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Abstract

We review uncertainty quantification (UQ) for hyperbolic systems of conservation (balance) laws. The input
uncertainty could be in the initial data, fluxes, coefficients, source terms or boundary conditions. We focus
on forward UQ or uncertainty propagation and review deterministic methods such as stochastic Galerkin and
stochastic collocation finite volume methods for approximating random (field) entropy solutions. Statistical
sampling methods of the Monte Carlo and Multi-level Monte Carlo (MLMC) type, are also described. We present
alternative UQ frameworks such as measure valued solutions and statistical solutions.

1 Introduction

Systems of balance laws are nonlinear partial differential equations of the generic form

∂tU + ∇x · F(c(x, t),U) = S(x, t,U), (1.1a)

U(x, 0) = U0(x). (1.1b)

Here, the unknown U = U(x, t) : Rd × R+ → RN is the vector of conserved variables, F = (F1, . . . ,Fd ) :
R
N×N → RN×d is the flux function, c = (c1, . . . , cd ) : Rd × R+ → RN×d is a spatio-temporal coefficient and

S : Rd × R+ × RN → RN is a source (sink) term. We denote R+ := [0,∞). Here, U0 denotes the prescribed initial
data. Furthermore, the system needs to be supplemented with suitable boundary conditions.

The system (1.1) is termed a conservation law if S ≡ 0. It is termed hyperbolic if the flux Jacobian matrix
has real eigenvalues [15]. Hyperbolic systems of conservation (balance) laws arise in a wide variety of models
in physics and engineering. Prototypical examples include the compressible Euler equations of gas dynamics, the
shallow water equations of oceanography, the magneto-hydrodynamics (MHD) equations of plasma physics and
the equations of nonlinear elasticity [15].

It is well known that solutions of (1.1) develop discontinuities in finite time, even when the initial data is smooth
[15]. Hence, solutions of (1.1) are sought (and computed) in the weak sense: a weak solution U ∈ (L1

loc(Rd×R+))N

is required to satisfy the integral identity

∫
R+

∫
Rd

*.
,Uϕt +

d
∑

j=1

F j (c j,U)ϕx j
+ S(x, t,U)ϕ

+/
- dxdt +

∫
Rd

U0(x)ϕ(x, 0)dx = 0 , (1.2)

for all test functions ϕ ∈ C1
0 (R+ × R

d ). It is well known that weak solutions are not necessarily unique [15].
Additional admissibility criteria or entropy conditions are necessary to obtain uniqueness. In space dimension
d > 1, rigorous existence and uniqueness results for conservation (balance) laws and for generic initial data are
available only for the scalar case, i.e, in the case N = 1.
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1.1 Numerical methods.

Numerical schemes have assumed the role of being the main tools for the study of systems of balance (conservation)
laws. Many efficient numerical schemes for approximating systems of conservation laws are currently available.
They include the Finite Volume, conservative Finite Difference, Discontinuous Galerkin finite element methods
Continuous Statbilized Finite Element Methods and Residual Distribution methods, see [61, 20, 74, 11, 9]. For
simplicity of exposition and to fix notation, we present the standard Finite Volume Method (FVM) [20].

We consider here a triangulation T of the spatial domain D ⊂ Rd of interest. Here, the term triangulation T
will be understood as a partition of the physical domain into a finite set of disjoint open, convex polyhedra K ⊂ Rd

with boundary ∂K being a finite union of closed, plane faces (which are polyhedra contained in d − 1 dimensional
hyperplanes, understood as points in the case d = 1). Let ∆xK := diam K = sup{|x − y | : x, y ∈ K } and by
∆x(T ) := max{∆xK : K ∈ T } denote the mesh width of the underlying triangulation. For any volume K ∈ T , we
define the set N (K ) of neighbouring volumes

N (K ) := {K ′ ∈ T : K ′ , K and measd−1(K ∩ K ′) > 0}. (1.3)

For every K ∈ T and K ′ ∈ N (K ) denote nK,K ′ to be the exterior unit normal vector, i.e. pointing outward from
the volume K at the face K ∩ K ′. We set:

λn = ∆tn/min{∆xK : K ∈ T } (1.4)

by denoting ∆tn as the n-th time step. The constant λ is determined by a standard CFL condition (see [20]) based
on the maximum wave speed at the underlying time step.

Then, an explicit first-order finite volume ([20]) for approximating (1.1) is given by

Un+1
K = Un

K −
∆tn

meas(K )

∑

K ′∈N (K )

F(cnK ,U
n
K , c

n
K ′,U

n
K ′ ) + ∆tnSn

K , (1.5)

where

Un
K ≈

1

meas(K )

∫
K

U(x, tn )dx

is an approximation to the cell average of the solution, cn
K

is similarly the average of the coefficient c in the cell K

and F(·, ·, ·, ·) is a numerical flux that is consistent with F(c,U) · nK,K ′ . Numerical fluxes are usually derived by
(approximately) solving Riemann problems at each cell edge resulting in the Godunov, Roe and HLL fluxes, see
[61]. The discrete source S in (1.5) can be a straight-forward evaluation,

Sn
K =

1

meas(K )

∫
K

S(x, t,Un
K )dx

or something more sophisticated, for instance the well-balanced version of the bottom topography source term [79]
in shallow-water simulations, or the inclusion of the source term directly in the terms to update the solution as in
Residual Distribution methods [40].

Higher order spatial accuracy is obtained by reconstructing U from Un
K

in terms of non-oscillatory piecewise
polynomial functions, within the TVD [61], ENO [6] and WENO [14] procedures or using Discontinuous Galerkin
methods (see, e.g. [10]). Higher order temporal accuracy can be achieved by employing strong stability preserving
Runge-Kutta methods [1]. Space-time DG-discretizations can also be employed for uniformly high-order spatio-
temporal accuracy [7]. We refer the reader to other chapters in this handbook for a detailed description of the state
of the art numerical methods for systems of conservation (balance) laws.

1.2 Uncertainty Quantification (UQ)

Any numerical scheme approximating (1.1) requires the initial data U0, the source term S, the coefficients c and the
flux function F, as well as suitable boundary conditions, as inputs. However, in practice, these inputs are obtained
by measurements (observations). However, measurements cannot be precise and always involve some degree of
uncertainty.

As a first example, consider the modeling of propagation of tsunami waves with the shallow water equations.
It is not always possible to measure the initial water displacement (at tsunami source) with any precision in
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real time, particularly for earthquake generated tsunamis. The Okada model that is usually employed to convert
earthquake fault intensity into initial wave displacements consists of many uncertain parameters. Similarly, the
bottom topography is measured with sonar equipment and this data collection can be prone to uncertainty. Thus,
the inputs (initial data, flux coefficients and source terms) to the underlying shallow water equations are uncertain.
As a second example, consider the modeling of an oil and gas reservoir. Water flooding is modeled by the equations
of two phase flow. However, the rock permeability as well as the relative permeabilities of each phase with respect
to the other, need to be measured. Again, the measurement process is characterized by uncertainty. Consequently,
the inputs (the fluxes) to the underlying two-phase flow equations are uncertain. As a final motivating example,
consider the flow past an aerofoil, or a full aircraft wing. The inputs to this calculation, such as the inflow Mach
number and angle of attack as well as the parameters that specify the aerofoil geometry are all measured with some
uncertainty.

This uncertainty in the inputs for (1.1) results in the propagation of uncertainty in the solution. The modeling
and approximation of the propagation of uncertainty in the solution due to uncertainty in inputs constitutes the
theme of uncertainty quantification (UQ).

UQ is a rapidly emerging interdisciplinary research area that spans applied mathematics, scientific computing,
statistics and engineering. Although UQ involves various aspects in the modeling and computation of uncertainty,
we focus on the rather limited aspect of computational uncertainty propagation here. Uncertainty propagation,
also called forward UQ, refers to the computation of solutions of PDEs with uncertain inputs such as initial data,
boundary conditions, coefficients, source terms etc. Given our focus on nonlinear hyperbolic PDEs, we shall
discuss forward UQ in the limited context of systems of conservation (balance) laws (1.1). The reader is referred
to [58] for a comprehensive discussion of UQ in the context of elliptic, parabolic and linear hyperbolic PDEs.

It is a non-trivial matter to develop efficient algorithms for quantifying uncertainty in solutions of conservation
(balance) laws with random inputs. One of the main challenges lies in the fact that discontinuities in physical space
(which inevitably arise in solutions of hyperbolic conservation laws) may propagate into parametric representations
of the probability densities (laws) of the resulting random solutions. A robust numerical method should be able
to deal with this phenomenon. Another challenge lies in dealing with the fact that the number of random sources
driving the uncertainty may be very large (possibly countably infinite in the case of random field inputs parametrized
by Karhunen-Loeve or other spectral representation).

