regularity estimate of an integrand F , which is the condition to apply Theo-
rem 3.1, we seek to prove suitable estimates in the case that F (y) = G(u(y)) − G(us(y)) and
F (y) = G(u(y)) −G(uTℓ(y)). To be suitable for multilevel QMC, the quantitative approxima-
tion properties of us(y) ≈ u(y) and uTℓ(y) ≈ u(y) shall be contained in these estimates; see
ahead Theorems 4.3 and 4.8.

For every finite s ∈ N, the truncated fields Zs, as, and us, are well-defined regardless of
assumption (A1). In particular, Zs =

∑s
j=1 yjψj is well-defined for every y ∈ Ω = R

N. We
may therefore interpret Zs as a mapping from R

s to L∞(D) such that pointwise evaluation is
well-defined for every y ∈ R

s. Similarly, as and us may be interpreted as mappings from R
s

12



to L∞(D) and to V , respectively. In the same way Z, a, and u are mappings with pointwise
evaluation from the set

U := {y ∈ Ω : ∃s ∈ N, yj = 0, j > s}
to L∞(D) and V , respectively. Note that Rs×{0} ⊂ U =

⋃
s∈NR

s×{0} for every s ∈ N, where

0 ∈ R
N\{1:s}. Hence, the set U of admissible parameters y is sufficiently rich for the ensuing

QMC convergence analysis. The mappings Zs, as, and us extend naturally to mappings from
U to L∞(D) and to V , respectively.

4.1 Dimension truncation

For every y ∈ U , the difference u(y)− us(y) satisfies the variational formulation

∫

D
a(y)∇(u(y)− us(y)) · ∇vdx = −

∫

D
(a(y)− as(y))∇us(y) · ∇vdx, ∀v ∈ V. (21)

We will mostly (in the proofs) omit the y dependence in the following. Set F := {τ ∈ N
N
0 :

|τ | < ∞}. For every real-valued sequence ρ = (ρj)j≥1 and τ ∈ F , we shall use the notation
ρτ =

∏
j≥1 ρ

τj
j . For every τ ∈ F and a positive sequence (ρj)j≥1, let us define

κ0(τ ,ν) :=

√
τ !√
ν!

ρτ−ν |ψ|τ−ν

(τ − ν)!
, ν ≤ τ .

Also, for given k, r ∈ N introduce the set Λk := {τ ∈ F : |τ | = k, ‖τ‖ℓ∞ ≤ r} and for any
integer ℓ ≤ k − 1 and for ν ∈ Λℓ, introduce

Rν,k := {τ ∈ Λk : τ ≥ ν},

where r denotes the maximal order of differentiability to be considered. The following lemma
will be useful in the ensuing analysis.

Lemma 4.1 Assume that there exists a positive sequence (ρj)j≥1 such that, for some r ∈ N,

K̃0 :=

∥∥∥∥∥∥

∑

j≥1

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<
log(2)√

r
. (22)

Then, for every τ ∈ F such that ‖τ‖ℓ∞ ≤ r,

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν) ≤ e
√
rK̃0 − 1 < 1

and for every positive integer ℓ ≤ k − 1 and multi-index ν ∈ Λℓ,

∑

τ∈Rν,k

κ0(τ ,ν) ≤
(
√
rK̃0)

k−ℓ

(k − ℓ)!
.

The estimates in this lemma are given in [7, Equations (4.12) and (4.14)]. The second estimate
of Lemma 4.1 holds even if the smallness assumption in (22) is not guaranteed. We note
that the condition (22) is implied by (A1) with ρ−1

j = bjK̄
√
r/ log(2) provided that K̄ >

‖∑j≥1 |ψj |/bj‖L∞(D). For every s ∈ N, integers ℓ ≤ k − 1, and ν ∈ Λℓ, introduce the set

Rs
ν,k := {τ ∈ Rν,k : ∃j > s such that τj > 0} .
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Lemma 4.2 Let the assumptions of Lemma 4.1 hold for positive weights (ρj)j≥1 such that
c := ‖(ρ−1

j )j≥1‖ℓ∞(N) <∞. Further assume that for some η > 0

K̃η :=

∥∥∥∥∥∥

∑

j≥1

ρ1+η
j |ψj |

∥∥∥∥∥∥
L∞(D)

<∞.

Then, for s ∈ N and every τ ∈ F such that ‖τ‖ℓ∞ ≤ r and τj > 0 for some j > s,

∑

ν≤τ ,νj=0 ∀j>s

κ0(τ ,ν) ≤ 2(e
√
rK̃ηcη − 1)c−η sup

j>s
{ρ−η

j }.

For s ∈ N, positive integers ℓ ≤ k − 1, and ν ∈ Λℓ such that νj = 0, j > s,

∑

τ∈Rs
ν,k

κ0(τ ,ν) ≤
(
√
rK̃ηc

η)k−ℓ

(k − ℓ)!
c−η sup

j>s
{ρ−η

j }.

Proof. There is j > s such that τj > 0. Since κ0 is a product, by Lemma 4.1,

∑

ν≤τ ,νj=0 ∀j>s

κ0(τ ,ν) =


 ∑

ν{1:s}≤τ{1:s}

κ0(τ {1:s},ν{1:s})


κ0(τN\{1:s},0N\{1:s})

≤ 2κ0(τN\{1:s},0N\{1:s}),

where we used the notation that for every u ⊂ N, τu is a multi-index that satisfies (τu)j = τj ,
j ∈ u, and (τu)j = 0 otherwise. With c = ‖(ρ−1

j )j≥1‖ℓ∞(N), we obtain

κ0(τN\{1:s},0N\{1:s}) ≤
ρτN\{1:s}

√
τN\{1:s}!

|ψ|τN\{1:s} ≤ exp


√

r
∑

j>s

ρj |ψj |


− 1

≤ (e
√
rK̃ηcη − 1)c−η sup

j>s
{ρ−η

j }.

For the proof of the second inequality, we observe that

∑

τ∈Rs
ν,k

κ0(τ ,ν) ≤
∑

τ∈Rs
ν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
c−η sup

j>s
{ρ−η

j },

where we used that for every τ ∈ Rs
ν,k there exists j > s such that τj − νj > 0 and that

ρ−1
j /c ≤ 1, j ≤ 1. By the first statement of Lemma 4.1,

∑

τ∈Rs
ν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
≤

∑

τ∈Rν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
≤ (

√
rK̃ηc

η)k−ℓ

(k − ℓ)!
,

which implies the assertion of the lemma. ✷

Theorem 4.3 [Truncation error]
Let the assumptions of Lemmas 4.1 and 4.2 be satisfied for a positive sequence (ρj)j≥1 and

η > 0. There exists a constant C > 0 such that for every s ∈ N and every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∂τ (u(y)− us(y))‖2a(y) ≤ C

(∥∥∥∥
a(y)− as(y)

a(y)

∥∥∥∥
2

L∞(D)

+ sup
j>s

{ρ−2η
j }

)
‖us(y)‖2a(y).

14



Proof. We divide the index set Fr := {τ ∈ F : τj ≤ r, j ∈ N} into Fs
1 := {τ ∈ Fr : τj = 0 ∀j >

s} and Fs
2 := {τ ∈ Fr : ∃j > s s.t. τj > 0}. Obviously, Fr = Fs

1 ∪ Fs
2 .

Let 0 6= τ ∈ Fs
1 be arbitrary. We observe that for every v ∈ V ,

∫

D
a∇∂τ (u− us) · ∇vdx = −

∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫

D
ψτ−νa∇∂ν(u− us) · ∇vdx

−
∑

ν≤τ

(
τ

ν

)∫

D
ψτ−ν(a− as)∇∂νus · ∇vdx.

Set

σk :=
∑

τ∈Λk

ρ2τ

τ !
‖∂τ (u− us)‖2a

and take v = ∂τ (u − us). By a twofold application of the Cauchy–Schwarz inequality and by
Lemma 4.1

σk ≤
∫

D

∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρν√
ν!

|∇∂ν(u− us)| ρ
τ

√
τ !

|∇∂τ (u− us)|dx

+

∫

D

∑

τ∈Λk

∑

ν≤τ

|a− as|κ0(τ ,ν)
ρν√
ν!

|∇∂νus| ρ
τ

√
τ !

|∇∂τ (u− us)|dx

≤
∫

D


∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρ2ν

ν!
|∇∂ν(u− us)|2




1/2

×


a

∑

τ∈Λk

ρ2τ

ν!
|∇∂τ (u− us)|2




1/2

dx

+

∫

D


∑

τ∈Λk

∑

ν≤τ

|a− as|κ0(τ ,ν)
ρ2ν

ν!
|∇∂νus|2




1/2

×


2

∑

τ∈Λk

|a− as|ρ
2τ

τ !
|∇∂τ (u− us)|2




1/2

dx

Further, we apply the Cauchy–Schwarz inequality on the integral and obtain that

σk ≤



∫

D

∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρ2ν

ν!
|∇∂ν(u− us)|2




1/2

√
σk

+



∫

D

∑

τ∈Λk

∑

ν≤τ

|a− as|κ0(τ ,ν)
ρ2ν

ν!
|∇∂νus|2




1/2√
2

∥∥∥∥
a− as

a

∥∥∥∥
L∞(D)

√
σk.

By [7, Equation (4.18)] in the proof of [7, Theorem 4.1], for any δ ∈ [
√
rK/ log(2), 1) and for

every ℓ ∈ N,
∑

τ∈Λℓ

ρ2τ

τ !
‖∂τus‖2a ≤ ‖us‖2a δℓ. (23)
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We change the order of summation in order to apply the second estimate in Lemma 4.1 and
insert (23) to obtain with Young’s inequality that for any ε > 0

σk ≤ (1 + ε)
k−1∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!
σℓ

+

(
1 +

1

ε

)∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

k∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!

∑

τ∈Λℓ

ρ2τ

τ !
‖∂τus‖2a

≤ (1 + ε)

k−1∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!
σℓ +

(
1 +

1

ε

)
2

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a
k∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!
δℓ

≤ (1 + ε)
k−1∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!
σℓ +

(
1 +

1

ε

)
4

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a δk.

By a change of the order of summation, we obtain that

∑

k≥1

k−1∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!
σℓ =

∑

ℓ≥0

( ∞∑

k=ℓ+1

(
√
rK̃0)

k−ℓ

(k − ℓ)!

)
σℓ ≤ (e

√
rK̃0 − 1)

∑

ℓ≥0

σℓ. (24)

Let us choose ε > 0 such that ε < (2−e
√
rK̃0)/(e

√
rK̃0−1), which implies that (1+ε)(e

√
rK̃0−1) <

1. Denote C∗ := (1− (1 + ε)(e
√
rK̃0 − 1))−1. We sum σk over k ≥ 1 and obtain that

∑

k≥1

σk ≤ (1 + ε)(e
√
rK̃0 − 1)

∑

ℓ≥0

σℓ +

(
1 +

1

ε

)
4

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a
δ

1− δ
.

Since (1 + ε)(e
√
rK̃0 − 1) < 1, we conclude that

∑

k≥1

σk ≤ C∗σ0 + C∗
(
1 +

1

ε

)
4

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a
δ

1− δ
,

which implies

∑

τ∈Fs
1

ρ2τ

τ !
‖∂τ (u− us)‖2a ≤ C

(
‖u− us‖2a +

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a

)
.

In the other case τ ∈ Fs
2 , we observe that for arbitrary 0 6= τ ∈ Fs

2 ,

∫

D
a∇∂τ (u− us) · ∇vdx = −

∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫

D
ψτ−νa∇∂ν(u− us) · ∇vdx

−
∑

ν≤τ

(
τ

ν

)∫

D
ψτ−νa∇∂νus · ∇vdx, ∀v ∈ V.

(25)

We used that there is j > s such that τj > 0, which implies that for ν 6= τ such that ν ≤ τ ,
either τj − νj > 0 yielding ∂τ−νas = 0 or τj = νj > 0 yielding ∂νus = 0. Moreover, in the
second sum above, we can restrict the index set to those ν satisfying νj = 0 for every j > s. In
particular, always ν 6= τ . The estimate of the sum over τ ∈ Fs

2 follows with a similar argument
using Lemma 4.1 for the first sum and Lemma 4.2 for the second sum of the right hand side
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of equality (25), where we crucially use that ν 6= τ , which yield that the sum runs only over
ℓ ∈ {0, . . . , k − 1}. Specifically,

∑

τ∈Fs
2

ρ2τ

τ !
‖∂τ (u− us)‖2a ≤ C

(
‖u− us‖2a +max

j>s
{ρ−2η

j }‖us‖2a
)
.

Since by (21) and by the Cauchy–Schwarz inequality

‖u− us‖a ≤
∥∥∥∥
a− as

a

∥∥∥∥
L∞(D)

‖us‖a,

the assertion of the theorem follows. ✷

Remark 4.1 The statement of Theorem 4.3 also holds true for the FE solution uTℓ and us,Tℓ

for every truncation dimension sℓ with ℓ ≥ 0.

4.2 Discretization

First we show parametric regularity estimates of the solution u. Thus, we bound weighted sums
over sensitivities of u in the norm of the smoothness space. For every τ ∈ F , we define the
quantities

κ1(τ ,ν) :=

√
τ !√
ν!

ρτ−ν |∇ψτ−ν |Φβ

(τ − ν)!
, ν ≤ τ .

Lemma 4.4 Assume that for r ∈ N

K̃1 :=

∥∥∥∥∥∥

∑

j≥1

ρj max{|∇ψj |Φβ, |ψj |}

∥∥∥∥∥∥
L∞(D)

< Cr := sup
{
c > 0 :

√
rc e

√
rc ≤ 1

}
. (26)

Then for every τ ∈ N
N
0 such that ‖τ‖ℓ∞ ≤ r

∑

ν≤τ ,ν 6=τ

κ1(τ ,ν) ≤
√
rK̃1e

√
rK̃1 < 1

and for every ℓ ≤ k − 1 and ν ∈ Λℓ,

∑

τ∈Rν,k

κ1(τ ,ν) ≤ (k − ℓ)
(
√
rK̃1)

k−ℓ

(k − ℓ)!
.

Proof. We set k = |τ | and observe with the multinomial theorem

∑

ν≤τ ,ν 6=τ

κ1(τ ,ν) =

k∑

ℓ=1

∑

ν≤τ ,|τ−ν|=ℓ

κ1(τ ,ν)

≤
k∑

ℓ=1

rℓ/2
∑

ν≤τ ,|τ−ν|=ℓ

ℓ
ρτ−ν max{|∇ψ|Φβ, |ψ|}τ−ν

(τ − ν)!

≤
k∑

ℓ=1

rℓ/2ℓ
∑

|m|=ℓ

ρmmax{|∇ψ|Φβ, |ψ|}m
m!

=

k∑

ℓ=1

rℓ/2

(ℓ− 1)!


