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Heat generation with plasmonic nanoparticles
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Abstract

In this paper we use layer potentials and asymptotic analysis techniques to analyze the
heat generation due to nanoparticles when illuminated at their plasmonic resonance. We
consider arbitrary-shaped particles and both single and multiple particles. For close-to-
touching nanoparticles, we show that the temperature field deviates significantly from the
one generated by a single nanoparticle. The results of this paper open a door for solving the
challenging problems of detecting plasmonic nanoparticles in biological media and monitoring
temperature elevation in tissue generated by nanoparticle heating.
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1 Introduction

Our aim in this paper is to provide a mathematical and numerical framework for analyzing pho-
tothermal effects using plasmonic nanoparticles. A remarkable feature of plasmonic nanoparti-
cles is that they exhibit quasi-static optical resonances, called plasmonic resonances. At or near
these resonant frequencies, strong enhancement of scattering and absorption occurs [5, 7, 27].
The plasmonic resonances are related to the spectra of the non-self adjoint Neumann-Poincaré
type operators associated with the particle shapes [5, 7, 8, 9, 15, 21]. Plasmonic nanoparticles
efficiently generate heat in the presence of electromagnetic radiation. Their biocompatibility
makes them suitable for use in nanotherapy [10].

Nanotherapy relies on a simple mechanism. First nanoparticles become attached to tumor
cells using selective biomolecular linkers. Then heat generated by optically-simulated plasmonic
nanoparticles destroys the tumor cells [14]. In this nanomedical application, the temperature
increase is the most important parameter [23, 26]. It depends on a highly nontrivial way on
the shape, the number, and organization of the nanoparticles. Moreover, it is challenging to
measure it at the surface of the nanoparticles [14].

In this paper, we derive an asymptotic formula for the temperature at the surface of plas-
monic nanoparticles of arbitrary shape. Our formula holds for clusters of simply connected
nanoparticles. It allows to estimate the collective response of plasmonic nanoparticles.
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The paper is organized as follows. In section 2 we describe the mathematical setting for the
physical phenomena we are modeling. To this end, we use the Helmholtz equation to model
the propagation of light which we couple to the heat equation. Later on, we present our main
results in this paper which consist on original asymptotic formulas for the inner field and the
temperature on the boundaries of the nanoparticles. In section 4 we prove Theorems 2.1 and
2.2. These results clarify the strong dependency of the heat generation on the geometry of the
particles as it depends on the eigenvalues of the Neumann-Poincaré operator. In section 5 we
present numerical examples of the temperature at the boundary of single and multiple particles.
Appendix A is devoted to the asymptotic analysis of layer potentials for the Helmholtz equation
in dimension two. We also include an analysis for the invertibility of the single-layer potential
for the Laplacian for the case of multiple particles.

2 Setting of the problem and the main results

In this paper, we use the Helmholtz equation for modeling the propagation of light. This can be
thought of as a special case of Maxwell’s equations, when the incident wave ui is a transverse
electric or transverse magnetic (TE or TM) polarized wave. This approximation, also called
paraxial approximation [19], is a good model for a laser beam which are used, in particular,
in full-field optical coherence tomography. We will therefore model the propagation of a laser
beam in a host domain (tissue), hosting a nanoparticle.

Let the nanoparticle occupy a bounded domain D ⋐ R
2 of class C1,α for some 0 < α < 1.

Furthermore, let D = z + δB, where B is centered at the origin and |B| = O(1).
We denote by εc(x) and µc(x), x ∈ D, the electric permittivity and magnetic permeability

of the particle, respectively, both of which may depend on the frequency ω of the incident wave.
Assume that εc(x) = ε0ε

′
c, µc(x) = µ0µ

′
c and that ℜε′c < 0,ℑε′c > 0,ℜµ′c < 0,ℑµ′c > 0. Here and

throughout, ε0 and µ0 are the permittivity and permeability of vacuum.
Similarly, we denote by εm(x) = ε0ε

′
m and µm(x) = µ0µ

′
m, x ∈ R

2\D the permittivity and
permeability of the host medium, both of which do not depend on the frequency ω of the incident
wave. Assume that εm and µm are real and strictly positive.

The index of refraction of the medium (with the nanoparticle) is given by

n(x) =
√
ε′cµ′cχ(D)(x) +

√
ε′mµ′mχ(R

2\D)(x),

where χ denotes the indicator function.
The scattering problem for a TE incident wave ui is modeled as follows:





∇ · c
2

n2
∇u+ ω2u = 0 in R

2\∂D,

u+ − u− = 0 on ∂D,

1

εm

∂u

∂ν

∣∣∣∣
+

− 1

εc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition at infinity,

(2.1)

where ∂
∂ν denotes the outward normal derivative and c = 1√

ε0µ0
is the speed of light in vacuum.
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We use the notation ∂
∂ν

∣∣∣
±
indicating

∂u

∂ν

∣∣∣
±
(x) = lim

t→0+
∇u(x± tν(x)) · ν(x),

with ν being the outward unit normal vector to ∂D.
The interaction of the electromagnetic waves with the medium produces a heat flow of energy

which translates into a change of temperature governed by the heat equation [11]





ρC
∂τ

∂t
−∇ · γ∇τ =

ω

2π
ℑ(ε)|u|2 in (R2\∂D)× (0, T ),

τ+ − τ− = 0 on ∂D,

γm
∂τ

∂ν

∣∣∣∣
+

− γc
∂τ

∂ν

∣∣∣∣
−
= 0 on ∂D,

τ(x, 0) = 0,

(2.2)

where ρ = ρcχ(D) + ρmχ(R
2\D) is the mass density, C = Ccχ(D) +Cmχ(R

2\D) is the thermal
capacity, γ = γcχ(D) + γmχ(R

2\D) is the thermal conductivity, T ∈ R is the final time of
measurements and ε = εcχ(D) + εmχ(R

2\D).
We further assume that ρc, ρm, Cc, Cm, γc, γm are real positive constants.
Note that ℑ(ε) = 0 in R

2\D and so, outside D, the heat equation is homogeneous.
The coupling of equations (2.1) and (2.2) describes the physics of our problem.
We remark that, in general, the index of refraction varies with temperature; hence, a solu-

tion to the above equations would imply a dependency on time for the electric field u, which
contradicts the time-harmonic assumption leading to model (2.1). Nevertheless, the time-scale
on the dynamics of the index of refraction is much larger than the time-scale on the dynamics of
the interaction of the electromagnetic wave with the medium. Therefore, we will not integrate
a time-varying component into the index of refraction.

LetG(·, k) be the Green function for the Helmholtz operator ∆+k2 satisfying the Sommerfeld
radiation condition. In dimension two, G is given by

G(x, k) = − i

4
H

(1)
0 (k|x|),

where H
(1)
0 is the Hankel function of first kind and order 0. We denote G(x, y, k) := G(x− y, k).

Define the following single-layer potential and Neumann-Poincaré integral operator

Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D or x ∈ R

2,

and

(Kk
D)

∗[ϕ](x) =
∫

∂D

∂G(x, y, k)

∂ν(x)
ϕ(y)dσ(y), x ∈ ∂D.

Let I denote the identity operator and let SD and K∗
D respectively denote the single-layer

potential and the Neumann-Poincaré operator associated to the Laplacian. Our main results in
this paper are the following.
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Theorem 2.1. For an incident wave ui ∈ C2(R2), the solution u to (2.1), inside a plasmonic
particle occupying a domain D = z + δB, has the following asymptotic expansion as δ → 0 in
L2(D),

u = ui(z) +
(
δ(x− z) + SD

(
λεI −K∗

D

)−1
[ν]
)
· ∇ui(z) +O

(
δ3

dist(λε, σ(K∗
D))

)
,

where ν is the outward normal to D, σ(K∗
D) denotes the spectrum of K∗

D in H− 1
2 (∂D) and

λε :=
εc + εm

2(εc − εm)
.

Theorem 2.2. Let u be the solution to (2.1). The solution τ to (2.2) on the boundary ∂D of a
plasmonic particle occupying the domain D = z+ δB has the following asymptotic expansion as
δ → 0, uniformly in (x, t) ∈ ∂D × (0, T ),

τ(x, t) = FD(x, t, bc)− Vbc
D (λγI −K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
,

where ν is the outward normal to D and

λγ :=
γc + γm

2(γc − γm)
,

bc :=
ρcCc

γc
,

FD(x, t, bc) :=
ω

2πγc
ℑ(εc)

∫ t

0

∫

D

e
− |x−y|2

4bc(t−t′)

4πbc(t− t′)
|u|2(y)dydt′,

Vbc
D [f ](x, t) :=

∫ t

0

∫

∂D

e
− |x−y|2

4bc(t−t′)

4πbc(t− t′)
f(y, t′)dydt′.

