m Seminar for

Applied

Eidgenodssische Technische Hochschule Ziirich .
& Mathematics

Swiss Federal Institute of Technology Zurich

Optimal Operator preconditioning for
weakly singular operator over 3D screens

R. Hiptmair and C. Jerez-Hanckes and C. Urzua-Torres

Research Report No. 2017-13
February 2017

Seminar fur Angewandte Mathematik
Eidgendssische Technische Hochschule
CH-8092 Zirich
Switzerland

Funding: ETH grant ETH-04 13-2



OPTIMAL OPERATOR PRECONDITIONING FOR WEAKLY
SINGULAR OPERATOR OVER 3D SCREENS

RALF HIPTMAIR*, CARLOS JEREZ-HANCKES', AND CAROLINA URZUA-TORRES?

Abstract. In this supplement to [14], we propose a new Calderén-type preconditioner for the
weakly singular integral operator for —A on screens in R3. We introduce a modified hypersingular
operator, which is the exact inverse of the weakly singular operator on the unit disk. It forms the
foundation for dual-mesh-based operator preconditioning. Applied to low-order boundary element
Galerkin discretizations, it achieves h-independent bounded condition numbers. Heuristic exten-
sions to general screens even with non-smooth boundaries are discussed. Their good performance is
confirmed by numerical tests.

1. Introduction. This report is the second part of our work on operator precon-
ditioning for Boundary Integral Operators (BIOs) for —A on three-dimensional open
surfaces. We therefore consider the following Dirichlet and Neumann boundary value
problems on the exterior of an orientable Lipschitz manifold I' C R?, of co-dimension
equal to one and boundary JI" of positive measure: find U such that

—AU =0 in Q:=R3\T,
U=g or 8—U =pu onl,
on
U(x) = O(llx~") as [|x|| — oo,
where here ||-|| denotes the standard Euclidean norm. This is the simplest case to

consider for potential distributions on bounded objects which are infinitely thin in
R3. Such objects are known in the literature as screens. In our first report [14], we
focused on the related hard screen problem (Neumann), while here we deal with its
soft counterpart (Dirichlet).

A common numerical approach to model and numerically solve problems in un-
bounded homogeneous domains is the Boundary Element Method (BEM). Its key in-
gredients are: availability of a fundamental solution and Green’s third identity which
yields the so-called integral representation. In the homogeneous case, the latter allows
to reconstruct U over the entire domain using exclusively boundary data via single
and double layer potentials. When imposing boundary conditions, one derives Bound-
ary Integral Equations (BIEs). In the case of screens, one derives a weakly singular
BIE for the Dirichlet BVP, whereas for the Neumann BVP one arrives to a hyper-
singular BIE. The analysis of the arising Boundary Integral Operators (BIOs) in the
framework of Sobolev spaces for screens is available for several problems [311 [30} 27, B].

In both cases, one faces first-kind BIEs, which lead to ill-conditioned linear sys-
tems when discretized by low-order Galerkin BEM on fine meshes. Their solution via
iterative solvers becomes prohibitively slow and thus demands preconditioning. For
references and further ellaboration on this matter, see the introduction in [I4].

The key contribution of this supplementary article is the final resolution of a
problem still declared open in [T4]: the construction of an exact inverse of the weakly
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singular integral operator on the unit disk both in terms of a finite part integral oper-
ator with a special kernel and in terms of a variational (weak) form in suitable trace
spaces. The former is derived in Section [2.2] the latter established in Section 22211 It
turns out that this variational form is related to the modified weakly singular operator
from [14] in exactly the same way as the weak form of the hypersingular operator can
be expressed through that for the weakly singular operator.

Instrumental in the derivation of this variational form of the inverse of the wealy
singular operator have been recent yet unpublished results by J.-C.Nédélec [23] [24]
also elaborated in the PhD thesis of P.Ramaciotti [26]. They use so-called projected
spherical harmonics in order to state series expansions for the kernels of the boundary
integral operators and their inverses on the disk. We make use of such relations and
prove them in a different way as will be shown in Appendix [Al

This report is structured as follows. Section 2.1] yields an inverse of the weakly
singular BIO amenable to Galerkin discretization by standard polynomial boundary
elements. This can be used for operator preconditioning of the linear systems of
equations arising from boundary element discretization of the weakly singular BIE. We
investigate this method and various extensions in Section Bland give ample numerical
evidence confirming its efficacy in Section @l Conclusions are drawn in Section [B] and
appendices are provided for detailed proofs.

2. Preliminaries. Let d = 1,2, 3. For a bounded domain K C R¢, C™(K), m €
N, denotes the space of m-times differentiable scalar functions on K, and, similarly,
for the space of infinitely differentiable, scalar continuous functions we write C°°(K).
Let LP(K) denote the class of p-integrable functions over K. Dual spaces are defined
in standard fashion with duality products denoted by angular brackets (-, -) .

Let O € R% d = 2,3 be open and s € R. ‘We denote standard Sobolev spaces by
H?(0O). For positive s and O Lipschitz, let H*(O) be the space of functions whose
extension by zero over a closed domain @ belongs to H* (@), as in [I7]. In particular,
the following duality relations hold

ﬁ_1/2(O)E(H1/2(O))I and H—1/2(0)E(f11/2(0))’. 2.1)

2.1. Variational Boundary Integral Equations on the Disk. Throughout
this section we focus on the circular disk D, with radius a > 0, defined as D, := {x €
R?: 23 = 0 and ||x|| < a}. Thus, the volume problem domain becomes 2, := R3\D,.
Often, we will omit the third coordinate and use the following polar coordinate short
notation: x = (r; cosf,,r,sinf,) € D,.

2.1.1. Weakly Singular Integral Equation. We consider the following sin-
gular integral equation: for g € H'/?(DD,), we seek a function ¢ defined on D, such
that

Vo)) = g [ e D) =gly). v €D (22)

The measure dD,(x) denotes the surface element in terms of x € D,, equal to

argdr,df,, and the unknown o € H-Y 2(ID)a) is the jump of the Neumann trace
of the solution U of the exterior Dirichlet problem (ZI) when © = Q,.

The symmetric variational formulation for [Z2) is: seek o € H~'/2(D,) such that
for g € H'/?(D,), it holds

o)
o s, =g [ [ GRS D amuty) = 0, v, 23
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for all ¢ € H=Y/2(D,).

REMARK 1. Ezistence and uniqueness of solution of this problem was proved
by Stephan in [30, Thm. 2.7]. Moreover, the bilinear form in @3) is H~'/?(I')-
continuous and elliptic (cf. [27, Thm. 8.5.9]). One can show that in this case and
for sufficiently smooth screens ', when approaching the edges O, the solutions decay
according to the square-root of the distance [}).

2.2. Modified Hypersingular Singular Integral Operator. We define the
modified hypersingular operator W as

— 2
(Wg)(x) = _ﬁ 5 g(y)Kw(X, y)dDa(y)7 X € Dq, (2'4)
with
a Sa(x,y)
Ky(x,y) = + , XF#Y, 2.5
W) PV i 2 x—-yl’ (22
and

(2.6)

2.2 /2 .2
Sa(x,y>:—tan1< ¢ e Ty>, X#Y,

alx -yl

and where the dashed integral indicates that the expression above is to be interpreted
as a Hadamard finite-part integral, with distributional meaning as in [21].

Since limy_,y Sy (x,y) = 4 when x, y € D,, the kernel of the standard hypersin-
gular operator W (defined as in [14, Eq. (2.2)]) and the second term in (23] have
the same hypersingular behavior in the interior of D,. Also note that S,(x,y) = 0
if |x| = a or |y| = a. As a consequence, S,, though bounded, will be discontinuous
on 0D, x 0D,. On the other hand, the first term in ([Z5]) features a strongly singular
kernel in the interior of D, and a hypersingular behaviour when x =y € dD,. From
these observations we point out that W has a truly hypersingular kernel.

PROPOSITION 2.1. W : HY/2(D,) — H~Y/2(D,) provides an exact inverse of V.

