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Lukas Herrmann and Christoph Schwab

Abstract We survey recent convergence rate bounds for single-level and multilevel

QMC Finite Element (FE for short) algorithms for the numerical approximation

of linear, second order elliptic PDEs in divergence form in a bounded, polygonal

domain D. The diffusion coefficient a is assumed to be an isotropic, log-Gaussian

random field (GRF for short) in D. The representation of the GRF Z = loga is

assumed affine-parametric with i.i.d. standard normal random variables, and with

locally supported functions ψ j characterizing the spactial variation of the GRF Z.

The goal of computation is the evaluation of expectations (i.e., of so-called “ensemble

averages”) of (linear functionals of) the random solution, The QMC rules employed

are randomly shifted lattice rules proposed in [19] as used and analyzed previously

in a similar setting (albeit for globally in D supported spatial representation functions

ψ j as arise in Karhunen-Loève expansions) in [9, 14]. The multilevel QMC-FE

algorithm Q∗
L analyzed here for locally supported ψ j was proposed first in [17] for

affine-parametric operator equations. As shown in [7, 6, 10, 11] localized supports

of the ψ j (which appear in multiresolution representations of GRFs Z of Lévy-

Cieselski type in D) allow for the use of product weights, originally proposed in

construction of QMC rules in [23] (cp. the survey [4] and references there). The

present results from [11] on convergence rates for the MLQMC FE algorithm allow

for general polygonal domains D and for GRFs Z whose realizations take values

in weighted spaces containing W 1,∞(D). Localized support assumptions on ψ j are

shown to allow QMC rule generation by the fast, FFT based CBC constructions in

[21, 20] which scale linearly in the integration dimension which, for multiresolution

representations of GRFs, is proportional to the number of degrees of freedom used

in the FE discretization in the physical domain D. We show numerical experiments

based on public domain QMC rule generating software in [13, 5].
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1 Introduction

The numerical solution of partial differential equations (PDEs for short) with random

input data is a core task in the field of computational uncertainty quantification.

Particular models of randomness in the PDEs’ input parameters entail particular

requirements to efficient computational uncertainty quantification algorithms. A basic

case arises when there are only a finite number of random variables whose densities

have bounded support and which parametrize the uncertain input in the forward PDE

model: computation of statistical moments of responses and also Bayesian inversion

then amounts to numerical integration over a bounded domain of finite dimension

s. Statistical independence and scaling implies numerical integration over the unit

cube [0,1]s, against a product probability measure. In the context of PDEs, so-called

distributed random inputs such as spatially heterogeneous diffusion coefficients,

uncertain physical domains, etc. imply, via uncertainty parametrizations (such as

Fourier- , B-spline or wavelet expansions) in physical domains D, a countably-infinite

number of random parameters (being, for example, Fourier- or wavelet coefficients).

This, in turn, renders the problem of estimation of response statistics of solutions a

problem of infinite-dimensional numerical integration. Assuming again statistical

independence of the system of (countably many) random input parameters results

in the problem of numerical integration against a product measure. In case of GRF

inputs under consideration in this note, in addition the domain of integration is the

countable product of real lines R
N, endowed with a Gaussian measure (GM for

short); see, e.g., [3] for details on GMs on R
N.

Here, as in [9, 14] and the references there, we analyze QMC quadratures in the

FE solution of linear, second order elliptic PDEs in a bounded, polygonal domain

D, with isotropic, log-Gaussian diffusion coefficient a = exp(Z), where Z is a GRF

in D. As in [9, 14], we confine the analysis to first order, randomly shifted lattice

rules proposed originally in [19], and to continuous, piecewise linear “Courant” FE

methods in D. We adopt the setting of our analysis [10] of the single-level QMC-FE

algorithm: consider

−∇ · (a∇u) = f in D, u = 0 on ∂D (1)

where D is a bounded interval in space dimension d = 1 or a bounded polygon with

J straight sides and J corners c j, i = 1, ...,J in space dimension d = 2. We endow

Ω := R
N with the Gaussian product measure and the corresponding product sigma

algebra, cp. [3]

µ(dyyy) :=
⊗

j≥1

1√
2π

e−
y2

j
2 dy j, yyy = (y j) j≥1 ∈ Ω .

The random input is modelled on (Ω ,
⊗

j≥1 B(R),µ) which is a probability space

(cp. for example [3, Example 2.3.5]). The GRF Z = log(a) : Ω → L∞(D) is assumed

to be affine-parametric:
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Z := ∑
j≥1

y jψ j. (2)

In D, we consider the model Dirichlet problem

−∇ · (a∇u) = f in D, u

∣∣∣
∂D

= 0 . (3)

In order to render the random coefficient a = exp(Z) in (3) meaningful, we imposed

in [10] on the (ψ j) j≥1 in (2) the summability condition

∥∥∥∥∥∑
j≥1

|ψ j|
b j

∥∥∥∥∥
L∞(D)