Remark 2.1. We remark that Theorem 2.1 and Theorem 2.2 are independent. A generalization
of Theorem 2.2 to R

3 is straightforward and the same type of small volume approximation can
be found using the techniques presented in this paper. In fact, in R

3, the operators involved in
the first term of the temperature small volume expansion are

FD(x, t, bc) :=
ω

2πγc
ℑ(εc)

∫ t

0

∫

D

e
− |x−y|2

4bc(t−t′)

(
4πbc(t− t′)

) 3
2

|E|2(y)dydt′,

Vbc
D [f ](x, t) :=

∫ t

0

∫

∂D

e
− |x−y|2

4bc(t−t′)

(
4πbc(t− t′)

) 3
2

f(y, t′)dydt′.

Here E is the vectorial electric field as a result of Maxwell equations. A small volume expansion
for E inside the nanoparticle for the plasmonic case can be found using the same techniques as
those of [7].

Throughout this paper, we denote by L(E,F ) the set of bounded linear applications from
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E to F and let L(E) := L(E,E) and let Hs(∂D) to be the standard Sobolev space of order s
on ∂D.

3 Preliminaries

3.1 Layer potentials for the Helmholtz equation in two dimensions

Let us recall some properties of the single-layer potential and the Neumann-Poincaré integral
operator [2]:

(i) Sk
D : H− 1

2 (∂D) → H
1
2 (∂D), H1

loc(R
2\∂D) is bounded;

(ii) (∆ + k2)Sk
D[ϕ](x) = 0 for x ∈ R

2\∂D, ϕ ∈ H− 1
2 (∂D);

(iii) (Kk
D)

∗ : H− 1
2 (∂D) → H− 1

2 (∂D) is compact;

(iv) Sk
D[ϕ], ϕ ∈ H− 1

2 (∂D), satisfies the Sommerfeld radiation condition at infinity;

(v)
∂Sk

D[ϕ]

∂ν

∣∣∣
±
= (±1

2I + (Kk
D)

∗)[ϕ].

We have that, for any ψ, φ ∈ H− 1
2 (∂D),

u :=

{
ui + Skm

D [ψ], x ∈ R
2\D,

Skc
D [φ], x ∈ D,

(3.1)

with km = ω
√
εmµm and kc = ω

√
εcµc, satisfies ∇ · c2

n2∇u + ω2u = 0 in R
2\∂D and u − ui

satisfies the Sommerfeld radiation condition.
To satisfy the boundary transmission conditions, ψ, φ ∈ H− 1

2 (∂D) need to satisfy the fol-
lowing system of integral equations on ∂D





Skm
D [ψ]− Skc

D [φ] = −ui,

1
εm

(
1
2I + (Kkm

D )∗
)
[ψ] + 1

εc

(
1
2I − (Kkc

D )∗
)
[φ] = − 1

εm

∂ui

∂ν
.

(3.2)

The following result shows the existence of such a representation [4].

Theorem 3.1. The operator

T :
(
H− 1

2 (∂D)
)2

→ H
1
2 (∂D)×H− 1

2 (∂D)

(ψ, φ) 7→
(
Skm
D [ψ]− Skc

D [φ],
1

εm

(1
2
I + (Kkm

D )∗
)
[ψ] +

1

εc

(1
2
I − (Kkc

D )∗
)
[φ]

)

is invertible.
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4 Heat generation

In this section we consider the coupling of equations (2.1) and (2.2), that is,





∇ · c
2

n2
∇u+ ω2u = 0 in R

2\∂D,

u+ − u− = 0 on ∂D,

1

εm

∂u

∂ν

∣∣∣∣
+

− 1

εc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition at infinity,

ρcCc

γc

∂τ

∂t
−∆τ =

ω

2πγc
ℑ(εc)|u|2 in D × (0, T ),

ρmCm

γm

∂τ

∂t
−∆τ = 0 in (R2\D)× (0, T ),

τ+ − τ− = 0 on ∂D,

γm
∂τ

∂ν

∣∣∣∣
+

− γc
∂τ

∂ν

∣∣∣∣
−
= 0 on ∂D,

τ(x, 0) = 0.

(4.1)

Under the assumption that the index of refraction n does not depend on the temperature,
we can solve equation (2.1) separately from equation (2.2).

Our goal is to establish a small volume expansion for the resulting temperature at the surface
of the nanoparticule as a function of time. To do so, we first need to compute the electric field
inside the nanoparticule as a result of a plasmonic resonance. We make use of layer potentials
for the Helmholtz equation, described in subsection 3.1.

4.1 Small volume expansion of the inner field

We proceed in this section to prove Theorem 2.1.

4.1.1 Rescaling

Since we are working with nanoparticles, we want to rescale equation (3.2) to study the solution
for a small volume approximation by using representation (3.1).

Recall that D = z + δB. For any x ∈ ∂D, x̃ := x−z
δ ∈ ∂B and for each function f defined

on ∂D, we introduce a corresponding function defined on ∂B as follows

η(f)(x̃) = f(z + δx̃). (4.2)

It follows that
Sk
D[ϕ](x) = δSδk

B [η(ϕ)](x̃),

(Kk
D)

∗[ϕ](x) = (Kδk
B )∗[η(ϕ)](x̃),

(4.3)
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so system (3.2) becomes





Sδkm
B [η(ψ)]− Sδkc

B [η(φ)] = −η(u
i)

δ
,

1
εm

(
1
2I + (Kδkm

B )∗
)
[η(ψ)] + 1

εc

(
1
2I − (Kδkc

B )∗
)
[η(φ)] = − 1

εm
η(
∂ui

∂ν
).

(4.4)

Note that the system is defined on ∂B.
For δ small enough Sδkm

B is invertible (see Appendix A). Therefore,

η(ψ) = (Sδkm
B )−1Sδkc

B [η(φ)]− (Sδkm
B )−1[

η(ui)

δ
].

Hence, we have the following equation for η(φ):

AI
B(δ)[η(φ)] = f I ,

where
AI

B(δ) = 1
εm

(
1
2I + (Kδkm

B )∗
)
(Sδkm

B )−1Sδkc
B + 1

εc

(
1
2I − (Kδkc

B )∗
)
,

f I = − 1

εm
η(
∂ui

∂ν
) + 1

εm

(
1
2I + (Kδkm

B )∗
)
(Sδkm

B )−1[
η(ui)

δ
].

(4.5)

4.1.2 Proof of Theorem 2.1

To express the solution to (2.1) in D, asymptotically on the size of the nanoparticle δ, we make
use of the representation (3.1). We derive an asymptotic expansion for η(φ) on δ to later compute
δSδkc

B [η(φ)] and scale back to D. We divide the proof into three steps.

Step 1. We first compute an asymptotic for AI
B(δ) and f

I .

Let H∗(∂B) be defined by (A.3) with D replaced by B. In L(H∗(∂B)), we have the following
asymptotic expansion as δ → 0 (see Appendix A)

(Sδkm
B )−1Sδkc

B = PH∗
0
+ Uδkm(S̃B +Υδkc) +O(δ2 log δ),

1

2
I ± (Kδk

B )∗ =
(1
2
I ±K∗

B

)
+O(δ2 log δ).

Let ϕ0 be an eigenfunction of K∗
B associated to the eigenvalue 1/2 (see Appendix A) and let

Uδkm be defined by (A.5) with k replaced with δkm. Then it follows that

(1
2
I +K∗

B

)
Uδkm = Uδkm .

Therefore, in L(H∗(∂B)),

AI
B(δ) =

(( 1

2εm
+

1

2εc

)
I +

( 1

εm
− 1

εc

)
K∗

B

)
PH∗

0
+

1

εm
Uδkm(S̃B +Υδkc) +O(δ2 log δ),
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and from the definition of Uδkm we get

AI
B(δ) =

(( 1

2εm
+

1

2εc

)
I +

( 1

εm
− 1

εc

)
K∗

B

)
PH∗

0
+

1

εm

SB[ϕ0] + τδkc
SB[ϕ0] + τδkm

(·, ϕ0)H∗ϕ0 +O(δ2 log δ).

(4.6)
In the same manner, in the space H∗(∂B),

f I =
1

εm

(
−η(∂u

i

∂ν
) +

(1
2
I +K∗

B

)
PH∗

0
S̃−1
B [

η(ui)

δ
] + Uδkm [

η(ui)

δ
] +O(δ2 log δ)

)
.

We can further develop f I . Indeed, for every x̃ ∈ ∂B, a Taylor expansion yields

η(
∂ui

∂ν
)(x̃) = ν(x̃) · ∇ui(δx̃+ z) = ν(x̃) · ∇ui(z) +O(δ),

η(ui)

δ
(x̃) =

ui(δx̃+ z)

δ
=

ui(z)

δ
+ x̃ · ∇ui(z) +O(δ).

