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Abstract

We start from the splitting of the equations of single-fluid magnetohydrodynamics (MHD) into
a magnetic induction part and a fluid part. We design novel numerical methods for the MHD
system based on the coupling of Galerkin schemes for the electromagnetic fields via finite element
exterior calculus with finite volume methods for the conservation laws of fluid mechanics. Using a
vector potential based formulation, the magnetic induction problem is viewed as an instance of a
generalized transient advection problem of differential forms. For the latter, we rely on an Eulerian
method of lines with explicit Runge−Kutta timestepping and on structure preserving spatial upwind
discretizations of the Lie derivative based on the duality between the contraction of differential forms
and the extrusion of chains. The balance laws for the fluid constitute a system of conservation laws
with the magnetic induction field as a space and time dependent coefficient, supplied at every time
step by the structure preserving discretization of the magnetic induction problem. We describe finite
volume schemes based on approximate Riemann solvers adapted to accommodate the electromagnetic
contributions to the momentum and energy conservation. A set of benchmark tests for the two-
dimensional planar ideal MHD equations provide numerical evidence that the resulting lowest order
coupled scheme has excellent conservation properties, is first order accurate for smooth solutions,
conservative and stable.

1 Introduction

Plasma phenomena are important in many fields ranging from controlled thermonuclear fusion to
astrophysics [25]. The magnetohydrodynamic model provides a mathematical interpretation of the
interplay of conducting non-magnetic fluids, like plasmas, with electromagnetic fields. For compressible
fluids, the model comprises conservation laws for mass, momentum and energy together with material
laws and Maxwell’s equations, in the magneto-quasistatic reduction, to describe the evolution of the
fields, namely, for spatially homogeneous and isotropic materials,





∂tρ+ div(ρu) = 0,

∂t(ρu) + div
(
ρu⊗ u+

(
p+ 1

2‖B‖
2
ℓ2

)
I−B⊗B

)
= 0,

∂tE + div
((
E + p+ 1

2‖B‖
2
ℓ2

)
u− (u ·B)B+ ε curlB×B

)
= 0,

∂tB+ curl(B× u) + curl(ε curlB) = 0,

divB = 0.

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

Here ρ is the fluid density, p the pressure, u the fluid velocity and B the magnetic induction field,
respectively. The quantity ε is a symmetric positive semi-definite tensor representing the ratio of the
electric resistivity and the magnetic permeability. The total energy E is expressed through the equation
of state E = p/(γ − 1) + 1/2ρ‖u‖2ℓ2 + 1/2‖B‖2ℓ2 , where γ is the gas constant.
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In a perfectly conducting plasma, dynamics takes place on time scales faster than the decay of the
magnetic field due to Joule or resistive heating and the magnetic field lines are ‘‘frozen’’ into the fluid.
Considering the plasma as a perfect conductor corresponds to setting ε = 0 in (1.1) and results in the
so-called ideal MHD model. Changes of the magnetic field topology during the flow (the reconnection
effects) are taken into account in resistive MHD models. The relative importance of resistive effects
over length scales of order L can be gauged by the magnetic Reynolds number Rm := µ0σLU , where
U is a characteristic velocity scale of the MHD flow and µ0 is the permeability of free space. Large
values of the Reynolds number correspond to transport times much shorter than the diffusion time for
the magnetic fields [25, Section 2.4.1]. The ideal MHD model provides a good approximation of the
dynamical phenomena going on in hot and strongly magnetized plasmas. Additionally, robust numerical
discretizations of ideal MHD models pave the way to reliable approximations of the resistive MHD
problem, even in the presence of locally small magnetic diffusion. For the aforementioned reasons we
focus hereafter on the ideal MHD equations as the most challenging case.

The structure of the MHD problem. In three dimensions, the flux Jacobian associated with the
MHD equations has eigenvalues [12, Section IV],

λ1 = u · n− cf , λ2 = u · n− ca, λ3 = u · n− cs,
λ4 = u · n,
λ5 = u · n+ cs, λ6 = u · n+ ca, λ7 = u · n+ cf ,

where n is the unit normal vector, a :=
√
γp/ρ is the sound speed, ca :=

√
(B · n)2/ρ is the Alfvén speed

and the slow and fast magnetoacoustic wave speeds are given by

cs =
1√
2

√√√√
a2 +

‖B‖2ℓ2
ρ
−

√(
a2 +

‖B‖2ℓ2
ρ

)2

− 4a2
(B · n)2

ρ
,

cf =
1√
2

√√√√
a2 +

‖B‖2ℓ2
ρ

+

√(
a2 +

‖B‖2ℓ2
ρ

)2

− 4a2
(B · n)2

ρ
. (1.2)

Hence the MHD equations form a non-strictly hyperbolic system of conservation laws with non-convex
flux functions. Since the characteristic fields are not either genuinely nonlinear or linearly degenerate,
possible non-regular waves, like compound waves or overcompressive shocks, can develop, in addition to
shocks and discontinuities.

Global well-posedness results are not available for nonlinear systems of conservation laws. For
genuinely nonlinear one-dimensional systems with Riemann initial data, Lax [44] proved existence and
stability of entropy solutions. The generalization to one-dimensional Cauchy problems for initial data
with “small” total variation was developed by Glimm [23]. No such results are available for non-convex
and non-strictly hyperbolic systems, such as the MHD problem, nor have they been extended to systems
of hyperbolic conservation laws in multi-dimensions.

Despite the lack of well-posedness results for the MHD system and the complexity of its wave structure,
the relevance of the model in plasma dynamics has spurred the development of numerical methods.
On the one hand, numerical simulations of MHD flows can confirm the physical validity of the model
and provide insight into the role of the plasma approximation. On the other hand, they can improve
the current understanding of plasma behavior in a range of instances, from fusion confinement tests to
astrophysical plasma dynamics.

Literature on numerical methods for the MHD equations. The most popular numerical schemes
for the MHD problem, and generally for systems of conservation laws, are finite volume methods [24, 45], in
which an integral version of the conservation law is solved inside each control volume of the computational
domain. Finite volume schemes are rather simple to implement, computationally efficient and well-suited
to reproduce the physical manifestations of nonlinear terms. However, a range of complications are
related to stability and convergence of fully discrete schemes, to the extension to arbitrarily high order
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and unstructured meshes. Other classes of numerical methods have been investigated for the numerical
solution of systems of hyperbolic conservation laws, among others, finite element and discontinuous
Galerkin methods [15], and spectral methods [26].

In the discretization of the MHD equations, the numerical treatment of the divergence constraint in
the context of finite volume and discontinuous Galerkin methods, usually provides control of the error
generated by some particular discrete approximation (generally not by others) of the divergence operator
of the order of the truncation spatial and temporal error. Nevertheless, near shock discontinuities such
error may become very large. Moreover, since the divergence wave is stationary, divergence errors in
localized regions can grow in time, and mesh refinement is unable to counteract the numerical pollution
of the solution [6]. Violating the divergence constraint at the discrete level might lead to the onset of
unphysical plasma transport orthogonal to the magnetic field lines: this causes the loss of conservation of
momentum and energy and might trigger numerical instabilities [11]. Within finite volume discretizations,
popular methods devised to counteract these drawbacks are the so-called divergence cleaning techniques:
the Godunov−Powell method [53], the Generalized Lagrange Multiplier MHD formulation [11, 16],
the Constrained Transport method [33, 48, 56], etc. The major disadvantages of such techniques are
associated with the expensive computational costs, the need of variable staggering, the difficulties in
dealing with arbitrary meshes, the presence of tunable parameters and the introduction of incorrect jump
conditions associated with strong shocks [62]. A further issue connected with finite volume discretizations
is the design of robust and efficient fully discrete schemes in the presence of the double curl operator
occurring in the resistive MHD model.

Although finite element methods are more amenable to handling these issues, the fluid dynamics
community generally eschews conforming finite element schemes, owing to the difficulties related to
the discretization of solutions with low regularity and displaying physical discontinuities. On the other
hand, discrete differential forms in the guise of conforming finite elements, the so-called edge elements
and generalizations, represent a well-established tool in the numerical discretization of problems in
computational electromagnetism [38]. The popularity of numerical schemes based on discrete analogs
of differential forms started on the premise that spurious solutions resulting from standard numerical
methods often originate from inconsistent discretizations of the physical fields and of the differential
operators involved. Formulating numerical approximations compatible with the geometric and topological
structures underlying the continuum model problem and not just approximating them has paved the way
for numerical schemes with superior stability properties and yielding physically consistent solutions. The
potential of discrete differential forms has been harnessed, among others, by mimetic finite difference
methods [42], discrete exterior calculus [17], and Finite Element Exterior Calculus (FEEC) [4]. FEEC aims
at constructing finite element spaces incarnating finite dimensional subcomplexes of certain differential
complexes valid at the continuous level (in our case the de Rham complex). By means of commuting
projections the discrete fields inherit the topological and algebraic structure of the continuum setting.
In the MHD model, this means that a discrete vector potential becomes available and the divergence
constraint holds exactly, even for the discrete induction field. At the best of our knowledge, edge and
face elements have only been employed in the development of mixed finite element discretizations of
incompressible resistive MHD with partial Lie derivative by [57] and more recently in [39]. However,
robustness of the aforementioned schemes with respect to large magnetic Reynolds number is still an
issue as they rely on standard discretizations of the transport operator.

Scope and outline of the paper. The aim of this work is the design of robust, efficient and stable
numerical schemes for the MHD problem based on a splitting strategy which allows to reap the benefits
of numerical schemes tailored for different phenomena. Analogously to the splitting strategy advocated
in [22], we perform a local (in time) reduction of the MHD system into two systems with discontinuous
coefficients: the magnetic induction/potential is advected with a known (discontinuous) velocity field and
discretized via finite element exterior calculus, and the B field is treated as a discontinuous coefficient in
the system of conservation laws for the fluid variables, for which finite volume methods are developed.

The magneto-quasistatic model underlying resistive MHD yields a magnetic advection-diffusion
problem for the unknown magnetic induction field. Introducing the magnetic potential, the divergence
constraint on the induction field is automatically absorbed into a new advection-diffusion problem, satisfied
by the vector potential (cf. Appendix A). A generalized advection-diffusion problem for differential
forms includes the aforementioned equations and the scalar case as particular instances [35]. In Section 2
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we derive and analyze robust numerical methods based on an Eulerian method of lines with explicit
timestepping and FEEC-based discretizations via the so-called extrusion contraction upwind schemes,
first introduced in [34]. In the singular perturbation limit, as in the ideal MHD model, we focus on the
generalized pure advection problem.

The balance laws for mass, momentum and energy can be written as a system of conservation
laws, named extended Euler system [22], with the magnetic induction field as a (discontinuous) varying
coefficient obtained as the output of the extrusion contraction upwind scheme. For the numerical
treatment of the fluid balance laws we proceed as in [22, Section 2.1], using finite volume schemes with
numerical fluxes suitably designed, in Section 3, to accommodate the discontinuous magnetic induction
field.

The algorithm obtained by coupling the FEEC-based numerical schemes with the finite volume
methods devised for the conservation laws for the fluid is described in Section 4. In Section 5, the
FV-FEEC scheme with lowest order spatial discretizations for the two-dimensional planar transient ideal
MHD problem on structured meshes is tested on a set of benchmark problems. Conclusions and further
research directions are presented in Section 6.