< ∞ (A1)

such that (b j) j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞), and the positive sequence (b j) j≥1

encodes decay of (ψ j) j≥1. We observe that (A1) is weaker than the summability

conditions imposed in [9, 14] in the case that the ψ j have local supports, as observed

in [2] in the context on N-term gpc approximation rate analysis of the random field

solution u of (3). The assumption of local supports in (A1) allows for the use of

product weights, cp [10, 7, 11, 6]. Product weights are well known to scale linear

in the dimension of integration in the CBC construction, cp. [21, 20]. Reproducing

kernel Hilbert spaces (RKHS for short) with product weights were introduced in

[23]. For general surveys on QMC we refer to [4, 15] and the references there. A

finite dimension s of integration results from the truncation of the expansion of the

GRF Z which, if e.g. (ψ j) j≥1 is a multiresolution analysis, couples with the FE

discretization.

2 Spatial Approximation

The spatial approximation of the PDE (3) by the FE method is based on its (primal)

variational formulation in D, while considering the coefficient sequence yyy in the

random input as “parameter”. Find u : Ω →V such that

∫

D
a∇u ·∇vdx = f (v), v ∈V. (4)

We further impose the assumption that for some p0 ∈ (0,∞), (b j) j≥1 ∈ ℓp0(N) it

holds that Z ∈ Lq(Ω ,L∞(D)) for every q ∈ [1,∞), cp. [10, Theorem 2]. This implies

that µ-a.s. 0 < ess infx∈D{a(x)} ≤ ‖a‖L∞(D) < ∞. For the ensuing presentation, we

define the random variables

amin := ess infx∈D{a(x)} and amax := ‖a‖L∞(D) .

Hence, the random bilinear form (w,v) 7→ ∫
D a∇w ·∇vdx on V ×V is continuous

and coercive with coercivity constant amin and continuity constant amax. By the
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Lax–Milgram lemma, the solution u exists and solves (4) uniquely. Also due to [10,

Proposition 3], we obtain the estimate for every q ∈ [1,∞),

‖u‖Lq(Ω ;V ) ≤ ‖1/amin‖Lq(Ω)‖ f‖V ∗ < ∞,

where the strong measurability of u follows, since u depends continuously on a (by

the second Strang lemma). To obtain a finite dimensional integration domain, we

consider dimension truncation. For every s ∈ N, let as := exp(Zs) = exp(∑s
j=1 y jψ j)

denote the truncated lognormal field and define the random variables

as
min := ess infx∈D{as(x)} and as

max := ‖as‖L∞(D).

Let us be the solution with respect to the coefficient as, i.e.,

∫

D
as∇us ·∇vdx = f (v), v ∈V.

Assuming that (b j) j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞) by [10, Proposition 7], for

every ε > 0, there exists a constant Cε > 0 such that for every G(·) ∈V ∗

|E(G(u))−E(G(us))| ≤Cε‖G(·)‖V ∗‖ f‖V ∗ max
j>s

{b1−ε
j }. (5)

Approximations with Finite Elements in a polygon D ⊂R
2 with respect to uniformly

refined triangulations may result in suboptimal convergence rates. We therefore

consider certain weighted Sobolev spaces, cp. [1]. For a J-tuple βββ = (β1, . . . ,βJ) of

weight exponents, we define the corner weight function

Φβββ (x) :=
J

∏
i=1

|ci − x|βi , x ∈ D,

where βi ∈ [0,1), i = 1, . . . ,J. Here and in the following, the Euclidean norm in R
2

is denoted by | · |. We define the function spaces L2
βββ
(D) and H2

βββ
(D) as closures of

C∞(D) with respect to the norms

‖v‖L2
βββ
(D) := ‖vΦβββ‖L2(D)

and

‖v‖2
H2

βββ
(D)

:= ‖v‖2
H1(D)+ ∑

|ααα|=2

‖|∂ ααα
x v|Φβββ‖2

L2(D).

Lemma 1. There exists a constant C > 0 such that for every f ∈ L2
βββ
(D),

‖ f‖V ∗ ≤C‖ f‖L2
βββ
(D).

Proof. The statement of the lemma is equivalent to the continuity of the embed-

ding V ∗ ⊂ L2
βββ
(D). By duality, this is equivalent to the continuity of the embedding
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(L2
βββ
(D))∗ ⊂V . We therefore identify L2(D) with its dual L2(D), and obtain for an

arbitrary w ∈ (L2
βββ
(D))∗ with the Cauchy–Schwarz inequality

‖w‖(L2
βββ
(D))∗ = sup

v∈L2
βββ
(D),‖v‖

L2
βββ
(D)

=1

w(v) = sup
v∈L2

βββ
(D),‖v‖

L2
βββ
(D)

=1

∫
wvdx

≤ ‖w/Φβββ‖L2(D) = ‖w‖L2
−βββ

(D) .

