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OPTIMAL OPERATOR PRECONDITIONING FOR WEAKLY
SINGULAR OPERATOR OVER 3D SCREENS

RALF HIPTMAIR∗, CARLOS JEREZ-HANCKES†, AND CAROLINA URZÚA-TORRES‡

Abstract. In this supplement to [14], we propose a new Calderón-type preconditioner for the
weakly singular integral operator for −∆ on screens in R

3. We introduce a modified hypersingular
operator, which is the exact inverse of the weakly singular operator on the unit disk. It forms the
foundation for dual-mesh-based operator preconditioning. Applied to low-order boundary element
Galerkin discretizations, it achieves h-independent bounded condition numbers. Heuristic exten-
sions to general screens even with non-smooth boundaries are discussed. Their good performance is
confirmed by numerical tests.

1. Introduction. This report is the second part of our work on operator precon-
ditioning for Boundary Integral Operators (BIOs) for −∆ on three-dimensional open
surfaces. We therefore consider the following Dirichlet and Neumann boundary value
problems on the exterior of an orientable Lipschitz manifold Γ ⊂ R

3, of co-dimension
equal to one and boundary ∂Γ of positive measure: find U such that





−∆U = 0 in Ω := R
3 \ Γ ,

U = g or
∂U

∂n
= µ on Γ ,

U(x) = O(‖x−1‖) as ‖x‖ → ∞,

where here ‖·‖ denotes the standard Euclidean norm. This is the simplest case to
consider for potential distributions on bounded objects which are infinitely thin in
R

3. Such objects are known in the literature as screens. In our first report [14], we
focused on the related hard screen problem (Neumann), while here we deal with its
soft counterpart (Dirichlet).

A common numerical approach to model and numerically solve problems in un-
bounded homogeneous domains is the Boundary Element Method (BEM). Its key in-
gredients are: availability of a fundamental solution and Green’s third identity which
yields the so-called integral representation. In the homogeneous case, the latter allows
to reconstruct U over the entire domain using exclusively boundary data via single
and double layer potentials. When imposing boundary conditions, one derives Bound-
ary Integral Equations (BIEs). In the case of screens, one derives a weakly singular
BIE for the Dirichlet BVP, whereas for the Neumann BVP one arrives to a hyper-
singular BIE. The analysis of the arising Boundary Integral Operators (BIOs) in the
framework of Sobolev spaces for screens is available for several problems [31, 30, 27, 3].

In both cases, one faces first-kind BIEs, which lead to ill-conditioned linear sys-
tems when discretized by low-order Galerkin BEM on fine meshes. Their solution via
iterative solvers becomes prohibitively slow and thus demands preconditioning. For
references and further ellaboration on this matter, see the introduction in [14].

The key contribution of this supplementary article is the final resolution of a
problem still declared open in [14]: the construction of an exact inverse of the weakly
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singular integral operator on the unit disk both in terms of a finite part integral oper-
ator with a special kernel and in terms of a variational (weak) form in suitable trace
spaces. The former is derived in Section 2.2, the latter established in Section 2.2.1. It
turns out that this variational form is related to the modified weakly singular operator
from [14] in exactly the same way as the weak form of the hypersingular operator can
be expressed through that for the weakly singular operator.

Instrumental in the derivation of this variational form of the inverse of the wealy
singular operator have been recent yet unpublished results by J.-C.Nédélec [23, 24]
also elaborated in the PhD thesis of P.Ramaciotti [26]. They use so-called projected
spherical harmonics in order to state series expansions for the kernels of the boundary
integral operators and their inverses on the disk. We make use of such relations and
prove them in a different way as will be shown in Appendix A.

This report is structured as follows. Section 2.1 yields an inverse of the weakly
singular BIO amenable to Galerkin discretization by standard polynomial boundary
elements. This can be used for operator preconditioning of the linear systems of
equations arising from boundary element discretization of the weakly singular BIE. We
investigate this method and various extensions in Section 3 and give ample numerical
evidence confirming its efficacy in Section 4. Conclusions are drawn in Section 5 and
appendices are provided for detailed proofs.

2. Preliminaries. Let d = 1, 2, 3. For a bounded domainK ⊆ R
d, Cm(K), m ∈

N, denotes the space of m-times differentiable scalar functions on K, and, similarly,
for the space of infinitely differentiable, scalar continuous functions we write C∞(K).
Let Lp(K) denote the class of p-integrable functions over K. Dual spaces are defined
in standard fashion with duality products denoted by angular brackets 〈· , ·〉K .

Let O ∈ R
d, d = 2, 3 be open and s ∈ R. We denote standard Sobolev spaces by

Hs(O). For positive s and O Lipschitz, let H̃s(O) be the space of functions whose
extension by zero over a closed domain Õ belongs to Hs(Õ), as in [17]. In particular,
the following duality relations hold

H̃−1/2(O) ≡
(
H1/2(O)

)′
and H−1/2(O) ≡

(
H̃1/2(O)

)′
. (2.1)

2.1. Variational Boundary Integral Equations on the Disk. Throughout
this section we focus on the circular disk Da with radius a > 0, defined as Da := {x ∈
R

3 : x3 = 0 and ‖x‖ < a}. Thus, the volume problem domain becomes Ωa := R
3\Da.

Often, we will omit the third coordinate and use the following polar coordinate short
notation: x = (rx cos θx, rx sin θx) ∈ Da.

2.1.1. Weakly Singular Integral Equation. We consider the following sin-
gular integral equation: for g ∈ H1/2(Da), we seek a function σ defined on Da such
that

(V σ)(y) :=
1

4π

∫

Da

σ(x)

‖x− y‖ dDa(x) = g(y), y ∈ Da, (2.2)

The measure dDa(x) denotes the surface element in terms of x ∈ Da, equal to

arxdrxdθx, and the unknown σ ∈ H̃−1/2(Da) is the jump of the Neumann trace
of the solution U of the exterior Dirichlet problem (2.1) when Ω = Ωa.

The symmetric variational formulation for (2.2) is: seek σ ∈ H̃−1/2(Da) such that
for g ∈ H1/2(D̄a), it holds

〈V σ , ψ〉
Da

:=
1

4π

∫

Da

∫

Da

σ(x)ψ(y)

‖x− y‖ dDa(x)dDa(y) = 〈g , ψ〉
Da
, (2.3)
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for all ψ ∈ H̃−1/2(Da).
Remark 1. Existence and uniqueness of solution of this problem was proved

by Stephan in [30, Thm. 2.7]. Moreover, the bilinear form in (2.3) is H̃−1/2(Γ)-
continuous and elliptic ( cf. [27, Thm. 3.5.9]). One can show that in this case and
for sufficiently smooth screens Γ, when approaching the edges ∂Γ, the solutions decay
according to the square-root of the distance [4].

2.2. Modified Hypersingular Singular Integral Operator. We define the
modified hypersingular operator W as

(Wg)(x) := − 2

π2
−
∫

Da

g(y)K
W
(x,y)dDa(y), x ∈ Da, (2.4)

with

K
W
(x,y) :=

a

‖x− y‖2
√
a2 − r2x

√
a2 − r2y

+
Sa(x,y)

‖x− y‖3
, x 6= y, (2.5)

and

Sa(x,y) := tan−1

(√
a2 − r2x

√
a2 − r2y

a ‖x− y‖

)
, x 6= y, (2.6)

and where the dashed integral indicates that the expression above is to be interpreted
as a Hadamard finite-part integral, with distributional meaning as in [21].

Since limx→y Sa(x,y) = 4 when x, y ∈ Da, the kernel of the standard hypersin-
gular operator W (defined as in [14, Eq. (2.2)]) and the second term in (2.5) have
the same hypersingular behavior in the interior of Da. Also note that Sa(x,y) = 0
if |x| = a or |y| = a. As a consequence, Sa, though bounded, will be discontinuous
on ∂Da × ∂Da. On the other hand, the first term in (2.5) features a strongly singular
kernel in the interior of Da and a hypersingular behaviour when x = y ∈ ∂Da. From
these observations we point out that W has a truly hypersingular kernel.

Proposition 2.1. W : H1/2(Da) → H̃−1/2(Da) provides an exact inverse of V.

