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Dimension Truncation in QMC for
Affine-Parametric Operator Equations

Robert N. Gantner

Abstract An application of quasi-Monte Carlo methods of significant recent interest

in the MCQMC community is the quantification of uncertainties in partial differential

equation models. Uncertainty quantification for both forward problems and Bayesian

inverse problems leads to high-dimensional integrals that are well-suited for QMC

approximation. One of the approximations required in a general formulation as

an affine-parametric operator equation is the truncation of the formally infinite-

parametric operator to a finite number of dimensions. To date, a numerical study

of the available theoretical convergence rates for this error have to the author’s

knowledge not been published. We present novel results for a selection of model

problems, the computation of which has been enabled by recently developed, higher-

order QMC methods based on interlaced polynomial lattice rules. Surprisingly, the

observed rates are one order better in the case of integration over the parameters than

the commonly cited theory suggests; a proof of this higher rate is included, resulting

in a theoretical statement consistent with the observed numerics.

1 Introduction

An important application of quasi-Monte Carlo methods that has been of interest

to the MCQMC community in recent years is the quantification of uncertainties in

partial differential equation (PDE) models which depend on uncertain inputs, see

e.g. [2, 5, 6, 7, 14, 15, 16, 18] to name but a few. The goal of computation is usually

the mathematical expectation of a goal functional which depends on the solution to

the PDE, corresponding to an integral over the uncertain inputs. Especially in the

case where distributed uncertain inputs are considered, the problems often involve

high-dimensional input parameter vectors, with the corresponding expectations being
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robert.gantner@sam.math.ethz.ch

1



2 Robert N. Gantner

integrals over high-dimensional spaces. This fits naturally into a quasi-Monte Carlo

framework, and various advances have been achieved in this field in recent years.

A large class of such problems can be formulated as so-called affine-parametric

operator equations, for which many general theoretical results are available. These

equations are formulated based on infinite parameter sequences, each corresponding

to a realization of the uncertain input. In order to make computations feasible, a

truncation to finitely many parameters is inevitable, and introduces an error into the

computation. This error is called the dimension truncation error, and its study is the

subject of this article.

Bounds on the dimension truncation error in this context are known [5, 15, 16],

but to the author’s knowledge, no numerical evidence has been published to support

their sharpness. One reason for this may be that obtaining conclusive measurements

is computationally very intensive, requiring approximations of integrals in a high

number of dimensions to possibly very high accuracy, where each evaluation ad-

ditionally involves an approximation of the solution to the operator equation by

some numerical method, also with high precision. We fill this gap by providing

measurements of this error for selected PDE test problems, where we apply a recently

introduced higher-order quasi-Monte Carlo method based on interlaced polynomial

lattice (IPL) rules [5, 11, 13] to attain the required accuracy in the approximation of

the involved integral at reasonable cost. Combined with evaluation on a massively

parallel computer system, approximations with sufficient accuracy are obtained in

reasonable time.

Remarkably, the measured convergence rate of the error of an integral over the

parameters in terms of the truncation dimension s is found to be one order higher

than the current theoretical results as stated in e.g. [5, 7, 15, 16, 18]. This prompted

a more detailed investigation into this convergence rate, and a proof of this higher

rate is given below in Section 3 under some minor additional assumptions on the

probability measure which are often fulfilled in practice. The higher rate shown

here is due to a sharper analysis of the error, which was prompted by the reported

numerical results.

We continue now by stating the setting of affine-parametric operator equations

and present in Section 3 our main result, a novel estimate of the dimension truncation

error which improves the known convergence rate by one order. In order to measure

this error and verify the predicted rate, the higher-order QMC method used in the

experiments is briefly mentioned in Section 4. Results supporting sharpness of the

derived rate are then given in Section 5.

2 Affine-Parametric Operator Equations

Let X , Y denote two separable Banach spaces with norms ‖ · ‖X , ‖ · ‖Y and duals

X ′, Y ′, respectively. We denote by yyy = (y1,y2, . . .) a sequence of parameters taking

values in U = [−1/2,1/2]N, i.e. the set of sequences with entries y j ∈ [−1/2,1/2].
For each yyy ∈ U , we denote by A(yyy) a bounded linear operator from X to Y ′,
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Dimension Truncation in QMC for Affine-Parametric Operator Equations 3

i.e. A(yyy) ∈ L (X ,Y ′). In the following, we denote by Y ′〈·, ·〉Y the duality pairing

in Y . Then, for a given deterministic forcing function f ∈ Y ′ we seek for yyy ∈U a

solution q(yyy) ∈ X to the problem

A(yyy)q(yyy) = f in Y
′ . (1)

In the following, we will assume the operator A(yyy) to depend on the y j in an affine

manner. More specifically, for a nominal operator A0 and a sequence of fluctuation

operators (A j) j≥1 we assume A(yyy) to be of the form

A(yyy) = A0 + ∑
j≥1

y jA j . (2)

We now state some assumptions on (A j) j≥0 that are required for the well-posedness

of (1) with A(yyy) given by (2), or for the dimension truncation statements in Section 3.