∑

j≥1

ρj max{|∇ψj |Φβ, |ψj |}




ℓ

≤ √
rK̃1e

√
rK̃1 < 1,
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where we applied that

|∇ψτ−ν |Φβ ≤
∑

j≥1

(τj − νj)|ψj |τj−νj−1|∇ψj |Φβ

∏

i 6=j

|ψi|τi−νi ≤ |τ − ν|max{|∇ψ|Φβ, |ψ|}τ−ν .

The second estimate follows similarly. ✷

Theorem 4.5 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (ρj)j≥1,

and assume that r ∈ N and K̃1 < Cr. There exists a constant C > 0 such that for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∆∂τu(y))‖2L2

β
(D)

≤ C

(
1

amin(y)
(1 + ‖|∇Z(y)|Φβ‖2L∞(D))‖u(y)‖2a(y) + ‖∆u(y)‖2L2

β
(D)

)
.

Proof. Let 0 6= τ ∈ F be given such that ‖τ‖ℓ∞ ≤ r. We observe that for every v ∈ C∞
0 (D),

−
∫

D
av∆∂τudx =

∫

D


∇a · ∇∂τu+

∑

ν≤τ ,ν 6=τ

(
τ

ν

)
(∇∂τ−νa · ∇∂νu+ ∂τ−νa∆∂νu)


 vdx .

Using the density of C∞
0 (D) in L2

β
(D), we choose the test function v = −Φ2

β
/a∆∂τu, multiply

by ρ2τ/τ !, and apply the Young inequality for arbitrary ε > 0 to obtain

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) = −ρ

2τ

τ !

∫

D


∇a

a
· ∇∂τu+

∑

ν≤τ ,ν 6=τ

(
τ

ν

)∇∂τ−νa

a
· ∇∂νu


∆∂τuΦ2

β
dx

− ρ2τ

τ !

∫

D


 ∑

ν≤τ ,ν 6=τ

(
τ

ν

)
∂τ−νa

a
∆∂νu


∆∂τuΦ2

β
dx

≤ ε
ρ2τ

τ !
‖∆∂τu‖2L2

β
(D)

+
1

4ε

∫

D


|∇Z|Φβ

ρτ |∇∂τu|√
τ !

+
∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!




2

dx

+

∫

D

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν)
ρν |∆∂νu|Φβ√

ν!

ρτ |∆∂τu|Φβ√
τ !

dx.

(27)

Note that ∇((∂τ−νa)/a) = ∇ψτ−ν . Note also the change of the order of summation: for any
sequence (κ′(τ ,ν)) and for any k ∈ N

∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

κ′(τ ,ν) =
k−1∑

ℓ=0

∑

ν∈Λℓ

∑

τ∈Rν,k

κ′(τ ,ν), (28)

which implies with Lemma 4.1 and with the elementary estimate xy ≤ (x2 + y2)/2, x, y > 0,
that for any k ≥ 1,

∑

τ∈Λk

∫

D

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν)
ρν |∆∂νu|Φβ√

ν!

ρτ |∆∂τu|Φβ√
τ !

dx

≤ 1

2

k−1∑

ℓ=0

(
√
rK̃1)

k−ℓ

(k − ℓ)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D) +

1

2
(e

√
rK̃1 − 1)

∑

τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D).

(29)
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Note that the assumptions of Lemma 4.1 are weaker than those of Lemma 4.4 and K̃0 ≤ K̃1.
Similarly, we obtain with Lemma 4.4

∑

τ∈Λk

1

4ε

∫

D


|∇Z|Φβ

ρτ |∇∂τu|√
τ !

+
∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!




2

dx

≤ 1

2ε

‖|∇Z|Φβ‖2L∞(D)

amin

∑

τ∈Λk

ρ2τ

τ !
‖∂τu‖2a +

1

2ε

∑

τ∈Λk

∫

D


 ∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!




2

dx

≤ 1

2ε

1

amin


‖|∇Z|Φβ‖2L∞(D)

∑

τ∈Λk

ρ2τ

τ !
‖∂τu‖2a +

k−1∑

ℓ=0

(
√
rK̃1)

k−ℓ

(k − ℓ− 1)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∂νu‖2a


 .

(30)
As before by the proof of [7, Theorem 4.1 and Equation (4.18)], for any δ ∈ [

√
rK̃1/ log(2), 1)

and for every ℓ ∈ N0, ∑

ν∈Λℓ

ρ2ν

ν!
‖∂νu‖2a ≤ δℓ‖u‖2a. (31)

Hence,
k−1∑

ℓ=0

(
√
rK̃1)

k−ℓ

(k − ℓ− 1)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∂νu‖2a ≤

k−1∑

ℓ=0

(
√
rK̃1)

k−ℓ

(k − ℓ− 1)!
δℓ‖u‖2a

≤ δk
k−1∑

ℓ=0

log(2)
(log(2))k−ℓ−1

(k − ℓ− 1)!
‖u‖2a

≤ δk log(2)2‖u‖2a = δk log(4)‖u‖2a.

(32)

We choose 0 < ε < 1− e
√
rK̃1/2, which implies that Cε := (1− ε− (e

√
rK̃1 − 1)/2)−1 < 2. This

allows us to subtract ∆∂τu-terms summed over Λk in (27) and (29) while obtaining a constant
C−1
ε > 1/2 which is shifted to the left hand side, i.e.,

∑

τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) ≤

Cε

2ε

1

amin

(
‖|∇Z|Φβ‖2L∞(D) + log(4)

)
δk‖u‖2a

+
Cε

2

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D),

where we have also inserted (30), (31) and (32). We sum over k ≥ 1 and obtain with (24)

∑

k≥1

∑

τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) ≤

Cε

2ε

1

amin

(
‖|∇Z|Φβ‖2L∞(D) + log(4)

) δ

1− δ
‖u‖2a

+
Cε

2
(e

√
rK − 1)

∑

ℓ≥0

∑

ν∈Λℓ

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D),

which implies the assertion as at the end of the proof of Theorem 4.3, since (Cε/2)(e
√
rK−1) < 1.

✷

We remark that a related estimated to Theorem 4.5 has been derived in [6, Theorem 6.1] without
taking into account the spatial weight function.
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Theorem 4.6 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (ρj)j≥1,

r ∈ N, and K̃1 < Cr. There exists a constant C > 0 such that for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∂τ (u(y)− uTℓ(y))‖2a(y)

≤ C

(
(amax(y))

(amin(y))2
(1 + ‖∇Z(y)|Φβ‖2L∞(D))

)
‖f‖2L2

β
(D)M

−2/d
ℓ .

Proof. To simplify notation, we do not indicate in this proof the dependence of quantities on
the parameters y. Define the Galerkin projection Ph : V → Vℓ for every w ∈ V by

∫

D
a∇(w − Phw) · ∇vdx = 0, ∀v ∈ Vℓ.

Since (I − Ph)v = 0 for every v ∈ Vℓ, it holds that for every τ ∈ F ,

‖∂τ (u− uTℓ)‖a ≤ ‖Ph∂
τ (u− uTℓ)‖a + ‖(I − Ph)∂

τu‖a. (33)

Let τ ∈ F be such that ‖τ‖ℓ∞(N) ≤ r and |τ | = k for some k ∈ N. We observe that

ρ2τ

τ !

∫

D
a|∇Ph∂

τ (u− uTℓ)|2dx ≤
∫

D

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν)a
ρν |∇∂ν(u− uTℓ)|√

ν!

ρτ |∇Ph∂
τ (u− uTℓ)|√
τ !

dx.

A twofold application of the Cauchy–Schwarz inequality using that by the first estimate of
Lemma 4.1 for fixed τ ∈ F such that ‖τ‖ℓ∞(N) ≤ r the sum of the numbers (κ0(τ ,ν))ν≤τ ,ν 6=τ is
less than one implies with the change of the order of summation in (28) and the second estimate
in Lemma 4.1 the bound

∑

|τ |=k

ρ2τ

τ !
‖Ph∂

τ (u− uTℓ)‖2a ≤
k−1∑

ℓ=0

(
√
rK̃1)

k−ℓ

(k − ℓ)!

∑

|ν|=ℓ

ρ2ν

ν!
‖∂ν(u− uTℓ)‖2a. (34)

By the approximation property in (11), by (33), (34), the Young inequality for any ε > 0, and
by the change of the order of summation that implied (24)

∑

k≥1

∑

|τ |=k

ρ2τ

τ !
‖∂τ (u− uTℓ)‖2a ≤ (1 + ε)

∑

k≥1

k−1∑

ℓ=0

(
√
rK̃1)

k−ℓ

(k − ℓ)!

∑

|ν|=ℓ

ρ2ν

ν!
‖∂ν(u− uTℓ)‖2a

+

(
1 +

1

ε

)∑

k≥1

∑

|τ |=k

ρ2τ

τ !
‖(I − Ph)∂

τu‖2a

≤ (1 + ε)(e
√
rK̃1 − 1)

∑

ℓ≥0

∑

|ν|=ℓ

ρ2ν

ν!
‖∂ν(u− uTℓ)‖2a

+

(
1 +

1

ε

)
C‖a‖L∞(D)M

−2/d
ℓ

∑

k≥1

∑

|τ |=k

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D).

Hence, we choose ε < (2 − e
√
rK̃1)/(e

√
rK̃1 − 1) and conclude with Theorem 4.5 and (15) that

there exists a constant C > 0 such that

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∂τ (u− uTℓ)‖2a ≤ C

(
(amax)

(amin)2
(1 + ‖∇Z|Φβ‖2L∞(D))

)
‖f‖2L2

β
(D)M

−2/d
ℓ .

✷
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Remark 4.2 The parametric regularity estimate in Theorem 4.6 also holds if f ∈ (V ∗, L2
β
(D))t,∞

for some t ∈ [0, 1] with the FE error bounded by an absolute constant times M
−2t/d
ℓ . This can

be shown by interpolation applied in the last and next to last step of the proof of Theorem 4.6,
see also Remark 2.2).

Let G(·) ∈ L2
β
(D) denote a solution functional of interest which is deterministic, i.e., which

does not depend on y. To analyze the parametric regularity of G(u−uTℓ), we introduce vG and
vTℓG to be the solution and respective FE solution to the adjoint problem with right hand side
G(·). It holds that

G(u− uTℓ) =
∫

D
a∇(u− uTℓ) · ∇(vG − vTℓG )dx .

Proposition 4.7 For (ρ̃)j≥1 defined by ρ̃j :=
√
2ρj, j ∈ N, assume that (ρ̃j)j≥1 satisfies the

sparsity assumption in (22) of Lemma 4.1. Then, for every y ∈ U , there holds

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
|∂τG(u(y)− uTℓ(y))|2 ≤ 4


 ∑

‖τ‖ℓ∞≤r

ρ̃2τ

τ !
‖∂τ (u(y)− uTℓ(y))‖2a(y)




×


 ∑

‖τ‖ℓ∞≤r

ρ̃2τ

τ !
‖∂τ (vG(y)− vTℓG (y))‖2a(y)


 .

Proof. We observe that for every τ ∈ F

ρτ√
τ !
∂τG(u− uTℓ) =

ρτ√
τ !

∫

D

∑

ν≤τ

(
τ

ν

)
∑

m≤ν

(
ν

m

)
ψν−m(

√
a∇∂m(u− uTℓ))




× (
√
a∇∂τ−ν(vG − vTℓG ))dx

=

∫

D

∑

ν≤τ

√(
τ

ν

)
∑

m≤ν

κ0(ν,m)

(
ρm√
m!

√
a∇∂m(u− uTℓ)

)


×
(

ρτ−ν

√
(τ − ν)!

√
a∇∂τ−ν(vG − vTℓG )

)
dx.

It holds that
∑

ν≤τ

(
τ
ν

)
= 2τ . By a twofold application of the Cauchy–Schwarz inequality

ρ2τ

τ !
|∂τG(u− uTℓ)|2 ≤


∑

ν≤τ

√(
τ

ν

)
‖[. . . ]‖L2(D)

ρτ−ν

√
(τ − ν)!

‖∂τ−ν(vG − vTℓG )‖a




2

≤ 2τ
∑

ν≤τ

‖[. . . ]‖2L2(D)

ρ2(τ−ν)

(τ − ν)!
‖∂τ−ν(vG − vTℓG )‖2a.

We define the sequence (ρ̃)j≥1 by ρ̃j :=
√
2ρj , j ∈ N. By a change of the order of summation

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
|∂τG(u− uTℓ)|2

≤
∑

‖ν‖ℓ∞≤r

2ν‖[. . . ]‖2L2(D)

∑

‖τ‖ℓ∞≤r,τ≥ν

ρ̃2(τ−ν)

(τ − ν)!
‖∂τ−ν(vG − vTℓG )‖2a.
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Since
∑

m≤ν κ0(ν,m) ≤ 2 due to Lemma 4.1, by the Cauchy–Schwarz inequality and (28)

∑

k≥0

∑

ν∈Λk

∫

D


∑

m≤ν

κ0(ν,m)
ρ̃m√
m!

√
a|∇∂m(u− uTℓ)|




2

dx

≤ 2
∑

k≥0

∑

ν∈Λk

∑

m≤ν

κ0(ν,m)
ρ̃2m

m!
‖∂m(u− uTℓ)‖2a

≤ 2
∑

k≥0

k∑

ℓ=0

(
√
rK̃0)

k−ℓ

(k − ℓ)!

∑

m∈Λℓ

ρ̃2m

m!
‖∂m(u− uTℓ)‖2a

= 2
∑

ℓ≥0

∑

k≥ℓ

(
√
rK̃0)

k−ℓ

(k − ℓ)!

∑

m∈Λℓ

ρ̃2m

m!
‖∂m(u− uTℓ)‖2a

≤ 4
∑

‖m‖ℓ∞≤r

ρ̃2m

m!
‖∂m(u− uTℓ)‖2a,

which proves the assertion together with the previous inequality. ✷

The following theorem is directly implied by Theorem 4.6 and Proposition 4.7.

Theorem 4.8 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (ρj)j≥1,

and let r ∈ N and assume that K̃1 < Cr/
√
2.

Then there exists a constant C > 0 such that for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
|∂τG(u(y)− uTℓ(y))|2

≤ C

(
(amax(y))

(amin(y))2
(1 + ‖|∇Z(y)|Φβ‖2L∞(D))

)2

M
−4/d
ℓ ‖f‖2L2

β
(D)‖G‖2L2

β
(D).

Remark 4.3 The statement of Theorem 4.8 also holds true for the dimensionally truncated
solutions us and us,Tℓ, for every truncation dimension s ∈ N. In particular, the constant C
which appears in the error bound is independent of s.

Remark 4.4 The parametric regularity estimate in Theorem 4.8 also holds if f ∈ (V ∗, L2
β
(D))t,∞

and G(·) ∈ (V ∗, L2
β
(D))t′,∞ for t, t′ ∈ [0, 1]. Then, the FE discretization error contribution to

the overall error is bounded by a constant times M
−2(t+t′)/d
ℓ . This follows from Remark 4.2.