2 Extrusion Contraction Discretization for the Generalized Pure

Advection Evolution Problem

The linear eddy current problem underlying the resistive MHD model, in the presence of a conducting
fluid moving with velocity u = u(x, t), boils down to the evolution PDE for the vector potential A,

∂tA+ curl(εcurlA) + curlA× u+ grad(u ·A) = f , (2.1)

where ε is the magnetic diffusion coefficient; we refer to Appendix A for a detailed derivation of the eddy
current model. Problem (2.1) and the well-known scalar advection-diffusion problem belong to a single
family of second order evolution problems, the so-called generalized advection-diffusion problem. For a
unified statement we rely on the language of exterior calculus: for differential k-forms in Ω× I, with Ω
bounded Lipschitz domain in R

d and I := [0, T ], the strong form of the generalized advection-diffusion
problem reads

⋆∂tω(t) + (−1)k+1
d
d−k−1ε⋆dkω(t) + ⋆αω(t) + ⋆Luω(t) = f(t), in Ω× I,

trω(t) = tr g(t), on (Γin ∪ Γ0)× I,
tr(inω(t)) = tr s(t), on Γin × I,

ω(0) = ω0, in Ω,

where ω(t) ∈ Λk (Ω) is a time-dependent differential k-form on Ω, u : Ω× I → R
d is a given velocity field,

the diffusion coefficient ε and the reaction coefficient α are non-negative and bounded functions Ω→ R,
and the boundary conditions are imposed at the inflow boundary Γin := {x ∈ ∂Ω : u · n(x) < 0}, and at
Γ0 := {x ∈ ∂Ω : ε > 0}. The forcing term and boundary data are f(t) ∈ L2 Λk (Ω), g(t) ∈ L2Λk(Γin∪Γ0),
and s(t) ∈ L2Λk−1(Γin). Moreover, with the standard notation of exterior calculus, see e.g. [36, Section
1.1], ⋆ is the Hodge operator, dk is the exterior derivative, in is the contraction by the vector n normal
to the boundary, and Lu is the Lie derivative.

It is well known that for the scalar advection-diffusion equation standard Galerkin discretizations
with Lagrangian finite elements break down in the singular perturbation limit of vanishing diffusion.
The onset of spurious oscillations reflects the weakly coercive nature of the problem in the energy norm.
A plethora of stabilization mechanisms have been devised to counteract the spreading of unphysical
oscillations while avoiding an excessive smearing of the solution [55]: residual-based methods such as
SUPG (streamline upwind Petrov Galerkin) [40] or the Galerkin least squares [41], discontinuous Galerkin
approximations with upwind numerical fluxes at element interfaces, see [3] and references therein, etc.

In this work, we explore a class of extrusion contraction upwind schemes, namely finite element
conforming discretizations of the transport operator, the Lie derivative, built on the duality between the
contraction operator and the extrusion of manifolds. As we shall see in the forthcoming presentation, these
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methods incorporate an upwinding element and deliver numerical schemes with favorable stability and
structure preserving properties. The terminology extrusion contraction upwind schemes was introduced
in [34] where, taking the cue from the monotone upwind quadrature scheme of Tabata [60], the authors
proposed an upwind discretization of the Lie derivative in the advection-diffusion problem exploiting
the duality between contraction and extrusion suggested in [9]. While the focus of the work [34] is on
the stationary scalar advection-diffusion problem, emphasis on the transient pure advection problem
for 1-forms is placed in the discretization scheme suggested in [50]. The approach of the latter work
resembles more a finite volume technique: the contraction of a discrete (k + 1)-form is approximated by
projecting the extrusion of every mesh k-cell onto the mesh aligned (k + 1)-dimensional subspaces, and
then summing the contributions of (k + 1)-dimensional finite volume discretizations applied to each of
the projections. In a FEEC perspective, we adopt a strategy analogous to [34].

With the ideal MHD problem in mind, we focus on the transient generalized pure advection problem:
numerical schemes proving robust in this case are also suitable for the generalized problem when
augmented with a standard HΛk (Ω)-conforming Galerkin discretization of the non-vanishing diffusion
term. The generalized pure advection initial boundary value problem in the space-time domain Ω× I, in
weak formulation reads: For f ∈ C0(I;L2Λk (Ω)) and ω0 ∈W|t=0 , find ω ∈ C1(I;L2 Λk (Ω))∩C0(I;W )
such that

(∂tω, η)Ω + (αω, η)Ω + (Luω, η)Ω = (f, η)Ω,

(ω(0), η)Ω = (ω0, η)Ω,
(2.2)

for all η ∈ L2 Λk (Ω), where (·, ·)Ω denotes the L2 Λk (Ω) inner product (ω, η)Ω :=
´

Ω
ω ∧ ⋆η, and the

variational spaces V and W are defined as

V := {ω ∈ L2Λk (Ω) : Luω ∈ L2Λk (Ω) ,

ˆ

Γin

tr i−u(ω ∧ ⋆ω) <∞},

W|t := {ω ∈ V : trω = g, tr inω = s on Γin, g(t) ∈ L2Λk(Γin), s(t) ∈ L2Λk−1(Γin)}.
For velocity fields uniformly continuous in time and Lipschitz continuous in space, u ∈ C0(I;W 1,∞(Ω)),
the following “coercivity” condition on the velocity: there exists a constant α0 > 0 such that

ˆ

Ω

(
α+

1

2
(Lu(·,t) + Lu(·,t))

)
ω ∧ ⋆ω ≥ α0

ˆ

Ω

ω ∧ ⋆ω, ∀ω ∈ L2Λk (Ω) , ∀ t ∈ I, (2.3)

with Lu = −(−1)k(d−k)⋆Lu⋆, ensures that the variational problem (2.2) is well-posed. Expressions in
vector proxies of the “coercivity” condition (2.3) on the velocity field can be found in [52, Table 3.1].
However, MHD solutions feature shocks that give rise to discontinuous velocities. A well-posedness theory
for velocity fields with less regularity is available only for scalar advection. We refer to [36, Section 1.2]
for a more detailed discussion on the well-posedness of the generalized advection problem.

Following a method of lines strategy, a suitable spatial discretization of the time-independent advection
operator can be coupled with an explicit Runge−Kutta scheme. Therefore, we first consider the stationary
generalized advection boundary value problem for a k-form ω ∈ Λk (Ω): Find ω ∈ V such that

αω + Luω = f, in Ω,

trω = g, on Γin,

tr inω = s, on Γin,

(2.4)

with f ∈ L2 Λk (Ω), g ∈ L2Λk(Γin), s ∈ L2Λk−1(Γin). As anticipated, we aim at finding a stable numerical
discretization of the advection operator, the Lie derivative Lu, based on polynomial HΛk (Ω)-conforming
discrete differential forms. With the Cartan’s formula in mind Lu = d

k−1
iu + iud

k, this boils down to
finding discrete counterparts of the exterior derivative d

k and of the contraction operator iu.
In the following, let {Th}h>0 be a family of cellular decompositions of the domain Ω such that every Th

is either a finite element simplicial mesh in the sense of Ciarlet [14, Section 3.1], or it is a tensor product
mesh. Furthermore, let Λk

h (Th), 0 ≤ k ≤ d, be an HΛk (Ω)-conforming space of polynomial discrete
differential forms, see e.g. [52, Section 2.4.1]. Let Λk

h,r (Th), 0 ≤ k ≤ d, be the HΛk (Ω)-conforming space
of piecewise polynomial discrete differential k-forms of degree at most r ≥ 1, namely

Λk
h,r (Th) := {ωh ∈ HΛk (Ω) : ωh|T ∈ ζkr (T ), T ∈ Th}, (2.5)
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where the local shape functions are ζkr (T ) = PrΛ
k(T ) or ζkr (T ) = P−

r Λk(T ) on simplicial meshes [37, 4],
and ζkr (T ) = Q−

r Λ
k(T ) [2] or ζkr (T ) = SrΛk(T ) [1] on Cartesian meshes.

Let 0 ≤ k ≤ n and r ≥ 1. On a d-cell T ∈ Th, the degrees of freedom of ζkr (T ) are defined on every

j-cell fj ∈ ∆j(T ), with k ≤ j ≤Mr,k
min, as

ω ∈ ζkr (T ) 7−→W ℓ
fj ,T (ω) :=

ˆ

fj

trω ∧ ηℓj ∀ℓ = 1, . . . , Nj , (2.6)

where {ηℓj}
Nj

ℓ=1 is a basis of ζ
k

r,j(T ) defined as ζ
k

r,j(T ) = P−
r−j+kΛ

j−k(fj) if ζkr (T ) = PrΛ
k(T ), ζ

k

r,j(T ) =

Pr−j+k−1Λ
j−k(fj) if ζkr (T ) = P−

r Λk(T ), ζ
k

r,j(T ) = Pr−2(j−k)Λ
j−k(fj) if ζkr (T ) = SrΛk(T ), and ζ

k

r,j(T ) =

Q−
r−1Λ

j−k(fj) if ζkr (T ) = Q−
r Λ

k(T ). The number of degrees of freedom associated with the mesh faces is

Mr,k
min :=





min{d, ⌊r/2⌋+ k} if Λk
h,r (Th) = SrΛk(Th),

min{d, r + k − 1} otherwise.
(2.7)

Local projection operators onto polynomial spaces of differential forms can be defined as Ikr,T : Λk(T )→
ζkr (T ), T ∈ Th,

W ℓ
fj ,T (I

k
r,T ω) :=

ˆ

fj

tr(Ikr,T ω) ∧ η =

ˆ

fj

trω ∧ η, ∀ η ∈ ζkr,j(T ), fj ∈ ∆j(T ), k ≤ j ≤Mr,k
min.

2.1 Contraction and Extrusion

The Lie derivative is a coordinate-independent operator which measures the rate of change of a differential
form along the flow of a vector field. It is the generalization to k-forms of the spatial part of the material
derivative which represents differentiation along the characteristic curves, and hence measures the rate of
change observed by a material particle moving with a fluid. LetMd be a d-dimensional smooth manifold
and let u be a smooth vector field on Md. By introducing the flow of the vector field u on the manifold
Md, namely Φ : R×Md →Md such that ∂tΦ(t, x) = u(Φ(t, x), t) with Φ(0, x) = x, the Lie derivative
of a differential k-form ω ∈ Λk (Ω) is

Luω =
d

dt

∣∣∣∣
t=0

Φ∗
tω.

The orbits of smooth manifolds under the flow define the so-called extrusion (see Figure 1).

Definition 2.1 (Extrusion). Let Md be an d-dimensional smooth oriented manifold. Let Sj be a j-
dimensional submanifold of Md, the extrusion Extu(Sj , t) of Sj by the smooth vector field u, at time
t, is the (j + 1)-dimensional manifold formed by the union of the submanifolds obtained by sweeping
Sj = Φ(0,Sj) along the flow of u to the submanifold Φ(t,Sj). Specifically, Extu(Sj , t) =

⋃
s∈[0,t] Φ(s,Sj)

with orientation given by ∂Extu(Sj , t) = Φ(t,Sj)− Φ(0,Sj)− Extu(∂Sj , t).

The contraction of alternating (k + 1)-forms by a smooth vector field u is defined as the k-form such
that (iuω)(x)(v1, . . . , vk) = ω(x)(u(x), v1, . . . , vk), for ω ∈ Altk+1 V and (v1, . . . , vk) ∈ V k, V being a real
vector space and Altk+1 V the space of alternating algebraic (k + 1)-forms on V . Pointwise application
of the foregoing construction yields a definition of the contraction operator on smooth differential forms.
The correspondences between the contraction of differential forms and proxy fields is recalled in Table 1.
Alternatively, with the concept of extrusion, the contraction iuω ∈ Λk(Md) of a smooth (k + 1)-form
ω ∈ Λk+1(Md) on a k-dimensional smooth oriented submanifoldMk can be defined as the instantaneous
change of ω evaluated on the extrusion of Mk [9, Equation (14)], namely

〈iuω,Mk〉 = lim
tց0

1

t
〈ω,Extu(Mk, t)〉, (2.8)

where 〈·, ·〉 denotes the chain-cochain duality pairing.
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M2

Φ(t,S1) Extu(∂S1, t)

S1

Figure 1: Sketch of the extrusion of an oriented path S1.

ω ∈ Λk k = 0 k = 1 k = 2 k = 3

iuω − u ·w w × u wu

Table 1: Contraction of differential forms: exterior calculus notations and corresponding expressions for vector
proxies w, w in R

3.