Key tools for the proof of Proposition 2.1 are some auxiliary results by Li and
Rong [19]. First, define the function p(ρ, θ) as

p(ρ, θ) :=
1

2π

∞∑

n=−∞

ρ|n|einθ =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos θ
, ∀ |ρ| < 1, (2.7)

with θ ∈ [0, 2π] (cf. [6, Chap. 1.1]).
Theorem 2.2 (Thm.1 [19]). Let g ∈ C1(D̄a). Then, the solution σ(x) of (2.2)

can be expressed in terms of a two-dimensional hypersingular integral as follows

σ(x) = − 1

π

∫

Da

g(y)

R3
D
(x,y)

dDa(y), x ∈ Da, (2.8)

where

1

R3
D
(x,y)

:= −4−
∫ a

max(rx,ry)

s2

(s2 − r2x)
3/2(s2 − r2y)

3/2
p

(rxry
s2

, θx − θy

)
ds. (2.9)
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Lemma 2.1. Let a > 0 and x,y ∈ Da. If a ≥ s ≥ max(rx, ry), we find the
following primitive

∫
s2 p

( rxry
s2 , θx − θy

)

(s2 − r2x)
3/2(s2 − r2y)

3/2
ds = − 1

2π

(
s

‖x− y‖2
√
s2 − r2x

√
s2 − r2y

+

tan−1

(√
s2−r2x

√
s2−r2y

s‖x−y‖

)

‖x− y‖3


 . (2.10)

Proof. This can be shown by direct calculation using the following change of
variable [6]:

η :=

√
s2 − r2x

√
s2 − r2y

s
,

dη

ds
=
s4 − r2xr

2
y

ηs3
,

which leads to
∫

s2

(s2 − r2x)
3/2(s2 − r2y)

3/2

1− r2xr
2
y

1 + r2xr
2
y − 2rxry cos(θx − θy)

ds =

∫
η−2

‖x− y‖2 + η2
dη,

where

∫
η−2

‖x− y‖2 + η2
dη = − 1

η ‖x− y‖2
−

tan−1
(

η
‖x−y‖

)

‖x− y‖3
. (2.11)

By definition of η the result follows.
Combining the above elements we can prove the next result.

Proposition 2.3. The solution of the weakly singular integral equation (2.2) can
be written as σ(x) = (Wg)(x), for all x ∈ Da, if g is continuously differentiable.

Proof. Applying Theorem 2.2, we get that the solution to (2.2) can be written as
(2.8). Moreover, when a <∞, we may use Lemma 2.1 and write

− 1

π

1

R3
D
(x,y)

=
4

π
−
∫ a

max(rx,ry)

s2

(s2 − r2x)
3/2(s2 − r2y)

3/2
p
(rxry
s2

, θx − θy

)
ds

= − 2

π2
fp




s

‖x− y‖2
√
s2 − r2x

√
s2 − r2y

+

tan−1

(√
s2−r2x

√
s2−r2y

s‖x−y‖

)

‖x− y‖3



∣∣∣∣
a

max(rx,ry)

,

where the finite part (fp) of the last expression needs to be considered. This means
that we drop the term corresponding to evaluating our primitive (2.10) on the lower
bound max(rx, ry), as it becomes infinite.

Hence we get

− 1

π

1

R3
D
(x,y)

= − 2

π2

(
a

‖x− y‖2
√
a2 − r2x

√
a2 − r2y

+
Sa(x,y)

‖x− y‖3

)

= − 2

π2
K

W
(x,y),

4



as stated.

Finally, we need to extend the above result to H1/2(Da). We do this via the
following Corollary and subsequent Proposition.

Corollary 2.4. VW = Id in H1/2(Da).

Proof. Follows from the previous Proposition combined with density of C∞(D̄a)
in H1/2(Da).

Proposition 2.5. W : H1/2(Da) → H̃−1/2(Da) is continuous.

Proof. Let us assume that W : H1/2(Da) → H̃−1/2(Da) is not a bounded op-
erator. Then, by virtue of density, there exists a sequence (gn)n ∈ C∞(D̄a) such
that

‖gn‖H1/2(Da)
= 1,

∥∥Wgn
∥∥
H̃−1/2(Da)

→ ∞, as n→ ∞.

Since V : H̃−1/2(Da) → H1/2(Da) is an isomorphism, it holds

∥∥Wgn
∥∥
H̃−1/2(Da)

≤ C
∥∥VWgn

∥∥
H1/2(Da)

=
(Corollary 2.4)

C ‖gn‖H1/2(Da)
,

from where we get a contradiction.

Now we are finally in the position to use the above results and density arguments
to conclude the assertion of Proposition 2.1.

Corollary 2.6. The bilinear form
〈
Wu , g

〉
Da
, u, g ∈ H1/2(Da) is H1/2(Da)-

elliptic and continuous.

Proof. Follows from continuity and ellipticity of V (cf. [27, Thm. 3.5.9]) combined
with Proposition 2.1.

2.2.1. Bilinear Form for the Modified Hypersingular Integral Operator.
We note that formula (2.5) is not practical when implementing a Galerkin BEM
discretization. We dedicate this section to find a new expression for the bilinear form
of W such that its implementation becomes easier.

Let us begin by considering the modified weakly singular operator V given by

(Vυ)(x) := − 2

π2

∫

Da

Sa(x,y)

‖x− y‖ υ(y) dDa(y), x ∈ Da, υ ∈ H−1/2(Da). (2.12)

As shown in [14, Section 2.1.2], this BIO renders the exact inverse of the standard

hypersingular operator W : H̃1/2(Da) → H−1/2(Da).

Let v be a continuously differentiable function over a surface Γ, and let ṽ be
an appropriate extension of v into a three-dimensional neighborhood of Γ. Let us
introduce the vectorial surfacic curl operator [29, p.133] as

curlΓ v(x) := n(x) ×∇ṽ(x), (2.13)

with n(x) being the outer normal of Γ on x ∈ Γ, and ∇ denoting the standard
gradient.

Let us also consider a vector-valued differentiable function v(x), for x ∈ Γ, and
let ṽ be an appropriate extension of v into a three-dimensional neighborhood of Γ.
Then we also introduce the scalar surfacic curl operator [29, p.133] as

curlΓv(x) := n(x) · (∇× ṽ(x)). (2.14)
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Additionally we denote ω(x) :=
√
1− r2x, x ∈ D1.

Proposition 2.7. The bilinear form associated to the modified hypersingular
operator W = V

−1 over D1 can be written as

〈
Wu , v

〉
D1

=
2

π2

∫

D1

∫

D1

S1(x,y)

‖x− y‖ curl
D1,x u(x) · curlD1,y v(y)dD1(x)dD1(y), (2.15)

for all u, v ∈ H
1/2
∗ (D1) := {v ∈ H1/2(D1) :

〈
v , ω−1

〉
D1

= 0}.
This result was first reported by Nedéléc and Ramaciotti in their spectral study

of the BIOs over D1 and their variational inverses [26]. For the sake of completeness,
we introduce the key tools they derived and provide an alternative simpler proof of
this proposition in the Appendix A. A proof by means of formal integration by parts
remains elusive, as it encounters difficulties due to the finite part integrals involved
in the definition of W and its kernel introduced in (2.9).

We also emphasize that the space H
1/2
∗ (D1) corresponds to H

1/2(D1)/R (see end
of Appendix A for further details).

Proposition 2.7 gives us a variational form for W that can be easily implemented.
Nevertheless, since we are interested in preconditioning V mapping from H̃−1/2(D1) to
H1/2(D1), it is important to observe that the right-hand side of (2.15) maps constants
to zero and thus has a non-trivial kernel if considered in the whole H1/2(D1) space.

For this reason, (2.15) will not lead to a suitable preconditioner for V. Further-
more, its extension to H1/2(D1) does not actually match the bilinear form of W there,
which is H1/2(D1)-elliptic. In order to remedy this situation, we add an appropriate

regularizing term coming from the definition of H
1/2
∗ (D1) and the following Proposi-

tion.
Proposition 2.8. The following identity holds:

(W1)(y) =
4

π
ω−1(y), y ∈ D1. (2.16)

The proof can be found in Appendix B. As expected, this result is consistent with
the known solutions of (2.2) when the right hand side is g = 1 [20].