Key tools for the proof of Proposition [ZT] are some auxiliary results by Li and
Rong [19]. First, define the function p(p, ) as

o0

1 . 1 1—p2
0) :— — Inlgine — =~ -~ F 1 2.
p(p,0) 2”;00/) e m T 72 —2pcosf’ v lpl <1, (2.7)
with 0 € [0, 27] (¢f. [6, Chap. 1.1]). B
THEOREM 2.2 (Thm.1 [19]). Let g € C*(Dy,). Then, the solution o(x) of (Z2)

can be expressed in terms of a two-dimensional hypersingular integral as follows

1 / 9(y)
o(x)=—— ————dD,(y), x€D,, 2.8
( ) T ]D)a R%(X,y) ( ) ( )
where
1 ¢ s? T2y
= ]Z 0, —0,) ds. 2.9
R]%)(X7 y) max(rg,ry) (52 - T%)3/2(S2 — 7‘5)3/2 P ( g2’ y) § ( )
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LEMMA 2.1. Let a > 0 and x,y € D,. If a > s > max(ry,ry), we find the
following primitive

/ s7p (22,0, —6,) J 1 s
§=——
oy 2 = e ey PV — v =
tan~? <—V “ori 52’”5>

slx=yll

. (2.10)
[x -yl

Proof. This can be shown by direct calculation using the following change of
variable [6]:

Vst —r2vs? — ri dn st — 7“37"5
7’] = = y —_— = 73
S ds ns

which leads to

s2 1-— 7“21"12/ n=2
- ds = /7([ ,
/ (52 —12)3/2(s2 = 2)3/2 1 + r2r2 — 2r,7, cos(0, — 0,) [x —y|I* + n2 g

—1 n
1 tan (—uxfyn)

[

— 1 dp=- - . (2.11)
2 2 3

[x = ylI” +7? nlx -yl [x -yl

By definition of i the result follows. O
Combining the above elements we can prove the next result.

where

PROPOSITION 2.3. The solution of the weakly singular integral equation [2.2)) can
be written as o(x) = (Wg)(x), for all x € Dy, if g is continuously differentiable.

Proof. Applying Theorem [Z2] we get that the solution to (Z2]) can be written as
(Z8). Moreover, when a < oo, we may use Lemma 2] and write

1 1 4 [ 52 T2Ty
1 4 0, — 0 ) d
™ Ry (x,) W]{nax(rz,ry> (52 —12)3/2(s2 = r2)3/2 p( s? v)
tan_l (s/sz—r§m>

slx—yll e

S
—Ip +
2 Ix —yl* Vs? = 12Vs2 — 72 Ix—y|?

)

max(rg,ry) I

where the finite part (fp) of the last expression needs to be considered. This means
that we drop the term corresponding to evaluating our primitive (ZI0) on the lower
bound max(ry,ry), as it becomes infinite.

Hence we get

1 1 2 a n Sa(X,¥)
TEEyY) 7 \[x—yP Ve —rva - x—yl
2
= _FKW(Xay)a



as stated. O

Finally, we need to extend the above result to H'/?(D,). We do this via the
following Corollary and subsequent Proposition.

COROLLARY 2.4. VW = Id in HY/?(DD,).

Proof. Follows from the previous Proposition combined with density of C*°(D,)
in HY/?2(D,). O

PROPOSITION 2.5. W : HY/2(D,) — H~Y/2(D,) is continuous.

Proof. Let us assume that W : HY2(D,) — H~/2(D,) is not a bounded op-
erator. Then, by virtue of density, there exists a sequence (g,,), € C>(D,) such
that

||9n||H1/2(Da) =1, ||WgnHﬁ,1/2(Da) — 00, as n — oQ.

Since V : H-1/2(D,) — H'Y2(D,) is an isomorphism, it holds

HWg"Hflfl/Q(]D)a) < C HVWgnH C Hgn”Hl/?(Da) )

1/2 =
H1/2(Da) (Corollarym

from where we get a contradiction. O

Now we are finally in the position to use the above results and density arguments
to conclude the assertion of Proposition 211

COROLLARY 2.6. The bilinear form <Wu, g>
elliptic and continuous.

Proof. Follows from continuity and ellipticity of V (¢f. [27, Thm. 3.5.9]) combined
with Proposition 211 O

D’ u, g € H1/2(Da) is H1/2(Da)_

2.2.1. Bilinear Form for the Modified Hypersingular Integral Operator.
We note that formula (25 is not practical when implementing a Galerkin BEM
discretization. We dedicate this section to find a new expression for the bilinear form
of W such that its implementation becomes easier.

Let us begin by considering the modified weakly singular operator V given by

Vo e L [ Sy i
W00 =% [ 25 amuly), xeBuve BB @12)

As shown in [I4], Section 2.1.2], this BIO renders the exact inverse of the standard
hypersingular operator W : HY/2(D,) — H~1/2(D,).

Let v be a continuously differentiable function over a surface I', and let v be
an appropriate extension of v into a three-dimensional neighborhood of I'. Let us
introduce the vectorial surfacic curl operator [29, p.133] as

curlp v(x) = n(x) x Vo(x), (2.13)

with n(x) being the outer normal of I on x € I', and V denoting the standard
gradient.

Let us also consider a vector-valued differentiable function v(x), for x € I', and
let v be an appropriate extension of v into a three-dimensional neighborhood of T'.
Then we also introduce the scalar surfacic curl operator [29, p.133] as

curlpv(x) := n(x) - (V x v(x)). (2.14)
5



Additionally we denote w(x) := /1 —12, x € Dy.
PROPOSITION 2.7.  The bilinear form associated to the modified hypersingular
operator W = V™! over Dy can be written as

W)y, =5 [ 2Tty ) carly, o)y ()R (y), (215
D; JD; ||X yl| ’ '

for all u,v € Hi/z(Dl) = {ve H/?(Dy) : (v, w’1>D =0}.

This result was first reported by Nedéléc and Ramaciotti in their spectral study
of the BIOs over Dy and their variational inverses [26]. For the sake of completeness,
we introduce the key tools they derived and provide an alternative simpler proof of
this proposition in the A proof by means of formal integration by parts
remains elusive, as it encounters difficulties due to the finite part integrals involved
in the definition of W and its kernel introduced in (23).

We also emphasize that the space Hi/2(D1) corresponds to H'/?(ID;)/R (see end
of Appendix [A] for further details).

Proposition 27 gives us a variational form for W that can be easily implemented.
Nevertheless, since we are interested in preconditioning V mapping from H~/2(ID;) to
H'/2(IDy), it is important to observe that the right-hand side of (ZI5) maps constants
to zero and thus has a non-trivial kernel if considered in the whole H'/2(ID;) space.

For this reason, (210 will not lead to a suitable preconditioner for V. Further-
more, its extension to H'/2(ID;) does not actually match the bilinear form of W there,
which is H'/ (D )-elliptic. In order to remedy this situation, we add an appropriate
regularizing term coming from the definition of H! /2 (D1) and the following Proposi-
tion.

ProPOSITION 2.8. The following identity holds:

WD(y) = —w"!(y), yeDi. (2.16)

The proof can be found in As expected, this result is consistent with
the known solutions of ([2.2) when the right hand side is g = 1 [20].
From this, we see that for u. constant, (Wu.)(y) is equivalent to

(Wao)(y) = = / ) e (WD (x),  yeDy,  (217)

since <1 wl = 27.

Therefore, by defining the bilinear form:

Si(x,y)
by (u, v :77r2/ / Tx—yl curly o u(x) - curly o v(y)dDi (x)dDs (y)
]D1 Dy y

2 7},) X .V 1/2
T3 /Dl /Dl )w(y)le( )dD1 (y), Vu,v€ HY?(Dy),  (2.18)

we have added the required regularization such that (2I0) is preserved. This guaran-
tees that our bilinear form by defined in ([ZI8)) is by construction equivalent to the
bilinear form arising from our modified hypersingular operator W (Z4) on H'/?(D,).