2.2 Upwind Discrete Contraction via Extrusion

In view of Stokes’s theorem [58, Theorem 1.2.7], a discrete definition of exterior derivative is directly given
through the coboundary operator ∂, i.e., 〈dkωh, ck+1〉 = 〈ωh, ∂ck+1〉 for all ωh ∈ Λk

h (Th) where ∂ck+1 is
a k-chain, boundary of the (k + 1)-chain ck+1. However, the lack of smoothness of discrete differential
forms does not allow to define analogously a discrete contraction operator as the restriction to discrete
spaces. Since in a finite element discretization approach the aim is to find suitable approximations of
integrals of forms, the concept of extrusion of a manifold by the flow of a vector field offers a natural way
to define the integral of a contracted discrete differential form over such manifold. A discrete contraction
and its combination with the coboundary operator pave the way to discretizations of the Lie derivative.

In greater detail, the duality formula (2.8) expresses the fact that the contraction of a smooth
(k + 1)-form over a k-dimensional manifold is equal to the instantaneous change of the form over the
extrusion of the manifold. Equivalently, (2.8) can be rewritten in an “upwind” fashion, if the k-dimensional
submanifold Mk is extruded backward in time, namely

〈iuω,Mk〉 = − lim
tց0

1

t
〈ω,Extu(Mk,−t)〉, ∀ω ∈ Λk+1(Md). (2.9)

The lack of smoothness of discrete differential forms ωh ∈ Λk+1
h (Th) implies that

〈iuωh, ck〉 = lim
tց0

1

t

ˆ

Extu(ck,t)

ωh 6= − lim
tց0

1

t

ˆ

Ext−u(ck,t)

ωh = 〈−i−uωh, ck〉, (2.10)

where ck ∈ ∆k(Th) and ∆k(Th) denotes the set of all k-faces, 0 ≤ k ≤ d, of Th. Finding a discretization
of the contraction operator requires therefore to associate suitable degrees of freedom to the discrete
(k − 1)-form iuωh, [34, Section 1.2]. This is achieved via the duality between the contraction of a
differential form by a vector field and the extrusion of a manifold, by imposing in the discrete setting the
equality (2.10) valid at the continuous level: every k-cell of Th is extruded backward in time and then
the discrete form is evaluated over the extruded (k + 1)-manifold. Moreover, instead of approximating
the “values” of the contraction iuωh at the k-cells, one can look for an approximation of their extrusion,
rephrasing the problem into how to represent the extrusion of a k-dimensional manifold as a combination
of (k + 1)-chains. The extrusion of 0-chains can be tackled as follows.
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Example 2.2. The case of 1-manifolds on a two-dimensional mesh Th can be analyzed as in [9, Section
III]: an oriented line z− y in a fixed n-cell T ∈ Th can be described by a weighted sum of edges as,

z− y “ = ”
∑

e∈∆1(Th)∩∂T

〈ψe, z− y〉e,

where ψe is the Whitney form associated with the oriented edge e = {z1, z2}, with vector proxy
ψe = λz1

gradλz2
− λz2

gradλz1
, and λzi

being the barycentric coordinate at the node zi, i ∈ {1, 2}. Let
z ∈ ∆0(Th) be a 0-cell of Th and let us assume that the path z− y := − limtց0 Ext−u(z, t)/t is contained
in an n-cell T upw

z
∈ Th. Given a discrete 1-form ωh ∈ Λ1

h (Th) we can define the degree of freedom of its
contraction at z ∈ ∆0(T ) by enforcing 〈iuωh, z〉 = − limtց0〈ωh,Ext−u(z, t)〉/t. In this way,

〈iu(x)ωh(x), z〉 = 〈ωh(x), z− y〉 =
∑

e∈∆1(Th)∩∂T upw
z

〈ψe(x), z− y〉〈ωh(x), e〉

= 〈ωh(x)|
T

upw
z

, z− y〉 = 〈iu(x)ωh|
T

upw
z

(x), z〉.

Once the degrees of freedom of the contraction of a discrete form at the mesh cells are uniquely defined,
a global contraction operator can be introduced through a (global) reconstruction, by interpolating the
contraction of a discrete k-form into some space of HΛk−1 (Ω)-conforming discrete differential forms.
Since we are interested in piecewise polynomial discretizations, we consider interpolation spaces of
HΛk (Ω)-conforming polynomial discrete differential forms Λk

h,p (Th) of type (2.5), for some polynomial
degree p ≥ 1 which might differ from the polynomial degree of the approximation spaces.

As a preliminary step, in order to introduce an interpolation operator of contraction, we need to
identify an ‘‘upwind direction’’ at the mesh faces. The d-cell T upw

fj
∈ Th is said to lie in the upwind

direction of fj ∈ ∆j(Th) determined by the vector field u if the extrusion Ext−u(fj , t) is contained in T upw
fj

,

for t small enough. We make the assumption that T upw
fd

= T and that T upw
f0

= T for all f0 ∈ ∆0(T ) \ ∂T .

Definition 2.3 (Upwind interpolation of contraction). Let Th be a cellular complex on Ω ⊂ R
d. Let

ωh ∈ Λk+1
h (Th), 0 ≤ k ≤ d − 1, be a discrete differential (k + 1)-form and let u be a smooth vector

field. Given a polynomial space of differential forms Λk
h,p (Th) ⊂ HΛk (Ω), p ≥ 1, as in (2.5), the upwind

interpolation operator Ik
u,p : L2Λk (Ω)→ Λk

h,p (Th) is defined as,

Ik
u,p(iuωh) =

Mp,k

min∑

j=k

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (iuωh|

T
upw
fj

)ψℓ
j ,

where T upw
fj
∈ Th is the d-cell lying in the upwind direction of fj , determined by the vector field u. Here,

{W ℓ
fj
}j,ℓ ⊂ R are the degrees of freedom (2.6) associated with the j-dimensional mesh cells, {ψℓ

j}j,ℓ is a

basis of Λk
h,p (Th), and Mp,k

min is the number of degrees of freedom (2.7) associated with the mesh faces.

Note that, Ik
u,p(iuωh) = iuωh for every iuωh ∈ Λk

h,p (Th) ⊂ HΛk (Ω). Moreover, the degrees of freedom
interior to the mesh elements are not affected by upwinding.

2.3 Discrete Lie derivative

Using the discretization of the contraction operator according to Definition 2.3, the discrete Lie derivative
is defined as,

Lh
u
: Λk

h,r (Th) −→ Λk
h,p (Th)

ωh 7−→ Iku,p(iudkωh) + d
k−1 Ik−1

u,p−
(iuωh),

(2.11)

where p− ≥ 1 is such that d
k−1 Λk−1

h,p−
(Th) ⊂ Λk

h,p (Th). The polynomial interpolation order p has to be
chosen such that the consistency error does not destroy the accuracy order related to the finite element
approximation. Moreover, in view of (2.9), the characterization (2.11) automatically incorporates an
upwinding of the Lie derivative. Lastly, since u is Lipschitz continuous and the discrete differential forms
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are piecewise polynomials, the moments of the contracted forms on each j-cell of Th are well-defined
from within the d-cell in the upwind direction of the flow.

As a result of the discretization of the Lie derivative, the discrete advection problem, recast in weak
form, reads: Find ωh ∈ Λk

h,r (Th) such that

ah(ωh, ηh) = (f, ηh)Ω , ∀ ηh ∈ Λk
h,r (Th) , (2.12)

where the bilinear form ah(·, ·) is defined, for all ωh, ηh ∈ Λk
h,r (Th), as

ah(ωh, ηh) := (αωh, ηh)Ω +

ˆ

Ω

(Ik
u,p(iud

kωh) ∧ ⋆ηh + d
k−1 Ik−1

u,p−
(iuωh) ∧ ⋆ηh).

Remark 2.4 (Boundary conditions at the inflow boundary). Incorporating the boundary conditions in the
discrete definition of the Lie derivative for k-forms requires the computation of the moment-based degrees
of freedom at the boundary j-cells, k ≤ j ≤Mp,k

min. Note that the trace of the form and the trace of its
contraction, tr(inωh), at the inflow boundary of the domain are supplied by the boundary conditions. One
can decompose the velocity field u in its normal component un := (u · n)n and its tangential component
ut := (n× u)× n, such that

iuωh = iun
ωh + iut

ωh = (u · n)inωh + iut
ωh, ∀ωh ∈ Λk

h (Th) , ∀ k.

Note that the contraction by the tangential component of the velocity is available from the trace of ωh

(2.4). However, in the case of non-smooth boundaries, the contraction might not be uniquely defined at a
given boundary j-cell, j ≤ d− 1. One could average the contributions from the d-cells sharing the j-cell.
For example, in two dimensions, at a boundary node x ∈ ∆0(Th)∩ ∂Ω such that x ∈ ∆0(e1)∩∆0(e2) for
some edges e1, e2 ∈ ∆1(Th) ∩ ∂Ω, one can approximate the contraction of a 1-form ωh as

iuωh ≈
1

2
((u · n1)in1

ωh + iut1
ωh) +

1

2
((u · n2)in2

ωh + iut2
ωh).

2.3.1 Discrete Lie Derivative in Terms of Vector Proxies

We report the vector proxy representation of the discrete Lie derivative defined in (2.11). Let Vh be
finite element spaces of vector proxies associated with the spaces Λk

h,r (Th) of polynomial differential

k-forms of degree at most r ≥ 1 on the three-dimensional cellular complex Th. Let Ik
u,p, 0 ≤ k ≤ 2, and

Ik
u,p− , 1 ≤ k ≤ 3, be upwind interpolation operators onto piecewise polynomial spaces of degree at most
p ≥ 1 and p− ≥ 1, respectively. Let wh ∈ Vh or wh ∈ Vh be the vector proxy representation of the k-form
ωh ∈ Λk

h,r (Th) and let Mp,k
min be defined as in (2.7) for d = 3. The discrete Lie derivative (2.11) reads

k = 0 : Lh
u
wh = I0

u,p(iud
0wh) = I0u,p(u · gradwh)

=

Mp,0

min∑

j=0

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (u · gradwh|

T
upw
fj

)λℓj , (2.13)

where {λℓj}j,ℓ is a basis of H1-conforming polynomials of degree at most p.

Let {φℓj}j,ℓ be a basis of H(curl ,Ω)-conforming polynomials of degree at most p and {λℓj}j,ℓ a basis

of H1-conforming polynomials of degree at most p−. There holds,

k = 1 : Lh
u
wh = I1

u,p(iud
1wh) + d

0 I0
u,p−(iuwh) = I1u,p(curlwh × u) + grad(I0

u,p−(u ·wh))

=

Mp,1

min∑

j=1

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (curlwh × u|

T
upw
fj

)φℓj

+

Mp−,0

min∑

j=0

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (u ·wh|

T
upw
fj

) gradλℓj .
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Let {ϕℓ
j}j,ℓ be a basis of H(div,Ω)-conforming polynomials of degree at most p and {φℓj}j,ℓ a basis of

H(curl ,Ω)-conforming polynomials of degree at most p−, then

k = 2 : Lh
u
wh = I2

u,p(iud
2wh) + d

1 I1
u,p−(iuwh) = I2u,p(u divwh) + curl(I1

u,p−(wh × u))

=

Mp,2

min∑

j=2

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (u divwh|

T
upw
fj

)ϕℓ
j

+

Mp−,1

min∑

j=1

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (wh × u|

T
upw
fj

) curlφℓj .

For {ϕℓ
j}j,ℓ basis of H(div,Ω)-conforming polynomials of degree at most p−,

k = 3 : Lh
u
wh = d

2 I2
u,p−(iuwh) = div(I2

u,p−(uwh)) =

Mp−,2

min∑

j=2

∑

fj∈∆j(Th)

Nj∑

ℓ=1

W ℓ
fj (uwh|

T
upw
fj

) divϕℓ
j .

Remark 2.5 (Tabata’s scheme). Let Th denote a simplicial triangulation of Ω ⊂ R
d of weakly acute type.

