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Abstract. We propose a Multilevel Monte-Carlo (MLMC) method for computing entropy mea-
sure valued solutions of hyperbolic conservation laws. Sharp bounds for the narrow convergence of
MLMC for the entropy measure valued solutions are proposed. An optimal work-vs-error bound for
the MLMC method is derived assuming only an abstract decay criterion on the variance. Finally,
we display numerical experiments of cases where MLMC is, and is not, efficient when compared to
Monte-Carlo.
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A class of equations that is of great interest for both physics and engineering, is
the class of hyperbolic conservation laws, of the form

(1)
ut +∇x · f(u) = 0
u(x, 0) = u0(x).

Here u : Rd × R
+ → R

N is the unknown and f : RN → R
N×d is the flux function.

We will concern ourselves with the hyperbolic case, in other words when ∂u(f ·n) has
real eigenvalues for each |n| = 1.

Examples of this class include the shallow water equations, the compressible Euler
equations for gas dynamics and the magneto hydrodynamics equations for plasmas.
For a comprehensible introduction to hyperbolic conservation laws, consult [7].

1. Introduction. It is well known that solutions of (1) can develop discontinu-
ities in finite time, and one therefore needs to consider a weak formulation.

Definition 1. We say that u ∈ L∞(Rd × R
+,RN ) is a weak solution of (1) if

∫

R+

∫

Rd

u(x, t)φt(x, t) +∇xφ(x, t) · f(u(x, t))φx(x, t) dx dy +
∫

R+

u0(x)φ(x, 0) dx,

holds for every φ ∈ C1
c (R

d × R
+,R).

Weak solutions of (1) are in general not unique, therefore one seeks the physical
relevant solutions, in terms of entropy conditions.

Definition 2. A pair (η, q) with η : RN → R and q : RN → R
d is called an

entropy pair if η is convex and q′ = η′ · f ′.
Definition 3. A weak solution u of (1) is an entropy solution if the entropy

inequality
η(u)t +∇xq(u) ≤ 0

holds for all entropy pairs (η, q), that is if
∫

R+

∫

Rd

η(u(x, t))φt(x, t) +∇xφ(x, t) · q(u(x, t)) dx dt ≥ 0,
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for all 0 ≤ φ ∈ C1
c ((0,∞),R).

It is by now well-known that entropy solutions of scalar conservation laws (N = 1) are
unique and well-posed [7, 6.2.3]. On the other hand, no global well-posedness result is
available for a generic system of conservation laws in several space dimensions. In fact,
one can construct multiple weak entropy solutions with the same initial data [8, 3].

In addition, recent theoretical [2, 19] and numerical evidence [10] indicate that a
more appropriate notion of solution for conservation laws is the notion of a measure
valued solution, as introduced by DiPerna [9].

1.1. Numerical approximation of conservation laws. By now, there is a
large set of numerical methods for approximating solutions of (1). Popular choices in-
clude the finite volume (difference) based methods [18], using TVD [13], ENO [14] and
WENO [17] reconstruction. Another popular method is the discontinuous Galerkin
method [5].

Convergence results are available for one-dimensional scalar equations [6] and
multi-dimensional scalar equations [4] assuming the numerical scheme is monotone.
Convergence results for abitrarily high order schemes are also available [11] in the
scalar case. There are also results available for the discontinuous Galerkin method [16]
for scalar conservation laws.

However, for systems of conservation laws in several space dimensions, no con-
vergence result is known. In fact, recent numerical studies show that there are initial
data for the compressible Euler equations, where numerical schemes may fail to con-
verge [10].

1.2. Uncertainty quantification. The numerical methods outlined in the pre-
vious section all rely on measuring the initial data u0 exactly. However, in real world
scenarios, accurate measurements of the initial data may not be available, and it is
common to model the initial data u0 and the corresponding solution u, as a random
field. This approach is commonly known as uncertainty quantification (UQ).

There is a large set of methods using the approach of random fields for hyper-
bolic conservation laws. The Monte-Carlo method has been shown to be robust and
reliable for a very wide variety of problems in UQ for conservation laws. However,
it suffers from the high runtime cost. The multilevel Monte-Carlo (MLMC) method,
first introduced by Heinrich [15] for parametric integration, and later by Giles [12] for
stochastic equations, has been shown to have a considerable speed-up in the case of
scalar conservation laws [20].

There are also other approaches that exploit further regularity of the solutions,
including stochastic finite volume methods [1, 21] and stochastic collocation meth-
ods [22].

