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Abstract

The aim of this paper is to show both analytically and numerically the existence of a
subwavelength phononic bandgap in bubble phononic crystals. The key is an original formula
for the quasi-periodic Minnaert resonance frequencies of an arbitrarily shaped bubble. The
main findings in this paper are illustrated with a variety of numerical experiments.
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1 Introduction

The past decade has witnessed growing interest in the fabrication of artificially engineered
materials to effectively control mechanical waves such as sound waves. Phononic crystals which
consist of periodic arrangement of components with controlled spatial size and elastic properties
are typical examples. When excited by an acoustic or elastic wave, phononic crystals may exhibit
band gaps, or ranges of frequencies in which the wave cannot propagate through their bulk and
decaying exponentially. The bandgaps in phononic crystals are due to destructive interference
mechanisms from Bragg scattering of the waves, and can be quite wide. For bandgaps to occur,
the period of the structure (or the lattice constant) must be of the order of the wavelength and
the contrast in the material parameters must be large [4, 5, 6, 13, 15, 20]. This limits the use
of phononic crystals in applications targeting low frequencies, because phononic crystals would
require impractically large geometries [23, 25].

Based on the realization that composites with locally resonant microstructures can exhibit
effective negative elastic parameters at certain frequency ranges, a class of phononic crystals that
exhibits bandgaps with lattice constants two orders of magnitude smaller than the wavelength
have been fabricated [21]. By varying the size and geometry of the microstructure, it was
experimentally shown in [21] (and analytically verified using a simple model in [22]) that one
can tune the frequency ranges over which the effective elastic parameters are negative. More
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recently, resonance has been shown both experimentally and numerically to be another way to
prevent elastic waves from propagating in the material in [23].

In this paper, to demonstrate the opening of a subwavelength phononic bandgap, we consider
a periodic arrangement of bubbles and exploit their Minnaert resonance [24]. The Minnaert
resonant frequency depends on the bulk modulus of the air, the density of the water and the shape
of the bubble [24, 17, 2]. In the dilute regime, it has been shown in [10] that around the Minnaert
resonant frequency, an effective medium theory can be derived. Furthermore, above the Minnaert
resonant frequency, the real part of the effective modulus is negative and consequently, the
bubbly fluid behaves as a diffusive media for the acoustic waves. Meanwhile, below the Minnaert
resonant frequency, with an appropriate bubble volume fraction, a high contrast effective medium
can be obtained, making the superfocusing of waves achievable [9]. These show that the bubbly
fluid functions like an acoustic metamaterial and indicate that a subwavelength bandgap opening
occurs at the Minneaert resonant frequency [16] . We remark that such behavior is rather
analogous to the coupling of electromagnetic waves with plasmonic nanoparticles, which results
in effective negative or high contrast dielectric constants for frequencies near the plasmonic
resonance frequencies [1, 7, 8].

In this paper, we provide a mathematical and numerical framework for analyzing bandgap
opening in bubble phononic crystal at low-frequencies. Through the application of layer potential
techniques, Floquet theory, and Gohberg-Sigal theory we derive an original formula for the quasi-
periodic Minnaert resonance frequencies of an arbitrarily shaped bubble, along with proving the
existence of a subwavelength bandgap and estimating its width. Our results are complemented
by several numerical examples which serve to validate them in two dimensions. Our results
formally explain the experimental observations reported in [16]. They pave the mathematical
foundation for the analysis of complex-bubble-based phononic crystals that could have more
than one structural period and bubbles of different sizes and shapes.

The paper is organized as follows. In Section 2 we formulate the spectral problem for a
bubble phononic crystal and introduce some basic results regarding the quasi-periodic Green’s
function. In Section 3 we derive an asymptotic formula in terms of the contrast between the
densities of the air inside the bubbles and the fluid outside the bubbles. We prove the existence
of a subwavelength bandgap and estimate its width. We also consider the dilute regime where
the volume fraction of the bubbles is small. In Section 4 we perform numerical simulations in
two dimensions to illustrate the main findings of this paper. We make use of the multipole ex-
pansion method to compute the subwavelength bandgap. The paper ends with some concluding
remarks. In Appendix A, we collect some useful asymptotic formulas for layer potentials in
three dimensions. Derivations of the two-dimensional quasi-periodic Minnaert resonances are
given in Appendix B. In Appendix C, we briefly describe the basic ideas behind the multipole
expansion method.

2 Problem formulation and preliminaries results

We first describe the bubble phononic crystal under consideration. Assume that the bubbles
occupy ∪n∈Zd(D + n) for a bounded and simply connected domain D with ∂D ∈ C1,s with
0 < s < 1. We denote by ρb and κb the density and the bulk modulus of the air inside the
bubbles, respectively, and by ρ and κ the corresponding parameters for the background media.
To investigate its phononic gap we consider the following α−periodic equation in the unit cell
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Y = [−1/2, 1/2]d for d = 2, 3:





∇ · 1
ρ
∇u+

ω2

κ
u = 0 in Y \D,

∇ · 1

ρb
∇u+

ω2

κb
u = 0 in D,

u+ − u− = 0 on ∂D,

1

ρ

∂u

∂ν

∣∣∣∣
+

− 1

ρb

∂u

∂ν

∣∣∣∣
−

= 0 on ∂D,

e−iα·xu is periodic.