REMARK 2. Please observe that the chosen reqularization to extend the bilinear
form ZI8) from Hi/2(l") to H'Y/2(T") is analogous to the one needed for the modified

6



hypersingular operator in 2D [13, eq. (2.11)].
REMARK 3. For the standard weakly singular and hypersingular operators, the
following relation between their kernels holds:

1 1

I —y|® lx =yl

—— SN——
=:Kw =:Ky

while their modified version does not satisfy this relation. Actually, one has [T,
eq. (23)]

(27TCL)p(TZTy791 —0 ) a Sa(x )
! W . 'y
(a2 = 13)¥2/a? =12 x—y|* Ve = riVa =2 x|

G Gl ) B S S

(a? —712)3/2\/a® — 12

where the first term is singular on 0D, and is surprisingly not symmetric. Further
investigation should consider the interpretation of this term.

AKV = -

3. Preconditioning Strategy.

3.1. Abstract Operator Preconditioning. Let us consider the continuous
bilinear form a € L(H~'/?(I') x H=Y?(I"),R) induced by V. Following the policy
of operator preconditioning [I1], we can build our preconditing strategy by finding a
continuous bilinear form b € L(H/2(I") x H'/?(T'),R), and finite dimensional spaces
X, € H-Y2(T') and Y}, € HY/2(T) such that:

(P1) a, b and the L2-duality pairing t satisfy discrete inf-sup conditions with con-
stants ca, cp, cr > 0 respectively, on the corresponding discrete spaces; and,
(P2) dim X, = M =dimY}.
Choosing any bases of X}, and Y}, then the associated Galerkin matrices Ay, By, and
T}, satisfy [I1l Thm. 2.1]:

- - allllbi]

T,'B,T,7A,) < Ialiilliel” 3.1
#(T, BnT), h) < CACE C% ) (3.1)
where k designates the spectral condition number and the symbol ||-|| must be under-

stood here as operator norms for the induced operators.

REMARK 4. It was proven that classical “opposite-order” preconditioning leads to
a condition number that features a logarithmic growth on 2D screens [22]. We would
like to stress the fact that their proof [22, Theorem 4.1] comes from the mismatch of
norms between the standard fractional spaces HEY/2(T) and the tilde ones H¥Y/2(T),
with T being the screen. Therefore, it is also valid on 3D screens and applies, not only
to preconditioning W by V, but to precondition V with W too.

In order to see this, recall the mapping properties of these BIOs on a screen I':

vV HV2(T) — HY2(T), W : HY2(T) = H- (D), (3.2)
and that the following inverse inequalities hold on shape-regular sequences of BE spaces
[ull g2 /2(py < e2(1 + log k) [lull gr/2(ry » (3.3)

||80||1§—1/2(p) < c2(1 4 [loghl) ||80||H—1/2(p) ’ (3.4)

7



Fig. 3.1: Barycentric refinement for triangles and quadrilaterals. On the left we illustrate
the 6 obtained children elements for a triangular element, while on the right we show the 4
children elements in the case of quadrilaterals. Original primal nodes are in red dots, center
of mass is depicted in green diamond and blue x’s are used for mid-edge nodes.

Fig. 3.2: Primal and dual meshes. Black lines show primal elements, dashed gray lines
barycentric ones, and blue lines are used to highlight dual cells. Orange dots mark the dofs
in X, and Yj.

(a) Primal mesh (b) Dual mesh

for w € HYA(T), o € H-Y/2(T), mesh-width h < 1 and with constants c¢y,c; > 0
independent of h (cf. [10, Lemma 2.8] or [12]).

In the scope of our operator preconditioning theory, these two ingredients together
with @) justify our claim.

REMARK 5. If b happens to be the exact inverse of a, the obtained condition
number BI)) will be minimal. However, this is not really required in order to have
an optimal preconditioner, and there are several suitable candidates for the bilinear
forms b.

3.2. Bounday Element Spaces on Primal and Dual Meshes. We can
choose boundary element spaces X; and Yj such that they fulfill the condition
M = dim X}, = dim Y}, by using a dual mesh based on the work of Buffa-Christiansen
[2]. Along these lines, we first mesh our screen I' and denote the resulting primal mesh
by T'p. Next, we build a barycentric refinement T as shown in Figure Bl At last,
we construct the dual mesh I';, by combining the barycentric elements, as displayed
in Figure B2 We refer to [2] [16] for further details.

We construct our discrete spaces by using low-order Lagrangian boundary element
8



functions, i.e.

X, := space of piecewise constant functions on I',
X}, := space of piecewise constant functions on T,
Y}, := space of continuous piecewise linear functions on fh.
Y, := space of continuous piecewise linear functions on I'j,.

Thus M = dim X, = dimY} equals the number of cells in I'j, as illustrated in
Figure

Rather than setting our Galerkin matrices directly over fh, we compute them in
the barycentric refinement ', and define the matrix representation of the inclusion
operator Cq : Y3, — Y}, to build the basis functions of Y}, as linear combinations of
barycentric basis functions of Yj,.

Then, we construct the Galerkin matrix W, of the modified hypersingular oper-
ator W over the dual mesh I';, as follows: Let W, : Y, — Y}, be the Galerkin matrix
of W computed over the barycentric refinement I'y,, then we write W, = CngCd.

Analogously, we introduce the matrix representation of the canonical embedding
C, : X, — X, to connect barycentric basis functions corresponding to X, to those
of the primal basis functions X},. The construction and representation of these linking
matrices are discussed in [I6], Sect. 3.3-3.4, case A]. Let us illustrate their use: consider
M, : X}, — Y}, to be the mass matrix computed over the barycentric mesh. By using
the above matrices, it is clear that the Galerkin matrix T}, associated to the L2-duality
pairing t is given by T}, = CZM;{C:}F.

3.3. Stability of Discrete Duality Pairing on Non-Uniform Triangular
Meshes. As mentioned in Remark [I solutions of screen problems have a singular
behavior near the boundary, which can be resolved by refining the mesh towards it.
This motivates our interest in applying the operator preconditioning strategy to non-
uniform meshes. We accomplish this by extending the work developed by O. Steinbach
in [28]. Let us begin by introducing some of the notation therein.

As aforementioned, the key instrument is the preservation of the inf-sup condition
associated to the dual pairing t, in this case the L2-inner product over I'. This requires
maintaining the H'-stability of a generalized L2-projection Qh, defined via a Petrov-
Galerkin approach [28], [T6].

With this in mind, let us consider two scenarios:

Casel : X, C X =H V2T and Y, C Y = HY2(T),

Case Il : X\, C X = HY2(I) and Y, C Y = H-Y/2(T).

It is more convenient to first prove the desired inf-sup condition in Case II. Once
stability is proven there, we can ressort to duality to obtain the inf-sup in the pair of
spaces of Case I.

ASSUMPTION 3.1. We consider a shape regular and locally quasi-uniform family
of primal meshes {Ty}hem, h > 0 of T', whose members are labelled by h from an index
set H.

Let us consider a given primal mesh I';,, and denote the mesh-width of an arbitrary
element 7, € T, by h;. We consider Case II, and equip X, C HY?(T) with the
standard locally supported nodal basis functions denoted by i € Xj;. Due to local
quasi-uniformity, for each basis function an associated mesh size hy is introduced,

9



satisfying
1 Iy
— < o <c¢g for all [ such that 7, N supp{pr} #0, k=1,..., M, (3.5)
cQ 1

with a global constant cg > 1. Now, for an arbitrary 7; € I'y,, define the set

J):={ke{l,..,M} : supp {pr} N7 #0}. (3.6)

AssuMPTION 3.2. We assume our primal mesh 'y, satisfies the following local
mesh condition:

51

T

— Z ]A”Lkl Z ;L]:; >co>0 V71 ely, (3.7)
kied(l)  keeJ(l)

with a global positive constant ¢y [28, eq. (2.30)].