By the Hardy inequality (see, e.g., [22, Theorem 21.3] with the choices p = q =
2,α =−p,β = 0, κ = 1), there exists a constant C′ > 0 such that for every w̃ ∈V ,

with dist∂D(x) denoting for x ∈ D the regularized distance of x to the (Lipschitz)

boundary ∂D, as defined e.g. in [24, Chap. VI.2],

‖w̃/dist∂D‖L2(D) ≤C′‖w̃‖V ,

we conclude that the embedding (L2
βββ
(D))∗ ⊂ V is continuous. This implies the

assertion of this lemma. ⊓⊔
⊓⊔

In the weighted spaces H2
βββ
(D) there holds a full regularity shift for the Dirichlet

Laplacian, cp. [1, Theorem 3.2]: there exists a constant C > 0 such that for every

w ∈V with ∆w ∈ L2
βββ
(D),

‖w‖H2
βββ
(D) ≤C‖∆w‖L2

βββ
(D), (6)

provided that the weight exponent sequence βββ satisfies 0 ≤ β j and 1−π/ωi < βi < 1,

i = 1, . . . ,J. The interior angle of the corner ci is denoted by ωi, i = 1, . . . ,J. Since

in [1] the Poisson boundary value problem with a zero order term is considered, i.e.,

−∆w+w= f , we also used the estimate that for constants C1,C2,C3 > 0 independent

of w ∈V ∩H2
βββ
(D),

‖w‖L2
βββ
(D) ≤C1‖w‖L2(D) ≤C2‖w‖V =C2‖∆w‖V ∗ ≤C3‖∆w‖L2

βββ
(D),

which is a consequence of Lemma 1. Also in FE spaces Vℓ := {v ∈ V : v|K ∈
P

1(K),K ∈ Tℓ} there is an approximation property, cp. [1, Lemmas 4.1 and 4.5],

where P
1(K) are the affine functions on K and {Tℓ}ℓ≥0 are sequences of regu-

lar, simplicial triangulations with proper mesh refinement near the corners ci of D.

Specifically, there exists a constant C such that for every w ∈ H2
βββ
(D) there is wℓ ∈Vℓ

satisfying

‖w−wℓ‖V ≤CM
−1/d

ℓ ‖w‖H2
βββ
(D), (7)

where Mℓ := dim(Vℓ). Let us,Tℓ : Ω →Vℓ be the FE solution, i.e.,

∫

D
as∇us,Tℓ ·∇vdx = f (v), ∀v ∈Vℓ. (8)
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Let W
1,∞
βββ

(D) denote the Banach space of measurable functions v : D → R that have

finite W
1,∞
βββ

(D)-norm, where

‖v‖
W

1,∞
βββ

(D)
:= max{‖v‖L∞(D),‖|∇v|Φβββ‖L∞(D)}.

We introduce the following mixed sparsity assumption on the function system

(ψ j) j≥1. Let (b̄ j) j≥1 be a positive sequence such that

∥∥∥∥∥∑
j≥1

max{|∇ψ j|Φβββ , |ψ j|}
b̄ j

∥∥∥∥∥
L∞(D)

< ∞ (A2)

The assumption (A2) (which is stronger than (A1)) is essential in obtaining improved

error vs. work bounds for the MLQMC algorithm Q∗
L as compared to the bounds for

the SLQMC algorithm in [10, Theorem 2]. The following proposition is obtained as

[10, Theorem 2], we omit the details of its proof here.

Proposition 1. Let the assumption in (A2) be satisfied for some sequence (b̄ j) j≥1

such that (b̄ j) j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞). For every ε > 0 and q ∈ [1,∞) there

exists a constant C > 0 such that for every s ∈ N,

‖Z −Zs‖
Lq(Ω :W

1,∞
βββ

(D))
≤C sup

j>s

{b̄1−ε
j } .

We obtain with [10, Corollary 6], that the identity (∇a)Φβββ = (a∇Z)Φβββ holds in

L∞(D)d , µ-a.s.. With the Cauchy–Schwarz inequality, it implies that for every q ∈
[1,∞) there exists a constant C > 0 such that for every s ∈ N,

‖a‖
Lq(Ω ;W

1,∞
βββ

(D))
< ∞ and ‖as‖

Lq(Ω ;W
1,∞
βββ

(D))
≤C < ∞.

We observe that µ-a.s holds, that for every subset D̃ ⊂⊂ D, |∇a| ∈ L∞(D̃) and also

that for every q ∈ [1,∞), |∇a| ∈ Lq(Ω ;L∞(D̃)). We assume that f ∈ L2
βββ
(D). Then, by

the divergence theorem and product rule

∫

D
f vdx =

∫

D
a∇u ·∇vdx =−

∫

D
[a∆u+∇a ·∇u]vdx, ∀v ∈C∞

0 (D).

Formally testing the corresponding pointwise identity (which holds for pointwise a.e.

x ∈ D) with −∆uΦ2
βββ
/a, we obtain the following estimate, valid µ-a.s.