The design of efficient numerical schemes for quantifying uncertainty in solutions of partial differential equations
has seen a lot of activity in recent years, see [27] for a detailed review. Our main aim in this chapter is to review this
activity in a condensed manner. We will describe modeling uncertain inputs (and resulting solutions) with random
fields in section 2. We group proposed methods for UQ for hyperbolic systems in three broad categories. The first
category of so-called stochastic Galerkin methods are described in section 3. The second category of methods,
which we arrange under the label of stochastic collocation methods are presented in section 4 and the last category
of Monte-Carlo type methods are described in section 5. We discuss the comparative advantages and disadvantages
of each category of methods. The vexing issue of well-posedness of the underlying random conservation laws and
rigorous convergence results for UQ algorithms, partially stems from representing solutions as random fields. An
alternative approach, based on statistical solutions has been proposed very recently [77]. We briefly review this
solution paradigm and the corresponding UQ algorithms for simulating it in section 6.

2 Random fields and random entropy solutions.

Let (Ω, F ) be a measurable space, with Ω denoting the set of all elementary events, and F a σ-algebra of all
possible events in our probability model. If (E,G) denotes a second measurable space, then an E-valued random

variable is any mapping X : Ω → E such that the set {ω ∈ Ω: X (ω) ∈ A} ∈ F for any A ∈ G, i.e. X is a
G-measurable mapping from Ω into E.

We always assume that E is a metric space; with the Borel σ-field B(E), (E,B(E)) is a measurable space and
we shall assume that E-valued random variables X : Ω→ E will be (F ,B(E)) measurable.

A probability measure P on (Ω, F ) is any σ-additive set function from Ω into [0, 1] such that P(Ω) = 1, and
the measure space (Ω, F , P) is called probability space. We shall always assume that (Ω, F , P) is complete.

By L1(Ω, F , P; E) we denote the set of all (equivalence classes of) integrable, E-valued random variables X .
We equip it with the norm

‖X ‖L1 (Ω;E ) =

∫
Ω

‖X (Ω)‖E P(dΩ) = E(‖X ‖E ) . (2.1)
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More generally, for 1 6 p < ∞, we define Lp (Ω, F , P; E) as the set of p-summable random variables taking
values E and equip it with norm

‖X ‖Lp (Ω;E ) := (E(‖X ‖
p

E
))1/p, 1 ≤ p < ∞ . (2.2)

2.1 Modeling of random inputs.

Equipped with the above notation, we will model inputs such as initial data, fluxes, coefficients and sources in (1.1)
as random fields. To be more specific, we first model uncertain initial data by assuming (Ω, F , P) as the underlying
probability space and realizing the uncertain initial data as a random field U0, i.e. a L1(Rd )-valued random variable
which is a L1(Rd ) measurable map

U0 : (Ω, F ) 7−→
(

(L1(Rd ))N , (B(L1(Rd )))N
)

. (2.3)

Similarly, the source term S and coefficient c can be modeled as random fields taking for instance values in Lp

spaces. It might be essential to also assume further regularity on the coefficient, for instance

c(·, ω) ∈ L∞(Rd × R+) ∩ BV (Rd × R+) P-a.s., (2.4)

which is to say that
P({ω ∈ Ω : c(·, ω) ∈ (L∞ ∩ BV )(Rd × R+)}) = 1 . (2.5)

Similarly, the flux function F can also be modeled as a random field, for instance taking values in the space of
continuously differentiable functions [68].

2.1.1 Concerte representations.

In practice, one has to realize the random fields for initial data, fluxes, sources, coefficients etc by representing
them in a concrete manner. A very common representation of random fields in engineering practice is to realize
them in terms of a finite set of parameters. For instance, consider a classic one-dimensional Sod shock tube [61],
which consists of two constant states (a left and a right state), with jumps in density and pressure and initial zero
velocity. The initial data is completely described by 5 parameters, namely the initial left (and right) densities and
pressures and the location of the initial jump. So, one can argue that the initial jump location as well as amplitudes
of the initial jumps are uncertain by specifying initial probability distributions in terms of 5 (or less) parameters.

A more rigorous way of defining initial parametrizations is in terms of a Karhunen-Loeve expansion. To
introduce this concept, we consider a simple example of a centered random field u : Ω 7→ L2(D), for some domain
D ⊂ Rd and assume that E(u) = 0. Then, the covariance function of this random field is defined as

Cu ∈ L2(D ⊗ D) : Cu (x, y) = E(u(x, ω)u(y, ω)). (2.6)

The corresponding covariance operator is defined as,

KC : L2(D) 7→ L2(D) : KC [g](x) :=

∫
D

Cu (x, y)g(y)dy. (2.7)

One can readily show that KC is a compact operator and we denote its eigenvalues and eigenfunctions as λk and
uk respectively i.e,

KC [uk ] = λkuk .

Consequently, one can rewrite the underlying random field u as

u(x, ω) =

∞
∑

k=1

Zk (ω)uk (x). (2.8)

Furthermore, one can also show that the random variables Zk are uncorrelated as

E(Z j Zk ) = λk δ jk
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Hence, the Karhunen-Loeve expansion is a biorthogonal expansion of the underlying random field. By including
a non-zero mean and rescaling, one can write any random field in terms of its Karhunen-Loeve expansion as

u = ū +

∞
∑

k=1

√

λk Zkuk, (2.9)

with ū being the mean value of the random field. The Karhunen-Loeve expansion is a hierarchical expansion
and one can truncate (2.9) with finitely many terms M . The size of M is determined by the rate of decay of the
eigenvalues λk , which in turn, depends on the range of correlations of the underlying random field. Thus, the final
statistical input is described by a finite number of independent random parameters Zk . The above description is
merely heuristic and more rigorous presentations can be found out, for instance in [68], for the specific case of
Karhunen-Loeve expansions of random flux functions.

Modifications of Karhunen-Loeve expansions include spectral representations such as log-normal rock perme-
abilities, described in [67] for the acoustic wave equation of siesmic imaging and in [23] for permeabilities in flows
in porous media. Similarly, other hierarchical representations, such as those based on wavelets can be used to
represented bottom topographies of shallow water flows, for instance in [65].

2.2 Random entropy solutions.

Given the above random field representation of uncertain inputs, one can model the resulting uncertain solutions
of (1.1) by random fields and formally require them to satisfy the following random version of (1.1):

∂tU(x, t, ω) + ∇x · F(c(x, t, ω),U(x, t, ω), ω) = S(x, t,U, ω),

U(x, 0, ω) = U0(x, ω).
(2.10)

Here, U0, S, c,F are all random fields, taking values in appropriate function spaces, for instance, U0 is defined in
(2.3).

Consequently, we define the random entropy solution U of (2.10) as follows,

Definition 2.1. A random field U : Ω 7→
(

L1
loc(Rd × R+)

)N
, is a random entropy solution of the random balance

law (2.10) with random initial data, flux, source and coefficient, if it satisfies the following conditions:

(i.) Weak solution: for P-a.e ω ∈ Ω, U(·, ·;ω) satisfies the following integral identity, for all test functions
ϕ ∈ C1

0 (Rd × R+):

∫
R+

∫
Rd

*.
,U(ω)ϕt +

d
∑

j=1

F j (c j (ω),U(ω), ω)ϕx j
+ S(x, t,U(ω), ω)ϕ

+/
- dxdt

+

∫
Rd

U0(x, ω)ϕ(x, 0)dx = 0.

(2.11)

(ii.) Entropy condition. U(·, ·, ω) satisfies the underlying entropy condition for (1.1) for almost every ω ∈ Ω.