(2.1)

Here, ∂/∂ν denotes the outward normal derivative and |± denote the limits from outside and
inside D.

Let

v =

√
κ

ρ
, vb =

√
κb
ρb
, k =

ω

v
and kb =

ω

vb

be respectively the speed of sound outside and inside the bubbles, and the wavenumber outside
and inside the bubbles. We also introduce two dimensionless contrast parameters

δ =
ρb
ρ

and τ =
kb
k

=
v

vb
=

√
ρbκ

ρκb
.

By choosing proper physical units, we may assume that the size of the bubble is of order 1.
We assume that the wave speeds outside and inside the bubbles are comparable to each other
and that there is a large contrast in the bulk modulus, that is,

δ ≪ 1, τ = O(1).

It is known that (2.1) has nontrivial solution for discrete values of ω such as (see [5])

0 ≤ ωα
1 ≤ ωα

2 ≤ · · ·
and we have the following band structure of propagating frequencies for the given periodic
structure:

[0,max
α

ωα
1 ] ∪ [min

α
ωα
2 ,max

α
ωα
2 ] ∪ [min

α
ωα
3 ,max

α
ωα
3 ] ∪ · · · .

In this paper we investigate whether there is a possibility of bandgap opening in this struc-
ture.

To do this, we first collect notations and some results regarding the Green function and the
quasi-periodic Green’s function for the Helmholtz equation in three dimensions. We refer to [5]
and the references therein for the details.

We introduce the single layer potential Sk
D : L2(∂D) → H1(∂D), H1

loc(R
3) associated with D

and the wavenumber k defined by, ∀x ∈ R
3,

Sk
D[ψ](x) :=

∫

∂D
Gk(x,y)ψ(y)dσ(y),
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where

Gk(x,y) := − eik|x−y|

4π|x− y| ,

is the Green function of the Helmholtz equation in R
3, subject to the Sommerfeld radiation

condition. Here, L2(∂D) is the space of square integrable functions and H1(∂D) is the standard
Sobolev space.

We also define the boundary integral operator (Kk
D)

∗ : L2(∂D) → L2(∂D) by

(Kk
D)

∗[ψ](x) := p.v.

∫

∂D

∂Gk(x,y)

∂ν(x)
ψ(y)dσ(y), ∀x ∈ ∂D.

Here p.v. stands for the Cauchy principal value. We use the notation ∂
∂ν

∣∣∣
±
indicating

∂u

∂ν

∣∣∣
±
(x) = lim

t→0+
〈∇u(x± tν(x)), ν(x)〉,

with ν being the outward unit normal vector to ∂D. Then the following jump formula holds:

∂

∂ν

∣∣∣
±
Sk
D[φ](x) =

(
±1

2
I + (Kk

D)
∗

)
[φ](x), a.e. x ∈ ∂D.

Let Y be the unit cell [0, 1]3 in R
3. For α ∈ [−π, π[3, the function Gα,k is defined to satisfy

(△x + k2)Gα,k(x,y) =
∑

n∈R3

δ(x− y − n)ein·α,

where δ is the Dirac delta function and Gα,k is α-quasi-periodic, i.e., e−iα·xGα,k(x,y) is periodic
in x with respect to Y . It is known that Gα,k can be written as

Gα,k(x,y) =
∑

n∈Z3

ei(2πn+α)·(x−y)

k2 − |2πn+ α|2 ,

if k 6= |2πn+ α| for any n ∈ Z
3.

Let D be a bounded domain in R
3 with a connected Lipschitz boundary satisfying D ⊂ Y .

We define a quasi-periodic single layer potential Sα,k
D by

Sα,k
D [φ](x) =

∫

∂D
Gα,k(x,y)φ(y)dσ(y), x ∈ R

3.

Then Sα,k[φ] is an α-quasi-periodic function satisfying the Helmholtz equation (△ + k2)u = 0.
It satisfies a jump formula:

∂

∂ν

∣∣∣
±
Sα,k
D [φ](x) =

(
±1

2
I + (K−α,k

D )∗
)
[φ](x), a.e. x ∈ ∂D,
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where (K−α,k
D )∗ is the operator given by

(K−α,k
D )∗[φ](x) = p.v.

∫

∂D

∂

∂ν(x)
Gα,k(x,y)φ(y)dσ(y).

We remark that it is known that S0
D, S

α,0
D : L2(∂D) → H1(∂D) are invertible for α 6= 0; see [5].

3 Subwavelength bandgaps

We use layer potentials to represent the solution to the scattering problem (2.1). We look for a
solution u of (2.1) of the form

u =

{
Sα,k
D [ψ] in Y \ D̄,

Skb
D [ψb] in D,

(3.1)

for some surface potentials ψ, ψb ∈ L2(∂D). Using the jump relations for the single layer
potentials, one can show that (2.1) is equivalent to the boundary integral equation

A(ω, δ)[Ψ] = 0, (3.2)

where

A(ω, δ) =

(
Skb
D −Sα,k

D

−1
2 +Kkb,∗

D −δ(12 + (K−α,k
D )∗)

)
, Ψ =

(
ψb

ψ

)
.