5 Multilevel QMC convergence analysis

The sequences (bj)j≥1 and (b̄j)j≥1 in the assumptions in (A1) and (A2) will be the input for the
QMC weight sequence (γj)j≥1 of product weights. In the multilevel QMC quadrature algorithm
Q∗

L in (19), we apply a randomly shifted lattice rule on level ℓ = 0 with respect to the QMC
weight sequence

γj = b2p
′

j , j ≥ 1, (35)

for some p′ ∈ (0, 1) and on the levels ℓ = 1, . . . , L with respect to the QMC weight sequence

γ̄j = (b1−θ
j ∨ b̄j)2p̄

′
, j ≥ 1 (36)

for some p′ ∈ (0, 1) and some θ ∈ (0, 1). Here, for c1, c2 ∈ R, c1 ∨ c2 := max{c1, c2}.
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Theorem 5.1 For every L ∈ N0 and sequences (sℓ)ℓ=0,...,L and (Nℓ)ℓ=0,...,L, the ensuing error
estimate holds under the following conditions:

1. Gaussian weight functions: (bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2) and (b1−θ
j ∨ b̄j)j≥1 ∈

ℓp̄(N) for some p̄ ∈ [p, 2) with χ = 1/(2p) + 1/4 − ε and χ̄ = 1/(2p̄) + 1/4 − ε̄. The
QMC weight sequence in (35) is applied with p′ = p/4 + 1/2 − εp on the level ℓ = 0 for
ε ∈ (0, 3/4−1/(2p)). The QMC weight sequence in (36) is applied with p̄′ = p̄/4+1/2− ε̄p̄
on the levels ℓ = 1, . . . , L for ε̄ ∈ (0, 3/4− 1/(2p̄)).

2. Exponential weight functions: (bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 1] and for (b1−θ
j ∨b̄j)j≥1 ∈

ℓp̄(N) for some p̄ ∈ [p, 1] with χ = 1/p−1/2 and χ̄ = 1/p̄−1/2. The QMC weight sequence
in (35) is applied with p′ = 1− p/2 on the level ℓ = 0. The QMC weight sequence in (36)
is applied with p̄′ = 1− p̄/2 on the levels ℓ = 1, . . . , L.

There exists a constant C > 0 that is in particular independent of (Mℓ)ℓ≥0, (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L,
and of L ∈ N0, such that

√
E∆(|E(G(u))−Q∗

L(G(u
L))|2) ≤ C

(
sup
j>sL

{b4−p
j }+M

−4/d
L + (ϕ(N0))

−2χ

+

L∑

ℓ=1

(ϕ(Nℓ))
−2χ̄

(
ξℓ,ℓ−1 sup

j>sℓ−1

{b2θj }+M
−4/d
ℓ−1

))1/2

,

where ξℓ,ℓ−1 := 0 if sℓ = sℓ−1 and ξℓ,ℓ−1 := 1 otherwise.

Proof. By the triangle inequality, for ℓ = 1, . . . , L,

|(Isℓ −Qsℓ,Nℓ
)(G(uℓ)−G(uℓ−1))|

≤ |(Isℓ −Qsℓ,Nℓ
)(G(usℓ,Tℓ)−G(usℓ,Tℓ−1))|+ |(Isℓ −Qsℓ,Nℓ

)(G(usℓ,Tℓ−1)−G(usℓ−1,Tℓ−1))|
and

|(Isℓ −Qsℓ,Nℓ
)(G(usℓ,Tℓ)−G(usℓ,Tℓ−1))|

≤ |(Isℓ −Qsℓ,Nℓ
)(G(usℓ)−G(usℓ,Tℓ))|+ |(Isℓ −Qsℓ,Nℓ

)(G(usℓ)−G(usℓ,Tℓ−1))|,

where we recall that uℓ := usℓ,Tℓ , ℓ = 0, . . . , L. We wish to show the conditions of Theorem 3.1
for integrands y 7→ G(usℓ(y))−G(usℓ,Tℓ(y)) and y 7→ G(usℓ,Tℓ−1(y))−G(usℓ−1,Tℓ−1(y)).

Recall

K1 :=

∥∥∥∥∥∥

∑

j≥1

max{|∇ψj |Φβ, |ψj |}
b̄j

∥∥∥∥∥∥
L∞(D)

<∞, (37)

the conditions of Theorem 3.1 are satisfied for the integrand y 7→ G(usℓ(y)) − G(usℓ,Tℓ(y))
with the sequence (b̄j)j≥1 and κ < Cr/(

√
2K1) by Theorem 4.8 and Remark 4.3 with r = 1.

Specifically, we apply Theorem 4.8 and Remark 4.3 with ρj = κ/b̄j , j ≥ 1.
For the integrand y 7→ G(usℓ,Tℓ−1(y)) − G(usℓ−1,Tℓ−1(y)), we apply Theorem 4.3 with ρj =

κ/b1−θ
j , j ≥ 1. Then, the condition of Theorem 4.3 is satisfied for η = θ/(1 − θ) and κ <

log(2)/K0, where K0 is as in assumption (A1). Hence, the conditions of Theorem 3.1 are
satisfied for the integrand y 7→ G(usℓ,Tℓ−1(y))−G(usℓ−1,Tℓ−1(y)). Since the sequence (b1−θ

j ∨b̄j)j≥1

dominates (b1−θ
j )j≥1 and (b̄j)j≥1, Theorem 3.1 can be applied with b̃j = b1−θ

j ∨ b̄j , j ≥ 1. For

the exponential weight functions, we note that η1 = C(maxj>sℓ−1
{bθj} +M

−2/d
ℓ−1 ) for a constant

C > 0 (independent of ℓ), and with η2 = 5 in the notation of the second point of Theorem 3.1.
On discretization level ℓ = 0, the parametric integrand is y 7→ G(us0,T0). The conditions of

Theorem 3.1 are satisfied with b̃j = bj , j ≥ 1 (see also [32, Theorems 11 and 13]). The assertion
follows with (16) and (20). ✷
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Remark 5.1 If f ∈ (V ∗, L2
β
(D))t,∞ and G(·) ∈ (V ∗, L2

β
(D))t′,∞ for some t, t′ ∈ [0, 1], then

the error estimate in Theorem 5.1 also holds with an error bounded by an absolute multiple of

M
−2(t+t′)/d
ℓ on mesh level ℓ.

Remark 5.2 When the GRF Z is stationary in D ⊂ R
d, the covariance kernel k(x, x′) :=

E(Z(x)Z(x′)) of Z depends only on x−x′, cp. [2]. A widely used parametric family of covariances
for stationary GRFs was proposed by B. Matérn [40]. Here, the covariance kernel depends on
two parameters ν, λ > 0, where λ is referred to as correlation length and Z ∈ Ct(D), µ-a.s., for
every positive real number t < ν. Wavelet type function systems exist which allow to represent
the GRF Z in terms of a sequence (yj)j≥1 of independent, standard normally distributed yj, that

satisfy Assumption (A1) with bj ∼ j−β̂/d, j ≥ 1, for every β̂ < ν, cp. e.g. [8, Corollary 4.3].
In [8], the random field Z in D is constructed by restriction of a GRF defined on suitable
product domain that depends on the correlation length λ and which is a superset of D. For a
constructive approach to obtain function systems of expansions with i.i.d. coefficients, we refer
for example to [23] and the references there. For a discussion of the Hölder regularity and Lq(Ω)
integrability of GRFs expanded in generic wavelets, we refer to [32, Section 9]. There, also if
Ct(D)-regularity of the respective GRF Z holds as an implication by [32, Proposition 18], the

generic wavelets satisfy Assumption (A1) with bj ∼ j−β̂/d, j ≥ 1, for every β̂ < t.

Remark 5.3 In the case of single-level QMC, also fractional Hölder regularity of the lognormal
coefficent a = exp(Z) is covered by our theory in [32]. The GRF of the model function system
of generic wavelets discussed in [32, Section 9] is for d = 1 and for wavelets that are scaled
to decay as ‖ψj‖L∞(D) ∼ j−1/2−ε, j ≥ 1, a member of Lq(Ω;C1/2+ε′(D)), for every q ∈ [1,∞)
and for every ε > ε′ > 0, cp. [32, Proposition 19]. The sequence (bj)j≥1 may be chosen such
that bj ∼ j−1/2−ε′, for every j ≥ 1 and for some ε′ ∈ (0, ε). For every p > 2/(1 + 2ε′),
this sequence (bj)j≥1 ∈ ℓp(N) is admissible with Gaussian weight functions for every ε′ > 0,
cp. [32, Theorem 11] and therefore QMC with Gaussian weight functions and product weights
is applicable for every ε > 0. However, for 1/2 > ε > 0, the convergence theory for QMC
with product weights in [32, Theorem 13] does not seem to be applicable with exponential weight
functions in this case. Numerical experiments in [32, Section 11] for Z being the Brownian
bridge and Gaussian QMC weight functions reported convergence rates slightly larger than 1/2.
The Brownian bridge Z is a borderline case of our theory in [32]; then, Z ∈ C1/2−ε(D) µ-a.s.
for every 0 < ε ≤ 1/2 and bj ∼ j−1/2 using the Lévy–Ciesielski decomposition of Z.

6 Error versus work analysis

We discuss concrete choices of algorithmic steering parameters in the preceding error bounds to
obtain asymptotic error versus work estimates. We elaborate the widely used case of GRFs Z
with Matérn-like covariances, and compare the present results to previous work [27, 25] and the
references there.

6.1 Error vs. work for local supports and product weights

In the estimate of Theorem 5.1, the error contributions of the QMC quadrature and the spatial
approximation by FE and dimension truncation are coupled on the different levels. The num-
ber Nℓ of QMC points at level ℓ = 0, 1, ..., L should minimize the error estimate subject to a
prescribed work measure. We consider functions (ψj)j≥1 which are compactly supported in D,
as for example certain MRA. Note that this will only affect the choice of the work measure for
the assembly of stiffness matrices.
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Let us assume that the MRA (ψλ)λ∈▽ results from a finite number of generating (or “mother”)
wavelets by scaling and translation, i.e.,

ψλ(x) := ψ(2|λ|x− k), k ∈ ▽|λ|, x ∈ D. (38)

We use notation that is standard for MRA, i.e., the function system is indexed by λ = (|λ|, k) ∈
▽, where |λ| ∈ N0 refers to the level and k ∈ ▽|λ| to the translation. The index set ▽ℓ has

cardinality |▽ℓ| = O(2dℓ), ℓ ∈ N0. Let j : ▽ → N be a suitable enumeration. The overlap on
every level |λ| = ℓ ∈ N0 is assumed to be uniformly bounded, i.e., there exists K > 0 such that
for every ℓ ∈ N0 and every x ∈ D,

|{λ ∈ ▽ : |λ| = ℓ, ψλ(x) 6= 0}| ≤ K .

Additionally, for constants σ, α̂ > 0 we introduce the scaling

‖ψλ‖L∞(D) ≤ σ2−α̂|λ|, λ ∈ ▽. (39)

Under this assumption, the work to assemble one sample of the stiffness matrix (i.e. for one
QMC point) on discretization level ℓ ∈ N0 scales for large ℓ as O(Mℓ|j−1(sℓ)|) = O(Mℓ log(sℓ)).

Proposition 6.1 For d = 1, the work to solve the linear system that corresponds to (12) for
one sample is O(Mℓ), ℓ ∈ N0.

Proof. The parametric stiffness matrix is tridiagonal and symmetric, positive definite with prob-
ability one. Therefore both, Cholesky decomposition and backsubstitution, can be performed in
O(Mℓ) work and memory (see, e.g., [24, Chapter 4.3.6]). ✷

Due to Proposition 6.1 and Remark 6.1, we stipulate availability of a PDE solver with work

workPDEsolve = O(M1+η
ℓ ) (A3)

for some η ≥ 0 with implied constants independent of ℓ ∈ N0 and, in particular, of the realization
of the PDE coefficients. For D = (0, 1)2 and a sparse direct solver based on nested dissection it
is known that η = 1/2, cp. [22]. Note that η = 0 corresponds to linear complexity as is afforded
by multigrid or multilevel preconditioned iterative solvers for elliptic PDEs in the deterministic
setting; see, e.g., [11, 50]. The results in [29] on convergence of these methods for log-Gaussian
coefficients in the Lq(Ω;V )-norm, q ∈ [1,∞), and d = 2, 3 suggest that η = 0 may not be
admissible for MLQMC and d = 2, 3.

Remark 6.1 The uniformity w.r. to the coefficient realizations of the work estimate (A3) is,
for the presently considered log-Gaussian diffusion coefficient models, by no means to be taken for
granted [29]. Since for d = 2, 3 stiffness matrices will not be tridiagonal, usually iterative solvers
are used. In [29], strong convergence (in the Lq(Ω;V )-norm) for iterative methods is shown for
every η > 0 in the general framework of [50], which is nearly optimal complexity (w.r. to the
degrees of freedom) of a PDE solver. This is sufficient for single-level QMC and multilevel Monte
Carlo. Applicability to multilevel QMC does not seem to be a direct consequence. In practice
also direct solvers have been used for d = 2 with observed η < 1/2 using different sparse direct
solvers than in [22], e.g., in [35, Figure 5] for D = (0, 1)2, ηobserved ≈ 0 and in [31, Figure 3],
ηobserved ≈ 0.3 for D = S

2 (the two dimensional sphere).

Under (A3) the model for the computational work for the multilevel QMC quadrature reads,
for every L ∈ N0, as

workL = O
(

L∑

ℓ=0

sℓNℓ log(Nℓ) +
L∑

ℓ=0

Nℓ(Mℓ log(sℓ) +M1+η
ℓ )

)
, (40)
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where the first sum in (40) is the work of the generation of the QMC points which includes
the work to obtain the generating vectors by the fast CBC construction, cp. [43, 44]. The work
model in (40) depends on the choices for (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L, and (Mℓ)ℓ≥0, which we shall
not indicate explicitly in our notation and simply write “workL”. The second sum in (40) is the
work of the evaluation of the multilevel QMC quadrature. The sequence

bj(λ) = bλ := c2−β̂|λ|, λ ∈ ▽, (41)

together with (ψλ)λ∈∇ defined in (38) and (39) satisfies the assumption in (A1) for max{1, d/2} <
β̂ < α̂ and some c > 0. Since ‖|∇ψλ|‖L∞(D) ≤ σ2−(α̂−1)|λ|‖|∇ψ|‖L∞(D), λ ∈ ▽, the sequence

b̄j := b
(β̂−1)/β̂
j , j ∈ N, (42)

and (ψj)j≥1 defined in (38) and (39) satisfy the assumption (A2). In this section we assume
that

f ∈ (V ∗, L2
β
(D))t,∞ and G(·) ∈ (V ∗, L2

β
(D))t′,∞, t, t′ ∈ [0, 1], (A4)

and define τ := t+ t′. In the following, we assume that

Mℓ ∼ 2dℓ, ℓ ≥ 0. (A5)

The ensuing analysis is inspired by [36, Section 3.7] (see also [35, 19]). We will restrict
the analysis to one QMC rule with respect to the QMC weight sequence (36) on all levels
ℓ = 0, . . . , L, but remark that in some cases it might be beneficial to use a second one with
respect to the QMC weight sequence (35) on the level ℓ = 0. The multilevel QMC quadrature
depends on the algorithmic steering parameters (Nℓ)ℓ=0,...,L, (sℓ)ℓ=0,...,L, (Mℓ)ℓ≥0, and also on
θ ∈ (0, 1). The number of degrees of freedom (Mℓ)ℓ≥0 of the FE discretization in D are assumed
to be given. The parameter θ ∈ (0, 1) is for now left arbitrary. According to the estimate in
Theorem 5.1, θ can be used to balance the truncation error with the FE error on the levels
ℓ = 0, . . . , L. We will use this feature to discuss two possible strategies to choose the truncation
dimensions (sℓ)ℓ=0,...,L.