�

The above notion of random entropy solutions was first proposed in [63]. It is a pointwise (a.e) notion that
requires that the balance law be satisfied for almost every realization in the probability spaceΩ. Rigorous existence
and uniqueness results for random entropy solutions for scalar conservation laws, with random initial data, were
obtained in [63]. Well-posedness results for scalar conservation laws with random fluxes were obtained recently
in [68]. A corresponding notion of random weak solutions for multi-dimensional linear symmetrizable hyperbolic
systems, with random initial data and random coefficients, were obtained in [37, 67]. In all these cases, the random
entropy solutions were shown to be of the form:

U(x, t, ω) = St (U0(x, ω)), (2.12)

where St : Lp (D) 7→ Lp (D) is the data to solution operator of the underlying deterministic problem. Here, p = 1
for scalar conservation laws and p = 2 for linear symmetrizable systems. Consequently, the above described notion
of random entropy solution only makes sense when the underlying deterministic problem is well-posed. In the
following sections, we will assume that random entropy solutions are well-posed and discuss efficient algorithms
for approximating them.
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3 Stochastic Galerkin method for UQ

Our aim is to design efficient numerical approximations of random entropy solutions of the system of random
balance laws (2.10). For simplicity of notation and ease of exposition, we assume that the random balance law is a
conservation law i.e, S ≡ 0 in (2.10). We also assume that the only source of uncertainty in (2.10) is in the initial
data U0. This can be realized by setting the coeffiicent c = 1 (for almost everyω ∈ Ω) and taking a deterministic flux
function F in (2.10). For further notational simplicity, we consider the random system of conservation laws in one

space dimension. The extension to several space dimensions is straightforward though notationally cumbersome.
Hence, we will consider the following random conservation law,

∂tU(x, t, ω) + ∂xF(U(x, t, ω)) = 0, ∀(x, t) ∈ D × R+, P a.e ω ∈ Ω

U(x, 0, ω) = U0(x, ω), ∀x ∈ D, P a.e ω ∈ Ω.
(3.1)

Here D = (xL, xR ) ⊂ R is the computational domain.
For both the stochastic Galerkin methods described here and the stochastic collocation methods, presented

in the following section, we will assume that the uncertainty in the initial data (and consequently in the random
entropy solution of (3.1)) satisfies the following finite dimensional noise assumption,

Assumption 3.1. (Finite dimensional noise). The initial data in (3.1) has the form,

U0(x, ω) = U0(x,Y1(ω),Y2(ω), . . . ,YP (ω)), on D ×Ω. (3.2)

Here, P is a (possibly large) constant and Yp’s for 1 6 p 6 P are real valued random variables.

We denote Γp = Yp (Ω) as the image of Ω under Yp and denote Γ =
P
∏

p=1
Γp . Furthermore, we assume that the

random variables {Y1, . . . ,YP } have a joint probability density function denoted by ρ : Γ 7→ R+ with ρ ∈ L∞(Γ).

For simplicity, we assume that ρ can be factorized as ρ(Y1, . . . ,YP ) =
P
∏

p=1
ρp (Yp ). The reader can observe that this

assumption is valid for any (finite-dimensional) parametric representation of uncertainty, as described in section 2,
for instance, with a truncation of the Karhunen-Loeve representation of uncertain initial data.

3.1 Generalized Polynomial Chaos (gPC)

The key step in numerically approximating the conservation law (3.1) lies in discretizing the probability space Ω.
Following [45], any random field h ∈ L2(Ω, L2(R × R+)) can be written as,

h =

∞
∑

k=0

hk (x, t)ϕk (y(ω)). (3.3)

Here, y = {y1, y2, . . . , } are a set of independent, identically distributed (i.i.d) random variables with zero mean and
ϕk are a set of orthogonal polynomials with respect to the underlying measure ρ. Furthermore, the coefficients
hk in (3.3) are purely deterministic functions, independent of ω. The orthogonal polynomials ϕ are dependent on
the measure ρ and consequently on its probability density function ρ(y). As examples, one can choose Legendre
polynomials for uniform distributions and Hermite polynomials if the underlying probability distribution function
is Gaussian.

In order to construct a numerical method, we will use the finite noise assumption above and find P such that
y = {y1, y2, . . . , yP }. Hence, the expansion provides a parametrization of the probability space Ω in terms of the

coordinates Γ =
P
∏

i=1
Γi with yi ∈ Γi for all 1 6 i 6 P. Furthermore, we have to truncate the infinite series in (3.3)

by choosing a L such that,

hL
P =

L
∑

l=0

hl (x, t)ϕl (y). (3.4)

The convergence of hL
P

to h as L, P → ∞ is guaranteed by the Cameron-Martin theorem [59]. For convenience,
we tag the two indices L and P in (3.4) into a single index, still denoted by L. The orthogonal polynomials ϕ are
now constructed as tensor products of one-dimensional orthogonal polynomials, i.e,

ϕk (y) = ⊗iϕ
ki (yi ), (3.5)
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with the maximum degree of ki’s being set to M (depending on accuracy requirements). With the above structure,
the total number of terms in the expansion is

L =
(M + P)!

M!P!
− 1.

We will employ the truncated generalized Polynomial chaos (gPC) expansion in-order to design robust numerical
schemes for approximating (3.1).

3.2 Standard stochastic Galerkin (sG) method.

We follow a large number of recent papers, such as [17, 47, 24, 25, 32, 33, 82] and references therein, and aim to
approximate the random entropy solution U of (3.1) by its truncated gPC expansion (3.4) realized as,

U ≈ UL
=

L
∑

l=0

Ul (x, t)ϕk (y). (3.6)

Here, ϕk are the ρ-orthogonal polynomials described in the previous sub-section. The expansion (3.6) is valid as
long as the solution U of (3.1) has bounded second moments.

The moments Ul in (3.6) are computed by using the Galerkin projection in the random space Γ i.e,

Ul (x, t) =

∫
Γ

U(x, t)ϕl (y)ρ(y)dy, (3.7)

with UL being denoted as U (for notational simplicity) and ρ(y) being the probability density function of the
underlying measure ρ. In-order to compute the moments, we perform a Galerkin approximation of (3.1) and a
projection to the truncated expansion to obtain,

∂

∂t
*
,

L
∑

l=0

∫
Γ

U lϕlϕ j ρ(y)dy+- +
∂

∂x
*
,
∫
Γ

F *
,

L
∑

l=0

Ulϕl+- ϕ
j ρ(y)dy+- = 0, ∀ 0 6 j 6 L. (3.8)

By using orthogonality of the polynomials ϕ, (3.8) reduces to the following system of equations,

∂tU
j
+ ∂x (F j (U1, . . . ,U j, . . . ,UL ) = 0, ∀ 0 6 j 6 L,

F j
=
*
,
∫
Γ

F *
,

L
∑

l=0

Ulϕl+- ϕ
j ρ(y)dy+- , ∀ 0 6 j 6 L.

(3.9)

Thus the spectral Galerkin projection of (3.1) leads to a LN × LN (N being the phase space dimension) system of
equations. Note that the variables U j are coupled through non-linear fluxes. The uncertain initial data in (3.1) can
similarly be expanded and its moments calculated. Uncertainty quantification routines for (3.1) involve suitable
discretizations of the system (3.9), for instance using standard finite difference, finite volume, discontinuous Galerkin
finite element schemes or any type of method using continuous finite element. In particular, is straigthtforward to
calculate the statistical moments of the random field U from the weights Ul . For example, the mean and variance
of U can be computed as,

E(U) = U0,

σ2
= E((U − U0)2) =

L
∑

l=1

(Ul )2.
(3.10)

The gPC system (3.9) is an LN × LN system of conservation laws. In particular, even for a scalar conservation
law (N = 1), the gPC system is an L × L system. The system size L can be very large if the random initial data
is represented by a large number of random parameters, such as in a slowly decaying Karhunen-Loeve expansion.
Furthermore, the calculation of the gPC coefficients U j and the fluxes F j in (3.9) requires integrating over the
random space Γ that is P-dimensional. Using full tensor product quadrature for computing such integrals is
very expensive and sparse grids have been used [32] and references therein. Still, the computational cost can
be formidable. However, a more fundamental difficulty arises when analyzing system (3.9). It is unclear if this
system is even hyperbolic. Since, the entire machinery of analyzing and discretizing conservation laws assumes
hyperbolicity, it is unclear even if the system (3.9) makes any mathematical sense.
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3.3 gPC expansions in the entropy variables.

The system (3.9) results from expanding the conserved variables U of (3.1) in terms of a gPC expansion. We aim
to find a different expansion such that the resulting truncated system possesses hyperbolicity. Such an expansion
was proposed in [26], in turn inspired by analogous problems in kinetic theory of gases as presented in [30].

The fundamental assumption in this approach is that the underlying conservation law possesses a convex
entropy function S and an entropy flux function Q. Then, the idea is to expand in terms of the entropy variables
V = ∂U(S(U)). The convexity of the entropy function S implies that there is a one to one mapping,

U(V) : RN 7→ RN , (3.11)

such that U(V) is invertible for all V ∈ RN . Hence, (3.1) can be rewritten in terms of entropy variables as,

∂tU(V(x, t, y)) + ∂xF(V(x, t, y)) = 0. (3.12)

Here, y ∈ Γ is a parametrization of the random space Ω and F(V) = F(U(V)) results from expressing the flux in
terms of entropy variables.