THEOREM 3.3. Let Assumptions[31] and [Z2 be satisfied. Then, for case I and
case I the discrete inf-sup condition:

1
sup L@n s onrl —Jlunlly . Ywn€ X hEH h>0. (3.8)

oney,  llvnlly s

holds with a positive constant cs independent of h.
Proof. Under Assumptions Bl and B2 Theorems 2.1 and 2.2 in [2§] give the
inf-sup condition for case II. Next, we appeal to an analogue of |28, Lemma 1.7] to

define @,QL : L*(T') — Y}, for a given u € L?(T) as solution of the variational problem

(Qhuswn) = (u, vnde, ¥ un € X (3.9)
Moreover, following the steps from [28) Thm. 2.1], one can prove that
A2 1/2
HQhuHHl/Q(F) < cllullgiery, VueHYT), heH. (3.10)

Finally, combining these results, we have for all v, € X, that

N2
[(vn , w)p] ‘<Uh’ Qhw>r}
lonll gy = sup o= sup D
0#£weH/2(I) ||w||H1/2(r) 0#£weH/2(I) ||w||H1/2(r)

)2
[(on @) | o
<c sup N—F <c¢ sup M
0#£wEH/2(T) HQ’%U)H 0#wp, €Yy (T) ”whHHl/z(F)
H1/2(T)
as studied. O
We have now all the ingredients to apply the operator preconditioning strategy
stated in Section [3.1] over Dy such that:
COROLLARY 3.4. Let Assumptions [31] and hold. Let Vy, be the Galerkin
matriz corresponding to the bilinear form [22) over T'y,. Let W, be the Galerkin

matriz arising from our regularized bilinear form by over the dual mesh fh, and
T), the matriz representing the L?-dual pairing constructed as above. Then, when
preconditioning Vy, by the matriz product Pj, = T;lth;T, we obtain

K (?th) S O, (311)

with C' a constant independent of h.

10



3.4. Unit Disk Based Preconditioner for Mapped Screens. We now gen-
eralize this preconditioning strategy to more general screens I' C R3 such that there
are at least bi-Lipschitz mappings ¢ : D; — T, so the following norm equivalences
hold [21, Thm 3.23]

16" 0l oy = ol ey Vo € HYD), (3.122)
16"l 2oy = ol 2y Vo € ZA(D), (3.12b)

where ¢*v is the pullback of the function v.

REMARK 6. As a consequence of the bi-Lipschitz mapping ¢ : Dy — T, T will
be an orientable C’O=1~— manifold with boundary OT'. Moreover, ¢ allows us to use the
fact that the spaces H'/*(T"), HY?(T), H-Y2(T), and H='/*(T") are invariant under
the pullback ¢* : L*(T') — L?(Dy).

For the sake of clarity, we introduce additional notation for this section. Let us

write Vp, to denote the weakly singular operator on the unit disk, and Vr for that
on I' = ¢(Dy), ie.

(Vro)(x) := i/r |;’(_y;” dl'(y), xel,oeH YI). (3.13)

It can be pulled back to D, using the parametrization:

. . 1 (¢"0)(¥)/det (Dp(y)" Do(y)) N2
Vi@ o)(op(x ::—/ - - dDy(y), x €Dy,
VE@' @) =1 [, 166 - 6] )
(3.14)
where D¢(%) denotes the Jacobian of ¢ on %, and ¢*(c) € H~/?(IDy).
In the operator preconditioning context, let us define the bilinear forms:
a(6,0) = (Vir&, @)y, , &9 €H (D), (3.15)
b(a, ®) = (Wn, @, 8), , @€ H*(D), (3.16)

where Wp, denotes the modified hypersingular operator over D;. From Proposi-
tion 2.6, we know that b is H'/2(D;)-elliptic and continuous.
Now, we can use ([B:I12)) and interpolation arguments to get

1" vl g2,y = IVl gr/e@y . Vo€ H'Y2(ID), (3.17)
and the definition of dual norm to derive

V6 € HY2(Dy), (3.18)

HaHﬁflﬂ(Dl) ~ Hd)i*& H-1/2(T) >
where superscript -* denotes the inverse of the pullback. From the latter norm equiv-
alence and the properties of Vr, one can deduce the H~/2(ID;)-ellipticity and conti-
nuity of a.

2

A A —% A —% A —% A A2
a(6,6) = <Vp¢> G, ¢ 0>F > chb Gl g2y & cHoHﬁ,l/z(Dl),

for all 6 € H=/2(Dy).
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These properties of a and b, combined with the H~/2(ID;) — H'/2(D;)-stability
of the L2-pairing, give the following corollary.

COROLLARY 3.5. Wy, still induces a suitable bilinear form to build an h-asympto-
tically optimal preconditioner for Vi adopting the procedures of our preconditioning
strategy.

REMARK 7. Note that

W, Vi = Id+ Wy, (V5 —Vp,) : HY2(Dy) = H~Y?(Dy), (3.19)

is also continuous.

Corollary B35l guarantees that the condition number bound (3] will be constant,
albeit affected by a constant depending on ¢ and the distortion effected by it. Later
on, this will be reflected in our numerical experiments by means of a pre-asymptotic
phase in which the behavior of the preconditioner is not as good as expected. Moti-
vated by this numerical drawback, the following two subsections discuss some heuristic
modifications to improve the preconditioner performance.

3.5. Shape-aware Preconditioners.

3.5.1. Case of Flat Screens. We consider general surfaces that allow polar
angle para-metrization of their boundary, i.e. boundaries that can be described by a
function a(f), 0 € [0, 27]. In this case, we can use

Va2 =12 Ja(8,) =13
Va)a@,) [x—yl )’

! forx#£y, x,yel', (3.20)

Sr(x,y) =tan~

to construct an approximation of V™' (see [I4, Sect. 3.6] for further motivation). We
point out that the flat screen needs not be the result of a transformed unit disk via
a bi-Lipschitz mapping as in the previous subsection. However, a piecewise Lipschitz
transformation is still required.

The approximation of the bilinear form related to W that we pursue is

Sr(x
bF : X,y curly . u(x) - curly , v(y)dl(x)dl’
0=y [ T e () -cxly o))
+ oy (u, D (v, D, (3.21)

for u,v € HY?(T'), and with agy € Ry bounded.

Here, we have additionally replaced the function w~' by the constant 1 in the
correction term for implementation simplicity. We justify this choice on account of
the fact that we will use PCG to solve the arising system and said method will not
perceive a significant difference among these two regularizations. Moreover, this choice
will reduce computations considerably when compared to the original choice in (ZI8).

3.5.2. Case of Parametrized Screens. Let us consider an open surface I'
defined by a C'-diffeomorphism ¢ : D; — I'. In this situation we can approximate

Si(x,y) by

2 1 2
Su00y) e tant [ VLISV 6700 o
9o (X)gp-1(y) [[x — ¥l
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for x # y, and where g,-1(x) is the Gram determinant of ¢! on x [I4, Sect. 3.7].
This expression is somehow analogous to the approach developed in Section B.5.1]

with a(0,) = ¢(ﬁ) Again, we will base our preconditioner on an approximate

bilinear form for the modified hypersingular operator W. However, this time we
replace Sr(x,y) in 32I) by S¢(x,y).

4. Numerical Experiments. We compare the performace of our precondi-
tioner P, := T;lth,:T with diagonal preconditioning —denoted by Dglf, and
opposite-order operator preconditioning arising from using the standard hypersingu-
lar operator W, i.e. Py = Tglth;T. It is worth mentioning that the bilinear
form arising from W also needs a regularization term [I3, Sect. 5.1], chosen in the
same way as for Pj. This means we add a term equal

aw <u, w71>]])1 <v7 w71>]])1 ) u,v € H1/2(D1), (4.1)
in the case of the unit disk Dy, or
aw (u, 1) (v, )i, U, v € Hl/z(l"), (4.2)

for general I', where ayw € Ry bounded.

Currently, we do not have a rule of thumb to choose the parameters aw and agy.
In fact, we selected each one of them empirically in the following way: First, we set an
initial guess for both parameters and computed the resulting full Galerkin matrices
and their spectra. By changing parameter values, we then seeked to locate eigenvalues
related to the regularizing term inside the remaining spectra, thus preventing an
artificial enlargement of condition numbers. Consequently, they do not alter the
performance of the preconditioners and allow us to make fair comparisons between
P;, and Pj,. As our eigenvalues cluster around one, we have found that for the disk,
aw = gy = # is a good choice, while for general screens I', a good initial guess is
given by the inverse of the area of the screen.

Numerical experiments were implemented employing BETL2 [I5] and the re-
quired meshes generated with Gmsh [8] using polygonal approximation of the bound-
aries. The measured condition numbers were computed via the ratio of the maximum
and minimum eigenvalues. All required BEM operators were constructed with 12
quadrature pointdl.