We consider the extrusion contraction upwind discretization of the scalar advection problem with linear
Lagrangian finite element spaces Vh. Using the discrete Lie derivative (2.13) in the weak formulation
(2.12), yields the bilinear form

ah(wh, vh) =

N0∑

ℓ=1

u(xℓ) · (gradwh)|
T

upw
xℓ

(xℓ)

ˆ

Ω

λℓvh, ∀wh, vh ∈ Vh.

where {λℓ}ℓ are the barycentric coordinates and N0 := dimVh = ♯∆0(Th). Approximating the integration
on Ω using local quadrature rules Q(T ) = {ai,T , qi,T }di=0 with weights {qi,T = 1/(d + 1)}i and nodes
{ai,T }i at the mesh 0-cells (vertices of the d-simplices), results in

ah(wh, vh) =

N0∑

ℓ=1

u(xℓ) · (gradwh)|
T

upw
xℓ

(xℓ)
∑

T∈Th

∑

ai,T∈∆0(T )

qi,Tλ
ℓ(ai,T )vh(ai,T )

=
∑

T∈Th

∑

ai,T∈∆0(T )

qi,Tu(ai,T ) · (gradwh)|
T

upw
ai,T

(ai,T )vh(ai,T ),

and the so-called upwind quadrature or Tabata’s scheme [60] is recovered. The method proposed by
Tabata to solve the transient scalar advection-diffusion problem with homogeneous Dirichlet boundary
conditions at the domain boundaries, is first order accurate, and it delivers an algebraic system M-matrix
(i.e., a non-singular matrix whose entries ai,j satisfy ai,j ≤ 0 for i 6= j and the entries bi,j of the inverse
matrix are non-negative, bi,j ≥ 0). This entails that the discrete solution operator is inverse monotone.
Therefore, when augmented with a standard linear finite element discretization of the diffusion operator,
the resulting scheme is able to preserve the inverse-monotonicity property and hence the maximum
principle characterizing the problem at the continuous level [60, Theorem 1].

2.4 Commuting Property of the Discrete Lie Derivative

Owing to Cartan’s formula, it can be easily verified that the exterior derivative and the Lie derivative
commute, namely

d
kLuω = Lud

kω, ∀ω ∈ Λk (Ω) . (2.14)

The commuting property has the fundamental consequence that closed differential forms are Lie advected
into closed forms. In the MHD perspective, this translates into the exact preservation of the divergence
constraint at every time. Moreover, it entails that, if ω ∈ Λk (Ω) is solution of the advection problem for
k-forms, then d

kω is solution of the advection problem for (k + 1)-forms, under suitable forcing terms,
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initial and boundary conditions. As an example, in three-dimensional ideal MHD flows, the magnetic
potential A and the magnetic induction field, B = curlA, satisfy the advection problem for the vector
proxies of differential 1-forms and 2-forms, respectively.

The discretization of the Lie derivative proposed in (2.11) yields an advection operator satisfying the
commuting property (2.14) in the discrete setting.

Proposition 2.6. Let Ω ⊂ R
d be a bounded Lipschitz domain and let Th be a cellular complex on Ω.

Let p+, r+ ≥ 1 be such that dk Λk
h,p (Th) ⊂ Λk+1

h,p+ (Th) and d
k Λk

h,r (Th) ⊂ Λk+1
h,r+ (Th), respectively, with

p, r ≥ 1. Let u ∈ W 1,∞(Ω) and let Lh
u

be the extrusion contraction upwind discretization of the Lie

derivative Lu in (2.11). For all 0 ≤ k ≤ d− 1, the following diagram

Λk
h,r (Th)

dk−−−−→ Λk+1
h,r+ (Th)yLh

u

yLh
u

Λk
h,p (Th)

dk−−−−→ Λk+1
h,p+ (Th) ,

commutes, namely, Lh
u
d
kωh = d

kLh
u
ωh, for all ωh ∈ Λk

h,r (Th) ⊂ HΛk (Ω).

Proof. The commutativity of the discrete exterior and Lie derivatives follows immediately from the
topological properties of the (discrete) exterior derivative. Indeed, if ωh ∈ Λk

h,r (Th), the definition of
discrete Lie derivative in (2.11) results in

Lh
u
d
kωh = Ik+1

u,p+(iud
k+1

d
kωh) + d

k Ik
u,p(iud

kωh) = d
k(Ik

u,p(iud
kωh))

= d
k(dk−1 Ik−1

u,p−
(iuωh) + Iku,p(iudkωh)) = d

kLh
u
ωh,

owing to the fact that the discrete exterior derivative satisfies d
k+1 ◦ dk = 0.

The result of Proposition 2.6 has two major consequences. Under the assumption of unique solvability
of the discrete time-dependent problem corresponding to (2.12), discrete closed k-forms are Lie advected
into closed k-forms. Consider the semi-discrete problem ∂tωh + αωh + Lh

u
ωh = f , and suppose the

initial datum is a closed form. From an algebraic perspective, let L be the matrix associated with the
discretization of the Lie derivative (2.11). Let Wn be the vector of degrees of freedom for ωh at time tn.
In the simplest case of explicit Euler timestepping, MWn+1 = MWn−∆tn αMWn−∆tnLWn +∆tnFn,
where M is the mass matrix and Fn is the load vector associated with the source term at time tn.
By Proposition 2.6, the incidence matrix D

k, representing the exterior derivative operator, commutes
with L. Hence, under suitable boundary conditions, DkWn = 0 for all n ≥ 1, provided the right hand
side is closed at all times. Secondly, the polynomial spaces P−

r Λk(Th) and Q−
r Λ

k(Th) form long exact
sequences for a fixed polynomial degree r ≥ 1 [4, Section 3.5]. If a priori convergence results (in a certain
norm) independent of the form degree k can be established, then, upon suitably tuning the polynomial
approximation and interpolation orders, no accuracy is lost in solving the advection problem for the
magnetic potential, rather than the magnetic induction advection.

3 Extended Euler Equations

The local splitting of the MHD system into two systems with discontinuous coefficients yields an
advection problem for the magnetic induction/potential with a known discontinuous velocity field and
the conservation laws for the fluid variables with the B field treated as a discontinuous known function.
The second block of the MHD system (1.1), the extended Euler system, consists of the conservation
equations for mass, momentum and (hydrodynamic) energy with the magnetic induction field entering
through the Lorentz force, namely





∂tρ+ div(ρu) = 0,

∂t(ρu) + div (ρu⊗ u+ pI) = J×B,

∂tE
hd + div

((
Ehd + p

)
u
)
= J ·E,

(3.1)
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where Ehd denotes the hydrodynamic energy, sum of the thermal and kinetic energies. Using Maxwell’s
equations for perfectly conducting fluids to express the current J and the electric field E, the extended
Euler system reduces to the fluid part of the ideal MHD equations (1.1a), (1.1b) and (1.1c), see e.g. [52,
Section 6.1] for a detailed derivation.

The extended Euler system is a parametric hyperbolic system of conservation laws. In three dimensions,
if U := (ρ, ρu1, ρu2, ρu3, E) denotes the vector of the conserved fluid variables, and x = (x1, x2, x3) ∈ R

3,
then (3.1) can be written in flux form according to (1.1) as

∂tU+

3∑

ℓ=1

∂xℓf ℓ(U,B) = 0. (3.2)

If δi,ℓ denotes the Kronecker delta, the directional fluxes {f ℓ}3ℓ=1 are defined as

f ℓ(U,B) =




ρuℓ

ρu1uℓ −B1Bℓ +
(
p+ 1

2‖B‖2ℓ2
)
δ1,ℓ

ρu2uℓ −B2Bℓ +
(
p+ 1

2‖B‖2ℓ2
)
δ2,ℓ

ρu3uℓ −B3Bℓ +
(
p+ 1

2‖B‖2ℓ2
)
δ3,ℓ

(
E + p+ 1

2‖B‖2ℓ2
)
uℓ − (u ·B)Bℓ




.

The extended Euler equations form a weakly hyperbolic system of conservation laws. The eigenvalues of
the directional Jacobian can be derived as in [22, Section 2.1], and are given by

λ1 = u · n− uE · n, λ2,3,4 = u · n, λ5 = u · n+ uE · n, (3.3)

where uE := (aE,1(V,B), aE,2(V,B), aE,3(V,B)) and aE,ℓ denotes the sound speed of the acoustic wave
in the ℓ-direction

aE,ℓ(V,B) =
1√
ρ

√
γpnℓ + (γ − 1)

[
nℓ(‖B‖2ℓ2 −B2

ℓ )−Bℓ(B · n−Bℓnℓ)
]
, ℓ ∈ {1, 2, 3}. (3.4)

The Riemann solution of the extended Euler system is then characterized by five waves: two acoustic
waves, rarefactions/shocks moving to the left/right and a shear wave.

3.1 Finite Volume Discretization

For the numerical discretization of the extended Euler problem, we design, in the present section, finite
volume schemes using reduced waves approximate Riemann solvers as in [22, Section 2.1].

Hereafter we restrict to Cartesian domains Ω = J1 × . . . × Jd ⊂ R
d, with Jℓ ⊂ R, ℓ = 1, . . . , d,

bounded and connected. We proceed via a dimensional splitting by designing numerical discretizations of
one-dimensional problems in each space direction and combining the solutions thus obtained. Let {Th}h
be a family of partitions of Ω obtained, for all h > 0, as Th = T 1

h1
× . . . × T d

hd
, where T ℓ

hℓ
is a uniform

mesh on Jℓ with M ℓ
h := ♯T ℓ

hℓ
elements. Hence, the mesh width in the ℓ-direction is given by hℓ = |Jℓ|/M ℓ

h

and h = maxℓ hℓ. Every control volume Tj ∈ Th is identified by its barycenter xj = (x1j1 , . . . , x
d
jd
), where

j = (j1, . . . , jd) is a multi-index in J := N
d ∩ ([1,M1

h ]× . . .× [1,Md
h ]), which “selects” the spatial direction.

The (d− 1)-skeleton of the mesh is fundamental in determining the fluxes: the interfaces of the element
Tj ∈ Th are denoted by xj+ 1

2
et

where et is the t-th unit vector in R
d. The weak solution U(x, t) of the

extended Euler system is approximated by cell averages,

U(x, t)|Tj
≈ Uj(t) :=

1

|Tj|

ˆ

Tj

U(x, t)dx, ∀Tj ∈ Th, j ∈ J.

A semi-discrete finite volume scheme for the conservation law (3.2) on a fixed element Tj ∈ Th is given by

∂tUj(t) = −
d∑

ℓ=1

F ℓ
j+ 1

2
eℓ
(t)− F ℓ

j− 1
2
eℓ
(t)

hℓ
, ∀ j ∈ J,
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where F ℓ
j+ 1

2
eℓ
(t) = F ℓ

j+ 1
2
eℓ
(B(xj+ 1

2
eℓ
, t), t) is a numerical flux consistent with the directional flux f ℓ for

all 1 ≤ ℓ ≤ d.
For the temporal discretization we rely on explicit strong-stability preserving Runge−Kutta (SSP-RK)

schemes [27]. Let the temporal interval I be divided into subintervals I =
⋃N−1

n=0 (t
n, tn+1], N ∈ N, with

tn+1 = tn +∆tn. Concerning the choice of the time step, we adopt a perspective where the extended
Euler equations are considered as embedded in the physics of the full ideal MHD system. Since in MHD
the fast magnetosonic waves propagate on a time scale much faster than the fluid velocity, these waves
dictate the time step restrictions necessary for a stable numerical update. For the temporal discretization
of the extended Euler system, the n-th time step is taken to be

∆tn = CCFL

(
d∑

ℓ=1

λℓmax

hℓ

)−1

,

where CCFL > 0 is a constant and {λℓmax}dℓ=1 are the maximum eigenvalues associated with the fast
magnetosonic waves (1.2), namely

λℓmax = max
j∈J

λM,ℓ
f (Un

j ,B
n
j ) := max

j∈J
(|uℓ,nj |+ cM,ℓ

f (Un
j ,B

n
j )), ℓ = 1, . . . , d,

cM,ℓ
f =

1√
2

√√√√
a2 +

‖B‖2ℓ2
ρ

+

√(
a2 +

‖B‖2ℓ2
ρ

)2

− 4a2
B2

ℓ

ρ
, ℓ = 1, . . . , d.