Strategy 1: The contributions in the QMC weight sequence in (36) are equilibrated, i.e., we
choose θ = 1/β̂, which implies that b1−θ = b̄j , j ∈ N. The truncation dimension sL is also
chosen to equilibrate the respective truncation and FE error in the estimate of Theorem 5.1.
We choose

sL ∼ 2d⌈Lτ/β̃⌉

for some

1 < β̃ < 2β̂ − d

2
(43)

close to 2β̂ − d/2, where we use that Mℓ = O(2dℓ), ℓ = 0, . . . , L, and (bj)j≥1 ∈ ℓp(N) for every

p > d/β̂. On the levels ℓ = 0, . . . , L− 1, we either increase sℓ or leave it constant. We choose

sℓ ∼ min{2d⌈τℓ⌉, sL}, ℓ = 0, . . . , L− 1.

Strategy 2: For particular (ψλ)λ∈∇ and meshes, it may be interesting to align the level structure
(ψλ)λ∈∇ and the used FE meshes. Therefore, we choose

sℓ ∼Mℓ, ℓ = 0, . . . , L.
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The choice θ = τ/β̂ equilibrates the truncation and FE error in the estimate of Theorem 5.1
on the levels ℓ = 0, . . . , L assuming that β̂ > τ . Then, (b1−θ

j ∨ b̄j)j≥1 ∈ ℓp̄(N) for every p̄ >

d/(min{β̂ − τ, β̂ − 1}).

For either of the strategies and for every L ∈ N0, by Theorem 5.1 we obtain the error estimate

error2L = O
(
M

−2τ/d
L +

L∑

ℓ=0

(ϕ(Nℓ))
−2χ̄M

−2τ/d
ℓ

)
. (44)

Since the Euler totient function satisfies that (ϕ(N))−1 ≤ N−1(eγ̂ log logN + 3/ log log(N)) for
every N ≥ 3, where γ̂ ≈ 0.5772 is the Euler–Mascheroni constant, (ϕ(N))−1 ≤ 9/N for every
N = 3, . . . , 1030. We will for simplicity restrict in our analysis the range of N to N ≤ 1030

and use the bound (ϕ(N))−1 ≤ 9/N . In Strategies 1 and 2, the p-summability of the sequence
(b1−θ

j ∨ b̄j)j≥1 holds with a strict inequality condition on p, i.e., (b1−θ
j ∨ b̄j)j≥1 ∈ ℓp̄(N), for every

p̄ > d/(β̂ − 1) in the case of Strategy 1 and for every p̄ > d/min{β̂ − τ, β̂ − 1} in the case of
Strategy 2. Since the QMC convergence rate χ̄ depends on the exponent p, there exists ε > 0
such that χ̄(1 + ε) is also admissible in (44) due to Theorem 5.1. Using log(N) ≤ N ε/(εe) for
every N ∈ N, cp. see e.g. the proof of [19, Lemma 1], the factor Nℓ log(Nℓ) in (40) may be
estimated by N1+ε

ℓ . Since N1+ε
ℓ appears then in the estimate of the work (40) and in the error

estimate (44), it can be substituted by Nℓ, using the strict inequalities in the above bounds for
the admissible indices, and choosing ε > 0 sufficiently small.

We obtain with the choices for (sℓ)ℓ=0,...,L in Strategies 1 and 2

workL =




O
(∑L

ℓ=0Nℓ(Mℓ log(Mℓ) + max{M1+η
ℓ ,min{M τ

ℓ ,M
τ/β̂
L }})

)
, for Strategy 1,

O
(∑L

ℓ=0Nℓ(Mℓ log(Mℓ) +M1+η
ℓ )

)
, for Strategy 2.

and

error2L = O
(
M

−2τ/d
L +

L∑

ℓ=0

N−2χ̄
ℓ M

−2τ/d
ℓ

)
.

We will distinguish between the cases that η = 0 and η > 0 in (A3). We treat Strategy 2 and
the case η > 0 first. As above, log(M) ≤ Mη/(ηe) for every M ∈ N. To obtain optimal choices
for the sample numbers (Nℓ)ℓ=0,...,L, we search for a stationary point of the function

g(ξ) :=M
−2τ/d
L +

L∑

ℓ=0

N−2χ̄
ℓ M

−2τ/d
ℓ + ξ

L∑

ℓ=0

NℓM
1+η
ℓ

with respect to Nℓ, i.e., we solve the first order necessary condition ∂g/∂Nℓ = 0 (see also [36,
Section 3.7]). This gives

Nℓ =
⌈
N0M

−(2τ/d+1+η)/(1+2χ̄)
ℓ

⌉
, ℓ = 1, . . . , L, (45)

and with setting Eℓ =M
(1+η−τ/(dχ̄))2χ̄/(1+2χ̄)
ℓ , ℓ = 0, . . . , L,

error2L = O
(
M

−2τ/d
L +N−2χ̄

0

L∑

ℓ=0

Eℓ

)
and work = O

(
N0

L∑

ℓ=0

Eℓ

)
, (46)

where

L∑

ℓ=0

Eℓ =





O(1) if 1 + η < τ/(dχ̄),

O(L) if 1 + η = τ/(dχ̄),

O(2(2χ̄d(1+η)−2τ)L/(1+2χ̄)) if 1 + η > τ/(dχ̄).

(47)
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The parameterN0 is chosen to balance the error contributions, i.e., N−2χ̄
0

∑L
ℓ=0Eℓ = O(M

−2τ/d
L ),

which implies

N0 =





⌈2τL/χ̄⌉ if 1 + η < τ/(dχ̄),

⌈2τL/χ̄L1/(2χ̄)⌉ if 1 + η = τ/(dχ̄),

⌈2(2τ+d(1+η))L/(1+2χ̄) if 1 + η > τ/(dχ̄).

(48)

We conclude that error2L = O(M
−2τ/d
L ) can be achieved with

workL =





O(2τL/χ̄) if 1 + η < τ/(dχ̄),

O(2τL/χ̄L(1+2χ̄)/(2χ̄)) if 1 + η = τ/(dχ̄),

O(2dL(1+η)) if 1 + η > τ/(dχ̄).

In the case that η = 0, the resulting work measure is considered in [36, Section 3.7]. In particular,
we obtain by [36, Equations (74) and (77)]

Nℓ =

⌈
N0

(
M

−1−2τ/d
ℓ log(sℓ)

−1
)1/(1+2χ̄)

⌉
, ℓ = 1, . . . , L, (49)

and

N0 =





⌈2τL/χ̄⌉ if d < τ/χ̄,

⌈2τL/χ̄L(1+4χ̄)/(χ̄(2+4χ̄))⌉ if d = τ/χ̄,

⌈2(d+2τ)L/(1+2χ̄)L1/(1+2χ̄)⌉ if d > τ/χ̄.

(50)

Note that the corresponding work estimates are given on [36, p. 443]. We summarize this analysis
as ε-complexity bounds in the following theorem.

Theorem 6.2 [Error vs. work for Strategy 2]
Let the truncation dimensions (sℓ)ℓ=0,...,L be chosen according to Strategy 2 assuming β̂ >

max{τ, 1}. Let the assumptions (A5) and (A3) be satisfied for η ≥ 0. If η > 0, the sample
numbers for Q∗

L(·) are given by (48) and (45), L ∈ N0. If η = 0, the sample numbers for Q∗
L(·)

are given by (50) and (49), L ∈ N0. Let f and G(·) satisfy (A4).

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂−τ), d/(β̂−1)}, 2), χ̄ = 1/(2p̄)+1/4−ε′
for ε′ > 0 sufficiently small assuming d/min{β̂ − τ, β̂ − 1} < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂ − τ), d/(β̂ − 1)}, 1], χ̄ = 1/p̄ − 1/2
assuming d/min{β̂ − τ, β̂ − 1} < 1.

For an error threshold 1 > ε > 0, we obtain

√
E∆(|E(G(u))−Q∗

L(G(u
L))|2) = O(ε)

is achieved with

workL =





O(ε−1/χ̄) if 1 + η < τ/(dχ̄),

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if 1 + η = τ/(dχ̄), η > 0,

O(ε−1/χ̄ log(ε−1)(1+4χ̄)/(2χ̄)) if d = τ/χ̄, η = 0,

O(ε−d/τ(1+η)) if 1 + η > τ/(dχ̄), η > 0,

O(ε−d/τ log(ε−1)) if d > τ/χ̄, η = 0.

Here, the implied constants are independent of L, (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L, and of (Mℓ)ℓ≥0.
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Remark 6.2 In Strategy 2, there is one parameter respectively one dimension of integration,
per spatial degree of freedom, so that sℓ ∼ Mℓ, ℓ ≥ 0. This coupling occurs, for example, when
circulant embedding is applied to evaluate a GRF on uniformly spaced spatial grid points such
that each element of the FE mesh contains at least one of these points to perform a one point
quadrature for computing the stiffness matrix. Numerical experiments with a QMC rule using a
circulant embedding are presented in [26] and the references there.

For Strategy 1, we may restrict the analysis to the case τ > 1, since for τ ≤ 1 the additional
restriction β̂ > τ for Strategy 2 is redundant and Strategy 2 can be applied. For η > 0, we
obtain following the same line of argument as applied in the analysis of Strategy 2

Nℓ =

⌈
N0

(
M

2τ/d
ℓ max{M1+η

ℓ ,min{M τ
ℓ ,M

τ/β̃
L }}

)−1/(1+2χ̄)
⌉
, ℓ = 1, . . . , L, (51)

where also (46) holds with

Eℓ =
(
M

−τ/(dχ̄)
ℓ max{M1+η

ℓ ,min{M τ
ℓ ,M

τ/β̃
L }}

)2χ̄/(1+2χ̄)

, ℓ = 0, . . . , L.

We observe that

L∑

ℓ=0

(
M

−τ/(dχ̄)
ℓ max{M1+η

ℓ ,M
τ/β̃
L }

)2χ̄/(1+2χ̄)

=

{
O(2dL(τ/β̃)2χ̄/(1+2χ̄)) if 1 + η ≤ τ/(dχ̄),

O(2dLmax{1+η−τ/(dχ̄),τ/β̃}2χ̄/(1+2χ̄)) if 1 + η > τ/(dχ̄),

where we used that max{x, y} ≤ x + y for every x, y ∈ [0,∞). The respective estimate for

the sum over (M
−τ/(dχ̄)
ℓ max{M1+η

ℓ ,M τ
ℓ })2χ̄/(1+2χ̄) is given in (47) with max{1 + η, τ} in place

of 1 + η (also in the conditions of the three cases). To estimate
∑L

ℓ=0Eℓ, we use the iden-
tity that max{x,min{y, z}} = min{max{x, y},max{x, z}} for every x, y, z ∈ R, and apply the
superadditivity of the minimum to obtain that

L∑

ℓ=0

Eℓ =





O(1) if max{τ, 1 + η} < τ/(dχ̄),

O(L) if max{τ, 1 + η} = τ/(dχ̄),

O(2dL(1+η−τ/(dχ̄))2χ̄/(1+2χ̄)) if 1 + η ≥ τ, 1 + η > τ/(dχ̄),

O(2dLmin{τ−τ/(dχ̄),max{(1+η−τ/(dχ̄)),τ/β̃}}2χ̄/(1+2χ̄)) if 1 + η < τ, 1 < dχ̄.

As above, N0 is chosen to balance the error, i.e., N0 ∼M
τ/(dχ̄)
L (

∑L
ℓ=0Eℓ)

1/(2χ̄). Specifically,

N0 =





⌈2Lτ/χ̄⌉ if max{τ, 1 + η} < τ/(dχ̄),

⌈2Lτ/χ̄L1/(2χ̄)⌉ if max{τ, 1 + η} = τ/(dχ̄),

⌈2(2τ+d(1+η))L/(1+2χ̄)⌉ if 1 + η ≥ τ, 1 + η > τ/(dχ̄),

⌈2dLmin{τ−τ/(dχ̄),max{(1+η−τ/(dχ̄)),τ/β̃}}/(1+2χ̄)+Lτ/χ̄⌉ if 1 + η < τ, 1 < dχ̄.

(52)
For η = 0,

Nℓ =

⌈
N0

(
M

2τ/d
ℓ max{Mℓ log(Mℓ),min{M τ

ℓ ,M
τ/β̃
L }}

)−1/(1+2χ̄)
⌉
, ℓ = 1, . . . , L, (53)
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and Eℓ = (M
−τ/(dχ̄)
ℓ max{Mℓ log(Mℓ),min{M τ

ℓ ,M
τ/β̃
L }})2χ̄/(1+2χ̄), ℓ = 0, . . . , L. We obtain sim-

ilarly using τ > 1,

L∑

ℓ=0

Eℓ =





O(1) if 1 < 1/(dχ̄),

O(L) if 1 = 1/(dχ̄),

O(2(d−τ/χ̄)L2χ̄/(1+2χ̄)L2χ̄/(1+2χ̄)) if d− τ/χ̄ ≥ dτ/β̃,

O(2d(τ/β̃)L2χ̄/(1+2χ̄)) if d− τ/χ̄ < dτ/β̃ < τ(d− 1/χ̄),

O(2τ(d−1/χ̄)L2χ̄/(1+2χ̄)) if d− τ/χ̄ < dτ/β̃, τ(d− 1/χ̄) ≤ dτ/β̃.

Again by N0 ∼M
τ/(dχ̄)
L (

∑L
ℓ=0Eℓ)

1/(2χ̄),

N0 =





⌈2Lτ/χ̄⌉ if 1 < 1/(dχ̄),

⌈2Lτ/χ̄L1/(2χ̄)⌉ if 1 = 1/(dχ̄),

⌈2(2τ+d)L/(1+2χ̄)L1/(1+2χ̄)⌉ if d− τ/χ̄ ≥ dτ/β̃,

⌈2(τ/χ̄+dτ/(β̃(1+2χ̄))L⌉ if 0 < d− τ/χ̄ < dτ/β̃ < τ(d− 1/χ̄),

⌈2(2τ+dτ)L/(1+2χ̄)⌉ if 0 < d− τ/χ̄ < dτ/β̃, τ(d− 1/χ̄) ≤ dτ/β̃.