Assumption 1. Assume that the nominal operator A0 ∈ L (X ,Y ′) is boundedly

invertible. Additionally, assume that the fluctuation operators (A j) j≥1 are small

wrt. A0, i.e. there exists a κ < 2 such that for the sequence bbb = (b1,b2, . . .), defined

by b j := ‖A−1
0 A j‖L (X ) it holds that ‖bbb‖ℓ1(N) := ∑ j≥1 b j ≤ κ < 2, cp. [18, Ass. 2].

Assumption 2. Assume that there exists 0 < p < 1 such that for bbb = (b j) j≥1 from

Assumption 1 it holds that bbb ∈ ℓp(N), i.e. ∑ j≥1 b
p
j < ∞.

Assumption 3. Assume the fluctuation operators (A j) j≥1 to be arranged such that

bbb = (b j) j≥1 from Assumption 1 is non-increasing.

Proposition 1 ([18, Thm. 2]). Under Assumption 1, for every parameter sequence

yyy ∈ U = [−1/2,1/2]N the parametric operator A(yyy) is boundedly invertible. Fur-

thermore, for any yyy ∈U and any f ∈ Y ′, the weak parametric equation

Y ′〈A(yyy)q(yyy),v〉Y = Y ′〈 f ,v〉Y , ∀v ∈ Y

admits a unique solution q(yyy) and there holds the a-priori estimate

sup
yyy∈U

‖q(yyy)‖X ≤C‖ f‖Y ′ ,

where C > 0 is a constant independent of f .

Often, a quantity of interest (QoI) depending on the solution q(yyy) is to be com-

puted. We consider here as QoI a linear goal functional G ∈ X ′, and assume given a

product probability measure µµµ(yyy) = ∏ j≥1 µ j(y j) on U . The goal of computation is

the mathematical expectation

E[G(q)] =
∫

U
G(q(yyy))µµµ(dyyy) . (3)

Examples of the goal functional G are point evaluation of the solution, or an average

over (a subset of) the spatial domain. The following statement on the parametric
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regularity of the solution, i.e. a bound on the partial derivatives of q(yyy) with respect

to the y j, will be required for the higher-order quasi-Monte Carlo method to be

presented in Section 4.

Proposition 2 ([5, Thm. 2.2]). Let F = {ννν ∈ N
N

0 : |ννν | := ∑ j≥1 ν j < ∞} denote the

set of finitely supported multiindices and denote by ∂ ννν
yyy partial derivatives of order

ν j with respect to coordinate y j and let q(yyy) be the solution to (1) with A(yyy) as in

(2) satisfying Assumption 1. Then, there exists a constant C > 0 and a sequence βββ
satisfying Assumption 2 such that for all f ∈ Y ′ and every yyy ∈U it holds that

∀ννν ∈ F : ‖∂ ννν
yyy q(yyy)‖X ≤C|ννν |!βββ ννν

:=C
(
∑
j≥1

ν j

)
! ∏

j≥1

β
ν j

j .

2.1 Approximation

In order to obtain a computable approximation to (3), three approximations are

required: (i) dimension truncation of the affine-parametric operator from (2), (ii)

Petrov-Galerkin discretization of the equation (1) based on the dimensionally trun-

cated operator, and (iii) quasi-Monte Carlo approximation of the integral over yyy ∈U .

We denote by As(yyy) = A(y1, . . . ,ys,0, . . .) the dimensionally truncated operator,

and by qs(yyy) the solution to (1) based on As(yyy). Petrov-Galerkin discretization yields

for fixed yyy∈U a discrete solution qs
h(yyy) approximating qs(yyy), where the discretization

parameter h usually signifies the maximal meshwidth when using the finite element

method. The third and final approximation is replacing the integral over U by an N-

point QMC quadrature rule with point set PN = {yyy(0), . . . ,yyy(N−1)} ⊂ [0,1]s, yielding

the full approximation

E[G(q)] =
∫

U
G(q(yyy))µµµ(dyyy) ≈

1

N

N−1

∑
n=0

G(qs
h(yyy

(n)−111/222)) . (4)

By the triangle inequality, we can write the total error Es,h,N as

Es,h,N =
∣∣∣
∫

U
G(q(yyy))µµµ(dyyy)−

1

N

N−1

∑
n=0

G(qs
h(yyy

(n)−111/222))
∣∣∣

≤
∣∣∣
∫

U
G(qs

h(yyy))µµµ(dyyy)−
1

N

N−1

∑
n=0

G(qs
h(yyy

(n)−111/222))
∣∣∣

+
∣∣∣
∫

U
G(qs(yyy))−G(qs

h(yyy))µµµ(dyyy)
∣∣∣+
∣∣∣
∫

U
G(q(yyy))−G(qs(yyy))µµµ(dyyy)

∣∣∣ . (5)

The dimension truncation error is the last term in (5), which we will bound in the

following section and approximate computationally in Section 5. In order to do the

latter, we must still rely on an approximation of the form (4), in principle choosing
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N and h large and small enough, respectively, to ensure that the first two errors are

negligible. We comment more on the choice of these values in Section 5 below.