From this, we see that for uc constant, (Wuc)(y) is equivalent to

(Wuc)(y) =
2

π2

∫

D1

uc(x)ω
−1(x)ω−1(y)dD1(x), y ∈ D1, (2.17)

since
〈
1 , ω−1

〉
D1

= 2π.
Therefore, by defining the bilinear form:

b
W
(u, v) :=

2

π2

∫

D1

∫

D1

S1(x,y)

‖x− y‖ curl
D1,x u(x) · curlD1,y v(y)dD1(x)dD1(y)

+
2

π2

∫

D1

∫

D1

u(x)v(y)

ω(x)ω(y)
dD1(x)dD1(y), ∀u, v ∈ H1/2(D1), (2.18)

we have added the required regularization such that (2.16) is preserved. This guaran-
tees that our bilinear form b

W
defined in (2.18) is by construction equivalent to the

bilinear form arising from our modified hypersingular operator W (2.4) on H1/2(D1).
Remark 2. Please observe that the chosen regularization to extend the bilinear

form (2.15) from H
1/2
∗ (Γ) to H1/2(Γ) is analogous to the one needed for the modified
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hypersingular operator in 2D [13, eq. (2.11)].
Remark 3. For the standard weakly singular and hypersingular operators, the

following relation between their kernels holds:

1

‖x− y‖3︸ ︷︷ ︸
=:KW

= ∆
1

‖x− y‖︸ ︷︷ ︸
=:KV

,

while their modified version does not satisfy this relation. Actually, one has [7,
eq. (23)]

∆K
V
:= − (2πa) p

( rxry
a , θx − θy

)

(a2 − r2y)
3/2
√
a2 − r2x

+
a

‖x− y‖2
√
a2 − r2x

√
a2 − r2y

+
Sa(x,y)

‖x− y‖3

= − (2πa) p
( rxry

a , θx − θy
)

(a2 − r2y)
3/2
√
a2 − r2x

+K
W

6= K
W
,

where the first term is singular on ∂Da and is surprisingly not symmetric. Further
investigation should consider the interpretation of this term.

3. Preconditioning Strategy.

3.1. Abstract Operator Preconditioning. Let us consider the continuous
bilinear form a ∈ L(H̃−1/2(Γ) × H̃−1/2(Γ),R) induced by V. Following the policy
of operator preconditioning [11], we can build our preconditing strategy by finding a
continuous bilinear form b ∈ L(H1/2(Γ)×H1/2(Γ),R), and finite dimensional spaces

Xh ⊂ H̃−1/2(Γ) and Yh ⊂ H1/2(Γ) such that:
(P1) a, b and the L2-duality pairing t satisfy discrete inf-sup conditions with con-

stants cA, cB, cT > 0 respectively, on the corresponding discrete spaces; and,
(P2) dimXh =M = dimYh.

Choosing any bases of Xh and Yh, then the associated Galerkin matrices Ah,Bh, and
Th satisfy [11, Thm. 2.1]:

κ(T−1
h BhT

−T
h Ah) ≤

‖a‖‖b‖‖t‖2
cAcBc2T

, (3.1)

where κ designates the spectral condition number and the symbol ‖·‖ must be under-
stood here as operator norms for the induced operators.

Remark 4. It was proven that classical “opposite-order” preconditioning leads to
a condition number that features a logarithmic growth on 2D screens [22]. We would
like to stress the fact that their proof [22, Theorem 4.1] comes from the mismatch of

norms between the standard fractional spaces H±1/2(Γ) and the tilde ones H̃±1/2(Γ),
with Γ being the screen. Therefore, it is also valid on 3D screens and applies, not only
to preconditioning W by V, but to precondition V with W too.

In order to see this, recall the mapping properties of these BIOs on a screen Γ:

V : H̃−1/2(Γ) → H1/2(Γ), W : H̃1/2(Γ) → H−1/2(Γ), (3.2)

and that the following inverse inequalities hold on shape-regular sequences of BE spaces

‖u‖H̃1/2(Γ) ≤ c1(1 + |log h|) ‖u‖H1/2(Γ) , (3.3)

‖ϕ‖H̃−1/2(Γ) ≤ c2(1 + |log h|) ‖ϕ‖H−1/2(Γ) , (3.4)

7



Fig. 3.1: Barycentric refinement for triangles and quadrilaterals. On the left we illustrate
the 6 obtained children elements for a triangular element, while on the right we show the 4
children elements in the case of quadrilaterals. Original primal nodes are in red dots, center
of mass is depicted in green diamond and blue x’s are used for mid-edge nodes.
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Fig. 3.2: Primal and dual meshes. Black lines show primal elements, dashed gray lines
barycentric ones, and blue lines are used to highlight dual cells. Orange dots mark the dofs
in Xh and Yh.
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(b) Dual mesh

for u ∈ H̃1/2(Γ), ϕ ∈ H̃−1/2(Γ), mesh-width h ≤ 1 and with constants c1, c2 > 0
independent of h ( cf. [10, Lemma 2.8] or [12]).

In the scope of our operator preconditioning theory, these two ingredients together
with (3.1) justify our claim.

Remark 5. If b happens to be the exact inverse of a, the obtained condition
number (3.1) will be minimal. However, this is not really required in order to have
an optimal preconditioner, and there are several suitable candidates for the bilinear
forms b.

3.2. Bounday Element Spaces on Primal and Dual Meshes. We can
choose boundary element spaces Xh and Yh such that they fulfill the condition
M = dimXh = dimYh by using a dual mesh based on the work of Buffa-Christiansen
[2]. Along these lines, we first mesh our screen Γ and denote the resulting primal mesh
by Γh. Next, we build a barycentric refinement Γh as shown in Figure 3.1. At last,
we construct the dual mesh Γ̂h by combining the barycentric elements, as displayed
in Figure 3.2. We refer to [2, 16] for further details.

We construct our discrete spaces by using low-order Lagrangian boundary element
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functions, i.e.

Xh := space of piecewise constant functions on Γh,

X̄h := space of piecewise constant functions on Γh,

Yh := space of continuous piecewise linear functions on Γ̂h.

Ȳh := space of continuous piecewise linear functions on Γh.

Thus M = dimXh = dimYh equals the number of cells in Γh, as illustrated in
Figure 3.2.

Rather than setting our Galerkin matrices directly over Γ̂h, we compute them in
the barycentric refinement Γh and define the matrix representation of the inclusion
operator Cd : Ȳh → Yh to build the basis functions of Yh as linear combinations of
barycentric basis functions of Ȳh.

Then, we construct the Galerkin matrix Wh of the modified hypersingular oper-
ator W over the dual mesh Γ̂h as follows: Let Wb : Ȳh → Ȳh be the Galerkin matrix
of W computed over the barycentric refinement Γh, then we write Wh = CT

dWbCd.

Analogously, we introduce the matrix representation of the canonical embedding
Cp : X̄h → Xh to connect barycentric basis functions corresponding to X̄h to those
of the primal basis functions Xh. The construction and representation of these linking
matrices are discussed in [16, Sect. 3.3–3.4, case A]. Let us illustrate their use: consider
Mb : X̄h → Ȳh to be the mass matrix computed over the barycentric mesh. By using
the above matrices, it is clear that the Galerkin matrix Th associated to the L2-duality
pairing t is given by Th = CT

p M
T
b C

T
d .

3.3. Stability of Discrete Duality Pairing on Non-Uniform Triangular
Meshes. As mentioned in Remark 1, solutions of screen problems have a singular
behavior near the boundary, which can be resolved by refining the mesh towards it.
This motivates our interest in applying the operator preconditioning strategy to non-
uniform meshes. We accomplish this by extending the work developed by O. Steinbach
in [28]. Let us begin by introducing some of the notation therein.

As aforementioned, the key instrument is the preservation of the inf-sup condition
associated to the dual pairing t, in this case the L2-inner product over Γ. This requires
maintaining the H1-stability of a generalized L2-projection Q̃h, defined via a Petrov-
Galerkin approach [28, 16].

With this in mind, let us consider two scenarios:

Case I : Xh ⊂ X = H̃−1/2(Γ) and Yh ⊂ Y = H1/2(Γ),

Case II : Xh ⊂ X = H1/2(Γ) and Yh ⊂ Y = H̃−1/2(Γ).

It is more convenient to first prove the desired inf-sup condition in Case II. Once
stability is proven there, we can ressort to duality to obtain the inf-sup in the pair of
spaces of Case I.

Assumption 3.1. We consider a shape regular and locally quasi-uniform family
of primal meshes {Γh}h∈H, h > 0 of Γ, whose members are labelled by h from an index
set H.

Let us consider a given primal mesh Γh, and denote the mesh-width of an arbitrary
element τl ∈ Γh by hl. We consider Case II, and equip Xh ⊂ H1/2(Γ) with the
standard locally supported nodal basis functions denoted by ϕk ∈ Xh. Due to local
quasi-uniformity, for each basis function an associated mesh size ĥk is introduced,

9



satisfying

1

cQ
≤ ĥk
hl

≤ cQ for all l such that τl ∩ supp{ϕk} 6= ∅, k = 1, . . . ,M, (3.5)

with a global constant cQ ≥ 1. Now, for an arbitrary τl ∈ Γh, define the set

J(l) := {k ∈ {1, ...,M} : supp {ϕk} ∩ τl 6= ∅}. (3.6)

Assumption 3.2. We assume our primal mesh Γh satisfies the following local
mesh condition:

51

7
−
√ ∑

k1∈J(l)

ĥk1

∑

k2∈J(l)

ĥ−1
k2

≥ c0 > 0 ∀ τl ∈ Γh, (3.7)

with a global positive constant c0 [28, eq. (2.30)].