While the approach through random fields has been very successful for scalar
hyperbolic conservation laws, its theoretical foundation relies on (1) being well-posed
to pick the solution u(ω; ·) for almost all ω as in [20]. However, as has been indicated
by both theory [8] and numerical experiments [10], non-linear systems of conservation
laws need not be well-posed, and hence may not have a unique solution. The frame-
work for UQ, as found in [20], is therefore not applicable for systems of conservation
laws, and the results obtained for scalar conservation laws do not apply for system of
conservation laws.

1.3. Measure valued solutions. A weaker notion of solutions is the notion of
a measure valued solution of conservation laws, as first introduced by DiPerna [9].
One seeks a measure valued function (x, t) 7→ νx,t ∈ Prob(RN ) satisfying (1) in the
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sense of measures.
One can embed uncertainty quantifications within the framework of measure val-

ued solutions, and indeed measure valued solutions have the clear advantage that
they do not require a notion of a weak path solution of the underlying deterministic
conservation law. In essence, the definition of a measure valued solution does not rely
on a well-posed underlying deterministic equation, whereas the definition of a random
field solution does. s Fjordholm et al [10] developed and tested a numerical algorithm,
the so-called FKMT algorithm, for computing measure valued solutions of conserva-
tion laws. Through numerical experiments, the algorithm exhibited convergence and
stability in the space of Young measures. The FKMT algorithm uses a Monte-Carlo
sampling procedure which has a sampling error that scales as M−1/2, where M is
the number of samples. The sampling error gives the Monte-Carlo algorithm a high
computational cost.

1.4. Scope of paper. The goal of this paper is to develop a multilevel Monte-
Carlo algorithm for computing measure valued solutions of conservation laws. The
key ingredient in MLMC method is the error bound, which in turn can be used to
determine the optimal number of samples.

We obtain an error estimate in the narrow topology for the MLMC method in
Theorem 11, involving an abstract variance decay rate. We use this abstract decay
rate to find the asymptotically optimal number of samples per level in Theorem 12.
The key insight from these two theorems combined, will be that we need a decay on
the variance in order for MLMC to get a speedup compared to ordinary singlelevel
Monte-Carlo.

In the case of a scalar conservation law, we can produce a rate for the variance
decay, and the numerical experiments confirm this. We will see that in this case, the
MLMC method outperforms the singlelevel Monte-Carlo method by two order.

For system of conservation laws, no known general variance reduction is known.
We will therefore rely on numerical experiments to determine the variance reduction in
each case. We perform two different numerical experiments. In the first experiment,
the shockvortex interaction, we get variance reduction and the MLMC algorithm
produces a speedup against singlelevel Monte-Carlo. However, for the second example,
the Kelvin-Helmholtz initial data, there is no variance reduction. We furthermore
observe that in the case of the Kelvin-Helmholtz initial data, MLMC produces no
speed-up compared to singlelevel Monte-Carlo.

2. Measure valued solutions. For a measurable space (X,Σ), we let M(X)
denote the sets of (signed) measures on (X,Σ) and Prob(X) denote the set of proba-
bility measures on (X,Σ). We will often concern ourselves with the case of a domain
X = D ⊂ R

n and Σ being the Borel σ-algebra on D.
A map ν : D → Prob(RN ), is called a Young measure from D to R

N if for every
g ∈ C0(R

N ), the map

D ∋ z 7→ 〈νz, g〉 :=
∫

RN

g(ξ) dνz(ξ)

is measurable for almost all z ∈ D. We letY(D,RN ) denote the set of Young measures
from D to R

N .
We interpret 〈ν, g〉 as the expectation of g with respect to the probability measure

ν. We can obtain all known one-point statistics on this form. The mean is given as

E(g) = 〈ν, g〉,
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and the variance can in a similar manner be given as

Var(g) = 〈ν, g ⊗ g〉 − 〈ν, g〉2.

We say that a sequence {νn}n in Y(D,RN ) converges narrowly to ν ∈ Y(D,RN ), if
for all ψ ∈ L1(RN ) and g ∈ Cb(D) we have

lim
n→∞

〈ψ, 〈νn, g〉〉 = 〈ψ, 〈ν, g〉〉 :=
∫

D

ψ(z)〈νz, g〉 dz.

It can be readily seen that narrow convergence implies convergence of statistical
quantities, as given above.