The regularity of ui ensures that the previous formulas hold in H∗(∂B).
The fact that x̃ · ∇ui(z) is harmonic in B and Lemma A.4 imply that

−ν · ∇ui(z) = (
1

2
I −K∗

B)PH∗
0
S̃−1
B [x̃ · ∇ui(z)]

in H∗(∂B).
Thus, in H∗(∂B),

f I =
1

εm

(
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] + Uδkm [

ui(z)

δ
+ x̃∇ui(z)] +O(δ)

)
.

From the definition of Uδkm we get

f I =
1

εm

(
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] + ui(z)ϕ0

δ(SB[ϕ0] + τδkm)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkm
+O(δ)

)
.

(4.7)

Step 2. We compute (AI
B(δ))

−1f I .

We begin by computing an asymptotic expansion of (AI
B(δ))

−1.

The operator AI
0 :=

((
1

2εm
+ 1

2εc

)
I +

(
1
εm

− 1
εc

)
K∗

B

)
maps H∗

0 into H∗
0. Hence, the operator

defined by (which appears in the expansion of AI
B(δ))

AI
B,0 := AI

0PH∗
0
+

1

εm

SB[ϕ0] + τδkc
SB[ϕ0] + τδkm

(·, ϕ0)H∗ϕ0,

is invertible of inverse

(AI
B,0)

−1 = (AI
0)

−1PH∗
0
+ εm

SB[ϕ0] + τδkm
SB[ϕ0] + τδkc

(·, ϕ0)H∗ϕ0.

8



Therefore, we can write

(AI
B)

−1(δ) =
(
I + (AI

B,0)
−1O(δ2 log δ)

)−1
(AI

B,0)
−1.

Since K∗
B is a compact self-adjoint operator in H∗(∂B) it follows that [1, 5]

‖(AI
0)

−1‖L(H∗(∂B)) ≤
c

dist(0, σ(AI
0))

, (4.8)

for a constant c. Therefore, for δ small enough, we obtain

(AI
B(δ))

−1f I =
(
I + (AI

B,0)
−1O(δ2 log δ)

)−1
(AI

B,0)
−1f I

=
(
I + (AI

B,0)
−1O(δ2 log δ)

)−1

(
ui(z)ϕ0

δ(SB[ϕ0] + τδkc)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+

(AI
0)

−1 1

εm
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] +O

(
δ

dist(0, σ(AI
0))

))

=
ui(z)ϕ0

δ(SB[ϕ0] + τδkc)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+ (AI

0)
−1 1

εm
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] +

O

(
δ

dist(0, σ(AI
0))

)
.

Using the representation formula of K∗
B described in Lemma A.2 we can further develop the

third term in the above expression to obtain

(AI
0)

−1PH∗
0
S̃−1
B [x̃ · ∇ui(z)] =

∞∑

j=1

(S̃−1
B [x̃ · ∇ui(z)], ϕj)H∗ϕj(
1
2 + εm

2εc

)
−
(
εm
εc

− 1
)
λj

=

∞∑

j=1

(
(S̃−1

B [x̃ · ∇ui(z)], ϕj)H∗ϕj(
1
2 + εm

2εc

)
−
(
εm
εc

− 1
)
λj

− (S̃−1
B [x̃ · ∇ui(z)], ϕj)H∗ϕj

)

+PH∗
0
S̃−1
B [x̃ · ∇ui(z)]

= PH∗
0
S̃−1
B [x̃ · ∇ui(z)] +

∞∑

j=1

(λj −
1

2
)
(S̃−1

B [x̃ · ∇ui(z)], ϕj)H∗ϕj

λ− λj
.

Using the same arguments as those in the proof of Lemma A.4, we have

(λj −
1

2
)(S̃−1

B [x̃ · ∇ui(z)], ϕj)H∗ =
(ν · ∇ui(z), ϕj)H∗

λj − 1
2

,

and consequently,

(AI
0)

−1 1

εm
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] = PH∗

0
S̃−1
B [x̃ · ∇ui(z)] + (λεI −K∗

B)
−1[ν] · ∇ui(z).

9



Therefore,

(AI
B(δ))

−1f I =
ui(z)ϕ0

δ(SB[ϕ0] + τδkc)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+ PH∗

0
S̃−1
B [x̃ · ∇ui(z)] +

(λεI −K∗
B)

−1[ν] · ∇ui(z) +O

(
δ

dist(0, σ(AI
0))

)
.

Step 3. Finally, we compute η(u) = δSδkc
B (AI

B(δ))
−1f I .

From Appendix A, the following holds when Sδkc
B is viewed as an operator from the space

H∗(∂B) to H(∂B):

Sδkc
B = S̃B +Υδkc +O(δ2 log δ).

In particular, we have

Sδkc
B [ϕ0] = SB[ϕ0] + τδkc +O(δ2 log δ).

It can be verified that the same expansion holds when viewed as an operator from H∗(∂B) into
L2(B).

Note that the following identity holds

−(S̃−1
B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+ PH∗

0
S̃−1
B [x̃ · ∇ui(z)] = −Υδkc

[
S̃−1
B [x̃ · ∇ui(z)]

]
ϕ0

SB[ϕ0] + τδkc
+ S̃−1

B [x̃ · ∇ui(z)].

Straightforward calculations and the fact that SB is harmonic in B yields

δSδkc
B (AI

B(δ))
−1f I = ui(z) + δ

(
x̃+ SB

(
λεI −K∗

B

)−1
[ν]
)
· ∇ui(z) +O

(
δ2

dist(λε, σ(K∗
B))

)

in L2(B). Using Lemma A.3 to scale back the estimate to D leads to the desired result.

4.2 Small volume expansion of the temperature

We proceed in this section to prove Theorem 2.2. To do so, we make use of the Laplace transform
method [13, 16, 22].

Consider equation (4.1) and define the Laplace transform of a function g(t) by

L(g)(s) =

∫ ∞

0
e−stg(t)dt.

Taking the Laplace transform of the equations on τ in (4.1) we formally obtain the following

10



system: 



s
ρcCc

γc
τ̂(·, s)−∆τ̂(·, s) = L(gu)(·, s) in D,

s
ρmCm

γm
τ̂(·, s)−∆τ̂(·, s) = 0 in R

2\D,

τ̂+(·, s)− τ̂−(·, s) = 0 on ∂D,

γm
∂τ̂

∂ν

∣∣∣∣
+

− γc
∂τ̂

∂ν

∣∣∣∣
−
= 0 on ∂D,

τ̂(·, s) satisfies the Sommerfeld radiation condition at infinity,

(4.9)

where τ̂(·, s) and L(gu)(·, s) are the Laplace transforms of τ and gu := ω
2πγc

ℑ(εc)|u|2, respectively,
and s ∈ C\(−∞, 0].

A rigorous justification for the derivation of system (4.9) and the validity of the inverse
transform of the solution can be found in [16].

Using layer potential techniques we have that, for any p̂, q̂ ∈ H− 1
2 (∂D), τ̂ defined by

τ̂ :=

{
−Sβγm

D [p̂], x ∈ R
2\D,

−F̂D(·, y, βγc)− Sβγc

D [q̂], x ∈ D,
(4.10)

satisfies the differential equations in (4.9) together with the Sommerfeld radiation condition.

Here βγm := i
√
sρmCm

γm
, βγc := i

√
sρcCc

γc
and

F̂D(·, βγc) :=
∫

D
G(·, y, βγc)L(gu)(y)dy.

To satisfy the boundary transmission conditions, p̂ and q̂ ∈ H− 1
2 (∂D) should satisfy the

following system of integral equations on ∂D:





−Sβγm

D [p̂] + Sβγc

D [q̂] = −F̂D(·, βγc),

−γm
(
1
2I + (Kβγm

D )∗
)
[p̂] + γc

(
− 1

2I + (Kβγc

D )∗
)
[q̂] = −γc

∂F̂D(·, βγc)
∂ν

.
(4.11)

4.2.1 Rescaling of the equations

Recall that D = z + δB, for any x ∈ ∂D, x̃ := x−z
δ ∈ ∂B, for each function f defined on ∂D, η

is such that η(f)(x̃) = f(z + δx̃) and

Sk
D[ϕ](x) = δSδk

B [η(ϕ)](x̃),
(Kk

D)
∗[ϕ](x) = (Kδk

B )∗[η(ϕ)](x̃).

We can also verify that

F̂D(x, βγc) = δ2F̂B(x̂, δβγc),

∂F̂D

∂ν
(x, βγc) = δ

∂F̂B

∂ν
(x̂.δβγc).