Theorem 3.3. Let Assumptions 3.1 and 3.2 be satisfied. Then, for case I and
case II the discrete inf-sup condition:

sup
vh∈Yh

|〈wh , vh〉Γ|
‖vh‖Y

≥ 1

cs
‖wh‖X , ∀ wh ∈ Xh, h ∈ H, h > 0. (3.8)

holds with a positive constant cs independent of h.
Proof. Under Assumptions 3.1 and 3.2, Theorems 2.1 and 2.2 in [28] give the

inf-sup condition for case II. Next, we appeal to an analogue of [28, Lemma 1.7] to

define Q̃2
h : L2(Γ) → Yh for a given u ∈ L2(Γ) as solution of the variational problem

〈
Q̃2

hu , ψh

〉
Γ
= 〈u , ψh〉Γ , ∀ ψh ∈ Xh. (3.9)

Moreover, following the steps from [28, Thm. 2.1], one can prove that
∥∥∥Q̃2

hu
∥∥∥
H1/2(Γ)

≤ c ‖u‖H1/2(Γ) , ∀u ∈ H1/2(Γ), h ∈ H. (3.10)

Finally, combining these results, we have for all vh ∈ Xh that

‖vh‖H̃−1/2(Γ) = sup
06=w∈H1/2(Γ)

|〈vh , w〉Γ|
‖w‖H1/2(Γ)

= sup
06=w∈H1/2(Γ)

∣∣∣
〈
vh , Q̃

2
hw
〉
Γ

∣∣∣
‖w‖H1/2(Γ)

≤ c sup
06=w∈H1/2(Γ)

∣∣∣
〈
vh , Q̃

2
hw
〉
Γ

∣∣∣
∥∥∥Q̃2

hw
∥∥∥
H1/2(Γ)

≤ c sup
06=wh∈Yh(Γ)

|〈vh , wh〉Γ|
‖wh‖H1/2(Γ)

.

as studied.
We have now all the ingredients to apply the operator preconditioning strategy

stated in Section 3.1 over D1 such that:

Corollary 3.4. Let Assumptions 3.1 and 3.2 hold. Let Vh be the Galerkin
matrix corresponding to the bilinear form (2.2) over Γh. Let Wh be the Galerkin

matrix arising from our regularized bilinear form b
W

over the dual mesh Γ̂h, and
Th the matrix representing the L2-dual pairing constructed as above. Then, when
preconditioning Vh by the matrix product Ph = T−1

h WhT
−T
h , we obtain

κ
(
PhVh

)
≤ C, (3.11)

with C a constant independent of h.
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3.4. Unit Disk Based Preconditioner for Mapped Screens. We now gen-
eralize this preconditioning strategy to more general screens Γ ⊂ R

3 such that there
are at least bi-Lipschitz mappings φ : D1 → Γ, so the following norm equivalences
hold [21, Thm 3.23]

‖φ∗v‖H1(D1)
≈ ‖v‖H1(Γ) , ∀v ∈ H1(Γ), (3.12a)

‖φ∗v‖L2(D1)
≈ ‖v‖L2(Γ) , ∀v ∈ L2(Γ), (3.12b)

where φ∗v is the pullback of the function v.

Remark 6. As a consequence of the bi-Lipschitz mapping φ : D1 → Γ, Γ will
be an orientable C0,1- manifold with boundary ∂Γ. Moreover, φ allows us to use the
fact that the spaces H̃1/2(Γ), H1/2(Γ), H−1/2(Γ), and H̃−1/2(Γ) are invariant under
the pullback φ

∗ : L2(Γ) → L2(D1).

For the sake of clarity, we introduce additional notation for this section. Let us
write VD1

to denote the weakly singular operator on the unit disk, and VΓ for that
on Γ = φ(D1), i.e.

(VΓ σ)(x) :=
1

4π

∫

Γ

σ(y)

‖x− y‖ dΓ(y), x ∈ Γ, σ ∈ H̃−1/2(Γ). (3.13)

It can be pulled back to D1 using the parametrization:

(V∗
Γ φ

∗σ)(φ(x̂)) :=
1

4π

∫

D1

(φ∗σ)(ŷ)
√

det (Dφ(ŷ)TDφ(ŷ))

‖φ(x̂)− φ(ŷ)‖ dD1(ŷ), x̂ ∈ D1,

(3.14)

where Dφ(x̂) denotes the Jacobian of φ on x̂, and φ∗(σ) ∈ H̃−1/2(D1).

In the operator preconditioning context, let us define the bilinear forms:

a(σ̂, ϕ̂) = 〈V∗
Γ σ̂ , ϕ̂〉D1

, σ̂, ϕ̂ ∈ H̃−1/2(D1), (3.15)

b(û, v̂) =
〈
WD1

û , v̂
〉
D1

, û, v̂ ∈ H1/2(D1), (3.16)

where WD1
denotes the modified hypersingular operator over D1. From Proposi-

tion 2.6, we know that b is H1/2(D1)-elliptic and continuous.

Now, we can use (3.12) and interpolation arguments to get

‖φ∗v‖H1/2(D1)
≈ ‖v‖H1/2(Γ) , ∀v ∈ H1/2(Γ), (3.17)

and the definition of dual norm to derive

‖σ̂‖H̃−1/2(D1)
≈
∥∥φ−∗σ̂

∥∥
H̃−1/2(Γ)

, ∀σ̂ ∈ H̃−1/2(D1), (3.18)

where superscript -* denotes the inverse of the pullback. From the latter norm equiv-
alence and the properties of VΓ, one can deduce the H̃−1/2(D1)-ellipticity and conti-
nuity of a.

a(σ̂, σ̂) =
〈
VΓ φ

−∗σ̂ , φ−∗σ̂
〉
Γ
≥ c

∥∥φ−∗σ̂
∥∥2
H̃−1/2(Γ)

≈ c ‖σ̂‖2H̃−1/2(D1)
,

for all σ̂ ∈ H̃−1/2(D1).
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These properties of a and b, combined with the H̃−1/2(D1) −H1/2(D1)-stability
of the L2-pairing, give the following corollary.

Corollary 3.5. WD1
still induces a suitable bilinear form to build an h-asympto-

tically optimal preconditioner for V
∗
Γ adopting the procedures of our preconditioning

strategy.
Remark 7. Note that

WD1
V
∗
Γ = Id+WD1

(V∗
Γ −VD1

) : H̃−1/2(D1) → H̃−1/2(D1), (3.19)

is also continuous.
Corollary 3.5 guarantees that the condition number bound (3.1) will be constant,

albeit affected by a constant depending on φ and the distortion effected by it. Later
on, this will be reflected in our numerical experiments by means of a pre-asymptotic
phase in which the behavior of the preconditioner is not as good as expected. Moti-
vated by this numerical drawback, the following two subsections discuss some heuristic
modifications to improve the preconditioner performance.

3.5. Shape-aware Preconditioners.

3.5.1. Case of Flat Screens. We consider general surfaces that allow polar
angle para-metrization of their boundary, i.e. boundaries that can be described by a
function a(θ), θ ∈ [0, 2π]. In this case, we can use

SΓ(x,y) = tan−1




√
a(θx)2 − r2x

√
a(θy)2 − r2y

√
a(θx)a(θy) ‖x− y‖


 , for x 6= y, x,y ∈ Γ, (3.20)

to construct an approximation of V−1 (see [14, Sect. 3.6] for further motivation). We
point out that the flat screen needs not be the result of a transformed unit disk via
a bi-Lipschitz mapping as in the previous subsection. However, a piecewise Lipschitz
transformation is still required.

The approximation of the bilinear form related to W that we pursue is

bΓ
W
(u, v) :=

2

π2

∫

Γ

∫

Γ

SΓ(x,y)

‖x− y‖3
curlΓ,x u(x) · curlΓ,y v(y)dΓ(x)dΓ(y)

+ α
W
〈u , 1〉Γ 〈v , 1〉Γ , (3.21)

for u, v ∈ H1/2(Γ), and with α
W

∈ R+ bounded.
Here, we have additionally replaced the function ω−1 by the constant 1 in the

correction term for implementation simplicity. We justify this choice on account of
the fact that we will use PCG to solve the arising system and said method will not
perceive a significant difference among these two regularizations. Moreover, this choice
will reduce computations considerably when compared to the original choice in (2.18).

