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Abstract

We demonstrate and analyze the failure of the three-term recursion
on the evaluation of Hermite functions for important parameter and
argument values. Asymptotic expansions inspire a solution to this problem.
We explicitly develop the necessary fomulae in detail and implement
an algorithm realizing this solution. The result is applicable to a wide
range of input parameter values. The main goal is now an application to
Hagedorn wavepackets in one dimension. We can improve the robustness
of wavepacket based spectral methods as it becomes possible to evaluate
wavepackets of much higher order. The simple example of an overlap
matrix computation is shown where we can get rid of any erratic behavior.

1 Motivation

The three term recursion for the Hermite function hn(x) breaks down for large
values of n. This is caused by the finite discrete nature of floating point numbers.
There is a limit value x =

√

2 log(21075) ≈ 38.60397 (for floating point numbers

represented by 64 bits) such that exp(−x2

2 ) yields the smallest (denormal) floating
point number 2−1074. For any x larger than this limiting value, the floating
point evaluation of h0(x), which is a Gaussian, underflows. The result becomes 0
which propagates up through all the recursion steps until it becomes visible for a
large enough index n, when the function hn is not approximately zero anymore.
The Hermite function hn(x) has for n > 700 non-negligible values in the range
around that limit value as shown in Figure 1.
Since the Hagedorn wavepackets can be written in terms of Hermite functions
this directly limits our ability to work with wavepackets of high order and in turn
bounds the maximal basis size for any method based on Hagedorn wavepackets.
This problem has been observed before and there are some solutions proposed,
for example a stabilized version of the recursion in the appendix of [3] which is
however not without its own problems. The main algorithm there for evaluation of
Hermite functions is based on quadrature of contour integrals and the evaluation
procedure is in general O(

√
n). We will take a different approach and use

asymptotic expansions finally arriving at an O(1) algorithm suitable for n > 100.
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Figure 1: Breakdown of the Hermite function three term recursion for large n.

2 Hagedorn Wavepackets

In one dimension the Hagedorn wavepacket φk of order k is written as:

φk(x) =
(

πε2
)− 1

4 2−
k
2 (k!)

− 1
2 Q− k+1

2 Q
k
2 ·Hk

(

ε−1|Q|−1 (x− q)
)

· exp
( ı

2ε2
PQ−1 (x− q)

2
+

ı

ε2
p (x− q)

) (1)

where Π = {q, p,Q, P} and ε are the usual parameters. Hk is the Hermite
polynomial, so the one-dimensional wavepackets are just properly scaled Her-
mite functions, denoted by hk. Hence our goal is to efficiently and accurately
approximate Hermite functions hn(x) of large order n for any (real) argument x.
The Hagedorn wavepackets form an orthonormal basis of L2(R) and hence the
overlap matrix:

Mr,c := 〈φr[Π]|φc[Π]〉 (2)

will equal the identity matrix. If we compute this matrix for 0 ≤ r, c < 1000
with enough Gauss-Hermite quadrature points, the resulting M looks like shown
in the left panel of Figure 2.

3 Differential Equations for Hermite functions

In the following we reexamine the theory of asymptotic expansions for Hermite
functions hk(x) for large values of the order n as well as the argument x. The
fundamental theory was developed by Olver, see for example his book [21]
and the selection of his papers [23]. Most important for us is the paper on
uniform asymptotic expansions of parabolic cylinder functions [19]. The Hermite
functions:

hn(x) =
(

2nn!
√
π
)− 1

2 e−
x2

2 Hn(x) (3)

satisfy the following second order differential equation:

d2hn

dx2
+
(

2n+ 1− x2
)

hn = 0 . (4)
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Figure 2: Plot of the overlap matrix Mr,c := 〈φr|φc〉. Since the wavepackets
form an orthonormal basis set, this should give the identity matrix. In the
left panel, the full matrix for 0 ≤ r, c < 1000 is shown and there appears an
erroneous block in the bottom right corner. The middle panel zooms in to that
range, where we can see the main diagonal and the structure of this block. The
right panel shows an even larger zoom to the range 800 ≤ r, c ≤ 820, half of the
elements are non-zero and the maximal in magnitude entry inside this slice is
about 0.8244, so not even the elements on the diagonal stay 1 as they should.
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Figure 3: Diagonal and selected off-diagonal elements of the matrix M. These
plots show more clearly the large errors introduced into the matrix as mentioned
in the caption to Figure 2.

This differential equation is clearly just a special case of the following one:

d2w

dx2
+
(

ax2 + bx+ c
)

w = 0 (5)

with a = −1, b = 0 and c = 2n + 1, defining the so called parabolic cylinder
functions. By completion of the square we can rewrite this as:

d2w

dx2
−
(

1

4
x2 + a

)

w = 0 . (6)

In that case, a pair of independent solutions is given by U(a, x) and V (a, x).
More details are given in [1], section 12.2. The connection to the solution of our
original problem, the Hermite differential equation, can be established by yet
another rewrite. With ν = − 1

2 − a we find:

d2w

dx2
+

(

ν +
1

2
− 1

4
x2

)

w = 0 (7)
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where one solution Dν(x) is called the Whittaker function and obviously:

Dν(x) = U(−1

2
− ν, x) . (8)

On the other hand, for the Hermite functions hn(x) it holds that:

Dn(x) = (n!
√
π)

1
2hn

(

x√
2

)

(9)

and hence:
hn(x) =

(

n!
√
π
)− 1

2 Dn(
√
2x) . (10)

Finally we get for the Hermite function:

hn(x) =
(

n!
√
π
)− 1

2 U(−1

2
− n,

√
2x) . (11)

With that result is is sufficient to concentrate on asymptotic expansions for
U(a, x). These expansions were studied long ago from a theoretical point of
view. More recently Temme focused also on the numerical aspects [31, 29].
The usage of parabolic cylinder functions has been studied in a variety of
papers [13, 20, 24, 28, 30] by many different researchers.