3 Dimension Truncation Error Estimates

We begin by recalling existing estimates on the dimension truncation error pointwise

in yyy, i.e. ‖q(yyy)−qs(yyy)‖X . Then, we detail in Theorem 1 a novel result which gives

a statement on the convergence of the error of the integral
∣∣∫

U G(q(yyy)−qs(yyy))dyyy
∣∣ in

the truncation dimension s, improving upon known bounds.

Proposition 3. For every f ∈ Y ′, yyy ∈ U, s ∈ N, denote by qs(yyy) the solution to a

problem of the form As(yyy)qs(yyy) = f with As(yyy) =A(y1, . . . ,ys,0, . . .). Let Assumptions

1 and 2 hold, and assume additionally that µ j is such that
∫

U y j µ j(dy j) = 0 for all

j ≥ 1. Then, for a constant C > 0 which is independent of s and f it holds that

∀yyy ∈U :
∥∥q(yyy)−qs(yyy)

∥∥
X

≤C‖ f‖Y ′s−1/p+1 . (6)

Proof. See e.g. [1, 5, 15]. ⊓⊔
We now make the following additional assumption on the measure µµµ , noting that

the first part holds in particular for all symmetric distributions.

Assumption 4. Assume that µµµ(yyy) = ∏ j≥1 µ j(y j) is a product probability measure

and that the factor measures µ j on the parameters y j are such that for all j ≥ 1 it

holds that
∫ 1/2

−1/2
y j µ j(dy j) = 0 and

∫ 1/2

−1/2
yk

j µ j(dy j)≤Ck < ∞ for all integers k ≥ 2.

In [15], the bound
∣∣∫

U q(yyy)− qs(yyy)dyyy
∣∣ ≤ Cs−2(1/p−1) was shown for equations

of the type considered here under Assumption 2 and
∫ 1/2

−1/2
y j µ(dy j) = 0, which we

improve here to O(s−2/p+1), which is one order better. We begin by proving the

following Lemma.

Lemma 1. Let As(yyy) denote the operator A(yyy) of the form (2) truncated after di-

mension s, i.e. As(yyy) = A(y1, . . . ,ys,0, . . .). Assume Assumptions 1 and 3. Then, for

sufficiently large s it holds that

sup
yyy∈U

‖(As(yyy))−1(A(yyy)−As(yyy))‖L (X ) ≤
1

2−κ ∑
j>s

b j < 1 . (7)

Proof. We have ‖(As)−1(A − As)‖L (X ) ≤ ‖(As)−1A0‖L (X )‖A−1
0 (A − As)‖L (X ),

which we bound individually. For the first factor, Assumption 1 implies that for

all yyy ∈ U it holds that ‖A−1
0 As‖L (X ) ≤ ∑

s
j=1 y j‖A−1

0 A j‖L (X ) < 1, implying with

the Neumann series the bound

‖(As)−1A0‖L (X ) = ‖(A−1
0 As)−1‖L (X ) ≤

1

1− 1
2 ∑

s
j=1 b j

≤
1

1− 1
2
‖bbb‖ℓ1(N)

. (8)
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For the second factor, we have

‖A−1
0 (A−As)‖L (X ) = ‖A−1

0 ∑
j>s

y jA j‖L (X ) ≤
1

2
∑
j>s

‖A−1
0 A j‖L (X ) =

1

2
∑
j>s

b j .

Combining these two bounds and recalling ‖bbb‖ℓ1(N) ≤ κ yields the first inequality.

The bound is less than 1 for sufficiently large s since bbb ∈ ℓ1(N) and the b j are

assumed in Assumption 3 to be non-increasing. ⊓⊔

Theorem 1. For every s ∈ N, denote by qs(yyy) the solution to a problem of the form

Asqs = f with As as in (2) where yyy = (y1, . . . ,ys,0, . . .). Let Assumptions 1 to 4 hold.

