
Multilevel QMC with Product Weights for

Affine-Parametric, Elliptic PDEs

R. N. Gantner and L. Herrmann and Ch. Schwab

Research Report No. 2016-54

December 2016
Latest revision: July 2017

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding SNF: 159940, 149819



Multilevel QMC with Product Weights for
Affine-Parametric, Elliptic PDEs

Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

Abstract We present an error analysis of higher order Quasi-Monte Carlo (QMC)

integration and of randomly shifted QMC lattice rules for parametric operator equa-

tions with uncertain input data taking values in Banach spaces. Parametric expansions

of these input data in locally supported bases such as splines or wavelets was shown

in [R.N. Gantner, L. Herrmann, and Ch. Schwab, Quasi-Monte Carlo integration for

affine-parametric, elliptic PDEs: local supports and product weights, Report 2016-32,

Seminar for Applied Mathematics, ETH Zürich] to allow for dimension independent

convergence rates of combined QMC-Galerkin approximations. In the present work,

we review and refine the results in that reference to the multilevel setting, along the

lines of [F.Y. Kuo, Ch. Schwab, and I.H. Sloan: Multi-level Quasi-Monte Carlo Finite

Element Methods for a Class of Elliptic PDEs with Random Coefficients, Journ.

Found. Comp. Math. 15(2) 441-449 (2015)] where randomly shifted lattice rules and

globally supported representations were considered, and also the results of [J. Dick,

F.Y. Kuo, Q.T. LeGia, and Ch. Schwab: Multi-level higher order QMC Galerkin

discretization for affine parametric operator equations, SIAM J. Numer. Anal., 54/4

(2016), pp. 2541-2568] in the particular situation of locally supported bases in the

parametrization of uncertain input data. In particular, we show that locally supported

basis functions allow for multilevel QMC quadrature with product weights, and

prove new error vs. work estimates superior to those in these references (albeit at

stronger, mixed regularity assumptions on the parametric integrand functions than

what was required in the single-level QMC error analysis in the first reference above).

Numerical experiments on a model affine parametric elliptic problem confirm the

analysis.
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2 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

1 Introduction

A core task in computational uncertainty quantification (computational UQ for short)

is to approximate the statistics of (functionals of) solutions to partial differential

equations (PDEs for short) which depend on parameters describing uncertain input

data. Upon placing measures on the set of admissible parameters, the computation of

mathematical expectations in so-called forward UQ and in Bayesian inverse UQ of

such PDEs on possibly large sets of data amounts to a problem of high dimensional

numerical integration; we refer to the surveys [26, 5, 4] and the references there for

details.

In the present note, we address the numerical analysis of high-dimensional nu-

merical integrations methods of Quasi Monte-Carlo (QMC for short) type for the

efficient numerical approximation of expectations of solutions of parametric PDEs

over high-dimensional parameter spaces. Pioneering contributions to the mathemat-

ical foundation of dimension-independent convergence rates for QMC quadrature

methods for such problems, that also the present note will draw on, have been made

by I. H. Sloan and H. Woźniakowski in [30], after earlier, foundational work by I. H.

Sloan and S. Joe in [27].

Specifically, we consider the linear, affine-parametric elliptic PDE

−∇ · (a(x,yyy)∇u(x,yyy)) = f (x) in D, u(x,yyy)
∣∣∣
Γ1

= 0,

a(x,yyy)∇u(x,yyy) ·n(x)
∣∣∣
Γ2

= 0,
(1)

with input a(x,yyy) parametrized by yyy = (y j) j≥1, fixed right hand side f (x), and mixed

boundary conditions. The domain D⊂R
d , d = 1,2, is a polygon with straight sides or

an interval. The set Γ1 6= /0 is the union of some of the closed edges of ∂D, Γ2 :=D\Γ1,

and n is the unit outward pointing normal vector of D. Specifically, QMC rules with

product weights are considered which are known to have linear complexity in the

integration dimension, cp. [24, 25]. The purpose of the present paper is to prove error

versus work bounds of these algorithms, with explicit estimation of constants on

the dimension s of integration, and of the form O(ε−θ ), θ > 0, for a given accuracy

ε > 0.

Convergence analysis of QMC methods with randomly shifted lattice rules applied

to a parametric PDE of the type of (1) was first established in [22] together with the

survey [21]. Randomly shifted lattice rules were first proposed in [28]. A multilevel

version for parametric PDEs was first analyzed in [23]. This theory was extended in [6,

7] with interlaced polynomial lattice rules, which achieve higher order convergence

rates. These convergence rates are independent of the number of scalar variables

that is the dimension of the domain of intergration. Conditions for such dimension

independent error bounds of QMC algorithms were first shown in the seminal work

[30] for integrand functions belonging to certain weighted function spaces with so-

called product weights. In [21], analogous results were shown to hold for randomly

shifted lattice rules, and for input parametrizations in terms of globally supported
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Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs 3

basis functions (as, e.g., Karhunen-Loève expansions) with so-called product and

order (POD) dependent weights. General references for QMC integration are [21, 8];

see also the survey [13] for multilevel Monte Carlo methods and [9, 20] for available

software implementations.

As in the mentioned references, we admit parameter vectors yyy = (y j) j≥1 whose

components take values in the closed interval
[
− 1

2
, 1

2

]
, i.e., we will consider

yyy ∈U :=

[
−1

2
,

1

2

]N
.

We model uncertainty in diffusion coefficients a(x,yyy) to the PDE (1) by assuming

the parameter vectors to be independent, identically distributed (i.i.d.) with respect

to the uniform product probability measure

µ(dyyy) :=
⊗

j≥1

dy j.

The triplet (U,
⊗

j≥1 B([−1/2,1/2]),µ) is a probability space. For any Banach

space B, the mathematical expectation of F with respect to the probability measure

µ is a Bochner integral of the strongly measurable, integrable map F : U → B which

will be denoted by

E(F) :=
∫

U
F(yyy)µ(dyyy). (2)

The parametric input a(x,yyy) of (1) is assumed to be of the form

a(x,yyy) = ā(x)+ ∑
j≥1

y jψ j(x), a.e. x ∈ D,yyy ∈U, (3)

where {ā,ψ j : j ≥ 1} ⊂ L∞(D) and ā is such that 0 < āmin ≤ āmax exist and satisfy

āmin ≤ ess infx∈D{ā(x)} ≤ esssupx∈D{ā(x)} ≤ āmax.

Convergence analysis for QMC with product weights was recently carried out in [10]

under the assumption that there exists κ ∈ (0,1) and a sequence (b j) j≥1 ∈ (0,1]N

such that ∥∥∥∥
∑ j≥1 |ψ j|/b j

2ā

∥∥∥∥
L∞(D)

≤ κ < 1. (A1)

A (dimension independent) convergence rate of 1/p in terms of the number of

QMC points for the approximate evaluation of (2) was shown in [10, Section 6] if

(b j) j≥1 ∈ ℓp(N) for the range p ∈ (0,2]. These rates coincide, in the mentioned range

of summability exponents, with the convergence rates of best N-term approximation

rates of generalized polynomial chaos expansions obtained in [3, Theorem 1.2

and Equation (1.11)]. As in [3], the assumption in (A1) can accomodate possible

localization in D of the supports of the function system (ψ j) j≥1.

For every parameter instance yyy ∈ U , in the physical domain D a standard, first

order accurate Galerkin Finite Element (FE for short) discretization of the parametric
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4 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

PDE (1) will be applied. In the polygonal domain D, first order FEM based on

sequences of uniformly refined, regular simplicial meshes are well known to converge

at suboptimal rates due to corner singularities in the solution, even if a(x,yyy) and f

in (1) are smooth. To establish full FE convergence rates on locally refined meshes

coupled with the QMC error estimates, parametric regularity estimates in Kondrat’ev

spaces will be demonstrated.

In Section 2 well-posedness of the parametric solution and approximation by

dimension truncation and FE is discussed. Particular weighted Sobolev spaces of

parametric regularity that are required for the error analysis of multilevel QMC and

general error estimates are reviewed in Section 3. Parametric regularity estimates of

the dimension truncation and FE error are proven in Section 4. These estimates yield

error bounds of multilevel QMC algorithms that are demonstrated in Section 5. In

Section 6, parameter choices are derived that minimize the needed work for a certain

error threshold. In the numerical experiments, we analyze piecewise (bi)linear wavelet

basies to expand the diffusion coefficient in one and two spatial dimensions. The

experiment confirms the theory and also shows that the multilevel QMC algorithm

beats the single-level version comparing the needed work against the achieved

accuracy.

2 Well-posedness and spatial approximation

The parametric problem in (1) admits a symmetric variational formulation with

trial and test space V := {v ∈ H1(D) : v|Γ1
= 0}, with dual space denoted by V ∗ =

H−1(D), where v|Γ1
= 0 is to be understood as a trace in H1/2(Γ1). Let f ∈V ∗ and

let the assumption in (A1) be satisfied. Then the parametric weak formulation of (1)

reads: For every yyy ∈U find u(·,yyy) ∈V such that

∫

D
a(·,yyy)∇u(·,yyy) ·∇vdx = 〈 f ,v〉V ∗,V , ∀v ∈V, (4)

where 〈·, ·〉V ∗,V denotes the dual pairing between V and V ∗. Since the assumption in

(A1) implies that

0 < (1−κ)āmin ≤ ess infx∈D{a(x,yyy)}, yyy ∈U,

and

esssupx∈D{a(x,yyy)} ≤ (1+κ)āmax, yyy ∈U,

the parametric bilinear form (w,v) 7→ ∫
D a(yyy)∇w ·∇vdx is continuous and coercive on

V ×V , uniformly with respect to the parameter yyy ∈U . By the Lax–Milgram lemma

the unique solution u(·,yyy) ∈V to (4) exists, is a strongly measurable mapping from

U to V (by the second Strang lemma), and satisfies the a priori estimate

‖u(·,yyy)‖V ≤ ‖ f‖V ∗

(1−κ)āmin

, yyy ∈U.
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Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs 5

A finite dimensional domain of integration which is required for the use of QMC

is achieved by truncating the expansion of a(x,yyy) to a finite number of s ∈ N terms.