4 Asymptotic expansion of Hermite functions

In this section we concentrate on the asymptotic expansions for the function
U(a, x). By using formula (11) we can in the end construct the expansions for
hn(x). The Hermite functions have a so called turning point at x =

√
2n+ 1

where the oscillatory behavior changes to exponential decay. To get an expansion
valid for both regions and also including this transition region we have to use
Airy functions which share this feature of changing behavior. The family of Airy
functions is well known, in short the functions Ai(x) and Bi(x) are solutions of
the following second order linear ordinary differential equation with polynomial
coefficients:

y′′(x)− x y(x) = 0 (12)

and many of their properties are summarized in the book by Vallée and Soares [34].
Another approach to the expansion of Hermite polynomials is given in [35] with
some emphasis on the turning point issues. The broader topic of Airy-type
expansions are treated for example in [4, 31] and as part of the chapter on
Uniform Asymptotic Expansions in the classical book [10].
With µ :=

√
2n+ 1 we can rescale the position variable t := x

µ and rewrite:

U

(

−1

2
− n,

√
2x

)

= U

(

−1

2
µ2,

√
2x

)

= U

(

−1

2
µ2,

√
2µt

)

. (13)

The two turning points are now located at t = ±1. For large values of n it is
possible to find asymptotic expansions valid in the range −1 < t ≤ ∞. Since for
n ∈ N0 it holds that:

U

(

−1

2
− n,−x

)

= (−1)n U

(

−1

2
− n, x

)

(14)
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we can concentrate entirely on the range 0 ≤ x ≤ ∞. Coming now to the central
part, the asymptotic expansion:

U

(

−1

2
µ2, µt

√
2

)

∼

2π
1
2µ

1
3 g(µ)φ(ζ)



Ai
(

µ
4
3 ζ
)

∞
∑

s=0

As(ζ)

µ4s
+

Ai′
(

µ
4
3 ζ
)

µ
8
3

∞
∑

s=0

Bs(ζ)

µ4s



 (15)

is given in terms of the Airy function Ai(x) and its derivative Ai′(x). The formula
holds for |µ| → ∞ with −π < argµ < π and uniformly with respect to t in
some domain of the complex plane. The exact details can be found in [19] and
are not relevant for us as we are interested in a very specific simple case. The
series converges extremely fast and we can truncate both sums already after
three terms each. The use of this excellent expansion for the approximation of
Hermite polynomials was hinted by a recent algorithm showing fast computation
of Gauss-Hermite quadrature nodes [33]. We implemented this algorithm in the
world-wide used package SciPy [14] where it since has become the standard for
computing Gauss-Hermite rules of order n > 150 up to several thousand points
by the function h_roots. In the following we will introduce all the other parts
of this central formula step by step.

4.1 Series Coefficients

We will first concentrate on the computation of the series coefficients As and Bs,
which are given by the finite sums:

As(ζ) = ζ−3s
2s
∑

m=0

βm φ(ζ)6(2s−m) u2s−m(t)

Bs(ζ) = −ζ−3s−2
2s+1
∑

m=0

αm φ(ζ)6(2s−m+1) u2s−m+1(t)

(16)

where we find new sets of real-valued parameters αm and βm. They can be
computed easily in closed form:

α0 = 1 (17)

αm =

2m−1
∏

j=0

2m+ 1 + 2j

m!144m
. (18)

The first five values are explicitly:

α0 = 1 α1 =
5

48
α2 =

385

4608
α3 =

85085

663552
α4 =

37182145

127401984
. (19)

For the βm we have:

βm = −6m+ 1

6m− 1
αm (20)

and again the first five values are:

β0 = 1 β1 = − 7

48
β2 = − 455

4608
β3 = − 95095

663552
β4 = − 40415375

127401984
. (21)
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Beside these raw numbers there are the functions us(t) which are polynomials
in t of degree 3s for odd s and 3s − 2 for even s larger or equal to 2. These
polynomials us(t) satisfy the following differential equation:

(t2 − 1)u′
s(t)− 3st us(t) = rs−1(t) . (22)

If we know the remainder term rs−1(t) we can compute us(t) by solving this first
order ordinary differential equation. The remainder itself is given by another
difference-differential equation:

rs(t) =
3t2 + 2

8
us(t)−

3(s+ 1)t

2
rs−1(t) +

t2 − 1

2
r′s−1(t) (23)

in terms of us and the previous remainder rs−1 and its derivative r′s−1. The
computation of these polynomials can then be done recursively if we take
r−1(t) ≡ 0 as shown in Figure 4. This computation yields one after the other
the polynomials:

u0(t) = 1

u1(t) =
t3

24
− t

4

u2(t) = − t4

128
+

83t2

384
+

145

1152

u3(t) = − 2021t9

207360
+

2021t7

46080
− 3143t5

46080
− 10133t3

27648
− 2881t

4608

(24)

and the corresponding remainders:

r−1(t) = 0

r0(t) =
3t2

8
+

1

4

r1(t) =
t5

64
− 5t3

6
− 19t

16

r2(t) = − 35t6

1024
+

2601t4

1024
+

18743t2

3072
+

2881

4608

r3(t) = −2021t11

552960
+

46483t9

3317760
+

32413t7

368640
− 3764591t5

368640
− 1985809t3

55296
− 184483t

18432
.

Both, polynomials and remainders are plotted in Figure 5. We can also write a
direct formula for the closely related functions ũs(t):

ũs(t) =
1

2

1√
t2 − 1

dũs−1(t)

dt
+

1

8

∫

3t2 + 2

(t2 − 1)
5
2

ũs−1(t)dt (25)

with ũ0(t) = 1. The polynomials us(t) are then obtained from these functions
by the transformation:

us(t) =
(

t2 − 1
)

3s
2 ũs(t) . (26)

It is not obvious that the us(t) are indeed polynomials. More details are given
by Olver in [19], formula 4.6. We defer the explanation of ζ and φ(ζ) from (16)
to section 4.3.
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Figure 4: Recursive computation of the polynomials us(t) from the remainders
rs(t). The solid arrows represent use of formula (22) and the dashed arrows
show the dependency for updating the rs(t) according to (23). We start the
procedure by using the initial value r−1 ≡ 0.
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Figure 5: The polynomials us(t) (left) and rs(t) (right). Note the symmetries.