Then, for any s ∈ N, f ∈ Y ′ and G ∈ X ′ there exists a constant C > 0 which is

independent of s, f and G such that

∣∣∣
∫

U
G(q(yyy)−qs(yyy))µµµ(dyyy)

∣∣∣≤C‖G‖X ′‖ f‖Y ′s−2/p+1 . (9)

Proof. Assumption 1 implies bounded invertibility of A(yyy) and As(yyy) for any yyy ∈U ,

thus we can write (omitting the argument yyy for legibility) A = As +A−As = As(I +
(As)−1(A−As)). We aim to write the inverse of A given in this form as a Neumann

series, which is justified for suitably large s by Lemma 1. Thus, we have

A−1 =
(
I +(As)−1(A−As)

)−1
(As)−1 = ∑

k≥0

(
− (As)−1(A−As)

)k
(As)−1 .

Fubini’s theorem, together with linearity of G and of the integral then implies

∫

U
G(q(yyy)−qs(yyy))µµµ(dyyy) =

∫

U
G
(
(A−1 − (As)−1) f

)
µµµ(dyyy)

=
∫

U
G
(

∑
k≥1

(
− ∑

j>s

y j(A
s)−1A j

)k

qs
)

µµµ(dyyy)

= ∑
k≥1

(−1)k

∫

U
G
((

∑
j>s

y j(A
s)−1A j

)k

qs
)

µµµ(dyyy) . (10)

We assume now additionally Assumptions 2 and 3. Then, using a similar approach as

in [15], we obtain for k′ ∈ N and a constant C f ,G > 0 the bound

∣∣∣ ∑
k≥k′

(−1)k

∫

U
G
((

∑
j>s

y j(A
s)−1A j

)k

qs
)

µµµ(dyyy)
∣∣∣ (11)

≤C‖G‖X ′‖ f‖Y ′ sup
yyy∈U

∑
k≥k′

∥∥(As)−1(A−As)
∥∥k

L (X )
≤C f ,Gsk′(−1/p+1) .

The above gives a bound for the remainder of the sum over k, starting at term

k′; our goal now is to bound the terms up to k′ by a better estimate. To this end,

we use linearity of G and the integral, as well as the identity
(

∑ j>s y j(A
s)−1A j

)k
=

∑ηηη∈{ j>s}k ∏
k
i=1(yηi

(As)−1Aηi
), which respects the generally non-commutative nature
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of the operators. Denoting by Us = [−1/2,1/2]s the truncated parameter domain and

setting µµµs(yyys) := ∏
s
j=1 µ j(y j) we obtain

∫

U
G
((

∑
j>s

y j(A
s)−1A j

)k

qs
)

µµµ(dyyy)

= ∑
ηηη∈{ j>s}k

∫

U
G
(( k

∏
i=1

yηi

) k

∏
i=1

((As)−1Aηi
)qs
)

µµµ(dyyy)

= ∑
ηηη∈{ j>s}k

∫

U

( k

∏
i=1

yηi

)
µµµ(dyyy)

∫

Us

G
( k

∏
i=1

((As)−1Aηi
)qs
)

µµµs(dyyys) .

It is important to note that the functional G in the last statement is applied to an

expression that depends only on the first s dimensions (through As and qs), allowing

the integral with respect to y j for j > s to be separated out. See also the proof of [10,

Prop. 8] for a similar argument. For any ηηη ∈ { j > s}k it holds that

∫

U
G
(( k

∏
i=1

yηi

) k

∏
i=1

((As)−1Aηi
)qs
)

µµµ(dyyy)

=
∫

U

∫

Us

( k

∏
i=1

yηi

)
G
( k

∏
i=1

((As)−1Aηi
)qs
)

µµµs(dyyys)µµµ(dyyy)

=
∫

U

( k

∏
i=1

yηi

)∫

Us

G
( k

∏
i=1

((As)−1Aηi
)qs
)

µµµs(dyyys)µµµ(dyyy)

=
∫

U

( k

∏
i=1

yηi

)
µµµ(dyyy)

∫

Us

G
( k

∏
i=1

((As)−1Aηi
)qs
)

µµµs(dyyys) .

We will now introduce various definitions required below: let ννν(ηηη) := (#{i =
1, . . . ,k : ηi = j}) j≥1, i.e. ν j(ηηη) ∈ {0, . . . ,k} for j ≥ 1, define the support of a multi-

index ννν ∈F by supp(ννν) := { j ∈N : ν j 6= 0} and let #S denote the cardinality of a set

S. Note that minsuppννν(ηηη)> s as well as #supp(ννν(ηηη))≤ k for ηηη ∈ { j > s}k as in

the sums above. Thus, for every such ηηη we can write ∏
k
i=1 yηi

= ∏ j>s y
ν j(ηηη)
j = yyyννν(ηηη),

where the product is over a finite set since ννν(ηηη) is finitely supported.

