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SYMMETRIC INTERIOR PENALTY DISCONTINUOUS

GALERKIN METHODS FOR ELLIPTIC PROBLEMS IN

POLYGONS

FABIAN MÜLLER, DOMINIK SCHÖTZAU, AND CHRISTOPH SCHWAB

Abstract. We analyze symmetric interior penalty discontinuous Galerkin fi-
nite element methods for linear, second-order elliptic boundary-value problems
in polygonal domains Ω where solutions exhibit singular behavior near corners.
To resolve corner singularities, we admit both, graded meshes and bisection
refinement meshes. We prove that judiciously chosen refinement parameters in
these mesh families imply optimal asymptotic rates of convergence with respect
to the total number of degrees of freedom N , both for the DG energy norm
error and the L2-norm error. The sharpness of our asymptotic convergence
rate estimates is confirmed in a series of numerical experiments.

1. Introduction

The error analysis of discontinuous Galerkin finite element methods (DGFEMs)
for elliptic problems is by now well developed. For various h-version DG formu-
lations, optimal energy norm and L2-norm error estimates with respect to the
mesh-width h are provided in, e.g., [2, 17, 18], and the references therein. We
remark that L2-optimality typically requires adjoint-consistent DG discretizations,
as introduced in [2].

Most of the DG error analyses available in the literature are based on sufficient
smoothness of weak solutions and on quasi-uniformity assumptions for the mesh
sequences. In addition, to derive L2-norm error bounds, an H2-regularity hypoth-
esis for the solution of a suitable dual problem is usually imposed. While these
smoothness properties hold true in smooth or convex domains, they are known to
be false in general polygonal domains, due to the appearance of singular solution
components near corners [10]. One way to characterize the singular behavior of so-
lutions is by means of suitably weighted Sobolev spaces and corresponding elliptic
regularity shifts of second, and higher order in these spaces. Here, we shall focus on

the weighted spaces Hk,l
δ (Ω) and shifts as introduced and analyzed in [4, 3] in the

context of conforming hp-version FEMs. For related, finite order elliptic regularity
results in polygonal and polyhedral domains, we further refer to [10, 14, 8].

To resolve corner singularities in fixed order, conforming h-version discretiza-
tions, in recent years several types of local mesh refinement strategies have been
proposed and investigated. In [5], conforming piecewise linear FEMs on so-called
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graded regular simplicial meshes were shown to capture singularities at the opti-
mal H1-norm convergence rate N−1/2 with respect to N , the number of degrees of
freedom. More recent variants of approximation rate bounds on families of graded
meshes, also for FE spaces of polynomial degree p ≥ 1 on graded, regular simplicial
meshes in Ω can be found in [7, 1]. A public domain mesh generator for graded
meshes in polygonal domains Ω is available in the LNG FEM software package [13].
An alternative approach to build locally refined meshes is based on local refinement
refinement via newest vertex bisection; see, e.g., [15, 16]. Indeed, in [9], a bisection
refinement algorithm was proposed and it was proved that it creates mesh sequences
which resolve singular solution components at optimal H1-norm rates N−p/2 with
respect to N .

The work in [21] was the first to study (symmetric and non-symmetric) interior
penalty (IP) discontinuous Galerkin methods for elliptic problems with solutions in
the weighted spaces of [4, 3]. By introducing new technical tools to handle singular
solution components, it established the boundedness and consistency of the interior
penalty forms. It further showed and verified numerically that on graded meshes as
in [5], algebraic convergence rates of the optimal order N−p/2 are obtained for the
DG norm errors. In [22], these consistency and stability properties were employed
to show exponential convergence rates for hp-version interior penalty methods for
problems with piecewise analytic solutions. For other work on the analysis of DG
methods for elliptic problems with low-regularity solutions, we also refer to [17,
Section 4.2.5], [23] and the refences therein.

In this paper, we build on, refine and extend the results of [21]. More specifically,
we focus here on symmetric IP methods which are adjoint-consistent. Based on the
weighted spaces of [4, 3], we consider IP approximations on graded and bisection
refinement meshes which are locally refined towards corners of the domain. Using
the techniques of [21], we establish continuity bounds for the IP forms with respect
to suitable norms, show Galerkin orthogonality and derive optimal energy error
estimates in terms of N . In addition, we derive an optimal L2-norm error bound.
While our approach proceeds roughly along the lines of standard arguments as
in [2] and is based on duality, we now employ elliptic regularity with respect to

the weighted spaces H l,k
δ (Ω). Hence, unlike in previous works, we do not need to

impose any extra (and unrealistic) regularity assumptions. Our continuity proper-
ties ensure the well-definedness of the various integral terms which appear in the
derivation of the L2-norm convergence rate bound.

To complete our error analysis, we present proofs that graded and bisection
refinement meshes yield optimal approximation bounds, both for the primal and
the dual solutions. To this end, we reexamine the error bound obtained in [21,
Proposition 2.5.5] for graded meshes; we extend it to an estimate of the error in
a slightly stronger norm and for a wider range of regularity orders. Moreover, for
bisection refinement meshes, we establish a completely new variant of the approx-
imation results in [9, Theorems 5.2 and 5.3] for weighted spaces and with respect
to our consistency norm. Finally, we verify our theoretical statements in a series
of numerical tests for bisection refinement meshes. Detailed numerical experiments
for graded meshes are available in [21].

The paper is structured as follows: In Section 2, we introduce our elliptic model
problem in polygonal domains and review regularity shifts in weighted spaces. In
Section 3, we recall the symmetric IP method. Our main results are stated and
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discussed in Section 4 (Theorem 4.3). Section 5 contains the detailed proofs of our
error estimates. In Section 6, numerical experiments are presented, verifying the
sharpness of our theoretical estimates. Finally, in Section 7, conclusions are offered
and potential extensions are outlined.

Throughout, we use standard notation. In particular, for a domain G ⊆ R
d,

d = 1, 2 and q ∈ [1,∞], the Lebesgue space of q-integrable functions is denoted
by Lq(G). For k ∈ N, the classical Sobolev spaces of functions in Lq(G) with q-
integrable derivatives of order up to k will be denoted by W k,q(G), and by Hk(G)
if q = 2.

2. Model Problem

We introduce polygonal domains, define our model problem and review regularity
shifts in weighted Sobolev spaces.

2.1. Polygonal domain. An open and bounded domain Ω ⊆ R
2 is called polygonal

if its boundary ∂Ω can be written as a finite union of M ∈ N open and straight line
segments ei of positive surface measure:

∂Ω =

M⋃

i=1

ei and

∫

ei

dS > 0 , 1 ≤ i ≤ M . (2.1)

The vertices of the polygon Ω are given by ci := ei ∩ ei+1, 1 ≤ i ≤ M, with the
understanding that eM+1 = e1. We assume the vertices to be numbered clockwise.
We introduce the set of all vertices as S := { ci : 1 ≤ i ≤ M }. The interior
opening angle of the domain at ci is measured in positive orientation and denoted
by ωi ∈ (0, 2π]. The case ωi = 2π arises in models of fracture mechanics. Although
in this case the domain Ω is not Lipschitz, it can be written as finite union of
Lipschitz domains, so that all statements on variational formulations remain valid
in this case. To discuss the solution regularity in the vicinity of corners, we associate
with each corner local conical domains defined by

Ωi := {x ∈ Ω : |x− ci| < Ri } , 1 ≤ i ≤ M, (2.2)

where 0 < Ri < 1
2 mini6=j |ci − cj |. This implies that the cones Ωi are mutually

disjoint and ∂Ωi ∩ ∂Ω ⊂ ei ∪ ei+1. Hence, Ωi is contained in a infinite cone with
opening angle ωi and vertex ci.

2.2. Elliptic boundary-value problem. Let now Ω be a polygonal domain. We
denote by D and N the index sets of all boundary segments ei, on which Dirichlet
and Neumann boundary conditions will be applied, respectively. This leads to the
partition ∂Ω = ΓD∪ΓN , where ΓD = ∪i∈Dei and ΓN = ∪i∈N ei. We further denote
by ν the outward unit normal vector on the boundary ∂Ω. Let c ∈ C∞(Ω) be a
smooth real-valued diffusion coefficient such that

c∗ ≤ c(x) ≤ c∗, x ∈ Ω, (2.3)

for constants 0 < c∗ < c∗ < ∞. Assume given in Ω a forcing term f , on ΓD a
Dirichlet datum gD and on ΓN a Neumann boundary datum gN . The smoothness
assumptions on the data will be made precise subsequently in Proposition 2.3 and
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Remark 2.4. We consider the diffusion problem:

−∇ · (c∇u) = f in Ω , (2.4)

u = gD on ΓD , (2.5)

ν · (c∇u) = gN on ΓN . (2.6)

The standard weak form of problem (2.4)–(2.6) reads: Find u ∈ H1(Ω) such
that u|ΓD = gD on ΓD and

a(u, v) :=

∫

Ω

c∇u · ∇v dx =

∫

Ω

f v dx+

∫

ΓN

gN v dS (2.7)

for all v ∈ H1
ΓD

(Ω) := { v ∈ H1(Ω) : v|ΓD = 0 }. If D 6= ∅, problem (2.7)

has a unique solution provided that gD can be stably lifted in H1(Ω) and that the
linear functionals on the right-hand side of (2.7) belong to H1

ΓD
(Ω)⋆, the dual space

of H1
ΓD

(Ω). In the pure Neumann case (i.e., D = ∅), the trial and test functions u

and v are taken in the factor space H1(Ω)/R, i.e., weak solutions are equivalence
classes which differ by constants. For existence, the data f and gN must satisfy the
compatibility condition

∫
Ω f dx+

∫
∂Ω gN dS = 0, which will always be assumed to

hold in this case.

2.3. Weighted Sobolev spaces. With each vertex ci of Ω, we assign a weight
exponent δi ∈ R and introduce the weight exponent vector δ = {δi}Mi=1. For a
scalar ξ ∈ R, we define δ + ξ by {δ + ξ}i := δi + ξ. Similarly, inequalities of the
form δ < ξ are understood componentwise. For δ ∈ R

M, we define the weighted
distance function Φδ by

Φδ(x) :=

M∏

i=1

ri(x)
δi , (2.8)

where ri(x) = |x− ci|.

Remark 2.1. To localize the weight function Φδ in (2.8), we decompose Ω into

Ω := Ω0 ∪
(
∪M

i=1 Ωi

)
, (2.9)

where Ω0 = Ω \ ∪M

i=1Ωi and where Ωi is the cone in (2.2). If δ ∈ [0, 1)M, then we
have

C−1
dc ≤ ri(x)

δi ≤ Cdc, x ∈ Ω0, 1 ≤ i ≤ M, (2.10)

C−1
dc Φδ(x) ≤ rδii (x) ≤ Cdc Φδ(x), x ∈ Ωi, 1 ≤ i ≤ M, (2.11)

for a constant Cdc > 0 depending on the radii Ri in (2.2).