Following [30, 26], one expands the entropy variables V in terms of a truncated gPC expansion,

V ≈ VL
=

L
∑

l=0

Vl (x, t)ϕl (y). (3.13)

Here, the orthogonal polynomials ϕ are defined by (3.5) and Vl are the corresponding (independent of y) weights.
The set-up is exactly the same as the previous sub-section. We expand all the terms in (3.12) in terms of the
truncated expansion (3.13) and mutliply with all orthogonal polynomials ϕ to obtain the following system:

∂

∂t
U j
+

∂

∂x
F j
= 0, ∀ 0 6 j 6 L,

U j
= U j (V1, . . . ,V j, . . . ,VL ) =

∫
Γ

U *
,

L
∑

l=0

Vlϕl+- ϕ
j ρ(y)dy,

F j
= F j (V1, . . . ,V j, . . . ,VL ) =

∫
Γ

F *
,U

*
,

L
∑

l=0

Vlϕl+-
+
- ϕ

j ρ(y)dy.

(3.14)

Here, U(V) is the function transforming entropy variables into conservative variables. The above system (3.14)
is a LN × LN system of non-linear conservation laws. The coupling between the variables is now through the
non-linear flux as well as the non-linear temporal flux as the mass matrix of the underlying Galerkin approximation
is no longer diagonal. The aim is to approximate (3.14), in order to construct approximations of (3.12).

One can prove that the system (3.14) satisfies an entropy inequality of the form,

St + Qx 6 0. (3.15)

Here, the entropy function and entropy flux are defined by,

S(x, t) =

∫
Γ

S *
,

L
∑

l=0

Vlϕl+- ρ(y)dy,

Q(x, t) =

∫
Γ

Q *
,

L
∑

l=0

Vlϕl+- ρ(y)dy.

(3.16)

Furthermore, the entropy function S is convex. Hence, by the Godunov-Mock theorem, the system is hyperbolic.
Consequently, the system (3.14) inherits the entropy framework from the underlying conservation law. Once the
hyperbolicity is shown, (3.14) can be discretized using the standard finite difference, finite volume or finite element
methodology for hyperbolic systems and the resulting statistical quantities of interest, computed in terms of the
gPC coefficients Vl . In addition to the difficulties of possibly large system size, the discretization of (3.14) has to
confront the issue of inverting the non-diagonal mass matrix U(V) at each time step. This can be done using a
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Newton method. It is straightforward, though notationally cumbersome, to derive the analogue of (3.14) in several
space dimensions.

However, given the already formidable computational cost of solving a high-dimensional system with a large
number of parameters, there have been many recent attempts to find gPC type expansions that guarantee hyperbol-
icity of the resulting truncated system without resorting to the expansion in entropy variables and the consequent
retrieval of the entropy variables by solving nonlinear systems at each time step. One such attempt is in [4, 3] and
references therein, where the authors present a novel splitting of the underlying system and expand the split systems
in a gPC basis in order to ensure that the resulting gPC system is hyperbolic. Such splittings have been obtained
for the one-dimensional shallow water and Euler equations.

Summing up, the stochastic Galerkin method provides a robust UQ framework, particularly when the gPC
expansion is in the entropy variables. The statistical moments and in fact, the entire solution random field, can
be computed. However, the computational cost is very high, particularly when the random inputs have a large
number of parameters. The lack of regularity, particularly with respect to uncertain parameters, inhibits the use of
compression techniques, such as those proposed in [5] for elliptic PDEs, that can lead to amelioration of the curse
of dimensionality. Moreover, the stochastic Galerkin method is intrusive. New code has to be written in order to
discretize (3.9) or (3.14). This prevents widespread use of this method as reusing existing code would be highly
desirable.

4 Stochastic collocation methods.

One class of non-intrusive methods for uncertainty quantification are the so-called stochastic collocation methods,
[18, 81] and references therein. In the present context, we describe stochastic collocation methods to approximate
the one-dimensional conservation law (3.1) with random initial data. The extension to several space dimensions
and uncertain fluxes, coefficients, sources, etc, is straightforward but involves complicated notation. To begin with,
we use the finite noise assumption and transform the random conservation law (3.1) to the following parametric

conservation law,
∂tU(x, t, y) + ∂xF(U(x, t, y)) = 0, (x, t, y) ∈ (R,R+, Γ),

U(x, 0, y) = U0(x, y), (x, y) ∈ (R, Γ).
(4.1)

Here, Γ is the P-dimensional parametric representation of the probability space Ω, described in section 3.

4.1 Standard stochastic collocation method

The standard collocation method (see [18, 81] and references therein) for discretizing the random space Γ consists
of seeking approximations of (4.1) that lie in the function space L1(R × R+) × Pl (Γ) where Pl (Γ) ⊂ L2

ρ (Γ) is the

span of tensor product polynomials of degree at most l = (l1, l2, . . . , lP ); i.e, Pl (Γ) = ⊗P
n=1Pln (Γn ) where

Pln = span(ymn , m = 0, 1, . . . , ln ), n = 1, . . . , P. (4.2)

Sparse tensor products can also be used in representing Pp .
The next step consists of selecting collocation points in the random space Γ by choosing zeros of polynomials,

orthogonal to the underlying probability density function ρ(y). For each parametric dimension p = 1, . . . , P, we
denote y

p

kp
, 1 6 kp 6 np + 1 be the (np + 1) roots of the orthogonal polynomial qnp+1 with respect to the weight

ρp .
Next, at each collocation point on the (sparse) tensor product grid, we can discretize the parametric conservation

law (4.1) by any standard method. Once, the solution at each of the collocation points is obtained, statistical
quantities of interest like the mean and the variance can be obtained by using suitable quadrature rules. The above
procedure is very simple to implement as any code for the underlying deterministic problem can be employed
at the appropriate collocation point and the statistics of interest can be readily computed. However, the key
principle underlying the convergence of a collocation procedure in the random space is appropriate regularity of
the solution in the random space, required in-order to ensure convergence of global approximation polynomials
like those considered above. Such a regularity is lacking, in general, for random conservation laws. Consequently,
a naive application of the stochastic collocation method results in high frequency spurious oscillations such as
those reported in [72] and references therein. Thus, the standard stochastic collocation method is not suitable for
approximating random conservation (balance) laws.
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4.2 Stochastic finite volume methods.

Given the problems with stochastic collocation methods in discretizing random conservation laws, an alternative
that takes into account discontinuities of the random entropy solution with respect to the uncertain parameters
y is the so-called stochastic finite volume method. Variants of this method have been proposed in [49], then
[53, 73, 72, 68, 31] and references therein.

Here we follow the presentation of [49, 53, 54]. For simplicity, we consider the one-dimensional random
(parametric) conservation law (4.1) and the finite-dimensional noise assumption (3.1). Recall that the probability
space Ω is represented by the parameter space Γ ⊂ RP . Furthermore, the underlying measure on Γ is ρ (we do not
need assume that ρ is a tensor product measure in this section). We abuse notation slightly to denote as,

E(Ψ(y)) =

∫
Γ

Ψ(y)dρ(y),

the expectation of a measurable function Ψ with respect to the measure ρ.
We consider a spatial discretisation for (4.1) with node points xi = i∆x where i belongs to some subset of Z, a

time step ∆t > 0 and set tn = n∆t, n ∈ N. The control volumes are, as usual, the intervals Ci = [xi−1/2, xi+1/2] with
xi+1/2 =

xi+xi+1
2 . We have uniform, |Ci | = ∆x, here, for simplicity only. We start from a finite volume scheme, and

again for the simplicity of exposition, we only consider a first order in time and space scheme. The generalization
to more accurate scheme is obvious, as well as to multi-dimensional problems, see [69] for an example using DG
method or [54] for an example using Residual Distribution methods.

Thus we define the deterministic scheme as

Un+1
i = Un

i −
∆t

∆x

(

F̂(Un
i ,U

n
i+1) − F̂(Un

i−1,U
n
i )

)

(4.3)

with U0
i

being an approximation of
∫
Ci

U0(x)dx/|Ci | and F̂ a consistent approximation of the underlying continuous
flux F.

When U0 or the flux F are uncertain, we perform the following procedure. First the set Γ ⊂ RP is subdivided
into non overlapping subsets Γj , j = 1, . . . , np and the variables are represented by their conditional expectations
in the Ω j subsets. More precisely, our set of unknowns is

Un
i, j ≈

E

(∫
Ci

U (x, tn, y) ��y ∈ Γj )
|Ci | ρ(Γj )

.

which evolves in time as

Un+1
i, j = Un

i, j −
∆t

∆x

(

E(F̂(Un
i ,U

n
i+1) ��Γj ) − E(F̂(Un

i−1,U
n
i ) ��Γj )) .