Throughout the paper, we denote by H = L2(∂D)×L2(∂D) and by H1 = H1(∂D)×L2(∂D),
and use (·, ·) for the inner product in L2 spaces and ‖ · ‖H for the norm in H. It is clear that
A(ω, δ) is a bounded linear operator from H to H1, i.e. A(ω, δ) ∈ B(H,H1). Moreover, we can
check that the characteristic values of A(ω, δ) can be written as

0 ≤ ωα
1 ≤ ωα

2 ≤ · · · .

We first look at the limiting case when δ = 0. The operator A(ω, δ) is a perturbation of

A(ω, 0) =

(
Skb
D −Sα,k

D

−1
2 +Kkb,∗

D 0

)
. (3.3)

We see that ω0 is a characteristic value of A(ω, 0) if only if (ω0/vb)
2 is a Neumann eigenvalue

of D or (ω0/v)
2 is a Dirichlet eigenvalue of Y \D with α-quasiperiodicity on ∂Y . Since zero is a

Neumann eigenvalue of D, ω = 0 is a characteristic value for the operator-valued analytic func-
tion A(ω, 0). Besides, note that there is a positive lower bound for other Neumann eigenvalues
of D and all the Dirichlet eigenvalues of Y \D with α-quasiperiodicity on ∂Y , we can conclude
the following result by the Gohberg-Sigal theory [5, 14].

Lemma 3.1. For any δ sufficiently small, there exists one and only one characteristic value
ω0 = ω0(δ) in a neighborhood of the origin in the complex plane to the operator-valued analytic
function A(ω, δ). Moreover, ω0(0) = 0 and ω0 depends on δ continuously.
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3.1 The asymptotic behavior of ωα
1

In this section we assume α 6= 0. We define

A0 := A(0, 0) =

(
SD −Sα,0

D

−1
2 +K∗

D 0

)
, (3.4)

Here we set for brevity SD := Sk=0
D , K∗

D := Kk=0,∗
D . We denote by 1∂D ∈ H1(∂D) the constant

function on ∂D with value 1, and by A∗
0 : H1 → H the adjoint of A0. We choose an element

ψ0 ∈ L2(∂D) such that (
−1

2
I +K∗

D

)
ψ0 = 0,

∫

∂D
ψ0 = 1.

We define the capacity of the set D, CapD, by

SD[ψ0] = −Cap−1
D 1∂D. (3.5)

Then we can easily check that Ker(A0) and Ker(A∗
0) are spanned respectively by

Ψ0 =

(
ψ0

ψ̃0

)
and Φ0 =

(
0

1∂D

)
,

where ψ̃0 = (Sα,0
D )−1SD[ψ0].

We now perturb A0 by a rank-1 operator P0 from H to H1 given by P0[Ψ] := (Ψ,Ψ0)Φ0,
and denote it by Ã0 = A0 + P0.

Lemma 3.2. The followings hold:

(i) Ã0[Ψ0] = ‖Ψ0‖2Φ0, Ã0
∗
[Φ0] = ‖Φ0‖2Ψ0.

(ii) The operator Ã0 and its adjoint Ã0
∗
are invertible in B(H,H1) and B(H1,H), respectively.

Proof. By construction, and the fact that SD is bijective from L2(∂D) to H1(∂D) [3], we can
show that Ã0 (hence Ã0

∗
) is bijective. The fact that Ã0[Ψ0] = ‖Ψ0‖2Φ0 is direct. Finally, by

noticing that P∗
0 [θ] = (θ,Φ0)Ψ0, it follows that Ã0

∗
[Φ0] = P∗

0 [Φ0] = ‖Φ0‖2Ψ0.

Using the results in Appendix A, we can expand A(ω, δ) as

A(ω, δ) := A0+B(ω, δ) = A0+ωA1,0+ω
2A2,0+ω

3A3,0+δA0,1+δω
2A2,1+O(|ω|4+|δω3|) (3.6)

where

A1,0 =

(
v−1
b SD,1 0

0 0

)
, A2,0 =

(
v−2
b SD,2 −v−2Sα

D,1

v−2
b K∗

D,2 0

)
, A3,0 =

(
v−3
b SD,3 0

v−3
b K∗

D,3 0

)
,

A0,1 =

(
0 0

0 −(12 + (K−α,0
D )∗)

)
, A2,1 =

(
0 0
0 −v−2(Kα

D,1)
∗

)
.