11



Note that in the above identity, in the left-hand side we differentiate with respect to x while in
the right-hand side we differentiate with respect to x̃. To simplify the notation, we will use F̂B

to refer to F̂B(·, δβγc).
We rescale system (4.11) to arrive at





−Sδβγm

B [η(p̂)] + Sδβγc

B [η(q̂)] = −δF̂B,

−γm
(
1
2I + (Kδβγm

B )∗
)
[η(p̂)] + γc

(
− 1

2I + (Kδβγc

B )∗
)
[η(q̂)] = −γcδ

∂F̂B

∂ν
.

For δ small enough, Sδβγc

B is invertible (see Appendix A). Therefore, it follows that

η(p̂) = (Sδβγm

B )−1Sδβγc

B [η(q̂)] + (Sδβγm

B )−1
[
δF̂B

]
.

Hence, we have the following equation for η(q̂):

Ah
B(δ)[η(q̂)] = fh,

where

Ah
B(δ) = −γm

(
1
2I + (Kδβγm

B )∗
)
(Sδβγm

B )−1Sδβγc

B + γc
(
− 1

2I + (Kδβγc

B )∗
)
,

fh = −γcδ
∂F̂B

∂ν
+ γm

(
1
2I + (Kδβγm

B )∗
)
(Sδβγm

B )−1
[
δF̂B

]
.

(4.12)

4.2.2 Proof of Theorem 2.2

To express the solution of (2.2) on ∂D × (0, T ), asymptotically on the size of the nanoparticle
δ, we make use of the representation (4.10). We will compute an asymptotic expansion for η(q̂)

on δ to later compute δSδβγc

B [η(q̂)] on ∂B, scale back to D and take Laplace inverse.
Using the asymptotic expansions of Appendix A the following asymptotic for Ah

B(δ) holds
in L(H∗(∂B))

Ah
B(δ) = Ah

0+O(δ2 log δ),

where

Ah
0 = −

(
1

2

(
γc + γm

)
I −

(
γc − γm

)
K∗

B

)
.

In the same manner, in H∗(∂B),

fh = −γcδ
∂F̂B

∂ν
+ γm

(1
2
I +K∗

B

)
S̃−1
B [δF̂B] +O

(
δ5 log δ

dist(λε, σ(K∗
D))

2

)

= −γcδ
∂F̂B

∂ν
− γm

(1
2
I −K∗

B

)
S̃−1
B [δF̂B] + γmS̃−1

B [δF̂B] +O

(
δ5 log δ

dist(λε, σ(K∗
D))

2

)
.

Here the remainder comes from the fact that F̂B = O
(

δ2

dist(λε,σ(K∗
D
))2

)
.

12



Note that ∆F̂B = η(L(gu)) − δ2β2γcF̂B in B and ∆F̂B = 0 in R
2\D̄. We can further verify

that F̂B satisfies the assumption required in Lemma A.4. Thus we have

(1
2
I −K∗

B

)
S̃−1
B [δF̂B] = −δ ∂F̂B

∂ν
+ Cuϕ0 + γmS̃−1

B [δF̂B] +O

(
δ5

dist(λε, σ(K∗
D))

2

)
,

where Cu is a constant such that Cu = O
(

δ3

dist(λε,σ(K∗
D
))2

)
.

After replacing the above in the expression of fh we find that

η(q̂) = (Ah
B(δ))

−1fh

= (λγI −K∗
B)

−1[δ
∂F̂B

∂ν
] +

Cuγm

(γc − γm)(λγ − 1
2)
ϕ0 +O

(
δ5 log δ

dist(λε, σ(K∗
D))

2

)
,

(4.13)

where

λγ =
γc + γm

2(γc − γm)
.

Finally, in H∗(∂B),

η(τ̂) = −δ2F̂B−δSδβγc

B (λγI−K∗
B)

−1[
∂δF̂B

∂ν
]− Cuγm

(γc − γm)(λγ − 1
2)
δSδβγc

B [ϕ0]+O

(
δ6 log δ

dist(λε, σ(K∗
D))

2

)
.

(4.14)
It can be shown, from the regularity of the remainders, that the previous identity also holds in
L2(∂B).

Using Holder’s inequality we can prove that

‖Sδβγc

B [ϕ]‖L∞(∂B) ≤ C‖ϕ‖L2(∂B),

for some constant C. Hence, we find that identity (4.14) also holds true uniformly on ∂B and

CuδSδβγcf

B [ϕ0](x̃) = O
(

δ4 log δ
dist(λε,σ(K∗

D
))2

)
, uniformly in ∂B. Scaling back to D gives

τ̂(x, s) = −F̂D(x, βγc)− Sβγc

D (λγI −K∗
D)

−1[
∂F̂D(·, βγc)

∂ν
] +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
. (4.15)

Before we take the inverse Laplace transform to (4.15) we note that (see [22])

L
(
K(x, ·, bc)

)
= −G(x, βγc),

where bc :=
ρcCc

γc
and K(x, ·, bc) is the fundamental solution of the heat equation. In dimension

two, K is given by

K(x, t, γ) =
e−

|x|2

4bct

4πbct
.

We denote K(x, y, t, t′, bc) := K(x− y, t− t′, bc). By the properties of the Laplace transform, we
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have

−F̂D(x, βγc) = −
∫

D
G(x, y, βγc)L(gu)(y)dy = L

(∫ ·

0

∫

D
K(x, y, ·, t′, bc)gu(y)dydt′

)
.

We define FD as follows

FD(x, t, bc) :=

∫ t

0

∫

D
K(x, y, t, t′, bc)gu(y)dydt

′. (4.16)

Similarly, we have that for a function f

−
∫

∂D
G(x, y, βγc)L(f)(y)dy = L

(∫ ·

0

∫

∂D
K(x, y, ·, t′, bc)f(y, t′)dydt′

)
.

We define Vbc
D as follows

Vbc
D [f ](x, t) :=

∫ t

0

∫

∂D
K(x, y, t, t′, bc)f(y, t

′)dydt′. (4.17)

Finally, using Fubini’s theorem and taking Laplace inverse we find that

τ(x, t) = FD(x, t, bc)− Vbc
D (λγI −K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
,

uniformly in (x, t) ∈ ∂D × (0, T ).

4.3 Temperature elevation at the plasmonic resonance

Suppose that the incident wave is ui(x) = eikmd·x, where d is a unit vector. For a nanoparticle
occupying a domain D = z + δB, the inner field u solution to (2.1) is given by Theorem 2.1,
which states that, in L2(D),

u ≈ eikmd·z(1 + ikmSD

(
λεI −K∗

D

)−1
[ν] · d

)
,

and hence

|u|2 ≈ 1 + 2kmℜ
(
iSD

(
λεI −K∗

D

)−1
[ν] · d

)
+
∣∣∣kmSD

(
λεI −K∗

D

)−1
[ν]
)
· d
∣∣∣
2
. (4.18)

Using Lemma A.2, we can write

SD

(
λεI −K∗

D

)−1
[ν] · d =

∞∑

j=1

(ν · d, ϕj)H∗SD[ϕj ]

λε − λj
,

and therefore, for a given plasmonic frequency ω, we have

SD

(
λεI −K∗

D

)−1
[ν] · d ≈ (ν · d, ϕj∗)H∗SD[ϕj∗ ]

λε(ω)− λj∗
.

14



Here j∗ is such that λj∗ = ℜ(λε(ω)) and the eignevalue λj∗ is assumed to be simple. If this
was not the case, (ν · d, ϕj∗)H∗SD[ϕj∗ ] should be replaced by the corresponding sum over an
orthonormal basis of eigenfunctions for the eigenspace associated to λj∗ .

Replacing in (4.18) we find

|u|2 ≈ 1 + 2km
(ν · d, ϕj∗)H∗SD[ϕj∗ ]

|λε(ω)− λj∗ |
+ k2m

(ν · d, ϕj∗)
2
H∗SD[ϕj∗ ]

2

|λε(ω)− λj∗ |2
.

Thus, at a plasmonic resonance ω,

FD[gu](x, t, bc) ≈
(
FD[1] + 2km

(ν · d, ϕj∗)H∗

|λε(ω)− λj∗ |
FD[SD[ϕj∗ ]] + k2m

(ν · d, ϕj∗)
2
H∗

|λε(ω)− λj∗ |2
FD[SD[ϕj∗ ]

2]

)
(x, t, bc),

∂FD(x, t, bc)

∂ν
≈

(
2km

(ν · d, ϕj∗)H∗

|λε(ω)− λj∗ |
∂FD[SD[ϕj∗ ]]

∂ν
+ k2m

(ν · d, ϕj∗)
2
H∗

|λε(ω)− λj∗ |2
∂FD[SD[ϕj∗ ]

2]

∂ν

)
(x, t, bc).