We introduce the notation that for every yyy ∈ U , yyy{1:s} is such that (yyy{1:s}) j = y j if

j ≤ s and 0 otherwise, where {1 : s} denotes the set {1, . . . ,s}. Specifically, for every

s ∈ N define

us(·,yyy) := u(·,yyy{1:s}), yyy ∈U.

Proposition 1 ([10, Proposition 8]). Let the assumption in (A1) be satisfied for

some κ ∈ (0,1) and recall the right hand side f ∈V ∗ in (4). If for some s ∈ N

κ āmax

(1−κ)āmin

max
j≥s+1

{b j}< 1,

then there exists a constant C > 0 such that for every G(·) ∈V ∗

|E(G(u))−E(G(us))| ≤C‖G(·)‖V ∗‖ f‖V ∗

(
max
j≥s+1

{b j}
)2

.

For the study of the spatial regularity of u(·,yyy), we consider weighted Sobolev spaces

of Kondrat’ev type, which allow for full regularity shifts in polygonal domains

D ⊂ R
2 cp. [2]. In our setting the domain D is either a polygon in R

2 with corners

{c1, . . . ,cJ} or an interval. To introduce weighted Sobolev spaces, we define the

functions ri(x) := |x− ci|, x ∈ D, i = 1, . . . ,J, where | · | denotes the Euclidean norm.

For a J-tuple βββ = (β1, . . . ,βJ) with βi ∈ [0,1), i = 1, . . . ,J, we define the weight

function Φβββ by

Φβββ (x) :=
J

∏
i=1

r
βi

i (x), x ∈ D.

For multi-indices ααα ∈N
2
0, define the notation ∂ ααα

x := ∂ |ααα|/(∂x
α1
1 ∂x

α2
2 ). We define the

weighted spaces L2
βββ
(D) and H2

βββ
(D) as the completion of C∞(D) with respect to the

following norms

‖v‖L2
βββ
(D) := ‖vΦβββ‖L2(D) (5)

and ‖v‖H2
βββ
(D) is given by

‖v‖2
H2

βββ
(D)

:= ‖v‖2
H1(D)+ ∑

|ααα|=2

‖|∂ ααα
x v|Φβββ‖2

L2(D).

In the corresponding weighted Sobolev spaces, there is a full regularity shift of the

Laplacean, cp. [2, Theorem 3.2 and Equation (3.2)], i.e., there exists a constant C > 0

such that for every w ∈V satisfying ∆w ∈ L2
βββ
(D) there holds

‖w‖H2
βββ
(D) ≤C‖∆w‖L2

βββ
(D), (6)

Page:5 job:GantnerHerrmannSchwab_Sloan80_rev1 macro:svmult.cls date/time:20-Jul-2017/18:03



6 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

where βi > 1−π/ωi and βi ≥ 0, where ωi denotes the interior angle of the corner ci

for i = 1, . . . ,J such that both edges that have ci as an endpoint are both in Γ1 or Γ2.

Otherwise (change of the boundary conditions at ci), we require βi > 1−π/(2ωi) and

βi ≥ 0. Note that we allow the case ωi = π , which facilitates the case that the boundary

conditions change within an edge of ∂D. Hence, in the case that the domain D is

convex and Γ1 = ∂D, we may choose βββ = (0, . . . ,0). There holds an approximation

property in FE spaces on D with local mesh refinement towards the corners of D.

To state it, let {Tℓ}ℓ≥0 be a sequence of regular, simplicial triangulations of the

polygon D, which can be generated either by judicious mesh grading in a vicinity

of each corner of D cp. [2, Section 4] or by newest vertex bisection, cp. [12]. Let

Vℓ := {v ∈V : v|K ∈ P1(K),K ∈Tℓ}, ℓ≥ 0, where P1(K) denotes the affine functions

on K. The FE space Vℓ is of finite dimension Mℓ := dim(Vℓ), ℓ≥ 0. Then, there exists

a constant C > 0 such that for every w ∈ H2
βββ
(D) and every ℓ≥ 0 there exists wℓ ∈Vℓ

‖w−wℓ‖V ≤CM
−1/d

ℓ ‖w‖H2
βββ
(D), (7)

where d = 1,2 is the dimension of the domain D. For d = 2, and in the case of graded

meshes, this follows, for example, from [2, Lemmas 4.1 and 4.5]. An approximation

property of this kind for nearest vertex bisection is shown in [12]. The regularity shift

in (6) and the approximation property in (7) also hold if D is an interval (for d = 1).

Assume that the right hand side f ∈ L2
βββ
(D), and that {|∇ā|Φβββ , |∇ψ j|Φβββ : j ≥

1} ⊂ L∞(D), and that there exists a bounded, positive sequence (b̄ j) j≥1, which

satisfies ∥∥∥∥∥

(
|∇ā|+ ∑

j≥1

|∇ψ j|
b̄ j

)
Φβββ

∥∥∥∥∥
L∞(D)

=: K < ∞. (A2)

This assumption readily implies that supyyy∈U{‖|∇a(·,yyy)|Φβββ‖L∞(D)}< ∞. As a con-

sequence, |∇a(·,yyy)| ∈ L∞(D̃) and ∆u(·,yyy) ∈ L2(D̃) for every compactly included

subset D̃ ⊂⊂ D and yyy ∈U . Then, by the divergence theorem and by the product rule

for every v ∈C∞
0 (D)⊂V

∫

D
a(·,yyy)∇u(·,yyy) ·∇vdx =−

∫

D
[∇ · (a(·,yyy)∇u(·,yyy))]vdx

=−
∫

D
(a(·,yyy)∆u(·,yyy)+∇a(·,yyy) ·∇u(·,yyy))vdx.

We have to show that ∆u(yyy) ∈ L2
βββ
(D). By duality of the space L2

βββ
(D), the previous

identity, and by the Cauchy–Schwarz inequality,
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‖a(·,yyy)∆u(·,yyy)‖L2
βββ
(D) = sup

v∈L2
βββ
(D),‖v‖

L2
βββ
(D)

≤1

∫

D
a(·,yyy)∆u(·,yyy)vΦ2

βββ dx

= sup
v∈C∞

0 (D),‖v‖
L2(D)

≤1

∫

D
a(·,yyy)∆u(·,yyy)vΦβββ dx

= sup
v∈C∞

0 (D),‖v‖
L2(D)

≤1

∫

D
( f +∇a(·,yyy) ·∇u(·,yyy))vΦβββ dx

≤ ‖ f‖L2
βββ
(D)+‖|∇a(·,yyy)|Φβββ‖L∞(D)‖u(·,yyy)‖V .

(8)

Since ess infx∈D{a(x,yyy)} ≥ (1− κ)āmin, ∆u(yyy) ∈ L2
βββ
(D). In (8), we applied that

C∞
0 (D) is dense in L2(D) and used that the operator of pointwise multiplication

w 7→ wΦ−βββ is an isometry from L2(D) to L2
βββ
(D).

The parametric FE solution is defined as the unique solution of the variational

problem: for yyy ∈U and ℓ≥ 0, find uTℓ(·,yyy) ∈Vℓ such that

∫

D
a(·,yyy)∇uTℓ(·,yyy) ·∇vdx = 〈 f ,v〉V ∗,V , ∀v ∈Vℓ. (9)

Well-posedness of the parametric FE solution also follows by the Lax–Milgram

lemma. As above, we define for every truncation level s ∈ N and ℓ ∈ N0

us,Tℓ(·,yyy) := uTℓ(·,yyy{1:s}), yyy ∈U.

By Céa’s lemma, an Aubin–Nitsche argument, Proposition 1, (6), (7), and (8), there

exists a constant C > 0 such that for every s ∈ N, ℓ≥ 0, and every G(·) ∈ L2
βββ
(D),

|E(G(u))−E(G(us,Tℓ))| ≤C‖G(·)‖V ∗‖ f‖V ∗
(
sup j≥s+1{b j}

)2

+C‖G(·)‖L2
βββ
(D)‖ f‖L2

βββ
(D)(Mℓ)

−2/d .
(10)

Remark 1. If f and G(·) have less regularity, say f ∈ (V ∗,L2
βββ
(D))t,∞ and G(·) ∈

(V ∗,L2
βββ
(D))t ′,∞, t, t ′ ∈ [0,1], the estimate in (10) holds with M

−(t+t ′)/d

ℓ . This follows

by interpolation. The interpolation spaces are in the sense of the K-method, cp. [31].

Since L2
βββ
(D)⊂V ∗ continuously which follows by [2, Equation (3.2)], V ∗ and L2

βββ
(D)

is an interpolation couple. Naturally the embedding H−1+t ′(D) = (V ∗,L2(D))t ′,2 ⊂
(V ∗,L2

βββ
(D))t ′,∞ is continuous, since L2(D) is continuously embedded in L2

βββ
(D).

3 Multilevel QMC integration

Randomly shifted lattice rules and interlaced polynomial lattice rule are QMC rules

that have well known worst case error estimates in particular weighted Sobolev
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spaces of regularity with respect to the dimensionally truncated parameter vectors

yyy{1:s}, s ∈ N. Generally, these QMC rules approximate dimensionally truncated

integrals

Is(F) :=
∫

[− 1
2 ,

1
2 ]

s
F(yyy)dyyy.