For a probability space (Ω,Σ,P), it can be shown [10] that every random variable
u : Ω×D → R

N gives rise to a Young measure ν ∈ Y(D,RN ) through

νx = Law(u(·, x)).

Here,

Law(u(·, x))(A) := P(u(·, x)−1(A)) A ⊂ B(RN ),

and B(RN ) denotes the Borel sets of RN . Conversely, any Young measure can be
represented as the law of a random variable, as the following theorem makes precise.

Theorem 4 ([10]). Let ν ∈ Y(D,RN ), then there exists a probability space
(Ω,Σ,P) and a function u : Ω×D → R

N such that

(2) Law(u(·, x)) = νx for all x ∈ D.

2.1. Measure valued solutions. We recast (1) to a measure valued equation
given as

(3)
〈ν, id〉t +∇x · 〈ν, f〉 = 0

νx,0 = σx,

interpreted in the sense of distributions.

Definition 5. A Young measure ν ∈ Y(Rd,RN ) is said to be a measure valued
solution (MVS) of (3) if

(4)

∫

Rd×R+

∂tφ〈ν, id〉+∇xφ · 〈ν, f〉 dx dt+
∫

Rd

φ(x, 0)〈σ, id〉 dx = 0

for all test functions φ ∈ C1
c (R

d × R
+,RN ).

We furthermore define the notion of an entropy measure valued solution in an analo-
gous manner.

Definition 6. We say that a measure valued solution ν of (1) is an entropy
measure valued solution(EMVS) if for all entropy pairs (η, q),

∫

R+

∫

Rd

〈νx,t, η〉φt(x, t) +∇xφ(x, t) · 〈νx,t, q〉 dx dt ≥ 0,

for all 0 ≤ φ ∈ C1
c (R

d × R
+,R).
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2.2. Non-atomic initial data and measure valued solutions as UQ. As
was described in the previous section, in real applications, measurement errors in the
initial data u0 are unavoidable. Therefore, it is common to measure the initial data
as a random field u0 : Ω×R

d → R
N and solve (1) for each u(ω, ·), and estimates the

statistics (expectation, variance and so on). However, as explained above, we know
that

σx := Law(u0(·;x)) x ∈ R
d

will be a Young measure. By setting the initial data to σ, one can use the EMVS to
do uncertainty quantifications, ie. measure the mean, variance and other one point
statistics.

2.3. Approximation of conservation laws. This section briefly describes the
conventional way of discretizing conservation laws through finite volume and finite
difference methods. For a complete review, one can consult [18].

We discretize the computational spatial domain as a collection of cells

{(x1i1−1/2, x
1
i1+1/2)× · · · × (xdid−1/2, x

d
id+1/2)}(i1,...,id) ⊂ R

d,

with corresponding cell midpoints

xi1,...,id :=

(

x1i1+1/2 + x1i1−1/2

2
, . . . ,

xdid+1/2 + xdid−1/2

2

)

.

For simplicity, we assume our mesh is equidistant, and set

h := |x1i1+1/2 − x1i1−1/2|.

We will describe the semi-discrete case. For each cell (i1, . . . , id), we let uhi1,...,id(t)
denote the averaged value in the cell at time t ≥ 0.

We use the following semi-discrete formulation

(5)

d

dt
uhi1,...,id(t) +

d
∑

k=1

1

h

(

F k,h
id,...,ik+1/2,...,id

(t)− F k,h
id,...,ik−1/2,...,id

(t)
)

= 0

uhi1,...,id(0) = u0(xi1,...,id).

Where we have used a numerical flux function F k
i1,...,id . In this paper, the numer-

ical flux function will always have a finite stencil width, meaning F k,h
i1,...,ik,...,id

(t) will

only depend on uhi1,...,jk,...,ik(t) for j
k = ik − p+ 1, . . . , ik + p.

We furthermore assume the numerical flux function is consistent with f and locally
Lipschitz continuous, which amounts to requiring that for every compact K ⊂ R

d,
there exists a constant C > 0 such that for k = 1, . . . , d, it holds that

(6) |F k,h
i1,...,id

(t)− f(uhi1,...,id)| ≤ C

ik+p
∑

jk=id−p+1

|uhi1,...,id(t)− uhi1,...,jk,...,id(t)|,

whenever {uhi1,...,ik−p+1,...,id(t), . . . , u
h
i1,...,ik+p,...,id(t)} ⊂ K.