Then, the temperature on the boundary of a nanoparticle at the plasmonic resonance can be

estimated by plugging the above approximations of FD and
∂FD(x, t, bc)

∂ν
into

τ(x, t) = FD(x, t, bc)− Vbc
D (λγI −K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
.

4.4 Temperature elevation for two close-to-touching particles

Lemma A.4 implies that

∂FD(x, t, bc)

∂ν
= −

(1
2
I −K∗

D

)
S̃−1
D [FD](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
.

Therefore, we can write the temperature on the boundary of the nanoparticle as

τ(x, t) = FD(x, t, bc) + Vbc
D (λγI −K∗

D)
−1PH∗\E 1

2

[
∂FD(·, ·, bc)

∂ν
](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
,

(4.19)
where PH∗\E 1

2

is the projection into H∗\E 1
2
: the complement in H∗(∂D) of the eigenspace

associated to the eigenvalue 1
2 of K∗

D. This implies that, even if λγ is close to 1
2 , the quantity

(λγI − K∗
D)

−1PH∗\E 1
2

[
∂FD(·, ·, bc)

∂ν
](x, t) will remain of order O

(
δ2

dist(λε,σ(K∗
D
))2

)
, provided that

the second largest eigenvalue of K∗
D is not close to 1

2 .
Even if this is in general the case for smooth boundaries ∂D, it turns out that for nanopar-

ticles with two connected close-to-touching subparts with contact of order m, a family of eigen-
values of K∗

D in H∗\E 1
2
approaches 1

2 as (see [12])

λζn ∼ 1

2
− cnζ

1− 1
m + o(ζ1−

1
m ),

where ζ is the distance between connected subparts and cn is an increasing sequence of positive
numbers.
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Now, λγ ≈ 1
2 is the kind of situations encountered for metallic nanoparticles immersed in

water or some biological tissue. As an example, the thermal conductivity of gold is γc = 318 W
mK

and that of pure water is γm = 0.6 W
mK . This gives λγ ≈ 0.5019.

In view of this, the second term in (4.19) may increase considerably for some type of close-
to-touching particles.

We stress, nevertheless, that this is not the general case. For a more refined analysis,
asymptotics of the eigenfunctions of K∗

D should be also studied.

5 Numerical results

The numerical experiments for this work can be divided into two parts. The first one is the
Helmholtz equation solution approximation, which is obtained by using Theorem 2.1. The
second part is the Heat equation solution computation, which is obtained using Theorem 2.2.

The major tasks surrounding the numerical implementation of these formulas are integrating
against a singular kernel. The numerical computations of the operators FD[·] and ∂νFD[·] can
be achieved by meshing the domain D and integrating semi-analytically inside the triangles that
are close to the singularities. We used the following formula to avoid numerical differentiation:

∂FD(x, t, bc)

∂ν
=

1

2πbc

∫

D
exp

(−|x− y|2
4bct

) 〈y − x, νx〉
|x− y|2 gu(y)dy, x ∈ ∂D. (5.1)

For all the presented simulations, we considered an incident plane wave given by

ui(x) = eikmd·x,

where d = (1, 1)/
√
2 ∈ R

2 is the illumination direction and km = 2π/750 · 109 is the frequency
(in the red range). The considered nanoparticles are ellipses with semi-axes 30nm and 20nm,
respectively.

It is worth noticing that the illumination direction d is relevant solely in the asymptotic
formula in Theorem 2.1. Its role is to define the coefficients of a linear combination of both
components of SD(λǫI − K∗

D)
−1[v] ∈ R

2. We will see from the numerical simulations that this
is fundamental if we wish to maximize the produced electromagnetic field, and therefore the
generated heat inside the nanoparticles.

With respect to the asymptotic formula established in Theorem 2.1, besides the nanopar-
ticle’s shape D, the sole parameter that is left is λǫ. For all the following simulations we will
consider this as a free parameter that we will use to excite the eigenvalues of the Neumann-
Poincaré operator and hence to generate resonances. The physical justification that allows us to
do this is based on the Drude model [1]. Whenever we mention that we approach a particular
eigenvalue λj of K∗

D, we will adopt λǫ = λj + 0.001i.
With respect to the heat equation coefficients, we use realistic values of gold for nanoparticles,

and water for tissues.

5.1 Single-particle simulation

We consider one elliptical nanoparticle D ⋐ R
2 centered at the origin, with its semi-major axis

aligned with the x-axis.
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5.1.1 Single-particle Helmholtz resonance

Resonance is achieved by approaching the eigenvalues of the Neumann-Poincaré operator K∗
D

with λǫ, and afterwards applying it to each of the components of the normal ν to ∂D. It turns out
that for some eigenfunctions of K∗

D, the normal of the shape is almost orthogonal, in H∗(∂D), to
them. Therefore, we cannot observe resonance for their associated eigenvalues; see [6]. In Figure
1 we can see values of the inner product between the eigenfunctions of K∗

D and the components
νx and νy of ν. Figure 1 suggests us which are the available resonant modes with the respective
strength of each coordinate. In Figure 2 we present the absolute value of the inner field for

0 10 20 30 40 50
0

2

4

6

8

10

x

y

Figure 1: Inner product in H∗(∂D) between the eigenfunctions of K∗
D and the components νx

and νy of the normal ν to ∂D.

the first three resonant modes, corresponding to the second, third and sixth eigenvalue of K∗
D,

respectively. In Figure 3 we decompose the inner field into the zeroth-order and the first-order
terms respectively given by ui(z) + δ(x − z)∇ui(z) and SD

(
λεI − K∗

D

)−1
[ν] · ∇ui(z). Figure 4

shows the components of the vector SD(λǫI −K∗
D)

−1[v].

First resonance mode Second resonance mode Third resonance mode

Figure 2: Absolute value of the electromagnetic field inside the nanoparticle at the first resonant
modes, being those when λǫ approaches the second, third and sixth eigenvalue of K∗

D.

From Figure 3, we can see that when we excite the nanoparticle at its resonant mode, the
largest contribution to the electromagnetic field comes from the first-order term of the small
volume expansion formula established in Theorem 2.1.

Observing the vectorial components of the first-order term in Figure 4 tells us how important
is the illumination direction as the x-component is significantly stronger than the y-component.
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Zeroth-order component First-order component

Figure 3: First resonant mode of the nanoparticle decomposed in its first- and second-order
term in the formula given by Theorem 2.1. Both images are absolute values of the respective
component.

The x-component The y-component

Figure 4: Absolute value of the vectorial components of the first-order term for the first resonant
mode.

If we wish to maximize the electromagnetic field and therefore the generated heat, the recom-
mended illumination direction would be around d = (1, 0)t (with t being the transpose), as it
was initially suggested by Figure 1.

5.1.2 Single-particle surface heat generation

Considering the electromagnetic field inside the nanoparticle given by the first resonant mode
presented in Figure 2, following the formula given by Theorem 2.2, we compute the generated
heat on the surface of the nanoparticle. In Figure 5 we plot the generated heat in three di-
mensions and present a two dimensional plot obtained by parameterizing the boundary. In
Figure 6 we decompose the heat in its first- and second-order terms given by formula 2.2, being

FD(x, t, bc) and −Vbc
D (λγI −K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) respectively. In Figure 7, we integrate the

total heat on the boundary and plot it as a function of time, for each component.
We can observe that the heat is not symmetric, this can be noticed from the total inner

field for the first resonance mode in Figure 2. The reason behind this non symmetry is because
we are illuminating with direction d = (1, 1)t/

√
2 over an ellipse. From Figure 7 we can notice

that the first-order term converges, while the zeroth-order term increases logarithmically, as it
is expected from the known solution of the heat equation for constant source in two dimensions
that the heat increases logarithmically.
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3D plot of generated heat at time T = 1 2D plot of generated heat at time T = 1
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Figure 5: At the left-hand side, we can see a three-dimensional plot of the nanoparticle heat,
the red shape is a reference value to show where the nanoparticle is located. At the right-
hand side we can see a two-dimensional plot of the generated heat, where the boundary was
parametrized following p(θ) = (a cos(θ), b sin(θ)), θ ∈ [−π, π], with a and b being the semi-major
and semi-minor axes, respectively.

Two-dimensional plot of the zeroth-order
term at T = 1

Two-dimensional plot of the first-order
term at T = 1
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Figure 6: Two-dimensional plots of the zeroth- and first-order components of the heat on the
boundary when time is equal to one. As time goes on, each point of the graph increases, but
the general shape is preserved.
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Figure 7: Time-logarithmic plots showing the total heat on the boundary for each component
of the heat. The values were obtained for each fixed time, by integrating over the boundary the
computed heat. From left- to right-hand side: The total heat, the zeroth-order and its first-
order, according to formula given by Theorem 2.2. Notice that the first-order term is plotted in
a log-log scale.