Denote by QRS
s,N(·) and QIP

s,N(·) randomly shifted lattice rules and interlaced poly-

nomial lattice rules in s dimension with N points, respectively. If the superscript

is omitted both of the QMC rules are meant. For sequences (sℓ)ℓ≥0 of truncation

dimensions and numbers of QMC points (Nℓ)ℓ≥0, and for the meshes {Tℓ}ℓ≥0 from

Section 2, the multilevel QMC quadrature for L ∈ N levels is, for every G(·) ∈V ∗,

defined by

QL(G(uL)) :=
L

∑
ℓ=0

Qsℓ,Nℓ
(G(uℓ−uℓ−1)),

where we introduced the notation uℓ := usℓ,Tℓ , ℓ ∈ N0, and have set u−1 := 0. For

the error analysis, we introduce for a sequence of QMC weights γγγ = (γu)u⊂N the

weighted Sobolev spaces Ws,γγγ and Ws,α,γγγ,q,r as closures of C∞([−1/2,1/2]s) with

respect to the norms

‖F‖Ws,γγγ :=

(

∑
u⊂{1:s}

γ−1
u

∫

[− 1
2 ,

1
2 ]

|u|

∣∣∣∣
∫

[− 1
2 ,

1
2 ]

s−|u|
∂u

yyy F(yyy)dyyy{1:s}\u

∣∣∣∣
2

dyyy
u

)1/2

and for 2 ≤ α ∈ N, q,r ∈ [1,∞]

‖F‖Ws,α,γγγ,q,r :=

(

∑
u⊂{1:s}

(
γ
−q
u ∑

v⊂u

∑
τττ
u\v∈{1:α}|u\v|

∫

[− 1
2 ,

1
2 ]

|v|

∣∣∣∣
∫

[− 1
2 ,

1
2 ]

s−|v|
∂
(ααα,τττ

u\v,000)
yyy F(yyy)dyyy{1:s}\v

∣∣∣∣
q

dyyy
v

)r/q)1/r

with the obvious modifications if q or r is infinite. Here, (αααv,τττu\v,000) ∈ {0 : α}s

denotes a multi-index such that (αααv,τττu\v,000) j = α for j ∈ v, (αααv,τττu\v,000) j = τττ j for

j ∈ u\v, and (αααv,τττu\v,000) j = 0 for j /∈ u, for every u⊆{1 : s}, v⊆ u,τττ ∈{1 : α}|u\v|.
Note that the integer α ≥ 2 is the interlacing factor. For every u⊂{1 : s}, dyyy

u
denotes

the product measure
⊗

j∈u dy j. The following two estimates follow essentially from

the worst case error estimates in [22, Theorem 2.1] and [6, Theorem 3.10] for QRS
s,N(·)

and QIP
s,N(·), respectively. For every λ ∈ (1/2,1],

E
∆∆∆ (|IsL

(G(uL))−QRS
L (G(uL))|2)

≤
L

∑
ℓ=0

(

∑
/0 6=u⊂{1:sℓ}

γλ
u

(
2ζ (2λ )

(2π2)λ

)|u|)1/λ

(ϕ(Nℓ))
−1/λ‖G(uℓ−uℓ−1)‖2

Wsℓ,γγγ
,

(11)
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cp. [23, Equation (25)], where ∆∆∆ denotes the random shift and ϕ denotes the Euler

totient function. For every λ ∈ (1/α,1],

|IsL
(G(uL))−QIP

L (G(uL))|

≤
L

∑
ℓ=0

(
2

Nℓ−1
∑

/0 6=u⊂{1:sℓ}
γλ
u
(ρα(λ ))

|u|
)1/λ

‖G(uℓ−uℓ−1)‖Wsℓ,α,γγγ,∞,∞ ,
(12)

cp. [7, Equation (42)], where the constant ρα(λ ) is finite if λ > 1/α as stated in [6,

Equation (3.37)]. We remark that the choice of λ , α , γγγ in (11) and (12) may also

depend on the level ℓ= 0, . . . ,L, which is not explicit in the notation.

4 Parametric regularity

As in the single level QMC analysis in [10], we introduce the auxiliary parameter

set Ũ = [−1,1]N with elements zzz ∈ Ũ . Set η ∈ (κ,1). We split the sparsity of the

sequence (b j) j≥1 between spatial approximation and QMC approximation rates,

which naturally couple in multilevel integration methods. For a sequence (b̂ j) j≥1

(to be specified in the following) which satisfies the assumption (A1), and for every

yyy ∈U define

āyyy(x) = ā(x)+ ∑
j≥1

y jψ j(x) and ψyyy, j(x) =
η−1 −2|y j|

2b̂ j

ψ j(x), a.e. x ∈ D, j ∈N,

(13)

which are used to construct

ãyyy(x,zzz) := āyyy(x)+ ∑
j≥1

z jψyyy, j(x), a.e. x ∈ D,zzz ∈ Ũ .

We recall that for every yyy ∈U

∥∥∥∥
∑ j≥1 |ψyyy. j|

āyyy

∥∥∥∥
L∞(D)

≤ κ

η
< 1, (14)

which implies that the problem for arbitrary yyy ∈U and zzz ∈ Ũ to find ũyyy(·,zzz) ∈V such

that ∫

D
ãyyy(·,zzz)∇ũyyy(·,zzz) ·∇vdx = f (v), ∀v ∈V,

is well-posed, cp. [10, Section 4]. Then, the affine mapping Tyyy : Ũ → Tyyy(Ũ)⊂ R
N,

which is given by

(Tyyy(zzz)) j := y j +
η−1 +2|y j|

2b̂ j

z j, j ≥ 1,zzz ∈ Ũ , (15)
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10 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

yields by construction, cp. [10, Section 4], a connection of u(·,yyy) and ũyyy(·,zzz), i.e.,

ũyyy(·,zzz) = u(·,Tyyy(zzz)) in V .

Finally, by the chain rule for every τττ ∈ F := {τττ ′ ∈ N
N

0 : |τττ ′|< ∞}

∂ τττ
zzz ũyyy(·,zzz)

∣∣∣
zzz=000

=

(

∏
j≥1

(
η−1 −2|y j|

2b̂ j

)τ j
)

∂ τττ
yyy u(·,yyy). (16)

A transformation of this type has been introduced in [3]. The dilated coordinate is

analogously applied to dimensionally truncated solutions and the FE approximations,

which are denoted by ũs
yyy(·,zzz), ũ

Tℓ
yyy (·,zzz), and ũ

s,Tℓ
yyy (·,zzz). As observed in [10, Theo-

rems 10 and 12], this sequence (b̂ j) j≥1 will be the input for the product weights

of the considered QMC rules and its summability properties will be a sufficient

condition to achieve a certain dimension-independent convergence rate of either

type of QMC rule. Note that the parametric regularity results of [10] also hold for

homogenous mixed boundary conditions, since the proof of [10, Lemma 3] relied

on the variational formulation, which is the same and v 7→ (
∫

D |∇v|2dv)1/2 is also a

norm on V .

4.1 Dimensionally truncated differences

Let s ∈ N be the truncation of the series expansion of a(·,yyy) and also of ãyyy(·,zzz). The

difference of solutions with respect to the full resp. to the truncated expansion of the

parametric coefficient satisfies

∫

D
ãyyy(·,zzz)∇(ũyyy(·,zzz)− ũs

yyy(·,zzz)) ·∇vdx =−
∫

D
∑
j>s

z jψyyy, j∇ũs
yyy(·,zzz) ·∇vdx, ∀v ∈V.

In this section we split the sequence (b j) j≥1 into two sequences by b j = b1−θ
j bθ

j ,

j ∈ N, θ ∈ [0,1], and consider the dilated coordinate in (13) and (15) with respect to

the sequence (b1−θ
j ) j≥1, i.e., here (b̂ j) j≥1 = (b1−θ

j ) j≥1, which satisfies (A1) by the

condition b j ∈ (0,1], j ∈ N. By the assumption in (A1) and (14), for every yyy ∈U ,

∥∥∥∥∥
∑ j≥1 |ψyyy, j|/bθ

j

āyyy

∥∥∥∥∥
L∞(D)

≤ κ

η
< 1. (17)

Theorem 1. Let the assumption in (A1) be satisfied. There exists a constant C > 0

such that for every yyy ∈U and for every s ∈ N and every θ ∈ [0,1]

∑
τττ∈F

1

(τττ!)2

∥∥∥∂ τττ
zzz

(
ũyyy(·,zzz)− ũs

yyy(·,zzz)
)∣∣∣

zzz=000

∥∥∥
2

V
≤C‖ f‖2

V ∗ sup
j>s

{
b2θ

j

}
.
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Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs 11

Proof. As in the proof of [10, Lemma 3], we will consider the Taylor coefficients

tyyy,τττ :=
1

τττ!
∂ τττ

zzz ũyyy(·,zzz)
∣∣∣
zzz=000

and ts
yyy,τττ :=

1

τττ!
∂ τττ

zzz ũs
yyy(·,zzz)

∣∣∣
zzz=000

, ∀τττ ∈ F . (18)

We introduce a parametric energy norm ‖ · ‖āyyy for every yyy ∈U by

‖v‖2
āyyy

:=
∫

D
āyyy|∇v|2dx, ∀v ∈V.

Evidently, ts
yyy,τττ = 0 in case that τ j > 0 for some j > s. For every τττ ∈ F ,

∫

D
āyyy∇(tyyy,τττ − ts

yyy,τττ) ·∇vdx =− ∑
j(τττ)

∫

D
ψyyy, j∇(tyyy,τττ−eee j

− ts
yyy,τττ−eee j

) ·∇vdx

− ∑
j(τττ), j>s

∫

D
ψyyy, j∇ts

yyy,τττ−eee j
·∇vdx, ∀v ∈V,

where we used the notation j(τττ) := { j ∈ N : τ j > 0}. Testing with v = tyyy,τττ − ts
yyy,τττ , we

find for 000 6= τττ ∈ F ,

‖tyyy,τττ − ts
yyy,τττ‖2

āyyy
≤
∫

D
∑
j(τττ)

|ψyyy, j||∇(tyyy,τττ−e j
− ts

yyy,τττ−e j
)||tyyy,τττ − ts

yyy,τττ |dx

+
∫

D
∑

j(τττ), j>s

|ψyyy, j||ts
yyy,τττ−e j

||tyyy,τττ − ts
yyy,τττ |dx,

where e j ∈ F is such that (e j)i = 1 if j = i and zero otherwise. We obtain with a

twofold application of the Cauchy–Schwarz inequality using (A1) and (17)

‖tyyy,τττ − ts
yyy,τττ‖2

āyyy
≤
(

κ

η

∫

D
∑
j(τττ)

|ψyyy, j||∇(tyyy,τττ−e j
− ts

yyy,τττ−e j
)|2dx

)1/2

‖tyyy,τττ − ts
yyy,τττ‖āyyy

+

(
κ

η
sup
j>s

{
bθ

j

}∫

D
∑

j(τττ), j>s

|ψyyy, j||ts
yyy,τττ−e j

|2dx

)1/2

‖tyyy,τττ − ts
yyy,τττ‖āyyy .