The scheme is fully defined provided the “flux” E(F̂(Un
l
,Un

l+1) ��Γk ) can be evaluated for any l and k.
This is the exactly the same issue that arises in solving the reconstruction problem for finite volume methods,

with the additional constraint that the underlying measure is dρ instead of the standard Lebesgue measure. We are
given a decomposition of Γ by non overlapping subsets Γi , i = 1, np of strictly positive measure:

Γ = ∪Nj=1Γj, ρ(Γj ) > 0.

We are given the conditional expectations, E(y|Γj ). Can we estimate for a given measurable function f , E( f (y))

? Recall that y = (y1, . . . , yP ), we do the following, for each Γi , we wish to evaluate a multivariate polynomial
Pi ∈ Pn (Γ1) of degree n such that

E(y|Γj ) =

∫
RP

1Γj (y)P(y) dρ

ρ(Γj )
for j ∈ Si . (4.4)

Here, Si is a stencil associated to Γi . This problem is reminiscent of what is done in finite volume schemes
to compute a polynomial reconstruction in order to increase the accuracy of the flux evaluation thanks to the
MUSCL extrapolation. Among the many references that have dealt with this problem, with the Lebesgue measure
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dx1 ⊗ dx2 . . . ⊗ dxn , one may quote [6] and for general meshes [71, 48]. A systematic method for computing the
solution of problem (4.4) is given in [57].

Assume that the stencil Si is defined, the technical condition that ensures a unique solution to problem (4.4) is
that the Vandermonde–like determinant (given here for one parametric variable for the sake of simplicity)

∆i = det
(

E(yl ��Γj ))
06l6n, j ∈Si

. (4.5)

is non zero. In the case of several random variable, the exponent l in (4.5) is replaced by a multi–index.
Once the solution of (4.4) is known, we can estimate

N
∑

j=1

∫
Γj

f
(

P(y)
)

dρ(y).

The following approximation results hold : if f ∈ Cp (R) with p > n then

����E( f (y)) −

N
∑

j=1

∫
Γj

f
(

P(y)
)

dρ(y)
���� 6 C(S) max

j

[

ρ(Γj )
p+1]

for a set of regular stencils.The proof is a straightforward generalization of the approximation results contained in
[46].

Centered, ENO and WENO-like such reconstructions, with and without tensorisation, have been considered
in [54, 69], in particular to handle possible discontinuities in the pdf and the solution. From a technical point of
view, any kind of pdf can be handled and the evaluation of the conditional expectations are performed with fixed

Gaussian-like quadrature rules: again see [54, 69] for details.
Summarizing, the stochastic finite volume method provides a possible UQ framework for random conservation

(balance) laws. It is non-intrusive, simple to implement and able to approximate discontinuities in the random
parametric space. However, the lack of regularity of the random solutions on the uncertain parameters precludes
gains in complexity by employing sparse grids or sparse tensor products. Consequently, the curse of dimensionality
only allows this method to be viable for a small to moderate number of sources of uncertainty. A notable exception
is provided in [68] where the authors use special properties of a scalar conservation law with random flux functions,
to design an adaptive hierarchical grid in the parameter space. With the resulting method, the authors were able to
overcome the curse of dimensionality due to the hierarchical dependence of the solution on parameters. However,
extensions of this approach to systems of conservation laws is unclear. In [55] the authors were partialy successful
in facing the curse of dimensionality via a multi-resolution method using Harten’s [29] framework, the price to pay
was an added complexity of the algorithm. This method was used in [56] for solving multiphase problems, and in
[41] some geophysical problems involving tsunamis.

5 Monte Carlo and Multi-level Monte Carlo methods.

Both the intrusive stochastic Galerkin method and the non-intrusive stochastic collocation finite volume method,
described above, suffer from the curse of dimensionality. An alternative paradigm that is robust with respect to
handling a large number of sources of uncertainty is that of statistical sampling methods or Monte Carlo methods.

5.1 Monte Carlo method

Our aim is to approximate the random balance law (2.10). The spatio-temporal discretization can be performed by
any standard Finite Volume or DG scheme, for instance (1.5). The probability space will be discretized using a
Monte Carlo (MC) algorithm consisting of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) initial data, flux, source term and coefficient
samples {Ul

0,F
l
j
, Sl, cl} with j = 1, · · · , d and l = 1, 2, . . . ,M from the random fields {U0,F j, S, c} and

approximate these by piecewise constant cell averages.
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2. Solve: For each realization {Ul
0,F

l
j
, Sl, cl}, the underlying balance law (2.10) is solved numerically by the

finite volume method (1.5) (or any suitable finite difference or finite element methods). We denote the FVM
solutions by U

l,n

T
, i.e. by cell averages {Ul,n

C
: C ∈ T } at the time level tn ,

U
l,n

T
(x) = U

l,n

C
, ∀x ∈ C, C ∈ T , l = 1, ...,M .

3. Estimate Statistics: We estimate the expectation of the random solution field with the sample mean (sample
average) of the approximate solution:

EM [Un
T ] :=

1

M

M
∑

l=1

U
l,n

T
. (5.1)

Higher statistical moments can be approximated analogously under suitable statistical regularity of the
underlying random entropy solutions [63].

The above algorithm is, at first sight, straightforward to implement. We remark that step 1 requires a (pseudo)
random number generator. Here, care must be exercised in ensuring good statistical properties in massively parallel
implementations (see [38, 66, 35] for details). In step 2, any standard (high-order) finite volume or DG scheme
can be used. Hence, existing (“legacy”) code for FVM (or DG) can be (re) used and there is no need to rewrite
FVM (or DG) code. Furthermore, the only (data) interaction between different samples is in step 3 when ensemble
averages are computed. Thus, the MC-FVM is non-intrusive as well as easily parallelizable.

5.1.1 Error and complexity analysis.

In order to prove a rigorous error estimate for the Monte Carlo finite volume approximation of the random entropy
solution of (2.10), one needs to assume that the underlying spatio-temporal discretization, for instance the finite
volume approximation (1.5) satisfies the following error estimate,

‖U(·,T ) − UT (·,T )‖L1 (D) 6 C(D,T )∆xs . (5.2)

Here, we denote UT to be the piecewise constant solution obtained by the finite volume scheme (1.5) and∆x = ∆xT
is the (spatial) mesh parameter, which is also related to the time step through the CFL number. Such an error
estimate holds for a standard monotone finite volume scheme with s 6 1 for multi-dimensional scalar conservation
laws. However, such a rigorous estimate is not available for systems of conservation laws.

Once we assume an error estimate for the spatio-temporal discretization, one can prove the following error
estimate for the Monte Carlo finite volume method (see [68] for the statement and proof of the rigorous result):

‖E[U(·, tn )] − EM [Un
T

]‖L2 (Ω;L1 (D)) ≤ CstatM
− 1

2 + Cst∆xs, ∀n > 0. (5.3)

The constants Cstat,Cst depend only on the second order statistics of the random inputs, the final time T and the
spatial domain D.

Note that the error estimate for the mean requires that the random field solution has finite second moments. An
analogous error estimate can be derived for higher moments of the solution, provided that the underlying solution
has finite higher-order moments. Based on the error analysis of [63, 68], we equilibrate the discretization and the
sampling errors in the a-priori estimate (5.3) and choose [64]

M = O(∆x−2s ), (5.4)

in-order to equilibrate the statistical error in (5.3) with the spatio-temporal error. With the choice (5.4), it is
straightforward to deduce that the asymptotic error vs. (computational) work estimate is then given by

‖E[u(·, tn )] − EM [un
T ]‖L2 (Ω;L1 (D)) . (Work)−s/(d+1+2s) . (5.5)

Here Work refers to the computational work that scales with the number of arithmetic operations (flops). The
above error vs. work estimate is considerably more expensive when compared to the underlying finite volume
discretization error for the corresponding deterministic problem, which scales as (Work)−s/(d+1) [63].

Hence, the Monte Carlo method is non-intrusive, easy to implement and parallelize and robust to the number
of uncertain dimensions (does not suffer from the curse of dimensionality). However, as indicated in (5.5), it is
very expensive computationally.
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5.2 Multi-level Monte Carlo Finite Volume Method

The low convergence rate (5.5) of the Monte Carlo method motivates the design of Multi-Level Monte Carlo
(MLMC) method, first proposed in [62] for numerical quadrature and [42] for solving stochastic differential
equations. It was adapted to the PDE context in [2] and to solve random hyperbolic conservation laws in [63, 64,
65, 38, 66, 67, 37, 36, 35, 68] and references therein.

The key idea behind the MLMC method is to simultaneously sample a hierarchy of discretizations of the PDE

with random inputs with a level-dependent number of samples. In the present setting, this amounts to running a
deterministic finite volume solver on a sequence of nested grids in space with correspondingly adapted time step
sizes, so as to ensure the validity of a CFL condition uniformly over all space discretizations of the hierarchy [63].