3.1.1 Approximate Riemann Solvers

The use of Roe-type linearized Riemann solvers for MHD was pioneered by Brio and Wu [12] and further
developed in [13]. However, the cumbersome computational cost and the failure of providing positivity
preserving schemes [19] has thwarted the extensive application of linearized Roe-type solver in MHD
simulations. An attractive alternative is provided by reduced-wave nonlinear solvers, the so-called HLL

solvers, which approximate the wave structure of the full Riemann problem by a simplified set of known
waves. Several HLL schemes for ideal MHD have been developed, e.g. in [30], in [10] (the so-called relaxed
HLLC solver), in [49] (the HLLD solver) and in [46]. The HLL solvers combine limited computational
cost, accurate reproduction of the physical features of the flow, and robustness of the resulting numerical
scheme, although no HLL solver has the resolution of the Roe solver. We present HLL-type approximate
Riemann solvers for the extended Euler equations based on solvers developed for the ideal MHD system.
Each Riemann solver is specified only in the x := x1-direction; modifications in other directions are
derived likewise. For the sake of better readability, the superscript ℓ = 1 is omitted and we switch from
the multi-index j to the index i treating the problem as one-dimensional.

Two-wave HLL Solver. The Harten−Lax−van Leer (HLL) approximate Riemann solver, introduced
in [32] for the inviscid gas dynamic equations, assumes a wave configuration for the Riemann problem
solution consisting of three constant states separated by two shock waves moving to the left and to the
right of the interface. The resulting HLL flux solver at time tn is

Fn,HLL
i+1/2 = F (Un

i ,U
n
i+1,B

n
i+1/2) =





f(Un
i ,B

n
i+1/2) if sLi+1/2 > 0,

f∗,HLL
i+1/2 if sLi+1/2 < 0 < sRi+1/2,

f(Un
i+1,B

n
i+1/2) if sRi+1/2 < 0.

The selection of the left sLi+1/2 and right sRi+1/2 acoustic wave speeds determines different variants of the

approximate flux. The middle flux f∗,HLL
i+1/2 is determined, together with the intermediate subsonic state

U∗
i+1/2, by applying local conservation through Rankine−Hugoniot conditions, namely

f(Un
i+1,B

n
i+1/2)− f

∗,HLL
i+1/2 = sRi+1/2(U

n
i+1 −U∗

i+1/2),

f∗,HLL
i+1/2 − f(U

n
i ,B

n
i+1/2) = sLi+1/2(U

∗
i+1/2 −Un

i ).
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Note that the computation of the flux f(Un
i ,B

n
i+1/2) requires the knowledge of both the tangential and

normal components of the B field at the interface. Whenever one of these quantities is not uniquely
defined, we will take the arithmetic average

{
B1
}
i+1/2

and/or
{
B2
}
i+1/2

across the interface.

To determine the right and left speeds, Einfeldt suggested in [18] to use the minimum and maximum
eigenvalues of a Roe average to restrain the spreading of contact discontinuities and increase the resolution
at isolated shocks:

sLi+1/2 := min{u1,ni − aE,1(Vn
i ,B

n
i ),
{
u1,n

}
i+1/2

− âE,1({Vn}i+1/2 , {Bn}i+1/2)},

sRi+1/2 := max{u1,ni+1 + aE,1(Vn
i+1,B

n
i+1),

{
u1,n

}
i+1/2

+ âE,1({Vn}i+1/2 , {Bn}i+1/2)}.
(3.5)

The speed aE,1 is defined as in (3.4). Lacking a Roe average for the extended Euler system, âE,1 is taken
as the “extended” sound speed

{
ρn(aE,1)2

}
i+1/2

= âE,1({Vn}i+1/2 , {Bn}i+1/2)

=

√
1

ρni
+

1

ρni+1

√
γ(pni + pni+1) + (γ − 1)[(Bn

2 )
2
i + (Bn

2 )
2
i+1 + (Bn

3 )
2
i + (Bn

3 )
2
i+1],

associated with the averaged directional Jacobian

Â1
i+1/2 =




{
u1,n

}
i+1/2

{ρn}i+1/2 0 0 0

0
{
u1,n

}
i+1/2

0 0 {1/ρn}i+1/2

0 0
{
u1,n

}
i+1/2

0 0

0 0 0
{
u1,n

}
i+1/2

0

0
{
ρn(aE,1)2

}
i+1/2

{
ρn(aE,2)2

}
i+1/2

{
ρn(aE,3)2

}
i+1/2

{
u1,n

}
i+1/2




.

Despite the efficiency and robustness of HLL-type Riemann solvers, the two-wave configuration hinders
the resolution of physical features, in particular Alfvén and slow waves and contact discontinuities,
yielding overdiffusive solutions.

Three-wave HLLC Solver. Contact discontinuities are “restored” in the modified HLL solver intro-
duced by Toro, Spruce and Speares [61] and dubbed HLLC. The HLLC solver approximates the Riemann
solution by three waves allowing for two intermediate states. The fast magnetosonic waves are modeled
as in the HLL solver, whilst the intermediate states are separated by a wave moving with speed sMi+1/2

and modeling a contact discontinuity (associated with the multiple eigenvalue λ2,3,4 (3.3)). The HLLC
numerical flux is defined as

Fn,HLLC
i+1/2 = F (Un

i ,U
n
i+1,B

n
i+1/2) =





f(Un
i ,B

n
i+1/2) if sLi+1/2 > 0,

f∗L if sLi+1/2 < 0 < sMi+1/2,

f∗R if sMi+1/2 < 0 < sRi+1/2,

f(Un
i+1,B

n
i+1/2) if sRi+1/2 < 0.

The left and right speeds model the fast magnetosonic waves and are as in (3.5), the middle wave
speed sMi+1/2 is the velocity of the averaged Jacobian sMi+1/2 =

{
u1,n

}
i+1/2

since it models the contact

discontinuity. The intermediate fluxes are determined by applying local conservation through the
Rankine−Hugoniot conditions

sLi+1/2U
∗
L − f∗L = sLi+1/2U

n
i − f(Ui,B

n
i+1/2),

sMi+1/2U
∗
L − f∗L = sMi+1/2U

∗
R − f∗R,

sRi+1/2U
n
i+1 − f(Un

i+1,B
n
i+1/2) = sRi+1/2U

∗
R − f∗R,

(3.6)
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where U∗
R and U∗

L denote the right and left intermediate states, respectively. Simple algebraic manipula-
tions yield the intermediate fluxes f∗R and f∗L. However, since the system (3.6) is underdetermined, a
further constraint on the intermediate states needs to be imposed. Linde suggested in [47, Section 4.3.3]
to compute the jump of the intermediate states as a non-negative fraction of the initial jump across
the middle wave, namely U∗

R −U∗
L = α(Un

i −Un
i+1) for α ∈ [0, 1]. If c∗ := |aE,1(V n

i ,B
n
i )− sMi+1/2|, the

choice

α = max

{
0, 1− s

c∗

}
, s :=

‖f(Un
i+1,B

n
i+1/2)− f(Un

i ,B
n
i+1/2)− sMi+1/2(U

n
i+1 −Un

i )‖ℓ1∥∥Un
i+1 −Un

i

∥∥
ℓ1

,

aims at robustness of the Riemann solver together with good resolution of isolated shocks. As pointed
out in [47], s gives an indication of the speed of the dominant wave in the frame of reference of the
middle wave. Note that s can be in principle computed using a different norm.

3.1.2 Limitations of Finite Volume Schemes for the Extended Euler System

The formulation of approximate Riemann solvers for the extended Euler equations based on HLL-type
solvers for the MHD Riemann problem is an attempt to capture the wave structure of the reduced problem
viewed as a subset of the ideal MHD wave fan. However, the good properties of the aforementioned
approximate Riemann solvers for the MHD system are not inherited straightforwardly by the extended
Euler equations. As pointed out in [22], the lack of control on the B field and the unavailability of
a Roe average, which consequently affects the choice of the wave speeds, do not guarantee that the
resulting scheme is able to exactly capture fast magnetosonic shocks or isolated contact discontinuities.
Analogously, with the B field resulting from the extrusion contraction approximation (2.11) of the
magnetic advection problem for the magnetic field/potential, none of the foregoing solvers for the
extended Euler system is provably positively conservative. Furthermore, the presence of the B field as a
parameter entering the fluxes hinders the design of numerical fluxes satisfying a discrete version of the
entropy inequality ∂t(ρs) + div(ρus) ≤ 0, where s := log(p)− γ log(ρ) is the thermodynamic entropy.

4 The FV-FEEC Schemes

The extrusion contraction upwind discretization derived in Section 2 for the magnetic induction equation
and the finite volume schemes for the extended Euler system described in Section 3 can be combined
in numerical schemes for the full ideal MHD problem, which we coin FV-FEEC (Finite Volume-Finite
Element Exterior Calculus).

We implement a synchronous splitting, Algorithm 1, where the two systems, extended Euler and
magnetic advection, are concurrently advanced in time, in the sense that after spatial discretization,
the two problems are re-coupled to form a single system of ODEs. The latter is solved via explicit SSP
Runge−Kutta timestepping. In this way, the coupling fields, the velocity and the magnetic induction,
are updated within each subsystems at every intermediate stage of the temporal scheme.

Algorithm 1 Synchronous splitting algorithm

1: Set n = 0, t = 0. Given initial conditions (ρ0,u0, E0,B0).
2: while time t < T do

3: un;0 = un; Bn;0 = Bn.
4: for each step 1 ≤ i ≤ s of an s-stage SSP-RK timestepping do

5: un;i ←− Solve the extended Euler equations given {Bn;j}i−1
j=0.

6: An;i ←− Solve the advection of (d− 1)-forms given {un;j}i−1
j=0.

7: Bn;i ←− Compute the (discrete) curl of An;i.
8: end for

9: un+1 = un;s; An+1 = An;s; Bn+1 = Bn;s.
10: Set t = t+∆tn, n = n+ 1.
11: end while
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5 Numerical Experiments in Two Dimensions

This section is devoted to testing the new family of FV-FEEC schemes, for the two-dimensional planar
MHD problem, on a set of numerical benchmark experiments. The aim is to provide numerical evidence
of their accuracy, good stability properties and ability in preserving the physical distinctive features
of the model at the continuous level. The two-dimensional setting provides a first step to assess the
robustness of numerical schemes maintaining many of the physical features of the three-dimensional
model and paves the way to three-dimensional simulations.

Lacking a stability and convergence theory for the extrusion contraction upwind schemes, we first test
the method introduced in Section 2.2 for the transient advection problem. The aim is to derive empiric
convergence properties in the L2-norm and in some energy norm, and to look for numerical confirmation
of the discrete commuting property stated in Proposition 2.6.

5.1 Numerical Tests: Extrusion Contraction

Since we are interested in the transient advection problem as part of the planar two-dimensional MHD
model, we restrict to numerical simulations for the advection of 0-forms and 1-forms in two dimensions.
Note that in this case the magnetic potential is a scalar function representing the transverse out-plane
component of the three-dimensional vector magnetic potential, B = curl2DA := (∂yA,−∂xA)⊤.

5.1.1 Transient Advection of 0-Forms

On the domain Ω = [0, 2]2 and on the time interval I = [0, T ] ⊂ R, T > 0, we consider the pure advection
problem for the scalar magnetic potential A, namely

∂tA(t) + u · gradA(t) = 0, in Ω× I,
A(0) = A0, in Ω,

(5.1)

with periodic boundary conditions.

Test of Convergence: Constant Velocity. The initial condition A0 = 1
π cos(πy) + 1

2π cos(2πx) is
advected at constant velocity u = (4, 4)⊤. On a family of Cartesian meshes {Th}h, we consider the
discrete variational formulation (2.12) with approximation spaces Λk

h,r (Th) of bilinear (r = 1) and
biquadratic (r = 2) Lagrangian finite elements. The polynomial degree of the upwind interpolation is
chosen to coincide with the polynomial degree of the finite element trial and test spaces, that is p = r
in (2.13). In order to gauge the spatial accuracy of the extrusion contraction scheme, we use Heun
timestepping with uniform time step ∆t = 0.1h for bilinear Lagrangian finite element approximations
and ∆t = 0.01h for biquadratic Lagrangian finite elements. Owing to the periodicity of the domain, we
can compare the numerical solution at final time T = 0.5 with A0.