4.2 The Prefactor in O(1)

Let us look at the prefactors of the above expansion (15) in more detail. Besides
some numbers we have the functions g(µ) and φ(ζ). We now examine the
first function for which another series expansion can be given, see for example
equation 12.10.14 in the Digital Library of Mathematical Functions [1]. It holds:

g(µ) ∼ h(µ)s(µ) (27)

where:
h(µ) = 2−

1
4µ

2− 1
4 e−

1
4µ

2

µ
1
2µ

2− 1
2 (28)

and:

s(µ) = 1 +
1

2

∞
∑

s=1

γs

( 12µ
2)s

(29)

with the first few coefficients γs being:

γ0 = 1 γ1 = − 1

24
γ2 =

1

1152
γ3 =

1003

414720
γ4 = − 4027

39813120
. (30)

These values themselves arise from the series expansion:

Γ

(

1

2
+ z

)

∼
√
2πe−zzz

∞
∑

s=0

γs
zs

(31)

and can be computed easily on demand.
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We gather all the pure numerical factors from (11) and from (15) and also include
h(µ) but not s(µ) into a common large prefactor τ :

τ(n) :=
(

n!
√
π
)− 1

2 2π
1
2µ

1
3h(µ)

= (n!)
− 1

2 π
1
4 2−

1
4µ

2+ 3
4 e−

1
4µ

2

µ
1
2µ

2− 1
6

(32)

and τ̃(n) := τ(n)s(µ). Practical computation of this factor τ is difficult mostly
for the reason that the value of µ which can be quite large appears in the
exponents. Also there is the factorial term n! in the denominator. Together these
large values cancel to yield reasonable ranges for τ(n) of O(1). Figure 6a shows
the function τ(n) for n ∈ [0, 1000] computed by extended precision arithmetic.
Even if the plot might suggest otherwise, it holds that:

τ(0) =
√
2 4

√

π

e
≈ 1.4663203 and lim

n→∞
τ(n) = 0 (33)

which can be checked by explicit computation.
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-

s(
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(b)

Figure 6: Plot of the function τ(n) (left) computed by extended arithmetic
over the range n ∈ [0, 1000]. The right plot shows the value of 1 − s(n) for
n ∈ [0, 1000] in a logarithmic plot. Over the whole range of n but even more for
the larger n the function s(n) is almost equal to one.

If we just naively evaluate the symbolic expression for τ(n) or τ̃(n) respectively
the numerics breaks down just after n = 170 already. This is shown by the red
curve in Figure 7a.
Let us define the approximation h̃asy

n (x) to hn(x) obtained from the formula (15)
by taking just the part in large brakets and φ(ζ). The three term recursion for
the Hermite function hn(x) can be evaluated in forward mode for any n as long
as x is small enough to avoid the problems mentioned in the beginning. Since
the prefactor τ̃ is just a scalar factor independent of x we can use the following
trick:

τ̃(n) =
hn(x0)

h̃asy
n (x0)

(34)

where we choose a fixed evaluation point x0. The question is how to choose this
point. A first idea is to fix x0 = 1. Another possibility is to choose x0 = 0 for
even n and x0 = 1 for odd n. Both methods are unstable for some values of
n because there are Hermite functions which have a zero in the vicinity of the
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Figure 7: The prefactor τ̃(n). Computation by the exact formula breaks down
even before n = 200 while the numerical approximation can be applied to much
larger values.

chosen x0. In order to obtain a robust evaluation we can choose x0 as the first
non-negative maximum of the Hermite function hn. This point can be found as
the zero of the derivative:

0
!
= h′

n(x0) =

√

n

2
hn−1(x0)−

√

n+ 1

2
hn+1(x0) (35)

which itself can be computed by a variant of the recursion relation. Instead
of using the exact zero which is not straight forward to compute we use the
approximate value implicitly specified by:

0 = hn+1(x0) (36)

which is close enough. This value can be computed very efficiently in O(1) by the
algorithm presented in [32]. Figure 8 shows the maximal absolute approximation
error of hasy

n (x) compared to hn(x) for x in the range ± 3
2

√
2n+ 1. The blue

curve in Figure 7 shows the values of τ̃ obtained by this approach and the
Figure 7b shows the difference to the evaluation of the symbolic formula. If we
keep in mind that we deal with an asymptotic approximation and that we will
use it for say n > 100 this all fit together well.
Note that this method has also a drawback from the efficiency point of view
as the computation of τ̃ becomes O(n) because we have to use the recursion
relation. We present a better solution. As can be seen in Figure 6b the s(n) part
of τ̃(n) is extremely tame. We focus on the τ(n) part from equation (32). First
we look at the term n! = Γ(n+ 1). The gamma function is an opaque block we
can not handle in this form. Hence we use the following modern approximation
for the gamma function:

Γ(ξ) ≈
√

2π

ξ

(

1

e

(

ξ +
1

12ξ − 1
10ξ

))ξ

. (37)

which is formula 4.1 in [18] and therein referred as closed approximation1. We

1Even more accurate approximations to Γ(x) like Nemes-6, Nemes-8 or methods proposed
in [17] could be used. Some of these ideas go back to [27].
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Figure 8: Maximal absolute approximation error. For values of n larger than
600 the reference solution computed by recursion starts to fail. The peaks in the
first figures are caused by zeros of hn in the vicinity of the chosen x0.

define the abbreviation:

δ := (n+ 1) +
1

12(n+ 1)− 1
10(n+1)

. (38)

Next we get:

Γ(n+ 1) ≈
√

2π

n+ 1

(

δ

e

)n+1

√

Γ(n+ 1) ≈
(

2π

n+ 1

)
1
4

e−
n+1
2 δ

n+1
2

1
√

Γ(n+ 1)
≈
(

n+ 1

2π

)
1
4

e
n+1
2 δ−

n+1
2 .