‖∆u‖L2
βββ
(D) ≤

‖ f‖L2
βββ
(D)

amin

+‖Z‖
W

1,∞
βββ

(D)
‖u‖V ≤C

‖ f‖L2
βββ
(D)

amin

(1+‖Z‖
W

1,∞
βββ

(D)
). (9)

Note that we may test with −∆uΦ2
βββ
/a, since it can be approximated by elements of

C∞
0 (D) in L2(D). Here we used Lemma 1, i.e., ‖ f‖V ∗ ≤C‖ f‖L2

βββ
(D) with a constant

C > 0 depending only on the domain D, which is independent of f . By an Aubin–
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Nitsche argument, by (5), (6) (7), Proposition 1, and (9), for every ε > 0 exists a

constant C > 0 such that for every s ∈ N, ℓ ∈ N0

|E(G(u))−E(G(us,Tℓ))| ≤C

(
sup
j>s

{b1−ε
j }+M

−2/d

ℓ

)
‖G‖L2

βββ
(D)‖ f‖L2

βββ
(D). (10)

Remark 1. The regularity shift in (6) and the estimate in (9) can be interpolated

between the interpolation couple L2
βββ
(D)⊂V ∗ as well as the approximation property

in (7). If f ∈ (V ∗,L2
βββ
(D))t,∞ and if G(·) ∈ (V ∗,L2

βββ
(D))t ′,∞ for some t, t ′ ∈ [0,1], then

the estimate (10) holds with the term M
−2/d

ℓ that bounds the error contribution from

the FE discretization replaced by M
−(t+t ′)/d

ℓ . Here and throughout what follows, inter-

polation spaces shall be understood with respect to the real method of interpolation;

we refer to [25, Chap. 1] and the references there for definitions and basic properties

of interpolation spaces

3 Single-Level QMC

Dimension independent convergence rates of QMC with randomy shifted lattice rules

can be shown by estimating the worst-case error of a particular weighted Sobolev

space of type Wγγγ and the norm in this Sobolev space of the integrand. We generally

seek to approximate s-dimensional integrals with respect to the multivariate normal

distribution

Is(F) :=
∫

Rs
F(yyy)

s

∏
j=1

φ(y j)dyyy,

where the univariate, standard normal density is denoted by φ(·).
For every s ∈ N and product weights γγγ = (γu)u⊂N, we introduce the weighted

Sobolev spaces Wγγγ(R
s), which is given by the norm

‖F‖Wγγγ (Rs)

:=


 ∑

u⊂{1:s}
γ−1
u

∫

R|u|

∣∣∣∣∣
∫

Rs−|u|
∂u

yyy F(yyy) ∏
j∈{1:s}\u

φ(y j)dyyy{1:s}\u

∣∣∣∣∣

2

∏
j∈u

w
2
j (y j)dyyy

u




1/2

.

(11)

The considered weights γγγ are of product type, i.e., for some positive sequence (γ j) j≥1

γu = ∏
j∈u

γ j, u⊂ N, |u|< ∞.

The weight functions in (11) are either unnormalized Gaussians or exponentially

decaying, i.e.,
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w
2
g, j(y) := e

− y2

2αg , y ∈ R, j ≥ 1, and w
2
exp, j(y) := e−αexp|y|, y ∈ R, j ≥ 1,

where αg > 1 and αexp > 0. The QMC quadrature in s ∈N dimensions with N points

is denoted by Qs,N(·). Using randomly shifted lattice rules, there exist QMC points

such that for every F ∈ Wγγγ(R
s) the mean squared error integrated over all random

shifts ∆∆∆ (w.r. to the uniform measure, cp. [19]) satisfies

√
E∆∆∆ (|Is(F)−Qs,N(F)|2)≤Cγγγ(ϕ(N))−1/(2λ )‖F‖Wγγγ (Rs), (12)

where the constant Cγγγ is finite if (γ j) j≥1 ∈ ℓλ (N) and then uniformly bounded in the

dimension s (and in particular independent of F) for λ ∈ (1/(2r),1], which follows

by [19, Theorem 8], [16, Lemma 6.3], and [18, Example 4 and 5], where

r =

{
1−1/(2αg) for Gaussian weight functions,

1−δ for exponential weight functions and any δ ∈ (0,1/2).

In the following, the solution us and the coefficient as are viewed as mappings from

R
s to V and L∞(D), respectively. In the analysis of bounds of the Wγγγ(R

s)-norm of

the specific integrand F(yyy) = G(us(yyy)), yyy ∈R
s, global bounds of the function system

(ψ j) j≥1 have been used in [9] with POD weights. The theory in [2] is able to derive

parametric regularity estimates taking into account possible locality of the supports

of ψ j. Specifically, [2, Theorem 4.1] states that if for a positive sequence (ρ j) j≥1

∥∥∥∥∥∑
j≥1

ρ j|ψ j|
∥∥∥∥∥

L∞(D)

< log(2), (13)

then there exists a constant C that is independent of s such that for every yyy ∈ R
s,

∑
u⊂{1:s}

‖∂u

yyy us(yyy)‖2
as(yyy) ∏

j∈u
ρ2

j ≤C‖us(yyy)‖2
as(yyy). (14)

In [10], this estimate is used to prove dimension independent convergence rates

of randomly shifted lattice rules with product weights. Some of the sparsity of the

sequence (b j) j≥ j is used to control the weight functions in the norm (11), where the

smallness assumption in (13) can be overcome.