Since Ã0 = A0 + P0, the equation (3.2) is equivalent to

(Ã0 − P0 + B)[Ψ0 +Ψ1] = 0,
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where
(Ψ1,Ψ0) = 0

Observe that the operator Ã0 + B is invertible for sufficiently small δ and ω. Applying
(Ã0 + B)−1 to both sides of the above equation leads to

Ψ1 = (Ã0 + B)−1P0[Ψ0]−Ψ0 = ‖Ψ0‖2 (Ã0 + B)−1[Φ0]−Ψ0. (3.7)

Using the condition (Ψ1,Ψ0) = 0, we deduce that (3.2) has a nontrivial solution if and only if

Ã(ω, δ) := ‖Ψ0‖2
((

(Ã0 + B)−1[Φ0],Ψ0

)
− 1
)
= 0. (3.8)

Let us calculate A(ω, δ) := Ã(ω, δ) ‖Φ0‖2. Using the Neumann series

(Ã0 + B)−1 =
(
1 + Ã0

−1B
)−1

Ã0
−1

=
(
1− Ã0

−1B + Ã0
−1BÃ0

−1B − ...
)
Ã0

−1
,

and the fact that Ã0
−1

[Φ0] = ‖Ψ0‖−2Ψ0 and (Ã0
∗
)−1[Ψ0] = ‖Φ0‖−2Φ0, we obtain that

A(ω, δ) =− ω (A1,0[Ψ0],Φ0)− ω2 (A2,0[Ψ0],Φ0)− ω3 (A3,0[Ψ0],Φ0)− δ (A0,1[Ψ0],Φ0)

+ ω2
(
A1,0Ã0

−1A1,0[Ψ0],Φ0

)
+ ω3

(
A1,0Ã0

−1A2,0[Ψ0],Φ0

)
+ ω3

(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)

+ ωδ
(
A1,0Ã0

−1A0,1[Ψ0],Φ0

)
+ ωδ

(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)

+ ω3
(
A1,0Ã0

−1A1,0Ã0
−1A1,0[Ψ0],Φ0

)
+O(|ω|4 + |δ| |ω|2 + |δ|2).

It is clear that A∗
1,0[Φ0] = 0. Consequently, the expression simplifies into

A(ω, δ) =− ω2 (A2,0[Ψ0],Φ0)− ω3 (A3,0[Ψ0],Φ0) + ω3
(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)

− δ (A0,1[Ψ0],Φ0) + ωδ
(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
+O(|ω|4 + |δ| |ω|2 + |δ|2).

(3.9)

We now calculate the five remaining terms.

• Calculation of (A2,0[Ψ0],Φ0). Using the first point of Lemma A.1, we get

(A2,0[Ψ0],Φ0) = v−2
b

(
K∗

D,2[ψ0],1∂D

)
= v−2

b (ψ0,KD,2[1∂D])

= −v−2
b

∫

∂D
ψ0(x)

∫

D
G0(x− y)dydσ(x) = −v−2

b

∫

D
SD[ψ0](x)dx =

|D|
v2bCapD

,

where we used the fact that SD[ψ0](x) = −Cap−1
D for all x ∈ D.

• Calculation of (A3,0[Ψ0],Φ0). Similarly, using the second point of Lemma A.1, we get

(A3,0[Ψ0],Φ0) = v−3
b (ψ0,KD,3[1∂D]) = v−3

b

(
ψ0,

i|D|
4π

1∂D

)
=

i|D|
4πv3b

.
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• Calculation of (A0,1[Ψ0],Φ0). We directly have

(A0,1[Ψ0],Φ0) = −(ψ̃0,
(
1/2 +K−α,0

D

)
[1∂D]).

• Calculation of
(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
. We have

A1,0[Ψ0] =
1

vb

(
SD,1[ψ0]

0

)
=

1

vb

−i

4π

(
1∂D

0

)
,

A∗
0,1[Φ0] =

(
0

−
(
1
2 +K−α,0

D

)
[1∂D]

)
.

Let us calculate Ã−1
0

(
1∂D

0

)
. We look for (aψ0, bψ̃0) ∈ H so that

(
1∂D

0

)
= (A0 + P0)

(
aψ0

bψ̃0

)
=

(
(a− b)SD[ψ0]

0

)
+ (a‖ψ0‖2 + b‖ψ̃0‖2)

(
0

1∂D

)
.

By solving the above equations directly, we obtain

Ã−1
0

(
1∂D

0

)
=

CapD

‖ψ0‖2 + ‖ψ̃0‖2

(
−‖ψ̃0‖2ψ0

‖ψ0‖2ψ̃0

)
. (3.10)

It follows that

(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
=

iCapD‖ψ0‖2(ψ̃0,
(
1/2 +K−α,0

D

)
[1∂D])

4πvb(‖ψ0‖2 + ‖ψ̃0‖2)
.

• Calculation of
(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)
. Using similar calculations, we obtain

(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)
=

(
Ã0

−1A1,0[Ψ0],A∗
2,0[Φ0]

)

=
iCapD‖ψ̃0‖2

4πv3b (‖ψ0‖2 + ‖ψ̃0‖2)
(
ψ0,KD,2[1∂D]

)
=

i|D|‖ψ̃0‖2
4πv3b (‖ψ0‖2 + ‖ψ̃0‖2)

• Conclusion. Considering the above the results, we can derive from (3.9) that

A(ω, δ) =− ω2 |D|
v2bCapD

− ω3 ic1|D|
4πv3b

+ c2δ + ωδ
ic1c2CapD

4πvb
+O(|ω|4 + |δ| |ω|2 + |δ|2), (3.11)

where

c1 :=
‖ψ0‖2

‖ψ0‖2 + ‖ψ̃0‖2
, (3.12)

and
c2 := (ψ̃0,

(
1/2 +K−α,0

D

)
[1∂D]). (3.13)