Given integers k ≥ l ≥ 0, we next define the weighted Sobolev spaces Hk,l
δ (Ω) as

the completion of C∞(Ω) with respect to the norm ‖v‖Hk,l
δ

(Ω) given by

‖v‖2
Hk,l

δ
(Ω)

:=





|v|2
Hk,0

δ
(Ω)

, l = 0,

‖v‖2Hl−1(Ω) + |v|2
Hk,l

δ
(Ω)

, l ≥ 1.
(2.12)

The semi-norm |v|Hk,l
δ

(Ω) is given by

|v|2
Hk,l

δ
(Ω)

:=

k∑

m=l

‖Φδ+m−l |D
mv|‖2L2(Ω) . (2.13)
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Here, we adopt the notation |Dmv|2 :=
∑

|α|=m |Dαv|2, with D
αv denoting the

partial derivative of v with respect to the multi-index α ∈ N
2
0. We shall also make

use of the weighted spaces Hk,l
δi

(Ω), their associated norms ‖v‖Hk,l
δi

(Ω) and semi-

norms |v|Hk,l
δi

(Ω), which are defined completely analogously, but with respect to the

weight ri(x)
δi . Furthermore, over subdomains Ω′ ⊆ Ω the weighted spaces and

norms are defined by replacing the domains of integration by Ω′.

Trace spaces of the weighted spacesHk,l
δ (Ω) are defined as follows. Let γ ⊆ ∂Ω be

the union of some line segments ei. For k ≥ 1, k ≥ l ≥ 0, we define H
k−1/2,l−1/2
δ (γ)

as the space of all functions φ : γ → R such that there is a function Φ ∈ Hk,l
δ (Ω)

with Φ|γ = φ. The associated norm is defined by

‖φ‖
H

k−1/2,l−1/2
δ

(γ)
:= inf{ ‖Φ‖Hk,l

δ
(Ω) : Φ|γ = φ } ; (2.14)

see also [4, Section 1.4]. The following properties hold.

Lemma 2.2. Let δ ∈ [0, 1)M. There holds:

(i) We have the continuous embeddings

Hk,2
δ (Ω) →֒ H2,2

δ (Ω) →֒ C0(Ω) , k ≥ 2. (2.15)

(ii) For k ≥ l ≥ 1, let v ∈ Hk,l
δ (Ω) and let α ∈ N

2
0 be such that |α| ≤ l. Then

we have D
αv ∈ H

k−|α|,l−|α|
δ (Ω) and

‖Dαv‖
H

k−|α|,l−|α|
δ

(Ω)
≤ ‖v‖Hk,l

δ
(Ω) . (2.16)

(iii) Let f ∈ H0,0
δ (Ω). Then

∫
Ω fv dx is a linear continuous functional on H1(Ω)

and
∣∣
∫

Ω

fv dx
∣∣ ≤ C|f |H0,0

δ
(Ω)‖v‖H1(Ω), v ∈ H1(Ω), (2.17)

with C > 0 depending on δ.
(iv) Let gN ∈ H1/2,1/2(ΓN ). Then

∫
Ω gNv dS is a linear continuous functional

on H1(Ω) and

∣∣
∫

ΓN

gNv dS
∣∣ ≤ C‖gN‖

H
1/2,1/2
δ

(ΓN )
‖v‖H1(Ω), v ∈ H1(Ω), (2.18)

with C > 0 depending on δ.

Proof. The proof of the second embedding in (2.15) can be found in [5, page 449].
The first inclusion in (2.15) is trivial. Property (2.16) is straightforward. Finally,
the bounds (2.17) and (2.18) are proved in [4, Lemma 2.10 and Lemma 2.11]. �

2.4. Regularity in weighted spaces. We base our analysis on the following ellip-
tic regularity shift in weighted Sobolev spaces, which is a consequence of Remark 3
and Lemma 3.2 in [4]. In the lowest-order case, we also refer to [5, Theorem 3.2].
Equivalent results (with differently defined weighted spaces) are established in [8,
Sections 4 and 7.1].

Proposition 2.3. There exist parameters δ∗i > 0 (depending on the domain Ω, the
sets D, N and the coefficient c) such that for weight exponents δ ∈ [0, 1)M with

1− δ∗i < δi < 1, 1 ≤ i ≤ M, (2.19)
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the following elliptic regularity shifts hold: for k ≥ 1, f ∈ Hk−1,0
δ (Ω), gD ∈

H
k+1/2,3/2
δ (ΓD) and gN ∈ H

k−1/2,1/2
δ (Ω), the weak solution u ∈ H1(Ω) of (2.7)

exists (see (2.17) and (2.18)) and belongs to Hk+1,2
δ (Ω). Moreover, we have the

stability bound

‖u‖Hk+1,2
δ

(Ω) ≤ Cstab,k

(
‖f‖Hk−1,0

δ
(Ω) + ‖gD‖Hk+1/2,3/2

δ
(ΓD)

+ ‖gN‖
H

k−1/2,1/2
δ

(ΓN )

)
,

with a stability constant Cstab,k > 0 that is independent of the data (but depends on
the order k, the domain Ω, the sets D, N , and the coefficient c).

Remark 2.4. Notice that 1−δ∗i in (2.19) can be negative. In this case, the condition
δi > 1−δ∗i is considered void as it imposes no restriction on the range of δi ∈ [0, 1).
Moreover, in view of Proposition 2.3, we will always assume the minimum regularity

f ∈ H0,0
δ (Ω), gD ∈ H

3/2,3/2
δ (ΓD), gN ∈ H

1/2,1/2
δ (ΓN ) . (2.20)

This ensures that the solution of (2.7) belongs to H2,2
δ (Ω).

Remark 2.5. In the case of the Laplacian (where c = 1), the parameter δ∗i at
corner ci = ei ∩ ei+1 is well-known and given by

δ∗i =

{
π
ωi

if {i, i+ 1} ∈ D or {i, i+ 1} ∈ N ,
π

2ωi
otherwise;

(2.21)

see, e.g., [4, Remark 3] or [8, Example 7.2].

3. Discontinuous Galerkin Discretization

We introduce the symmetric interior penalty finite element method for the nu-
merical approximation of problem (2.4)–(2.6), and review the discrete coercivity
and continuity of the IP bilinear form.

3.1. Meshes, edges and trace operators. Let T be a partition of Ω into straight-
sided triangles K. For ease of presentation, we consider regular triangulations and
comment on extensions to irregular meshes in Section 7. The triangulations are
supposed to be sufficiently fine so that each element K contains at most one ver-
tex ci. For K ∈ T , we denote by Pp(K) the polynomials on K of total degree at
most p, and by νK the unit outward normal vector on ∂K.

Furthermore, we write hK and ρK for the diameter and inradius of K ∈ T ,
respectively. The mesh-width of T is given by h = h(T ) := maxK∈T hK . We
assume the triangulations to be shape-regular: There exists a constant κ > 0 such
that there holds, for all K ∈ T , and uniformly in the mesh sequence,

κhK ≤ ρK ≤ κ−1hK . (3.1)

Edges are defined as follows. If K and K ′ are adjacent elements of the triangu-
lation T with

∫
∂K∩∂K′ dS > 0, we call the intersection e = ∂K ∩ ∂K ′ an interior

edge. Elemental edges of K are supposed to lie at most on one boundary seg-
ment ei, and if

∫
∂K∩ei

dS > 0, we call the intersection e = ∂K ∩ ei a boundary

edge; it belongs to either ΓD or ΓN . Accordingly, we distinguish between Dirich-
let and Neumann edges. The set of interior edges of a triangulation T is denoted
by EI(T ), the set of Dirichlet boundary edges by ED(T ), and the set of Neumann
boundary edges by EN (T ). Moreover, we define EID(T ) := EI(T ) ∪ ED(T ) and
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E(T ) := EI(T ) ∪ ED(T ) ∪ EN (T ). For e ∈ E(T ), we denote by Pp(e) the poly-
nomials of degree at most p on e, and by he = |e| the length of e. With the
shape-regularity assumption (3.1), it can be readily verified that

κhK ≤ he ≤ hK , (3.2)

for all e ⊂ ∂K with e ∈ E(T ).
Following [2], we introduce the standard trace operators. Let K+,K− ∈ T be

two adjacent elements which share the interior edge e = ∂K+ ∩ ∂K− ∈ EI(T ). For
a sufficiently smooth scalar function v or vector field q, we denote the traces of v
and q on e taken from within K± by v± and q±, respectively. We then define the
jumps and the averages of v and q along e by

[[v]] := v+νK+ + v−νK− , 〈〈v〉〉 :=
1

2
(v+ + v−) , (3.3)

[[q]] := q+ · νK+ + q− · νK− , 〈〈q〉〉 :=
1

2
(q+ + q−) . (3.4)

If e ∈ ED(T ) is a Dirichlet boundary edge, we similarly set [[v]] := v|eν, [[q]] = q|e ·ν,
as well as 〈〈v〉〉 := v|e, 〈〈q〉〉 := q|e.

3.2. Discretization. For an approximation order p ≥ 1 and a given triangula-
tion T of Ω, we introduce the discontinuous finite element space

Vp(T ) := {v ∈ L2(Ω) : v|K ∈ Pp(K), K ∈ T } . (3.5)

Then, the symmetric interior penalty discretization of (2.7) reads as follows: Find
uN ∈ Vp(T ) such that

aDG(uN , vN ) = lDG(vN ) (3.6)

for all vN ∈ Vp(T ). Here, aDG(·, ·) is the symmetric interior penalty form given by

aDG(v, w) :=
∑

K∈T

∫

K

c∇v · ∇w dx− rDG(v, w)

− rDG(w, v) +
∑

e∈EID(T )

∫

e

je[[v]] · [[w]] dS ,
(3.7)

with the off-diagonal form

rDG(v, w) :=
∑

e∈EID(T )

∫

e

〈〈c∇v〉〉 · [[w]] dS . (3.8)

The linear form lDG(·) on the right-hand side in (3.6) is defined as

lDG(w) :=
∑

K∈T

∫

K

fw dx−
∑

e∈ED(T )

∫

e

gD(c∇w) · ν dS

+
∑

e∈ED(T )

∫

e

jegDw dS +
∑

e∈EN (T )

∫

ΓN

gNw dS .

(3.9)

In (3.7), (3.9), we define the interior penalty function j edgewise as

je := j0 c|eh
−1
e , e ∈ EID(T ) , (3.10)

where j0 > 0 is a sufficiently large as specified below and where we recall that he

denotes the length of e.
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Remark 3.1. In Section 5.2, we show the boundedness of all the terms in (3.7)–

(3.9) whenever v or w are weighted functions in H2,2
δ (Ω). In particular, for el-

ements K abutting at corners and edges e running into corners, the integrals
in (3.7)–(3.9) are understood as bounded bilinear forms over L1(K)× L∞(K) and
L1(e)× L∞(e), respectively.

Remark 3.2. The number of degrees of freedom of the discretization (3.6) is defined
as

N = N(p, T ) := dim(Vp(T )). (3.11)

We are interested in achieving convergence N → ∞ by reducing the mesh-width
h → 0 at a fixed (typically low) polynomial degree p ≥ 1, which is known as the h-
version of the finite element method. In the following, we derive optimal algebraic
convergence rates with respect to N for the DG method (3.6) on locally refined
meshes.