3.5.2. Case of Parametrized Screens. Let us consider an open surface Γ
defined by a C1-diffeomorphism φ : D̄1 → Γ. In this situation we can approximate
S1(x,y) by

Sφ(x,y) := tan−1




√
1−

∥∥φ−1(x)
∥∥2
√
1−

∥∥φ−1(y)
∥∥2

√
gφ−1(x)gφ−1(y) ‖x− y‖


 , (3.22)
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for x 6= y, and where gφ−1(x) is the Gram determinant of φ−1 on x [14, Sect. 3.7].
This expression is somehow analogous to the approach developed in Section 3.5.1

with a(θx) = φ( x

‖x‖ ). Again, we will base our preconditioner on an approximate

bilinear form for the modified hypersingular operator W. However, this time we
replace SΓ(x,y) in (3.21) by Sφ(x,y).

4. Numerical Experiments. We compare the performace of our precondi-
tioner Ph := T−1

h WhT
−T
h with diagonal preconditioning –denoted by D−1

h –, and
opposite-order operator preconditioning arising from using the standard hypersingu-
lar operator W, i.e. Ph := T−1

h WhT
−T
h . It is worth mentioning that the bilinear

form arising from W also needs a regularization term [13, Sect. 5.1], chosen in the
same way as for Ph. This means we add a term equal

αW

〈
u , ω−1

〉
D1

〈
v , ω−1

〉
D1

, u, v ∈ H1/2(D1), (4.1)

in the case of the unit disk D1, or

αW 〈u , 1〉Γ 〈v , 1〉Γ , u, v ∈ H1/2(Γ), (4.2)

for general Γ, where αW ∈ R+ bounded.
Currently, we do not have a rule of thumb to choose the parameters αW and α

W
.

In fact, we selected each one of them empirically in the following way: First, we set an
initial guess for both parameters and computed the resulting full Galerkin matrices
and their spectra. By changing parameter values, we then seeked to locate eigenvalues
related to the regularizing term inside the remaining spectra, thus preventing an
artificial enlargement of condition numbers. Consequently, they do not alter the
performance of the preconditioners and allow us to make fair comparisons between
Ph and Ph. As our eigenvalues cluster around one, we have found that for the disk,
αW = α

W
= 1

2π is a good choice, while for general screens Γ, a good initial guess is
given by the inverse of the area of the screen.

Numerical experiments were implemented employing BETL2 [15] and the re-
quired meshes generated with Gmsh [8] using polygonal approximation of the bound-
aries. The measured condition numbers were computed via the ratio of the maximum
and minimum eigenvalues. All required BEM operators were constructed with 12
quadrature points1.

For fine meshes, local low-rank compression of the BE matrices had to be used.
Specifically, BETL2 uses AHMED for its ACA implementation. The parameters
used for these experiments correspond to BETL default ones, i.e., tolerance of 10−5

and admissibility η = 0.9.
In most numerical experiments we provide two tables. The one on the left, en-

titled No approximation, contains the spectral condition numbers computed using
standard BETL routines to construct the matrices and Matlab to obtain the condi-
tion numbers. The table on the right ACA with Lanczos gives the spectral condition
numbers κ and the number of PCG iterations It for matrices constructed with the
ACA routines. Moreover, with Lanczos indicates that for this case the condition
numbers were calculated using Preconditioned Conjugate Gradient (PCG) with the
Lanczos algorithm [9, Ch.9–10]. We use PCG with a tolerance of 10−5 for the relative
residual norm, initial guess equal to zero and, as right hand side, we considered a

1Except for the rank-one regularizations (4.2) and (2.18), where BETL2’s default number of
quadrature points was used, i.e., 7 for the mass-matrix and 25 for

〈

1 , ω−1
〉

.
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vector that had entries +1 in its upper half, −1 for the remaining components. Since
a sufficiently precise computation of the eigenvalues usually requires a larger Krylov
subspace and hence more PCG iterations, the algorithm continues iterating until the
difference between the newly computed condition number and the old one is less or
equal to 10−4 for two times consecutively.

4.1. Unit Disk. Tables 4.1.1 and 4.1.2 show the preconditioning results over a
disk with two different triangular meshes and parameters αW = α

W
= 1

2π . In both
tables, the condition numbers displayed with ACA differ in some cases from those
obtained using dense BE matrices without any approximation. Table 4.1.3 reveals
that here the approximation error comes mainly from ACA, although Lanczos lacks
accuracy in some cases. In spite of this, we observe in Tables 4.1.1 and 4.1.2 that
the condition numbers achieved by Ph hardly increase with respect to the number of
elements and are asymptotically smaller than those of Ph. Nevertheless, the gain in
terms of number of PCG iterations is not significant.

Table 4.1.1: Results for Vh over the unit disk with quasi-uniform triangular meshes.

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 23.91 3.07 2.41
256 50.39 3.19 2.47
1024 102.61 3.52 2.61

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 22.55 13 2.72 7 2.24 6
256 49.41 20 2.84 7 2.48 6
1024 102.28 27 3.22 7 2.63 7
4096 206.81 40 3.85 8 2.72 7
16384 413.67 57 4.69 10 2.87 7

Table 4.1.2: Results for Vh over the unit disk with non-uniform triangular meshes A.

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

96 25.72 5.93 5.58
384 55.55 4.16 3.62
1536 110.82 4.99 3.95

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

96 25.72 17 5.73 10 5.66 11
384 55.55 22 3.41 8 3.69 9
1536 110.82 32 4.14 9 3.82 9
6144 230.08 44 5.01 10 4.06 10

Table 4.1.3: Results for Vh over the unit disk for ACA with Matlab.

(a) Quasi-uniform meshes

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 23.91 2.73 2.24
256 50.39 2.85 2.48
1024 102.61 3.22 2.63

(b) Non-uniform meshes A

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

96 25.72 5.99 5.66
384 55.55 3.41 3.69
1536 110.82 4.14 4.08

A third triangular mesh of the unit disk is also studied in Table 4.1.4, again with
parameters αW = α

W
= 1

2π . This time, each mesh is generated with local refinement
on the boundary such that the meshwidth on ∂D1 is half of the one of the previous
mesh. The condition numbers are just as expected. Moreover, this time we can

14



see that our preconditioner Ph not only achieves an almost constant κ, but also its
number of PCG iterations starts having a real advantage over those of Ph.

Table 4.1.4: Results for Vh over the unit disk with non-uniform triangular meshes B.

(a) κ with no approximation

N D
−1

h
Vh PhVh PhVh

162 33.09 4.29 4.07
506 51.23 4.32 4.04
1052 64.43 4.73 4.00
2150 79.70 5.64 4.04

(b) ACA with Lanczos

N hmin D
−1

h
Vh PhVh PhVh

κ It κ It κ It

162 0.05677 33.09 20 4.06 10 4.10 10
506 0.0244 51.23 28 4.11 11 4.04 11
1052 0.0124 64.43 33 4.70 12 4.00 12
2150 0.0059 79.70 42 5.59 14 4.04 12
4260 0.0030 96.09 50 6.83 16 4.37 14
8398 0.0015 113.61 59 7.92 19 4.53 15
16546 0.0008 130.95 68 9.00 21 4.46 15

Fig. 4.1: Locally refined triangular meshes

(a) The coarsest mesh A was cre-
ated using the functions Attraction and
Threshold iteratively in Gmsh. This
means the mesh size is a piecewise lin-

ear function of the distance to the disk’s
boundary. The subsequent meshes were
obtained by standard refinement in Gmsh.

(b) Each mesh B was constructed with
the functions Attraction and Matheval

in Gmsh, where the evaluated function was
the continuous distance to the boundary
of the disk plus a parameter h∗ > 0. The
subsequent meshes were obtained by halv-
ing h∗ and thus the minimum meshwidth
on the boundary.

4.2. Unit Disk Based Preconditioner for Mapped Screens. In this sec-
tion we study the preconditioning results achieved when applying the approach de-
scribed in Section 3.4. This means that Vh corresponds to the Galerkin matrix of
the weakly singular operator mapped from the disk to the target screen Γ via φ, Ph

is constructed on the disk, i.e. using (2.18), whereas Ph comes from the standard
hypersingular operator mapped from D1 to Γ. We denote by α

W
the constant chosen

for the regularization in Wh and αW for the one of Wh. In these experiments, we
considered α

W
= 1

2π and αW = 0.3.
Tables 4.2.1, 4.2.2, and 4.2.3 exhibit the preconditioning results for three differ-
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ent shapes mapped from the unit disk. In all of them, we see how the opposite-order
preconditioner Ph displays the expected logarithmic growth while our proposal shows
a small rise that seems to be less pronounced the larger the mesh. We believe this
reflects a pre-asymptotic phase together with numerical errors introduced by quadra-
ture and the ACA approximation. Naturally, this behaviour is also depicted in the
number of PCG iterations. Whereas the number of PCG counts for Ph increases with
respect to N , those of Ph remain constant in the last two levels for all considered
mappings.