For fine meshes, local low-rank compression of the BE matrices had to be used.
Specifically, BETL2 uses AHMED for its ACA implementation. The parameters
used for these experiments correspond to BETL default ones, i.e., tolerance of 107>
and admissibility n = 0.9.

In most numerical experiments we provide two tables. The one on the left, en-
titled No approzimation, contains the spectral condition numbers computed using
standard BETL routines to construct the matrices and MATLAB to obtain the condi-
tion numbers. The table on the right ACA with Lanczos gives the spectral condition
numbers k£ and the number of PCG iterations It for matrices constructed with the
ACA routines. Moreover, with Lanczos indicates that for this case the condition
numbers were calculated using Preconditioned Conjugate Gradient (PCG) with the
Lanczos algorithm [9, Ch.9-10]. We use PCG with a tolerance of 107> for the relative
residual norm, initial guess equal to zero and, as right hand side, we considered a

IExcept for the rank-one regularizations @2) and (ZI8), where BETL2’s default number of
quadrature points was used, i.e., 7 for the mass-matrix and 25 for <1 , w*1>.

13



vector that had entries +1 in its upper half, —1 for the remaining components. Since
a sufficiently precise computation of the eigenvalues usually requires a larger Krylov
subspace and hence more PCG iterations, the algorithm continues iterating until the
difference between the newly computed condition number and the old one is less or
equal to 10~ for two times consecutively.

4.1. Unit Disk. Tables & T.1l and show the preconditioning results over a
disk with two different triangular meshes and parameters aw = ayy = % In both
tables, the condition numbers displayed with ACA differ in some cases from those
obtained using dense BE matrices without any approximation. Table reveals
that here the approximation error comes mainly from ACA, although Lanczos lacks
accuracy in some cases. In spite of this, we observe in Tables [£1.1] and that
the condition numbers achieved by P}, hardly increase with respect to the number of
elements and are asymptotically smaller than those of Pj. Nevertheless, the gain in
terms of number of PCG iterations is not significant.

Table 4.1.1: Results for V}, over the unit disk with quasi-uniform triangular meshes.

(b) ACA with Lanczos

(a) No approximation N D; 'V, P,V P,V
N | &(D;'Vy) | 6(PLVs) | 6(PRV)) - It Rt e B
64 23.01 3.07 241 64 22.55 13 | 2.72 7 224 6
256 50.39 3.19 2.47 256 49.41 20 | 284 7 | 248 6
1024 102.61 3.592 2.61 1024 | 102.28 27 | 3.22 7 2.63 7
4096 | 206.81 40 | 3.85 8 2,72 7
16384 | 413.67 57 | 469 10 | 2.87 7

Table 4.1.2: Results for V, over the unit disk with non-uniform triangular meshes A.

(b) ACA with Lanczos

(a) No approximation N D'V, P,V PV,
N K(Dglvh) k(PprVp) | k(PpVp) K It K It K It
96 25.72 5.93 5.58 96 | 25.72 17 | 5.73 10 | 5.66 11
384 55.55 4.16 3.62 384 | 5555 22| 341 8 | 369 9
1536 110.82 4.99 3.95 1536 | 110.82 32 | 414 9 | 382 9
6144 | 230.08 44 5.01 10 | 4.06 10
Table 4.1.3: Results for V}, over the unit disk for ACA with Matlab.
(a) Quasi-uniform meshes (b) Non-uniform meshes A
N | &(D;'Vy) | 6(PRVE) | 6(PRV)) N | k(D 'Vy) | &(PLVa) | K(PRVR)
64 23.91 2.73 2.24 96 25.72 5.99 5.66
256 50.39 2.85 2.48 384 55.55 3.41 3.69
1024 102.61 3.22 2.63 1536 110.82 4.14 4.08

A third triangular mesh of the unit disk is also studied in Table ET4] again with
parameters aw = ogy = % This time, each mesh is generated with local refinement
on the boundary such that the meshwidth on 0D, is half of the one of the previous
mesh. The condition numbers are just as expected. Moreover, this time we can
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see that our preconditioner P} not only achieves an almost constant s, but also its
number of PCG iterations starts having a real advantage over those of Pj,.

Table 4.1.4: Results for V}, over the unit disk with non-uniform triangular meshes B.

(b) ACA with Lanczos

71 =

(a) x with no approximation N hamin Dy Vn PrVh PrVi
N D-lv g P K It K It K It
h_Yh hTh hTh 162 [0.05677| 33.09 20 | 406 10 | 4.10 10

162 33.09 4.29 4.07 506 |0.0244 | 51.23 28 | 4.11 11 | 404 11
506 51.23 4.32 4.04 1052 |0.0124 | 64.43 33 | 4.70 12 | 4.00 12
1052 | 64.43 4.73 4.00 2150 |0.0059 | 79.70 42 | 559 14 | 4.04 12
2150 | 79.70 5.64 4.04 4260 |0.0030 | 96.09 50 | 6.83 16 | 4.37 14
8398 |0.0015 | 113.61 59 | 7.92 19 | 453 15

16546 | 0.0008 | 130.95 68 | 9.00 21 | 4.46 15

Fig. 4.1: Locally refined triangular meshes

(a) The coarsest mesh A was cre- (b) Each mesh B was constructed with
ated using the functions Attraction and the functions Attraction and Matheval
Threshold iteratively in Gmsh. This in Gmsh, where the evaluated function was
means the mesh size is a piecewise lin- the continuous distance to the boundary
ear function of the distance to the disk’s of the disk plus a parameter h. > 0. The
boundary. The subsequent meshes were subsequent meshes were obtained by halv-
obtained by standard refinement in Gmsh. ing h. and thus the minimum meshwidth

on the boundary.
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4.2. Unit Disk Based Preconditioner for Mapped Screens. In this sec-
tion we study the preconditioning results achieved when applying the approach de-
scribed in Section B4l This means that Vj, corresponds to the Galerkin matrix of
the weakly singular operator mapped from the disk to the target screen I' via ¢, Py,
is constructed on the disk, i.e. using (ZI8), whereas Pj; comes from the standard
hypersingular operator mapped from D; to I'. We denote by ayy the constant chosen
for the regularization in Wj and aw for the one of Wy,. In these experiments, we
considered agy = % and aw = 0.3.

Tables 2,71 2.2 and 23] exhibit the preconditioning results for three differ-
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ent shapes mapped from the unit disk. In all of them, we see how the opposite-order
preconditioner Py, displays the expected logarithmic growth while our proposal shows
a small rise that seems to be less pronounced the larger the mesh. We believe this
reflects a pre-asymptotic phase together with numerical errors introduced by quadra-
ture and the ACA approximation. Naturally, this behaviour is also depicted in the
number of PCG iterations. Whereas the number of PCG counts for P}, increases with
respect to N, those of P} remain constant in the last two levels for all considered
mappings.

Table 4.2.1: Results for V), over mapped screens with quasi-uniform triangular meshes.
P, built using unit disk based preconditioner. ¢(x) = (zo, 1, zo + x1)".

(b) ACA with Lanczos

(a) No approximation

Table 4.2.2: Results for Vj, over mapped screens with quasi-uniform triangular meshes.

N D, 'V, P,V P,V
N | k(D,'Vy) | k(PLVy) | 6(PLVy) £ It = It)] ~ It
256 51.69 417 3.28 256 51.65 22 | 4.17 8 3.28 8
1024 108.95 4.92 3.45 1024 | 108.97 30 | 4.92 9 3.45 8
4096 | 223.37 43 | 5.76 10 | 3.61 9
16384 | 435.05 59 | 6.70 12 | 3.72 9

P}, built using unit disk based preconditioner. ¢(x) = (o, x1, 25 + 21)7.