We now solve A(ω, δ) = 0. It is clear that δ = O(ω2) and thus ω0(δ) = O(
√
δ). We write

8



ω0(δ) = a1δ
1

2 + a2δ +O(δ
3

2 ), and get

− |D|
v2bCapD

(
a1δ

1

2 + a2δ +O(δ
3

2 )
)2

− ic1|D|
4πv3b

(
a1δ

1

2 + a2δ +O(δ
3

2 )
)3

+ c2δ +
ic1c2CapD

4πvb

(
a1δ

3

2 + a2δ
2 +O(δ

5

2 )
)
+O(δ2) = 0.

From the coefficients of the δ and δ
3

2 terms, we obtain

−a21
|D|

v2bCapD
+ c2 = 0 and 2a1a2

−|D|
v2bCapD

− a31
ic1|D|
4πv3b

+ a1
ic1c2CapD

4πvb
= 0

which yields

a1 = ±
√
v2b c2CapD

|D| and a2 = 0.

Therefore, we obtain

Theorem 3.1. For α 6= 0 and sufficiently small δ, we have

ωα
1 = ωM

√
c2 +O(δ3/2), (3.14)

where ωM =

√
δv2

b
CapD
|D| is the (free space) Minnaert resonant frequency.

Let us define the α-quasi-periodic capacity by

CapD,α := −((Sα,0
D )−1[1∂D],1∂D). (3.15)

Then we have

c2 = − 1

CapD
(
(
1/2 + (K−α,0

D )∗
)
(Sα,0

D )−1[1∂D], [1∂D])

= − 1

CapD
((Sα,0

D )−1[1∂D],1∂D) =
CapD,α

CapD
,

and (3.14) is written as
ωα
1 = ωM,α +O(δ3/2)

with ωM,α =

√
δv2

b
CapD,α

|D| . We can see that

ωM,α → 0

as α→ 0 because
(
1/2 + (K−α,0

D )∗
)
(Sα,0

D )−1[1∂D] → 0 and so CapD,α → 0 as α→ 0.

Moreover, due to our assumptions on the bubble size and the wave speeds inside and outside
the bubbles, it is easy to see that ωM,α lies in a small neighborhood of zero.

We define ω∗
1 := maxα ωM,α. Then we deduce the following regarding a subwavelength

bandgap opening.
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Theorem 3.2. For every ǫ > 0, there exists δ0 > 0 and ω̃ > ω∗
1 + ǫ such that

[ω∗
1 + ǫ, ω̃] ⊂ [max

α
ωα
1 ,min

α
ωα
2 ] (3.16)

for δ < δ0.

Proof. Using ω0
1 = 0 and the continuity of ωα

1 in α and δ, we get α0 and δ1 such that ωα
1 < ω∗

1

for every |α| < α0 and δ < δ1. Following the derivation of (3.14), we can check that it is valid
uniformly in α as far as |α| ≥ α0. Thus there exists δ0 < δ1 such ωα

1 ≤ ω∗
1 + ǫ for |α| ≥ α0.

We have shown that maxα ω
α
1 ≤ ω∗

1 + ǫ for sufficiently small δ. To have minα ω
α
2 > ω∗

1 + ǫ for
small δ, it is enough to check that A(ω, δ) has no small characteristic value other than ωα

1 . For
α away from 0, we can see that it is true following the proof of Theorem 3.1. If α = 0, we have

A(ω, δ) = A(ω, 0) +O(δ), (3.17)

near ω0
2 with δ = 0. Since ω0

2 6= 0, we have ω0
2(δ) > ω∗

1 + ǫ for sufficiently small δ. Finally, using
the continuity of ωα

2 in α, we obtain minα ω
α
2 > ω∗

1+ ǫ for small δ. This completes the proof.

3.2 Dilute case

We emphasize that our calculations in the previous part hold even for the dilute case as long as
δ/η2 is small where η is the diameter of D.

We state an asymptotic behavior of CapD,α when D = ηB for a small η. Note that CapD =
CapηB = ηCapB. Fix c > 0, the following holds.

Lemma 3.3. For |α| > c > 0, we have

CapD,α = CapD −Rα(0)Cap
2
D +O(η3), (3.18)

where Rα(x) := Gα,0(x)−G0(x).