We let Sh : L∞(Rd,RN ) → L∞(Rd×R
+,RN ) be the discrete numerical evolution

operator corresponding to (5).
The current form of (5) is continuous in time, and one needs to employ a time

stepping method to discrete the ODE in time, usually through some strong stability
preserving Runge-Kutta method.
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2.4. Approximation of measure valued solutions. In this section we repeat
what is known for the approximation of measure valued solutions.

Let σ ∈ Y(Rd,RN ) be the initial data, and choose u0 according to Theorem 4
such that the law of u0(·, x) is σx. Introduce uh : Ω× R

d × R
+ → R

N by

uh(ω, x, t) := Sh(u0(ω, ·))(x, t).

We furthermore set

νhx,t := Law(uh(·, x, t).

In 2D, we have the following result [10].

Theorem 7. Assume the numerical scheme of S satisfies the following require-
ments:

1. Uniform boundednesss:

(7) ‖uh(ω)‖L∞(Rd×R+) ≤ C for all ω ∈ Ω.

2. Weak BV: There exists 1 ≤ r <∞ such that
(8)

lim
h→0

∫ T

0

∑

i,j

(

|uhi+1,j(ω, t)− uhi,j(ω, t)|r + |uhi,j+1(ω, t)− uhi,j(ω, t)|r
)

h2 dt = 0.

3. Entropy consistency. The numerical scheme is entropy stable with respect
to an entropy pair (η, q), in the sense that there exists a Lipschitz numerical
entropy flux (Qx

i+1/2(t), Q
y
i,j+1/2(t)) consistent with the entropy flux q such

that the computed solution obeys the discrete entropy inequality

(9) η(uh)t +
1

h

(

Qx,h
i+1/2,j −Qx,h

i−1/2,j

)

+
1

∆y

(

Qy,h
i,j+1/2 −Qy,h

i,j+1/2

)

≤ 0,

for all t > 0, i, j ∈ Z, ω ∈ Ω.
4. Consistency with initial data. If σh

x is the law of uh(·, x, 0), then

(10) lim
h→0

∫

R2

ψ(x)〈σh
x , id〉 dx = 0 for all ψ ∈ C1

c (R
2)

and

(11) lim sup
h→0

∫

R2

ψ(x)〈σh
x , η〉 dx ≤ 0 for all 0 ≤ ψ ∈ C1

c (R
2).

Then up to a subsequence νh converges to an entropy measure valued solution of (1)
with initial data σ.

Remark 1. The above theorem can be generalized to arbitrary space dimension,
see [10].

Remark 2. The above theorem tells us that the spatial discretization converges
However, we are still left with the question of approximating the stochastic component.
In other words, if we simulate for all ω ∈ Ω, we will get a good approximation of ν.
Since Ω is in general (uncoutable) infinite, this is not a fruitful approach, and we refer
to the next section for a solution.
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2.5. The FKMT algorithm for computing measure valued solutions.

Fjordholm et al [10] constructed a numerical Monte-Carlo based algorithm, the so-
called FKMT algorithm, to compute measure valued solutions of (3). We describe
the algorithm here for completeness and to establish notation.

Algorithm 1. Let σ ∈ Y(Rd,RN ) be the initial data, and choose a probability
space (Ω,Σ,P) together with u0 : Ω× R

d → R
N such that σx = Law u0(·, x).

1. Draw M independent samples {uk0}k of u0.
2. Evolve the samples

uhk = Sh(uk0)

3. Estimate the measure

EM
h (u0) :=

1

M

M
∑

k=1

δuh
k

In [10], an error bound for the FKMT algorithm was obtained. Furthermore, if
one follows the proof of [10, Theorem 4.9], one can get a sharp bound on the stochastic
error. We repeat the proof here for completeness. First we need a technical lemma
showing the precise bound of the Monte-Carlo error.

Lemma 8. Let (Ω,Σ,P) be a probability space,M ∈ N and G ∈ L2(Ω), {Gk}Mk=1 ⊂
L2(Ω) be independent identically distributed random variables. Then

∥

∥

∥

∥

∥

E(G)− 1

M

M
∑

k=1

Gk

∥

∥

∥

∥

∥

2

L2(Ω)

=
1

M
Var(G)

.

Proof. We have

(

E(G)− 1

M

M
∑

k=1

Gk(ω)

)2

=
1

M2

M
∑

k=1

(

E(G)−Gk(ω)
)2

+
1

M2

M
∑

k=1

∑

k′ 6=k

(

E(G)−Gk(ω)
)(

E(G)−Gk′(ω)
)

.