(54)

Explicit error vs. work estimates are summarized as ε-complexity bounds in the following

theorem, where we recall that work = N0
∑L

ℓ=0Eℓ =M
τ/(dχ̄)
L (

∑L
ℓ=0Eℓ)

(1+2χ̄)/(2χ̄).

Theorem 6.3 [Error vs. work for Strategy 1]
Let the truncation dimension (sℓ)ℓ≥1 be chosen according to Strategy 1 assuming β̂ > 1 and

τ > 1. Let the assumptions (A5) and (A3) be satisfied for η ≥ 0. The sample numbers for
Q∗

L(·) are given by (52) and (51) for η > 0 and by (54) and (53) for η = 0, L ∈ N0. Let f and
G(·) satisfy (A4).

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 2), χ̄ = 1/(2p̄) + 1/4 − ε′ for
ε′ > 0 sufficiently small assuming d/(β̂ − 1) < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 1], χ̄ = 1/p̄ − 1/2 assuming
d/(β̂ − 1) < 1.

For an error threshold ε > 0, we obtain

√
E∆(|E(G(u))−Q∗

L(G(u
L))|2) = O(ε)

is achieved with

workL =





O(ε−1/χ̄) if max{τ, 1 + η} < τ/(dχ̄),

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if max{τ, 1 + η} = τ/(dχ̄),

O(ε−d/τ(1+η)) if 1 + η ≥ τ, 1 + η > τ/(dχ̄), η > 0,

O(ε−d/τ log(ε−1)) if d− τ/χ̄ ≥ dτ/β̃, η = 0,

O(ε−dmin{1,max{(1+η)/τ,1/β̃+1/(dχ̄}}) if 1 + η < τ, 1 < dχ̄, η > 0,

O(ε−(1/χ̄+d/β̃)) if d− τ/χ̄ < dτ/β̃ < τ(d− 1/χ̄), η = 0,

O(ε−d) if d− τ/χ̄ < dτ/β̃, τ(d− 1/χ̄) ≤ dτ/β̃, η = 0.

Here, β̃ is as in (43) chosen close to 0 < 2β̂ − d/2 such that β̃ < 2β̂ − d/2 and all implied
constants are independent of L, (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L, and (Mℓ)ℓ≥0.
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6.2 Application of error vs. work estimates: Matérn-like covariance

In practical applications, GRFs may be parametrized by MRAs, such that assumptions (A1)
and (A2) are satisfied. A class of such GRFs represented by plain wavelets has been discussed
in Section 6.1. The assumption (A2) is on the gradients of the function system and implies first
order differentiability of the GRF. However, if the function system is sufficiently regular, also
higher spatial regularity of realizations of the GRF may be deduced, which has been analyzed
by the authors in [32, Section 9]. Specifically, in the setting of Section 6.1, if the function
system is able to characterize Besov norms (i.e., [32, Assumption (A4)] holds), then by [32,
Proposition 18], the realizations of the GRF are µ-a.s. Hölder regular with exponent ν − ε > 0
for any ν > ε > 0 and ν = α̂. In this section, we aim to discuss the error vs. work estimates
of Theorems 6.2 and 6.3 in dependence of the parameter ν (the smoothness of the GRF) or
respectively the parameter α̂ from Section 6.1 and d, η for a larger class of GRFs.

Solutions Z to the SPDE (1) may be represented by various function systems. If it is posed
on D and also boundary conditions are prescribed certain wavelet bases may be used to solve (1).
The function system that results by rearranging terms suitably for an expansion of Z with i.i.d.
coefficients is generally not compactly supported, but decays exponentially, which means it is
well-localized and may satisfy the bound (39) with α̂ ≈ ν = α − d/2 (recall the parameter α
from (1)), see ahead Section 7 for a particular choice and inparticular Figures 1(a) and 1(b).
Wavelet bases on polytopal domains are available which also satisfy boundary conditions (see,
e.g. [45] and the references there). If (1) is posed on R

d with A(x) = Id and κ(x) = κ̄,
x ∈ R

d, then function systems to represent the GRF Z have been proposed in [8] by studying
the covariance operator of Z. In this case it is well-knwon that the GRF Z has so called
Matérn covariance [39] with smoothness parameter ν = α− d/2. The function system proposed
in [8] is based on so-called Meyer wavelets and is globally supported, but well-localized in D.
By [8, Corollary 4.3], it satisfies assumption (A1) with (bj)j≥1 ∈ ℓp(N) for every p > d/ν. The
statement of [8, Corollary 4.3] may be extended to gradients of the function system, which would
imply that assumption (A2) could be satisfied with (b̄j)j≥1 ∈ ℓp̄(N) for every p̄ > d/(ν − 1).

We suppose that τ > 1 and let assumption (A3) be satisfied for η > 0. The error vs. work
estimates for the truncation Strategy 2 given in Theorem 6.2 may be applied using the borderline
cases ε′ = 0 and p̄ = d/(ν − τ) in our error bounds. It follows that accuracy ε > 0 may be
achieved using Gaussian weight functions with

work =

{
O(ε−2d/(ν−τ+d/2)−δ) if 1 + η < 2τ/(ν − τ + d/2),

O(ε−d/τ(1+η)) if 1 + η > 2τ/(ν − τ + d/2),

for any δ > 0, provided that
d

2
+ τ < ν <

3d

2
+ τ.

In case that ν ≥ 3d/2 + τ , the work is also O(ε−d/τ(1+η)), which is the complexity of the
Poisson problem under the assumption that (A3) is satisfied for η > 0. Note that the case
1+η = 2τ/(ν− τ +d/2) is not considered, since the formal value p̄ = d/(ν− τ) was used instead
of p̄+ ε′ = d/(ν − τ) for some 0 < ε′ ≪ 1, which renders this case unimportant.

Suppose that 1+ η < τ . The error vs. work estimates for the truncation Strategy 1 given in
Theorem 6.3 are applied using the borderline case ε′ = 0 and p̄ = d/(ν−1) and β̃ = 2ν−d/2. It
follows that accuracy ε > 0 may be achieved (based on QMC error bounds with the norm (17)
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and with Gaussian weight functions wg,j in (18)) with

work =





O(ε−2d/(ν−1+d/2)−δ) if ν + d/2 < 3,

O(ε−dmin{1,1/(2ν−d/2)+2/(ν−1+d/2)}−δ) if ν + d/2 > 3 and

(1 + η)/τ < 1/(2ν − d/2) + 2/(ν − 1 + d/2),

O(ε−d/τ(1+η)) if ν + d/2 > 3 and

(1 + η)/τ > 1/(2ν − d/2) + 2/(ν − 1 + d/2),

for any δ > 0, provided that the Matérn parameter ν satisfies

d

2
+ 1 < ν <

3d

2
+ 1. (55)

For 3d/2 + 1 ≤ ν < 3d/2 + τ , intermediate cases hold according to Theorem 6.3 with χ̄ ≈ 1. If
ν ≥ 3d/2 + τ , Strategy 2 is applicable as mentioned above.

We discuss the cases ν ∈ {d+ 1, 3d/2 + 1}, which allow error bounds with both, Strategy 1
and Strategy 2. We suppose that maximum regularity τ = 2, which is for example the case if
f,G(·) ∈ L2(D). For ν = 3d/2 + 1, accuracy ε > 0 is achievable with Strategy 1 with work
O(ε−9/7−δ) (for d = 2) and O(ε−d/τ(1+η)) (for d = 3). With Strategy 2, work O(ε−4/3−δ) (for
d = 2) and O(ε−d/τ(1+η)) (for d = 3) is needed. In the case ν = d + 1, accuracy ε > 0 is
achievable using Strategy 1 with work O(ε−26/15−δ) (for d = 2) and O(ε−210/117−δ) (for d = 3).
With Strategy 2, work O(ε−2−δ) (for d = 2) and O(ε−12/7−δ) (for d = 3) is needed. Note that
1.71 ≈ 12/7 < 210/117 ≈ 1.79. We assumed that η > 0 in (A3) is sufficiently small (the theory
in [29] implies that η > 0 may be chosen arbitrarily small for MLMC-FEM).

6.3 Local supports and product weights vs. global supports and POD weights

We suppose that the GRF Z can be represented with a Karhunen–Loève expansion given by
the eigenpairs (λj , ψ

KL
j )j≥1 of the covariance operator of Z normalized in L2(D). Thus, Z =

∑
j≥1 yjψ

gl
j , where ψgl

j =
√
λjψ

KL
j , j ≥ 1. In the case that Z has Matérn covariance, [25,

Corollary 5] implies that there exists c > 0 such that
√
λj ≤ cj−(1/2+ν/d), j ≥ 1. By the

proof of [25, Proposition 9], generally in the Matérn case for any δ > 0 there is c > 0 such
that ‖ψKL

j ‖L∞(D) ≤ cj1/2+δ and ‖|∇ψKL
j |‖L∞(D) ≤ cj1/2+1/d+δ, j ≥ 1. As observed in [35,

Remark 10], this implies (‖|∇ψgl
j |‖L∞(D))j≥1 ∈ ℓp̄POD(N) for any p̄POD > d/(ν − 1). Also,

(‖ψgl
j ‖L∞(D))j≥1 ∈ ℓpPOD(N) for any pPOD > d/ν. For the multilevel QMC error analysis in [35]

to be applicable, it is required that p̄POD < 1. The regime that p̄POD ∈ (2/3, 1) is equivalent to

d+ 1 < ν <
3d

2
+ 1, (56)

which is a more restrictive condition than what was required in (55) for Strategy 1 of the local
support theory with product weights to be applicable. Under this assumption, [35, Corollary 2]
implies that an accuracy ε > 0 may be achieved (excluding the computational cost of the CBC
algorithm) using multilevel QMC with POD weights with

work =

{
O(ε−d/(ν−1−d/2)−1/α′−δ) if τ > ν − 1− d/2,

O(ε−d/τ−1/α′
) if τ < ν − 1− d/2,

(57)

for any δ > 0. If ν ≥ 3d/2 + 1, the work is also O(ε−d/τ−1/α′
). The value of the parameter α′

has been shown in [25, Proposition 9] to be at least ν/d− 1/2− δ for any δ > 0. In the setting
of [35, Corollary 2] sℓ = sL for all levels ℓ = 0, . . . , L− 1, where L ∈ N is the maximal level.
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Remark 6.3 Consider a convex polygon D ⊂ R
2, i.e., d = 2, and f,G(·) ∈ L2(D). This

implies that τ = 2. In the borderline case ν = 3d/2 + 1 = 4 of the estimate (57), accuracy

ε > 0 may be achieved using multilevel QMC-FE with (ψgl
j )j≥1 and POD weights with work

O(ε−5/3−δ). In the same situation accuracy ε > 0 may be achieved using Strategy 1 of multilevel
QMC-FE with locally supported ψj and QMC with product weights in work O(ε−9/7−δ). In this
comparison we assumed that η > 0 in (A3) is sufficiently small (the theory in [29] implies that
η > 0 may be chosen arbitrarily small for MLMC-FEM). Multilevel QMC with local supports
and product weights requires here less work to achieve target accuracy ε > 0 than multilevel
QMC-FE with globally supported ψj and POD QMC weights as presented in [35], even when the
cost of the CBC construction of the QMC generating vector for POD weights is excluded from
the work estimates as in [35], where this (excluded) work depends quadratically on the truncation
dimension. Also, the work estimates from [35] assumed the cost of evaluating ψKL

j to be O(1)
for every j ≥ 1.

Remark 6.4 The parameter α′ increases linearly with respect to the parameter ν. The work
estimate in (57) includes always the term 1/α′. This is a consequence of the work model that
the cost of assembling instances of stiffness matrices has cost proportional to the number of FE
degrees of freedom multiplied by the truncation dimension sL. If ν ≫ 1, then 1/α′ ≪ 1 and

this term becomes insignificant and since sL ∼ h
−τ/α′

L the uncertainty quantification problem is
then of moderate effective dimension. The resulting work would still be O(ε−d/τ−1/α′

) and τ is
at most two, since first order FE is used in the multilevel QMC algorithm. Another restriction
is the rate of the QMC quadrature, which is of essentially first order for randomly shifted lattice
rules. In the case that a higher order QMC rule were available (which is the case for bounded
parameter vectors, cp. [14]) and is used (for simplicity) as single-level QMC in combination

with the function system (ψgl
j )j≥1 stemming from the Karhunen–Loève expansion and QMC

with POD weights, then the order of convergence that could be achieved is only restricted by the
value of ν given that proper mesh refinement is available. Approximation rates of Z by function
systems based on spline wavelets are generally restricted by their maximal order, which limits
corresponding complexity estimates of single-level QMC with local supports.

In certain cases the Karhunen–Loève functions may have stronger properties concerning
their decay in the sup-norm and the computational cost to compute linear combinations of
them efficiently. One of these cases should also be discussed in order to provide a more thorough
comparison of locally supported ψj and QMC product weights to globally supported and QMC
POD weights. As discussed in [32, Section 10], if the GRF Z is computed on a product domain
D and A(x) = Id, κ(x) = const > 0 in (1) (which is solved on R

d in this case), the Karhunen–
Loève functions may take the form of products of trigonometric functions and are thus uniformly
bounded in the sup-norm. I.e., there exists c > 0 such that for all j ≥ 1 holds ‖|∇ψKL

j |‖L∞(D) ≤
cj1/d. Thus, (‖|∇ψgl

j |‖L∞(D))j≥1 ∈ ℓp̄POD(N) for any p̄POD > d/(ν−1+d/2). Also the truncated
GRF may be computed efficiently with FFT techniques. To also accommodate these cases with
variable truncation dimension (sℓ not necessarily equal to sL), in Appendix A the multilevel
QMC error analysis from [35] is suitably extended. In Appendix B we take into account the
cost of the CBC algorithm, which in the POD weight case grows quadratically with respect to
the truncation dimensions. The error analysis there applies to Matérn GRFs with Matérn
parameter ν > d/2+1. To illustrate the results, consider a convex polygon or polyhedron
D ⊂ R

d with d = 2, 3. Then, the Dirichlet Laplacean is boundedly invertible from H2(D)∩V to
L2(D) and f,G(·) ∈ L2(D). This implies the FE convergence rate τ = 2 for FE on quasiuniform
meshes in D. For ν = 3d/2+ 1, Theorem B.1 may be applied with the borderline cases pPOD =
(2+1/d)−1 and p̄POD = 3/2. Note that the parameter α = (1/pPOD−1/p̄POD)

−1 in Theorem B.1
is then α = 2d/(2 + d). The accuracy ε > 0 may be achieved using multilevel QMC FEM with
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(ψgl
j )j≥1 and POD weights with work O(ε−4d/(3d+2)−1−δ) taking into account the cost of the

CBC algorithm. Note that 4d/(3d + 2) + 1 = 2 for d = 2 and 4d/(3d + 2) + 1 = 1 + 12/11
for d = 3. In the same situation, multilevel QMC-FE with local support and product weights
achieves accuracy ε with work O(ε−9/7−δ) for d = 2 and Strategy 1 and O(ε−4/3−δ) for d = 2
and Strategy 2. For d = 3, the corresponding required work for multilevel QMC-FE with local
support and product weights is O(ε−d/τ(1+η)) for either of Strategy 1 and 2. In this comparison
we assumed the larger value α′ ≈ ν/d for the truncation error with respect to the globally

supported function system (ψgl
j )j≥1, which was shown in this case in [32, Proposition 20]. In [35,

Figure 1], the value α′ has been investigated empirically for d = 1 and ν = 1, the functional G(·)
being point evaluation. The shown empirical data suggests the higher value of ≈ 2ν/d in this

case. Assuming this stronger decay of the truncation error with respect to sL and (ψgl
j )j≥1, the

required work for multilevel QMC with (ψgl
j )j≥1 and POD weights is O(ε−3/2−δ) for d = 2 and

O(ε−1−6/11−δ) for d = 3. Throughout this paragraph, δ > 0 was an arbitrarily small number
and the constants hidden in the O(·) depend on δ. In these cases multilevel QMC with local
support and product weights achieves prescribed accuracy ε with an asymptotically smaller work
compared to multilevel QMC with (ψgl

j )j≥1 and POD weights.