Proof. Since Rα(x) is smooth and Rα(x) = Rα(0) +O(|x|) as |x| → 0, we have

Sα,0
D [φ](ηx) = η

∫

∂B
G0(x− y)φ̃(y)dσ(y) + η2Rα(0)

∫

∂B
φ̃(y)dσ(y) +O

(
η3‖φ̃‖

)

= η

(
SB[φ̃] + ηRα(0)

∫

∂B
φ̃+O

(
η2‖φ̃‖

))
,

with φ̃(x) := φ(ηx). Then

(Sα,0
D )−1[1∂D](ηx) = η−1

(
(SB)

−1[1∂B]− ηRα(0)(SB)
−1

[∫

∂B
(SB)

−1[1∂B]

]
+O

(
η2
))

, (3.19)

and so

CapD,α = −η2
∫

∂B
(Sα,0

D )−1[1∂D](ηx) dσ(x) = η
(
CapB − ηRα(0)Cap

2
B +O

(
η2
))

= CapD −Rα(0)Cap
2
D +O(η3).
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By this approximation we have ωM,α ≈ ωM for α away from 0 and so ω∗
1 ≈ ωM . Combined

with Theorem 3.2 this means that there is a band gap opening slightly above the Minneart
resonance frequency for a single bubble. It is coherent with results in [10] showing an effective
medium theory for the bubbly fluid as the number of bubbles tends to infinity. It is shown there
that near and above the Minnaert resonant frequency, the obtained effective media can have a
negative bulk modulus.

4 Numerical illustrations

Recall the formula for the α-quasi-periodic Minneart resonance:

ωα
1 = ωM

√
CapD,α

CapD
+O(δ3/2).

We want to compare ωα
approx := ωM

√
CapD,α

CapD
with the true α-quasi-periodic resonance ωα

exact,

which can be obtained through direct calculation of the minimum characteristic value of the
operator A(ω, δ) in (3.2) using Muller’s method [2].

We set the density and the bulk modulus of the bubbles to be ρb = 1 and κb = 1, respectively.
In order to confirm that the formula becomes accurate in the appropriate regime, which features
similar wavenumbers inside and outside the bubbles along with, in particular, a high contrast
in the bulk modulii, we take the density and the bulk modulus of the background material to
be ρ = κ = δ−1 ∈ (10, 1000). We assume that the bubble represented by D is a disk of radius
R = 0.0125. In Figure 1 we plot ωα

approx and ωα
exact against the contrast δ−1 and it is clear that

the formula provides a highly accurate approximation when the contrast is sufficiently large.

Next we present numerical examples to illustrate subwavelength bandgap openings. AsD is a
disk of radius R, we apply the multipole expansion method for computing the band structure (for
the details, we refer to Appendix C). As described in [11], the quasi-periodic Green’s function is
unsuitable for bandgap calculations due to empty resonance phenomenon. Therefore, we make
use of the multiple expansion method which is efficient in the case of disk-shaped bubbles.

We first consider the dilute case. We set R = 0.05, ρ = κ = 5000 and ρb = κb = 1. In this
case, we have δ = 0.0002. Figure 2 shows the computed band structure. The points Γ, X andM
represent α = (0, 0), α = (π, 0) and α = (π, π), respectively. We plot the first two characteristic
values A(ω, δ) along the boundary of the triangle ΓXM . It can be seen that a subwavelength
bandgap in the spectrum of A(ω, δ) does exist. Moreover, the bandgap between the first two
bands is quite large. It is also worth mentioning that, by zooming the subwavelength bandgap
(on the right in Figure 2), one can see that ω∗

1 is attained at the point M (that is, α = (π, π)).
We used N = 7 for the truncation order of cylindrical waves. Further numerical experiments
indicate that this phenomenon is independent of the bubble radius or position.

Next, in order to verify our conclusion from Lemma 3.3, namely that ω∗
1 = maxα ωM,α ≈ ωM

when α is non-zero, we fix the contrast to be δ−1 = 1000 and observe ω∗
1 and ωM over a range

of bubble sizes in Figure 3.

Finally, we consider a non-dilute regime. We set R = 0.25 and ρ = κ = 1000 and ρb = κb = 1.
In this case we have δ = 0.001. Figure 4 shows the computed band structure. Again, a
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Figure 1: When the contrast δ−1 is sufficiently large, the α-quasi-periodic resonance ωα

1
given by Theorem

3.1 provides a highly accurate approximation of the true resonance ωα

exact
.

subwavelength bandgap can be observed. We used N = 3 for the truncation order of cylindrical
waves in the multipole expansion method.

5 Concluding remarks

In this paper we have proved the existence of a subwavelength bandgap opening in bubble
phononic crystals. We have illustrated our main findings with a variety of numerical experiments.
We have also covered recently proved results on the effective medium theory in the dilute case.
In a forthcoming work we will use the Bloch wave decomposition for homogenizing [12, 19] the
bubble crystal near the maximum over α of ωα

1 in the general case. Our aim is to prove that
above such a frequency the crystal behaves like a material with a negative density while below
it it behaves like a high contrast material, leading to superfocusing of acoustic waves.

A Some asymptotic expansions

We recall some basic asymptotic expansions for the layer potentials in three dimensions from [5]
(see also the appendix in [7]).
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Figure 2: (Dilute case) The band structure of a square array of circular bubbles with radius R = 0.05 and
contrast δ−1 = 5000.