Hence, by the Young inequality with ε > 0 and by (A1)
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12 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

∑
k≥1

∑
|τττ|=k

‖tyyy,τττ − ts
yyy,τττ‖2

āyyy
≤ (1+ ε)

κ

η ∑
k≥1

∫

D
∑

|τττ|=k−1

∑
j≥1

|ψyyy, j||∇(tyyy,τττ − ts
yyy,τττ)|2dx

+

(
1+

1

ε

)
κ

η
sup
j>s

{
bθ

j

}
∑
k≥1

∫

D
∑

|τττ|=k−1

∑
j>s

|ψyyy, j||ts
yyy,τττ |2dx

≤ (1+ ε)

(
κ

η

)2

∑
k≥0

∑
|τττ|=k

‖tyyy,τττ − ts
yyy,τττ‖2

āyyy

+

(
1+

1

ε

)(
κ

η

)2

sup
j>s

{
b2θ

j

}
∑
k≥0

∑
|τττ|=k

‖ts
yyy,τττ‖2

āyyy
.

Since κ < η , we can choose ε such that (1+ ε)(κ/η)2 < 1 and conclude that

∑
τττ∈F

‖tyyy,τττ − ts
yyy,τττ‖2

āyyy
≤ 2‖tyyy,000 − ts

yyy,000‖2
āyyy
+

1+1/ε

1− (1+ ε)(κ/η)2
sup
j>s

{
b2θ

j

}
∑

τττ∈F

‖ts
yyy,τττ‖2

āyyy
,

which implies the assertion with [10, Lemma 3 and Proposition 8] using that b j ∈
(0,1], j ∈ N. Note that [10, Lemma 3] gives an upper bound, since ∂ τττ

zzz ũs
yyy(·,zzz) =

∂ τττ
zzz ũyyy{1:s}(·,zzz) if τ j = 0 for every j > s and ∂ τττ

zzz ũs
yyy(·,zzz) = 0 otherwise. ⊓⊔

Remark 2. The estimate in Theorem 1 also holds when the differences ∂ τττ
zzz (ũ

Tℓ
yyy (·,zzz)−

ũ
s,Tℓ
yyy (·,zzz))|zzz=000, τττ ∈ F , ℓ ≥ 0, are considered and the constant is independent of

{Tℓ}ℓ≥0. Since only the varitional formulation was used in the proof, the correspond-

ing variational formulation with trial and test space Vℓ can be used instead.

4.2 FE differences

We assume now that the sequence (b̄ j) j≥1 satisfies the assumptions in (A1) and

in (A2). We consider the dilated coordinate in (13) and (15) with respect to this

sequence (b̄ j) j≥1, i.e., here (b̂ j) j≥1 = (b̄ j) j≥1.

Proposition 2. Let the assumption in (A1) and (A2) be satisfied for (b̄ j) j≥1. Then,

there exists a constant C > 0 (independent of f ) such that for every yyy ∈U

∑
τττ∈F

1

(τττ!)2

∥∥∥∆∂ τττ
zzz ũyyy(·,zzz)

∣∣∣
zzz=000

∥∥∥
2

L2
βββ
(D)

≤C‖ f‖2
L2

βββ
(D)

.

Proof. Recall that the Taylor coefficients {tyyy,τττ : τττ ∈ F} have been defined in (18).

We also recall that for any 000 6= τττ ∈ F ,

∫

D
āyyy∇tyyy,τττ ·∇vdx =− ∑

j(τττ)

∫

D
ψyyy, j∇tyyy,τττ−e j

·∇vdx, ∀v ∈V.

Similarly as in Section 2, by the divergence theorem for every v ∈C∞
0 (D)
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Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs 13

−
∫

D
āyyy∆ tyyy,τττ vdx =

∫

D

(
∇āyyy ·∇tyyy,τττ + ∑

j(τττ)

(
∇ψyyy, j ·∇tyyy,τττ−e j

+ψyyy, j∆ tyyy,τττ−e j

)
)

vdx.

Since ∆ tyyy,τττ Φβββ ∈ L2(D), cp. (8), we may use −∆ tyyy,τττ Φ2
βββ

as a test function and obtain

with the Young inequality for any ε > 0

∫

D
āyyy|∆ tyyy,τττ |2Φ2

βββ dx =−
∫

D

(
∇āyyy ·∇tyyy,τττ + ∑

j(τττ)

∇ψyyy, j ·∇tyyy,τττ−e j

)
∆ tyyy,τττ Φ2

βββ dx

−
∫

D
∑
j(τττ)

ψyyy, j∆ tyyy,τττ−e j
∆ tyyy,τττ Φ2

βββ dx

≤ ε

∫

D
āyyy|∆ tyyy,τττ |2Φ2

βββ dx

+
1

4ε

∫

D

Φ2
βββ

āyyy

(
∇āyyy ·∇tyyy,τττ + ∑

j(τττ)

∇ψyyy, j ·∇tyyy,τττ−e j

)2

dx

+
1

2

∫

D
∑
j(τττ)

|ψyyy, j|(|∆ tyyy,τττ−e j
|2 + |∆ tyyy,τττ |2)Φ2

βββ dx.

For k ≥ 1, by a twofold application of the Cauchy–Schwarz inequality (applied to

the sum) and (A2)

∑
|τττ|=k

∫

D

Φ2
βββ

āyyy

(
∇āyyy ·∇tyyy,τττ + ∑

j(τττ)

∇ψyyy, j ·∇tyyy,τττ−e j

)2

dx

≤ 2K

∫

D

Φβββ

āyyy

(
|∇āyyy| ∑

|τττ|=k

|∇tyyy,τττ |2 + ∑
|τττ|=k−1

∑
j≥1

|∇ψyyy, j||∇tyyy,τττ |2
)

dx

≤ 4K2

(āyyy,min)2

(

∑
|τττ|=k

‖∇tyyy,τττ‖2
āyyy
+ ∑

|τττ|=k−1

‖∇tyyy,τττ‖2
āyyy

)
.

Note that also by (A1) for every k ≥ 1,

∑
|τττ|=k

∫

D
∑
j(τττ)

|ψyyy, j|(|∆ tyyy,τττ−e j
|2 + |∆ tyyy,τττ |2)Φ2

βββ dx

≤ κ

η

(

∑
|τττ|=k−1

‖
√

āyyy∆ tyyy,τττ‖2
L2

βββ
(D)

+ ∑
|τττ|=k

‖
√

āyyy∆ tyyy,τττ‖2
L2

βββ
(D)

)
.

We now choose ε > 0 such that ε < 1/2(1−κ/η), which implies ε +κ/(2η)< 1/2.

Then, we sum over k ≥ 1 to obtain

∑
k≥1

∑
|τττ|=k

‖
√

āyyy∆ tyyy,τττ‖2
L2

βββ
(D)

≤C ∑
τττ∈F

‖∇tyyy,τττ‖2
āyyy
+Cε ∑

τττ∈F

‖
√

āyyy∆ tyyy,τττ‖2
L2

βββ
(D)

,
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14 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

where Cε = 1/2(1− κ/(2η)− ε)−1 < 1 and C = K2/(ε(āyyy,min)
2)(1− κ/(2η)−

ε)−1. It follows

∑
τττ∈F

‖
√

āyyy∆ tyyy,τττ‖2
L2

βββ
(D)

≤ C

1−Cε
∑

τττ∈F

‖tyyy,τττ‖2
āyyy
+2‖

√
āyyy∆ tyyy,000‖2

L2
βββ
(D)

,

which implies the assertion with [10, Lemma 3] and (8). ⊓⊔

Remark 3. For every truncation dimension s ∈ N, the estimate in Proposition 2 also

holds when ∆∂ τττ
zzz ũs

yyy(·,zzz)|zzz=000, τττ ∈ F , are considered and the constant is independent

of s. This follows from the observation that ∂ τττ
zzz ũs

yyy(·,zzz) = ∂ τττ
zzz ũyyy{1:s}(·,zzz) if τ j = 0

for every j > s and ∂ τττ
zzz ũs

yyy(·,zzz) = 0 otherwise. Then, the sum of the estimate in

Proposition 2 only consists of more terms and is an upper bound.

Proposition 3. Let the assumptions in (A1) and (A2) be satisfied and let βββ satisfy

βi > 1−π/ωi and if the boundary conditions change at ci also βi > 1−π/(2ωi) ,

i = 1, . . . ,J. Then, there exists a constant C > 0 such that for every yyy ∈ U and for

every integer ℓ≥ 0

∑
τττ∈F

1

(τττ!)2

∥∥∥∂ τττ
zzz

(
ũyyy(·,zzz)− ũ

Tℓ
yyy (·,zzz)

)∣∣∣
zzz=000

∥∥∥
2

V
≤CM

−2/d

ℓ ‖ f‖2
L2

βββ
(D)

.

Proof. We argue similarly as in the proof of [10, Lemma 3] and consider the Taylor

coefficients for fixed yyy ∈U

tyyy,τττ :=
1

τττ!
∂ τττ

zzz ũyyy(·,zzz)
∣∣∣
zzz=000

and tℓyyy,τττ :=
1

τττ!
∂ τττ

zzz ũ
Tℓ
yyy (·,zzz)

∣∣∣
zzz=000

, τττ ∈ F .

We observe that
∫

D
āyyy∇(tyyy,τττ − tℓyyy,τττ) ·∇vdx =− ∑

j(τττ)

ψyyy, j∇(tyyy,τττ−e j
− tℓyyy,τττ−e j

) ·∇vdx, ∀v ∈Vℓ.