3.3. DG norm and discrete stability. For a partition T of Ω, we introduce the
broken H1-space

H1(T ) := { v ∈ L2(Ω) : v|K ∈ H1(K), K ∈ T }, (3.12)

which we endow with the DG energy norm

|||v|||2DG :=
∑

K∈T

‖c1/2∇v‖2L2(K) + J(v), J(v) :=
∑

e∈EID(T )

‖j1/2e [[v]]‖2L2(e) . (3.13)

Notice that for D 6= ∅, the mapping v 7→ |||v|||DG is a norm on H1(T ). In the pure
Neumann case, however, the expression |||v|||DG is zero if and only if v is a constant,
and hence it is a norm modulo constants.

The following discrete stability properties over the broken FE space Vp(T ) are
well-known; we refer for example to [2] or [17].

Lemma 3.3. There exists j∗ > 0 and constants Ccoer > 0, Ccont > 0, which are
independent of the mesh-widths, but depend on κ in (3.1), the bounds in (2.3) and
the polynomial degree p, such that for j0 > j∗ there holds

aDG(vN , vN ) ≥ Ccoer|||vN |||2DG, vN ∈ Vp(T ), (3.14)

|aDG(vN , wN )| ≤ Ccont|||vN |||DG|||wN |||DG, vN , wN ∈ Vp(T ) . (3.15)

4. Main Results

We introduce two types of mesh families with local refinement towards corners.
Then, we state and discuss our main results: optimal energy norm and L2-norm con-
vergence rate estimates for IP discretizations of arbitrary order (see Theorem 4.3),
on either type of mesh family with sufficiently strong refinement in the vicinity of
corners.

4.1. Graded mesh families. We first recall the definition of graded mesh families
as introduced in [5].

Definition 4.1. A shape-regular family of regular triangulations Tβ is called graded
towards the vertices in S with grading vector β = (β1, . . . , βM), if there exists a
uniform constant CG > 0 such that for all elements K ∈ Tβ in each triangulation,
one of the following conditions hold:

(i) If K ∈ Tβ \ K(Tβ), then CG
−1hΦβ(x) ≤ hK ≤ CGhΦβ(x) for all x ∈ K.
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(ii) If K ∈ K(Tβ), then C−1
G sup

x∈K Φβ(x) ≤ hK ≤ CGh supx∈K Φβ(x).

In [21, Proposition 2.5.5], it has been shown that IP methods for elliptic problems
on graded mesh families converge optimally in the DG energy norm (but not in the
L2-norm). We will establish a refinement of this result for our convergence analysis.
Other examples of graded mesh families and their constructions are well-known by
now. We refer to [7, 1] and the software package LNG FEM in [13]. The finite
element spaces constructed on these mesh families, however, are not nested, i.e., an
increase of accuracy in the numerical approximation requires construction of the
entire finer mesh.

4.2. Bisection refinement meshes. An alternative are regular, simplicial mesh
families which are produced by recursive bisection refinement; see, e.g., [15, 16] and
the references therein. Our analysis will be based on the work [9], where a bisection
refinement algorithm has been proposed and analyzed in the context of conforming
finite element methods. Given an initial mesh T0, the algorithm there takes input
parameters h, p, L and a weight exponent γ > 0. In a first loop, it ensures that
all elemental mesh-widths hK are smaller than h. In a second loop, the algorithm
refines 2L + 1 times into the corners using newest vertex bisection, where L is to
be selected in dependence of h, p and γ. This results in a regular mesh denoted
by Th,2(L+1). We emphasize that the bisection refinement meshes constructed from
the regular, simplicial initial mesh T0 gives rise to a shape-regular mesh family,
where the condition (3.1) is satisfied with a constant κ depending on T0. For
conforming finite element methods, it has been shown in [9] that the bisection
refinement algorithm based on choosing suitable parameters captures solutions of
elliptic problems with solutions which allow for decompositions into regular parts
and corner singularities at optimal convergence orders in N . We will generalize this

result to the discontinuous Galerkin framework and to functions in Hk+1,2
δ (Ω); see

Proposition 5.18. Next, we introduce the notion of a locally adapted mesh.

Definition 4.2. Let p ≥ 1 and δ ∈ [0, 1)M be a weight exponent vector. We call a
a family of triangulations T locally adapted to S with respect to δ and p if it is
either

(i) a graded mesh family of meshes Tβ with grading parameters βi ∈ (β∗
i , 1)

where

β∗
i := 1−

1− δi
p

, (4.1)

(ii) or a family of bisection refinement meshes Th,2(L+1) as in [9], obtained by
newest vertex bisection with parameters h, γ ∈ (0, γ∗] and L with

γ∗ := 1−
M

max
i=1

δi > 0 and h ∈ [2−(L+1)γ/(p+1), 2−Lγ/(p+1)). (4.2)

4.3. Optimal error estimates. Our main result establishes optimal energy norm
and L2-norm error bounds on locally adapted meshes with respect to the number N
of total degrees of freedom.

Theorem 4.3. Let δ ∈ [0, 1)M be as in (2.19). For p ≥ 1 and 1 ≤ k ≤ p, let

f ∈ Hk−1,0
δ (Ω), gD ∈ H

k+1/2,3/2
δ (ΓD) and gN ∈ H

k−1/2,1/2
δ (ΓN ). Consider the

solution u ∈ H1(Ω) of (2.4)–(2.6) which is in Hk+1,2
δ (Ω) by Proposition 2.3. Let

T be a mesh which is locally adapted to S with respect to δ and p either via mesh
grading or via recursive bisection refinement as in Definition 4.2. Let uN ∈ Vp(T )
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be the symmetric IP approximation obtained in (3.6) with j0 > j∗. Then, we have
the error bound

|||u− uN |||DG +N1/2‖u− uN‖L2(Ω) ≤ CN−k/2‖u‖Hk+1,2
δ

(Ω) . (4.3)

The constant C > 0 is independent of N , but depends on κ in (3.1), on the param-
eter j0 in (3.10), the bounds in (2.3), the regularity parameter k, the polynomial
degree p, the parameter Cdc in (2.10), (2.11) the stability constant Cstab,2 in Propo-
sition 2.3, the vector δ, and on the parameters for graded and bisection refinement
meshes in Definition 4.2.

Remark 4.4. For k = p (i.e., u ∈ Hp+1,2
δ (Ω)), the estimate (4.3) gives opti-

mal convergence rates of order N−p/2 and of order N−(p+1)/2 for the L2-norm
error, respectively. We remark further that Theorem 4.3 is based on the regular-
ity bound (3.1). Hence, no additional regularity assumptions on the domains are
necessary for the L2-norm estimate.

We further note that in the proof of the L2-norm bound, we implicitly use the
adjoint-consistency of the symmetric IP method in the sense of [2]. This property
does not hold for non-symmetric IP discretizations of (2.4)–(2.6). As a conse-
quence, L2-norm optimality as in Theorem 4.3 and the arguments for its proof can-
not in general be expected to apply for non-symmetric IP methods or for other DG
formulations that do not afford adjoint-consistency. We refer to [18, Section 2.8.2]
for a detailed discussion on L2-norm error estimation for non-symmetric and so-
called incomplete interior penalty methods.

Remark 4.5. The results in Theorem 4.3 remain valid in the pure Neumann case
due to the fact that the nodal interpolants used in our analysis reproduce constants.

5. Proofs

In this section, we detail the proof of Theorem 4.3. We shall frequently use the
short-hand notation a . b for inequalities of the form a ≤ Cb, where C > 0 solely
may depend on κ in (3.1), the bounds in (2.3), the parameter j0 in (3.10), the
polynomial degree p, and the particular exponent vector δ under consideration.

5.1. Preliminaries. In this section, we introduce discrete neighborhoods and es-
tablish some essential embedding properties and trace results for the weighted space

Hk,l
δ (Ω). We further introduce the broken consistency norm which is appropriate

for our analysis; it is a generalization to weighted spaces of the norm used in [2,
Section 4.1].

5.1.1. Auxiliary results. We first recall a number of technical estimates which are
relevant in our analysis. The first result is the trace inequality:

‖v‖qLq(∂K) . h−1
K

(
‖v‖qLq(K)+hq

K‖∇v‖qLq(K)

)
, v ∈ W 1,q(K), 1 ≤ q < ∞ , (5.1)

where the implied constant is independent of hK , but also depends on κ in (3.1) and

on q. This bound follows readily by the trace inequality on a reference triangle K̂
combined with scaling arguments employing affine equivalence. We will use the
polynomial trace inequality

‖q‖L2(∂K) . h
−1/2
K ‖q‖L2(K), q ∈ Pp(K) , (5.2)
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as well as the inverse inequality

‖q‖L∞(e) . h−1/2
e ‖q‖L2(e), q ∈ Pp(e) ; (5.3)

see, e.g., [17, Lemmas 1.46 and 1.50].

5.1.2. Discrete neighborhoods. For a partition T of Ω, we introduce the discrete
neighborhoods

Ni(T ) := {K ∈ T : K ∩Ωi 6= ∅ }, 1 ≤ i ≤ M,

N0(T ) := T \
(
∪M
i=1 Ni(T )

)
.

(5.4)

We always assume the meshes to be sufficiently refined, so that Ni(T )∩Nj(T ) = ∅
for i 6= j.

Remark 5.1. For 1 ≤ i ≤ M, an element K ∈ Ni(T ) can be written as K =
(K ∩ Ω0) ∪ (K ∩Ωi) with K ∩ Ωi 6= ∅. Then, due to (2.10), (2.11), we find that

|v|2
Hk+1,2

δi
(K)

= |v|2
Hk+1,2

δi
(K∩Ω0)

+ |v|2
Hk+1,2

δi
(K∩Ωi)

. |v|2
Hk+1,2

δ
(K∩Ω0)

+ |v|2
Hk+1,2

δ
(K∩Ωi)

. |v|2
Hk+1,2

δ
(K)

,
(5.5)

for any regularity index k ≥ 1.

The following properties are generalizations of the results in [21, Lemmas 1.3.2
and 1.3.4].

Lemma 5.2. For δ ∈ [0, 1)M, there holds:

(i) Let v ∈ H0,0
δ (K) for K ∈ T . Then we have v|K ∈ L1(K) and

‖v‖L1(K) .

{
hK‖v‖H0,0

δ
(K), K ∈ N0(T ) ,

h1−δi
K ‖v‖H0,0

δ
(K), K ∈ Ni(T ), 1 ≤ i ≤ M .

(5.6)

(ii) Let v ∈ H1,1
δ (K) for K ∈ T . Then we have v|∂K ∈ L1(∂K) and

‖v‖L1(∂K) .

{
‖v‖L2(K) + hK |v|H1,1

δ
(K), K ∈ N0(T ),

‖v‖L2(K) + h1−δi
K |v|H1,1

δ
(K), K ∈ Ni(T ), 1 ≤ i ≤ M.

(5.7)

(iii) Let v ∈ H1,1
δ (Ω). Then for any edge e ∈ EI(T ), we have

[[v]]|e = 0 in L1(e). (5.8)

Remark 5.3. The properties in Lemma 5.2 are valid for elements abutting at
corners, for which they have been proved in [21]. We further remark that the first
case inequalities in (5.6) and (5.7) hold true for all elements K ∈ T away from
corners, but without uniform control in weighted norms.