Theorem 1 ([10, Theorems 11 and 13]). For p′ ∈ (0,1], consider the weight se-

quence

γ j := b
2p′
j , j ≥ 1.

Let the assumption (A1) be satisfied and let below conditions hold, respectively:

1. Gaussian weight functions: (b j) j≥1 ∈ ℓp(N) for some p ∈ (2/3,2) with χ =
1/(2p)+1/4−δ . The weight sequence (γ j) j≥1 is applied with p′ = p/4+1/2−
δ p for δ ∈ (0,3/4−1/(2p)).
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2. Exponential weight functions: (b j) j≥1 ∈ ℓp(N) for some p ∈ (2/3,1] with χ =
1/p−1/2. The weight sequence (γ j) j≥1 is applied with p′ = 1− p/2.

Then, there exists a constant C independent of N and s such that

√
E∆∆∆ (|Is(G(us))−Qs,N(G(us))|2)≤C(ϕ(N))−χ .

4 Multilevel QMC

The multilevel QMC quadrature is for a maximum level L ∈ N0 defined by a tele-

scoping sum expansion

Q∗
L(G(uL) :=

L

∑
ℓ=0

Qsℓ,Nℓ
(G(uℓ)−G(uℓ−1)), (15)

where G(u−1) := 0 and uℓ := usℓ,Tℓ , ℓ≥ 0. It requires choices of dimensions (sℓ)ℓ≥0

and numbers of QMC points (Nℓ)ℓ=0,...,L. The random shifts between the different

levels in (15) are assumed to be independent. This implies with (12)

E
∆∆∆ (|IsL

(G(uL))−Q∗
L(G(uL))|2)≤C2

γγγ

L

∑
ℓ=0

(ϕ(Nℓ))
−1/λ‖G(uℓ)−G(uℓ−1)‖2

Wγγγ (R
sℓ ).

According to this error estimate, it is crucial to find suitable bounds of the Wγγγ(R
sℓ)-

norm of the difference G(uℓ)−G(uℓ−1) in order that the multilevel QMC quadrature

benefits from the coupling between the levels ℓ= 1, . . . ,L.

4.1 Error Estimate

Parametric regularity estimates of the type of (14) can be shown for dimensionally

truncated and FE differences between two consecutive levels.

Proposition 2. Let a positive sequence (ρ j) j≥1 satisfy (13) and for some η > 0

Kη :=

∥∥∥∥∥∑
j≥1

ρ
1+η
j |ψ j|

∥∥∥∥∥
L∞(D)

< ∞.

Then, there exists a constant C > 0 such that for every s′ < s ∈ N0 and every yyy ∈ R
s,
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∑
u⊂{1:s}

‖∂u

yyy (u
s(yyy)−us′(yyy))‖2

as(yyy) ∏
j∈u

ρ2
j

≤C



∥∥∥∥∥

as(yyy)−as′(yyy)

as(yyy)

∥∥∥∥∥

2

L∞(D)

‖us′(yyy)‖2
as(yyy)+ sup

j>s

{ρ
−2η
j }‖us′(yyy)‖2

as(yyy)


 .

Proposition 3. Let G(·) ∈ L2
βββ
(D) and let a positive sequence (ρ j) j≥1 satisfy

∥∥∥∥∥∑
j≥1

ρ j max{|∇ψ j|Φβββ , |ψ j|}
∥∥∥∥∥

L∞(D)

< sup{c > 0 : cec ≤ 1} 1√
2
.

Then, there exists a constant C > 0 such that for every s ∈ N0, ℓ ∈ N0, and every

yyy ∈ R
s,

∑
u⊂{1:s}

|∂u

yyy (G(us(yyy))−G(us,Tℓ))|2 ∏
j∈u

ρ2
j

≤C

(
‖as(yyy)‖2

L∞(D)

(as
min(yyy))

4
(1+‖Zs(yyy)‖2

W
1,∞
βββ

(D)
)

)2

M
−4/d

ℓ ‖ f‖2
L2

βββ
(D)

‖G‖2
L2

βββ
(D)

.

Propositions 2 and 3 are proven in [11, Section 4]. The parametric regularity estimates

in Propositions 2 and 3 are used to show the following multilevel QMC error estimate

analogously to the proof of [10, Theorems 11, and 13], as detailed in [11, Section 5].

Theorem 2. For p′ ∈ (0,1], θ ∈ (0,1), consider the weight sequence

γ j := (b1−θ
j ∧ b̄ j)

2p̄′ , j ≥ 1.