Since Gk are independent, we have for k 6= k′

E
(

(E(G)−Gk(ω)) (E(G)−Gk′(ω))
)

= E

(

E(G)−Gk(ω)
)

E

(

E(G)−Gk′(ω)
)

= (E(G)− E(Gk(ω))) (E(G)− E(Gk′(ω)))

= 0.
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We end up with

∥

∥

∥

∥

∥

E(G)− 1

M

M
∑

k=1

Gk

∥

∥

∥

∥

∥

2

L2(Ω)

= E(
(

E(G)− 1

M

M
∑

k=1

Gk

)2

)

=
1

M2

M
∑

k=1

E(
(

E(G)−Gk(ω)
)2

)

=
1

M2

M
∑

k=1

(

E(G2)− E(G)2
)

=
1

M
Var(G).

Theorem 9. If Sh obeys the requirements of Theorem 7, then Algorithm 1 con-
verges, that is up to subsequences, we have

EM
h (u0)⇀ ν,

where ν is a entropy measure valued solution of (1).
Concretely, for every ψ ∈ L1(Rd × R

+) and g ∈ Cb(R
N ), we have

(12)
∥

∥〈ψ, 〈EM
h (u)− νh, g〉〉

∥

∥

L2(Ω)
=

1

M1/2

√

Var(〈ψ, g(uh)〉).

Up to subsequences, νh ⇀ ν.

Proof. By Theorem 7, up to subsequences,

νh ⇀ ν,

where ν is a EMVS of (1). The rest of the proof concentrates on the stochastic error.
We set

G(ω) :=

∫

Rd×R+

ψ(z)g(uh(ω, z)) dz

and

Gk(ω) :=

∫

Rd×R+

ψ(z)g(uhk(ω, z)) dz.

We have

〈ψ, 〈νh − EM
h (u), g〉〉 = E(G)− 1

M

M
∑

k=1

Gk(ω),

applying Lemma 8 yields the desired result.

Remark 3. From the approximate measure Eh
M (u0), one can compute the statis-

tics through evaluating the integral
∫

RN g(ξ) dE
h
M (u0). For the expectation, we have

E(Eh
M (u0)) =

∫

RN

ξ dEh
M (u0) =

1

M

M
∑

k=1

uhk .

A similar expression can be derived for the variance.
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2.6. Atomic initial data. Even though the initial measure σ may be atomic,
in other words σx = δu0(x) for some u ∈ L1(Rd,RN ), the entropy measure valued
solutions of (1) may be non-atomic. However, Algorithm 1 will produce an atomic
solution in this case.

The technique developed in [10] is to perturb the initial data by a small random
variable. The following theorem makes this precise

Theorem 10 (Theorem 4.7 [10]). Let X : Ω → L1(Rd,RN ) ∩ L∞(Rd,RN ) be a
random field such that ‖X‖ ≤ 1 P-almost surely, and let ǫ, h > 0. Set σǫ = δu0

+ ǫX,
and choose uǫ0 to be a random field with law σǫ. Set

uh,ǫ = Sh(uǫ0),

and let νh,ǫ be the law of uh,ǫ. Then there exists a subsequence (hn, ǫn) → 0, such
that

νhn,ǫn ⇀ ν

where ν is an entropy measure valued solution of (1).

Remark 4. Based on Theorem 10, we will for the rest of the paper always assume
the initial data is non-atomic.

2.7. Work analysis for the FKMT algorithm. The work of the numerical
method is given as the number of floating point operations it consumes. The classical
explicit finite volume method has a work estimate of

(13) WorkFVM(h,∆t) = O(h−d∆t−1).

Applying the CFL requirement ∆t = ch, gives

WorkFVM(h,∆t) = WorkFVM(h) = O(h−d−1).

Thus, the work to compute Eh
M (u0) scales as

WorkMC(h,M) =MWorkFVM(h) = O(Mh−d−1).

If we assume the spatial narrow convergence error scales as

〈ψ, 〈ν − νh, g〉〉 = O(hs) for all ψ ∈ L1(Rd), g ∈ Cb(R
N ),

we choose the number of samples such that the Monte-Carlo error is asymptotically
the same as the spatial error. That is, we choose

M−1/2 = O(hs) ⇒M = O(h−2s).

This gives the work estimate

(14) WorkMC(h,M) = O(h−d−1−2s).