In the case that ν is sufficiently large also multilevel QMC with (ψgl
j )j≥1 and POD weights is

able to achieve accuracy ε > 0 with work O(ε−d/τ(1+η)). This is the work to solve one instance of
the FE method on the finest mesh level. For example for d = 2, τ = 2, and ν = 6, Theorem B.1
is applicable with the borderline values pPOD = 2/7, p̄POD = 2/3, and α = 2/5. Due to the
term 1/α′ in the work estimate in [35, Corollary 2], this situation was not achievable with the
theory presented in [35]. Note again that we assumed that η > 0 in (A3) is sufficiently small
(the theory in [29] implies that η > 0 may be chosen arbitrarily small for MLMC-FEM).

7 Numerical experiments

We illustrate the complexity estimates and algorithmic details on GRF generation in locally
supported representation systems with numerical tests. To this end, we consider the following
class of GRFs. We admit GRFs Z which are pathwise, weak solutions to the SPDE (1), where
W denotes spatial white noise on D. See e.g. [2] for details on this. In (1), we assume that
A(x) ∈ R

d×d is symmetric for a.e. x ∈ D and there exists A > 0 such that

ess inf
x∈D

ξ⊤A(x)ξ ≥ Aξ⊤ξ, ∀ξ ∈ R
d,

and ess infx∈D κ(x) > 0.
We recall from Section 1 that if D = R

d, A(x) ≡ Id, and if also κ(x) ≡ const, then the
stationary solution Z to (1) is well known to have Matérn covariance. As proposed in [39],
the SPDE (1) can be used to define and numerically sample non-stationary GRFs in bounded
domains and for general coefficients κ and A, which accomodates non-stationary GRFs Z. As
in [39], both in stationary and non-stationary cases (see [39, Section 3.2]), we shall refer to
solutions to (1) as Matérn fields.

We choose D = (0, 1) with periodic boundary conditions, which can be identified with the
one-dimensional sphere or the one-dimensional torus T

1. To obtain a series expansion of Z
with i.i.d. standard normally distributed coefficients, i.e., the form of (3), we discretize (1) by
biorthogonal and continuous, piecewise linear spline prewavelets as in [47]. Let (Vℓ)ℓ≥0 be a
sequence of FE spaces of piecewise affine functions on uniformly refined meshes with meshwidth
hℓ = 2−ℓ−2 and dim(Vℓ) = 2ℓ+2. Each FE space is spanned by continuous, piecewise affine
functions, i.e., Vℓ = span{ϕℓ

1, . . . , ϕ
ℓ
2ℓ+2}, ℓ ≥ 0, where ϕℓ

1, . . . , ϕ
ℓ
2ℓ+2 are the “hat” function

basis. We shall use the following representation system for the GRF in D: for every ℓ ∈ N,
define the spline-prewavelets as in [47, Equation (4.7)] by
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φℓ,k :=

5∑

ι=1

aιϕ
ℓ
2k−4+ι, k = 1, . . . , Nℓ, a = (1/2,−3, 5,−3, 1/2), (58)

where Nℓ = 2ℓ+1 and subscript indices of ϕℓ
k are taken modulo 2ℓ+2 plus 1. The barycenter

of the support of the prewavelet φℓ,k is xℓ,k = (2k − 1)2−ℓ−2. We define the wavelet spaces
W ℓ := span{φℓ,1, . . . , φℓ,Nℓ

}, ℓ ≥ 1, with the understanding that W 0 := V0. For ℓ = 0, we define
φℓ,k = ϕℓ

k, k = 1, . . . , N0 := 4. These spaces are L2-orthogonal across levels, i.e.,
∫
D w1w2dx = 0

for all w1 ∈W ℓ1 , w2 ∈W ℓ2 s.t. ℓ1, ℓ2 ∈ N0 and ℓ1 6= ℓ2. Hence, we obtain the multilevel splitting

V ℓ =W 0 ⊕W 1 ⊕ . . .⊕W ℓ, ℓ ≥ 1.

We note that {φℓ,k : ℓ ≥ 0, k = 1, . . . , Nℓ} is a Riesz basis of L2(T1) and of H1(T1). Upon
proper scaling, there hold stable norm equivalences in scale of spaces Ht(T1) for t ∈ [0, 3/2),
cp. [47, Proposition 4.1]. There are constants C1, C2 such that for every L ≥ 0 and for every
v =

∑L
ℓ=0

∑Nℓ

k=1 vℓ,kφℓ,k

C1

L∑

ℓ=0

22(t−1/2)ℓ
Nℓ∑

k=1

|vℓ,k|2 ≤ ‖v‖2Ht(T1) ≤ C2

L∑

ℓ=0

22(t−1/2)ℓ
Nℓ∑

k=1

|vℓ,k|2.

Let us define the sequence space ℓ21 := {c ∈ R
N :
∑

ℓ≥0 2
ℓ
∑Nℓ

k=1 |cℓ,k|2 <∞} that corresponds to

H1(T1). The white noise W, applied to the prewavelets (58), results in a random vector W

with components that are normally distributed with zero mean and covariance determined by the
“mass matrix” M , i.e., cov(W(φℓ2,k2),W(φℓ1,k1)) =

∫
D φℓ2,k2φℓ1,k1dx =: M ℓ1,k1,ℓ2,k2 , ℓ1, ℓ2 ≥ 0,

k1 ∈ {1, . . . , Nℓ1}, k2 ∈ {1, . . . , Nℓ2}. Due to the orthogonality of the prewavelets across levels
the bi-infinite mass matrix M is block diagonal with diagonal blocks given by the mass matrices
of W ℓ: there is no correlation between the different levels. This will be convenient in sampling
realizations of W with a block Cholesky algorithm; its complexity is O(Nℓ) on every block.
Note that the random vectors W and Ly have the same distribution for an i.i.d. standard
normally distributed y and any operator L that satisfies LL⊤ = M . For example, L can be
the operator that results by applying the Cholesky algorithm to every block of M . For α = 2,
the operator in (1) is local and reads (−div(A(x)∇) + κ2(x)) It can be equivalently represented
as a bi-infinite matrix in a prewavelet basis. We denote the resulting (bi-infinite) matrix by
A, where Aℓ1,k1,ℓ2,k2 =

∫
D(∇φℓ2,k2)⊤A∇φℓ1,k1 + κ2φℓ2,k2φℓ1,k1dx, ℓ1, ℓ2 ≥ 0, k1 ∈ {1, . . . , Nℓ1},

k2 ∈ {1, . . . , Nℓ2}.
For α = 2, the variational formulation of (1) with respect to this prewavelet basis is: for a

given parameter vector y, find Z(y) ∈ ℓ21 such that

AZ(y) = Ly,

where the parametric coefficients Z(y) and the GRF Z are related by

Z(y) =
∑

ℓ≥0

Nℓ∑

k=1

Z(y)ℓ,kφℓ,k

Let us define e(ℓ, k) by e(ℓ, k)ℓ′,k′ := 1 if ℓ = ℓ′ and j = k′ and zero otherwise. A piecewise
linear multiresolution respresentation of the Matérn field Z with i.i.d. coefficients and a function

system (ψ
α/2
ℓ,k )ℓ≥0,k=1,...,Nℓ

(here α/2 = 1) is now obtained by

Z(y) =
∑

ℓ≥0

Nℓ∑

k=1

yℓ,kψ
1
ℓ,k, with ψ1

ℓ,k =
∑

ℓ′≥0

Nℓ′∑

k′=1

(A−1Le(ℓ, k))ℓ′,k′φℓ′,k′ , (59)
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where ℓ ≥ 0 is the level or dilation index and k the translation. For α > 2, let {α/2} be the
fractional part of α/2 and ⌊α/2⌋ = α/2− {α/2}. The SPDE (1) is rewritten recursively as

(−div(A(x)∇) + κ2(x)){α/2}Z = Zi

(−div(A(x)∇) + κ2(x))Zi = Zi−1, i = 1, . . . , ⌊α/2⌋,
(60)

where Z0 := W. If {α/2} = 0, (−div(A(x)∇) + κ2(x))0 is understood as the identity operator.
For α ∈ 2N, there is no fractional PDE to be solved in (60) and by standard Galerkin techniques

ψ
α/2
ℓ,k =

∑

ℓ′≥0

Nℓ′∑

k′=1

((A−1M)α/2−1A−1Le(ℓ, k))ℓ′,k′φℓ′,k′ , ℓ ≥ 0, k = 1, . . . , Nℓ. (61)

Generally, for α ≥ 2,

ψ
α/2
ℓ,k = A−1

{α/2}Mψ
⌊α/2⌋
ℓ,k ℓ ≥ 0, k = 1, . . . , Nℓ,

whereA{α/2} is the wavelet representation of the fractional operator (−div(A(x)∇)+κ2(x)){α/2}.
In the case that {α/2} > 0, a fractional PDE with a non-local operator needs to be discretized.
Efficient FE methods for the numerical solution of this problem have been recently analyzed
in [9]. We remark that the application of first order prewavelets is sufficient here, since the
convergence rate of randomly shifted lattice rules is limited by one and also first order FE is
considered to discretize (2) in space.

Remark 7.1 The application of the sparse operator L introduces a weight sequence (2−(1/2)ℓ)ℓ≥0,j=1,...,Nℓ

and the application of the inverse of A introduces an additional weight sequence (2−ℓ)ℓ≥0,k=1,...,Nℓ

on the parameter vector y or e(ℓ, j). The theory of pseudodifferential operators and wavelet com-

pression suggests that (ψ
α/2
ℓ,k )ℓ≥0,k=1,...,Nℓ

satisfies Assumption (A1) and Assumption (A2) with

bℓ,k = 2−β̂ℓ and b̄ℓ,k = 2−(β̂−1)ℓ, ℓ ≥ 1, k = 1, . . . , Nℓ, for all 1 < β̂ < α− 1/2. See Figures 1(a)
and 1(b) ahead for an illustration of this property. In practical implementations the infinite se-
ries in (59) needs to be truncated. A detailed analysis of these aspects in a more general setting
will be presented in [30].

For a scaling parameter θ > 0 to be specified, the parametric PDE (2) with log-Matérn
input a = exp(θZ) and right hand side f ∈ L2(T1) such that

∫
T1 fdx = 0 is discretized by the

FE spaces (Vℓ)ℓ≥0, which are spanned by the standard hat functions. We recall the variational
formulation: for all ℓ ≥ 0, find uhℓ : Ω → Vℓ such that

∫

T1

a (uhℓ)′v′dx =

∫

T1

fvdx, ∀v ∈ Vℓ, and

∫

T1

uhℓdx = 0. (62)

Due to periodicity, no essential boundary conditions enter the variational formulation (62). The
vanishing mean condition on the solution is sufficient to ensure well-posedness, since the kernel
of the precision operator comprises exactly the constant functions.

We will adopt Strategy 2 from Section 6.1, which means that on every discretization level
ℓ ≥ 0 we set sℓ = Mℓ. We also truncate the expansion of the ψ1

ℓ,k’s in (59) and (61) and the
infinite matrices A to Mℓ terms. Note that the bi-infinite matrices M and L do not need
to be truncated as they are block-diagonal. The work to compute Zsℓ(y) for a given y in a
continuous, piecewise linear representation is O(Mℓ log(Mℓ)), since it amounts to the solution of
a PDE discretized by prewavelets and the application of the Cholesky algorithm to sparse band
matrices. The work for the approximate solution of the PDE discretized with the hat functions
on mesh-level ℓ scales as O(Mℓ).
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In our numerical tests, D = (0, 1), f(x) = sin(2πx) with periodic boundary conditions and

κ2(x) = κ2
(
1 +

1

2
sin(2πx)

)
, A(x) = Id, α ∈ {2, 4}. (63)

The parameter ν such that α = ν + d/2 determines the path regularity of realizations of the
Matérn field. We test the cases ν ∈ {3/2, 7/2} with the correlation length scale parameter

λ =
2
√
ν

κ
.

which then determines the value of κ̄ in (63). For κ(x) ≡ κ this corresponds to the correlation
length parameter used in numerical experiments in [35, Section 4]. We aim at testing for different
values of λ without greatly affecting the variance of Z. Thus, we set the scaling θ of the (non-
stationary) GRF Z to

θ =
σ0

σ(α, κ)

with σ0 > 0 still at our disposal. In the stationary (“Matern”) case, i.e., when A(x) ≡ Id and
κ(x) ≡ κ > 0, elementary Fourier analysis reveals that the marginal variance is given by

σ2(α, κ) :=
1

κ2α
+
∑

i≥1

2

((2πi)2 + κ2)α
.

The function systems (ψ
α/2
ℓ,k : ℓ ≥ 0, k = 1, . . . , Nℓ) are well localized and satisfy a decay

condition which suits our MLQMC analysis with product weights. To illustrate this numerically,
we define

bref := (2−(3/2)ℓ)ℓ≥0,k=1,....Nℓ
.

In Figure 1(a), we plot this reference sequence and ‖ψ1
ℓ,k‖L∞(T1) for several choices of the corre-

lation length λ > 0, indexed by j(ℓ, k). Figure 1(b) shows plots of |ψℓ,k| for several values of ℓ
and k in log-scale. For the illustrations in both figures, the expansion in (59) has been truncated
to the maximal level L = 11. For α = 2, Figures 1(a) and 1(b) suggest that (ψ1

ℓ,k)ℓ≥0,k=1,...,Nℓ

satisfies Assumption (A1) and Assumption (A2) with weight sequence b1−ε
ref for every ε > 0 and

(b̄ℓ,k)ℓ≥0,k=1,....Nℓ
defined according to (42) with β̂ ≈ 3/2, respectively.