A.1 Asymptotic expansions of Sk
D and Kk,∗

D

We expand the Green’s function Gk with

Gk(x) = − eik|x|

4π|x| = G0(x) +

∞∑

n=1

knGn(x), with Gn(x) := − in

4πn!
|x|n−1. (A.1)

In particular, G1(x) = − i
4π . Developing in power of k the equation (∆ + k2)Gk = δ0 leads to

∀n ≥ 1, ∆Gn+2 = −Gn. (A.2)

From (A.1), we decompose the single layer potential as

Sk
D = SD +

∞∑

n=1

knSD,n with SD,n[ψ] :=

∫

∂D
Gn(x− y)ψ(y)dy, (A.3)

where the convergence holds in B(L2(∂D), H1(∂D)). Similarly, the asymptotic expansion for

the operator Kk,∗
D is

Kk,∗
D = K∗

D +

∞∑

n=1

knK∗
D,n with K∗

D,n[ψ] :=

∫

∂D

∂Gn(x− y)

∂νx
ψ(y)dy, (A.4)
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Figure 3: As the bubbles becomes smaller, the maximum frequency in the first band of the spectrum of the
operator A(ω, δ), ω∗

1
, approaches the Minnaert resonant frequency of a single bubble ωM .

where the convergence holds in B(L2(∂D), L2(∂D)). Using (A.2), we deduce the following useful
identities.

Lemma A.1. It holds:

(i) KD,2[1∂D](x) =

∫

∂D

∂G2(x− y)

∂νy
dσ(y) =

∫

D
∆yG2(x− y)dy = −

∫

D
G0(x− y)dy,

(ii) KD,3[1∂D](x) =

∫

∂D

∂G3(x− y)

∂νy
dσ(y) =

∫

D
∆yG3(x− y)dy = −

∫

D
G1(x− y)dy =

i|D|
4π

.

A.2 Asymptotic expansions of Sα,k
D , (Kα,k

D )∗

For the α-quasi-periodic Green’s function Gα,k, we have

Gα,k(x,y) = Gα,0 +

∞∑

ℓ=1

k2ℓGα,#
ℓ := Gα,0(x,y)−

∞∑

ℓ=1

k2ℓ
∑

n∈Z3

ei(2πn+α)·(x−y)

|2πn+ α|2(ℓ+1)
, (A.5)

when α 6= 0, and k → 0.
From (A.5), we decompose the single layer potential as

Sα,k
D = Sα,0

D +

∞∑

ℓ=1

k2ℓSα
D,ℓ with Sα

D,ℓ[ψ] :=

∫

∂D
Gα,#

ℓ (x− y)ψ(y)dy, (A.6)

where the convergence holds in B(L2(∂D), H1(∂D)). Similarly, the asymptotic expansion for
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Figure 4: (Non-dilute case) The band structure of a square array of circular bubbles with radius R = 0.25
and contrast δ−1 = 1000.

the operator
(
K−α,k

D

)∗
is

(K−α,k
D )∗ = (K−α,0

D )∗ +

∞∑

ℓ=1

k2ℓ(Kα
D,ℓ)

∗ with (Kα
D,ℓ)

∗[ψ](x) :=

∫

∂D

∂Gα,#
ℓ (x− y)

∂νx
ψ(y)dy,

(A.7)
where the convergence holds in B(L2(∂D), L2(∂D)).

B The two-dimensional case

The aim of this appendix is to check that formula (3.14) holds in the two-dimensional case,
where ωM is the (free space) Minnaert resonant frequency and c2 is defined by (3.13). Note
that for α 6= 0, the quasi-periodic single layer operator Sα,0

D : L2(∂D) → H1(∂D) is invertible.
Moreover, the definitions (3.5) and (3.15) of both the capacity and the α-quasi-periodic capacity
remain valid.

Using the asymptotic expansions in [2, Appendix A] as k → 0,

Sk
D = Ŝk

D + k2 ln kS(1)
D,1 + k2S(2)

D,1 +O(k4 ln k),

Kk,∗
D = KD + k2 ln kK(1)

D,1 + k2K(2)
D,1 +O(k4 ln k),
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where for ψ ∈ L2(∂D)

S(1)
D,j [ψ](x) =

∫

∂D
bj |x− y|2jψ(y)dσ(y),

S(2)
D,j [ψ](x) =

∫

∂D
|x− y|2j(bj ln |x− y|+ cj)ψ(y)dσ(y),

and

K(1)
D,j [ψ](x) =

∫

∂D
bj
∂|x− y|2j
∂ν(x)

ψ(y)dσ(y),

K(2)
D,j [ψ](x) =

∫

∂D

∂
(
|x− y|2j(bj ln |x− y|+ cj)

)

ν(x)
ψ(y)dσ(y),

with

bj =
(−1)j

2π

1

22j(j!)2
, cj = bj

(
γ − ln 2− iπ

2
−

j∑

n=1

1

n

)
,

and γ being the Euler constant.
Therefore, in the two-dimensional case the asymptotic expansion (3.6) should be replaced

with

A(ω, δ) := A0 + B(ω, δ) = A0 + ω2 lnωA1,1,0 + ω2A1,2,0 + δA0,1 +O(δω2 lnω) +O(ω4 lnω),

where A0 is defined by (3.4),

A1,1,0 =

(
v2bS

(1)
D,1 −v2S(1)

D,1

v2bK
(1)
D,1 0

)
, A1,2,0 =


 v2b

(
ln vbS(1)

D,1 + S(2)
D,1

)
−v2

(
ln vS(1)

D,1 + S(2)
D,1

)

v2b

(
ln vbK(1)

D,1 +K(2)
D,1

)
0


 ,

and

A0,1 =

(
0 0
0 −(12I +K∗

D)

)
.