5.2.1 MLMC-FVM algorithm

The Multi-Level Monte-Carlo Finite-Volume (MLMCFVM for short) algorithm consists of the following four steps:

1. Hierarchy of space-time discretizations: Consider nested triangulations {Tℓ }∞ℓ=0 of the spatial domain D

with corresponding mesh widths ∆xℓ that satisfy:

∆xℓ = ∆x(Tℓ) = sup{diam(K ) : K ∈ Tℓ } = O(2−ℓ∆x0), (5.6)

where ∆x0 is the mesh width for the coarsest resolution and corresponds to the lowest level ℓ = 0.

2. Sample: For each level of resolution ℓ, we draw a level-dependent number Mℓ of independent, identically
distributed (i.i.d) samples from the input random fields {U0,F j, S, c}. Note that these random field inputs are
only sampled on Tℓ in the spatially discrete form, i.e. as realizations of cell-averages on triangulation Tℓ ,
to yield vectors {U0,ℓ (ω),F j,ℓ (ω), Sℓ (ω), cℓ (ω)}. on mesh Tℓ . We index the level-dependent number Mℓ of
samples of these vectors by k, i.e. we write

{Uk
0,ℓ,F

k
ℓ , S

k
ℓ , c

k
ℓ }

Mℓ

k=1 = {U0,ℓ (ωk ),F j,ℓ (ωk ), Sℓ (ωk ), cℓ (ωk ) : k = 1, ...,Mℓ } .

3. Solve: For each resolution level ℓ = 0, ..., L and for each realization of the random input data {Uk
0,ℓ,F

k
j,ℓ
, Sk

ℓ
, ck

ℓ
},

k = 1, ...,Mℓ , the resulting deterministic balance law (2.10) (for this particular realization) is solved nu-
merically by the finite Volume method (1.5) (or any other finite difference or finite element method) with
mesh width ∆xℓ . We denote the resulting ensemble of finite volume solutions by U

k,n

Tℓ
, k = 1, ...,Mℓ . These

constitute approximate cell averages {Uk,n

C
: C ∈ Tℓ } of the corresponding realization of the random balance

law at time level tn and at spatial resolution level ℓ,

4. Estimate solution statistics: Fix some positive integer L < ∞, corresponding to the highest level. We
estimate the expectation of the random solution field with the following estimator:

EL[U(·, tn )] :=
L
∑

ℓ=0

EMℓ
[Un
Tℓ
− Un

Tℓ−1
], (5.7)

with EMℓ
being the MC estimator defined in (5.1) for the level ℓ.

Remark 5.1. Higher statistical moments of the random entropy solution can be approximated analogously (see,
e.g., the sparse tensor discretization of [63]). An additional, new issue arises in the efficient numerical computation
of space-time correlation functions due to the high-dimensionality of such correlation functions. �

The MLMC-FVM is non-intrusive as any standard FVM (or DG) code can be used in step 3. Furthermore,
MLMC-FVM is amenable to efficient parallelization as data from different grid resolutions and different samples
only interacts in step 4.
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5.2.2 Error and complexity analysis

One can perform a rigorous error analysis of the MLMC-FVM method under the assumption that the underlying
spatio-temporal finite volume discretization (1.5) satisfies the error estimate (5.2). Under this assumption and the
added assumption that the initial data was uniformly (in Ω) compactly supported in Rd , it was proved in [68] that
the MLMC finite volume method satisfied the error estimate,

‖E[U(·, tn )] − EL[U(·, tn )]‖2
L2 (Ω;L1 (D))

6 C1∆x2s
L + C2

{ L
∑

ℓ=1

M−1
ℓ ∆xs

ℓ

}
+ C3M−1

0 (5.8)

Here, the parameter s > 0 refers to the convergence rate of the finite volume scheme for the deterministic problem
and C1,2,3 are constants depending only on the second moments of the random inputs, the final time T and the
spatial domain D.

The error bound (5.8) serves as the basis for a procedure to determine the optimal number Mℓ of samples at each
level such that the resulting computational work is minimized while setting the overall error in (5.8) to behave like
∆x2s

L
. Using the Lagrange multiplier technique from Giles [43] and references therein, results in, for 0 < s < d +1,

Mℓ ∼
∆x

(s+d+1)

2
ℓ

∆x2s
L

L
∑

j=0

∆x
(s−(d+1))

2
j

∼
∆x

(s+d+1)

2
ℓ

∆x
(3s+d+1)

2
L

(5.9)

Here A ∼ B signifies that A and B can be mutually bounded by a (constant) multiple of each other, with this
constant being independent of L, ℓ.

As in [68] we use the sample numbers Mℓ in (5.9) to obtain the following error estimate in terms of computational
work,

‖E[u(·, t)] − EL[u(·, t)]‖L2 (Ω;L1 (D)) ≤ C
(

Work({Mℓ }
L
ℓ=0;TL )

)−s/(d+1+s)
(5.10)

The complexity estimate (5.10) shows that the MLMC method is significantly more efficient than the Monte Carlo
method (5.5), in terms of computational work that needs to be performed for obtaining the same error. However,
to achieve a comparable error in L2(Ω; L1(D)), the MLMC method is more expensive than a single deterministic
solve.

5.2.3 Efficient implementation and parallelization.

The key issues in the efficient implementation of the MLMC method are to specify the number of levels of resolution
and the number of samples at the finest level of resolution. Once these inputs are provided, one can use the formula
(5.9) to determine the number of samples at each level of resolution. However, using the a priori determination of
samples is perhaps the simplest way of implementing MLMC. More sophisticated algorithms, such as the use of
run-up samples [36, 23], a posteriori error estimates [22] or use of continuation MLMC method [44] can be used
to determine sharper bounds on the number of levels and the number of samples at each level of resolution.

A key element in the gain of efficiency with MLMC techniques is a scalable implementation on massively parallel
HPC (high performance computing) hardware architectures. Unlike Monte Carlo, which is trivially parallelizable,
MLMC requires dedicated algorithms to ensure scalability. Both static [38] and dynamic load balancing algorithms
[35] have been developed for this purpose and shown to scale to atleast 50000 processors. Hybrid CPU-GPU
implementations have also been developed and shown to scale.

5.3 Numerical experiments

We present a few numerical experiments to illustrate the robustness of the stochastic finite volume and MLMC
methods.

5.3.1 Compressible Euler equations.

We start with a simple shock tube example that was initially suggested in [26]. The tube is filled with a caloricaly
perfect gas, γ = 1.4. The left and right states are
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The initial position of the diaphragm is uncertain: we set xd = 0.5 + 0.05ω where the stochastic parameter
ω ∈ [−1, 1] is described by various pdf (uniform, Gaussian, discontinuous), see figures 1, 2 and 3.

Figure 1: Shock tube with uncertain initial membrane position described by a uniform pdf. Convergence study for
the mean density distribution (left) and the standard deviation of the density distribution (right) computed using
the stochastic finite volume method.

Figure 2: Shock tube with uncertain initial membrane position described by a Gaussian pdf. Convergence study
for the mean density distribution (left) and the standard deviation of the density distribution (right) computed using
the stochastic finite volume method.

We have run this test case, involving a single random parameter, with the stochastic finite volume method. The
results, presented here, use 5, 10, 20 and 40 regularly spaced points in the random space and 200 points the space
direction. We can consider that the results are fully converged for this spatial resolution with 20 points. In [26] the
results are obtained with a gPC expansion up to polynomial order 11 and 200 points in the space direction.

The second example is a classical RAE2826 airfoil, with the inviscid compressible Euler equations. The
uncertainty is on the inflow velocity: we assume M∞ = 0.8, p∞ =

1
γ

and U∞ = 0.8± 2% with a uniform probability
law and a Gaussian one with variance 2%. The mesh is unstructured and has about 3, 800 vertices. The numerical
scheme uses the RD technology at second order of accuracy, see [50] and [52, 16] for extensions to the Navier-Stokes
equation and the turbulent case.
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Figure 3: Shock tube with uncertain initial membrane position described by a discontinuous pdf. Convergence
study for the mean density distribution (left) and the standard deviation of the density distribution (right) computed
using the stochastic finite volume method.

Figure 4: Pressure coefficient for the RAE 2828 case. Experimental data, result of the deterministic case and two
UQ simulations are super-imposed.