Assumption 4 now directly implies that all terms where ν j = 1 for at least one

j > s are zero. For k = 1, ν j ∈ {0,1} for all j > s, thus all terms contain at least one ex-

ponent equal to 1 and are zero. We consider in the following k ≥ 2, and aim to rewrite

the sum over ηηη as a sum over the set Fk,s := {ννν ∈F : |ννν |= k,minsupp(ννν)> s,ν j 6=
1∀ j}. For all ννν ∈ Fk,s it holds that #supp(ννν)≤ k/2, since the smallest nonzero ele-

ment is 2, and we have the condition |ννν |= k. We define cννν :=
∣∣∫

U yyyννν µµµ(dyyy)
∣∣, which,

since #supp(ννν)≤ k/2 and recalling the definition of Ck from Assumption 4 fulfills

cννν ≤ ∏ j∈supp(ννν)Cν j
≤
(

max j>s Cν j

)k/2
. Defining C f ,G := ‖G‖X ′‖ f‖Y ′ and writing

µµµ{1:s}(yyy) = ∏
s
j=1 µ j(y j), we have
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∣∣∣ ∑
ηηη∈{ j>s}k

∫

U

(
∏
j>s

y
ν j(ηηη)
j

)
µµµ(dyyy)

∫

Us

G
( k

∏
i=1

((As)−1Aηi
)qs
)

µµµ{1:s}(dyyy)
∣∣∣

≤C f ,G ∑
ηηη∈{ j>s}k

cννν(ηηη)

∫

Us

k

∏
i=1

∥∥((As)−1Aηi
)
∥∥

L (X )
µµµ{1:s}(dyyy)

=C f ,G ∑
ννν∈Fk,s

(
k

ννν

)
cννν

∫

Us

∏
j>s

∥∥((As)−1A j)
∥∥ν j

L (X )
µµµ{1:s}(dyyy) .

We bound supyyy∈U ‖(As)−1A j‖L (X ) ≤ (1− κ/2)−1b j =: b̃ j similar to (8) and(
k
ννν

)
cννν ≤ ck :=(max j>s Cν j

)k/2k!. Let F̃k,s := {ννν ∈F : |ννν |∞ ≤ k,ννν 6= 000,minsupp(ννν)>

s,ν j 6= 1∀ j}, where we observe that F̃k,s ⊃ Fk,s, which yields with b̃ j ≥ 0 for all

j ≥ 1

C f ,G ∑
ννν∈Fk,s

(
k

ννν

)
cννν

∫

Us

∏
j>s

∥∥((As)−1A j)
∥∥ν j

L (X )
µµµ{1:s}(dyyy)≤ ckC f ,G ∑

ννν∈F̃k,s

∏
j>s

b̃
ν j

j .

We now rewrite the sum over F̃k,s as the product of a sum, since we notice

that every element of the set F̃k,s (resulting in a term b̃bb
ννν

) corresponds to one

term of the product ∏ j>s(1+∑
k
ℓ=2 b̃ℓj), with the exception of the additional term

1 (corresponding to ννν = 000, which is excluded in F̃k,s), that we subtract. Defining

b̂2
j := b̃2

j(1− b̃ j)
−1, it holds that (b̂ j) j≥1 ∈ ℓp(N) and b̂ j < 1 for all j > s for suit-

ably large s. The first term in parenthesis below can thus be rewritten using basic

properties of the geometric series,

∑
ννν∈F̃k,s

b̃bb
ννν
= ∏

j>s

(
1+

k

∑
ℓ=2

b̃ℓj

)
−1 = ∏

j>s

(
1+ b̃2

j

1− b̃k−1
j

1− b̃ j

)
−1 ≤ ∏

j>s

(
1+ b̂2

j

)
−1

= exp
(

∑
j>s

log
(
1+ b̂2

j

))
−1 ≤C ∑

j>s

b̂2
j ≤

C

1− s−2/p+1
s−2/p+1 . (12)

We recall the Neumann series (10), for which the k = 1 term is zero, and split it

into a sum over k = 2, . . . ,k′−1 < ∞, where each term is bounded from above by

(12) times the constants ckC f ,G < ∞, and a remainder with k ≥ k′ for which we use

(11). For each p < 1, the choice k′ = k′(p) = ⌈(2− p)/(1− p)⌉ < ∞ ensures that

the remainder converges at least as rapidly as the estimate s−2/p+1. Collecting terms

then yields the statement. ⊓⊔
For fast decay of the sequence bbb from Assumption 2, i.e. for small values of p, the

convergence rate of the dimension truncation error of the integral from Theorem 1 can

be quite high. Balancing the required finite element and quadrature approximation

errors with the possibly very small values of the dimension truncation error would

result in a large number of samples, and consequently a large amount of work, even

for moderate s. A standard Monte Carlo method converging like N−1/2 in the number
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of samples N is thus not feasible, as the number of required samples is much too large.