The projection of the numerical and exact solution at final time onto the one-dimensional line
{x ∈ Ω, y = 1} is shown in Figure 2, bottom row. The piecewise linear discretization yields a rather
diffusive solution and first order accuracy in both the L2- and H1-norms, as reported in Figure 2 where
the L2-error of the potential A and of its two-dimensional curl , the magnetic induction field B, is
reported. Second order convergence is attained in the case of piecewise biquadratic discretization (and
interpolation).

Orszag−Tang Benchmark with Given Velocity Field. We assess the performance of the extrusion
contraction scheme in solving the more challenging MHD problem given by the Orszag−Tang vortex
system [51] (see Section 5.3.3 for further details). We consider problem (5.1) with initial magnetic
potential A0 = 1

π cos(πy) + 1
2π cos(2πx). The velocity field is supplied at each time step as the output of

a high order finite volume discretization of the full ideal MHD system obtained with the ALSVID-UQ
3.0 (2014-03-20) code1 (using a three-wave HLL solver and modified WENO reconstructions in order to
keep the pressure and density positive).

The scalar advection problem is discretized in space on a Cartesian mesh using extrusion contraction
piecewise linear and piecewise quadratic upwind schemes with velocity field averaged at the interpolation

1http://www.sam.math.ethz.ch/alsvid-uq (Accessed March 2016)

http://www.sam.math.ethz.ch/alsvid-uq
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Figure 2: Test for advection of 0-forms with constant velocity. Convergence plot of the error in the L2-norm at
time t = 0.5 for the magnetic potential A and the induction field B (top row). The exact solution is Aex ≡ A0

and analogous for the B field. Projection of the exact and numerical solution for y = 1 on a 200× 200 Cartesian
mesh (bottom row). Left: first order interpolation, bilinear Lagrangian finite elements. Right: second order
interpolation, biquadratic Lagrangian finite elements.

nodes and upwind direction at each node given by the averaged velocity (in MHD flow simulations a
more sophisticated approach to avoid the possible shortcoming of averaging the velocity values will be
pointed out in Section 5.3). The polynomial order of the upwind interpolation operator coincides with
the polynomial approximation degree. Heun timestepping is used for the temporal approximation on the
time interval I = [0, 1] with uniform time step ∆t = 5 · 10−4.
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Figure 3: Orszag−Tang benchmark with given velocity field. Comparison plots of the projection of the B field for
constant values of the x-coordinate on a Cartesian mesh with 200× 200 elements. Discretization of the advection
problem for 0-forms using piecewise linear and piecewise quadratic extrusion contraction upwind schemes. As
reference solution, a high order finite volume solution of the full ideal MHD system obtained with the ALSVID-UQ
code is considered.

The projection of the magnetic induction field, obtained with the foregoing discretizations, on lines
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at constant x is compared with the reference finite volume discrete solution in Figure 3. As expected,
the piecewise quadratic extrusion contraction approximation produces more accurate solutions than the
piecewise linear discretization. However, it can be noticed that, near shocks and discontinuities, the
piecewise quadratic solution exhibits “overshoots” and “undershoots”. This is a typical by-product of
numerical discretizations higher than first order accurate, as symptom of lack of monotonicity. We will
comment on this issue later in Section 6.

5.1.2 Transient Advection of 1-Forms

On a simply connected bounded domain Ω ⊂ R
2 with Lipschitz boundary, we address the discretization

of the initial boundary value problem describing the advection of the magnetic induction

∂tB+ u divB+ grad⊥(B · u) = f , in Ω× I,
B(0) = B0, in Ω,

(5.2)

with periodic boundary conditions and where ⊥ denotes a clockwise rotation of π/2. We consider lowest
order finite element approximations with finite element spaces of polynomial discrete differential forms of
the first family, namely the rotated Raviart-Thomas elements [54].

Test of Convergence: Constant Velocity. The goal of this experiment is twofold: infer the possible
accuracy of the scheme and verify that solenoidal vector fields are indeed advected into solenoidal vector
fields, as asserted in Proposition 2.6. The magnetic advection problem (5.2) is considered on the domain
Ω = [0, 2]2 with periodic boundary conditions and in the time interval I = [0, 0.5]. The initial condition
is set to B0 = (− sin(πy), sin(2πx))⊤, the advection velocity is constant u = (4, 4)⊤ and the forcing term
is assumed to vanish, f = (0, 0)⊤. In view of the periodic boundary conditions, we compare the solution
at final time with the initial condition. Figure 4 shows that the L2-error converges at first order rate
with respect to the mesh width h and the divergence of the magnetic induction field is maintained zero
up to machine precision.
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100

h
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Piecewise linear approximation and interpolation

‖divB‖L2(Ω)

Figure 4: Test for advection of 1-forms with constant velocity. Convergence plot of the error in the L2-norm at
final time T = 0.5 (left). L2-norm of the magnetic induction field (right). Piecewise linear extrusion contraction
upwind schemes with Heun timestepping with uniform time step ∆t = 0.1h.

Advection of Non-Solenoidal Magnetic Induction. As a second test case, we consider the advection
of a magnetic induction field with non-zero divergence with the aim of monitoring the convergence rate
of the solution in the L2-norm and in the energy norm. On the unit square Ω = [0, 1]2 with periodic
boundary conditions and in the time interval I = [0, 0.5], we consider the magnetic advection problem
(5.2) with initial condition given by

B0 :=





(ϕ,ϕ)⊤ if x2 + (y − 0.25)2 < 0.25,

(0, 0)⊤ otherwise,
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with ϕ(x, y) := cos(π
√
x2 + (y − 0.25)2)4. The “hump” is Lie advected on the diagonal of the domain

with velocity field u = (2, 2)⊤. The forcing term in this experiment is set to zero, f = (0, 0)⊤. We
compute the numerical errors associated with the spatial discretization, at final time T = 0.5. Figure 5
shows that first order convergence is attained both in the L2-norm and in the H(div,Ω)-seminorm.

10−2.6 10−2.4 10−2.2 10−2 10−1.8 10−1.6 10−1.4

10−1

100

h

Piecewise linear approximation and interpolation

|B−Bex|H(div,Ω)

‖B−Bex‖L2(Ω)
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Figure 5: Advection of 1-forms. Non-
solenoidal magnetic induction. Numerical con-
vergence study of the piecewise linear extru-
sion contraction scheme. Heun timestepping
with uniform time step ∆t = 0.1h.

5.2 Numerical Experiments for Extended Euler

To experimentally gauge the performances of lowest order finite volume schemes for the extended Euler
system derived in Section 3, we propose a two-dimensional MHD test with given magnetic induction
field [7, Section 6]. More in details, the solution is smooth and known analytically at any point in
space and time in the domain Ω × I = [−5, 5]2 × [0, 0.5], see Section 5.3.1 for further details. Let
r(x, y, t) :=

√
(x− t)2 + (y − t)2, the flow is characterized by the following set of data,

ρ(x, y, t) = 1, p(x, y, t) = 1 +
1

8π
(µ2(1− r2)− κ2)e1−r2 ,

u(x, y, t) = (1, 1)⊤ +
κ

2π
e1/2(1−r2)(t− y, x− t)⊤.

The ratio of specific heats is γ = 5/3 and the parameters κ = µ = 1. The magnetic induction field B is

given at each time step in analytic form as B(x, y, t) = µ
2π e

1/2(1−r2)(t− y, x− t)⊤. We aim at assessing
the convergence properties of the scheme. Explicit Euler timestepping (CCFL = 0.4) is coupled with a
piecewise constant finite volume discretization in space and tested with different approximate Riemann
solvers. In Figure 6, the L1-error of the primitive variables at final time T = 0.5 is reported. As expected,
first order convergence is observed.
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Figure 6: Smooth vortex. Accuracy test for finite volume discretizations of the extended Euler system with
given analytic B field. Different approximate Riemann solvers are considered. In the legend, HLL refers to the
two-wave Riemann solver with wave speeds as in (3.5) and HLLC to the three-wave Linde solver.
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5.3 Numerical Experiments for Ideal MHD

In this section we numerically study the fully coupled FV-FEEC scheme described in Section 4 on a
set of two-dimensional ideal MHD benchmark simulations. In particular, for the magnetic advection
subproblem we focus on the potential-based formulation (2.1), for which extrusion contraction upwind
schemes have been tested in Section 5.1.1.

Remark 5.1 (Collisional fluid velocities). On a tensor product partition Th of the computational domain Ω,
the fluid velocity resulting from lowest order finite volume discretizations of the extended Euler equations
is a Th-piecewise constant function u ∈ P0(Th) (collecting the cell averages of the fluid velocity in each
mesh element). However, the extrusion contraction upwind discretization of the advection problem
entails an upwind interpolation of the Lie derivative which requires the knowledge of the velocity field
at the mesh nodes and along edges. One can approximate the value at a given node by averaging the
values from the elements sharing the node. This pointwise interpolation might appear rather crude. It is
especially the case in the presence of colliding or diverging velocity at a node or an edge where one might
lose information on the local dynamics.

In MHD, the fast magnetosonic wave speed provides a good indicator of the flow dynamics. Hence, in
the FV-FEEC algorithm implemented in the numerical experiments below, the upwind direction entering
the discrete Lie derivative at the mesh cells where the velocity field is colliding or diverging is determined
by the fast MHD wave speed (1.2), namely

cMf := (cM,1
f , cM,2

f ), with cM,ℓ
f =

1√
2

√√√√
a2 +

‖B‖2ℓ2
ρ

+

√(
a2 +

‖B‖2ℓ2
ρ

)2

− 4a2
B2

ℓ

ρ
, ℓ ∈ {1, 2}.

Once the upwind direction has been uniquely identified at each mesh cell, the pointwise advection velocity
at the nodes is taken from within the upwind element.

5.3.1 Accuracy Test: Smooth Vortex

In order to experimentally assess the accuracy of the lowest order FV-FEEC scheme, we present a
genuinely two-dimensional (non-trivial) MHD test where the solution is known analytically at every
point in space and time. The smooth vortex test was proposed in [7, Section 6] (a scaling factor

√
4π has

been absorbed in the definition of B). The problem is associated with a smoothly varying fluid vortex
which propagates at a π/4 angle to the computational mesh on the domain Ω = [−5, 5]2 with periodic
boundaries. The initial condition is given by a vortex characterized by fluctuations of the velocity and of
the magnetic field, superimposed to an unperturbed MHD flow U0 = (ρ0, p0, u

1
0, u

2
0) = (1, 1, 1, 1), B0 = 0.

Let r(x, y, t) :=
√
(x− t)2 + (y − t)2, the flow is described by the following set of data,

ρ(x, y, t) = 1, p(x, y, t) = 1 +
1

8π
(µ2(1− r2)− κ2)e1−r2 ,

u(x, y, t) = u0 +
κ

2π
e1/2(1−r2)(t− y, x− t)⊤,

B(x, y, t) =
µ

2π
e1/2(1−r2)(t− y, x− t)⊤, A(x, y, t) =

µ

2π
e1/2(1−r2).

As initial datum we take U(x, 0) with u0 = (u10, u
2
0)

⊤ = (1, 1)⊤, κ = µ = 1 and A(x, 0) for the magnetic
advection subproblem. The ratio of specific heats is γ = 5/3. The time interval is I = [0, 0.5]. Explicit
Euler is used as timestepping with CFL constant CCFL = 0.4.