Proof. We prove each item separately.
Proof of (5.6): Let K ∈ Ni(T ) be such that K = (K ∩ Ωi) ∪ (K ∩Ω0), where

either one or both of the intersections are non-empty. Clearly,

‖v‖L1(K) = ‖v‖L1(K∩Ω0) + ‖v‖L1(K∩Ωi).

For the first term, we use the Cauchy-Schwarz inequality and property (2.10) to
obtain

‖v‖L1(K∩Ω0) . area(K ∩ Ω0)
1/2‖v‖H0,0

δ
(K∩Ω0)

. hK‖v‖H0,0
δ

(K) .
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To estimate the second term, we introduce polar coordinates (ri, ϑi) centered at the
vertex ci and apply the Cauchy-Schwarz in combination with (2.11). This yields

‖v‖L1(K∩Ωi) =

∫

K∩Ωi

r−δi
i rδii |v| dx . ‖r−δi

i ‖L2(K)‖v‖H0,0
δ

(K).

To bound ‖r−δi
i ‖L2(K), we set rK = dist(K, ci) = infy∈K |y − ci| ≥ 0. With the

shape-regularity assumption (3.1) and by integrating out over the angular vari-
able ϑi, we conclude that

‖r−δi
i ‖2L2(K) .

∫ ri=rK+hK

ri=rK

r−2δi+1
i dri . r2−2δi

i

∣∣∣
ri=rK+hK

ri=rK
. h2−2δi

K ,

where the last inequality follows since |xα− yα| ≤ |x− y|α for any x, y ∈ [0,∞) and
α ∈ [0, 1). These bounds imply (5.6) in all cases.

Proof of (5.7): The inequality (5.7) is a consequence of the standard trace

inequality (5.1) with q = 1 and the embedding (5.6) applied to ∇v ∈ H0,0
δ (K)2,

taking into account that ‖v‖L1(K) . hK‖v‖L2(K) for v ∈ H1,1
δ (K).

Proof of (5.8): The identity (5.8) is clear for edges e ∈ EI(T ) away from corners.
For an edge e ∈ EI(T ) with e ∩ ci 6= ∅, let x : [0, 1] → e, t 7→ x(t) be an affine

parametrization of e with x(0) = ci. It can be readily seen that
∫ 1

ε |[[v]]|e| dt = 0 for
all ε > 0. By Lebesgue’s dominated convergence theorem (using (5.7)), it follows

that
∫
e |[[v]]| dS = |e|

∫ 1

0 |[[v]]| dt = 0, which is (5.8) for this case. �

5.1.3. Corner elements and consistency norm. In the sequel, a particular role will
be played by the subset Ki(T ) of elements of Ni(T ) abutting at ci, defined by

Ki(T ) := {K ∈ Ni(T ) : K ∩ ci 6= ∅ } , 1 ≤ i ≤ M. (5.9)

We also have Ki(T )∩Kj(T ) = ∅ for i 6= j. We further may assume that K ∈ Ki(T )

is located in the cone Ωi (i.e., K ⊂ Ωi). We then set

K(T ) :=

M⋃

i=1

Ki(T ). (5.10)

For elements away from corners, we next introduce the weighted elemental norm

MK [v]2 := h−2
K ‖v‖2L2(K)+ ‖∇v‖2L2(K)+h2

K‖D2v‖2L2(K), K ∈ T \K(T ). (5.11)

For a corner element K ∈ Ki(T ) and δi ∈ [0, 1), we define

NK,δi [v]
2 := h−2

K ‖v‖2L2(K)+‖∇v‖2L2(K)+h2−2δi
K |v|2

H2,2
δi

(K), K ∈ Ki(T ) . (5.12)

Lemma 5.4. Let δ ∈ [0, 1)M, and v = v0+ vN with v0 ∈ H2,2
δ (Ω) and vN ∈ Vp(T ).

Then:

(i) We have v ∈ C0(K) for K ∈ T and

‖v‖2
C0(K)

.

{
MK [v]2, K ∈ T \ K(T ),

NK,δi [v]
2, K ∈ Ki(T ), 1 ≤ i ≤ M.

(5.13)

(ii) We have ∇v ∈ L1(∂K)2 for K ∈ T and

‖∇v‖2L1(∂K) .

{
MK [v]2, K ∈ T \ K(T ),

NK,δi [v]
2, K ∈ Ki(T ), 1 ≤ i ≤ M.

(5.14)
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Proof. The bound (5.13) follows from the continuous embeddingsH2(K̂) →֒ C0(K̂)

and H2,2
δi

(K̂) →֒ C0(K̂), respectively, formulated for a reference triangle K̂ and

combined with an affine scaling argument. To show (5.14), we note that for K ∈
T \ K(T ), the trace inequality (5.1) in L1(∂K) combined with h−2

K ‖∇v‖2L1(K) .

‖∇v‖2L2(K), ‖D2v‖2L1(K) . h2
K‖D2v‖2L2(K) readily yields ‖∇v‖2L1(∂K) . MK [v]2.

For K ∈ Ki(T ), the inequality (5.14) follows from (5.7). �

For δ ∈ [0, 1)M and a subset T ′ ⊆ T of elements, we now introduce the broken
consistency norm

|||v|||2T ′,δ :=
∑

K∈(T ′∩K(T ))\K(T )

MK [v]2 +

M∑

i=1

∑

K∈T ′∩Ki(T )

NK,δi [v]
2 . (5.15)

We further show the following bound, which implies that DG energy norm (3.13)
is bounded by the norm (5.15) for sufficiently smooth functions v.

Lemma 5.5. There holds

|||v|||2DG .
∑

K∈T

(
h−2
K ‖v‖2L2(K) + ‖∇v‖2L2(K)

)
, (5.16)

for all v ∈ H1(T ).

Proof. With (2.3), it suffices to bound the jump terms appearing in the energy
norm |||v|||DG. To this end, let e = ∂K ∩ ∂K ′ ∈ EI(T ) be an interior edge. By
applying the trace inequality (5.1) (with q = 2), the property (3.2) and the bounds
in (2.3), we obtain

‖j|1/2e [[v]]‖2L2(e) . h−2
K ‖v‖2L2(K) + ‖∇v‖2L2(K) + h−2

K′‖v‖2L2(K′) + ‖∇v‖2L2(K′) .

A similar argument holds for Dirichlet edges, which yields (5.16). �

5.2. Boundedness. We next establish several continuity results for the IP bilinear
form aDG(·, ·) and for the right-hand side lDG(·).

5.2.1. Continuity bounds for aDG(·, ·). To establish continuity properties of aDG

in (3.7), we first note that, by the Cauchy-Schwarz inequality and by (2.3),
∑

K∈T

∫

K

|c∇v · ∇w| dx ≤ |||v|||DG|||w|||DG, (5.17)

∑

e∈EID(T )

∫

e

je|[[v]] · [[w]]| dS ≤ |||v|||DG|||w|||DG, (5.18)

for all v, w ∈ H1(T ).
The boundedness of the off-diagonal form rDG(v, w) in (3.8) is more involved

and will be discussed next. The first bound (5.19) below is a standard result,
see [2]. A proof is included to render the error analysis self-contained. On the
other hand, the second estimate (5.20) is a generalization to weighted spaces of
standard consistency bounds as, e.g., in [2, Section 4.1] or [17, Section 4.2]. To
prove it, we use the approach in [21, Proposition 2.4.1], which is based on using
Hölder’s inequality in L1(e)×L∞(e); see also Lemma 5.2. The third property (5.21)
is new and will be crucial to derive L2-norm error estimates.

Proposition 5.6. For rDG(·, ·) defined in (3.8), there holds:
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(i) For vN ∈ Vp(T ), we have

|rDG(vN , w)| ≤ CrDG,1J(w)|||vN |||DG, w ∈ H1(T ) . (5.19)

(ii) Let δ ∈ [0, 1)M. For every v = v0 + vN with v0 ∈ H2,2
δ (Ω) and vN ∈ Vp(T ),

there holds for every wN ∈ Vp(T )

|rDG(v, wN )| ≤ CrDG,2J(wN )|||v|||T ,δ. (5.20)

(iii) Let δ, δ′ ∈ [0, 1)M. For every v = v0 + vN and w = w0 + wN with v0 ∈
H2,2

δ (Ω), w0 ∈ H2,2
δ′ (Ω) and vN , wN ∈ Vp(T ), we have

|rDG(v, w)| ≤ CrDG,3|||w|||T ,δ′ |||v|||T ,δ . (5.21)

In (5.19)–(5.21), the constants CrDG,1, CrDG,2, CrDG,3 > 0 depend on κ in (3.1),
the bounds in (2.3), on the parameter j0 in (3.10) and on the polynomial degree p.
The constants CrDG,2, CrDG,3 further depend on the exponents δ, δ′.

Proof. We proceed in two steps:
Proof of (5.19): For vN ∈ Vp(T ) and for w ∈ H1(T ), the Cauchy-Schwarz

inequality, the bounds in (2.3), the definition of j in (3.10), the equivalence (3.2)
and the polynomial trace inequality (5.2) yield

|rDG(vN , w)| .
∑

e∈EID(T )

h−1/2
e ‖[[w]]|‖L2(e)h

1/2
e ‖〈〈∇vN 〉〉‖L2(e)

. J(w)
( ∑

K∈T

hK‖∇vN‖2L2(∂K)

)1/2

. J(w)
( ∑

K∈T

‖∇vN‖2L2(K)

)1/2

,

which, together with (2.3), implies (5.19).
Proof of (5.20) and (5.21): Let

w = w0 + wN with w0 ∈ H2,2
δ′ (Ω) and wN ∈ Vp(T ). (5.22)

We invoke Hölder’s inequality as in [21, Proposition 2.4.1], the bound (2.3) and the
discrete Cauchy-Schwarz inequality to obtain

|rDG(v, w)| .
∑

e∈EID(T )

∫

e

|[[w]]||〈〈∇v〉〉| dS

.
∑

e∈EID(T )

‖[[w]]‖C0(e)‖〈〈∇v〉〉‖L1(e)

.
( ∑

e∈EID(T )

‖[[w]]‖2L∞(e)

)1/2( ∑

e∈EID(T )

‖〈〈∇v〉〉‖2L1(e)

)1/2

.
( ∑

e∈EID(T )

‖[[w]]‖2L∞(e)

)1/2( ∑

K∈T

‖∇v‖2L1(∂K)

)1/2

. (5.23)

In the last term in (5.23) above, we apply the bounds in (5.14) and find that

( ∑

K∈T

‖∇v‖2L1(∂K)

)1/2
. |||v|||T ,δ. (5.24)

Let us now establish (5.20) and take w0 = 0 in (5.22), (5.23). Then, for each
edge e ∈ EID(T ), the jump [[w]]|e = [[wN ]]|e ∈ Pp(e) is a univariate polynomial.
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Therefore, the inverse estimate (5.3), the bounds in (2.3) and the definition of j
in (3.10) yield
( ∑

e∈EID(T )

‖[[wN ]]‖2L∞(e)

)1/2
.