5.2 Two particles simulation

We consider two elliptical nanoparticles D1, D2, D = D1 ∪ D2, with the same shape and
orientation as the nanoparticle considered in the above example. The particle D1 is centered
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at the origin and D2 is centered at (0, 4.1 · 10−9), resulting in a separation distance of 0.1nm
between the two particles.

5.2.1 Two particles Helmholtz resonance

Following the same analysis as the one for one particle, in Figure 8 we present the inner product
between the eigenvectors of K∗

D with each component of the normal of D. We can observe that
there are more available resonant modes. In particular we can see that when λǫ approaches the
36th or 37th eigenvalues, we achieve strong resonant modes.

0 10 20 30 40 50
0

2

4

6

8

10

12

x

y

Figure 8: inner product in H∗∂D between the eigenvalues of K∗
D and each component of the

normal of ∂D, νx and νy.

In Figure 2 we present the absolute value of the inner field for the resonant modes corre-
sponding to the 6th, 37th and 38th eigenvalues of K∗

D. Similarly to the case with one particle,
the dominant term in the electromagnetic field for each case is the first-order term. In Figure
10 we decompose the first-order term in its x-component and y-component.

As suggested by Figure 8, for the resonant mode associated to the 38th eigenvector of K∗
D, the

stronger component is the one on the y direction, meaning that if we wish to maximize the elec-
tromagnetic field, and therefore the generated heat, it is suggested to consider the illumination
vector d = (0, 1)t.

5.2.2 Two particles surface heat generation

Similarly to the analysis carried out for one particle, we now compute the generated heat for
these two particles while undergoing resonance for the resonant mode associated to the 38th
eigenvalue of K∗

D. In Figure 11 we plot generated heat in the boundary of the two nanoparticles.
In Figure 12 we decompose the generated heat in its zeroth and first-order component, explicited
for each of the two nanoparticles.

Similarly to the single nanoparticle case, there is no symmetry on the heat values on the
boundary, which is due to the illumination. We have not provided the plots of the heat integrated
along the boundary, as the conclusions are the same as the ones in the single nanoparticle case:
The total heat on the boundary increases logarithmically, initially on time the dominant term
is the fist-order one, but as time increases the zeroth-order term becomes the predominant one.
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Resonant mode associated to the
6th eigenvalue of K∗

D

Resonant mode associated to the
37th eigenvalue of K∗

D

Resonant mode associated to the
38th eigenvalue of K∗

D

Figure 9: Absolute value of the electromagnetic field inside the nanoparticle at the resonant
modes associated to the 6th, 37th and 38th resonant modes, obtained when λǫ approaches the
respective eigenvalues of K∗

D.

The x-component The y-component

Figure 10: Absolute value of the vectorial components of the first-order term for the 38th
resonant mode.

6 Concluding remarks

In this paper we have derived asymptotic formula for the temperature elevation due to plasmonic
nanoparticles. We have considered thermal coupling within close-to-touching nanoparticles,
where the temperature field deviates significantly from the one generated by a single nanopar-
ticle. Our results can be used for the thermal detection and localization of the nanoparticles
[24]. They can also be used for monitoring temperature elevation due to plasmonic nanoparticles
based on the photoacoustic signal recently analyzed in [28]. Thermoacoustic signals generated
by nanoparticle heating can be computed numerically based on the successive resolution of the
thermal diffusion problem considered in this paper and a thermoelastic problem, taking into
account the size and shape of the nanoparticle, thermoelastic and elastic properties of both

21



3D plot of heat on ∂(D1 ∪D2) at time T = 1.
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Figure 11: Generated heat on the boundary of the nanoparticles for time equal to 1. On the
left we can see a three dimensional view of the heat, the red shapes are referential to show the
location of the nanoparticles. On the right-hand side we can see the two dimensional heat plots
corresponding to each nanoparticle. To obtain these plots we parameterized the boundary of
each nanoparticle with p(θ) = (a cos(θ), b sin(θ)) + z, θ ∈ [−π, π], where z ∈ R

2 corresponds
to the center of each nanoparticle. On the top we can see nanoparticle D2 and on the bottom
nanoparticle D1.

the particle and its environment, and the temperature-dependence of the thermal expansion
coefficient of the environment. For sufficiently high illumination fluences, this temperature de-
pendence yields a nonlinear relationship between the photoacoustic amplitude and the fluence
[25]. The investigation of this nonlinear model will be the subject of a forthcoming publication.

A Asymptotic analysis of the single-layer potential in two di-

mensions

In this section we make an analysis of the single-layer potential Sk
D for small values of k, i.e

|k| ≪ 1. We use this, in section 4.1 , to make and expansion on δ of the operator AB(δ) and its
inverse.

The results in this section were first established in [8] for a connected domain D. Here we
generalize them to non connected domains.
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Figure 12: Two-dimensional plots of the zeroth and first component of the heat at time 1,
for each nanoparticle. On the left column we have the zeroth component of the heat, on the
right-hand side column we have the first component of the heat. On top we show the values for
nanoparticle D2, on the bottom we show the values for nanoparticle D1.

A.1 Layer potentials for the Laplacian in two dimensions

Recall the definition of the single-layer potential and Neumann-Poincaré operators for the Lapla-
cian:

SD[ϕ](x) =

∫

∂D

1

2π
log |x− y|ϕ(y)dσ(y), x ∈ ∂D,

K∗
D[ϕ](x) =

∫

∂D

1

2π

(x− y, ν(x))

|x− y| ϕ(y)dσ(y), x ∈ ∂D.

In R
2 the single-layer potential SD : H−1/2(∂D) → H1/2(∂D) is not, in general, invertible.

Hence, −(u,SD[v])− 1
2
, 1
2
does not define an inner product and the symmetrization technique

described in [2, subsection 2.1.4] is no longer valid.
Here and throughout, (·, ·)− 1

2
, 1
2
denotes the duality pairing betweenH−1/2(∂D) andH1/2(∂D).

To overcome this difficulty, we will introduce a substitute of SD, in the same way as in [8].
We first need the following lemma.

Lemma A.1. Let C = {ϕ ∈ H−1/2(∂D); ∃ α ∈ C, SD[ϕ] = α}. We have dim(C) = 1.
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Proof. It is known that

AD : H−1/2(∂D)× C → H1/2(∂D)× C

(ϕ, a) →
(
SD[ϕ] + a,

∫

∂D
ϕdσ

)
,

is invertible [3, Theorem 2.26].
We can see that C = Π1A−1

D (0,C), where Π1[(ϕ, a)] = ϕ. The invertibility of AD implies
that Ker(Π1A−1

D (0, ·)) = {0}. Thus, by the range theorem we have

1 = dim(Im(Π1A−1
D (0, ·))) + dim(Ker(Π1A−1

D (0, ·))) = dim(Im(Π1A−1
D (0, ·))) = dim(C).

Definition A.1. We call ϕ0 the unique element of C such that
∫
∂D ϕ0dσ = 1.

Note that for every ϕ ∈ H−1/2(∂D) we have the decomposition

ϕ = ϕ−
(∫

∂D
ϕdσ

)
ϕ0 +

(∫

∂D
ϕdσ

)
ϕ0 := ψ +

(∫

∂D
ϕdσ

)
ϕ0,

where we can see that (ψ, 1)− 1
2
, 1
2

= 0. This kind of decomposition, ϕ = ψ + αϕ0, with

(ψ, 1)− 1
2
, 1
2
= 0 is unique.

Note that we can decompose H−1/2 as a direct sum of elements with zero-mean and multiples

of ϕ0, H
−1/2(∂D) = H

−1/2
0 (∂D)⊕{µϕ0, µ ∈ C}. This allows us to define the following operator.

Definition A.2. Let S̃D be the linear operator that satisfies

S̃D : H−1/2(∂D) → H1/2(∂D)

ϕ →
{

SD[ϕ] if (ϕ, 1)− 1
2
, 1
2
= 0,

−1 if ϕ0 = ϕ.

Remark A.1. When SD is invertible, S̃D is similar enough to keep the invertibility. When SD

is not invertible, then C = ker(SD) and the operator S̃D becomes an invertible alternative to SD

that images the kernel C to the space {µχ(∂D), µ ∈ C}.

Remark A.2. S̃D : H−1/2(∂D) → H1(D) follows the same definition.

Theorem A.1. S̃D is invertible, self-adjoint and negative for (·, ·)− 1
2
, 1
2
and satisfies the following

Calderón identity: S̃DK∗
D = KDS̃D.

Proof. The invertibility is a direct consequence of Lemma A.1.
Indeed, since SD is Fredholm of zero index, so is S̃D. Therefore, we only need the injectivity.