The numerical convergence study on smooth solutions in Figure 7 (left) displays first order convergence
of the errors of the scalar magnetic potential in the norms associated with the Bochner spaces L∞(I, L2(Ω))
and L∞(I,H1(Ω)) and defined as ‖A‖L∞(I,H) := ess supt∈I ‖A(t)‖H on the Sobolev space (H, ‖·‖H).
Analogous conclusions can be drawn from Figure 7 (right) where the L∞(I, L1(Ω))-errors of the Th-
piecewise constant MHD primitive variables are illustrated.
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Figure 7: Accuracy test for full ideal MHD system. L∞(I, L2(Ω))- and L∞(I,H1(Ω))-error of the magnetic
potential (left), L∞(I, L1(Ω))-error of the MHD primitive variables (right). Results obtained with piecewise
constant finite volume discretizations of the extended Euler system with HLL Riemann solver and piecewise
linear extrusion contraction scheme for the advection of the magnetic potential. Explicit Euler timestepping and
CCFL = 0.4.

5.3.2 Super-Fast Expansion: Shock Tube Test

To the aim of testing the robustness of numerical schemes in delivering physically admissible solutions
of the one-dimensional MHD equations, a super-fast expansion simulation has been used in e.g. [49,
Section 6.1 p. 338] and [22, Section 3.2]. With the same goal, we study a variant of the foregoing test
case in a formally two-dimensional setting. Let us consider the domain Ω = [0, 1]2 with periodic upper
{x ∈ Ω : y = 1} and lower {x ∈ Ω : y = 0} boundaries. In the remaining part of ∂Ω, non-reflecting
Neumann type boundary conditions are applied to the conserved variables of the extended Euler system,
and outflow boundary conditions to the advection problem since the evolution of the velocity field
does not induce any inflow boundary on the considered time interval I = [0, 0.2]. We perform planar
two-dimensional simulations of the one-dimensional (in the x-direction) shock tube test with initial data

ρ0(x, y) = 1, p0(x, y) = 0.45,

u10(x, y) =




−3.1 if x < 0.5,

3.1 if x > 0.5,
u20(x, y) = 0,

B0(x, y) = (0, 0.5)⊤, A0(x, y) = −0.5x,

and γ = 5/3 as ratio of specific heats. As the problem involves a left-moving and a right-moving
rarefaction wave, the central region is subject to a super-fast expansion yielding very low density
and pressure. In [22, Section 3.2], it has been observed that linearized Roe solvers for finite volume
discretizations of the full MHD system usually run into negative pressure and density in such test case.
The FV-FEEC scheme proves positively conservative at all tested resolutions, see Figure 8.

5.3.3 Orszag−Tang Benchmark

The so-called Orszag−Tang vortex system was introduced in [51, Section 3], and describes the transition
to supersonic turbulence in the MHD equations. The development of shock waves and the complex
interaction between various shocks with different speed, which characterized the solution, makes the
Orszag−Tang benchmark a challenging test for numerical methods. Let us consider the domain Ω = [0, 2]2

with periodic boundary conditions. The time interval is I = [0, 1]. The initial conditions for the primitive
fluid variables, the magnetic induction field B and the magnetic potential A are

ρ0(x, y) = γ2, p0(x, y) = γ, u0(x, y) = (− sin(πy), sin(πx))⊤,

B0(x, y) = (− sin(πy), sin(2πx))⊤, A0(x, y) =
1

π
cos(πy) +

1

2π
cos(2πx),
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Figure 8: Super-fast expansion. Semi-logarithmic plot of the projection onto {x ∈ Ω : y = 0.5} of the numerical
pressure (left) at the intermediate time t = 0.1. Numerical discretization on a 1600× 1600 Cartesian mesh with
Heun timestepping and CCFL = 0.4. Lowest order extrusion contraction for the advection of the magnetic potential
and finite volume scheme for the extended Euler equations using the HLL approximate Riemann solver. On the
right, semi-logarithmic evolution plot of the minimum of the discrete pressure until time t = 0.2 at 800× 800 and
1600× 1600 mesh resolutions.

and γ = 5/3 is the gas constant. Since the Orszag−Tang test is a widely used benchmark, we can compare
the performances of the FV-FEEC scheme with the numerical discretizations of [22]. As reported in [22,
Section 3.3], finite volume schemes for the full MHD system based on Roe solvers, two-wave HLL and
three-wave HLLC solvers, with and without divergence cleaning (via projection methods), experienced
negative pressures at fine mesh resolution.

In Table 2, we compare the maximum pressure at final time T = 1 of the lowest order FV-FEEC
discretization with the results reported in [22, Table 2.2] for the first order finite volume schemes
HLL/SUS and HLLC/SUS from [22] and [20]. The reported values are comparable at all mesh resolutions:
the HLLC solver for FV-FEEC gives slightly more “accurate” results, as experienced in Section 5.2 when
testing approximate Riemann solvers on the extended Euler system, and shown in Figure 9 in comparison
with a second order accurate reference solution2.

♯Th
HLL/SUS

[22, Table 2.2]
FV-FEEC

HLL
HLLC/SUS

[22, Table 2.2]
FV-FEEC

HLLC

100× 100 4.94 4.38 5.04 5.05

200× 200 5.39 5.29 5.41 5.65

400× 400 5.79 5.84 5.81 5.91

800× 800 6.05 6.06 6.07 6.10

1600× 1600 6.21 6.20 6.22 6.23

Table 2: Orszag−Tang benchmark. Maximum value of the discrete pressure at final time obtained with the
FV-FEEC scheme with two-wave HLL and three-wave HLLC Riemann solvers, and compared with the values
from the finite volume discretizations HLL(C)/SUS of [22].

Finite volume schemes are, by construction, conservative methods. However, the conservation
property is not naturally inherited by the coupled FV-FEEC discretizations. In order to numerically
assess the conservation properties of the FV-FEEC scheme, we monitor the evolution of the mean, on
the computational domain Ω, of the conserved variables over time. Given the scalar function f(x, t) and
the initial datum f0(x), we compute, on the partition of the temporal interval, the following error,

E(f) := max
1≤n≤N

|fn − f0|, f
n
:=

 

Ω

f(x, tn)dx and f0 :=

 

Ω

f0(x)dx. (5.3)

2The reference solutions used throughout the present section were provided by R. Käppeli, SAM, ETH Zürich, and
based on the FISH code [43].



23

0 0.5 1 1.5 2
1.5

2

2.5

3

3.5

4

4.5

5
Time t = 1, x = 0.83062

y

d
e

n
s
it
y

 

 

HLL

HLLC

Reference sol

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5
Time t = 1, y = 0.54187

x

d
e
n
s
it
y

 

 

HLL

HLLC

Reference sol

Figure 9: Orszag−Tang benchmark. Projections of the discrete density for constant values of the x-coordinate
(left) and y-coordinate (right). Numerical discretization on a 1600 × 1600 Cartesian mesh. The finite volume
scheme for the extended Euler equations is based on two-wave HLL and three-wave HLLC approximate Riemann
solver. Heun timestepping with CCFL = 0.4. A second order accurate finite volume solution on 3200× 3200 mesh
elements is used as reference solution.

Whenever needed we consider the relative error Er(f) := E(f)/|f0|. Table 3 reports the values of
the aforementioned error on the conserved MHD variables and for different mesh refinements: perfect
conservation.

♯Th Er(ρ) E(ρu1) E(ρu2) E(B1) E(B2) Er(E)

200× 200 1.3097e−15 2.1723e−11 4.0363e−12 1.8402e−11 4.5034e−12 2.1552e−15

400× 400 1.8335e−15 1.3512e−10 3.3280e−11 2.0040e−10 3.4728e−10 1.8236e−15

800× 800 2.2264e−15 4.1668e−10 1.0388e−10 9.8822e−10 7.6756e−10 2.8183e−15

1600× 1600 3.6671e−15 5.6204e−09 5.9614e−10 2.0064e−09 4.8494e−09 3.1498e−15

Table 3: Orszag−Tang benchmark. Conservation properties of the FV-FEEC scheme. ‘‘Error’’ (5.3) of the MHD
conserved variables at different mesh resolutions.

In Figure 10, we report the L1-error of the primitive MHD variables at final time T = 1 computed
with respect to the second order reference solution. The observed convergence rate is around 0.6.

10−3 10−2
10−1

100

h

‖p− pref‖L1(Ω)

‖ρ− ρref‖L1(Ω)

‖B1 − (B1)ref‖L1(Ω)

‖u1 − u1
ref
‖L1(Ω)

O(h0.6)

Figure 10: Orszag−Tang benchmark. Plot of
the L1-error vs. the mesh width h. The error
of the MHD primitive variables is computed
at final time t = 1 and with respect to a
reference solution on a 3200× 3200 mesh.

Finally, the ability of the FV-FEEC scheme to reproduce physically reliable solutions with rather
sharp resolution of the shock fronts is gauged in Figure 11, see also the results available in literature
e.g. [21, Section 3.4] or [62, Section 6.4]. The lowest order FV-FEEC is admittedly diffusive and does
not capture all the complex shock interaction features visible in the second order accurate solution in
Figure 11 (right column). Neither the FV-FEEC nor the second order reference solution manage to
reproduce the current sheet characterizing the center of the domain in the second component of the B

field.
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Figure 11: Orszag−Tang benchmark. On the left, numerical solution on a 1600× 1600 Cartesian mesh obtained
with the FV-FEEC scheme and Heun timestepping with CCFL = 0.4. Finite volume scheme for the extended Euler
equations based on the HLL approximate Riemann solver. The color map is scaled to the extrema of the reference
solution on a 3200× 3200 mesh (right column).

5.3.4 Rotor Problem

A key dimensionless parameter for ideal MHD models is the so-called plasma beta, the ratio of thermal
to magnetic pressure, β = 2µ0p/‖B‖2ℓ2 , where µ0 is the permeability of free space. Delivering physically
admissible solutions in presence of low-beta plasmas (β ≪ 1) is particularly challenging for numerical
schemes. The rotor problem provides a numerical test for the low-beta plasma setting. It was introduced
in [8, Section 3.1] to test the emergence and propagation of torsional Alfvén waves. The interior of the
rotor is characterized by low values of the pressure, so that the test is also well-suited to attest the
robustness of a numerical method in preserving positivity. The initial set up consists of a dense spinning
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cylinder (the rotor) of radius 0.05, surrounded by the ambient fluid at rest which occupies the remaining
part of the computational domain Ω = [0, 1]2. The initial magnetic field is uniform but, as the rotor spins
with the initial rotating velocity, the magnetic field in the x-direction starts wrapping around the rotor
causing torsional Alfvén waves to propagate into the ambient fluid. As a result, the angular momentum
will eventually decrease while the rotor will experience compression under the effect of the increased
magnetic pressure assuming an oblong shape.

The physical problem is set up on an unbounded domain. This translates into artificial non-reflecting
Neumann-type boundary conditions for the conserved variables entering the extended Euler system.
Concerning the magnetic advection problem, the evolution of the velocity field guarantees that no inflow
boundaries will occur at any time. The initial data are as explained above and characterized by,

ρ0(x, y) =





10 if r < 0.1,

1 + 9f if 0.1 < r < 0.115,

1 if r > 0.115,

p0(x, y) = 0.5,

u10(x, y) =





5− 10y if r < 0.1,

(5− 10y)f if 0.1 < r < 0.115,

0 if r > 0.115,

u20(x, y) =





10x− 5 if r < 0.1,

(10x− 5)f if 0.1 < r < 0.115,

0 if r > 0.115,

B0(x, y) =

(
2.5√
4π
, 0

)⊤

, A0(x, y) =
2.5√
4π
y,

where r :=
√
(x− 0.5)2 + (y − 0.5)2, f := (23− 200r)/3 and the gas constant is γ = 5/3. The simulation

runs until time T = 0.295.
In order to numerically analyze the conservative properties of the FV-FEEC scheme tested on the

rotor problem, Table 4 reports the error (5.3) on the conserved variables.

♯Th Er(ρ) E(ρu1) E(ρu2) Er(B1) E(B2) Er(E)

200× 200 4.3462e−04 4.1243e−11 2.3873e−12 4.8734e−04 3.0872e−04 9.3236e−04

400× 400 8.2870e−05 9.7000e−12 4.3911e−11 9.9092e−05 6.5086e−08 1.7748e−04

800× 800 5.5013e−06 3.5593e−11 4.5438e−10 6.7642e−06 1.1632e−10 1.1712e−05

1600× 1600 1.0410e−07 1.6785e−08 5.7213e−07 1.3463e−07 1.7050e−09 2.2139e−07

Table 4: Rotor problem. Conservation properties of the FV-FEEC scheme. ‘‘Error’’ (5.3) of the MHD conserved
variables at different mesh resolutions.