For every yyy ∈U and for every ℓ ∈ N0, let Pyyy,ℓ : V →Vℓ denote the dilated Galerkin

projection, i.e., for every w ∈V , Pyyy,ℓw is defined by

∫

D
āyyy∇(w−Pyyy,ℓw) ·∇vdx = 0, ∀v ∈Vℓ. (19)

By the definition of Pyyy,ℓ in (19) and by testing with v = Pyyy,ℓ(tyyy,τττ − tyyy,τττ) ∈Vℓ,
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∑
|τττ|=k

∫

D
āyyy|∇Pyyy,ℓ(tyyy,τττ − tℓyyy,τττ)|2dx

≤
∫

D
∑
|τττ|=k

∑
j(τττ)

|ψyyy, j|
1

2
(|∇(tyyy,τττ−e j

− tℓyyy,τττ−e j
)|2 + |∇Pyyy,ℓ(tyyy,τττ − tℓyyy,τττ)|2)dx

≤ 1

2

∫

D
∑

|τττ|=k−1

∑
j≥1

|ψyyy, j||∇(tyyy,τττ − tℓyyy,τττ)|2dx

+
1

2

∫

D
∑

|τττ|=k−1

∑
j≥1

|ψyyy, j||∇Pyyy,ℓ(tyyy,τττ − tℓyyy,τττ)|2dx,

which implies with (A1)

∑
|τττ|=k

‖Pyyy,ℓ(tyyy,τττ − tℓyyy,τττ)‖2
āyyy
≤ 1

2−κ/η

∫

D
∑
|τττ|=k

∑
j(τττ)

|ψyyy, j||∇(tyyy,τττ−e j
− tℓyyy,τττ−e j

)|2dx

≤ 1

2−κ/η

κ

η ∑
|τττ|=k−1

‖tyyy,τττ−e j
− tℓyyy,τττ−e j

‖2
āyyy
.

(20)

Note that by the triangle inequality

‖tyyy,τττ − tℓyyy,τττ‖āyyy ≤ ‖Pyyy,ℓ(tyyy,τττ − tℓyyy,τττ)‖āyyy +‖(I −Pyyy,ℓ)tyyy,τττ‖āyyy ,

where I : V →V denotes the identity. With the Young inequality and the previous

two inequalities we obtain for any ε > 0

∑
|τττ|=k

‖tyyy,τττ − tℓyyy,τττ‖2
āyyy

≤ (1+ ε)κ

2η −κ ∑
|τττ|=k−1

‖tyyy,τττ − tℓyyy,τττ‖2
āyyy
+

(
1+

1

ε

)
∑
|τττ|=k

‖(I −Pyyy,ℓ)tyyy,τττ‖2
āyyy
.

Since κ < η < 1, 2η −κ > 1 and so we choose ε > 0 such that (1+ ε)κ < 1 and

conclude by subtracting the first sum in the previous inequality that

∑
k≥1

∑
|τττ|=k

‖tyyy,τττ − tℓyyy,τττ‖2
āyyy
≤ ‖tyyy,000 − tℓyyy,000‖2

āyyy
+

2η −κ

εκ ∑
k≥1

∑
|τττ|=k

‖(I −Pyyy,ℓ)tyyy,τττ‖2
āyyy
,

which implies the assertion with (7), (6), and Proposition 2. ⊓⊔

Remark 4. The estimate in Proposition 3 holds if f ∈ (V ∗,L2
βββ
(D))t,∞ with the error

being controlled by M
−2t/d

ℓ , t ∈ [0,1]. This can be seen by interpolation applied in

the last step of the proof of Proposition 3, where (7), (6), and Proposition 2 were

used (see also Remark 1).

Lemma 1. For every c ∈ (1,∞) and every τττ ∈ F ,
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|τττ| ≤ 1

log(c)e
cτττ =

1

log(c)e
∏
j≥1

cτ j .

Proof. Let α > 0 be arbitrary. By elementary calculus, we observe that the func-

tion x 7→ log(x)/xα has a maximum at x0 = e1/α . Since limx→∞ log(x)/xα = 0, this

maximum is global on [1,∞). Hence, log(x)≤ xα/(αe) for every x ∈ [1,∞).

Then, ∑ j≥1 τ ′j = log(∏ j≥1 e
τ ′j)≤ 1/(αe)∏ j≥1 e

ατ ′j = 1/(αe)cτττ ′ , where α is cho-

sen to be α = log(c)> 0. ⊓⊔
For any G ∈ V ∗, we introduce uG(·,yyy) and u

Tℓ
G (·,yyy), ℓ ∈ N0, as the parametric

solution to the dual problem of (4) and the parametric FE solution to the dual problem

of (9), respectively, with right hand side G. Consideration of the dilated coefficient

resulting from (13) gives ũG,yyy(·,zzz) and ũ
Tℓ
G,yyy(·,zzz), ℓ ∈ N0. By an Aubin–Nitsche

argument, for every yyy ∈U and every zzz ∈ Ũ ,

G(ũyyy(·,zzz)− ũ
Tℓ
yyy (·,zzz))=

∫

D
ãyyy(·,zzz)∇(ũyyy(·,zzz)− ũ

Tℓ
yyy (·,zzz)) ·∇(ũG,yyy(·,zzz)− ũ

Tℓ
G,yyy(·,zzz))dx.

(21)

Theorem 2. Let the assumptions in (A1) and (A2) be satisfied. Then, for every c > 1

there exists a constant C > 0 such that for every G(·) ∈ L2
βββ
(D) and for every integer

ℓ≥ 0

∑
τττ∈F

1

cτττ(τττ!)2

∣∣∣∂ τττ
zzz G
(

ũyyy(·,zzz)− ũ
Tℓ
yyy (·,zzz)

)∣∣∣
zzz=000

∣∣∣
2

≤C M
−4/d

ℓ ‖ f‖2
L2

βββ
(D)

‖G(·)‖2
L2

βββ
(D)

.

Proof. The Taylor coefficients of ũG,yyy(·,zzz) and ũ
Tℓ
G,yyy(·,zzz) will be denoted by t̂yyy,τττ and

t̂ℓyyy,τττ , τττ ∈F , respectively (see also (18)). By differentiating (21), for every 000 6= τττ ∈F ,

G(tyyy,τττ − tℓyyy,τττ) = ∑
ννν≤τττ

∫

D

[

∑
j(ννν)

ψyyy, j∇(tyyy,ννν−e j
− tℓyyy,ννν−e j

)

]
·∇(̂tyyy,τττ−ννν − t̂ℓyyy,τττ−ννν)dx.

Squaring the previous equality and applying the Cauchy–Schwarz inequality and

Lemma 1 to obtain with C = 1/(log(c)e)

|G(tyyy,τττ − tℓyyy,τττ)|2 ≤C cτττ ∑
ννν≤τττ

∥∥∥∥
√

1/āyyy[. . .]

∥∥∥∥
2

L2(D)

‖t̂yyy,τττ−ννν − t̂ℓyyy,τττ−ννν‖2
āyyy
,

where we used that ∑ννν≤τττ = |τττ|. The hidden term is [. . .] = ∑ j(ννν) ψyyy, j∇(tyyy,ννν−e j
−

tℓyyy,ννν−e j
). By changing the order of summation
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∑
τττ∈F

1

cτττ
|G(tyyy,τττ − tℓyyy,τττ)|2 ≤C ∑

ννν∈F

∥∥∥∥
√

1/āyyy[. . .]

∥∥∥∥
2

L2(D)
∑

τττ∈F ,τττ≥ννν

‖t̂yyy,τττ−ννν − t̂ℓyyy,τττ−ννν‖2
āyyy

=C ∑
ννν∈F

∥∥∥∥
√

1/āyyy[. . .]

∥∥∥∥
2

L2(D)
∑

τττ∈F

‖t̂yyy,τττ − t̂ℓyyy,τττ‖2
āyyy
.

(22)

By the Cauchy–Schwarz inequality we obtain with (A1)

∥∥∥∥
√

1/āyyy[. . .]

∥∥∥∥
2

L2(D)

≤ κ

η

∫

D
∑
j(ννν)

|ψyyy, j||∇(tyyy,ννν−e j
− tℓyyy,ννν−e j

)|2dx.

By another application of the Cauchy–Schwarz inequality and (A1)

∑
k≥1

∑
|ννν |=k

∥∥∥∥
√

1/āyyy[. . .]

∥∥∥∥
2

L2(D)

≤
(

κ

η

)2

∑
k≥1

∑
|ννν |=k−1

‖tyyy,ννν − tℓyyy,ννν‖2
āyyy
,

which implies with (22)

∑
τττ∈F

1

cτττ
|G(tyyy,τττ − tℓyyy,τττ)|2 ≤C

(

∑
τττ∈F

‖tyyy,τττ − tℓyyy,τττ‖2
āyyy

)(

∑
τττ∈F

‖t̂yyy,τττ − t̂ℓyyy,τττ‖2
āyyy

)
.

The assertion now follows with Proposition 3. ⊓⊔

Remark 5. The estimate in Theorem 2 also holds if f ∈ (V ∗,L2
βββ
)t,∞ and G(·) ∈

(V ∗,L2
βββ
)t ′,∞, t, t ′ ∈ [0,1], with error control M

−2(t+t ′)/d

ℓ , which follows by Remark 4.

Remark 6. For every truncation dimension s ∈ N, the estimates in Proposition 3 and

Theorem 2 also hold when the differences ∂ τττ
zzz (ũ

s
yyy(·,zzz)− ũ

s,Tℓ
yyy (·,zzz))|zzz=000, τττ ∈ F , are

considered and the constant is independent of s. This follows by the same argument

which is used to verify Remark 3.

5 Convergence of multilevel QMC

The parametric regularity estimates from Section 4 will result in explicit error esti-

mates of multilevel QMC. Let the sequence (b j) j≥1 be a generic input for the QMC

weights. For interlaced polynomial lattice rules with interlacing factor α ≥ 2 we will

consider the product weights γγγ IP = (γ IP
u
)u⊂N given by γ IP

/0 := 1 and

γ IP
u

:= ∏
j∈u

(
α

∑
ν=1

(
2b j

1−η

)ν√
2δ (ν ,α)ν!