Consider sequences (sℓ)ℓ≥0 and (Nℓ)ℓ=0,...,L, L ∈ N0, under the conditions:

1. Gaussian weight functions: (b1−θ
j ∧ b̄ j) j≥1 ∈ ℓp̄(N) for some p̄ ∈ (2/3,2) with

χ̄ = 1/(2 p̄) + 1/4 − δ̄ . The weight sequence in (γ j) j≥1 is applied with p̄′ =
p̄/4+1/2− δ̄ p̄ for δ̄ ∈ (0,3/4−1/(2 p̄)).

2. Exponential weight functions: (b1−θ
j ∧ b̄ j) j≥1 ∈ ℓp̄(N) for some p̄ ∈ (2/3,1] with

χ̄ = 1/ p̄−1/2. The weight sequence in (γ j) j≥1 is applied with p̄′ = 1− p̄/2.

Then, for any ε ∈ (0,1), there exists a constant C > 0 that is in particular independent

of (sℓ)ℓ≥0, (Nℓ)ℓ=0,...,L and L ∈ N0 such that

√
E∆∆∆ (|E(G(u))−Q∗

L(G(uL))|2)

≤C

(
max
j>sL

{b
2(1−ε)
j }+M

−4/d

L

+
L

∑
ℓ=0

(ϕ(Nℓ))
−2χ̄

(
ξℓ,ℓ−1 max

j>sℓ−1

{b2θ
j }+M

−4/d

ℓ−1

))1/2

,
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QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs 11

where ξℓ,ℓ−1 := 0 if sℓ = sℓ−1 and ξℓ,ℓ−1 := 1 otherwise.

Remark 2. For f ∈ (V ∗,L2
βββ
(D))t,∞ and G(·)∈ (V ∗,L2

βββ
(D))t ′,∞, with some t, t ′ ∈ [0,1],

the error estimate in Theorem 2 holds with the term M
−4/d

ℓ that bounds the FE

discretization error replaced by M
−2τ/d

ℓ , ℓ= 0, . . . ,L, where τ = t + t ′.

4.2 Error vs. Work

We discuss in some detail the use of Multiresolution Analyses (MRAs for short)

to model the lognormal diffusion coefficient Z, analogous to the Lévy-Cieselski

representation of the Wiener process. To this end, we assume that (ψλ )λ∈∇ constitute

a MRA which is generated by a finite number of sufficiently smooth mother wavelets,

i.e.,

ψλ (x) = ψ(|λ |,k))(x) := ψ(x|λ |− k), k ∈ ∇|λ |,x ∈ D.

We use the usual notation, where in the index λ = (|λ |,k) refers to the level |λ | ∈N0

and the translation k ∈ ∇|λ |. The index set ∇ℓ has cardinality |∇ℓ|= O(2dℓ), ℓ ∈ N0.

We assume that the overlap on a fixed level ℓ ∈ N0 is uniformly bounded, i.e., there

exists K such that for every ℓ ∈ N0 and every x ∈ D,

|{λ ∈ ∇ : |λ |= ℓ,ψλ (x) 6= 0}| ≤ K.

Additionally, we introduce the scaling that for some α̂,σ > 0,

‖ψλ‖L∞(D) ≤ σ2−α̂|λ |, λ ∈ ∇.

For this MRA the assumption (A1) is satisfied with the sequence

b j(λ ) = bλ := 2−β̂ |λ |, λ ∈ ∇,

for α̂ > β̂ > 0, where j : N→ ∇ is a suitable enumeration. In this setting the work

to compute one sample of the stiffness matrix is O(Mℓ log(sℓ)), where sℓ denotes the

truncation level of the coefficient. We assume that the work to solve the linear system

resulting from the FE discretization satisfies that for some η ≥ 0

workPDEsolve = O(M1+η
ℓ ). (A3)

Therefore, the overall work of the multilevel QMC quadrature satisfies for L ∈ N0,

work = O

(
L

∑
ℓ=0

Nℓ(Mℓ log(sℓ)+M
1+η
ℓ )

)
.

For α̂ > β̂ > 1, the MRA (ψλ )λ∈∇ and the sequence

Page:11 job:HerrmannSchwab macro:svmult.cls date/time:23-Jan-2017/17:02



12 Lukas Herrmann and Christoph Schwab

b̄ j := b
(β̂−1)/β̂
j , j ∈ N,

satisfy the assumption (A2). We assume in this section

f ∈ (V ∗,L2
βββ (D))t,∞ and G(·) ∈ (V ∗,L2

βββ (D))t ′,∞, t, t ′ ∈ [0,1] (A4)

and set τ := t + t ′. Also, assume that Mℓ = O(2dℓ), ℓ ∈ N0. We suppose that (sℓ)ℓ≥0,

θ , and (Mℓ)ℓ≥0 are given such that the truncation error in the multilevel QMC

error estimate in Theorem 2 is controlled by the FE discretization error on levels

ℓ= 0, . . . ,L. Analogous to the analysis in [11, Section 6] (see also [17, 14, 6]), explicit

expressions for the QMC sample numbers (Nℓ)ℓ=0,...,L are found by optimizing work

versus the (estimated) error:

Nℓ =





⌈
N0M

−(2τ/d+1+η)/(1+2χ̄)
ℓ

⌉
if η > 0,

⌈
N0

(
M

−1−2τ/d

ℓ log(sℓ)
−1
)1/(1+2χ̄)

⌉
if η = 0,

ℓ= 1, . . . ,L. (16)

and

N0 =





⌈2τL/χ̄⌉ if 1+η < τ/(dχ̄),

⌈2τL/χ̄ L1/(2χ̄)⌉ if 1+η = τ/(dχ̄),η > 0,

⌈2τL/χ̄ L(1+4χ̄)/(χ̄(2+4χ̄))⌉ if d = τ/χ̄,η = 0,

⌈2(2τ+d(1+η))L/(1+2χ̄) if 1+η > τ/(dχ̄),η > 0,

⌈2(d+2τ)L/(1+2χ̄)L1/(1+χ̄)⌉ if d > τ/χ̄,η = 0.

(17)

Theorem 3. Let the assumptions (A4) and (A3) be satisfied for η ≥ 0. The sample

numbers for Q∗
L(·) are given by (16) and (17), L ∈ N0.

1. Gaussian weight functions: for p̄ ∈ (max{2/3,d/(β̂ − 1)},2), χ̄ = 1/(2p̄) +

1/4− δ̄ for δ̄ > 0 sufficiently small assuming d/(β̂ −1)< 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3,d/(β̂ −1)},1], χ̄ = 1/ p̄−1/2

assuming d/(β̂ −1)< 1.

For an error threshold ε > 0, we obtain

√
E∆∆∆ (|E(G(u))−Q∗

L(G(uL))|2) = O(ε)

is achieved with

work =





O(ε−1/χ̄) if 1+η < τ/(dχ̄),

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if 1+η = τ/(dχ̄),η > 0,

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if d = τ/χ̄,η = 0,

O(ε−(d+2χ̄)(1+η)/(τ(1+χ̄))) if 1+η > τ/(dχ̄),η > 0,

O(ε−d/τ log(ε−1)) if d > τ/χ̄,η = 0.
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5 Numerical Experiments

Consider (3) in space dimension d = 1 with D = (0,1), i.e.,

−∂x(a∂xu) = f in D, u(0) = u(1) = 0. (18)

The coeffient a is given by a = exp(Z), where Z = ∑ j≥1 y jψ j. We consider two

possible cases for the MRA (ψ j) j≥1: the Haar system and a family of biorthogonal,

continuous, piecewise linear spline wavelets.

5.1 Single-Level QMC

We suppose that the GRF Z is represented by the Haar system (ψ j(ℓ,k)) j≥1. I.e., it is

generated by the mother wavelet ψ

ψ(x) :=





1 if 0 ≤ x < 1/2,

−1 if 1/2 ≤ x < 1,

0 otherwise.

Haar wavelets are for α̂ > 0 and σ > 0 given by

ψℓ,k(x) := σ2−α̂ℓψ(2ℓx− k), ℓ≥ 0,k = 0, . . . ,2ℓ−1.

In our computations, we consider truncated fields Zs with s = 2L+1 − 1, L ≥ 0. In

this way, the expansion of Zs consists of full partial sums over activated levels.

Realizations of the coefficient as are piecewise constant on D. For a constant right

hand side f ≡ constant, the solution us of (18) takes values in the piecewise quadratic

functions on D. Hence, for such as, the corresponding FE solution of (18) also

solves (18) if P2 Lagrange FE is applied. Therefore, in this example we are able to

study the QMC error in the absence of spatial discretization errors.

This Haar system (ψ j) j≥1 and the sequence (b j) j≥1 given by

b j(ℓ,k) := c2−β̂ℓ, ℓ≥ 0,k = 0, . . . ,2ℓ−1,

satisfy the assumption (A1) for every β̂ such that α̂ > β̂ > 0 and c > 0. The enumer-

ation j : N→ ∇ is given by j(ℓ,k) = 2ℓ+k, ℓ≥ 0, k = 0, . . . ,2ℓ−1. Since b j ∼ j−β̂ ,

j ≥ 1, (b j) j≥1 ∈ ℓp(N) for every p > 1/β̂ . For p > 1/β̂ and exponential weight

functions, we will use the product weights γγγ = (γu)u⊂N given by

γu = ∏
j∈u

b
2−p
j , u⊂ N, |u|< ∞.
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14 Lukas Herrmann and Christoph Schwab

For the computation of the QMC generating vectors, we use the Python code

QMC4PDE, cp. [13], which is also able to compute generating vectors for prod-

uct weights, where we take c = 0.1 as the scaling of the sequence (b j) j≥1. We

observe that in case that the theoretical bounds for αexp are overly conservative the

resulting generating vectors may be ill-suited for practical QMC quadrature; we refer

to the discussion in [8]. Therefore, smaller values of αexp are considered.