(b) ACA with Lanczos

N imati _ =
(a) No approximation N D'V, P,V PLV,
N | k(D,'Vy) | &(PLVy) | £(PLVR) il It AT L2 L
64 25.97 1.88 1.85 64 24.22 13 | 1.88 5 4.25 9
256 54.86 2.20 5.99 256 53.55 21 | 220 6 | 483 10
1024 111.73 2.56 5.60 1024 | 110.98 30 | 2.56 7 521 11
4096 | 228.14 41 | 3.06 8 | 5.47 12
16384 | 462.54 60 | 3.69 8 | 5.66 12

Table 4.2.3: Results for V), over mapped screens with quasi-uniform triangular meshes.
P, built using unit disk based preconditioner. ¢(x) = (zo, z1, moml)T

(b) ACA with Lanczos

(a) No approximation N D'V, P,V B,V
N | (D, 'Va) | 6(PLVy) | 6P V,) il It R It A
64 24.99 312 2.95 64 24.29 14 | 3.11 11 | 2.38 7
256 51.36 3.69 2.74 256 50.33 21 | 3.68 8 2.55 7
1024 104.65 4.38 2.80 1024 | 104.49 29 | 4.36 9 2.78 7
4096 | 211.30 42 | 5.16 10 | 2.96 8
16384 | 423.25 57 | 6.16 11 | 3.08 &
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4.3. Shape-aware Preconditioner for Flat Screens. We present numerical
results to illustrate the approach proposed in Section 351 In other words, Vi
corresponds to the matrix coming from the weakly singular operator on the flat screen
I', P}, comes from the standard hypersingular operator over I', and P}, is constructed
using (321)).

Tables 3T and give the numerical results for preconditioning over a square
screen over two different triangular meshes and specify the parameters aw and agy
considered for Py, and Py, respectively.

Table 4.3.1: Results for V}, over a square screen with quasi-uniform triangular meshes.
P, built using shape-aware preconditioner for flat screens. aw = oy = 0.3

(b) ACA with Lanczos

(a) No approximation N D, 'V, PpVy PV
N | (D, 'Va) | 6(PLVy) | 6(PLV,) al It AT 0 S
64 25.63 338 3.35 64 25.63 11 | 3.38 4 | 335 4
256 51.99 4.30 3.71 256 52.00 18 | 4.30 6 3.71 6
1024 104.29 5.31 3.94 1024 | 104.29 25 | 5.31 71394 6
4096 | 208.65 37 | 641 9 | 410 6
16384 | 417.32 51 | 7.64 8 | 421 6

Once again, we observe some differences between the standard and ACA ap-
proaches. However, when outputting the ACA matrices and computing the condition
numbers with MATLAB, we get results close to the standard case. We therefore con-
clude that the error is introduced by the Lanczos algorithm. For the quasi-uniform
mesh, there is a slight increase in the condition number that is probably coming from
numerical error. In the non-uniform case, the slope decreases but it is not as small. As
before, this is also reflected in the number of PCG iterations obtained with P, which,

although asymptotically constant, are not significantly smaller than those achieved
by Py,.

Table 4.3.2: Results for V}, over a square screen with locally refined meshes. P}, built
using shape-aware preconditioner for flat screens. aw = oy = 0.3

(b) ACA with Lanczos

(a) No approximation N Dgth P,V P,V
N | (D' Vi) | 6(PLVy) | 6(PLV,) ul It R It £ It
108 29.66 381 1.38 108 29.66 16 | 3.81 8 4.26 9
1728 120.02 5.78 5.64 1728 | 120.02 33 | 5.78 11 | 5.52 10
6912 | 241.51 46 | 6.94 12 | 5.59 12
27648 | 484.43 63 | 8.19 13 | 592 12

As a second example, we consider three different triangles. [Table 4.3.3] provides
the condition numbers over an equilateral triangle, [Table 4.3.4] shows the results for
an isosceles rectangular triangle, and finally the condition numbers obtained for a
general triangle with angles 30° — 60° — 90° are contained in [Table 4.3.5l In these
three situations, the standard choice ag; = aw = 0.3 leads to unsatisfactory results for
both preconditioners. Since the resulting spectra showed that this could be improved
by using other values of oy and aw, the Tables (on the right) report the results
corresponding to the most convenient values for each operator using no approximation.
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Tables contain the results using ACA with Lanczos and these new values
of agy and aw. There we see that Py, achieves condition numbers with the expected
logarithmic growth, while P, also exhibits a growth that becomes less pronounced
for larger N. However, we note that these results are less impressive than for other
shapes. Moreover, the PCG counts for Pj, are, in most cases, sligthly worse than
the number of iterations obtained with Pj. Our preconditioner performs particularly
poorly for the general triangle. Futhermore, shows that the clustering for
the general triangle is not good independently of the chosen asy.

Table 4.3.3: Results for V), over equilateral triangle screen with quasi-uniform tri-
angular meshes. P}, built using shape-aware preconditioner for flat screens.

(a) aw = ay =0.3

(b) aw = 0.05, agy = 0.01

N | &(D;'Vy) | 6(PRV) | 6(PRV)) N | &(D;,'Vy) | &Py V) | &(PrVi)
74 25.34 28.36 27.55 74 25.34 5.35 6.33
296 53.11 30.19 30.45 296 53.11 6.08 7.27
1184 107.96 31.73 32.76 1184 107.96 7.23 8.06

Table 4.3.4: Results for V}, over right isosceles triangle screen with quasi-uniform
triangular meshes. P, built using shape-aware preconditioner for flat screens.

(a) aw =y =0.3

(b) aw =0.3, agp =0.1

N | &(D;'V}) | 6(PRV}) | 6(PRV)) N | &(D;'V}) | 6(PRVs) | 6(PLV))
60 22.04 6.66 8.89 60 22.04 6.66 8.72
240 46.50 8.90 10.63 240 46.50 8.90 10.39
960 94.53 11.36 11.96 960 94.53 11.36 11.69

Table 4.3.5: Results for V), over general triangle screen with quasi-uniform triangu-
lar meshes. P}, built using shape-aware preconditioner for flat screens.

(a) aw = aiy =0.3

(b) aw =04, agy =0.3

N | k(D,'Vy) | &(PLV) | £(PLVh) N | k(D,'V}) | k(PrV) | £(PLVR)
32 14.49 14.11 18.39 32 14.49 15.29 18.39
128 31.82 20.15 22.18 128 31.82 20.13 22.18
512 70.41 27.10 28.73 512 70.41 27.08 28.73

Table 4.3.6: ACA with Lanczos results for V) over equilateral triangle screen with

quasi-uniform triangular meshes. Pj built using shape-aware preconditioner. aw
0.05, agy = 0.01

N D; 'V, P,V P,V,
K It K It K It
74 | 2534 15 | 5.35 10 | 6.29 11
206 | 5277 22| 6.08 11 | 729 13
1184 | 107.96 31 | 7.21 12 | 8.07 14
4736 | 217.54 43 | 880 13 | 877 14
18944 | 437.61 59 | 10.58 15 | 9.36 14
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Fig. 4.2: Eigenvalue distribution for general triangle screen. The spectrum of the matrix
V. is shown in black, while that of V}, preconditioned by W, is depicted in red. The one
corresponding to W}, is in blue. We observe that the bottom part of the spectrum of WLV,
remains unclustered independently of the choice of agy. This allow us to conclude that the
deterioration of the performance of P;, does not come from the rank-1 regularization.
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Table 4.3.7: ACA with Lanczos results for V), over isosceles triangle screen with quasi-
uniform triangular meshes. P}, built using shape-aware preconditioner. aw = 0.3, ogy =
0.1

N D, 'V, P, V), P,V
K It K It K It
60 22.04 14 6.51 10 8.72 14
240 46.50 21 8.90 12 10.39 16
960 94.47 29 11.36 13 11.69 17
3840 | 190.05 41 13.97 15 12.77 17
15360 | 381.03 55 16.76 17 13.68 18

Table 4.3.8: ACA with Lanczos results for V), over general triangle screen with quasi-
uniform triangular meshes. P, built using shape-aware preconditioner. aw = 0.4, ogy =

0.3
N | D;'v, P,V PpVy
K It K It K It
32 14.49 13 | 15.29 12 | 24.88 13
128 | 31.73 20 | 20.17 16 | 28.94 17
512 | 70.93 28 | 27.06 19 | 33.80 21
2048 | 147.34 38 | 34.23 21 | 38.22 23
8192 | 300.20 53 | 41.42 24 | 41.85 26

4.4. Shape-aware Preconditioner for Parametrized Screens. We finally
consider the same setting as in the previous subsection but now P}, follows the cue
from [subsubsection 3.5.2) with parameters aw = agy = 0.3 for the sake of simplicity.