Suppose that, ∃ ϕ 6= 0 such that S̃D[ϕ] = 0. This mean that, ∃ α 6= 0 ∈ C such that ϕ = αϕ0.
Therefore, S̃D[ϕ] = αS̃D[ϕ0] = −α = 0, which is a contradiction. Hence ϕ = 0.

The self-adjointness comes directly form that of SD. Noticing that ϕ0 is an eigenfunction of
eigenvalue 1/2 of K∗

D we get the Calderón identity from a similar one satisfied by SD: SDK∗
D =

KDSD; see [2, Lemma 2.12].
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It is known that
∫
∂D ψSD[ψ]dσ < 0 if (ψ, 1)− 1

2
, 1
2
= 0 and ψ 6= 0, see [2, Lemma 2.10].

Therefore, writing ϕ = ψ +
( ∫

∂D ϕdσ
)
ϕ0, with ψ = ϕ −

( ∫
∂D ϕdσ

)
ϕ0, and noticing that

∫
∂D ϕ0S̃D[ψ]dσ =

∫
∂D S̃D[ϕ0]ψdσ = −

∫
∂D ψdσ = 0, we have

∫

∂D
ϕS̃D[ϕ]dσ =

∫

∂D
ψS̃D[ψ]dσ +

(∫

∂D
ϕdσ

)2
S̃D[ϕ0]

=

∫

∂D
ψSD[ψ]dσ −

(∫

∂D
ϕdσ

)2
< 0,

if ϕ 6= 0.

Definition A.3. We define the space H∗(∂D) as the Hilbert space resulting from endowing
H−1/2(∂D) with the inner product

(u, v)H∗ := −(u, S̃D[v])− 1
2
, 1
2
. (A.1)

Similarly, we let H to be the Hilbert space resulting from endowing H1/2 with the inner product

(u, v)H = −(S̃−1
D [u], v)− 1

2
, 1
2
. (A.2)

If D is C1,α, we have the following result.

Lemma A.2. Let D be a C1,α bounded domain of R2 and let S̃D be the operator introduced in
Definition A.2. Then

(i) The operator K∗
D is compact self-adjoint in the Hilbert space H∗(∂D) and H∗(∂D) is

equivalent to H− 1
2 (∂D); Similarly, the Hilbert space H(∂D) is equivalent to H

1
2 (∂D).

(ii) Let (λj , ϕj), j = 0, 1, 2, . . . , be the eigenvalue and normalized eigenfunction pair of K∗
D

with λ0 =
1
2 . Then, λj ∈ (−1

2 ,
1
2 ] and λj → 0 as j → ∞;

(iii) The following representation formula holds: for any ϕ ∈ H−1/2(∂D),

K∗
D[ϕ] =

∞∑

j=0

λj(ϕ,ϕj)H∗ ⊗ ϕj .

The following lemmas are needed in the proof of Theorem 2.1 and Theorem 2.2.

Lemma A.3. Let D = z+δB and η be the function such that, for every ϕ ∈ H∗(∂D), η(ϕ)(x̃) =
ϕ(z + δx̃), for almost all x̃ ∈ ∂B. Then

‖ϕ‖H∗(∂D) = δ‖η(ϕ)‖H∗(∂B).

Similarly, if for every ϕ ∈ L2(D), η(ϕ)(x̃) = ϕ(z + δx̃), for almost all x̃ ∈ B, then

‖ϕ‖L2(D) = δ‖η(ϕ)‖L2(B).

25



Proof. We only prove the scaling in H∗(∂D). From the proof of Theorem A.1, we have

‖ϕ‖2H∗(∂D) = −
∫

∂D
ψSD[ψ]dσ +

(∫

∂D
ϕdσ

)2
,

where ψ = ϕ−
( ∫

∂D ϕdσ
)
ϕ0. Note that (ψ, 1)− 1

2
, 1
2
= 0 and so, (η(ψ), χ(∂B))− 1

2
, 1
2
= 0 as well.

By a rescaling argument we find that

‖ϕ‖2H∗(∂D) = −δ2
∫

∂B

∫

∂B

1

2π
log |δ(x̃− ỹ)|η(ψ)(x̃)η(ψ)(ỹ)dσ(x̃)dσ(ỹ) + δ2

(∫

∂B
η(ϕ)dσ

)2

= − 1

2π
δ2 log(δ)

(∫

∂B
η(ψ)dσ

)2
+ δ2

(
−
∫

∂B
η(ψ)SD[η(ψ)]dσ +

(∫

∂B
η(ϕ)dσ

)2)

= δ2‖η(ϕ)‖2H∗(∂B).

Lemma A.4. Let g ∈ H1(D) be such that ∆g = f with f ∈ L2(D). Then, in H∗(∂D),

(
1

2
I −K∗

D)S̃−1
D [g] = −∂g

∂ν
+ Tf .

For some Tf ∈ H∗(∂D) and ‖Tf‖H∗ ≤ C‖f‖L2(D) for a constant C.
Moreover, if g ∈ H1

loc(R
2), ∆g = 0 in R

2\D̄, lim|x|→∞ g(x) = 0, then

Tf = cfϕ0 + S̃−1
D [g],

with

cf =

∫

D
f(x)dx−

∫

∂D
S̃−1
D [g](y)dσ(y),

where ϕ0 is given in Definition A.1. Here, by an abuse of notation, we still denote by g the trace
of g on ∂D.

Proof. Let ϕ ∈ H∗(∂D). Then

(
(
1

2
I −K∗

D)S̃−1
D [g], ϕ

)

H∗
= −

(
S̃−1
D [g],

(1
2
I −KD

)
S̃D[ϕ]

)

− 1
2
, 1
2

= −
(
S̃−1
D [g], S̃D

(1
2
I −K∗

D

)
[ϕ]
)

− 1
2
, 1
2

= −
(
g,
(1
2
I −K∗

D

)
[ϕ]
)

− 1
2
, 1
2

= −
(
g,−∂S̃D[ϕ]

∂ν

∣∣∣
−

)

− 1
2
, 1
2

=

∫

∂D

∂g

∂ν
S̃D[ϕ]dσ −

∫

D

(
f S̃D[ϕ]−∆S̃D[ϕ]

(
g
))
dx

= −
(∂g
∂ν
, ϕ
)

H∗
−
∫

D
f S̃D[ϕ]dx.
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We have used the fact that S̃D is harmonic in D.
Consider the linear application Tf [ϕ] := −

∫
D f S̃D[ϕ]dx. We have

|Tf [ϕ]| ≤ C‖f‖L2(D)‖S̃D[ϕ]‖L2(D) ≤ Cf‖S̃D[ϕ]‖H1(D) ≤ Cf‖S̃D[ϕ]‖
H

1
2 (∂D)

≤ Cf‖ϕ‖
H− 1

2 (∂D)
.

Here we have used Holder’s inequality, a standard Sobolev embedding, the trace theorem and
the fact that S̃D : H− 1

2 (∂D) → H
1
2 (∂D) is continuous. By the Riez representation theorem,

there exists v ∈ H∗(∂D) such that Tf [ϕ] = (v, ϕ)H∗ , ∀ϕ ∈ H∗(∂D).
By abuse of notation we still denote Tf := v to make explicit the dependency on f . It follows

that

‖Tf‖2H∗ = −
∫

D
f S̃D[Tf ]dx ≤ C‖f‖L2(D)‖S̃D[Tf ]‖L2(D)

≤ C‖f‖L2(D)‖S̃D[Tf ]‖H1(D)

≤ C‖f‖L2(D)‖S̃D[Tf ]‖
H

1
2 (∂D)

≤ C‖f‖L2(D)‖Tf‖H∗ .

We now show that in H∗
0(∂D), Tf = S̃−1

D [g].
Indeed, let ϕ ∈ H∗

0(∂D), then

(
S̃−1
D [g], ϕ

)

H∗
= −

(
S̃−1
D [g], S̃D[ϕ]

)

− 1
2
, 1
2

= −
(
g, ϕ

)

− 1
2
, 1
2

= −
(
g,
∂S̃D[ϕ]

∂ν

∣∣∣
+
− ∂S̃D[ϕ]

∂ν

∣∣∣
−

)

− 1
2
, 1
2

=

∫

∂D

∂g

∂ν
S̃D[ϕ]dσ −

∫

∂D

∂g

∂ν
S̃D[ϕ]dσ +

∫

∂B∞

∂g

∂ν
S̃D[ϕ]dσ −

∫

∂B∞

g
∂S̃D[ϕ]

∂ν
dσ

−
∫

R2

(
f S̃D[ϕ]−∆S̃D[ϕ]

(
g
))
dx

= −
∫

D
f S̃D[ϕ]dx.

Here we have used the assumption on g, the fact that S̃D[ϕ] is harmonic in D and R
2\D̄ and

that for ϕ ∈ H∗
0(∂D) we have S̃D[ϕ](x) = O( 1

|x|) and
∂S̃D[ϕ]

∂ν
(x) = O( 1

|x|) for |x| → ∞.