( ∑

e∈EID(T )

h−1/2
e ‖[[wN ]]‖2L2(e)

)1/2
. J(wN ) . (5.25)

The combination of (5.23), (5.24) and (5.25) implies (5.20).
Finally, to prove (5.21), we now take in (5.22), (5.23) a generic w = w0 + wN ,

where 0 6= w0 ∈ H2,2
δ′ (Ω). Then, the embeddings (5.13) and the definition (5.15)

show that
( ∑

e∈EID(T )

‖[[w]]‖2L∞(e)

)1/2
.

( ∑

K∈T

‖w‖2L∞(∂K)

)1/2
. |||w|||T ,δ′ . (5.26)

The equations (5.23), (5.24) and (5.26) yield the bound (5.21). �

Proposition 5.6 and the bounds in (5.17), (5.18) imply the following result.

Proposition 5.7. Let δ, δ′ ∈ [0, 1)M. Then:

(i) For v = v0 + vN with v0 ∈ H2,2
δ (Ω) and vN ∈ Vp(T ), we have

|aDG(v, wN )| ≤ CaDG,1|||v|||T ,δ|||wN |||DG , wN ∈ Vp(T ) . (5.27)

(ii) For v = v0 + vN and w = w0 + wN with v0 ∈ H2,2
δ (Ω), w0 ∈ H2,2

δ′ (Ω) and
vN , wN ∈ Vp(T ), we have

|aDG(v, w)| ≤ CaDG,2|||v|||T ,δ|||w|||T ,δ′ , (5.28)

The constants CaDG,1, CaDG,2 > 0 depend on κ in (3.1), the bounds in (2.3), the
parameter j0 in (3.10), the polynomial degree p and the exponents δ, δ′.

Proof. To show (5.27), we employ the continuity bounds (5.19) and (5.20), respec-
tively. We find that

|rDG(wN , v)| ≤ CrDG,1J(v)|||wN |||DG ≤ CrDG,1|||v|||DG|||wN |||DG ,

|rDG(v, wN )| ≤ CrDG,2J(wN )|||v|||T ,δ ≤ CrDG,2|||v|||T ,δ|||wN |||DG .

These bounds in conjunction with (5.17), (5.18) and (5.16) imply (5.27).
For the proof of (5.28), we apply (5.21) twice and obtain

|rDG(v, w)| ≤ CrDG,3|||v|||T ,δ|||w|||T ,δ′ ,

|rDG(w, v)| ≤ CrDG,3|||w|||T ,δ′ |||v|||T ,δ .

The estimate (5.28) follows from (5.17), (5.18) and (5.16). �

5.2.2. Continuity bounds for lDG(·). With the same arguments used to prove Propo-
sition 5.6, we further derive bounds for the right-hand side lDG(·) in (3.9).

For the functionals associated with the source term f and the Neumann da-
tum gN , we establish bounds, which are expressed in terms of weighted norms of
the data.

Proposition 5.8. Let δ, δ′ ∈ [0, 1)M, f ∈ H0,0
δ (Ω) and gN ∈ H

1/2,1/2
δ (ΓN ). Let

v = v0 + vN with v0 ∈ H2,2
δ′ (Ω) and vN ∈ Vp(T ). Then:

(i) We have
∑

K∈T

∫

K

|fv| dx ≤ Cf‖f‖H0,0
δ

(Ω)|||v|||T ,δ′ . (5.29)
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(ii) For TN := {K ∈ T : ∂K ∩ e ∈ EN (T ) for e ∈ E(T ) }, we have

∑

e∈EN (T )

∫

e

|gNv| dS ≤ CgN ‖gN‖
H

1/2,1/2
δ

(ΓN )
|||v|||TN ,δ′ . (5.30)

The constants Cf > 0 and CgN > 0 depend on κ in (3.1), the polynomial degree p
and the exponents δ, δ′.

Proof. We prove each item separately.
Proof of (5.29): For K ∈ T , property (5.6) and Hölder’s inequality yield

∫

K

|fv| dx . ‖f‖L1(K)‖v‖C0(K) . ‖f‖H0,0
δ

(K)‖v‖C0(K).

The summation of these bounds over all elements K ∈ T , the discrete Cauchy-
Schwarz inequality and the bounds in (5.13) now imply (5.29).

Proof of (5.30): Let GN ∈ H1,1
δ (Ω) be such that GN |ΓN = gN . For a Neumann

edge ∂K ∩ e ∈ EN (T ), we apply (5.7) and obtain
∫

e

|gNv| dS . ‖GN‖L1(∂K)‖v‖C0(K) . ‖GN‖H1,1
δ

(K)‖v‖C0(K).

Hence, by summing this bound over all K ∈ TN , using the discrete Cauchy-Schwarz
inequality, applying (5.13) and taking the infimimum over all possible GN as above,
the bound (5.30) follows. �

Remark 5.9. We note that in the proof of (5.29) some powers of h (i.e., h2−2δi

for vertex ci) were dropped after application of (5.6). The resulting bound (5.29)
will be sufficient for our purposes.

For the Dirichlet datum gD, we introduce the natural boundary jump term

JD(v)2 :=
∑

e∈ED(T )

‖j1/2e v‖2L2(e) . (5.31)

As in (5.18), we then have

∑

e∈ED(T )

∫

e

je|gDv| dS ≤ JD(gD)JD(v) (5.32)

for any v ∈ H1(T ). The remaining functional associated with gD in (3.9) can be
bounded completely analogously to rDG(·, ·) in Proposition 5.6.

Proposition 5.10. Let δ, δ′ ∈ [0, 1)M and define TD := {K ∈ T : ∂K ∩ e ∈
ED(T ) for e ∈ E(T ) }. Then:

(i) We have for all vN ∈ Vp(T )

∑

e∈ED(T )

∫

e

|gD||c∇vN | dS ≤ CgD ,1JD(gD)
( ∑

K∈TD

‖c1/2∇vN‖2L2(K)

)1/2
. (5.33)

(ii) Let gD ∈ Pp(e) for e ∈ ED(T ). For any v = v0 + vN with v0 ∈ H2,2
δ′ (Ω)

and vN ∈ Vp(T ), we have

∑

e∈ED(T )

∫

e

|gD||c∇v| dS ≤ CgD ,2JD(gD)|||v|||TD ,δ′ . (5.34)
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(iii) Let GD ∈ H2,2
δ (Ω) be such that GD|ΓD = gD ∈ H

3/2,3/2
δ (ΓD). Let v =

v0 + vN with v0 ∈ H2,2
δ′ (Ω) and vN ∈ Vp(T ). Then we have

∑

e∈ED(T )

∫

e

|gD||c∇v| dS ≤ CgD ,3|||GD|||TD,δ|||v|||TD ,δ′ , (5.35)

The constants CgD ,1, CgD ,2, CgD ,3 > 0 depend on κ in (3.1), the bounds in (2.3),
the parameter j0 in (3.10), the polynomial degree p and the exponents δ, δ′.

Proof. We prove each item separately.
Proof of (5.33): This bound is obtained completely analogously to (5.19). That

is, with the help of (2.3), the definition of j in (3.10), the discrete Cauchy-Schwarz
inequality, the equivalence (3.2) and the polynomial trace inequality (5.2), we obtain
for vN ∈ Vp(T )

∑

e∈ED(T )

∫

e

|gD||c∇vN | dS .
∑

e∈ED(T )

j1/2e ‖gD‖L2(e)he‖〈〈∇vN 〉〉‖L2(e)

. JD(gD)
( ∑

K∈TD

hK‖∇vN‖2L2(∂K)

)1/2
,

which yields (5.33).
Proof of (5.34): Following (5.20), we use Hölder’s inequality in L∞(e)×L1(e), the

discrete Cauchy-Schwarz inequality, the bounds in (2.3), the inverse inequality (5.3)
(since gD is piecewise polynomial) and the definition of j0 in (3.10). This yields

∑

e∈ED(T )

∫

e

|gD||c∇v| dS .
( ∑

e∈ED(T )

‖j1/2e gD‖2L2(e)

)1/2( ∑

K∈T

‖∇v‖2L1(∂K)

)1/2
.

Invoking (5.14) shows (5.34).
Proof of (5.35): This bound is similar to (5.21). By employing Hölder’s inequal-

ity and the discrete Cauchy-Schwarz inequality, we conclude that

∑

e∈ED(T )

∫

e

|gD||c∇v| dS .
( ∑

K∈TD

‖GD‖2L∞(∂K)

)1/2( ∑

K∈TD

‖∇v‖2L1(∂K)

)1/2
.

The inequalities (5.13) and (5.14) imply (5.35). �

Remark 5.11. Let v = v0 + vN , with v0 ∈ H2,2
δ′ (Ω) and vN ∈ Vp(T ). Under

assumption (2.20) and from the bound (5.32), Proposition 5.8 and Proposition 5.10,
we find the boundedness of lDG(·) in the sense that

∣∣lDG(v)
∣∣ ≤ ClDG

(
‖f‖H0,0

δ
(Ω) + ‖gN‖

H
1/2,1/2
δ

(ΓN )
+ JD(gD) + |||GD|||TD,δ

)
|||v|||T ,δ′ ,

(5.36)
for a constant ClDG > 0 depending on κ in (3.1), the bounds in (2.3), the parame-
ter j0 in (3.10), the polynomial degree p and the exponents δ, δ′.

5.3. Consistency. We verify the Galerkin orthogonality property of the DG dis-
cretization (3.6).
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5.3.1. Integration by parts. We will use the following variant of Green’s formula
in [21, Lemma A.2.1]: For q ∈ H1,1

δ (Ω)2, we have
∫

K

q · ∇v dx = −

∫

K

(∇ · q)v dx+

∫

∂K

q · νKv dS, (5.37)

for all K ∈ T and for v ∈ C0(K) with ∇v ∈ L2(K)2. In particular, if K ∈ K(T )
is a corner element, all integrals in (5.37) are well-defined in L1(K) × L∞(K) re-
spectively L1(∂K) × L∞(∂K), due to Lemma 5.2 and Hölder’s inequality. The

identity (5.37) is readily proved using the density of C∞(Ω)2 in H1,1
δ (Ω)2; cf. [21,

Lemma A.2.1]. A consequence of (5.37) is the following integration-by-parts for-
mula.

Lemma 5.12. Let δ, δ′ ∈ [0, 1)M. For v ∈ H2,2
δ (Ω), we have c∇v ∈ H1,1

δ (Ω)2,

∇ · (c∇v) ∈ H0,0
δ (Ω) and

∑

K∈T

∫

K

c∇v ·∇w dx = −
∑

K∈T

∫

K

∇· (c∇v)w dx+
∑

e∈E(T )

∫

e

〈〈c∇v〉〉 · [[w]] dS (5.38)

for any w = w0 +wN with w0 ∈ H2,2
δ′ (Ω) and wN ∈ Vp(T ). Here, all the terms are

well-defined, which follows from Lemma 5.2, Lemma 5.4, and Proposition 5.8. In
particular, as in Remark 3.1, for corner elements K ∈ K(T ), the volume integrals
on the right-hand sides are understood in the sense of L1(K) × L∞(K), and the
integrals over edges e ∈ E(T ) running into corners are well-defined as bilinear forms
over L1(e)× L∞(e).