Table 4.2.1: Results for Vh over mapped screens with quasi-uniform triangular meshes.
Ph built using unit disk based preconditioner. φ(x) = (x0, x1, x0 + x1)

T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.15 3.44 3.24
256 51.69 4.17 3.28
1024 108.95 4.92 3.45

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 24.15 14 3.17 7 3.02 7
256 51.65 22 4.17 8 3.28 8
1024 108.97 30 4.92 9 3.45 8
4096 223.37 43 5.76 10 3.61 9
16384 435.05 59 6.70 12 3.72 9

Table 4.2.2: Results for Vh over mapped screens with quasi-uniform triangular meshes.
Ph built using unit disk based preconditioner. φ(x) = (x0, x1, x

2
0 + x2

1)
T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 25.97 1.88 4.85
256 54.86 2.20 5.29
1024 111.73 2.56 5.60

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 24.22 13 1.88 5 4.25 9
256 53.55 21 2.20 6 4.83 10
1024 110.98 30 2.56 7 5.21 11
4096 228.14 41 3.05 8 5.47 12
16384 462.54 60 3.69 8 5.66 12

Table 4.2.3: Results for Vh over mapped screens with quasi-uniform triangular meshes.
Ph built using unit disk based preconditioner. φ(x) = (x0, x1, x0x1)

T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.29 3.12 2.95
256 51.36 3.69 2.74
1024 104.65 4.38 2.80

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 24.29 14 3.11 11 2.38 7
256 50.33 21 3.68 8 2.55 7
1024 104.49 29 4.36 9 2.78 7
4096 211.30 42 5.16 10 2.96 8
16384 423.25 57 6.16 11 3.08 8
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4.3. Shape-aware Preconditioner for Flat Screens. We present numerical
results to illustrate the approach proposed in Section 3.5.1. In other words, Vh

corresponds to the matrix coming from the weakly singular operator on the flat screen
Γ, Ph comes from the standard hypersingular operator over Γ, and Ph is constructed
using (3.21).

Tables 4.3.1 and 4.3.2 give the numerical results for preconditioning over a square
screen over two different triangular meshes and specify the parameters αW and α

W

considered for Ph and Ph, respectively.

Table 4.3.1: Results for Vh over a square screen with quasi-uniform triangular meshes.
Ph built using shape-aware preconditioner for flat screens. αW = α

W
= 0.3

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 25.63 3.38 3.35
256 51.99 4.30 3.71
1024 104.29 5.31 3.94

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 25.63 11 3.38 4 3.35 4
256 52.00 18 4.30 6 3.71 6
1024 104.29 25 5.31 7 3.94 6
4096 208.65 37 6.41 9 4.10 6
16384 417.32 51 7.64 8 4.21 6

Once again, we observe some differences between the standard and ACA ap-
proaches. However, when outputting the ACA matrices and computing the condition
numbers with Matlab, we get results close to the standard case. We therefore con-
clude that the error is introduced by the Lanczos algorithm. For the quasi-uniform
mesh, there is a slight increase in the condition number that is probably coming from
numerical error. In the non-uniform case, the slope decreases but it is not as small. As
before, this is also reflected in the number of PCG iterations obtained with Ph, which,
although asymptotically constant, are not significantly smaller than those achieved
by Ph.

Table 4.3.2: Results for Vh over a square screen with locally refined meshes. Ph built
using shape-aware preconditioner for flat screens. αW = α

W
= 0.3

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

108 29.66 3.81 4.38
432 59.84 4.73 5.11
1728 120.02 5.78 5.64

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

108 29.66 16 3.81 8 4.26 9
432 59.84 24 4.73 10 4.98 10
1728 120.02 33 5.78 11 5.52 10
6912 241.51 46 6.94 12 5.59 12
27648 484.43 63 8.19 13 5.92 12

As a second example, we consider three different triangles. Table 4.3.3 provides
the condition numbers over an equilateral triangle, Table 4.3.4 shows the results for
an isosceles rectangular triangle, and finally the condition numbers obtained for a
general triangle with angles 30◦ − 60◦ − 90◦ are contained in Table 4.3.5. In these
three situations, the standard choice α

W
= αW = 0.3 leads to unsatisfactory results for

both preconditioners. Since the resulting spectra showed that this could be improved
by using other values of α

W
and αW, the Tables (on the right) report the results

corresponding to the most convenient values for each operator using no approximation.
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Tables 4.3.6–4.3.8 contain the results using ACA with Lanczos and these new values
of α

W
and αW. There we see that Ph achieves condition numbers with the expected

logarithmic growth, while Ph also exhibits a growth that becomes less pronounced
for larger N . However, we note that these results are less impressive than for other
shapes. Moreover, the PCG counts for Ph are, in most cases, sligthly worse than
the number of iterations obtained with Ph. Our preconditioner performs particularly
poorly for the general triangle. Futhermore, Figure 4.2 shows that the clustering for
the general triangle is not good independently of the chosen α

W
.

Table 4.3.3: Results for Vh over equilateral triangle screen with quasi-uniform tri-
angular meshes. Ph built using shape-aware preconditioner for flat screens.

(a) αW = α
W

= 0.3

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

74 25.34 28.36 27.55
296 53.11 30.19 30.45
1184 107.96 31.73 32.76

(b) αW = 0.05, α
W

= 0.01

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

74 25.34 5.35 6.33
296 53.11 6.08 7.27
1184 107.96 7.23 8.06

Table 4.3.4: Results for Vh over right isosceles triangle screen with quasi-uniform
triangular meshes. Ph built using shape-aware preconditioner for flat screens.

(a) αW = α
W

= 0.3

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

60 22.04 6.66 8.89
240 46.50 8.90 10.63
960 94.53 11.36 11.96

(b) αW = 0.3, α
W

= 0.1

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

60 22.04 6.66 8.72
240 46.50 8.90 10.39
960 94.53 11.36 11.69

Table 4.3.5: Results for Vh over general triangle screen with quasi-uniform triangu-
lar meshes. Ph built using shape-aware preconditioner for flat screens.

(a) αW = α
W

= 0.3

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

32 14.49 14.11 18.39
128 31.82 20.15 22.18
512 70.41 27.10 28.73

(b) αW = 0.4, α
W

= 0.3

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

32 14.49 15.29 18.39
128 31.82 20.13 22.18
512 70.41 27.08 28.73

Table 4.3.6: ACA with Lanczos results for Vh over equilateral triangle screen with
quasi-uniform triangular meshes. Ph built using shape-aware preconditioner. αW =
0.05, α

W
= 0.01

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It
74 25.34 15 5.35 10 6.29 11
296 52.77 22 6.08 11 7.29 13
1184 107.96 31 7.21 12 8.07 14
4736 217.54 43 8.80 13 8.77 14
18944 437.61 59 10.58 15 9.36 14
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Fig. 4.2: Eigenvalue distribution for general triangle screen. The spectrum of the matrix
Vh is shown in black, while that of Vh preconditioned by Wh is depicted in red. The one
corresponding to Wh is in blue. We observe that the bottom part of the spectrum of WhVh

remains unclustered independently of the choice of α
W
. This allow us to conclude that the

deterioration of the performance of Ph does not come from the rank-1 regularization.
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Table 4.3.7: ACA with Lanczos results for Vh over isosceles triangle screen with quasi-
uniform triangular meshes. Ph built using shape-aware preconditioner. αW = 0.3, α

W
=

0.1

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It
60 22.04 14 6.51 10 8.72 14
240 46.50 21 8.90 12 10.39 16
960 94.47 29 11.36 13 11.69 17
3840 190.05 41 13.97 15 12.77 17
15360 381.03 55 16.76 17 13.68 18

Table 4.3.8: ACA with Lanczos results for Vh over general triangle screen with quasi-
uniform triangular meshes. Ph built using shape-aware preconditioner. αW = 0.4, α

W
=

0.3

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It
32 14.49 13 15.29 12 24.88 13
128 31.73 20 20.17 16 28.94 17
512 70.93 28 27.05 19 33.80 21
2048 147.34 38 34.23 21 38.22 23
8192 300.20 53 41.42 24 41.85 26

4.4. Shape-aware Preconditioner for Parametrized Screens. We finally
consider the same setting as in the previous subsection but now Ph follows the cue
from subsubsection 3.5.2 with parameters αW = α

W
= 0.3 for the sake of simplicity.

For comparison purposes, Tables 4.4.1, 4.4.2, and 4.4.4 illustrate the results ob-
tained for the same mappings studied in subsection 4.2. From this, we validate our
results for the two first columns, and, additionally, remark that the approximation
proposed is sometimes succesful in lowering the bound for the condition number, but
in other situations is not much better.