Remark 7.2 For stationary GRFs, translation invariance implies that the Karhunen–Loève
basis is trigonomatric, and QMC error bounds from [25, 35] with globally supported Karhunen–
Loève basis functions and QMC integration with POD weights are applicable. When A(x) ≡ Id
and κ(x) ≡ const and periodic boundary conditions are imposed on ∂D, the GRF Z is stationary.
The SPDE (1) can be numerically solved by Fourier methods. We refer to [27, 16] for details on
this. Unlike the product weights for QMC integration which were derived in the present work,
the appearance of QMC weights with POD structure in [25, 35] implies that the construction
cost for these QMC integration methods scales as O(s2N + sN log(N)) [42].

In our numerical tests, we consider the functional G(v) := v(x0) with x0 = 0.7, which is not
a node in any of our FE meshes for all levels ℓ ≥ 0. Note that G(·) ∈ H−1/2−ε(T1) for every
ε > 0. Since the QMC rate χ̄ is restricted to [1/2, 1) the complexity estimate in Theorem 6.2
in the regime 1 < τ/χ̄ (here d = 1, η = 0) does not seem to benefit from τ > 1. Thus, QMC
sample numbers are chosen according to (49) and (50) with τ = 1 and χ̄ to be specified, i.e.,

Nℓ =

⌈
2(τ/χ̄)(L+1)

(
2−(2τ+1)(ℓ+1)(ℓ+ 1)−1

)1/(2χ̄+1)
⌉
, ℓ = 1, . . . , L, N0 =

⌈
2(τ/χ̄)(L+1)

⌉
(64)
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Figure 1: Quantitative properties of (ψ
α/2
ℓ,k )ℓ≥0,k=1,...,Nℓ

for σ0 = 1.0, λ ∈ {0.1, 0.05, 0.01}, α = 2

(ν = 3/2). Left panel: decay of ‖ψ1
ℓ,k‖L∞(T1) versus j. Onset of asymptotic decay appears for

j ∼ λ−1. Right panel: localization of ψ1
ℓ,k. Semi-logarithmic plot of the modulus of ψ1

ℓ,k(x).
Exponential decay away from barycenter xℓ,k of φℓ,k.

They are rounded up to the next odd prime number. We compute the generating vectors by the
fast CBC algorithm, Gaussian weight functions, and product weights according to Theorem 3.1
and the sequence

b̄
α/2
ref = (c2−(ν−1)ℓ)ℓ≥0,k=1,...,Nℓ

for some c > 0 (see Remark 7.1 and Figure 1(a)). According to Theorem 3.1, also the value p′ is
needed for the product weights, which in turn are an input in the CBC algorithm to construct
the generating vectors for the QMC lattice points. For α = 2, we use the borderline values
p′ = 1 and ε = 0 in Theorem 3.1. We note that ν = 3/2 is the borderline parameter for our
MLQMC convergence theory in Theorem 6.2. We expect a convergence rate χ̄ ≈ 1/2. In our
single-level QMC experiments, we observed in [32, Figure 1] that the QMC rate for a borderline
case of applicability (i.e. (bj)j≥1 /∈ ℓp(N) for every p ∈ (0, 2), but (bj)j≥1 ∈ ℓ2(N)) was always
larger than 0.65. So for α = 2 (ν = 3/2), we use QMC sample numbers (64) with χ̄ = 0.65. For

α = 4, b̄
α/2
ref ∈ ℓ2/3(N). Thus, we use p′ = 2/3 = p and the boundary value ε = 0 in Theorem 3.1.

For α = 4, the sample numbers are chosen with χ̄ = 0.9.
In Figures 2(a) and 2(b), we display error vs. work for α = 2, i.e., ν = 3/2, L = 2, . . . , 11 with

reference solution on level Lref = 12. For L = 11, there are sL = 8192 stochastic parameters on
the finest mesh level L and for the reference solution the highest occurring dimension was sLref

=
16384. Here, and in the following, the asymptotic work model is according to Theorem 6.2

workL = 2(τ/χ̄)L.

In all numerical tests, the mean square error is approximated by the empirical variance of R
samples of Qj corresponding to R i.i.d. realizations of the random shift, with the unbiased
estimator √√√√ 1

R− 1

R∑

j=1

(Qj − Q̄)2 ≈
√
E∆(|E(G(u))−Q∗

L(G(u
L))|2).

The reference value Q̄ is the average over R i.i.d. random shifts of Q∗
Lref

(G(uLref )) with Lref = 12.
In all numerical tests we use R = 20. For α = 2, this is the borderline case p̄ = 2 of the error
bounds in Theorem 6.2 and we expect a convergence rate of the error as a function of the work
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of ≈ 1/2. The empirically observed rate is a least squares fit taking into account the four data
pairs corresponding to finer resolution. The MLQMC algorithms converge even for very small
correlation length λ > 0, which is presented in Figures 2(a) and 2(b) for two choices of σ0.
Specifically, we observe that for correlation length λ ∈ {0.1, 0.05, 0.01}, there seems to be a
pre-asymptotic regime until the (non-dimensional) correlation length λ can be resolved by the
FE discretization in D.
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Figure 2: MLQMC convergence with ν = 3/2, αg = 1.05, c = 0.1, λ ∈ {0.1, 0.05, 0.01}. Left
panel: σ0 = 0.5. Right panel: σ0 = 1.0.

In Figure 3(a), we study the error versus the variance of the Matérn field Z. We control this
variance by the parameter σ0, and monitor the convergence rate of the error as a function of
the work. The test is carried out for α = 4, i.e., ν = 7/2, fixed correlation length λ = 0.1, and
L = 2, . . . , 11 with reference solution on level Lref = 12. Thus, s11 = 8192 dimensions on the
highest considered level and sLref

= 16384 dimensions of the reference solution. The empirically
observed rate is a least squares fit taking into account the six data pairs corresponding to higher
resolution. We observe that the convergence rate seems to be influenced by the variance of
Z, the size of the fluctuations. This was also observed in previous numerical experiments in
[33, 32, 35, 25].

All numerical tests in Figures 2(a) and 2(b) were performed with generating vectors that do
not depend on the correlation length. However, Figure 1(a) suggests that the pre-asymptotic
spatial decay of the functions ψ1

ℓ,k depends on the correlation length λ > 0, which shall be
reflected in the decay of the respective QMC integration weight sequence corresponding to the
coefficients (b̄ℓ,k)ℓ≥0,k=1,...,Nℓ

to be defined below.
In Figure 3(b), we present numerical results with QMC generating vectors that are informed

by the pre-asymptotic decay of the b̄ℓ,k. The test is carried out for α = 2, i.e., ν = 3/2, σ0 = 1.0,
and L = 2, . . . , 9 with reference solution on level Lref = 10. The empirically observed rate is
a least squares fit taking into account the four data pairs corresponding to higher resolution.
Specifically, we compute the QMC generating vector with the sequence

b̄ℓ,k = cb
(β̂−1)/β̂
ℓ,k .

Here, the value of c is (as specified in the caption of the figure) c = 0.1 (according to (42)) for
β̂ = 3/2 and with

bℓ,k = ‖ψℓ,k‖L∞(D), ℓ ≥ 0, k = 1, . . . , Nℓ.

In Figure 3(b), we observe a very similar behavior compared to Figure 2(b). We thus conclude
that the observed pre-asymptotic regime is indeed due to the inability of the FE method to
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resolve the small correlation length until the MLQMC algorithm accesses discretization levels
which resolve the spatial correlation length.
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(a) αg = 5.05, ν = 7/2, λ = 0.1
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Figure 3: MLQMC convergence with ν ∈ {3/2, 7/2} and c = 0.1. Left panel: ν = 7/2, λ = 0.1,
and σ0 ∈ {0.1, 0.25, 0.5}. Right panel: ν = 3/2, σ0 = 1.0, and λ ∈ {0.1, 0.05, 0.01} with informed
QMC generating vectors.

8 Conclusions

For linear, second order diffusion equations (2) in a polygonal or polyhedral domain D, and
with diffusion coefficient a = exp(Z), where the GRF Z in D is represented in terms of a series
expansion in a representation system with supports which are “localized in D” in the sense that
(A1) and (A2) hold and with the GRF Z taking values in weighted Hölder spaces in D, we
extended the convergence rate and error versus work analysis of combined QMC quadratures
and multilevel FE approximation from [25, 35] in several directions. We considered randomly
shifted lattice QMC rules introduced in [42] for numerical integration of PDE outputs against a
dimension-truncated Gaussian measure. The present work extends previous results to possibly
non-stationary GRFs Z, accounts explicitly for a discretization-level dependent truncation of
the representation of the GRF, and accounts for possibly low path regularity of Z and of the
random solution u in a polytopal physical domain D. In particular, Z and u are admitted in
weighted Hölder and Sobolev spaces in the polytope D ⊂ R

d, the weights allowing singularities
in realizations of Z and of u due to corners (and edges in dimension d = 3) of D. This allows,
in particular, GRFs Z whose covariance is non-stationary, with associated Matérn SPDE (1)
in D with Dirichlet or Neumann boundary conditions, as proposed recently in [39]. Whereas
in [25, 35, 36], globally (in D) supported φj ’s were admitted (implying QMC quadratures with
so-called “POD” weights), the present analysis shows that for multilevel representation systems
(ψj)j≥1 with localized supports, QMC quadratures with product weights are admissible and,
in a sense, natural. We also provided a novel QMC error analysis with Gaussian weighted
function spaces for QMC integration on the unbounded integration domain. It extends the
range of summability exponents from p ∈ (0, 1] obtained by exponential weight function as
considered in [25, 35] to p ∈ (2/3, 2) (Theorem 3.1, item 1.), while still retaining dimension
independent convergence rate up to 1/(2p) + 1/4. For GRFs Z whose spatial variation is
parametrized by a representation system (ψj)j≥1 of functions ψj(x) defined in D with “localized
supports” we proved that QMC combined with continuous, piecewise linear FE in D on families
of regular, simplicial triangulations of D with suitable mesh refinement near vertices and (in
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space dimension d = 3) edges of D allows for parameter-dimension independent error vs. work
bounds. Full elliptic regularity in function spaces in D without spatial weights and uniform
truncation dimension, i.e. sℓ = sL, ℓ = 0, . . . , L, as considered in [35, Corollary 2 and Section 5]
is a particular case of our results. Here, we admitted bounded, polytopal domains D where ∂D
consists of straight lines (in space dimension d = 2) or of plane faces (in space dimension d = 3)
which require weighted spaces for the spatial coordinate, and we consider truncation dimensions
sℓ of the input GRF that depend on the discretization level. The discretization level dependent
truncations of the GRF allow, for elliptic PDEs with log-Gaussian coefficients, in certain cases
an ε-complexity of MLQMC-FE with product weights that is asymptotically equivalent to the
ε-complexity of QMC in the case that integrand evaluation would be available at unit cost.
The parametric regularity results in weighted function spaces in D hold also for polytopal D
with piecewise smoothly curved boundaries as considered in [41].

Since the assumed localization of the supports of the ψj in D was shown to allow for QMC
integration rules with so-called product weights, the present model of the computational work
(40) includes the cost of the generation of the QMC points. This cost is dominated by the
cost of the fast CBC construction of QMC generating vectors. It was considered an “off-line”,
pre-computation in [36, 35] and the (quadratic w.r. to the parameter dimensions sℓ) work
count for the (precomputed) CBC construction for globally supported ψj (as e.g. in Karhunen–
Loève expansions) was omitted from the work counts in [36, 35]. We also note that the same
generating vectors can be used for different right hand sides f . However, if the representation
system (ψj)j≥1 of the GRF is altered due to modeling considerations of the lognormal diffusion
coefficent, then the QMC generating vectors need in general to be recomputed. In the present
QMC error analysis, being based on product weights, the work of the fast CBC construction of
generating vectors due to R. Cools and D. Nuyens [43] and the generation of QMC points scales
linearly with respect to the parameter dimensions sℓ. We conclude in certain cases the same
asymptotic error vs. work bounds of the presently proposed multilevel QMC algorithm as for
the numerical solution of (one instance of) the respective deterministic, elliptic PDE. The error
vs. work estimates for local supports and product weights derived in this paper are in certain
cases superior to corresponding error vs. work estimates for representations of the GRFs with
global supports (such as Karhunen–Loève expansions) and QMC with POD weights as discussed
in Section 6.3.

We considered only homogeneous Dirichlet boundary conditions on all of ∂D in (2) and, in the
numerical experiments section, only even integer order precision operators. This was for ease of
exposition only: the parametric regularity analysis of Section 4 and the elliptic regularity results
in Section 2.2 remain valid verbatim for problems with Neumann or mixed boundary conditions
provided that suitable regularity shifts of the Laplacean with these boundary conditions are
available as well as FE spaces with suitable interpolants. In particular, an analogous structure
of the corner- and edge-weights in (8) can be used to characterize elliptic regularity shifts in
scales of weighted Sobolev- and Hölder spaces in D for these boundary conditions. Precision
operators of fractional and odd integer order in (1), i.e. when α ∈ R\(2N), can be treated in
exactly the same fashion, using recently developed methods for the efficient numerical solution
of the SPDE (1). We refer to [9, 30] and the references there for details of the corresponding
algorithms.

A Error estimates of multilevel QMC with level dependent trun-

cation dimensions: global supports and POD weights

In this appendix, we augment the parametric regularity estimates in [35, Section 5] in order to
allow to truncate the dimension of the MLQMC algorithm depending on the FE mesh level ℓ
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also for globally supported functions ψgl
j in (3) as arises e.g. in Karhunen–Loève expansions;

MLQMC-FEM was considered in [35], with fixed truncation sL on all mesh levels ℓ = 0, 1, ..., L.

Suppose that the GRF Z is represented as in (3) with ψgl
j and define the sequence (υj)j≥1

by υj := ‖ψgl
j ‖L∞ . Assume the summability (υj)j≥1 ∈ ℓpPOD(N) for some pPOD ∈ (0, 1) and that

(υj)j≥1 is decreasing. The corresponding parametric solutions are denoted by usgl, u
s,T
gl , and

uℓgl = usℓ,Tℓgl , respectively.

Proposition A.1 Let s ∈ N. For every τ ∈ F , such that τj = 0 for every j > s, and for every
y ∈ U ,

‖∂τ (u(y)− usgl(y))‖a(y) ≤
(|τ |+ 1)!

log(2)|τ |
υτ

∥∥∥∥∥
a(y)− asgl(y)

a(y)

∥∥∥∥∥
L∞(D)

‖usgl(y)‖a(y).

For every τ ∈ F such that there exists j > s with τj > 0, and every y ∈ U , there holds

‖∂τ (u(y)− usgl(y))‖a(y) ≤
|τ |!

log(2)|τ |
‖u(y)‖a(y) .

Proof. The dependence on the parameter vector y is omitted in the proof for notational con-
venience. Introduce the index sets F1 := {τ ∈ F : ∀j > s, τj = 0} and F2 := {τ ∈ F : ∃j >
s, τj > 0}. For any τ ∈ F1,

∫

D
a∇∂τ (u− usgl) · ∇vdx = −

∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫

D
ψτ−νa∇∂ν(u− usgl) · ∇vdx

−
∑

ν≤τ

(
τ

ν

)∫

D
ψτ−ν(a− asgl)∇∂νusgl · ∇vdx.