)
, u⊂ N, |u|< ∞, (23)

and for randomly shifted lattice rules the product weights γγγRS = (γRS
u

)u⊂N given by

γRS
/0 := 1 and
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18 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

γRS
u

:= ∏
j∈u

(
2b j

1−η

)2

, u⊂ N, |u|< ∞. (24)

We will apply a QMC rule on levels ℓ= 1, . . . ,L and in general a different version on

the level ℓ= 0. The parametric regularity estimates that were derived in Section 4

are based on a dilated coordinate, cp. (13) and (15), with respect to sequences

(b1−θ
j ) j≥1 for the truncation error and (b̄ j) j≥1 for the FE error. These sequences will

be the input for the product weights. Their summability in terms of membership in

ℓp̄(N), p̄ ∈ (0,2], will result in explicit bounds of the coupled errors between the

levels. On the levels ℓ= 1, . . . ,L, we use (c(b1−θ
j ∨b̄ j)) j≥1 := (max{cb1−θ

j ,cb̄ j}) j≥1

as input for the product weights in (23) and (24) for a constant c > 1, i.e. here

(b j) j≥1 = (c(b1−θ
j ∨b̄ j)) j≥1. On the level ℓ= 0 we use (b j) j≥1 as an input for (23)

and (24), which has potentially stronger summability properties.

Theorem 3. Let the assumption in (A1) be satisfied by (b j) j≥1 and by (b̄ j) j≥1. Let

the assumption in (A2) be satisfied by (b̄ j) j≥1. Let (b j) j≥1 ∈ ℓp(N) for some p ∈
(0,2] and assume that (b1−θ

j ∨b̄ j) j≥1 ∈ ℓ p̄(N) for some p̄ ∈ [p,2] and any θ ∈ [0,1)

admitting this summability. For p ∈ (0,1] and p̄ ∈ [p,1], QIP
L , L ∈ N, satisfies with

product weights (23) and order α = ⌊1/p+ 1⌋ on level ℓ = 0, and of order ᾱ =
⌊1/ p̄+1⌋ on levels ℓ= 1, . . . ,L, the error estimate

|E(G(u))−QIP
L (G(uL))| ≤C

(
sup
j>sL

{b2
j}+M

−2/d

L +N
−1/p

0

+
L

∑
ℓ=1

N
−1/p̄

ℓ

(
ξℓ,ℓ−1 sup

j>sℓ−1

{bθ
j }+M

−2/d

ℓ−1

))
,

where ξℓ,ℓ−1 := 0 if sℓ = sℓ−1 and ξℓ,ℓ−1 := 1 otherwise. For p ∈ (1,2] and p̄ ∈ [p,2],
QRS

L , L ∈ N, satisfies with product weights (24) the error estimate

√
E∆∆∆ (|E(G(u))−QRS

L (G(uL))|2)

≤C

(
sup
j>sL

{b4
j}+M

−4/d

L +(ϕ(N0))
−2/p

+
L

∑
ℓ=1

(ϕ(Nℓ))
−2/p̄

(
ξℓ,ℓ−1 sup

j>sℓ−1

{b2θ
j }+M

−4/d

ℓ−1

))1/2

.

The constant C is in particular independent of L, (Nℓ)ℓ≥0, (Mℓ)ℓ≥0, and (sℓ)ℓ≥0.

Proof. By the error estimates in (12) and (11), we have to estimate the difference

G(uℓ−uℓ−1) = G(usℓ,Tℓ −usℓ−1,Tℓ−1) in the Wsℓ,α,γγγ,∞,∞-norm and in the Wsℓ,γγγ -norm,

ℓ= 1, . . . ,L. We decompose by the triangle inequality

‖G(usℓ,Tℓ −usℓ−1,Tℓ−1)‖Wsℓ,γγγ

≤ ‖G(usℓ,Tℓ −usℓ,Tℓ−1)‖Wsℓ,γγγ
+‖G(usℓ,Tℓ−1 −usℓ−1,Tℓ−1)‖Wsℓ,γγγ

,
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and

‖G(usℓ,Tℓ −usℓ,Tℓ−1)‖Wsℓ,γγγ
≤ ‖G(usℓ −usℓ,Tℓ)‖Wsℓ,γγγ

+‖G(usℓ −usℓ,Tℓ−1)‖Wsℓ,γγγ
.

The contributions from the dimension truncation and the FE error have been separated

in the Wsℓ,γγγ -norm. For the dimension truncation error, we obtain by the Jensen

inequality, the relation of higher order partial derivative in terms of the dilated

coordinate in (16), Theorem 1, and Remark 2

‖G(usℓ,Tℓ−1 −usℓ−1,Tℓ−1)‖2
Wsℓ,γγγ

≤ ‖G(·)‖V ∗

∫

[− 1
2 ,

1
2 ]

s
∑

u⊂{1:s}
(γRS

u
)−1‖∂u

yyy (u
sℓ,Tℓ−1(·,yyy)−usℓ−1,Tℓ−1(·,yyy))‖2

V dyyy

≤C‖G(·)‖V ∗‖ f‖V ∗ sup
u⊂{1:s}

(γRS
u

)−1
∏
j∈u

(
2b1−θ

j

1−η

)2

sup
j>sℓ

{b2θ
j }.

Due to the choice of the weights, there exists a constant C > 0 independent of the

sequences (sℓ)ℓ≥0 and {Tℓ}ℓ≥0 such that

‖G(usℓ,Tℓ−1 −usℓ−1,Tℓ−1)‖Wsℓ,γγγ
≤C‖G(·)‖V ∗‖ f‖V ∗ sup

j>sℓ

{bθ
j }.

Note that if sℓ = sℓ−1 this difference is zero. Similarly, we obtain with Theorem 2

and Remark 4 that there exists a constant C > 0 which is independent of (sℓ)ℓ≥0 and

(Mℓ)ℓ≥0 such that for every ℓ ∈ N

‖G(usℓ −usℓ,Tℓ−1)‖Wsℓ,γγγ
≤C‖G(·)‖L2

βββ
(D)‖ f‖L2

βββ
(D)M

−2/d

ℓ−1 .

Note that here the constant c > 1 in the weight sequence is necessary to compensate c

in the estimate of Theorem 2. The corresponding estimate on the level ℓ = 0 of

‖G(us0,T0)‖Ws0 ,γγγ
is due to [10, Corollary 5], which is also applicable in the case of

a dimensionally truncated FE solution, cp. Remarks 2 and 4. The estimate for the

randomly shifted lattice rules follows then with (10) and (11) with λ = p/2.

The proof for interlaced polynomial lattice rules follows along the same lines,

where the estimate ‖F‖Wsℓ,α,γγγ,∞,∞ ≤ ‖F‖Wsℓ,α,γγγ,2,2
, F ∈ Wsℓ,α,γγγ,2,2, is used and [10,

Corollary 7] is used for the level ℓ= 0 (see also the proof of [10, Proposition 6]). ⊓⊔

Remark 7. The estimate in Theorem 3 also holds if f ∈ (V ∗,L2
βββ
)t,∞ and G(·) ∈

(V ∗,L2
βββ
)t ′,∞, t, t ′ ∈ [0,1], with an error contribution of M

−(t+t ′)/d

ℓ and M
−2(t+t ′)/d

ℓ in

the estimates for QIP and QRS, respectively. This follows by Remark 5.

Remark 8. The factor 2/(1−η) in the weights in (23) and (24) as well as the constant

c > 1 in the sequence (c(b1−θ
j ∨b̄ j)) j≥1 can be omitted. Then, the error estimates in

Theorem 3 hold under the same assumptions with QMC convergence rates 1/p− ε
and 1/ p̄− ε in the mulitlevel error estimates for every sufficiently small ε > 0. This
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can be seen by the same argument that we used to show [10, Corollary 11] (see also

[10, Corollary 13]).

6 Error vs. work analysis

The error estimates in Theorem 3 are the key ingredient to calibrate and choose the

parameters (sℓ)ℓ≥0, (Mℓ)ℓ≥0, θ ∈ [0,1), and (Nℓ)ℓ≥0 of either considered type of the

multilevel QMC algorithm. We seek to derive choices that optimize the work for a

given error threshold. The analysis will be demonstrated for a class of multiresolution

analyses (MRA for short), which will serve as the function system (ψλ )λ∈▽, here

indexed by λ ∈ ▽. We will use notation that is standard for wavelets and MRA.

Assume that (ψλ )λ∈▽ is a MRA that is obtained by scaling and translation from a

finite number of mother wavelets, i.e.,

ψλ (x) = ψ(2|λ |x− k), k ∈▽|λ |,x ∈ D.

The index set ▽|λ | has cardinality |▽|λ || = O(2|λ |d) and |supp(ψλ )| = O(2−|λ |d).
Let j : ▽→ N be a suitable bijective enumeration. We also assume that on every

level |λ | there is a finite overlap, i.e., there exists support overlap constant K > 0

such that for every i ∈ N0 and for every x ∈ D

|{λ ∈▽ : |λ |= i,ψλ (x) 6= 0}| ≤ K .

The work needed to assemble the stiffness matrix for a generic parameter instance

yyy ∈ [−1/2,1/2]s is therefore O(Mℓ| j−1(sℓ)|) = O(Mℓ log(sℓ)). Assuming at hand a

linear complexity solver, the overall work for either multilevel QMC algorithm with

the number of levels L ∈ N0 levels satisfies

work = O

(
L

∑
ℓ=0

NℓMℓ log(sℓ)

)
.

Note that error vs. work estimates for general function systems have been derived

in [23, 7].

The parameter θ in the coupled estimates of Theorem 3 allows to discuss two

possible strategies in the choices of the truncation levels (sℓ)ℓ≥0. We recall from [10,

Section 8] that if ‖ψ j(λ )‖L∞(D) ≤ σ2−α̂|λ | the sequence

b j(λ ) =

(
1+

āmin(1−κ)(1−2β̂−α̂)

σ2K
2β̂ |λ |

)−1

, j ∈ N, (25)

satisfies (A1) for α̂ > β̂ > 1 and b j ∼ j−β̂/d , j ≥ 1 holds. The sequence
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b̄ j = b
(β̂−1)/β̂
j , j ∈ N,

satisfies (A2) and (A1) and b̄ j ∼ j−(β̂−1)/d , j ≥ 1 holds. Note that ‖∇ψ j(λ )‖L∞(D) ≤
Cσ2−(α̂−1)|λ | assuming ‖∇ψ‖L∞(D) ≤ C‖ψ‖L∞(D) for some C > 0. The truncation

levels (sℓ)ℓ≥0 are chosen so as to cover entire levels of the MRA expansion of the

uncertain PDE input, so that we choose sℓ ∈ {∑
I
i=0 |∇i| : I ∈ N0}, ℓ ≥ 0. We also

assume that

Mℓ ∼ 2dℓ, ℓ≥ 0. (A3)

In this section we assume for simplicity that only one version of the QMC rule is

applied with convergence rate p̄. We remark that in some cases the application of

two different weight sequences with different sparsity may be beneficial. Also we

assume that

f ∈ (V ∗,L2
βββ (D))t,∞ and G(·) ∈ (V ∗,L2

βββ (D))t ′,∞, t, t ′ ∈ [0,1], (A4)

which yields a FE convergence rate of τ := t + t ′ ∈ [0,2], cp. Remark 7.