Proof. Since v ∈ H2,2
δ (Ω) and c is smooth, we clearly have q = c∇v ∈ H1,1

δ (Ω)2, and

∇·q ∈ H0,0
δ (Ω), see Lemma 2.2. Moreover, the test function w in (5.38) belongs to

L∞(Ω) and satisfies for all K ∈ T : w|K ∈ C0(K), cf. (2.15), and ∇w|K ∈ L2(K)2.
Hence, by applying (5.37) and summing over all elements, we obtain

∑

K∈T

∫

K

c∇v · ∇w dx = −
∑

K∈T

∫

K

∇ · (c∇v)w dx+
∑

K∈T

∫

∂K

(c∇v) · νKw dS.

All the terms above are well-defined thanks to Lemma 5.2, Lemma 5.4 and Propo-
sition 5.8. In the last term, we express integrals over elemental boundaries by
integrals over edges using the identity in [2, Equation (3.3)]. We conclude that

∑

K∈T

∫

∂K

(c∇v) · νKw dS =
∑

e∈E(T )

∫

e

〈〈c∇v〉〉 · [[w]] dS +
∑

e∈EI(T )

∫

e

[[c∇v]]〈〈w〉〉 dS,

where again all terms are well-defined over L1(e)×L∞(e). The equality (5.38) now
follows from (5.8). �

5.3.2. Galerkin orthogonality. The following properties hold.

Lemma 5.13. For δ ∈ [0, 1)M, let u ∈ H2,2
δ (Ω) be the solution of (2.4)–(2.6).

There holds:

(i) Let δ′ ∈ [0, 1)M and v = v0 + vN with v0 ∈ H2,2
δ′ (Ω) and vN ∈ Vp(T ). Then

we have

aDG(u, v) =
∑

K∈T

∫

K

c∇u · ∇v dx− rDG(u, v) = lDG(v) , (5.39)
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where rDG(u, v) and lDG(v) are bounded as in (5.21) and (5.36) respec-
tively.

(ii) Let uN ∈ Vp(T ) be the IP approximation in (3.6). Then the error u − uN

satisfies

aDG(u− uN , vN ) = 0, vN ∈ Vp(T ). (5.40)

Proof. The identity (5.39) is an immediate consequence of the formula (5.38) and
the PDE (2.4), by taking into account the boundary conditions in (2.5) and (2.6),
respectively, and by noting that [[u]]|e = 0 for e ∈ EI(T ) and [[u]]|e = gD · ν for
e ∈ ED(T ).

The Galerkin orthogonality (5.40) follows immediately from (5.39) and the def-
inition of the IP method (3.6). �

Remark 5.14. We emphasize that identity (5.39) in conjunction with the sym-
metry of the IP form aDG(·, ·) yields adjoint-consistency of the symmetric interior
penalty method (3.6) in the sense of [2].

5.4. Error estimates. We now derive generic and quasi-optimal error bounds.

5.4.1. Energy norm error. We begin by proving the following energy norm bound.

Lemma 5.15. For δ ∈ [0, 1)M, let u ∈ H2,2
δ (Ω) be the solution of (2.4)–(2.6). Let

uN ∈ Vp(T ) be the IP approximation in (3.6). Then we have the energy norm error
bound

|||u − uN |||DG ≤ C inf
vN∈Vp(T )

|||u − vN |||T ,δ, (5.41)

with a constant C > 0 depending on κ in (3.1), the bounds in (2.3), the parameter
j0 in (3.10), the polynomial degree p, and the exponent δ.

Proof. We proceed in a standard manner. For vN ∈ Vp(T ), the triangle inequality
gives

|||u− uN |||DG ≤ |||u − vN |||DG + |||vN − uN |||DG .

Hence, from the coercivity in Lemma 3.3 and the Galerkin orthogonality (5.40), we
find that

Ccoer |||vN − uN |||2DG ≤ aDG(vN − uN , vN − uN ) = −aDG(u− vN , vN − uN ) .

By the continuity of the form aDG(·, ·) in (5.27), we have

|aDG(u− vN , vN − uN )| ≤ CaDG,1|||u− vN |||T ,δ|||vN − uN |||DG.

The bound (5.41) follows. �

5.4.2. L2-norm error. To prove an L2-norm error estimate for u − uN , we use
regularity in weighted spaces for the dual problem:

−∇ · (c∇z) = u− uN in Ω , (5.42)

z = 0 on ΓD , (5.43)

(c∇z) · ν = 0 on ΓN . (5.44)

For δ ∈ [0, 1)M as in (2.19), the stability bound in Proposition 2.3 and the contin-

uous embedding L2(Ω) →֒ H0,0
δ (Ω) ensure that z ∈ H2,2

δ (Ω) and that

‖z‖H2,2
δ

(Ω) ≤ Cstab,2‖u− uN‖H0,0
δ

(Ω) ≤ CdcCstab,2‖u− uN‖L2(Ω) . (5.45)
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Lemma 5.16. For δ ∈ [0, 1)M as in (2.19), let u ∈ H2,2
δ (Ω) be the solution of (2.4)–

(2.6). Let z ∈ H2,2
δ (Ω) be the dual solution of (5.42)–(5.44). Assume the approxi-

mation property

inf
zN∈Vp(T )

|||z − zN |||T ,δ ≤ Capproxd(p, T , δ)‖z‖H2,2
δ

(Ω), (5.46)

Let further uN ∈ Vp(T ) be the IP approximation in (3.6). Then we have the L2-
norm error bound

‖u− uN‖L2(Ω) ≤ Cd(p, T , δ) inf
vN∈Vp(T )

|||u − vN |||T ,δ, (5.47)

with a constant C > 0 depending on κ in (3.1), the bounds in (2.3), the constants
Cstab,2 and Capprox in (5.45) and (5.46), respectively, the polynomial degree p, and
the weight exponent vector δ.

Proof. We invoke identity (5.39) for v = u − uN with respect to the dual prob-
lem (5.42)–(5.44) and employ the symmetry of the IP form. This results in

‖u− uN‖2L2(Ω) = aDG(u− uN , z) .

From here on, we proceed in a usual manner and apply the Galerkin orthogonal-
ity (5.40) to conclude that

‖u− uN‖2L2(Ω) = aDG(u− uN , z − zN )

for all zN ∈ Vp(T ). Hence, by employing (5.28), assumption (5.46) and the stability
bound (5.45), we conclude that

|aDG(u − uN , z − zN)| ≤ CaDG,2|||u − uN |||T ,δ|||z − zN |||T ,δ

≤ CaDG,2Capproxd(p, T , δ)‖z‖H2,2
δ

(Ω)|||u− uN |||T ,δ

≤ CaDG,2CapproxCdcCstab,2d(p, T , δ)‖u− uN‖L2(Ω)|||u− uN |||T ,δ.

These bounds imply (5.47). �

5.5. Nodal interpolation. In view of the error bounds (5.41) and (5.47), it re-
mains to establish optimal interpolation estimates on graded and bisection refine-
ment meshes with respect to the norm ||| · |||T ,δ.

For an element K ∈ T , let Ip
K : C0(K) → Pp(K) denote the elemental nodal

interpolant into polynomials of degree at most p. By standard interpolation in
elements away from S and for 1 ≤ k ≤ p, there holds

MK [v − Ip
Kv]2 . h2k

K ‖Dk+1v‖2L2(K), K ∈ T \ K(T ). (5.48)

In corner elements, the interpolation bounds in [19, Lemma 4.16] for the linear

interpolant in the weighted spaces H2,2
δi

(K) for δi ∈ [0, 1) give

NK,δ[v − I1
Kv]2 . h2−2δi

K |v|2
H2,2

δi
(K)

, K ∈ Ki(T ). (5.49)

Here, we note that I1
Kv is well-defined for v ∈ H2,2

δi
(K) due to (2.15). Due

to (5.48), (5.49), we then define the global interpolant Ip : C0(Ω) → Vp(T ) by

Ipv|K :=

{
I1
K(v|K) if K ∈ K(T ) ,

Ip
K(v|K) otherwise .

(5.50)

We note again that Ipv is well-defined for v ∈ H2,2
δ (Ω) ⊂ C0(Ω). Next, we derive

interpolation estimates for Ipv on locally adapted meshes.
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5.6. Interpolation estimates on graded mesh families. We first consider
graded mesh families and prove approximation bounds which are slightly gener-
alized versions of those in [21, Proposition 2.5.5]. Analogous results (on different
mesh families and for conforming FEMs) are obtained in [7].

Proposition 5.17. Let p ≥ 1, δ ∈ [0, 1)M and v ∈ Hk+1,2
δ (Ω) for 1 ≤ k ≤ p.

Let Tβ be a graded mesh with grading vector β = (β1, . . . , βM) chosen as in (4.1),
i.e., with βi ∈ (β∗

i , 1) where

β∗
i := 1−

1− δi
p

. (5.51)

Let Ipv be the interpolant defined in (5.50). Then we have the approximation bound

|||v − Ipv|||Tβ,δ ≤ CgradN
−k/2|v|Hk+1,2

δ
(Ω) . (5.52)

The constant Cgrad > 0 is independent of N , but depends on κ in (3.1), on the
constant Cdc in (2.10), (2.11), on the vector δ, the parameters CG, β and β∗ in
Definition 4.2, the regularity parameter k, and the polynomial degree p.

Proof. For an interior element K ∈ N0(Tβ), due to (5.48) and (2.10), there holds

MK [v − Ipv]
2 . h2k

K ‖Dk+1v‖2L2(K) . h2k|v|2
Hk+1,2

δ
(K)

. (5.53)

Next, for 1 ≤ i ≤ M, let K ∈ Ni(Tβ), the discrete corner neighborhood defined
in (5.4). Let first K ∈ Ni(Tβ)\Ki(Tβ). Then, the bounds (5.48), the first property
in Definition 4.1, and the fact that βi ∈ (β∗

i , 1) imply

MK [v − Ipv]
2 . h2k

K ‖Dk+1v‖2L2(K) . h2k‖rβik
i |Dk+1v|‖2L2(K)

. h2k‖r
β∗
i k

i |Dk+1v|‖2L2(K) . h2k‖r
k−(1−δi)

k
p

i |Dk+1v|‖2L2(K).

Since k − (1− δi)
k
p ≥ k − (1 − δi) and due to (5.5), we obtain

MK [v − Ipv]
2 . h2k‖rδi+k−1

i |Dk+1v|‖2L2(K)

. h2k|v|2
Hk+1,2

δi
(K)

. h2k|v|2
Hk+1,2

δ
(K)

.
(5.54)

Second, let K ∈ Ki(Tβ). Since ri(x) ≤ hK for all x ∈ K, the second assumption in
Definition 4.1 yields

hK . h sup
x∈K

ri(x)
β∗
i . hh

β∗
i

K ,

and then hK . h
1

1−β∗
i , as well as

sup
x∈K

ri(x)
β∗
i . h

β∗
i

1−β∗
i = h

p
1−δi

−1
. (5.55)

The estimate (5.49), the second property in Definition 4.1, the bound (5.55) and
property (2.11) now yield

NK,δ[v − Ipv]
2 . h2−2δi

K |v|2
H2,2

δi
(K)

. h2−2δi sup
x∈K

ri(x)
βi(2−2δi)|v|2

Hk+1,2
δ

(K)

. h2−2δi sup
x∈K

ri(x)
β∗
i (2−2δi)|v|2

Hk+1,2
δ

(K)

. h2p|v|2
Hk+1,2

δ
(K)

. h2k|v|2
Hk+1,2

δ
(K)

.