(39)

We plug this into the formula for the factor τ(n) and write all the factors as
exponentials as follows:

τ(n) ≈ τapprox(n)

=

(

n+ 1

2π

)
1
4

e
n+1
2 δ−

n+1
2 π

1
4 2−

1
4µ

2+ 3
4 e−

1
4µ

2

µ
1
2µ

2− 1
6

= (n+ 1)
1
4 e

n+1
2 δ−

n+1
2 2−

1
4µ

2+ 1
2 e−

1
4µ

2

µ
1
2µ

2− 1
6

= elog(n+1) 1
4 e

n+1
2 e− log(δ)n+1

2 e− log(2)( 1
4µ

2+ 1
2 )e−

1
4µ

2

elog(µ)(
1
2µ

2− 1
6 )

(40)

If we collect and group all the factors this results in:

τapprox(n) = exp

(

1

4
−
(

n

2
− 1

4

)

log(2)− (n+ 1)

2
log(δ)

+

(

n+
1

3

)

log(
√
2n+ 1) +

1

4
log(n+ 1)

)

(41)

and we can write the approximate prefactor τapprox(n) as a single exponential.
Again we have:

τapprox(0) =

√

119

129
4
√
2e ≈ 1.4665935 and lim

n→∞
τapprox(n) = 0 . (42)
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Figure 9: Plot of the function τapprox(n) (left) over the range n ∈ [0, 1000]. The
right plot shows the exponent from equation (41) for n ∈ [0, 1000].
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Figure 10: Absolute error (left) and relative error (right) of the approximation
τapprox(n) over the range n ∈ [0, 1000].
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4.3 The middle part

The final part missing in the asymptotic expansion is the function φ(ζ). It is
defined as:

φ(ζ) :=

(

ζ

t2 − 1

)
1
4

(43)

Notice that exactly at the turning points t = ±1 this formula will yield a division
by zero. This causes some difficulties later but we are able to overcome those.
Nested inside the above expression for φ is ζ which itself is a function of t. This
function is implicitly defined by the following two expressions:

2

3
(−ζ)

3
2 = η − 1 < t ≤ 1 (44)

2

3
ζ

3
2 = ξ 1 ≤ t ≤ ∞ (45)

It is important to note that ζ(1) is analytic. This property will later resolve all
issues at this special point. The right hand sides are:

η(t) = −1

2
t
√

1− t2 +
1

2
ı log

(

t− ı
√

1− t2
)

ξ(t) =
1

2
t
√

t2 − 1− 1

2
log
(

t+
√

t2 − 1
)

(46)

and shown in Figure 12. Obviously they are both zero at t = 1. Next we can
compute ζ(t) and get:

ζ(t) =















−
( 3η(t)

2

)
2
3 t < 1

0 t = 1
( 3ξ(t)

2

)
2
3 t > 1

(47)

as shown in Figure 13. In turn we resolve φ(ζ) and get:

φ(ζ(t)) =

(

ζ(t)

t2 − 1

)
1
4

. (48)

At t = 1 we see an indefinite expression φ however the limit from both sides
exists and the function is continuous. If we use this whole machinery to compute
asymptotic approximations, the results look as depicted in Figure 15 for the
Hermite function h400(x).
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Figure 12: The functions η(t) and ξ(t).
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801 ≈ 28.3. We find a strongly

localized blow up at this point.
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4.4 Patching the turning point

As we can see in Figure 15, special care needs to be taken for values in a close
neighborhood around the turning point at t = 1 or x = µ respectively. The exact
values at the point µ can be computed from the formal sums for Hn(x):

hn(µ) =











ın 2−
n
2
√
n! e−n−

1
2

4
√
πΓ(n+2

2 ) 1F1

(

−n
2 ;

1
2

∣

∣2n+ 1
)

n even

ın+3 21−
n
2
√

(2n+1)
√
n! e−n−

1
2

4
√
πΓ(n+1

2 ) 1F1

(

1
2 − n

2 ;
3
2

∣

∣2n+ 1
)

n odd .
(49)

The expression (15) derived in the last section has a divergence at this point.
There are several subexpressions including terms like t2 − 1 for example in the
functions η and ξ which make up ζ as well as in the denominator of the expression
for φ. However, the function ζ(t) is analytic at t = 1, as shown in [19] and also
mentioned in [1], formula 12.10.41. Hence we can compute a series expansion
around t = 1. Doing this up to third order we find:

ζ(t) = −311

350
2

1
3 +

134

175
2

1
3 t+

47

350
2

1
3 t2 − 2

175
2

1
3 t3 +O(t4) . (50)

Next we can insert this into the definition of φ(ζ) and again compute a series
expansion around t = 1. We get:

φ(ζ(t)) =
16031

14000
2−

1
6 − 2843

14000
2−

1
6 t+

993

14000
2−

1
6 t2 − 181

14000
2−

1
6 t3 +O(t4) . (51)

Now the process becomes more complicated, as the main ingredients, As and
Bs, depend on ζ but also directly on t through the polynomials us(t). Since the
function ζ(t) in analytic we can invert it around t = 1 and find:

t(ζ) = 1+2−
1
3 ζ− 1

10
2−

2
3 ζ2+

11

350
2−

3
3 ζ3− 823

63000
2−

4
3 ζ4+

150653

24255000
2−

5
3 ζ5+O(ζ6) .

We plug this together with the series expansion for ζ into the definitions from
(16). Then we can expand As(ζ) and Bs(ζ) around ζ = 0. The first three terms
of both series up to second order are:

A0(ζ) = 1

A1(ζ) = − 83

9600
+

6849

616000
2−

1
3 ζ − 6963757

591360000
2−

2
3 ζ2 +O(ζ3)

A2(ζ) =
164424546127

26824089600000
− 2268401006387

190749081600000
2−

1
3 ζ +O(ζ2)

(52)

and:

B0(ζ) = − 9

140
2−

2
3 +

7

225
2−

3
3 ζ − 1359

67375
2−

4
3 ζ2 +O(ζ3)

B1(ζ) =
6402643

286720000
2−

2
3 − 23658594097

1117670400000
2−

3
3 ζ +

533862734809

23843635200000
2−

4
3 ζ2 +O(ζ3)

B2(ζ) = − 2789441829184657

80114614272000000
2−

2
3 +

193350809601223663

4326189170688000000
2−

3
3 ζ +O(ζ2) .

(53)

Finally we just need to assemble all the parts according to formula (15). For the
actual implementation we use series expansions up to higher orders than shown
here.
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All these expansions are accurate only in a region around t = 1. The series (4.4)

converges for |ζ| < ( 3π4 )
2
3 . We choose τ = ε

1
8 /µ with ε the machine precision and

determine a suitable region where to apply this patch. From some experiments
the following region2 seems to be appropriate:

[1− (3τ)
2
3 , 1 + (3τ)

2
3 ] . (54)

The region is also shown in the figures 16 and 17 by vertical magenta lines.
Numerical experiments showing the perfect fit of the patch for large n.
This procedure for patching the turning point works fine in practice but is not
a nice solution. Maybe one should look at the different approximations shown
in [29]. Probably there are better ways to overcome the divergence.
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Figure 16: Absolute (left) and relative (right) error of the patched asymptotic
approximation of h600(x) compared to the version obtained via three term
recursion.