Strategy 1: We equilibrate the decay of the sequences (b1−θ
j ) j≥1 and (b̄ j) j≥1, which

determines the estimate of the QMC error in Theorem 3. The parameter θ ∈ [0,1)

is chosen to be θ = 1/β̂ , which implies b1−θ
j = b̄ j, j ∈ N, and (b̄ j) j≥0 ∈ ℓp̄(N) for

every p̄ > d/(β̂ −1). We equilibrate the error contributions on the highest level L.

Since ML ∼ 2dL, we choose

sL ∼ 2d⌈Lτ/(2β̂ )⌉.

On the different levels of the coupled error terms, we either increase the truncation

levels or leave it constant, which is reflected in the choice

sℓ ∼ min
{

2d⌈ℓτ/(θβ̂ )⌉,sL

}
, ℓ= 0, . . . ,L−1.

Strategy 2: For certain function systems (ψλ )λ∈∇ and meshes {Tℓ}ℓ≥0 it may be

interesting (also for implementation purposes) to couple their discretizations, i.e., we

choose

sℓ ∼ Mℓ, ℓ= 0, . . . ,L.

To equilibrate the truncation and FE error on the levels we choose θ = τ/β̂ ,

which imposes the constraint β̂ > τ and implies that b1−θ
j ∼ j−(β̂−τ)/d . Hence,

(b1−θ
j ∨b̄ j) j≥1 ∈ ℓ p̄(N) for every p̄ > d/(min{β̂ − τ, β̂ −1}).

We will discuss interlaced polynomial lattice rules first and follow [7, Section 3.3].

In either of our parameter choices, the error estimate

error = O

(
M

−τ/d

L +
L

∑
ℓ=0

N
−1/ p̄

ℓ M
−τ/d

ℓ

)
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holds, where we used that Mℓ = O(2dℓ). The QMC sample numbers (Nℓ)ℓ=0,...,L are

chosen to optimize the error versus the required work. Optimizing error (bound) vs.

cost as in [23, 7], we search the stationary point of the function

g(ξ ) = M
−τ/d

L +
L

∑
ℓ=0

N
−1/p̄

ℓ M
−τ/d

ℓ +ξ
L

∑
ℓ=0

NℓMℓ log(sℓ)

with respect to Nℓ, i.e., choose Nℓ such that ∂g(ξ )/∂Nℓ = 0. We thus obtain

Nℓ =

⌈
N0

(
M

−1−τ/d

ℓ log(sℓ)
−1
)p̄/(1+p̄)

⌉
, ℓ= 1, . . . ,L, (26)

and for Eℓ := (M
1−p̄τ/d

ℓ log(sℓ))
1/(p̄+1),

error = O

(
M

−τ/d

L +N
−1/p̄

0

L

∑
ℓ=0

Eℓ

)
and work = O

(
N0

L

∑
ℓ=0

Eℓ

)
.

Since for every 0 6= r1 ∈ R and r2 > 0,

L

∑
ℓ=0

2r1ℓℓr2 ≤ 2r1(L+1)−1

2r1 −1
Lr2 ,

log(sℓ) = O(ℓ), which holds in the considered cases, implies that

L

∑
ℓ=0

Eℓ =





O(1) if d < p̄τ,

O(L(p̄+2)/(p̄+1)) if d = p̄τ,

O(2(d−p̄τ)L/(p̄+1)L1/(p̄+1)) if d > p̄τ.

We choose N0 to equilibrate the error, i.e.,

N
−1/ p̄

0

L

∑
ℓ=0

Eℓ = O

(
M

−τ/d

L

)
,

which yields

N0 :=





⌈2τ p̄L⌉ if d < p̄τ,

⌈2τ p̄LL p̄(p̄+2)/(p̄+1)⌉ if d = p̄τ,

⌈2 p̄(d+τ)L/(p̄+1)L p̄/( p̄+1)⌉ if d > p̄τ.

(27)

This implies that an error = O(M
−τ/d

L ) requires

work =





O(2 p̄τL) if d < p̄τ,

O(2τ p̄LL p̄+2) if d = p̄τ,

O(2dLL) if d > p̄τ.
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In the other case of randomly shifted lattice rules sample numbers (Nℓ)ℓ=0,...,L are

derived in [23, Section 3.7]. There, also the work functional from a MRA is consid-

ered, cp. [23, Equations (74) and (77)] with λ = p̄/2 and Kℓ = Mℓ log(Mℓ)∼ 2dℓℓ.
Specifically, for randomly shifted lattice rules we choose

Nℓ =

⌈
N0

(
M

−1−2τ/d

ℓ log(sℓ)
−1
)p̄/(2+p̄)

⌉
, ℓ= 1, . . . ,L, (28)

and

N0 :=





⌈2τ p̄L⌉ if d < p̄τ,

⌈2τ p̄LL p̄(p̄+4)/(2p̄+4)⌉ if d = p̄τ,

⌈2p̄(d+2τ)/(p̄+2)LL p̄/( p̄+2)⌉ if d > p̄τ.

(29)

The work estimates for these choices in the case of randomly shifted lattice rules are

stated on [23, p. 443]. We collect the foregoing estimates in the following theorem.

Theorem 4. Let the assumption in (A3) be satisfied and let for L ∈N and QIP
L (·), the

sample numbers (Nℓ)ℓ=0,...,L be given by (26) and (27) and for QRS
L , be given by (28)

and (29). Let the right hand side f and G(·) satisfy (A4). For p̄ ∈ (d/(β̂ − 1),1],

assuming d < β̂ −1 and error threshold ε > 0,

|E(G(u))−QIP
L (G(uL))|= O(ε)

and

work =





O(ε−p̄) if d < p̄τ,

O(ε−p̄ log(ε−1)p̄+2) if d = p̄τ,

O(ε−d/τ log(ε−1)) if d > p̄τ.

For p̄ ∈ (max{1,d/(β̂ −1)},2] assuming d < 2(β̂ −1) and an error threshold ε > 0,

we obtain √
E∆∆∆ (|E(G(u))−QRS

L (G(uL))|2) = O(ε)

and

work =





O(ε−p̄) if d < p̄τ,

O(ε−p̄ log(ε−1) p̄/2+2) if d = p̄τ,

O(ε−d/τ log(ε−1)) if d > p̄τ.

Remark 9. The parameter choices for θ and (sℓ)ℓ≥0 in Theorem 4 reflect Strategy 1.

For Strategy 2, the assumptions p̄ > d/(min{β̂ − τ, β̂ − 1}), β̂ > τ are required,

which is more restrictive if τ > 1. However, aligning MRA and FE meshes might be

useful in certain cases. Note that the truncation dimension in Strategy 2 could also

be capped as in Strategy 1, which may be beneficial in some cases. Adopting this

strategy would affect the work measure only by a constant factor.
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7 Numerical experiments

To illustrate the foregoing asymptotic error bounds, we present numerical experiments

in dimensions d = 1,2 with parametric diffusion coefficient

a(x,yyy) = ā(x)+ ∑
j≥1

y jψ j(x),

where ā(x)≡ 1 and we assume ψ j = ψ j(ℓ,k) to be a system of continuous, piecewise

(bi)linear spline wavelets for ℓ≥ 0, k ∈ {0, . . . ,2ℓ−1}d with support overlap constant

K = 2d, see e.g. [18, Ch. 12]. We assume in the following the scaling ‖ψ j(ℓ,k)‖L∞(D) =

σ2−α̂ℓ. We pursue Strategy 2 from Section 6, which yields for α̂ > β̂ > τ a QMC

weight sequence of the form

b j(ℓ,k) =
(

1+ c22β̂ℓ
)−(β̂−τ)/β̂

,

for 0 < c2 ∈ R as specified in (25) (see also Remark 8). We use the implementation

from [9] for applying the single-level and multilevel methods in parallel, and use the

Walsh coefficient bound C = 0.1 in the component-by-component (CBC) construc-

tion, cp. [11] for details. For the multilevel method, we choose Nℓ = 2mℓ , where mℓ

follows from (26). The resulting expression is given by

mℓ =
⌈

p̄τL+
p̄(p̄+2)

p̄+1
log2(L+1)+

p̄

p̄+1

(
− ℓ(d + τ)+ log2(sℓ)

)⌉
, (30)

with mℓ = 1 if the expression is not positive. In the following examples, we consider

the limiting case d = p̄τ also with the limiting value p̄−1 = (β̂ − τ)/d. This choice

is based on the cost model

W ML
L =

L

∑
ℓ=0

NℓMℓ log2(sℓ),

which we use for computing the cost in the multilevel experiment below. We compare

the multilevel computations to a single-level approach, where we equilibrate the

QMC and FEM discretization errors, yielding on a fixed level L with N
−1/p̄

L ∼ M
−τ/d

L

the choice NL = 2 p̄τ(L+1),

mL = L+1.

In the single-level case, the work is simply W SL
L = NLML log2(sL).