Therefore,

Tf = (Tf − S̃−1
D [g], ϕ0)H∗ϕ0 + S̃−1

D [g].

Finally, recaling the definition of ϕ0 given in Definition A.1 we obtain that

(Tf − S̃−1
D [g], ϕ0)H∗ =

∫

D
f(x)dx−

∫

∂D
S̃−1
D [g](y)dσ(y).
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A.2 Asymptotic expansions

Let us now consider the single-layer potential for the Helmholtz equation in R
2 given by

Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D,

where G(x, y, k) = − i

4
H

(1)
0 (k|x− y|) and H(1)

0 is the Hankel function of first kind and order 0.

We have, for k ≪ 1,

− i

4
H

(1)
0 (k|x− y|) = 1

2π
log |x− y|+ τk +

∞∑

j=1

(bj log k|x− y|+ cj)(k|x− y|)2j ,

where

τk =
1

2π
(log k + γe − log 2)− i

4
, bj =

(−1)j

2π

1

22j(j!)2
, cj = −bj

(
γe − log 2− iπ

2
−

j∑

n=1

1

n

)
,

and γe is the Euler constant. Thus, we get

Sk
D = Ŝk

D +

∞∑

j=1

(
k2j log k

)
S(1)
D,j +

∞∑

j=1

k2jS(2)
D,j , (A.3)

where

Ŝk
D[ϕ](x) = SD[ϕ](x) + τk

∫

∂D
ϕdσ,

S(1)
D,j [ϕ](x) =

∫

∂D
bj |x− y|2jϕ(y)dσ(y),

S(2)
D,j [ϕ](x) =

∫

∂D
|x− y|2j(bj log |x− y|+ cj)ϕ(y)dσ(y).

Lemma A.5. The norms ‖S(1)
D,j‖L(H∗(∂D),H(∂D)) and ‖S(2)

D,j‖L(H∗(∂D),H(∂D)) are uniformly bounded
with respect to j. Moreover, the series in (A.3) is convergent in L(H∗(∂D),H(∂D)) for k < 1.

Observe that
(
SD − S̃D

)
[ϕ] =

(
SD − S̃D

)
[PH∗

0
[ϕ] + (ϕ,ϕ0)H∗ϕ0] = (ϕ,ϕ0)H∗ (SD[ϕ0] + 1) .

Then it follows that

Ŝk
D[ϕ] = S̃D[ϕ] + (ϕ,ϕ0)H∗ (SD[ϕ0] + 1) + τk

∫

∂D
PH∗

0
[ϕ] + (ϕ,ϕ0)H∗ϕ0dσ = S̃D[ϕ] + Υk[ϕ],

where
Υk[ϕ] = (ϕ,ϕ0)H∗ (SD[ϕ0] + 1 + τk) . (A.4)

Therefore, we arrive at the following result.
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Lemma A.6. For k small enough, Ŝk
D : H∗(∂D) → H(∂D) is invertible.

Proof. Υk is clearly a compact operator. Since S̃D is invertible, the invertibility of Ŝk
D is equiv-

alent to that of Ŝk
DS̃−1

D = I + ΥkS̃−1
D . By the Fredholm alternative, we only need to prove the

injectivity of I +ΥkS̃−1
D .

Since ∀ v ∈ H1/2(∂D), ΥkS̃−1
D [v] ∈ C, for

(
I +ΥkS̃−1

D

)
[v] = 0, we need to show that

v = S̃D[αϕ0] = −α ∈ C.
We have

(
I +ΥkS̃−1

D

)
S̃D[αϕ0] = α(SD[ϕ0] + τk) = 0 iff SD[ϕ0] = −τk or α = 0.

Since we can always find a small enough k such that SD[ϕ0] 6= −τk, we need α = 0. This yields
the stated result.

Lemma A.7. For k small enough, the operator Sk
D : H∗(∂D) → H(∂D) is invertible.

Proof. The operator Sk
D − Ŝk

D : H∗(∂D) → H(∂D) is a compact operator. Because Ŝk
D is

invertible for k small enough, by the Fredholm alternative only the injectivity of Sk
D is necessary.

From the uniqueness of a solution to the Helmholtz equation we get the result.

Lemma A.8. The following asymptotic expansion holds for k small enough:

(Sk
D)

−1 = PH∗
0
S̃−1
D + Uk − k2 log kPH∗

0
S̃−1
D S(1)

D,1PH∗
0
S̃−1
D +O(k2)

with

Uk = −(S̃−1
D [·], ϕ0)H∗

SD[ϕ0] + τk
ϕ0. (A.5)

Note that Uk = O(1/ log k).

Proof. We can write (A.3) as
Sk
D = Ŝk

D + Gk,

where Gk = k2 log kS(1)
D,1 +O(k2). From Lemma A.6 and Lemma A.7 we get the identity

(Sk
D)

−1 =
(
I + (Ŝk

D)
−1Gk

)−1
(Ŝk

D)
−1.

Hence, we have

(Ŝk
D)

−1 =
(
S̃−1
D Ŝk

D

)−1

︸ ︷︷ ︸
Λ−1
k

S̃−1
D .

Here,

Λk = I − (·, ϕ0)H∗(SD[ϕ0] + 1 + τk)ϕ0

= PH∗
0
− (·, ϕ0)H∗(SD[ϕ0] + τk)ϕ0.
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Then,

Λ−1
k = PH∗

0
− (·, ϕ0)H∗

1

SD[ϕ0] + τk
ϕ0,

and therefore,

(Ŝk
D)

−1 = PH∗
0
S̃−1
D − (S̃−1

D [·], ϕ0)H∗

SD[ϕ0] + τk
ϕ0.

It is clear that ‖(Ŝk
D)

−1‖L(H(∂D),H∗(∂D)) is bounded for k small. Since ||Gk||L(H(∂D),H∗(∂D)) goes
to zero as k goes to zero, for k small enough, we can write

(Sk
D)

−1 = (Ŝk
D)

−1 − (Ŝk
D)

−1Gk(Ŝk
D)

−1 +O
(
k4(log k)2

)
,

which yields the desired result.

We now consider the expansion for the boundary integral operator (Kk
D)

∗. We have

(Kk
D)

∗ = K∗
D +

∞∑

j=1

(
k2j log k

)
K(1)

D,j +
∞∑

j=1

k2jK(2)
D,j , (A.6)

where

K(1)
D,j [ϕ](x) =

∫

∂D
bj
∂|x− y|2j
∂ν(x)

ϕ(y)dσ(y),

K(2)
D,j [ϕ](x) =

∫

∂D

∂
(
|x− y|2j(bj log |x− y|+ cj)

)

∂ν(x)
ϕ(y)dσ(y).

Lemma A.9. The norms ‖K(1)
D,j‖L(H∗(∂D),H∗(∂D)) and ‖K(2)

D,j‖L(H∗(∂D),H∗(∂D)) are uniformly
bounded for j ≥ 1. Moreover, the series in (A.6) is convergent in L(H∗(∂D),H∗(∂D)).
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intersecting disks and analysis of plamson resonance, arXiv:1501.02952.

[22] C. Lubich and R. Schneider, Time discretizations of parabolic boundary integral equations,
Numer. Math., 63 (1992), 455–481.

[23] I. Marangon, A.A.K. Silva, T. Guilbert, J. Kolosnjaj-Tabi, C. Marchiol, S. Natkhunarajah,
F. Chamming’s, C. Ménard-Moyon, A. Bianco, J.L. Gennisson, G. Renault, and F. Gazeau,
Tumor stiffening, a key determinant of tumor progression, is reversed by nanomaterial-
induced photothermal therapy, Theranostics, 7 (2017), 329–343.

[24] A. Nahas, M. Varna, E. Fort, and A.C. Boccara, Detection of plasmonic nanoparticles
with full field-OCT: optical and photothermal detection, Biomed Opt Express., 5 (2014),
3541–3546.

[25] A. Prost and E. Bossy, Photoacoustic generation by a gold nanosphere: from the linear to
the nonlinear thermoelastic regime, Phys. Rev. B, 92 (2015), 115450.

[26] Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W.C.W. Chan, W. Lipiski, and J.C. Bischof,
Quantitative comparison of photothermal heat generation between gold nanospheres and
nanorods, Scientific Reports, 6 (2016), 29836.

[27] D. Sarid and W. A. Challener, Modern Introduction to Surface Plasmons: Theory, Mathe-

matical Modeling, and Applications, Cambridge University Press, New York, 2010.

[28] F. Triki and M. Vauthrin, Mathematical modelization of the Photoacoustic effect generated
by the heating of metallic nanoparticles, arXiv:1701.06396.

32