0.980 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020

t

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

A
b
s
o
lu

te
E

rr
o
r

t ≤ 1

t ≥ 1

t = 1

(a)

30 32 34 36 38

x

−8

−6

−4

−2

0

2

4

6

8

h
6
0
0
(x
)

x ≤ µ

x ≤ µ

x = µ

(b)

Figure 17: Left: relative error of the patched asymptotic approximation of
h600(x) zoomed in around the turning point. Right: the patched asymptotic
approximation of h600(x) having no visible defects.

2The series expansion of ξ(t) around t = 1 up to second order is: c = 2

3

√
2(t− 1)

3
2 +O(t

5
2 )

and solving this for t we find: t = 1 + 1

2
(3c)

2
3 from which we deduce a guess for the region.
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4.5 Recapitulation and concrete procedure

Taking a top-down approach, the Hermite function hn(x) is rewritten in terms
of the parabolic cylinder function U by (11). The numerical evaluation of U
is done through the asymptotic expansion formula (15). In case x is negative,
we apply (14) and hence consider positive values only. This is reflected in the
Algorithms 1 and 2.
For general positive values of x the procedure is summarized in the following.
We need ζ which we calculate according to its definition (47) which incorporates
the two functions ξ and η from (46). These steps are contained within the
Algorithms 4 and 5. Next, we compute the coefficients As and Bs via (16) wherein
we need the values αi and βi as given in (19) and (21) and the polynomials from
listing (24). The term φ(ζ) is formed according to (48). This forms the core and
is outlined in Algorithm 6.
Further, we compute the prefactor of (15) including the factors stemming from
the transformation (11). The s part inside g is easy and uses (29) with scalars
from (30). The remaining terms are then collected in τ as shown in (32) and we
plug in the approximation (41) for τ with δ from formula (38), compare also to
Algorithm 3.
If the value of x is in the vicinity of the turning point, a region roughly defined
by (54) after changing to the t variable, we need a special treatment. The
function ζ(t) is built from a series expansion in t around 1 as shown in (50).
Then the coefficients As and Bs are computed as series expansions in terms of ζ
as presented in (52) and (53). Also the function φ is expanded in t like printed
in formula (51) and sketched in Algorithm 7.
Note that in the actual code we use longer series expansions of higher degree
which are not reproduced here for reasons of brevity.
Working with a variable θ defined implicitly by t = cos(θ) in case t < 1 and by
t = cosh(θ) when t > 1 rather than with t is beneficial for numerical stability, as
explained in [33].
The different parts of this algorithm are split into several function definitions
given below. The main entry point is Algorithm 1. The function boundaries are
not always aligned with the mathematics because of computational reasons. All
parts can easily be vectorized to work with x ∈ R

n instead of x ∈ R as done in
our implementation.

Algorithm 1 Hermite evaluation by asymptotic expansion: main entry point

procedure HermiteAsy(n, x)
y := 0 ⊲ Apply Formula (11)
if x < 0 then

y := (−1)(n mod 2) HermiteAsyPositive(n, −x) ⊲ Formula (14)
else

y := HermiteAsyPositive(n, x)
end if

τ̃ := GetTau(n)
return τ̃ y

end procedure
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Algorithm 2 Dispatch evaluation for positive x values

procedure HermiteAsyPositive(n, x)
µ :=

√
2n+ 1 ⊲ Rescale the x value

t := x
µ

⊲ Bound the region around the turning point t = 1
σ := ǫ

1
8 /µ

t− := 1− (3σ)
2
3 ⊲ Formula (54)

t+ := 1 + (3σ)
2
3

⊲ Evaluate for each region [0, t−) ∪ [t−, t+] ∪ (t+,∞) separately
y := 0
if t < t− then

y := PBCFAsySmall(n, t)
else if t > t+ then

y := PBCFAsyLarge(n, t)
else

y := PBCFSeriesTurningPoint(n, t)
end if

return y
end procedure

Algorithm 3 Compute the scalar prefactor τ̃

procedure GetTau(n)
δ := (n+ 1) + 1

12(n+1)− 1
10(n+1)

⊲ Formula (38)

τapprox := 1
4 −

(

n
2 − 1

4

)

log(2) − (n+1)
2 log(δ) +

(

n+ 1
3

)

log(
√
2n+ 1) +

1
4 log(n+ 1)

⊲ Exponent of Formula (41)

s := 1 + 1
2

∑4
i=1 γi (n+ 1

2 )
−i ⊲ Formula (29) with (30)

τ̃ := s exp(τapprox)
return τ̃

end procedure

Algorithm 4 Parabolic cylinder function series helper for t < 1

procedure PBCFAsySmall(n, t)
µ := 2n+ 1
θ := arccos(t) ⊲ Numerical trick from [33]
st := sin(θ)
ct := cos(θ)
η := 1

2θ − 1
2stct ⊲ Reformulation of (46)

ζ := −( 3η2 )
2
3 ⊲ Formula (47)

φ := (− ζ
s2t
)

1
4 ⊲ Formula (48)

y := PBCFSeries(µ, ct, ζ, φ)
return y

end procedure
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Algorithm 5 Parabolic cylinder function series helper for t > 1

procedure PBCFAsyLarge(n, t)
µ := 2n+ 1
θ := arccosh(t) ⊲ Numerical trick from [33]
st := sinh(θ)
ct := cosh(θ)
ξ := 1

2stct − 1
2 log(st + ct) ⊲ Reformulation of (46)

ζ := ( 3ξ2 )
2
3 ⊲ Formula (47)

φ := ( ζ
s2t
)

1
4 ⊲ Formula (48)

y := PBCFSeries(µ, ct, ζ, φ)
return y

end procedure

Algorithm 6 Asymptotic series expansion of parabolic cylinder function U

procedure PBCFSeries(µ, ct, ζ, φ)
⊲ Coefficients

α0, . . . , α5 := . . . ⊲ Formula (19) and (21)
β0, . . . , β5 := . . .