16



5.3.2 Uncertain Orszag-Tang vortex.

This test is taken from [66], section 6.2. The system of conservation laws under consideration are the ideal
magnetohyrodynamics (MHD) equations of plasma physics. We consider the ideal MHD equations on the two-
dimensional domain [0, 1]2 with periodic boundary conditions. The random initial data is an uncertain version
of the well-known Orszag-Tang benchmark test problem. We consider a random initial data with 8 sources of
uncertainty, namely in the amplitudes of the initial density and pressure, phases of the initial sinusoidal velocity
fields and the phases and amplitude of the initial solenoidal magnetic fields. The mean and the variance of the
density, computed at time T = 1.0 with an MLMC- finite volume method, with 8 levels of resolution, a finest grid
of 40962 and with 4 samples at the finest level, with the underlying finite volume method using a HLLC Riemann
solver, a second-order WENO reconstruction and upwind treatment of the Godunov-Powell source term [21], are
shown in figure 5. In this case, one computes a reference solution with the above configuration and calculates the
L2(Ω, L1(D)) error for both the mean and variance, with MC and MLMC methods (of both first and second order
spatio-temporal discretizations). These errors for the mean and variance, are plotted in figures 6 and 7, respectively.
They show that the MLMC method is at least 50 − 60 times faster than the MC method for the mean and 10 − 20
times faster for the variance, for a given error level. Thus, this justifies the complexity estimates derived in the
previous sub-sections, at least for this example.
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Figure 5: Uncertain Orszag-Tang vortex solution at t = 1.0 using MLMC-FVM (8 sources of uncertainty). Left:
Mean of density Right: Variance of density. Reproduced from [66]
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5.3.3 Propagation of acoustic waves in an uncertain medium.

This numerical example is taken from [67]. We consider the acoustic wave equation in three space dimensions,
rewritten as a linear system of conservation laws. The initial data is taken to be deterministic while the source
of uncertainty in this system is the coefficient c in (2.10). The coefficient, representing the permeability of the
medium, is modeled using a log-normal Gaussian random field, represented via a spectral expansion. A single
realization of this uncertain coefficient is shown in figure 8 (left). As seen in the figure, the medium is extremely
heterogenous with a layered structure and fine microstructures. The resulting random balance law has more than
2 million sources of uncertainty. Incident waves are modeled via a deterministic source term that amounts to
specifying a time periodic train of localized incident waves. The mean and variance of the acoustic pressure,
computed with an MLMC-finite difference method, with 6 levels of resolution, 8 samples at the finest level, a finest
grid of 10243, with an underlying second-order high-resolution finite difference method on the a Cartesian grid,
are shown in figure 8 (center) and figure 8 (right), respectively. The entire computation took 3 hours on 44, 000
cores. Currently, the MLMC method is only feasible method for computing problems with such high number of
sources of uncertainty.

Figure 8: An MLMC-finite difference simulation of propagation of acoustic waves in a layered three-dimensional
uncertain medium, modeled by a log-normal Gaussian random field. Left: A single realization of the uncertain
rock permeability Center: Mean of acoustic pressure at T = 0.6. Right: Variance of acoustic pressure at T = 0.6.
Figure reproduced from [67].
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5.3.4 UQ for the Lituya Bay mega-tsunami.

This numerical example is taken from [12]. The aim is to quantify uncertainty in simulations of the mega-tsunami
that was generated by a rockslide (induced in turn by an earthquake) in Lituya Bay, Alaska, in 1958. This event
resulted in the largest ever recorded run-up height of 524 m, generated by a tsunami. To simulate this event, one
uses a two-layer Savage-Hutter model [70], which is a non-conservative 4 × 4 hyperbolic system in two space
dimensions. The upper layer is water and the lower layer denotes the granular material such as rock or mud. The
model contains several source terms, that represent bottom friction, inter-layer friction and momentum exchange
between layers. These source terms are based on empirical laws such as the Manning law. The model consists of
several undetermined parameters of which, 3, namely the ratio of layer densities, the Coulomb friction angle and
the inter-layer friction parameter are very difficult to measure exactly and are only determined upto a probability
distribution. Thus, the resulting random system of balance laws has three sources of uncertainty. We plot the
mean and variance of the run-up height, at time T = 39s, using a MLMC method, with 4 levels of resolution, 16
samples at the finest level, and rectangular grid of 3648 × 1264 cells at the finest level are shown in figure 9. The
underlying spatio-temporal discretization is performed with a first-order path-conservative IFCP scheme [19]. The
results show that the standard deviation is approximately 5 percent of the mean, even though the initial standard
deviation was 30 percent of the mean. Thus, this simulation is fairly unsensitive to the uncertain parameters. The
entire simulation was completed is approximately 1 hour on a Tesla K20 GPU. We observed a gain of efficiency of
approximately 10 over a corresponding Monte Carlo simulation.

Figure 9: An MLMC-finite volume simulation of the run-up height of the Lituya Bay mega tsunami . Left: Mean
run-up height at T = 39s. Right: Variance of run-up height at T = 39s. Figure reproduced from [12].

5.3.5 A random Kelvin-Helmholtz problem.

The last numerical example is taken from a recent paper [76] and the MLMC computations are presented in a
forthcoming paper [39]. We consider the compressible Euler equations in the two-dimensional domain [0, 1]2 with
periodic boundary conditions. The uncertainty arises due to the initial data being a (very small) random perturbation
of the classic Kelvin-Helmholtz problem, see [76], with 20 sources of uncertainty in the initial data. The mean and
variance of the density, computed with a Monte Carlo method, on a Cartesian 10242 grid and with 400 MC samples
are shown in figure 10 (Top Row). The underlying finite volume scheme is the third-order entropy stable TeCNO
scheme of [80]. Surprisingly for this test case, the variance of the solution is at least three orders of magnitude
higher than the variance of the initial data. This amplification of variance is due to the generation of structures
at smaller and smaller scales, when the shear flow interacts with the contact discontinuity. In this particular case,
the MLMC method provides no gain in computational efficiency over the standard Monte Carlo method. This is
depicted in figure 10 (Bottom row, Left), where the L1 difference in the mean of the density, computed with the
MLMC and MC methods, at the same grid resolution for the finest grid and the same number of samples at the finest
grid resolution of MLMC, with respect to an MC reference solution computed with 1024 samples, is compared.
The results show that error due to MLMC is comparable to the error due to the MC calculation, provided that the
number of samples at the finest grid level of the MLMC calculation is the same as the number of MC samples.
Thus, in this case, the coarse levels of the MLMC method do not increase the accuracy of the computation and are
redundant. Given this observation, it is clear that the error estimate (5.8) cannot hold for this particular example. In
fact, even the error estimate (5.2) for the underlying spatio-temporal discretization, does not hold for this example.
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We see this from figure 10 (Bottom row, Right) where the difference in L1 between two successive mesh resolutions
for a single sample is shown. This figure shows that the error remains constant with respect to resolution and the
underlying finite volume scheme does not converge for this particular test case. It was also shown in [39] that even
weaker convergence bounds, such as the variance of the difference between successive resolutions, does not hold
for this particular problem, as structures at even smaller scales are generated upon mesh refinement.

6 Measure-valued and Statistical solutions.

It is interesting to note that the Monte Carlo method converges for the previous numerical experiment, as shown in
figure 10 (bottom left), even though the underlying spatio-temporal discretization may not converge in L1, as shown
in figure 10 (bottom right). The reason for this observed convergence was provided in recent papers [76, 78], see
also [28] and references therein. There, the authors proved that a Monte Carlo based algorithm, together with an
entropy stable scheme such as the TeCNO scheme of [80], converges to an entropy measure valued solution of the
underlying system of conservation laws. Measure valued solutions were proposed by [60] and are in fact Young

measures i.e, space-time parametrized probability measures on the phase spaceRN of (1.1). They can be interpreted
as point probability density functions. Furthermore, entropy measure valued solutions are consistent with the weak
solution (1.2) and with the entropy inequality. Existence of measure-valued solutions was shown in [76, 78] and
references therein, by proving convergence of a Monte Carlo based ensemble averaging algorithm. Moreover, the
convergence theorem imposed some properties on spatial discretizations as necessary conditions for convergence.
These properties are satisfied by arbitrarily high-order entropy stable schemes of [80] and the fully discrete shock
capturing space-time Discontinuous Galerkin methods of [7]. A large number of numerical experiments were
presented in [76, 78], which demonstrated that statistical quantifies of interest, such as the mean, variance and
point-pdf, can converge (with increasing grid resolution and number of Monte Carlo samples), even if individual
realizations do not converge, such as in the previous numerical experiment. Furthermore, the computations of [76]
also demonstrated that the measure-valued solution may not be atomic even if the initial data is an atomic young

measure, concentrated on a L1 function. Thus, there seems to be no such thing as a fully deterministic version of

multi-dimensional systems of conservation (balance) laws and the hitherto deterministic initial value problem for

(1.1), is in fact a problem in uncertainty quantification (UQ).