(5.56)
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Summing the bounds in (5.53), (5.54) and (5.56) over all elements yields

|||v − Ipv|||
2
Tβ,δ . h2k|v|2

Hk+1,2
δ

(Ω)
. (5.57)

Finally, an elementary counting argument (see, e.g., [21, Lemma 2.5.6]) reveals that
N = dim(Vp(T )) . p2h−2, which implies (5.52). �

5.7. Interpolation estimates on bisection refinement meshes. We shall es-
tablish the following variant of [9, Theorem 5.3], which is based solely on the prop-
erties of the algorithm in [9]. We also recall from Section 4.2 that bisection refine-
ment mesh family thus constructed is shape-regular with κ in (3.1) depending on
the initial mesh T0.

Proposition 5.18. Let p ≥ 1, δ ∈ [0, 1)M and v ∈ Hk+1,2
δ (Ω) for 1 ≤ k ≤ p. For

parameters h, γ ∈ (0, γ∗] and L as in (4.2), i.e., with

γ := 1−
M

max
i=1

δi > 0 and h ∈ [2−(L+1)γ/(p+1), 2−Lγ/(p+1)). (5.58)

consider the triangulations Th,2(L+1) constructed by the bisection refinement algo-

rithm of [9] starting from an initial triangulation T0 with #T0 . h−2. Let Ipv be
the interpolant in (5.50). Then we have the approximation bound

|||v − Ipv|||T2(L+1),δ ≤ CbisN
−k/2|v|Hk+1,2

δ
(Ω). (5.59)

The constant Cbis > 0 is independent of N , but depends on the shape regularity
parameter κ in (3.1), the constant Cdc in (2.10), (2.11), the vector δ, the initial
mesh T0, the parameter γ, the sufficiently large refinement parameter L, the regu-
larity parameter k, and on the polynomial degree p.

Proof. Following [9, Theorems 5.2 and 5.3], we proceed in several steps.
Interior elements: We first bound the errors over elements in the interior neigh-

borhoodN0(Th,2(L+1)). To this end, we recall from [9, Lemma 4.4] that the first loop

of the bisection refinement algorithm ensures |K| ≃ h2
K . h2. Hence, with (5.48)

and (2.10), we find that
∑

K∈N0(Th,2(L+1))

MK [v − Ipv]
2 .

∑

K∈N0(Th,2(L+1))

h2k
K ‖Dk+1v‖2L2(K)

. h2k
∑

K∈N0(Th,2(L+1))

|v|2
Hk+1,2

δ
(K)

. h2k|v|2
Hk+1,2

δ
(Ω)

.

(5.60)

Corner neighborhoods: Let 1 ≤ i ≤ M be a fixed corner index. For K ∈
Ni(Th,2(L+1)), we set

rK := dist(K, ci) = inf
y∈K

ri(y). (5.61)

As in [9, page 933], we then consider the following concentric neighborhoods at ci:

Dℓ := ∪{K ∈ Ni(Th,2(L+1)) : 2−
ℓ+1
2 < rK ≤ 2−

ℓ
2 }, ℓ = 0, . . . , 2L+ 1,

and

D2L+2 := ∪{K ∈ Ni(T
i
h,2(L+1)) : rK ≤ 2−(L+1)}.

Here and as in [9], we assume without loss of generality that Ni(Th,2(L+1)) ⊆

∪2L+2
ℓ=0 Dℓ.
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Elements in D2L+2: We first bound the consistency errors in the elements in
the innermost neighborhood D2L+2. To do so, we need to estimate the terms T1

and T2 given by

T1 =
∑

K∈D2L+2

rK>0

MK [v − Ipv]
2, (5.62)

T2 =
∑

K∈D2L+2

rK=0

NK,δ[v − Ipv]
2 . (5.63)

Let K ∈ D2L+2 and first consider the case rK > 0. By [9, Lemma 4.6], there holds
hK . rK . Moreover, rK ≤ ri(x) for all x ∈ K. With (5.48), we thus obtain

MK [v − Ipv]
2 . h2k

K ‖Dk+1v‖2L2(K)

. r2kK r2−2δi−2k
K ‖rδi+k−1

i |Dk+1v|‖2L2(K) . r2−2δi
K |v|2

Hk+1,2
δi

(K)
.

Using the definition of D2L+2 and γ, as well as the condition on h from (5.58), we
find that

MK [v − Ipv]
2 . 2−(2−2δi)(L+1)|v|2

Hk+1,2
δi

(K)

. 2−2γ(L+1)|v|2
Hk+1,2

δi
(K)

. h2p+2|v|2
Hk+1,2

δi
(K)

.
(5.64)

Second, let rK = 0. We now use (5.49) and proceed as before. This results in

NK,δ[v − Ipv]
2 . h2−2δi

K |v|2
H2,2

δi
(K)

. 2−2γ(L+1)|v|2
H2,2

δi
(K)

. h2p+2|v|2
Hk+1,2

δi
(K)

.
(5.65)

Summing the estimates in (5.64) and (5.65) over all relevant elements and taking
into account (5.5) yield

T1 + T2 . h2p+2
∑

K∈D2L+2

|v|2
Hk+1,2

δi
(K)

. h2p+2|v|2
Hk+1,2

δ
(Ω)

. (5.66)

Notice that the bound (5.66) corresponds to [9, Equation (5.5)].
Elements in Dℓ: Next, consider an element K ∈ Dℓ, for 0 ≤ ℓ ≤ 2L + 1. Since

rK ≤ 2−
ℓ
2 , the result in [9, Lemma 4.7] and the definition of γ ∈ (0, γ∗] imply

|K| . h2
K . h22−ℓ p+1−γ

p+1 . h22−ℓ p+1−γ∗

p+1 . h22−ℓ
p+δi
p+1 .

Then, inserting the appropriate power of ri, employing the bound above and notic-

ing that rK ≥ 2−
ℓ+1
2 , we conclude that

MK [v − Ipv]
2 . h2k

K ‖Dk+1v‖2L2(K)

. h2k
K r2−2δi−2k

K ‖rδi+k−1
i D

k+1v‖2L2(K)

. h2k2−ℓk
p+δi
p+1 2(ℓ+1)(k−1+δi)|v|2

Hk+1,2
δi

(K)

. h2k2−ℓk
p+δi
p+1 2ℓ(k−1+δi)|v|2

Hk+1,2
δi

(K)
.

Since

2−ℓ
(
k

p+δi
p+1 −(k−1+δi)

)
= 2−ℓ

(p−k)(1−δi)+(1−δi)

p+1 ≤ 1 ,
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for 1 ≤ k ≤ p and δi ∈ [0, 1), it follows that

MK [v − Ipv]
2 . h2k|v|2

Hk+1,2
δi

(K)
, K ∈ Dℓ. (5.67)

From (5.67) and (5.5), we obtain

T3 =

2L+1∑

ℓ=0

∑

K∈Dℓ

MK [v − Ipv]
2 . h2k|v|2

Hk+1,2
δ

(Ω)
. (5.68)

Conclusion: The bounds (5.66) and (5.68) yield

|||v − Ipv|||Th,2(L+1),δ . hk|v|Hk+1,2
δ

(Ω). (5.69)

Moreover, in [9, Lemma 4.9], it has been proved that

#Th,2(L+1) −#T0 . h−2, (5.70)

with an implied constant also depending on T0. With (5.69), it follows that

|||v − Ipv|||Th,2(L+1),δ . (#Th,2(L+1) −#T0)
−k/2|v|Hk+1,2

δ
(Ω) . (5.71)

Noting that N ≃ #Th,2(L+1) and that there is a constant C > 0 depending on #T0
and p such that

N ≤ C
(
#Th,2(L+1) −#T0

)
,

for #Th,2(L+1) sufficiently large, the bound (5.59) follows. �

5.8. Proof of Theorem 4.3. The energy norm estimates contained in (4.3) follow
immediately from the error bound (5.41) in Lemma (5.15) and the consistency
statements in (5.52) and (5.59) for 1 ≤ k ≤ p.

To establish the L2-norm bound in (4.3), we start from Lemma 5.16. Let δ ∈
[0, 1)M be as in (2.19). Then, due to Proposition 2.3, the primal solution u of (2.4)–
(2.6) and the dual solution z of (5.42)–(5.44) belong to weighted spaces with the

same exponent δ, i.e., u ∈ Hk+1,2
δ (Ω) and z ∈ H2,2

δ (Ω). From (5.52) and (5.59)

for k = 1, we have d(p, T , δ) . N−1/2 and (5.47) implies the L2-norm estimate
in (4.3).

6. Numerical Experiments

In this section, we present a series of numerical experiments to confirm the
results in Theorem 4.3 empirically. We first note that for graded mesh families, an
exhaustive series of numerical experiments can be found in [21, Section 2.5.3], for the
lowest-order case (i.e., p = 1). The tests there numerically confirm the sharpness of
the convergence rates in Theorem 4.3, both for the DG energy norm errors and for
the L2-norm errors (although corresponding L2-norm error bounds were not proved
in [21]). We therefore restrict our experiments to bisection refinement meshes.

6.1. Setting. Throughout, we consider the case c ≡ 1 in problem (2.4)–(2.6), i.e.,
we numerically solve the Poisson equation. Our goal is to verify the theoretically
predicted convergence rates in Theorem 4.3 for a range of corner angles. To this
end, given an angle ω∗ ∈ (0, 2π), we choose the polygonal domain Ω to be the
square (−1, 1)2 minus a cone centered at c∗ = (0, 0) with interior opening angle
of 2π − ω∗. This results in a polygon Ω with the given interior opening angle ω∗

at the corner c∗. For ω∗ ∈ [ 3π2 , 7π
4 ], the domain Ω is illustrated in Figure 6.1;

the only non-convex corner is given by c∗ = (0, 0). For ω∗ = 3π
2 , we obtain a
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standard L-shaped domain. If ω∗ > 7π
4 , the domain Ω is constructed analogously

upon introducing two additional convex corners.

ω∗ ∈
(
3π
2 , 7π4

)

Ω

c∗

Figure 1. Illustration of the domain Ω for opening angles ω∗ in
[ 3π2 , 7π

4 ] and reentrant corner c∗ = (0, 0). The highlighted points
are convex corners of Ω; they contain the corner points (−1,±1)
and (1, 1) of the square (−1, 1)2.

On a polygon Ω as constructed above, we numerically solve the Dirichlet problem

−∆u = 1 in Ω , u|∂Ω = 0 , (6.1)

by employing the piecewise linear and quadratic (p ∈ {1, 2}) symmetric interior
penalty DG method (3.6). For the penalty parameter j0 in (3.10), we consider the
standard choice j0 = 10p2. This will be done on five regular triangulations of Ω
generated by local bisection tree refinement towards the re-entrant corner c∗, using
the same initial triangulation T0 in the mesh generation.