For comparison purposes, Tables [4.4.1] 1.4.2] and [4.4.4] illustrate the results ob-
tained for the same mappings studied in kubsection 4.21 From this, we validate our
results for the two first columns, and, additionally, remark that the approximation
proposed is sometimes succesful in lowering the bound for the condition number, but
in other situations is not much better.

Nonetheless, the data in Tables LA THZZ.G reveals that our shape-aware precondi-
tioner P, achieves condition numbers & that are practically h-independent. Still, this
optimality in terms of condition numbers does not meaningfully reduce the number
of PCG iterations when compared to the opposite-order preconditioner Py,.

Table 4.4.1: Results for V), over parametrized screens with quasi-uniform triangular
meshes. Pp built using shape-aware preconditioner. ¢(x) = (zo, z1, o + ml)T

(b) ACA with Lanczos

a) No approximation _ —
(a) No app N D, 'V, PV, | P,V,
N | k(D,'Vi) | &(PrVy) | k(PrVa) r ) ok Tt] & T
I 5415 344 348 64 24.15 14 | 3.17 7 3.48 7
256 51.69 417 4.02 256 51.67 22 4.17 8 4.02 8
1024 108.95 4.92 4.96 1024 108.94 30 | 4.92 9 4.26 9
4096 223.40 43 | 5.76 10 | 4.39 9
16384 | 435.05 58 | 6.70 12 | 4.54 9
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Table 4.4.2: Results for W), over parametrized screens with quasi-uniform triangular

meshes. P, built using shape-aware preconditioner. ¢(x) = (xo, 21,23 + 23)7.

(b) ACA with Lanczos

a) No approximation _ —
(2) Noapp N D'V, | PV, | BV,
N | &(D;'Vy) | k(PR V) | k(PRV4) il It ok Tt)] » T
4 26.12 1.89 294 64 24.33 13 1.89 6 2.24 6
256 54.97 219 2.7 256 53.62 21 2.19 6 2.72 7
1024 111.79 259 2.03 1024 111.02 30 | 2.57 7 2.92 8
4096 228.16 41 | 3.06 8 3.05 8
16384 | 462.61 60 | 3.70 8 3.16 8

Table 4.4.3: Results for V}, over parametrized screens with quasi-uniform triangular

meshes. P, built using shape- aware preconditioner. ¢(x) = (o, z1,

(a) No approximation

(b) ACA with Lanczos

‘L(2)+‘L% )T
-5 .

N D, 'V, P,V P,V
N | 6D, 'Vy) | 6(Pr V) | 6(PRVR) ul It K It oIt
64 24.68 2.93 2.46 64 23.20 131292 7 | 246 7
256 52.05 3.43 2.74 256 50.93 21 | 3.41 8 | 274 7
1024 105.94 4.03 2.87 1024 105.40 27 | 4.01 8 | 287 8
4096 | 213.11 40 | 474 9 | 297 8
16384 | 42756 59 | 5.66 10 | 3.12 8

Table 4.4.4: Results for V), over parametrized screens with quasi-uniform triangular
meshes. Pj, built using shape-aware preconditioner. ¢(x) = (xo,z1, zox1)".

(a) No approximation

(b) ACA with Lanczos

N D, 'V, P,V, P,V
N | k(D,'Va) | KPRV | 6(PLVA) al It R It £ It
64 24.42 399 277 64 24.42 14 | 3.20 8 277 7
1024 104.70 4.43 3.19 1024 104.54 29 | 4.41 9 3.16 8
4096 211.33 42 | 519 10 | 3.26 8
16384 | 423.26 57 | 6.18 11 | 343 9

Table 4.4.5: Results for Vj, over parametrized screens with quasi- uniform triangular
meshes. P, built using shape-aware preconditioner ¢(x) = (zo, 1, exp(zo + x1))7.

(b) ACA with Lanczos

N imati - =
(a) No approximation N D'V, P,V P,V
N | k(D,'Vy) | &(PLV) | £(PLVR) u 1t r It £ It
256 58.86 6.89 6.60 256 58.80 23 6.90 10 | 6.60 11
1024 136.45 ].26 7.82 1024 | 136.67 34 8.25 12 | 7.81 12
4096 | 302.01 48 9.64 13 | 879 13
16384 | 562.32 66 | 11.20 15 | 9.50 13

5. Conclusion. We have developed operator preconditioning on three-dimensio-

nal screens using a new hypersingular integral operator that supplies the exact inverse
for the weakly singular operator on disks. We have proved that our approach accom-
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Table 4.4.6: Results for V}, over parametrized screens with quasi-uniform triangular

meshes. P, built using shape- aware preconditioner. ¢(x) = (2o, z1, exp(2£=L))”.

(b) ACA with Lanczos

(a) No approximation N D, 'V, PV, P,V
N | &(D;'Vy) | 6(PRV) | 6(PRV)) u It~ 6] r It
64 24.02 347 2.66 64 24.02 14 | 3.47 8 2.66 8
256 50.73 4.10 3.02 256 50.73 22 | 4.10 9 3.02 8
1024 104.09 4.82 3.20 1024 104.07 31 | 4.82 10 | 3.20 8
4096 21245 42 | 5.66 11 | 3.31 8
16384 | 420.95 57 | 6.64 12 | 3.47 9

plishes h-independent condition numbers for parametrized screens, with remarkable
success for non-uniform meshes. Moreover, their performances depend on the extent
of deformation of the screen I' with respect to the unit disk ;. We indicated that
the resulting condition numbers may be rather large depending on the transforma-
tion ¢. In order to overcome the possibly degraded performance of our approach,
we proposed two heuristic alternatives for preconditioning on a general screen. The
asymptotic optimality of our preconditioners has been investigated via exhaustive
numerical experiments with respect to both uniform and locally refined meshes. We
have confirmed that the our proposal achieves the expected performance in all studied
shapes except the so-called general triangle. Further analysis is necessary to fine-tune
the selection among our preconditioner and heuristic approaches.
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Appendix A. Proof of [Proposition 2.7|

We begin by systematically introducing some key definitions and results on the
unit disk ;. When needed, we provide a short proof for the results reported in [26]
Chap. 2].

DEFINITION A.1 (Nedéléc’s Projected Spherical Harmonics (PSH) over
Dy [23, eq.(75)]). Forl,m € Nqy such that |m| <1, we introduce

20+ 1) (I — m)!
ar - (L+m)l

Y x) = AP PR (T =), A= (1)

23

(A1)
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PSH over D; satisfy the following orthogonality identity [23] eq.(79)]

u (ynt(y) Iy sm
= —dDi(y) = —5 5 0m? A2
| ) : (A2)
where 58 is the Kronecker delta and w(y) = /1 — rZ as in Section 2211

PROPOSITION A.1. [39] The weakly singular operator N over Dy satisfies the
following generalized eigenvalue problem:

" 1
(VI )(x) = AN x), L+ m even, (A.3)

w

l+m l—m
M) (=55
r (l+772L+2) r (1—7721+2) )

PROPOSITION A.2. [I8] The hypersingular operator W over Dy satisfies the fol-
lowing generalized eigenvalue problem:

with A\J"* = and I being the Gamma function.

Ly
Wy (x) = )\m L [+ m odd, (A4)
with N as in [Proposition A.1
REMARK 8. Propositions[A. 1 and[4.2 nicely show how, in the case of a disk, the
usual V and W have opposite symbols but WV ;é Id due to their mapping properties.
This is characterized here by the parity of the correspondmg generalized eigenfunc-
tions.