Nonetheless, the data in Tables 4.4.1–4.4.6 reveals that our shape-aware precondi-
tioner Ph achieves condition numbers κ that are practically h-independent. Still, this
optimality in terms of condition numbers does not meaningfully reduce the number
of PCG iterations when compared to the opposite-order preconditioner Ph.

Table 4.4.1: Results for Vh over parametrized screens with quasi-uniform triangular
meshes. Ph built using shape-aware preconditioner. φ(x) = (x0, x1, x0 + x1)

T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.15 3.44 3.48
256 51.69 4.17 4.02
1024 108.95 4.92 4.26

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It
64 24.15 14 3.17 7 3.48 7
256 51.67 22 4.17 8 4.02 8
1024 108.94 30 4.92 9 4.26 9
4096 223.40 43 5.76 10 4.39 9
16384 435.05 58 6.70 12 4.54 9
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Table 4.4.2: Results for Wh over parametrized screens with quasi-uniform triangular
meshes. Ph built using shape-aware preconditioner. φ(x) = (x0, x1, x

2
0 + x2

1)
T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 26.12 1.89 2.24
256 54.97 2.19 2.72
1024 111.79 2.59 2.93

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It
64 24.33 13 1.89 6 2.24 6
256 53.62 21 2.19 6 2.72 7
1024 111.02 30 2.57 7 2.92 8
4096 228.16 41 3.06 8 3.05 8
16384 462.61 60 3.70 8 3.16 8

Table 4.4.3: Results for Vh over parametrized screens with quasi-uniform triangular

meshes. Ph built using shape- aware preconditioner. φ(x) = (x0, x1,
x
2

0
+x

2

1

2
)T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.68 2.93 2.46
256 52.05 3.43 2.74
1024 105.94 4.03 2.87

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 23.20 13 2.92 7 2.46 7
256 50.93 21 3.41 8 2.74 7
1024 105.40 27 4.01 8 2.87 8
4096 213.11 40 4.74 9 2.97 8
16384 427.56 59 5.66 10 3.12 8

Table 4.4.4: Results for Vh over parametrized screens with quasi-uniform triangular
meshes. Ph built using shape-aware preconditioner. φ(x) = (x0, x1, x0x1)

T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.42 3.22 2.77
256 51.44 3.77 3.01
1024 104.70 4.43 3.19

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 24.42 14 3.20 8 2.77 7
256 51.44 21 3.75 8 3.00 8
1024 104.54 29 4.41 9 3.16 8
4096 211.33 42 5.19 10 3.26 8
16384 423.26 57 6.18 11 3.43 9

Table 4.4.5: Results for Vh over parametrized screens with quasi- uniform triangular
meshes. Ph built using shape-aware preconditioner φ(x) = (x0, x1, exp(x0 + x1))

T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.68 5.34 4.99
256 58.86 6.89 6.60
1024 136.45 8.26 7.82

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 24.71 15 5.34 9 4.99 9
256 58.80 23 6.90 10 6.60 11
1024 136.67 34 8.25 12 7.81 12
4096 302.01 48 9.64 13 8.79 13
16384 562.32 66 11.20 15 9.50 13

5. Conclusion. We have developed operator preconditioning on three-dimensio-
nal screens using a new hypersingular integral operator that supplies the exact inverse
for the weakly singular operator on disks. We have proved that our approach accom-
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Table 4.4.6: Results for Vh over parametrized screens with quasi-uniform triangular
meshes. Ph built using shape- aware preconditioner. φ(x) = (x0, x1, exp(

x0+x1

2
))T .

(a) No approximation

N κ(D−1

h
Vh) κ(PhVh) κ(PhVh)

64 24.02 3.47 2.66
256 50.73 4.10 3.02
1024 104.09 4.82 3.20

(b) ACA with Lanczos

N D
−1

h
Vh PhVh PhVh

κ It κ It κ It

64 24.02 14 3.47 8 2.66 8
256 50.73 22 4.10 9 3.02 8
1024 104.07 31 4.82 10 3.20 8
4096 212.45 42 5.66 11 3.31 8
16384 420.95 57 6.64 12 3.47 9

plishes h-independent condition numbers for parametrized screens, with remarkable
success for non-uniform meshes. Moreover, their performances depend on the extent
of deformation of the screen Γ with respect to the unit disk D1. We indicated that
the resulting condition numbers may be rather large depending on the transforma-
tion φ. In order to overcome the possibly degraded performance of our approach,
we proposed two heuristic alternatives for preconditioning on a general screen. The
asymptotic optimality of our preconditioners has been investigated via exhaustive
numerical experiments with respect to both uniform and locally refined meshes. We
have confirmed that the our proposal achieves the expected performance in all studied
shapes except the so-called general triangle. Further analysis is necessary to fine-tune
the selection among our preconditioner and heuristic approaches.
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Appendix A. Proof of Proposition 2.7.

We begin by systematically introducing some key definitions and results on the
unit disk D1. When needed, we provide a short proof for the results reported in [26,
Chap. 2].

Definition A.1 (Nedéléc’s Projected Spherical Harmonics (PSH) over
D1 [23, eq.(75)]). For l,m ∈ N0 such that |m| ≤ l, we introduce

yml (x) := γml e
imθxP

m
l (
√

1− r2x), γml := (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
. (A.1)
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PSH over D1 satisfy the following orthogonality identity [23, eq.(79)]

∫

D1

ym1

l1
(y)ym2

l2
(y)

ω(y)
dD1(y) =

1

2
δl2l1 δ

m2

m1
, (A.2)

where δ
(·)
(·) is the Kronecker delta and ω(y) =

√
1− r2y as in Section 2.2.1.

Proposition A.1. [32] The weakly singular operator V over D1 satisfies the
following generalized eigenvalue problem:

(V
yml
ω

)(x) =
1

4
λml y

m
l (x), l +m even, (A.3)

with λml :=
Γ
(
l+m+1

2

)
Γ
(
l−m+1

2

)

Γ
(
l+m+2

2

)
Γ
(
l−m+2

2

) , and Γ being the Gamma function.

Proposition A.2. [18] The hypersingular operator W over D1 satisfies the fol-
lowing generalized eigenvalue problem:

(W yml )(x) =
1

λml

yml (x)

ω(x)
, l +m odd, (A.4)

with λml as in Proposition A.1.
Remark 8. Propositions A.1 and A.2 nicely show how, in the case of a disk, the

usual V and W have opposite symbols but WV 6= 1
4 Id due to their mapping properties.

This is characterized here by the parity of the corresponding generalized eigenfunc-
tions.

Proposition A.3 ([26, Sect. 2.7]2). The kernels of V,W,V,W have the following
symmetric series expansions on D1

KV(x,y) :=
1

4π

1

‖x− y‖ =
∞∑

l=0

l∑

m=−l
l+m even

λml
4

(
yml (x)yml (y) + yml (x)yml (y)

)
. (A.5)

K
V
(x,y) :=

∞∑

l=0

l∑

m=−l
l+m odd

λml
(
yml (x)yml (y) + yml (x)yml (y)

)
. (A.6)

KW(x,y) :=
1

4π

1

‖x− y‖3
=

∞∑

l=0

l∑

m=−l
l+m odd

1

λml

(
yml (x)

ω(x)

yml (y)

ω(y)
+
yml (x)

ω(x)

yml (y)

ω(y)

)
.(A.7)

K
W
(x,y) :=

∞∑

l=0

l∑

m=−l
l+m even

4

λml

(
yml (x)

ω(x)

yml (y)

ω(y)
+
yml (x)

ω(x)

yml (y)

ω(y)

)
. (A.8)

Proof. The proof for the standard BIOs’ kernels follows from Proposition A.1 and
Proposition A.2 combined with the orthogonality of the projected spherical harmonics
(A.2).

2Note that in Ramaciotti’s notation: λm

l
=















1

αm

l

, l+m odd,

4

βm

l

, l+m even

.
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From (A.3), we can additionally find the generalized eigenvalue problem associ-
ated to its unique inverse operator W = V

−1 over D1

(Wyml )(x) =
4

λml

yml (x)

ω(x)
, (A.9)

and use again the orthogonality property to get (A.8). The result for K
V
can be

obtained analogously from (A.4).
Definition A.2 (L2-weighted spaces [23, sl. 36–37] [26, Def.2.7.8–2.7.9]). Let

us define the spaces L2
1/ω(D1) and L2

ω(D1) as the L2-spaces induced by the weighted
inner products

(u, v)1/ω =

∫

D1

u(x)v(x)ω(x)−1dD1(x), (A.10)

and

(u, v)ω =

∫

D1

u(x)v(x)ω(x)dD1(x), (A.11)

respectively.
Proposition A.4 ([23, sl. 36–37][26, Prop 2.7.8–2.7.9]). We have that
• {yml : l+m odd} and {yml : l+m even} are both orthogonal bases for L2

1/ω.