We present results for a right hand side f ≡ 15 and G(·) is the function evaluation

at x̄ = 0.7, which is not a FE node for all discretization levels. Convergence of

the QMC approximation using randomly shifted lattice rules with N = 2m points,

m = 1, . . . ,18 is presented in Figures 1 and 2. The results with m = 19 averaged over

R0 random shifts is used as the reference value Q̄. The mean squared error over R ≥ 2

random shifts is approximated by the unbiased estimator

1

R(R−1)

R

∑
j=1

(Q j − Q̄)2 ≈ E
∆∆∆ (|E(G(us))−Qs,N(G(us))|2),

where Q j, j = 1, . . . ,R, are the results of Qs,N(G(us)) for R i.i.d. random shifts. For all

data points, the truncations level L = 12 is used. This results in sL = 213 −1 = 8191

dimensions of integration and FEM meshwidth h = 2−13. In Figures 1 and 2, we

observe that the convergence rate is depending on the variance of log(a) = Z, which

is equal to σ2/(1−2−2α̂). Also the convergence rate is in both cases little different

and not larger than 0.95. A dependence of the convergence rate on the variance has

also been observed in numerical experiments with randomly shifted lattice rules

using POD weights in [9, Tables 1 and 2].

5.2 Multilevel QMC

The multilevel QMC convergence analysis requires higher spatial regularity of the

solution, which may not hold if the coefficient is expanded in the Haar system.

We consider here continuous, piecewise linear spline wavelets (ψ j) j≥1, e.g. [12,

Chapter 12], and assume that Z is expanded in this MRA. We suppose the decay for

α̂ > 1

‖ψ j(ℓ,k)‖L∞(D) = σ2−α̂ℓ, ℓ≥ 0,k = 1, . . . ,2ℓ.

These (ψ j) j≥1 and the sequences

b j(ℓ,k) := c2−β̂ℓ, ℓ≥ 0,k = 1, . . . ,2ℓ, and b̄ j := b
(̂β−1)/β̂
j , j ≥ 1,

satisfy the assumption in (A1) and in (A2), if β̂ is such that α̂ > β̂ > 1. We present

numerical experiments for a right hand side f ≡ 15 and G(·) is the function evaluation

at the point x̄ = 0.7. Note that G(·) ∈ H−1/2+ε for every ε > 0, which implies a FE

convergence rate of τ = 3/2− ε for every ε > 0. We will use the limiting value

τ = 3/2 for the sample numbers (Nℓ)ℓ≥0. Let us assume that MRA and FE meshes
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Fig. 1 Parameter choices α̂ = 1.61, β̂ = 1.51, sL = 8191, R0 = R = 20. The convergence rate

expected from our error vs. work analysis in this example is −1+δ .

are aligned. This refers to Strategy 2 in [6, Section 6] and requires β̂ > τ . Hence, for

θ = τ/β̂ , the product weights are considered with respect to the sequence

(b1−θ
j ∧ b̄ j) j≥1 = (b1−θ

j ) j≥1.

For simplicity, we will consider sample numbers Nℓ = 2mℓ , which upper bound the

choices from (16) and (17), where

mℓ = max

{⌈
τ

χ̄
L− 1+2τ

1+2χ̄
(ℓ+ log2(ℓ+1))

⌉
,1

}
, ℓ= 0, . . . ,L.

Convergence of single-level and multilevel QMC is presented in Figure 3 for L =
2, . . . ,11. There multilevel and single-level QMC is applied to the same integration

problem with respect to continuous, piecewise linear spline wavelets. Here, we use

piecewise linear P1 FE. For the single-level QMC, the QMC sample numbers NL are

chosen to equilibrate the errors N
−χ
L and h−τ

L , cp. [10, Theorem 17], which leads to

the choice NL = 2⌈τL⌉. The measured error vs. work convergence rates are displayed

in Figure 3 for comparison. As a reference solution, the approximation on the level

L = 12 with a total of sL = 8191 dimensions was used, respectively. For the single-

level QMC, the same weight sequence may be applied. The measured rates were
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Fig. 2 Parameter choices α̂ = 1.36, β̂ = 1.26, sL = 8191, R0 = R = 20. The convergence rate

expected from our error vs. work analysis in this example is −0.76+δ .

obtained by a linear least squares fit on the last 7 data points. The total work (for one

realization of the random shift per discretization level) is, for multilevel QMC, given

by

W ML
L = N0h−1

0 log2(s0)+
L

∑
ℓ=1

Nℓ(h
−1
ℓ log2(sℓ)+h−1

ℓ−1 log2(sℓ−1))

and for single-level QMC

W SL
L = NLh−1

L log2(sL) .

The convergence result in Theorem 3 is asymptotic and implies a convergence rate

of −1+ δ for multilevel QMC in Figure 3. The error estimate in Theorem 2 and

the chosen work model for multilevel QMC are used to monitor error vs. work in

numerical experiments which are then fitted with least squares. For the range of L

corresponding to the data points in Figure 3, which are used in the computation of

the measured convergence rate, this results in a “predicted” rate of −0.9. Predicted

rates have been used in the literature e.g. [5, Table 1].
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MLQMC expected from our error vs. work analysis in this example is −0.9.
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