A QMC method converging at rate 1 is better, but for small p is still not accurate

enough to allow these computations to be executed in a reasonable amount of time.

Other approaches may converge more quickly, for example adaptive Smolyak or

sparse grid-type quadrature methods [12, 17]. However, these are inherently serial,

and the computational cost due to the involved internal bookkeeping overhead also

increases rapidly if high accuracies are required. Thus, the only method known to

the author to perform well enough (in terms of convergence rate and amenability to

parallel implementation) for such measurements to be performed for a large range of

values of 0 < p < 1 and in high enough dimension to yield conclusive results is the

higher-order QMC method of [5, 13] based on interlaced polynomial lattice rules,

which we now briefly describe.

4 Interlaced Polynomial Lattice Rules

For the presentation of interlaced polynomial lattice (IPL) rules, we require some

definitions and notation. A polynomial lattice rule (without interlacing for the mo-

ment) is an equal-weight quadrature rule with N = bm points for some prime number

b and positive integer m, and is given by a generating vector whose components are

polynomials of degree less than m over the finite field Zb. Let Zb[x] denote the set of

all polynomials over Zb, i.e. polynomials of the form ∑
m−1
k=0 ξkxk with ξk ∈ Zb. Then,

the generating vector is denoted by qqq ∈ (Zb[x])
s with qqq = (q j(x))

s
j=1. We associate

with each integer n = 0, . . . ,bm −1 a polynomial n(x) = ∑
m−1
k=0 ξkxk, where ξk are the

digits of n in base b, that is n = ξ0 +ξ1b+ξ2b2 + . . .+ξm−1bm−1. To obtain points

in [0,1]s from the generating vector qqq, we require the mapping vm : Zb(x
−1)→ [0,1)

which is given for any integer w by

vm

(
∞

∑
k=w

ξkx−k

)
=

m

∑
k=max(1,w)

ξkb−k.

For an irreducible polynomial P ∈ Zb[x] of degree equal to m, the j-th component of

the n-th point of the point set PN = {yyy(0), . . . ,yyy(N−1)} is given by

(yyy(n)) j = vm

(
n(x)q j(x)

P(x)

)
, n = 0, . . . ,N −1, j = 1, . . . ,s.

To obtain orders of convergence higher than one, we require an additional inter-

lacing step. To this end, we denote the digit interlacing function of α ∈ N points as

Dα : [0,1)α → [0,1),

Dα(x1, . . . ,xα) =
∞

∑
a=1

α

∑
j=1

ξ j,ab− j−(a−1)α ,
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where ξ j,a is the a-th digit in the expansion of the j-th point x j ∈ [0,1) in base b−1,

x j = ξ j,1b−1+ξ j,2b−2+ . . .. For vectors in αs dimensions, digit interlacing is defined

block-wise and denoted by Dα : [0,1)αs → [0,1)s with

Dα(x1, . . . ,xαs)=
(
Dα(x1, . . . ,xα),Dα(xα+1, . . . ,x2α), . . . ,Dα(x(s−1)α+1, . . . ,xsα)

)
.

For a generating vector qqq ∈ (Zb[x])
αs containing α components for each of the s

dimensions, the interlaced polynomial lattice point set is Dα(P̃N)⊂ [0,1)s, where

P̃N ⊂ [0,1)αs denotes the (classical) polynomial lattice point set in αs dimensions

with generating vector qqq. For more details on this method, see e.g. [5, 11, 13]. The

following proposition states the higher order rates that are obtainable under suitable

sparsity assumptions of the form stated in Proposition 2.

Proposition 4 ([5, Thm. 3.1]). For m ≥ 1 and a prime number b, denote by N = bm

the number of QMC points. Let s ≥ 1 and βββ = (β j) j≥1 be a sequence of positive

numbers, and let βββ s = (β j)1≤ j≤s denote the first s terms of βββ . Assume that βββ ∈ ℓp(N)
for some p ∈ (0,1).

If there exists a c > 0 such that for α := ⌊1/p⌋+1 a function F satisfies

∀ννν ∈ {0,1, . . . ,α}s,∀s ∈ N : |(∂ ννν
yyy F)(yyy)| ≤ c |ννν |!βββ ννν

s , (13)

then an interlaced polynomial lattice (IPL) rule of order α with N points can be

constructed in O(α sN logN+α2 s2N) operations, such that for the quadrature error

it holds that

|Is(F)−QN,s(F)| ≤ Cα,βββ ,b,p,F N−1/p, (14)

where the constant Cα,βββ ,b,p,F < ∞ is independent of s and N.