⊲ Polynomials
u0(ct), . . . , u5(ct) := . . . ⊲ Formula (24)

Ai := Ai(µ
4
6 ζ) ⊲ Airy function evaluation

Aip := Ai′(µ
4
6 ζ)

⊲ Terms for series of U
A0, . . . , A2 := . . . ⊲ Formula (16)
B0, . . . , B2 := . . .

⊲ Assemble U

U := φ ·
(

Ai · (A0 +
A1

µ2 + A2

µ4 ) +
Aip

µ
8
6
· (B0 +

B1

µ2 + B2

µ4 )

)

⊲ Main part

of (15) return U
end procedure
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Algorithm 7 Asymptotic series expansion of U around the turning point

procedure PBCFSeriesTurningPoint(n, t)
µ := 2n+ 1

⊲ Series inversion
ζ := . . . ⊲ Formula (50)
φ := . . . ⊲ Formula (51)

Ai := Ai(µ
4
6 ζ) ⊲ Airy function evaluation

Aip := Ai′(µ
4
6 ζ)

⊲ Terms for series of U
A0, . . . , A2 := . . . ⊲ Formula (52) and (53)
B0, . . . , B2 := . . .

⊲ Assemble U

U := φ ·
(

Ai · (A0 +
A1

µ2 + A2

µ4 ) +
Aip

µ
8
6
· (B0 +

B1

µ2 + B2

µ4 )

)

⊲ Main part

of (15) return U
end procedure

5 Numerical Examples

In this section we show a few numerical examples. First we retry on the evaluation
of high order Hermite functions as in Figure 1. With the new algorithm in place,
we no longer observe these issues as can be seen in Figure 18.
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Figure 18: Hermite functions hn(x) for large n by direct evaluation via the
asymptotic expansion. The functions are all complete and without the breakdown
at x ≈ 38.6. Compare this to Figure 1.

The plots in Figure 19 show the absolute and relative error behavior for small n.
While even for n = 1 the error is smaller than 10−3 and hence barely visible, we
can achieve good results already for n = 50 which is rather small. The errors
around the turning point are typically around two orders of magnitude larger in
that range of n.
The other plots in Figure 20 show the errors for larger values of n up to the
point where we do not have a good reference solution provided by the three term
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recursion any longer. We can obtain errors in the order of 10−14 over the full
range of x values, including the turning points. We almost reach the machine
precision.
It is not obvious in which part of the algorithm one should improve to get even
smaller error values. Maybe also the reference solution is not accurate enough.

21



−2 −1 0 1 2

x

10−26

10−24

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
re
c
−

y a
sy
|

(a) n = 1

−2 −1 0 1 2

x

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
r
e
c
−
y
a
s
y

y
r
e
c

|

(b) n = 1

−4 −2 0 2 4

x

10−26

10−24

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
re
c
−

y a
sy
|

(c) n = 5

−4 −2 0 2 4

x

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
r
e
c
−
y
a
s
y

y
r
e
c

|

(d) n = 5

−6 −4 −2 0 2 4 6

x

10−26

10−24

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
re
c
−

y a
sy
|

(e) n = 10

−6 −4 −2 0 2 4 6

x

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
r
e
c
−
y
a
s
y

y
r
e
c

|

(f) n = 10

−15 −10 −5 0 5 10 15

x

10−26

10−24

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|y
re
c
−

y a
sy
|

(g) n = 50
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(h) n = 50

Figure 19: Absolute (left column) and relative (right column) error of the
asymptotic version compared to the recursive version of the Hermite function
hn(x). The red lines mark the turning point x = µ = ±

√
2n+ 1. Already for

very small n = 50, the error is about 10−12. Around the turning points the error
is about two orders of magnitude larger.
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(g) n = 650
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(h) n = 650

Figure 20: Absolute (left column) and relative (right column) error of the
asymptotic version compared to the recursive version of the Hermite function
hn(x). The red lines mark the turning point x = µ = ±

√
2n+ 1. For larger n

the errors decrease to 10−14 which is almost machine precision. Also, the error
around the turning points is now of the same order.
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6 Transformation of Wavepackets

6.1 One dimensional case

Given a Hagedorn wavepacket φk[Π] with parameter set Π = {q, p,Q, P} where
q, p ∈ R and Q,P ∈ C. Starting from the k-th order state:

φk(x) =
(

πε2
)− 1

4 2−
k
2 (k!)

− 1
2 Q− k+1

2 Q
k
2 ·Hk

(

ε−1|Q|−1 (x− q)
)

· exp
( ı

2ε2
PQ−1 (x− q)

2
+

ı

ε2
p (x− q)

) (55)

our goal is to find a variable transformation x → y such that:

φk(y) =
(

ε2
)− 1

4 Ck Qk Hk(y) exp

(

−y2

2

)

R(y) (56)

where:

Ck := π− 1
4 2−

k
2 (k!)

− 1
2 and Qk := Q− k+1

2 Q
k
2 (57)

and there is some factor R(y) that collects all remaining junk terms. The
argument of the Hermite polynomial Hk suggests the transformation:

y = ε−1|Q|−1(x− q) ↔ x = q + ε|Q|y . (58)

Plugging the equality x− q = ε|Q|y into the exponential part of the formula for
φk we obtain:

exp
( ı

2ε2
PQ−1 (x− q)

2
+

ı

ε2
p (x− q)

)

= exp
( ı

2ε2
PQ−1 (ε|Q|y)2 + ı

ε2
p (ε|Q|y)

)

= exp
( ı

2
PQ−1|Q|2y2

)

exp
( ı

ε
p|Q|y

)

.

Next we use the fact that |Q|2 = QQ and expand the first term further:

= exp
( ı

2
PQ−1QQy2

)

exp
( ı

ε
p|Q|y

)

= exp

(

−1

2
y2(−ıPQ)

)

exp
( ı

ε
p|Q|y

)

.