The FV-FEEC performs robustly also in the rotor test, as attested by Figure 12. The scheme captures
many of the features of the MHD rotor flow being however rather diffusive when compared with the
second order reference solution.

5.3.5 Blast Wave Problem

As a last test case, we consider the isothermal blast wave problem proposed in [5, Section 6.2.2]. Note that
we did not develop a numerical scheme tailored to the isothermal MHD model, we rather “emulated” the
isothermal behavior by setting the ratio of specific heats close to unitary (γ = 1.001 in the forthcoming
simulations). The blast wave benchmark is numerically challenging because it is characterized by a
highly anisotropic explosion spreading out from a high density cloud initialized in a circular region of the
domain. As pointed out in [5], failing to provide a control of the divergence of the induction field can
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Figure 12: Rotor problem. Numerical solution on a 1600× 1600 Cartesian mesh obtained with the lowest order
FV-FEEC scheme and Heun timestepping with CCFL = 0.4. Finite volume scheme for the extended Euler equations
based on the HLL approximate Riemann solver. The color map of the pressure plot is scaled to the extrema of
the reference solution on a 3200× 3200 mesh, shown on the top right plot.

engender detrimental small-scale fluctuations. In the domain Ω = [0, 1]2 the initial data are,

ρ0(x, y) = p0(x, y) =





100 if
√
(x− 0.5)2 + (y − 0.5)2 < 0.05,

1 otherwise,

u0(x, y) = 0,

B0(x, y) =

(
5√
π
, 0

)⊤

, A0(x, y) =
5√
π
y.

The simulation spans the time interval I = [0, 0.09]. Boundary conditions are of non-reflecting Neumann-
type for the extended Euler variables, and the velocity field gives no inflow boundary.

The conservative properties of the scheme are numerically gauged in Table 5 where the error defined
in (5.3) on the conserved variables is reported.

♯Th Er(ρ) E(ρu1) E(ρu2) Er(B1) E(B2) Er(E)

200× 200 8.5943e−14 1.3769e−12 5.8536e−11 7.8382e−15 4.3338e−11 8.9687e−14

400× 400 2.6538e−15 8.6998e−12 7.5751e−10 1.7876e−15 1.7969e−10 3.9629e−15

800× 800 2.0471e−15 1.8790e−11 1.4140e−09 2.8231e−15 1.1313e−10 9.6211e−15

1600× 1600 2.1693e−14 7.6349e−08 6.4150e−07 9.9568e−14 5.3582e−09 1.8401e−14

Table 5: Blast wave test. Conservation properties of the FV-FEEC scheme. ‘‘Error’’ (5.3) of the MHD conserved
variables at different mesh resolutions.

Numerical instabilities are a typical outcome of the blast wave test even for lowest order finite volume
approximations of the full MHD system, see [21, pp. 356-357]. The blast wave MHD flow is characterized
by outward- and inward-going fast magnetosonic shock and the magnetic induction field experiences
a strong compression on account of the explosion. As it can be observed in Figure 13, the FV-FEEC
scheme is robust, oscillations-free and it approximates the shocks rather sharply. The second row of
Figure 13 shows the magnetic induction field lines: no fluctuations are observed, not even in the middle
of the computational domain (compare with [5, Figure 9] and [21, Figure 8]).
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Figure 13: Blast wave test. Numerical discretization on a 1600×1600 Cartesian mesh with lowest order FV-FEEC
scheme and Heun timestepping, CCFL = 0.4. Finite volume scheme for the extended Euler equations using HLL
approximate Riemann solver.

6 Concluding Remarks

We have developed a family of numerical methods to solve the single-fluid standard MHD problem by
coupling two different spatial discretizations of fluid and electromagnetic variables. The evolution of
the electromagnetic fields relies on FEEC-based finite element approximations which ensure that the
divergence constraint is satisfied exactly, and no mesh-staggering of fluid and electromagnetic variables,
typical of constrained transport and “central schemes” for hyperbolic problems, is required. The extrusion
contraction upwind schemes for the generalized advection problem are characterized by an intrinsic
upwinding, which acts as a linear stabilization in the presence of boundary and internal layers. Moreover,
the resulting discrete Lie derivative commutes with the exterior derivative which implies that closed
discrete forms are Lie advected into closed forms, and hence both a potential-based and a B-based
formulations can be used without compromising the divergence constraint. Although supported by
numerical evidence, a rigorous stability and convergence analysis of the extrusion contraction upwind
schemes is still an open problem.

Concerning the fluid dynamics part of the MHD model, we treated the balance equations for the fluid
as a system of conservation laws with a varying coefficient, the magnetic induction field. Finite volume
schemes have been used for the numerical discretizations of the extended Euler equations and they hinge
on approximate Riemann solvers tailored to accommodate the presence of the magnetic induction as in
[22]. The further adaptation of this construction to design numerical fluxes yielding a discrete version of
the entropy inequality would pave the way to entropy stable schemes of arbitrarily high order.

Coupling the FEEC-based methods for the magnetic advection with the finite volume schemes for the
fluid results in numerical methods for the ideal MHD system. The lowest order FV-FEEC schemes are
first order accurate for smooth solutions, possess built-in structure preserving properties, and perform
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robustly in many challenging MHD benchmark tests. The promising numerical results obtained when
using discretizations of the electromagnetic fields based on discrete differential forms, even in the presence
of complex flows, suggest that structure preserving conforming discretizations can be competitive also in
computational fluid dynamics, typically preserve of finite volume and discontinuous Galerkin methods.
Analogous splitting-based numerical methods for the MHD system obtained via fully discontinuous
Galerkin discretizations of the potential-based advection problem (by staggering the magnetic potential
with respect to the fluid variables similarly to a Yee-type scheme [63]) yield unphysical solutions on some
challenging benchmark tests, as documented in [52, Section 7.2].

Beyond ideal MHD, extending the FV-FEEC approach to resistive MHD (1.1) is straightforward: We
need only augment the discrete magnetic transport equation with a conventional conforming Galerkin
discretization of the diffusion operator. As easy is the seamless coupling of the resistive MHD model (1.1)
with a standard eddy current model in order to cover situations as outlined in Figure 14. If the plasma is
confined to a bounded region in space, zero outflow conditions can be imposed for the fluid model at
its boundary, whereas the FEEC discretization of the A-based formulation of the magneto-quasistatic
equations can be used everywhere. It will ensure tangential continuity of both the magnetic vector
potential and of the magnetic field (in a weak sense) across the plasma boundary.

Plasma domain:

A-based resistive MHD model (1.1)-(2.1)

Plasma boundary: u · n = 0

Magnetostatic domain (σ = 0): curlµ−1(x)curlA = 0, divA = 0

Metal electrodes (σ > 0)
Eddy current domain:

curlµ−1(x)curlA+ ∂t(σ(x)A) = 0

Truncation boundary: µ−1(x)curlA = g, A · n = 0
(g 6= 0 at contacts to model current excitation)

Figure 14: High-current circuit breaker set-up: resistive MHD inside an air chamber has to be coupled with an
eddy current model outside. The symmetric positive semi-definite tensors σ = σ(x) and µ = µ(x) represent the
spatially varying fluid electric conductivity and magnetic permeability, respectively.

6.1 Towards Higher Order FV-FEEC Schemes

The promising numerical results obtained with the lowest order FV-FEEC discretizations can be a
starting point for the design of second and higher order accurate schemes. The ‘‘synchronization’’ of the
coupling step in Algorithm 1 ensures that no additional error associated with the splitting is introduced.
We can therefore identify two main components in the derivation of formally high order FV-FEEC
schemes:

1. A high order discretization of the transient advection problem, able to supply a magnetic induction
field accurate to the same order and endowed with a nonlinear mechanism for damping oscillations,
capable of ensuring some TVD-like property without affecting the accuracy of the scheme;

2. A high order extension of the finite volume schemes for the extended Euler equations via recon-
struction and limiting, with controls on the preservation and evolution of physically admissible
states.

Concerning the first aspect, when resorting to the potential-based formulation of the advection problem,
high order numerical schemes should ideally curb the emergence of spurious oscillations in both the



29

magnetic potential and the magnetic induction field. Except for the constrained transport method
with TVD slope limiters based on “wave differences” developed in [56], numerical strategies to tackle
Gibbs phenomena in some derivative of the solution have rarely been considered. In the context of
extrusion contraction upwind schemes, entropy viscosity methods [28, 29] seem particularly attractive
for the aforementioned task since they are based on the addition of a degenerate nonlinear diffusion
term tuned locally by a numerical viscosity proportional to the local entropy production. Specifically,
the commutativity of the exterior derivative and the discrete Lie derivative allows the construction of
nonlinear residual-based viscosity schemes for the advection of the magnetic potential, based, however,
on the (entropy) residual of the magnetic induction equation. Preliminary results in this direction can be
found in [52, Section 4.4]. In the alternative situation occurring when directly discretizing the magnetic
induction problem, one should rely on the addition of artificial magnetic diffusion, based again on the
induction residual. The augmented discrete operator obtained from the Lie derivative plus the second
order artificial diffusion will still satisfy a commuting diagram property. On the other hand, it is not
straightforward to gauge the effectiveness of the artificial viscosity since the nonlinear second order
stabilization will have no impact on the kernel of the exterior derivative.

High order finite volume schemes for the extended Euler equations can be designed via ENO and
WENO reconstruction techniques [31, 59]. The resulting schemes prove numerically robust and provide
non-oscillatory solutions [52, Section 6.3.2], but they are not provably positively conservative. Devising a
positivity fix for the finite volume discretizations of the extended Euler system in order to guarantee
admissible updated and evolved fluid variables seems a challenging task since the lowest order scheme itself
is not provably positively conservative. These issues represent intriguing topics for further investigation.

Acknowledgment. The authors thank Siddhartha Mishra for many fruitful discussions and helpful
comments. This work was partially supported by Swiss NSF Grant No. 146355.

A Magnetic Advection-Diffusion for the Magnetic Potential

The magneto-quasistatic Maxwell’s equations (eddy current model) for conductors moving with velocity
u reads

curlE+ ∂tB = 0, (Faraday’s law) B = µH, (material law)

curlH = J, (Ampère’s law) J = σ(E+ u×B), (Ohm’s law)

divB = 0, (Gauss’ law)

where E is the electric field, H the magnetic field and J the electric current, σ = σ(x) is the electric
conductivity and µ = µ(x) the magnetic permeability.

By considering the electric field in the moving frame Ẽ := E+ u×B, one can write curlH = σẼ
and curlẼ = −(∂tB+ curl(B× u) + udivB) yielding the magnetic induction equation (1.1d)

curlσ−1curlH+ ∂tB+ curl(B× u) + udivB = 0.

Alternatively, the eddy current model can be equivalently reformulated in terms of the magnetic vector
potential (A-based formulation). The constraint divB = 0 implies that the magnetic induction field B

can be written as B = curlA. Using again the electric field Ẽ,

curlẼ = −(∂tB+ curl(B× u)) = curl(−∂tA− curlA× u)− curl(grad(u ·A)),

where the last term evaluates to zero. Therefore, Ẽ = −∂tA− curlA×u− grad(u ·A)− gradϕ, where ϕ
is a scalar potential. Thanks to gauge freedom we may opt for the Weyl or temporal gauge and set ϕ = 0.
Then, using the material law H = µ−1B = µ−1curlA we arrive at the transient advection-diffusion
equation (2.1) for the magnetic potential,

curl(µ−1curlA) + σ(∂tA+ curlA× u+ grad(u ·A)) = 0.

The parameters σ(x) and µ(x) are assumed to be spatially varying positive semi-definite tensors. Moreover,
suitable initial and boundary conditions have to imposed. We refer to [52, Section 2.2] for an analogous
manipulation of the eddy current model in the framework of exterior calculus.
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