Measure-valued solutions exist for all times and are able to represent limits of numerical approximation of
systems of conservation (balance) laws (1.1). They also serve as an UQ framework within which the random initial
data is represented as a Young measure (or point probability distribution). However, measure-valued solutions
are not necessarily unique, particularly when the initial data is non-atomic. This holds true even for scalar
conservation laws. Thus, one needs to augment measure-valued solutions with additional constraints in order to
recover uniqueness. One such attempt has been made recently in [77]. In this paper, the authors propose the
concept of statistical solutions of systems of conservation laws as a suitable solution paradigm as well as an UQ
framework. Statistical solutions are time-parametrized probability measures on a Lp function space. By a novel
equivalence property shown in [77], this probability measure on an infinite-dimensional space is equivalent to a
hierarchy of Young measures on finite-dimensional tensor product domains. This hierarchy is termed a correlation

measure and its k-th member, termed a k-point correlation marginal is a Young measure that encodes information
about correlations (joint probabilities) of the underlying functions at k distinct points of the spatial domain. The
one-point correlation marginal is the classical Young measure. Certain moments of the correlation measures,
the so-called correlation functions, determine the underlying probability measure on Lp uniquely. Hence, the
time-evolution of statistical solutions is specified by infinite family of coupled PDEs, each evolving a correlation
function. Well-posedness of entropy statistical solutions was shown in [77]. It turns out that the same Monte Carlo
ensemble averaging algorithm, proposed in [76], also converges, under sufficient conditions, to a statistical solution
of the underlying system. This will be shown in a forthcoming paper [75]. Thus, statistical solutions may provide
a suitable solution framework for multi-dimensional systems of conservation laws.

Statistical solutions do provide an alternative paradigm for UQ. Instead of modeling the uncertainty in initial
data, sources, coefficients etc in terms of random fields, one can instead define a probability measure on the
underlying Lp space by taking the law of the random field. Thus, the initial data will be a probability measure on
Lp and will evolve in the form of a statistical solution. The advantages of this approach over that of random fields
and random entropy solutions are

i. The modeling of uncertainty of initial inputs, and solutions, is completely independent of any parametrization.
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Random fields force one to pick a particular parametrization whereas just specifying their law provides for a
more robust and parameter independent approach. The same is true for the resulting statistical solutions.

ii. Statistical solutions can exist (globally in time) even if there is no data to solution operator in Lp spaces.
Such a global existence result may not be possible for random entropy solutions as they rely on the existence
of data to solution operators, which may not exist for multi-dimensional system of conservation laws [76].

iii. Convergent Monte Carlo approximations of statistical solutions are possible. On the other hand, it is very
difficult to obtain rigorous convergence results for any kind of approximation of random entropy solutions
for multi-dimensional systems of conservation (balance) laws, in view of the fact that error estimates for the
deterministic problem, such as (5.2), that underly any convergence analysis, do not hold.

7 Conclusion and perspectives.

Inputs to any system of balance laws, such as the initial data, fluxes, coefficients, source terms and boundary
conditions, are obtained through measurement. Any measurement process leads to some degree of uncertainty in
the input. This input uncertainty propagates into the solution and needs to be modeled and computed efficiently.
Moreover, systems of conservation (balance) laws, particularly in several space dimensions, might require a
probabilistic solution paradigm, even if the inputs are determined exactly. This is largely due to the chaotic behavior
of unstable and turbulent flows. Thus, uncertainty quantification (UQ) is a very important aspect for hyperbolic
PDEs, from the perspective of applications and in order to answer the fundamental question of well-posedness of
these systems.

The broad area of UQ for hyperbolic systems of balance laws has witnessed a very large amount of research
activity in recent years. In this article, we have reviewed some important themes within UQ for hyperbolic
problems. The most popular current framework for modeling uncertain inputs (and solutions) is that of random
fields and random entropy solutions. Input uncertainty is expressed in terms of finite number of parameters,
for instance determined by the underlying physics. An alternative approach consists of performing a Karhunen-
Loeve expansion or other spectral expansions, and then truncating to a finite sum, based on the decay of the
Karhunen-Loeve eigenvalues. In either case, the probability space could be very high dimensional, posing an
enormous challenge to the design of efficient algorithms for UQ. Another vexing problem stems from the fact that
discontinuities in space-time (which are inevitable in nonlinear hyperbolic problems) propagate into the random
space. Consequently, there is no regularity of the random entropy solution with respect to uncertain parameters.
This lack of regularity impedes the adaptation of efficient algorithms from elliptic and parabolic problems to UQ
for hyperbolic problems [58].

Nevertheless, several methods for UQ, in the context of hyperbolic problems, have been proposed. We have
described the stochastic Galerkin method, based on generalized polynomial chaos. A direct version of this method
results in systems that may not necessarily be hyperbolic. A gPC expansion in terms of entropy variables (or cleverly
designed splittings) can alleviate this problem. However, stochastic Galerkin methods are currently restricted to
problems with low to moderate number of uncertain parameters, due to the intrinsic lack of regularity, that prevents
one from using hierarchical data representations. Furthermore, stochastic Galerkin methods are intrusive.

A non- or semi-intrusive alternative is proved by the stochastic collocation methods. Lack of regularity inhibits
a direct adaptation of stochastic collocation methods, developed for elliptic and parabolic problems. A promising
variant is provided by the stochastic collocation finite volume methods reviewed here. These methods use non-
oscillatory piecewise polynomial basis functions and are adapted to the presence of discontinuities in the random
space. However, the use of compression techniques such as sparse grids and other hierarchical representations is
inhibited by the lack of regularity. Thus, stochastic collocation finite volume methods are able to only handle low
to moderate number of uncertain parameters currently. However, some spatial and parametric regularity can be
obtained in several cases, see the so-called probabilistic shock profiles analyzed in [13, 69].

An alternative class of methods are of the statistical sampling or Monte Carlo type. These methods are robust,
totally non-intrusive and trivial to parallelize. The performance of Monte Carlo methods is also independent of
the number of uncertain parameters. However, these methods converge rather slowly with respect to the number of
samples. This slow convergence and resultant high computational cost motivate the design of Monte Carlo variants.
A promising framework is that of Multi-level Monte Carlo (MLMC) methods, in which the problem is approximated
on a sequence of spatio-temporal mesh resolutions. A large number of samples are drawn on the coarse meshes
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while a very small number of samples are drawn on the fine mesh resolutions. The MLMC estimator is based on
details i.e, difference of the solution on successive meshes. If the underlying spatio-temporal discretization of the
deterministic problem converges in Lp , then one can prove that the MLMC method will be more computationally
efficient than the Monte Carlo method. This is also demonstrated by a large number of numerical experiments
that show that the MLMC method is indeed, orders of magnitude, faster than the corresponding MC computation.
Moreover, MLMC can handle problems with very large number of sources of uncertainty. We have presented an
example with more than 2 million sources of uncertainty. Augmented with novel algorithms for static or dynamic
load balancing on very large scale massively parallel implementations, MLMC can be a method of choice for a
large number of UQ problems, arising in science and engineering.

However, there are problems for which MLMC is no better than the underlying MC method. These are problems
that involve the presence of a very large number of spatial and/or temporal scales, that cannot be resolved even on
the finest of available mesh resolutions. In fact, the underlying inviscid deterministic problem is not necessarily
well-posed for these unstable and turbulent flows. On the other hand, one can resort to weaker solution concepts,
such as measure valued and statistical solutions, for these problems. Statistical solutions are an attractive framework
as one-point statistics (young measures) are augmented by multi-point spatial correlations. Thus, they can serve as
a paradigm for uncertainty quantification for unstable and turbulent flows. Moreover, one can show convergence of
Monte Carlo algorithms to statistical solutions. However, these concepts are in the very early stages of development
and the jury is still out on them. On the other hand, they can motivate the design of Monte Carlo variants such as
quasi-Monte Carlo, ANOVA decompositions [83] or deterministic algorithms for computing statistical solutions.

We have reviewed only the problem of uncertainty propagation or forward UQ in this article. Inverse problems,
particularly in the Bayesian framework [8] are very important in practice but hardly investigated in the context of
hyperbolic problems. One example is [34] where one determines the inflow conditions for an hypersonic vehicle
from heat flow and pressure measurement on the wall of the vehicle. Similarly, model order reduction is a related
fundamental issue that is only seeing the beginning of a research program [51]. We conclude by stating that the
subject of UQ for hyperbolic problems is still in its infancy and will see substantial development in the coming
years.
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