Using the definition of the free space Minnaert resonance in dimension two in [2, Theorem
B1], it is not difficult to see that (3.14) holds.

C Multipole expansion method

When D is a circular disk of radius R, the integral equation admits an explicit representation. In

this case, the solution can be represented as a sum of cylindrical waves Jn(kr)e
inθ orH

(1)
n (kr)einθ.

Here we give a multipole expansion interpretation of the integral operator A, which leads to an
efficient numerical scheme for computing its bandgap structure.

Recall that, for each fixed k, α, we have to find a characteristic value of A(ω, δ) defined by

A(ω, δ) =




Skb
D −Sα,k

D

∂Skb
D

∂ν

∣∣∣
−

−δ ∂S
α,k
D

∂ν

∣∣∣
+


 . (C.1)

From the above expression, we see thatA(ω, δ) is represented in terms of the single layer potential
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only. So it is enough to derive a multipole expansion version of the single layer potential.
Let us first consider the single layer potential Sk

D[ϕ] for a single disk D. We adopt the polar
coordinates (r, θ). Then, since D is a circular disk, the density function ϕ = ϕ(θ) is a 2π-periodic
function. It admits the following Fourier series expansion:

ϕ =
∑

n∈Z

ane
inθ,

for some coefficients an. Hence we only need to compute u := Sk
D[e

inθ] which satisfies





∆u+ k2u = 0 in R
2 \D,

∆u+ k2u = 0 in D,

u|+ = u|− on ∂D,

∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−
= einθ on ∂D,

u satisfies the Sommerfeld radiation condition.

(C.2)

The above equation can be easily solved by the separation of variables technique in polar coor-
dinates. It gives

Sk
D[e

inθ] =




cJn(kR)H

(1)
n (kr)einθ, |r| > R,

cH(1)
n (kR)Jn(kr)e

inθ, |r| ≤ R,
(C.3)

where c = −iπR
2 .

Now we compute the quasi-periodic single layer potential Sα,k
D [einθ]. Since

Gα,k
♯ (x, y) = − i

4

∑

m∈Z2

H
(1)
0 (k|x− y −m|)eim·α,

we have

Sα,k
D [einθ] = Sk

D[e
inθ] +

∑

m∈Z2,m 6=0

Sk
D+m[einθ]eim·α

= Sk
D[e

inθ] + cJn(kR)
∑

m∈Z2

H(1)
n (krm)einθmeim·α.

Here, D+m means a translation of the disk D by m and (rm, θm) is the polar coordinates with
respect to the center of D +m. By applying the following addition theorem:

H(1)
n (krm)einθm =

∑

l∈Z

(−1)n−lH
(1)
n−l(k|m|)ein arg(m)Jl(kr)e

ilθ,

we obtain
Sα,k
D [einθ] = Sk

D[e
inθ] + cJn(kR)

∑

l∈Z

(−1)n−lQn−lJl(kr)e
ilθ. (C.4)
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where Qn is so called the lattice sum defined by

Qn :=
∑

m∈Z2,m 6=0

H(1)
n (k|m|)ein arg(m)eim·α.

So, from (C.3) and (C.4), we finally obtain an explicit representation of Sα,k
D . For an efficient

method for computing the lattice sum Qn, see [18].
In the numerical computations, we should consider the truncated series

N∑

n=−N

anSα,ω
D [einθ]

instead of Sα,k
D [ϕ] =

∑
n∈Z anS

α,k
D [einθ] for some large enough N ∈ N. Then, using einθ as basis,

we have the following matrix representation of the operator Sα,k:

Sα,k
D [ϕ]|∂D ≈




S−N,−N S−N,−(N−1) · · · S−N,N

S−(N−1),−N S−(N−1),−(N−1) · · · S−(N−1),N
...

. . .
...

SN,−N · · · · · · SNN







a−N

a−(N−1)
...
aN


 ,

where Sm,n is given by

Sm,n = cJn(kR)H
(1)
n (kR)δmn + cJn(kR)(−1)n−mQn−mJm(kR).

Similarly, we also have the following matrix representation for
∂Sα,k

D

∂ν |±∂D:

∂Sα,k
D

∂ν
[ϕ]
∣∣∣
±

∂D
≈




S′±
−N,−N S′±

−N,−(N−1) · · · S′±
−N,N

S′±
−(N−1),−N S′±

−(N−1),−(N−1) · · · S′±
−(N−1),N

...
. . .

...
S′±
N,−N · · · · · · S′±

NN







a−N

a−(N−1)
...
aN


 ,

where S′±
m,n is given by

S′±
m,n = ±1

2
+ kc

(
Jn · (H(1)

n )′ + J ′
n ·H(1)

n

)
(kR)δmn

+ cJn(kR)(−1)n−mQn−mkJ
′
m(kR).

The matrix representation of A(ω, δ) immediately follows.
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