The choice v = ∂τ (u−usgl) implies with the Cauchy–Schwarz inequality and [25, Equation (3.10)]

‖∂τ (u− usgl)‖a

≤
∑

ν≤τ ,ν 6=τ

(
τ

ν

)
υτ−ν‖∂ν(u− usgl)‖a +

∑

ν≤τ

(
τ

ν

)
υτ−ν

∥∥∥∥
a− asgl
a

∥∥∥∥
L∞(D)

‖∂νusgl‖a

≤
∑

ν≤τ ,ν 6=τ

(
τ

ν

)
υτ−ν‖∂ν(u− usgl)‖a +

∑

ν≤τ

(
τ

ν

)
υτ

|ν|!
log(2)|ν|

∥∥∥∥
a− asgl
a

∥∥∥∥
L∞(D)

‖usgl‖a.

Since the previous estimate holds for every τ ∈ F1, [35, Lemma 5] is applicable and thus for
every τ ∈ F1,

‖∂τ (u− usgl)‖a ≤
∑

ν≤τ

(
τ

ν

) |ν|!
log(2)|ν|

|τ − ν|!
log(2)|τ−ν|υ

τ

∥∥∥∥
a− asgl
a

∥∥∥∥
L∞(D)

‖usgl‖a .

From the identity
∑

ν≤τ ,|ν|=ℓ

(
τ
ν

)
=
(|τ |

ℓ

)
(see e.g. [35, Equation (5.25)]),

∑

ν≤τ

(
τ

ν

)
|ν|!|τ − ν|! =

|τ |∑

ℓ=0

∑

ν≤τ ,|ν|=ℓ

(
τ

ν

)
|ν|!|τ − ν|! =

|τ |∑

ℓ=0

|τ |! = (|τ |+ 1)! .

Thus, for every τ ∈ F1,

‖∂τ (u− usgl)‖a ≤ (|τ |+ 1)!

log(2)|τ |
υτ
∥∥∥∥
a− asgl
a

∥∥∥∥
L∞(D)

‖usgl‖a.

The second assertion follows by [25, Equation (3.10)] since for every τ ∈ F2 holds ∂τusgl = 0. ✷
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Consider the space Wγ(R
s) defined in (17) with respect to exponential weight functions

w
2
exp,j(y) = e−αexp|y|, j ≥ 1. For L ∈ N, let the sequence (sℓ)ℓ=0,...,L ⊂ N of truncation dimensions

be non-decreasing and the sequence (Nℓ)ℓ=0,...,L ⊂ N of numbers of QMC points at discretization
level ℓ be non-increasing.

Theorem A.2 Suppose that (υj)j≥1 ∈ ℓpPOD(N) for some 0 < pPOD < 1. Let q ∈ (pPOD, 1].
For any n ∈ N, u ⊂ N with |u| <∞ and c1, c2 > 0, define

γPOD
u

:=


c1(|u|+ n)!

∏

j∈u

υ
pPOD/q
j

c2




2−q

. (65)

There exists a constant C > 0 which does not depend on Tℓ, sℓ, ℓ ≥ 1, such that for every ℓ

‖G(usℓ,Tℓgl )−G(u
sℓ−1,Tℓ
gl )‖W

γPOD (Rsℓ ) ≤ C‖G‖V ∗‖f‖V ∗s
−1/pPOD+1/q
ℓ−1 .

Proof. We observe that ‖usℓ−1

gl ‖a ≤ ‖f‖V ∗ exp(
∑sℓ−1

j=1 |yj |υj/2) and
∥∥∥∥∥
asℓgl − a

sℓ−1

gl

asℓgl

∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥∥
1 + exp




sℓ∑

j=sℓ−1

−yjψj



∥∥∥∥∥∥
L∞(D)

∥∥∥∥∥∥

sℓ∑

j=sℓ−1

yjψj

∥∥∥∥∥∥
L∞(D)

≤ 2 exp




sℓ∑

j=sℓ−1

|yj |υ




sℓ∑

j=sℓ−1

|yj |υj

depends only on yj , j≥sℓ−1. By Proposition A.1 and the Cauchy–Schwarz inequality for any
u ⊂ {1 : sℓ−1},

∫

R
sℓ−|u|

|∂uG(usℓ,Tℓgl (y)− u
sℓ−1,Tℓ
gl (y))|

∏

j∈{1:sℓ}\u
φ(yj)dyj

≤ 3‖G‖V ∗‖f‖V ∗
(|u|+ 1)!

log(2)|u|
υu exp


∑

j∈u
|yj |υj




×
∫

R
sℓ−|u|

exp




sℓ∑

j=sℓ−1

|yj |υj




sℓ∑

j=sℓ−1

|yj |υj
∏

j∈{1:sℓ}\u
φ(yj)dyj

≤ 3‖G‖V ∗‖f‖V ∗
(|u|+ 1)!

log(2)|u|
υu exp


∑

j∈u
|yj |υj +

sℓ∑

j=sℓ−1

2υ2j +
4υj√
2π




sℓ∑

j=sℓ−1

υj ,

where we used that for any c > 0,
∫
R
ec|y|φ(y)dy ≤ exp(c2/2 + 2c/

√
2π) [25, Equation (4.15)]

and
∫ c
−∞ φ(y)dy ≤ exp(2c/

√
2π)/2 (see e.g. [25, p. 355]). Thus,

∫

R|u|



∫

R
sℓ−|u|

∂uG(usℓ,Tℓgl (y)− u
sℓ−1,Tℓ
gl (y))

∏

j∈{1:sℓ}\u
φ(yj)dyj




2
∏

j∈u
w

2
exp,j(yj)dyj

≤ 9‖G‖2V ∗‖f‖2V ∗

(
(|u|+ 1)!

log(2)|u|

)2∏

j∈u

2υ2j
αexp − 2υj

exp




sℓ∑

j=sℓ−1

4υ2j +
8υj√
2π






sℓ∑

j=sℓ−1

υj




2

.

(66)
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Similarly, we obtain using Proposition A.1 that for u ⊂ {1 : sℓ} such that u∩{sℓ−1+1 : sℓ} 6= ∅,
∫

R|u|



∫

R
sℓ−|u|

∂uG(usℓ,Tℓgl (y)− u
sℓ−1,Tℓ
gl (y))

∏

j∈{1:sℓ}\u
φ(yj)dyj




2
∏

j∈u
w

2
exp,j(yj)dyj

≤ ‖G‖2V ∗‖f‖2V ∗

( |u|!
log(2)|u|

)2∏

j∈u

2υ2j
αexp − 2υj

exp




sℓ∑

j=sℓ−1

υ2j +
4υj√
2π


 .

(67)

By [36, Theorem 11], there exists a constant C > 0 such that

∑

u⊂{1:sℓ},u∩{sℓ−1+1:sℓ}6=∅

(|u|!)2∏j∈u υ
2
j

γPOD
u

≤ Cs
−2/pPOD+2/q
ℓ−1

∑

u⊂{1:sℓ}

((|u|+ n)!)2

γPOD
u

.

Since
∑

j>sℓ−1
υj ≤ min{pPOD/(1 − pPOD), 1}‖(υj)j≥1‖ℓpPOD (N)s

−1/pPOD+1
ℓ−1 (see e.g. [36, Equa-

tion (14)]), (66) and (67) imply

‖G(usℓ,Tℓgl )−G(u
sℓ−1,Tℓ
gl )‖2W

γPOD (Rsℓ ) ≤ Cs−2/pPOD+2/q
ℓ−1

∑

u⊂{1:sℓ}

∏

j∈u

2υ2j
αexp − 2υj

((|u|+ n)!)2

γPOD
u

log(2)2u
,

where

C = C‖G‖2V ∗‖f‖2V ∗

(
1 + ‖(υj)j≥1‖ℓpPOD (N)

)
exp


∑

j≥1

4υ2j +
8υj√
2π


 <∞

and C is independent of f , G, (υj)j≥1, and the parameter dimension. Boundedness of the
quantity

∑

u⊂{1:sℓ}

∏

j∈u

2υ2j
αexp − 2υj

((|u|+ n)!)2

γPOD
u

log(2)2u

independently of the parameter dimension sℓ may be checked following the same arguments as
in the proofs of [25, Theorem 20 and Corollary 21]. ✷

To state the error estimate of the multilevel QMC algorithm with POD weights and global
supports, we assume that f,G(·) ∈ L2(D), and that the Dirichlet Laplacean is boundedly
invertible from H2(D) ∩ V to L2(D). In this case the FE spaces Vℓ, ℓ ≥ 0, result by uniformly
refining an initial triangulation. They have meshwidth hℓ and dimension O(h−d

ℓ ), ℓ ≥ 0. Define

ῡj := max{υj , ‖|∇ψj |‖L∞(D)}, j ≥ 1.

The following corollary generalizes [35, Theorem 9] to the case that also the truncation dimen-
sions sℓ may differ from sL.

Corollary A.3 Suppose that (υj)j≥1 ∈ ℓpPOD(N) and (ῡj)j≥1 ∈ ℓp̄POD(N) for pPOD ∈ (0, 1) and

p̄POD ∈ (max{2/3, pPOD}, 1). Let q ∈ (pPOD, 1). Consider the POD weights in (65) with υ
pPOD/q
j

replaced by βj := max{ῡj , υpPOD/q
j }, j ≥ 1, and n = 5.

Then, QMC randomly shifted lattice rules with Nℓ points in dimension sℓ may be constructed
in O(s2ℓNℓ + sℓNℓ log(Nℓ)), ℓ = 0, . . . , L, with the fast CBC algorithm from [42, Section 5.2], so
that the ML-QMC algorithm Q∗

L in (19) satisfies, for χ̄ = 1/max{q, p̄POD} − 1/2,

√
E∆(|IsL(G(uLgl))−Q∗

L(G(u
L
gl)))|2) ≤ C

(
L∑

ℓ=0

ϕ(Nℓ)
−2χ̄(ξℓ,ℓ−1s

−2/pPOD+2/q
ℓ−1 + h4ℓ−1)

)1/2

,

where ξℓ,ℓ−1 := 0 if sℓ = sℓ−1 and ξℓ,ℓ−1 := 1 otherwise.
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Proof. The assertion follows by Theorem A.2, (20), and [35, Theorem 9]. ✷

Remark A.1 Standard error bounds for FE discretizations imply that [35, Theorem 9] may be
extended to f ∈ H−1+t, G(·) ∈ H−1+t′, t, t′ ∈ [0, 1]. Applying interpolation in the appropriate

places in the proof of [35, Theorem 9]. Corollary A.3 remains valid with h
2(t+t′)
ℓ−1 in place of h4ℓ−1.

B Error vs. work analysis: global supports and POD weights

For the discussion of the required work to obtain a target accuracy in the case of global
supports and POD weights, we suppose that there are fast methods available for the evalu-
ation of

∑sℓ
j=1 yjψ

gl
j (xk) for nodes xk, which is necessary to assemble the stiffness matrix for

a given QMC point y. Assume that the computational work for mesh width hℓ ∈ (0, 1] is
O(h−d

ℓ log(h−1
ℓ ) + sℓ log(sℓ)), where #T = O(h−d

ℓ ). Then, for L ∈ N, the computational work of
Q∗

L(G(u
L
gl)) is

workL = O
(

L∑

ℓ=0

Nℓ(s
2
ℓ + sℓ log(Nℓ) + h

−d(1+η)
ℓ + sℓ log(sℓ))

)
= O

(
L∑

ℓ=0

Nℓ(s
2
ℓ + h

−d(1+η)
ℓ

)
,

where we assume that sℓ asymptotically dominates log(Nℓ) and that the PDE may be solved in

O(h
−d(1+η)
ℓ ) for some η > 0 (see the assumption in (A3)). In contrast to the discussion in [35,

Section 3], we also take into account the computational cost of the CBC construction, which is
required to realize the QMC points. As in [35, Theorem 1], we suppose that for α′ > 0 exists
a constant C > 0 such that for every L ∈ N

|E(G(u))− E(G(uLgl))| ≤ C(hτL + s−α′

L ).

As in Remark A.1, we assume f ∈ H−1+t and G(·) ∈ H−1+t′ , t, t′ ∈ [0, 1], and set τ = t + t′.

Set sL ∼ h
−τ/α′

L to equilibrate the error contributions. Furthermore, we choose

sℓ ∼ min{ch−τpPODp̄POD/(p̄POD−pPOD)
l , sL}, ℓ = 0, . . . , L− 1.

As a result by Corollary A.3 (with q = p̄POD) and Remark A.1 the following error estimate holds

error2L = O
(
hτL +

L∑

ℓ=0

N−2χ̄
ℓ hτℓ−1

)
,

where we used that the Euler totient function satisfies that ϕ(N)−1 ≤ 9/N for every N ≤ 1030.
Corresponding work estimates may be obtained along the line of the error vs. work analysis from
Section 6.1 in the case of Strategy 1. The QMC sample numbers are given by

Nℓ =

⌈
N0

(
h−2τ
ℓ max{h−d(1+η)

ℓ ,min{h−2τα
ℓ , h

−2τ/α′

L }}
)−1/(1+2χ̄)

⌉
, ℓ = 1, . . . , L, (68)

and

N0 =





⌈2Lτ/χ̄⌉ if max{2τα/d, 1 + η} < τ/(dχ̄),

⌈2Lτ/χ̄L1/(2χ̄)⌉ if max{2τα/d, 1 + η} = τ/(dχ̄),

⌈2(2τ+d(1+η))L/(1+2χ̄)⌉ if 1 + η ≥ 2τα/d, 1 + η > τ/(dχ̄),

⌈2Lmin{2τα−τ/χ̄,max{(d(1+η)−τ/χ̄),2τ/α′}}/(1+2χ̄)+Lτ/χ̄⌉ if 1 + η < 2τα/d, 2α > 1/χ̄,

(69)
where we have set α = pPODp̄POD/(p̄POD − pPOD).
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Theorem B.1 Let the QMC sample numbers for Q∗
L(·) be given by (69) and (68). Suppose that

(υj)j≥1 ∈ ℓpPOD(N) and (ῡj)j≥1 ∈ ℓp̄POD(N) for pPOD ∈ (0, 1) and p̄POD ∈ (max{2/3, pPOD}, 1).
Set α = pPODp̄POD/(p̄POD − pPOD).

Then the error threshold ε > 0, i.e.,

√
E∆(|E(G(u))−Q∗

L(G(u
L
gl))|2) = O(ε),

may be achieved with

workL =





O(ε−1/χ̄) if max{2τα/d, 1 + η} < τ/(dχ̄),

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if max{2τα/d, 1 + η} = τ/(dχ̄),

O(ε−d/τ(1+η)) if 1 + η ≥ 2τα/d, 1 + η > τ/(dχ̄),

O(ε−dmin{2α/d,max{(1+η)/τ,2/(dα′)+1/(dχ̄}}) if 1 + η < 2τα/d, 2α > 1/χ̄,

where χ̄ = 1/p̄POD − 1/2.
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