Compared to our goal we got an extra factor −ıPQ 6= 1 in the exponential. We
decompose the complex parameters P = Pr + ıPi and Q = Qr + ıQi into their
real and imaginary parts and stick them into the compatibility formula:

QP − PQ = 2ı (59)

which yields:

2ı = (Qr − ıQi) (Pr + ıPi)− (Pr − ıPi) (Qr + ıQi)

= PrQr − ıPrQi + ıPiQr + PiQi − PrQr − ıPrQi + ıPiQr − PiQi

= 2ı (PiQr − PrQi)

(60)
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from where it follows that PiQr −PrQi = 1. Returning to our original factor we
start with:

−ıPQ = −ı (Pr + ıPi) (Qr − ıQi)

= −ı (PrQr − ıPrQi + ıPiQr + PiQi)

= PiQr − PrQi − ıPrQr − ıPiQi

= 1− ı (PrQr + PiQi)

(61)

and split the factor into a unit and PrQr + PiQi ∈ R. Combining this with the
previous result we get:

exp

(

−1

2
y2 (1− ı (PrQr + PiQi))

)

exp
( ı

ε
p|Q|y

)

= exp

(

−1

2
y2
)

exp
( ı

2
y2 (PrQr + PiQi)

)

exp
( ı

ε
p|Q|y

)

and find:
R(y) = exp

( ı

2
y2 (PrQr + PiQi)

)

exp
( ı

ε
p|Q|y

)

(62)

and finally:

φk(y) =
(

ε2
)− 1

4 QkCkHk(y) exp

(

−1

2
y2
)

R(y) (63)

with the factors as defined in (57). It is important to note that the exponentials
in R(y) contain purely imaginary arguments which can be seen by the definition
of the quantities involved. The y is real valued and so is |Q| ∈ R and the real
and imaginary parts of Q and P . The importance of this computation lies in
the fact that we can replace the middle part CkHk(y) exp

(

− 1
2y

2
)

by a Hermite
function hk(y) to get:

φk(y) = ε−
1
2Qk hk(y)R(y) . (64)

6.2 Multidimensional case

In the D dimensional case we have a wavepacket φk[Π] with parameter set
Π = {q, p,Q,P} consisting of vectors q, p ∈ R

D and matrices Q,P ∈ C
D×D.

The k ∈ N
D
0 is a suitable multi-index. To attack the multidimensional case we

claim that the wavepacket can be written like:

φk(x) =
(

πε2
)−D

4 det(Q)−
1
2

D
∏

i=1

2−
ki
2 (ki!)

− 1
2

·Hk

(

ε−1|Q|−1
(

x− q
))

· exp
(

i

2ε2
〈

(x− q),PQ−1(x− q)
〉

+
i

ε2
〈

p, (x− q)
〉

)

(65)

and we define the constant Ck as:

Ck := π−D
4 2−

k

2 (k!)
− 1

2 :=

D
∏

i=1

π− 1
4 2−

ki
2 (ki!)

− 1
2 (66)
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and the complex constant Qk with Q0 := det(Q)−
1
2 . Our goal is to find a similar

transformation as in the scalar case and by analogy we examine the candidate:

y = ε−1|Q|−1(x− q) ↔ x = q + ε|Q|y . (67)

We start again by plugging x − q = ε|Q|y into the inner products inside the
exponential:

exp

(

i

2ε2
〈

x− q,PQ−1(x− q)
〉

+
i

ε2
〈

p, x− q
〉

)

= exp

(

i

2ε2
〈

ε|Q|y,PQ−1ε|Q|y
〉

+
i

ε2
〈

p, ε|Q|y
〉

)

= exp

(

i

2

〈

|Q|y,PQ−1|Q|y
〉

)

exp

(

i

ε

〈

p, |Q|y
〉

)

.

Next we use the definition of |Q| := (QQH)
1
2 and concentrate on the main

exponential:

exp

(

i

2

〈

|Q|y,PQ−1|Q|y
〉

)

= exp

(

i

2

〈

y, (QQH)
H
2 PQ−1(QQH)

1
2 y
〉

)

then we split the central factor as PQ−1 = ℜ(PQ−1) + ıℑ(PQ−1):

= exp

(

i

2

〈

y, (QQH)
H
2

(

ℜ(PQ−1) + ıℑ(PQ−1)
)

(QQH)
1
2 y
〉

)

= exp

(

−1

2

〈

y, (QQH)
H
2 ℑ(PQ−1)(QQH)

1
2 y
〉

)

exp

(

i

2

〈

y, (QQH)
H
2 ℜ(PQ−1)(QQH)

1
2 y
〉

)

and in turn take a closer look at the exponential containing the imaginary part.
We use the fact that ℑ(PQ−1) = (QQH)−1 holds where (QQH)−1 is real valued
and symmetric positive definite:

exp

(

−1

2

〈

y, (QQH)
H
2 ℑ(PQ−1)(QQH)

1
2 y
〉

)

= exp

(

−1

2

〈

y, (QQH)
1
2 (QQH)−1(QQH)

1
2 y
〉

)

.

By the eigen decomposition QQH = T−1ΛT we have:

= exp

(

−1

2

〈

y, (T−1ΛT)
1
2 (T−1ΛT)−1(T−1ΛT)

1
2 y
〉

)

= exp

(

−1

2

〈

y,T−1Λ
1
2TT−1Λ−1TT−1Λ

1
2Ty

〉

)

= exp

(

−1

2
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y,T−1Λ
1
2Λ−1Λ

1
2Ty

〉

)

= exp

(

−1

2

〈

y, y
〉

)

.