5 Experiments

We consider three different examples that fit into the affine-parametric framework,

and measure the dimension truncation error for each one, both for the pointwise case

and for the integral case. For the latter, we verify in all three cases that the bound from

Theorem 1 corresponds to the measured rates, for various values of the fluctuation

summability exponent p. The results thus give concrete evidence supporting the

sharpness of both estimates. Below, we specify the fluctuation decay rate ζ > 1,

which implies p-summability for any p > 1/ζ . Using the limiting value p = 1/ζ ,

we expect the dimension truncation convergence rate s−ζ+1 for the pointwise case

and rate s−2ζ+1 for the integral case, cf. Proposition 3 and Theorem 1, respectively.

For the computations of the pointwise error, we use the parameter value yyy = e−2111 =
e−2(1,1, . . .) ∈U .
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5.1 Example 1: Test Integrand

The first example is designed to serve as a simplified test case that does not require

finite element discretization, since the operator equation simplifies to an algebraic

equation, see also [11, Eq. 18]. We seek to approximate the integral over U =
[−1/2,1/2]N of the “solution” q(yyy) which is given in this case by

q(yyy) =
(

1+ ∑
j≥1

y jc j

)−1

, c j = σ j−ζ , σ = 0.1 . (15)

We thus circumvent the finite element discretization error, but must still ensure that

the QMC error is small enough. For a rough estimate of the number of QMC points

N = 2m, consider decay rate ζ and truncation dimension s= 2β for some β > 1. Then,

by Theorem 1 the dimension truncation error is of order s−2ζ+1 = 2(−2ζ+1)β . By

Proposition 4, the QMC error converges like N−ζ = 2−mζ . Assuming the constants

in the error estimates to be equal, we thus require 2−mζ < 2(−2ζ+1)β , implying

m > (2−1/ζ )β . For s = 1024 we have β = 10 and obtain with ζ = 2 the condition

m > 15. Below, we use m = 18, which suffices for the considered values of ζ up to 3

and yields clear measurements of the integral dimension truncation error.

For this example, since no finite element solver is needed and efficiency is

not such an issue, the implementation was conducted in Python with the higher-

order QMC rules applied with the pyQMC library, see [8]. The required gen-

erating vectors were obtained by fast CBC construction [11] and are available

at [8] under the heading “Standard SPOD Weights”. For the computations be-

low, we used the parameters α = 2, C = 0.1, and θ = 0.2. The reference ap-

proximations in s = 1024 dimensions with an IPL rule based on N = 218 points

are given for ζ = 1.5,2,2.5,3 by 1.0010038828766668, 1.0009035434306022,

1.0008655151823671, and 1.0008491110838873, respectively.

As shown in the results in Figure 1, the expected convergence rates can be clearly

observed in both cases. We note that this example additionally allows straightforward

computation of the integrals in (10) for arbitrary k, allowing verification of the

individual estimates in the proof.

5.2 Example 2: Diffusion Equation in One Dimension

We formulate here a model diffusion equation in spatial dimension d = 1,2 for use

in this and the next example. Denoting by D ⊂ R
d a bounded domain, for any yyy ∈U

we seek q(·,yyy) ∈ X = Y = H1
0 (D) such that

−∇ ·
(
u(x,yyy)∇q(x,yyy)

)
= f (x) in D, q(x,yyy) = 0 on ∂D , (16)

Page:11 job:gantner macro:svmult.cls date/time:11-Aug-2017/18:03



12 Robert N. Gantner

100 101 102 103 104

Truncation Dimension s

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
o
r

1

−2

Pointwise Dimension Truncation Error

ζ = 1.5

ζ = 2

ζ = 2.5

ζ = 3

(a) pointwise

100 101 102 103

Truncation Dimension s

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

R
el

at
iv

e
E

rr
o
r

1

−5

Integral Dimension Truncation Error

ζ = 1.5

ζ = 2

ζ = 2.5

ζ = 3

(b) integral

Fig. 1: Dimension truncation error for the test integrand (15). (a) pointwise dimension

truncation error |q(yyy)−qs(yyy)| for yyy = e−2111 with q(yyy) approximated by a reference

value in s = 215 dimensions, with expected rate −ζ + 1. (b) integral dimension

truncation error |
∫

U q(yyy)−qs(yyy)dyyy| with reference dimension s = 1024 and expected

rate −2ζ +1. Higher-order QMC based on IPL rules was used with N = 218 points.

The expected rates are clearly observed in both cases.

where u(x,yyy) ∈ R denotes for each yyy a spatially varying diffusion coefficient. It is

well-known that the following assumption implies that there exists a unique solution

to (16) for any sequence yyy ∈U .

Assumption 5 (Uniform ellipticity). There exist constants u−,u+ > 0 such that for

all yyy ∈U and for almost every x ∈ D it holds that 0 < u− ≤ u(x;yyy)≤ u+.