For each mesh, we proceed to compute the error to a reference solution in the
DG energy norm ||| · |||DG as well as in the L2(Ω)-norm. The reference solution is
computed on a mesh which is obtained by refining the finest mesh in the family two
more times. We will visualize the obtained relative errors on a bi-logarithmic scale
with the dimension of the FE space on the abscissa and the quantity of the error
on the ordinate axis. We term the slope of a line fitted through the data points in
the least-squares sense the empirical convergence rate.

6.2. Specifications of the code. The code used for our experiments is written in
Python 2.7 and depends on the libraries NumPy 1.10.1 and SciPy 0.16.1, see [12].
The resulting linear systems of equations are solved using the direct solver spsolve
included in the SciPy submodule scipy.sparse.linalg.

We first generate a regular and quasi-uniform triangulation T0 of Ω with mesh-
width h = 0.1, by using the Delaunay-based mesh generator contained in the
Python library triangle, see [20]. This serves as the initial triangulation in the
local bisection refinement algorithm described in Section 4.2 and introduced in [9].
Elements are bisected according to the rule of newest vertex bisection (NVB). Note
that the elementary bisection of elements needs to include a recursive call in order
to ensure the output of regular triangulations without hanging nodes. We refer
to [16] for a detailed overview on NVB.

The bisection refinement algorithm takes as input parameters the uniform mesh-
width bound h, the parameter L specifying the number of dyadic refinements to-
wards corner c∗, and the problem-dependent exponent γ in (4.2). In order to fulfill
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the second condition in (4.2), we choose L in dependence of h, p and γ as

L = ⌈−
log2(h)

γ(p+ 1)
− 1⌉. (6.2)

Note that, by construction, a smaller value of h results in a triangulation which is
a refinement of the previous triangulation where a larger value for h has been used.
Therefore, the reference solution is straightforwardly projected on coarser grids for
error computation.

6.3. Results. We compute empirical convergence rates on the two domains corre-
sponding to the non-convex angles ω∗ ∈ {1.5, 1.9}π at the re-entrant corner c∗.

6.3.1. Quasi-uniform refinement. We first discuss and show results in the absence
of local bisection refinement towards c∗. In this case, we expect the empirical con-
vergence rates to coincide with the convergence rates on quasi-uniformmesh families
as discussed, e.g., in [18, Theorems 2.13 and 2.14]. According to these results, the
symmetric IP method with j0 > j∗ converges asymptotically as N−(min(p+1,s)−1)/2

in the DG norm and as N−min(p+1,s)/2 in the L2(Ω)-norm, where s > 0 is such that
u ∈ Hs(Ω). As our domain Ω has the non-convex corner c∗ with interior opening
angle ω∗ > π, the solution of the Dirichlet problem for the Poisson equation (6.1)
in general only belongs to the Sobolev space Hs(Ω) with s < 1 + π

ω∗ , see e.g. [10,

Chapter 4]. For ω∗ = 1.5π, this bound reads s < 1+ 2
3 , thus min(p+1, s) = s < 1+ 2

3

for both p ∈ {1, 2}. Therefore, the expected asymptotic error bounds are N−1/3

in the DG norm, and N−5/6, where 5
6 ≃ 0.83, in the L2(Ω)-norm. Similarly, for

ω∗ = 1.9π, min(p + 1, s) = s < 1 + 10
19 ≃ 1.526, and we expect the error to behave

asymptotically as N−0.26 in the DG norm, and as N−0.76 in the L2(Ω) norm. The
experimental results are depicted in Figure 2 and confirm these expected (subopti-
mal) convergence rates for our example.

6.3.2. Bisection refinement. Next, we show results for the full bisection refinement
algorithm, with local refinement towards c∗, with dyadic refinement level L chosen
in dependence of h, γ, p as in (6.2). Due to the imposition of Dirichlet boundary
conditions in (6.1), with Remark 2.5 the coefficient δ∗

c∗ associated with corner c∗

as in Proposition 2.3 is given by δ∗
c∗

= π
ω∗ ∈ {2/3, 10/19} ≃ {0.67, 0.53}. Hence,

by taking as weight exponent δc∗ associated with c∗ the lower bound 1 − δ∗
c∗ ∈

{1/3, 9/19} in (2.19), the definition of γ in (4.2) leads to the grading parameter
γ∗ ∈ {2/3, 10/19} in the bisection refinement algorithm.

We present convergence plots for bisection refinement meshes with the grading
parameters γ ∈ {1/2, 2/3, 4/5} for ω∗ = 1.5π, and the values γ ∈ {2/5, 10/19, 2/3}
for ω∗ = 1.9π. The results obtained for p = 1 are depicted in Figure 3 as bi-
logarithmic plots of the errors in the DG norm and the L2-norm versus N . In
agreement with our error analysis, for γ∗, we observe the optimal convergence rate
N−1/2 for the DG norm and N−1 for the L2-norm. Notice that Theorem 4.3
ensures optimal convergence rates for 0 < γ < γ∗. This is corroborated in Figure 3
for γ = 0.5 when γ∗ = 2/3, and γ = 0.4 when γ∗ = 10/19, respectively, although the
resulting constants are slightly worse. Finally, we see that using the value γ > γ∗

(i.e., γ ∈ {4/5, 2/3}) leads to suboptimal empirical convergence rates with respect
to N , while still larger than the empirical convergence rates observed on quasi-
uniform meshes. This is indicative of the sharpness of our convergence analysis.
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Figure 2. Empirical relative errors on a quasi-uniform mesh fam-
ily in DG norm and L2(Ω) norm, for piecewise linear (p = 1) and
piecewise quadratic (p = 2) approximations, and on a domain with
ω∗ = 1.5π (top) and ω∗ = 1.9π (bottom). We choose j0 = 10 for
p = 1 and j0 = 40 for p = 2. The dashed lines have fixed slope −r
and serve as reference for the asymptotic behavior N−r.

Analogous results are obtained for p = 2 as depicted in Figure 4. Here, the quasi-
optimal convergence rate is N−1 for the DG norm and N−1.5 for the L2-norm. We
observe that the experimental values lie on a line parallel to the reference line with
the quasi-optimal convergence rate as slope. We find again that the value γ < γ∗

yields optimal rates (with worse constants) and that the meshes constructed using
the value γ > γ∗ do not yield quasi-optimal empirical convergence rate.
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Figure 3. Results for piecewise linear approximations (p=1) and
j0 = 10. Empirical relative errors are shown in the DG energy norm
and the L2-norm for ω∗ = 1.5π (top) and ω∗ = 1.9π (bottom).
The dashed lines have fixed slope −r and serve as reference for the
asymptotic behavior N−r.

7. Conclusions and Extensions

We developed an a-priori error analysis for symmetric interior penalty DGFEM
discretizations of the linear and second-order elliptic boundary-value problem (2.4)
with mixed boundary conditions (2.5), (2.6) in a plane polygon. We showed that IP
methods based on either graded families or bisection refinement families of regular,
simplicial triangulations with local refinement near the corners of the domain Ω
result in optimal asymptotic convergence rates, for any order p ≥ 1 of the approx-
imations. We also showed that the same families of locally adapted meshes imply
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Figure 4. Results for piecewise quadratic approximations (p=2)
and j0 = 40. Empirical relative errors are shown in the DG energy
norm and the L2-norm for ω∗ = 1.5π (top) and ω∗ = 1.9π (bot-
tom). The dashed lines have fixed slope −r and serve as reference
for the asymptotic behavior N−r.

optimal convergence rates in L2(Ω), by generalizing an Aubin-Nitsche duality esti-
mate and by using the adjoint-consistency of the symmetric interior penalty formu-
lation (cf. Remark 4.4) in combination with adjoint-regularity shifts in weighted
Sobolev spaces. This result is crucial in the convergence rate bounds for linear
parabolic and second order hyperbolic evolution problems in polygonal domains.

We provided a set of numerical experiments with dG elements of polynomial
degree p = 1 and p = 2, for a family of model elliptic boundary value problems in
polygonal domains. The numerical tests confirmed the theoretical results. They
indicated strongly that the sufficient conditions on mesh grading to ensure optimal
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asymptotic convergence rate bounds that were established in the present paper are
also necessary.

We considered only the second-order, elliptic PDE (2.4), but emphasize that
the present consistency and duality error analysis can be extended to symmetric
interior penalty dG discretizations of problem (2.4) with first order and absolute
terms. Following the non-symmetric approach [11], symmetric IP methods can be
readily designed for such problems.

Also, for linear, second order elliptic systems in polygonal domains Ω which af-
ford elliptic regularity shifts in the presently considered scales of weighted Sobolev
spaces, the present consistency and duality error analysis of corresponding symmet-
ric IP methods (as can be readily devised along the lines of [24] for, e.g., plane linear
elasticity) on graded and bisection refined regular simplicial meshes generalizes with
analogous results.

The assumption c ∈ C∞(Ω) used in this paper as well as the assumptions in [11]
on the smoothness of the coefficients can be substantially relaxed; for the regularity,
we refer to [6]; however, details on corresponding DG formulations and convergence
rate estimates are beyond the scope of the present paper and will be provided
elsewhere.

Although we focussed on the symmetric interior penalty DG method in this
work, our techniques are equally well and mutatis mutandis applicable to a wider
range of DG methods, for example, by employing the unifying framework in [2].
We emphasize again that in this setting, the methods are required to be adjoint-
consistent in order to achieve L2-norm error optimality on locally adapted meshes.

For simplicity, our analysis was carried out for regular meshes. However, with
only minor modifications, it can be extended to simplicial mesh families with k-
irregular nodes, which are a particular case of the shape-regular and contact-regular
mesh families introduced in [17, Section 1.4].
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Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Hei-
delberg, 2012. MR 2882148

18. B. Rivière, Discontinuous galerkin methods for solving elliptic and parabolic problems: Theory

and implementation, Frontiers in Applied Mathematics, SIAM, 2008.
19. Ch. Schwab, p- and hp-FEM – Theory and application to solid and fluid mechanics, Oxford

University Press, Oxford, 1998.
20. J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay trian-

gulator, Applied Computational Geometry: Towards Geometric Engineering (M. C. Lin and
D. Manocha, eds.), Lecture Notes in Computer Science, vol. 1148, Springer-Verlag, May 1996,
First ACM Workshop on Applied Computational Geometry, pp. 203–222.

21. T. P. Wihler, Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains,
Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 2002, Diss. ETH No. 14973.

22. T. P. Wihler, P. Frauenfelder, and C. Schwab, Exponential convergence of the hp-DGFEM

for diffusion problems, Comput. Math. Appl. 46 (2003), 183–205.
23. T. P. Wihler and B. Rivière, Discontinuous Galerkin methods for second-order elliptic PDE

with low-regularity solutions, J. Sci. Comput. 46 (2011), no. 2, 151–165. MR 2753240
24. Thomas P. Wihler, Locking-free DGFEM for elasticity problems in polygons, IMA J. Numer.

Anal. 24 (2004), no. 1, 45–75. MR 2027288

Seminar for Applied Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland.
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