7.1 Univariate model problem
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We consider the domain D = (0,1) and homogeneous Dirichlet boundary conditions,

i.e., Γ1 = ∂D, with right hand side f (x) = 10x, x ∈ D. As goal functional, we consider

point evaluation of the solution at x = e−1 (which is not a node on any mesh used

in our simulations), G(u(·,yyy)) = u(x,yyy), which implies the FE convergence rate

τ = 1.5− ε for arbitrary ε > 0. The parameter calibration will be done under the

formal case τ = 1.5. For a given discretization level ℓ, we solve the parametric

PDE (9) with the finite element method using piecewise linear basis functions

on an equidistant mesh with meshwidth hℓ = 2−ℓ−1 to approximate the solution

of (1). Considering the wavelet basis for the coefficients on the same mesh, we

obtain sℓ = h−1
ℓ −1 = 2ℓ+1 −1 parametric dimensions on level ℓ. We choose α̂ = 3,

β̂ = 2.99, σ = 0.15, yielding the expected QMC convergence rate β̂ − τ = 1.49.

We use the same generating vectors as above for the single-level method; this is

justified since the weight sequence used in the CBC construction majorizes the

weight sequence for the single level quadrature, theoretically capping the rate at

N−1.5. With these generating vectors, as observed in Figure 2, the measured QMC

convergence rate is independent of the parameter dimension, and equals N−α for

α = 2,3 rather than the expected rate N−1.5.
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Fig. 1 Convergence of single-level and multilevel methods for a diffusion coefficient given in

wavelet representation. As a reference solution, the multilevel approximation on the level L = 14

with a total of sL = 32767 dimensions was used. The measured rates were obtained by a linear

least squares fit on the last 9 points. The expected rates are 0.75 for SLQMC and 1.5 for MLQMC

ignoring log factors. The work is W ML
L = ∑

L
ℓ=0 Nℓh

−1
ℓ (1+ log2(sℓ)) for multilevel and W SL

L =

NLh−1
L (1+ log2(sL)) for single-level.
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Fig. 2 Convergence of the QMC approximation using interlaced polynomial lattice (IPL) rules

with N = 2m points, m = 1, . . . ,17 and for digit interlacing factors α = 2,3. We use the results with

m = 17 as the reference value and keep the maximal discretization level L = 14 fixed, resulting in

sL = 215 −1 = 32767 parameter dimensions and smallest FEM meshwidth hL = 2−15.

7.2 Two spatial dimensions

For d = 2, we consider the domain D = (−1,1)× (0,1) with mixed boundary con-

ditions. Specifically, the Neumann boundary is given by Γ2 = (−1,0)×{0} anda

the Dirichlet boundary is Γ1 = ∂D\Γ2. Although the domain is convex, the change

in boundary conditions at the origin induces a corner singularity in the parametric

solutions corresponding to interior angle equal to π . Due to isotropy of the paramet-

ric diffusion coefficient, this leads to a non-H2(D) singularity of (y-independent)

strength O(
√

r) of the parametric solution u(·,yyy) concentrated at the origin. The

boundary conditions change also at the corner (0,−1)⊤ ∈ ∂D, inducing weaker

singularities there as well. The considered goal functional is here integration over the

domain D, which is an element of L2(D). Since the parametric coefficients a(x,yyy)
are isotropic, i.e., scalar valued, the full regularity shift of the Laplacean in weighted

Hilbert spaces is applicable as detailed in Section 2, we obtain τ = 2. Analogous

to the univariate problem considered in the previous subsection, we use continuous,

bilinear FE on quadrilaterals on sequences of nested, locally refined meshes of the

domain D which were obtained by a suitable bisection refinement, cp. [12].

Here, we have J = 5 singular points or corners and βββ ∈ [0,1)J satisfies that

βi > 1−π/ωi, i = 1,2,3, and βi > 1−π/(2ωi), i = 4,5, cp. Section 2. Then, for the

Laplacean with mixed boundary conditions in D there holds a full regularity shift
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in weighted Sobolev spaces, i.e. (−∆)−1 : L2
βββ
(D) → H1

0 (D)∩H2
βββ
(D) is bounded

with βββ = (0,0,0,β4,β5), 1 > β4 > 0, and 1 > β5 > 1/2, where singular points

are enumerated counter clockwise, i.e., c1 = (1,0)⊤, c2 = (1,1)⊤, c3 = (−1,1)⊤,

c4 = (0,−1)⊤, and c5 = (0,0)⊤. We observe that solutions will in general have a

weak non-H2(D) singularity at the corner c4, i.e., u(x,yyy)∈H2−ε(D4) for every ε > 0,

where D4 ⊂D is a sufficiently small neighborhood of c4. We use the values β1 = β2 =
β3 = 0, β4 = 0.05, and β5 = 0.55 as inputs for a bisection refinement algorithm, which

results in 1-irregular quadrilateral meshes. In polar coordinates (r,φ) ∈ (0,∞)×
(0,π), where x = r(cos(φ),sin(φ)⊤, the function ū(r,φ) =

√
r sin(φ/2) is harmonic,

i.e., ∆ ū = 0, and satisfies the homogeneous Neumann boundary conditions. We solve

the parametric boundary value problem

−∇ · (a(x,yyy)∇u(x,yyy)) = 0, u(x,yyy)
∣∣∣
Γ1

= ū(x)
∣∣∣
Γ1

, a(x,yyy)∇u(x,yyy) ·n(x)
∣∣∣
Γ2

= 0.

Clearly, u(x,000) = ū(x). The inhomogeneous Dirichlet boundary terms can be incor-

porated into the right hand side, for example by solving −∇ ·(a(∇u− ū)) = ∇ ·(a∇ū)
and adding ū to the solution afterwards. Instead of ū one may use any other suit-

able extension of ū|∂D to the domain D. The difference u− ū satisfies the homo-

geneous mixed boundary conditions. The parametric right hand side is given by

f (x,yyy) := ∇ · (a(x,yyy)∇ū(x)) ∈ L2
βββ
(D) for βββ stated above. This right hand side f (x,yyy)

depends linearly on the parameter vector yyy. In previous sections, we assumed a fixed

right hand side only for simplicity and conciseness of the presentation. A right hand

side, which only depends linearly on the coefficient a(x,yyy) is under the made assump-

tions a simple, admissible extension. The implementation of the spatial discretization

in two space dimensions of bilinear FE uses deal.II, cp. [1].

For the uncertain diffusion coefficient, we consider the parametrization ob-

tained by tensorizing the univariate continuous, piecewise linear biorthogonal spline

wavelets. Specifically, we choose

ψ̂ℓ,k1,k2
(x1,x2) = σ2−α̂ℓψℓ,k1

(x1)ψℓ,k2
(x2), k1,k2 ∈ {0, . . . ,2ℓ−1}, (31)

where ψℓ,k(x) denotes the univariate continuous, piecewise linear wavelet function

with scaling ‖ψℓ,k‖L∞(D) = 1 and σ = 0.01. Thus, ‖ψ̂ℓ,k1,k2
‖L∞(D) = σ2−α̂ℓ with α̂ =

4. This choice of parametrization results in sL = ∑
L
ℓ=0 4ℓ = (4L+1 −1)/3 dimensions

on level L. The generating vectors were constructed by the CBC algorithm based on

a QMC weight sequence analogous to the univariate case, given here by b j(ℓ,k1,k2) =(
1+ c22β̂ℓ

)−(β̂−τ)/β̂
where β̂ = 3.99 and τ = 2.

For the multilevel method, the number of samples per level is given by Nℓ = 2mℓ

where the exponent mℓ is given as in (30) with d = 2. To compare to a single-

level approach, we equilibrate the finite element and QMC sampling error to obtain

NL = 2Lτ/r ∼M
τ/(dr)
L , where r is the QMC convergence rate, here r ≈ 2 for interlacing

factor α = 2 and we take r = 2 to obtain the value of NL.

Page:27 job:GantnerHerrmannSchwab_Sloan80_rev1 macro:svmult.cls date/time:20-Jul-2017/18:03



28 Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Work

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
e
la

ti
ve

E
rr

o
r

1

−1

SL/ML Convergence

SLQMC

fit: −0.772

MLQMC

fit: −1.152

Fig. 3 Convergence of single-level and multilevel methods for a 2d diffusion equation with

parametric coefficient given in wavelet representation. Continuous, piecewise bilinear biorthogonal

spline wavelets (31) on uniform partitions of the domain D with meshwidth O(2−ℓ), ℓ= 0, . . . ,L,

were used. As a reference solution, the multilevel approximation on the level L = 8 with a total of

sL = 87381 dimensions was used. The measured rates were obtained by a linear least squares fit on all

points but the first and the two last ones. The rates expected from the theory for this problem are 0.67

for SLQMC and 1 for MLQMC ignoring log factors. The work is W ML
L = ∑

L
ℓ=0 Nℓ2

2ℓ(1+ log2(sℓ))
for multilevel and W SL

L = NL22L(1+ log2(sL)) for single-level.

8 Conclusions

We provided the convergence rate analysis of randomly shifted and high order, inter-

laced polynomial lattice rules for the numerical evaluation of linear functionals G

of solutions of countably affine-parametric, linear second order elliptic partial dif-

ferential equations. The spatially inhomogeneous diffusion coefficient was assumed

to be represented by a multiresolution analysis (MRA) with local supports, rather

than the globally supported Karhunen-Loève expansion considered, for example, in

[22, 7, 6, 14] and the references there. As in the corresponding single level QMC

Petrov Galerkin approaches considered in [10], we proved that QMC with product

weights, originally proposed by I. H. Sloan and H. Woźniakowski in [30], can provide

optimal QMC convergence rates which are independent of the parameter dimension,

unlike the so-called product and order dependent (POD) weights which are mandated

by globally supported representation systems of uncertain input data. This, in turn,

results in linear w.r. to dimension scaling of fast CBC constructions from [25, 24],

which originate in a dimension-wise, greedy strategy to minimize the worst case
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error, as proposed orginally in [29]. The present analysis addressed linear, affine

parametric random input data where the supports of the parameters are bounded. The

extension for log-Gaussian diffusion coefficients in the present setting, along the

lines of [14, 19] (where the case of globally supported ψ j were treated) and in the

setting of the single level analysis in [15], is given in [16]. Numerical experiments

were given for a model, linear elliptic problem in one and two space dimensions with

local spatial mesh refinement. The present mathematical analysis holds, however,

also for PDEs on polyhedra in three space dimensions. We refer to [16]. Analogous

error bounds for product weight QMC also hold for log-Gaussian representations of

uncertain PDE inputs. Details are presented in [16, 17].
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