An affine-parametric partial differential equation is obtained for example by the

following choice of coefficient parametrization,

u(x;yyy) = u0 + ∑
j≥1

y jψ j(x), x ∈ D, yyy ∈U . (17)

In the one-dimensional case we use the parametric basis functions ψ2 j(x) =

(2 j)−ζ sin( jπx) and ψ2 j−1(x) = (2 j−1)−ζ cos( jπx).
For simplicity of implementation, we compute the convergence of the pointwise

dimension truncation error by applying a linear goal functional G∈X ′ and observing

with Proposition 3 that

∣∣G(q(yyy))−G(qs(yyy))
∣∣≤ ‖G‖X ′‖(q−qs)(yyy)‖X ≤C‖G‖X ′‖ f‖Y ′s−1/p+1 .

We choose as goal functional integration over the spatial domain D, G(q(yyy)) =∫
D q(x,yyy)dx and set f (x) = 10x. Finite element discretization with standard piecewise

linear finite elements on an equidistant mesh of D = [0,1] with meshwidth h is used.

Since no exact solution is available, we resort to using a reference solution with
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truncation dimension chosen to be twice the number of dimensions in the most

precise measurement, see the caption of Figure 2 for details. The finite element

meshwidth was the same for all computations and chosen to be h = 2−18. Note that

this is not sufficient to completely remove the finite element error; in the plots below,

we consider convergence of
∫

U G(qs
h(yyy))dyyy to

∫
U G(qh(yyy))dyyy, for fixed h. In this

case, we can use the same generating vectors as for Example 1 but with m = 20.
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Fig. 2: Dimension truncation error for the diffusion equation with d = 1. (a) pointwise

dimension truncation error |qh(yyy)− qs
h(yyy)| for yyy = e−2111 with qh(yyy) approximated

by a reference value in s = 215 dimensions, with expected rate −ζ +1. (b) integral

dimension truncation error |
∫

U qh(yyy)−qs
h(yyy)dyyy| with reference dimension s = 1024

and expected rate −2ζ +1. The expected rates are clearly observed in both cases.

5.3 Example 3: Diffusion Equation in Two Dimensions

We consider here again (16) as in Example 2, but in two spatial dimensions, re-

quiring a different choice of fluctuation basis, see also related experiments in

[3, 4]. The parametrization is given in terms of the eigenfunctions of the Dirich-

let Laplacian on D = (0,1)2, where we choose the fluctuations ψ j(x) = (k2
1, j +

k2
2, j)

−ζ sin(πk1, jx1)sin(πk2, jx2) by reordering the tuples (k1, j,k2, j) ∈ N
2 such that

(‖ψ j(x)‖L∞(D)) j≥1 is non-increasing. Choosing the deterministic right-hand side

f (x) = 100x1 results in an affine-parametric PDE satisfying Assumption 2 with

p > 1/ζ . The pointwise dimension truncation error is again computed by consider-

ing a goal functional as detailed in Example 2 above, where this time we choose as

goal functional the integral over D̃ = (1/2,1)2 ⊂ D, i.e. G(q(yyy)) =
∫

Ũ
q(x,yyy)dx.

For spatial discretization, we use a tensor product mesh with nodes obtained

from the Cartesian product of equidistant nodes on (0,1), with standard piecewise

bilinear finite element basis functions. The one-dimensional meshwidth is 2−6,
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resulting in O(212) degrees of freedom. In this example and the previous one, a C++

implementation was used for efficiency reasons. The IPL rules were applied using

the gMLQMC library [9] and the evaluation was conducted on the Piz Daint HPC

system of CSCS with up to 1440 parallel processes. The generating vectors used here

are available at [8] under the heading “SPOD Weights for 2d Diffusion Equation”.
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Fig. 3: Dimension truncation error for the diffusion equation with d = 2. (a) pointwise

dimension truncation error |qh(yyy)− qs
h(yyy)| for yyy = e−2111 with qh(yyy) approximated

by a reference value in s = 215 dimensions, with expected rate −ζ +1. (b) integral

dimension truncation error |
∫

U qh(yyy)−qs
h(yyy)dyyy| with reference dimension s = 1024

and expected rate −2ζ +1. The expected rate is clearly observed in (b), while in (a)

the rate seems to be one order better than expected.

6 Conclusions

We consider the error committed by truncating countably affine-parametric operator

equations to a finite number of terms, and prove the convergence rate s−2/p+1 where s

is the truncation dimension and p < 1 the summability of the sequence of fluctuation

operator norms, improving on the rate s2(−1/p+1) for the case of integration over a

sequence of parameters. Numerical experiments verify this rate for a test integrand

and two PDE examples, in one and two spatial dimensions, using up to s = 1024

parametric dimensions. Measurements of the pointwise dimension truncation error

are also given, confirming the established theory.
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