• {ω−1yml : l +m odd} and {ω−1yml : l +m even} are both orthogonal bases
for L2

ω.
Proposition A.5 ([26, Sect. 2.7.4]).

(i) u ∈ H̃1/2(D1) can be expanded on the basis {yml : l +m odd} of L2
1/ω:

u(x) =
∞∑

l=0

l∑

m=−l

uml y
m
l (x), uml = (u, yml )1/ω, l +m odd. (A.12)

(ii) g ∈ H1/2(D1) can be expanded on the basis {yml : l +m even} of L2
1/ω :

g(x) =

∞∑

l=0

l∑

m=−l

gml y
m
l (x), gml = (g, yml )1/ω, l +m even. (A.13)

(iii) υ ∈ H−1/2(D1) can be expanded on the basis {yml ω−1 : l +m odd} of L2
ω:

υ(x) =

∞∑

l=0

l∑

m=−l

υml
yml (x)

ω(x)
, υml = (υ, ω−1yml )ω, l +m odd. (A.14)

(iv) σ ∈ H̃−1/2(D1) can be expanded on the basis {yml ω−1 : l +m even} of L2
ω:

σ(x) =

∞∑

l=0

l∑

m=−l

σm
l

yml (x)

ω(x)
, σm

l = (σ, ω−1yml )ω, l+m even. (A.15)

Proof. Since the bilinear form associated to W is symmetric, elliptic and contin-
uous, it induces an energy inner product on H̃1/2(D1). Then, the proof of (i) boils

down to showing that for u ∈ H̃1/2( D1)

〈Wu , yml 〉
D1

= 0, ∀l +m odd ⇔ u ≡ 0
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Use symmetry of the bilinear form and (A.4) to get

〈Wu , yml 〉
D1

=
1

λml

〈
u ,

yml
ω

〉

D1

=
1

λml
(u, yml )1/ω,

which is zero ⇔ u ≡ 0 because {yml : l+m odd} is an orthogonal basis for L2
1/ω.

The remaining 3 cases follow by analogy.

Remark 9. One can prove that odd PSH can be factored as

yml (x) = eimθxω(x)Ψ(x), l +m odd,

where Ψ is a polynomial function (Combine [5, Eq 14.3.21], [1, 3.2(7)], and [1,
10.9(22)]).

However, this is not true when l+m is even. In that case, the radial part of yml
is already a polynomial (since [1, 10.9(21)] holds instead of [1, 10.9(22)]).

This property confirms that the basis functions of our four fractional Sobolev
spaces have the correct behaviour. Namely, when l + m is odd, yml ∼ ω near the

boundary (∈ H̃1/2(D1)); when l +m is even, yml ω
−1 ∼ ω−1 near ∂D1 (∈ H̃1/2(D1));

while the basis functions of H1/2(D1) and H
−1/2(D1) have no singular behaviour.

Definition A.3 (Kinetic moments over D1[23, eq.(51)]). Define the operators
L+ and L− of derivation over D1 as

L± u = e±iθ

(
±∂u
∂r

+ i
1

r

∂u

∂θ

)
. (A.16)

Proposition A.6 (Properties of the kinetic moments over D1[23, sl. 21,
eq. (80)][26, Prop. 2.7.7, Cor. 2.7.2, Lemma 2.7.3]). Let u, v ∈ C∞(D1), and x,y ∈ D1.
The kinetic moments satisfy over D1

curl
D1,x u(x) · curlD1,y v(y) = −1

2

(
L+,x u(x)L−,y v(y) + L−,x u(x)L+,y v(y)

)
,

(A.17)
together with L∗

+ = L−, and L∗
− = L+. Moreover, when applied to PSH, we get

L+ y
m
l (x) =

√
(l −m)(l +m+ 1)

ym+1
l (x)

ω(x)
, (A.18)

L− y
m
l (x) =

√
(l +m)(l −m+ 1)

ym−1
l (x)

ω(x)
. (A.19)

Remark 10. Due to Proposition A.5, (A.18) and (A.19) can also be interpreted

as: L± maps H1/2(D1) to H
−1/2(D1), and H̃

1/2(D1) to H̃
−1/2(D1).

Proof of Proposition 2.7We begin our proof by introducing the following recursion
formula

4

λml
=

1

2

[
(l +m)(l −m+ 1)λm−1

l + (l −m)(l +m+ 1)λm+1
l

]
, (A.20)

which can be verified by direct computations using the multiplicative property of the
Gamma function,i.e., Γ(z + 1) = zΓ(z).
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Plugging this recursion formula into (A.9) gives

(Wyml )(x) =
4

λml

yml (x)

ω(x)

=
1

2

[
(l +m)(l −m+ 1)λm−1

l + (l −m)(l +m+ 1)λm+1
l

] yml (x)

ω(x)
. (A.21)

From (A.18) and (A.19), it is clear that

L+ y
m−1
l (x) =

√
(l −m+ 1)(l +m)

yml (x)

ω(x)
, (A.22)

L− y
m+1
l (x) =

√
(l +m+ 1)(l −m)

yml (x)

ω(x)
. (A.23)

Moreover, by unicity of W−1 = V [14, Prop. 2.2], it must hold that

(V
ym±1
l

ω
)(x) = λm±1

l ym±1
l (x), l +m± 1 odd. (A.24)

Then, combining all these ingredients, it is clear that for (l,m) 6= (0, 0), l + m
even3, our expression is equivalent to

(Wyml )(x) =
1

2

(
L+ VL− y

m
l (x) + L− VL+ y

m
l (x)

)
.

It follows that the associated bilinear form is

〈
Wym1

l1
, ym2

l2

〉
D1

=
1

2

(〈
L+ VL− y

m1

l1
, ym2

l2

〉
D1

+
〈
L− VL+ y

m1

l1
, ym2

l2

〉
D1

)

=
1

2

(〈
VL− y

m1

l1
, L− y

m2

l2

〉
D1

+
〈
VL+ y

m1

l1
, L+ y

m2

l2

〉
D1

)
, (A.25)

for (l1,m1) 6= (0, 0) and (l2,m2) 6= (0, 0).
Finally, (A.17) and

L± = −L∓, (A.26)

imply that (A.25) can be rewritten as the desired formula.

It is worth noticing that the condition (l,m) 6= (0, 0) only excludes the constants,
characterized by y00 . Due to the orthogonality (A.2), this space is defined by

H
1/2
∗ (D1) = {v ∈ H1/2(D1) :

〈
v , ω−1

〉
D1

= 0}.

Appendix B. Proof of Proposition 2.8.
Recall we want to prove

(W1)(y) =
4

π
ω(y)−1, y ∈ D1.

3
4

λ0
0

=
1

2

(

(0)(1)λ−1

0
+ (0)(1)λ1

0

)

=
4

π
Γ(0)0 where it is crucial that lims→0 Γ(s)s = 1. In order

to go from (A.20) to (A.21) one actually “splits this limit” and breaks the identity.
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Proof. Let us rewrite the modified hypersingular operator acting on the constant
function 1 as

(W1)(y) =
2

π2

∫

D1

k
W
(x,y)dD1(x)

=
4

π

∫ 1

ry

s2

(s2 − r2y)
3/2

∫ s

0

rx
(s2 − r2x)

3/2
drxds, (B.1)

where in the second line [19, eq. (39)] was applied, with an appropriate scaling for
(2.2). Based on Hadamard’s finite part, we can derive the following two formulas:

d

ds

∫ s

0

rx√
s2 − r2x

drx = −s
∫ s

0

rx
(s2 − r2x)

3/2
drx, (B.2)

and

d

dry

∫ 1

ry

sf(s)√
s− r2y

ds = ry

∫ 1

ry

sf(s)

(s2 − r2y)
3/2

ds

= − ryf(1)√
1− r2y

+ ry

∫ 1

ry

1√
s− r2y

d

ds
f(s)ds. (B.3)

Using these in our expression (B.1), we obtain

(W1)(y) = − 4

π

1

ry

d

dry

∫ 1

ry

s√
s− r2y

d

ds

∫ s

0

rx√
s2 − r2x

drxds.

We integrate the inner integral and get

∫ s

0

rx√
s2 − r2x

drx = (−
√
s2 − r2x)

1
|rx=0 = s.

So our expression becomes

(W1)(y) = − 4

π

1

ry

d

dry

∫ 1

ry

s√
s− r2y

ds,

where

∫ 1

ry

s√
s− r2y

ds =
√
1− r2y.

Consequently

(W1)(y) =
4

π

1√
1− r2y

,

as desired.
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