PROPOSITION A.3 (|26, Sect. 2.7[). The kernels of V,W,V,W have the following
symmetric series expansions on Dy

Ku(x,y) = - S Z T ) + T () . (A5)

=y yn 2 2

l+m even

0o l

Ky(xy) =Y > A" (W"®y(y) + i x)y(y)) - (A.6)
= Ozfi{;éd

N 1 y"(x) v (y) | )y (y)
Bwloy) = e P yn lz m; Am( ) wly) | wx) wly) )‘“)
I+m odd

o l

(x )y (y) | v x)y" ()

Ray)i=2 2. 5p (Lo T St ) (8.8

l4+m even

Proof. The proof for the standard BIOs’ kernels follows from [Proposition A.Iand
[Proposition A.2]combined with the orthogonality of the projected spherical harmonics
(B2).

1
——, l+modd,
2Note that in Ramaciotti’s notation: A=
[+ m even

e
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From (A3), we can additionally find the generalized eigenvalue problem associ-
ated to its unique inverse operator W = V™! over Dy

_ Ay
A w(x)

(A.9)

and use again the orthogonality property to get (A.8). The result for Ky can be
obtained analogously from (A4]). O

DEFINITION A.2 (L?-weighted spaces [23] sl. 36-37] [26, Def.2.7.8-2.7.9]). Let
us define the spaces Ll/w(Dl) and L?(D1) as the L*-spaces induced by the weighted
inner products

()1 = [ 0TI D1 ) (A.10)
and
(u,v)w:/D u(x)v(x)w(x)dD; (x), (A.11)

respectively.
PROPOSITION A.4 ([23] sl. 36-37][26, Prop 2.7.8-2.7.9]). We have that
o {y" : l4+m odd} and {y;* : l+m even} are both orthogonal bases for Lf/w.

o {wly™ : I+ m odd} and {w™ly™ : I+ m even} are both orthogonal bases
for L.
PROPOSITION A.5 ([26] Sect. 2.7.4]).

(i) we HY2(Dy) can be ezpanded on the basis {y/" : l+m odd} of Ll/w'

X) =Y > uy (%), u = (u,y")1jw L+ m odd. (A.12)

=0 m=—1

(ii) g € HY?(D1) can be expanded on the basis {y" : |+ m even} of Lf/w :

= Z Z gy (x), 9" =99 )1jw [+m even. (A.13)

=0 m=—1

(iii) v € H='Y/2(Dy) can be expanded on the basis {y["w™" : 1+ m odd} of L?:

Z Z o)y Trmoodd (A1)

(iv) o € H-Y/2(Dy) can be expanded on the basis {ymw™' : I+ m even} of L?:

Sy omyl o' = (. Yo, Lt m even.  (A15)

=0 m=—1

Proof. Since the bilinear form associated to W is symmetric, elliptic and contin-
uous, it induces an energy inner product on H/2(D;). Then, the proof of () boils

down to showing that for u € H/2( D)

Wu,y")p, =0,Vi+modd <« u=0
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Use symmetry of the bilinear form and (A4) to get

<WU7 Y >D1 = v <U7 f>D = F(U,yz )l/wv
1

which is zero < u = 0 because {y;* : [+ m odd} is an orthogonal basis for Lf/w.
The remaining 3 cases follow by analogy. O
REMARK 9. One can prove that odd PSH can be factored as

Y (x) = e u(x)U(x), |4 m odd,

where ¥ is a polynomial function (Combine [, Eq 14.8.21], [, 3.2(7)], and [1,
10.9(22)]).

However, this is not true when [ +m is even. In that case, the radial part of y;"
is already a polynomial (since [, 10.9(21)] holds instead of [, 10.9(22)]).

This property confirms that the basis functions of our four fractional Sobolev
spaces have the correct behaviour. Namely, when | +m is odd, y;* ~ w near the
boundary (€ HY2(Dy)); when | +m is even, y"w ! ~ wT near 0Dy (€ HY2(Dy));
while the basis functions of HY?(Dy) and H~/?(Dy) have no singular behaviour.

DEFINITION A.3 (Kinetic moments over D [23] eq.(51)]). Define the operators
Ly and L_ of derivation over Dy as

Liu=et? <i%+i%%). (A.16)

PROPOSITION A.6 (Properties of the kinetic moments over D [23] sl. 21,

eq. (80)][26, Prop. 2.7.7, Cor. 2.7.2, Lemma 2.7.3]). Letu,v € C*°(Dy), andx,y € Dy.
The kinetic moments satisfy over Dq

1 - -
curly, o u(x) - curly,  v(y) = =5 (Lo (X) Loy o) + Lo ulx) Loy 1))
(A.17)
together with L = L_, and L* = L. Moreover, when applied to PSH, we get
m+1
LoyMx)=+/(+m)l— +1)Ll(x) (A.19)
_yt(x) = m m o) .

REMARK 10. Due to[Proposition A5, (AI18) and (AI9) can also be interpreted
as: Lo maps H'/?(Dy) to H=Y/2(Dy), and H/?(Dy) to H=/2(D,).
Proof of[Proposition_2.7 We begin our proof by introducing the following recursion

formula

[((+m)—m+ DA+ (1 —m)(+m+ 1A, (A.20)

N | =

z

which can be verified by direct computations using the multiplicative property of the
Gamma function,i.e., [(z+ 1) = 2l (2).
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Plugging this recursion formula into (A9)) gives

1 m—1 m—+1 yzn(x)
== [l+m)(I—m+DN""+ (1 —m)+m+ 1)\ . (A.21)
2 w(x)
From (AJ8) and (A19), it is clear that
m—1 o . ylm(x)
Loy ) = V= mr DT m A (A.22)
m—+1 _ R ylvn(x)
Ly x) = /(I +m+1)(1—m) o) (A.23)
Moreover, by unicity of W' =V [I4] Prop. 2.2], it must hold that
_ymil
(V lw )(x) = A"y EN (), T4+ m+1 odd. (A.24)

Then, combining all these ingredients, it is clear that for (I,m) # (0,0), I +m
everﬁ, our expression is equivalent to

A/, M 1 \/ m \/ m
(Wyi")(x) = 5 (LyVL y™(x) + LV Ly (%))
It follows that the associated bilinear form is
\A/, M m 1 \/ m m \/ m m
Wy sy, = 5 ((CaV Loyl )y, + (C-V Ly yi), )
1 \/ m m \/ m m
S (Ve Loy, + (VEey Loyil?), ). (A25)

for (I1,m1) # (0,0) and (I3, m2) # (0,0).
Finally, (AI7) and

Ly=—Lr, (A.26)
imply that (A285) can be rewritten as the desired formula. O

It is worth noticing that the condition (I,m) # (0,0) only excludes the constants,
characterized by yJ. Due to the orthogonality ([(A2)), this space is defined by

HY2(Dy) = {ve HY2(Dy) : (v, 0™ =0}

Appendix B. Proof of [Proposition 2.8|
Recall we want to prove

_ 4 -~
(Wi)(y) = —w(y)™', yeDi.
3i . l 1 1\ _ é . . . _
A2 ((0)(1)>\0 + (0)(1)>\0) = 7T1"(0)0 where it is crucial that lims_o'(s)s = 1. In order

to go from (A20) to (A2I) one actually “splits this limit” and breaks the identity.
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Proof. Let us rewrite the modified hypersingular operator acting on the constant
function 1 as

Mww:?éwmwmw

T2

4 [t 52 s Ty
— dr,d B.1
<[ T ), By

Yy

where in the second line [19, eq. (39)] was applied, with an appropriate scaling for
[2). Based on Hadamard’s finite part, we can derive the following two formulas:

d ° Tz s Tz
| Tm=tra = | s sy de B.2
ds/o 1/52_7%7” S/O (82_T%)3/2T (B.2)
and
AN sl r/lLS)ds
dry Jr, \/s — e Y, (82 =)
O oL d
——f(s)ds
\/1—7“ y\/s—rgds ()
Using these in our expression (B, we obtain

(W) =~ irludi/ \/—ds/ ﬁ

We integrate the inner integral and get

dr, = (—+/s? — r%)llrzzo =s.

—dr,ds.

/( \/ S 7
x
S() our eX[)IeSSl()Il beC()IIleS

— 41 d ! s

W1 = d
(W1)(y) wrdry ) oo S,
where
1
S ds— \J1-r72
ry VS—T )
Consequently
— 4 1
(Wl)(y) = - 5
T\/1—-r

as desired. O
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