What remains is to put together all the pieces from above. We will build the
factor R(y) as in the scalar case. First we argue that the exponential containing
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the real part of our decomposition3 has purely imaginary argument. Using the
above relation we have:

exp

(

i

2

〈

y, (QQH)
H
2 ℜ(PQ−1)(QQH)

1
2 y
〉

)

= exp

(

i

2

〈

y,ℑ(PQ−1)−
1
2ℜ(PQ−1)ℑ(PQ−1)−

1
2 y
〉

) (68)

where we know that ℑ(PQ−1) is symmetric positive definite and the fact follows.
In the end we get for the correction factor:

R(y) := exp

(

i

2

〈

y,ℑ(PQ−1)−
1
2ℜ(PQ−1)ℑ(PQ−1)−

1
2 y
〉

)

exp

(

i

ε

〈

p, |Q|y
〉

)

and for the wavepacket:

φk(x) = ε−
D
2 Qk Ck Hk

(

y
)

exp

(

−1

2

〈

y, y
〉

)

R(y) . (69)

It is important to mention that the Hk

(

y
)

is not simply a tensor product of
univariate Hermite polynomials but a much more complicated object. Although
there are various multi-variate and multi-index generalizations of the Hermite
polynomials, see for example [26, 25, 36, 9, 5, 6, 8] and the references therein,
unfortunately none of these seems to fit our case here. In context of Hagedorn
wavepackets, these issues were analyzed in depth in several publications, see
Remark 5 and Proposition 7 in [16], Corollary 4.6 and the appendix C in [15] as
well as the paper [7]. A generating function of Hk

(

y
)

is provided in [11]. For
the purpose of our algorithmic approach presented here, this does not resolve the
central issues, namely that we need an asymptotic expansion of the polynomials
similar as in the one-dimensional case. Hence the multi-variate case stays open
for now. This is not too problematic as at least one index ki must exceed a
certain threshold, for example about 150 for the asymptotic expansion to become
applicable. In multiple dimensions this would result in really huge basis sets K

anyway.

7 Evaluation of Wavepackets

By the results of the previous sections we can write an implementation of
Hagedorn wavepackets which uses the asymptotic approximation as shown in
formula (64) to evaluate the packet φn for n larger than some threshold value
N . A good choice for N lies somewhere in the range 400 < N < 600 but the
exact value is not of big importance.

3Note that this formula exactly simplifies to the one-dimensional case. Take complex
numbers Q = Qr + ıQi and P = Pr + ıPi and compute:

ℑ
(

Pr + ıPi

Qr + ıQi

)

−

1
2

ℜ
(

Pr + ıPi

Qr + ıQi

)

ℑ
(

Pr + ıPi

Qr + ıQi

)

−

1
2

= ℑ
(

Pr + ıPi

Qr + ıQi

)

−1

ℜ
(

Pr + ıPi

Qr + ıQi

)

=

(

PiQr − PrQi

Q2
r +Q2

i

)

−1
(

PrQr + PiQi

Q2
r +Q2

i

)

= PrQr + PiQi

It follows from the compatibility relation QP − PQ = 2ı that PiQr − PrQi = 1 holds.
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First we try to evaluate the lowest order wavepackets φ0, . . . , φ3, the results are
shown in Figure 21. Given the derivation above, this is not expected to give
very pleasant results, but it turns out not to be that bad.
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Figure 21: Evaluation of the first 4 wavepackets φ0 to φ4 by asymptotic
approximation (left) and recursion (right). The recursion gives the exact solution
but also the approximation works surprisingly well. The Gaussian φ0 is too
pointed at x = 0, but the φ1 already looks quite good.

A more sensible comparison is given in Figure 22 where we compute and plot
the point-wise absolute difference |φasy

n −φrec
n | for several interesting ranges of n.

Relative errors |φasy
n − φrec

n |/|φrec
n | are given in Figure 23. These results further

hint at the choice of N .
Testing our implementation on the examples shown in the beginning, we obtain
the last two figures. Figure 24 shows our matrix M having no artifacts anymore,
compared to the matrix printed in Figure 2. The diagonal and off-diagonal
elements are correct as shown in Figure 25. We indeed obtain a clean identity
matrix.
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Figure 22: The four plots show the difference |φasy
n −φrec

n | between the recursive
evaluation and the asymptotic approximation of φn for various values of n. Top
left: 0 ≤ n < 20. We see that the maximal point-wise error for φ1 is about
10−3 and that this error decreases to 10−10 for the following φn. Top right: n
varies in the range 50 to 150 by steps of 10. Except for the borders the error is
constant low. However, the n is still to small for a uniformly good approximation.
Bottom left: n varies in the range 400 to 500 by steps of 10. In this range the
asymptotic approximation does well with errors in the order of 10−14. Bottom
right: n varies in the range 700 to 800 by steps of 10. Here we see the break
down of the reference φrec

n .
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Figure 23: The relative errors |φasy
n − φrec

n |/|φrec
n | instead of the absolute errors

as shown in Figure 22.
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Figure 24: Plot of the overlap matrix Mr,c := 〈φr|φc〉. We obtain a pure identity
matrix without any artifacts when using the asymptotic approximation for high
order wavepackets φn with n > N .

0 500 740 999

k

0.0

0.2

0.4

0.6

0.8

1.0

Mk,k

Mk,k−2

Mk,k−4

Mk,k−6

Mk,k−8

740 999

k

0.0

0.2

0.4

0.6

0.8

1.0

Figure 25: Diagonal and selected off-diagonal elements of the matrix M. Com-
pared to the results in Figure 3 the output matches an identity matrix.
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8 Conclusion

Although mathematically stable, the three term recursion for the Hermite
functions hn(x) can fail to give correct function values for a large parameter
n. This is caused by the insufficiency of finite floating point arithmetic in
combination with the recursion as demonstrated in the beginning.
We presented an alternative method for the evaluation of Hermite functions. Our
method, based on well-known powerful but complicated asymptotic expansions
in terms of Airy special functions, gives correct function values for medium to
large order n and arbitrary (real) argument x. We can even evaluate any single
function hn in constant time independent on the value of n.
However, it should be noted that this algorithm performs more operations
compared to the simple recursion and therefore is slower than the recursive
approach. In some trivial test case we measured a factor of about 10. Therefore
one should use the recursive computation whenever possible. Our approach
is favorable mainly under two conditions: the necessity to work with n and
x in a range where the recursion fails and the desire to evaluate just a single
hn avoiding the computation of all its precursors. We strive to include this
evaluation algorithm into the SciPy library [14].
We employed this algorithm for the construction and evaluation respectively of
Hagedorn wavepackets. In the one-dimensional case these wavepackets consist of
Hermite functions together with some generally complex scale and shift factors.
Hence one can now work with much larger basis sets built of wavepackets. We
implemented this algorithmic procedure in the WaveBlocks library [2].
In the multi-dimensional case the same technique unfortunately is not applicable
directly. The Hagedorn wavepackets in general do not follow a tensor product
structure and hence a decomposition into one-dimensional Hermite functions is
not possible, unless expensive transformation steps are performed [12].
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