3. Multilevel Monte Carlo. The FKMT algorithm has shown great robust-
ness for computing measure valued solutions of (3), but as it made clear by the work
estimate (14) it suffers from the high computational cost of the Monte-Carlo algo-
rithm. It is therefore appealing to study the behavior of alternative, faster stochastic
methods.
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Inspired by the FKMT algorithm [12] and the MLMC method for conservation
laws [20], we construct the multilevel Monte-Carlo algorithm for computing measure
valued solutions for conservation laws.

We assume we have a nested collection of uniform Cartesian meshes {Ml}Ll=0

with associated mesh widths {hl}Ll=0, where

hl = 2−lh0 for l > 0,

and h0 is some given parameter. For each level l = 0, . . . , L, we set

ul := Shl(u0).

By simply canceling terms, we have

uL =

L
∑

l=1

(

ul − ul−1
)

+ u0,

which motivates the MLMC algorithm:

Algorithm 2 (MLMC). Let σ ∈ Y(Rd,RN ) be the initial data, and choose a
probability space (Ω,Σ,P) together with u0 : Ω×R

d → R
N such that σx = Law u0(·, x).

Let L ∈ N and {Ml}Ll=0 ⊂ N.

1. Draw M0 independent samples {uk,00 }k of u0.
2. Evolve the samples

uh0

k = Sh0(uk,00 )

3. For l = 1, . . . , L:
(a) Draw M0 independent samples {uk,l0 }k of u0.
(b) Evolve the samples

uhl,+
k = Shl(uk,l0 )

and
u
hl−1,−
k = Shl−1(uk,l0 )

4. Estimate the measure

Eh0

MLMC,{Ml}L
l=0

(u0) :=
1

M0

M0
∑

k=1

δ
u
h0
k

+

L
∑

l=1

1

Ml

Ml
∑

k=1

(

δ
u
hl,+

k

− δ
u
hl−1,−

k

)

Choosing the number of samples per level, Ml, depends on the exact error estimate
we obtain for the MLMC algorithm. In the next section, we obtain an error rate for
MLMC that can be used to determine the number of samples per level.

3.1. Convergence analysis of MLMC.

Theorem 11 (Weak convergence of MLMC).
Let σ ∈ Y(Rd,RN ) and let Eh0

MLMC,{Ml}L
l=0

(u0) be generated by Algorithm 2, let

g ∈ Cb(R
N ) and ψ ∈ L1(Rd), then

(15)
∥

∥

∥〈ψ, 〈ν − Eh0

MLMC,{Ml}L
l=0

(u0), g〉〉
∥

∥

∥

L2(Ω)
≤
∣

∣〈ψ, 〈ν − νhL , g〉〉
∣

∣+

√

Var(〈ψ, g(u0)〉)
M

1/2
0

+

L
∑

l=1

√

Var(〈ψ, g(ul)− g(ul−1)〉)
M

1/2
l

,
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where ν ∈ Y(Rd×R
+,RN ) is a entropy measure valued solution of (3), such that, up

to a subsequence,

νhL ⇀ ν.

Furthermore, if the samples in the Monte-Carlo sampling are chosen independently

across levels, in other words, if uk,l0 and uk,l
′

0 are independent for l 6= l‘, the stochastic
error is sharp, i.e.

∥

∥

∥〈ψ, 〈νhL − Eh0

MLMC,{Ml}L
l=0

(u0), g〉〉
∥

∥

∥

2

L2(Ω)
=

Var(〈ψ, g(u0)〉)
M0

+
L
∑

l=1

Var(〈ψ, g(ul)− g(ul−1)〉)
Ml

Proof. Let

νhL := Law(uhL).

By Theorem 7, we know that up to a subsequence,

(16) νhL ⇀ ν

where ν is a entropy measure valued solution to (3). A simple application of the
triangle inequality, splitting up the error in a spatial term and a stochastic term,
yields

∥

∥

∥〈ψ, 〈ν − Eh0

MLMC,{Ml}L
l=0

(u0), g〉〉
∥

∥

∥

L2(Ω)
≤
∥

∥〈ψ, 〈ν − νhL , g〉〉
∥

∥

L2(Ω)

+
∥

∥

∥〈ψ, 〈νhL − Eh0

MLMC,{Ml}L
l=0

(u0), g〉〉
∥

∥

∥

L2(Ω)
.

Clearly,
∥

∥〈ψ, 〈ν − νhL , g〉〉
∥

∥

L2(Ω)
=
∣

∣〈ψ, 〈ν − νhL , g〉〉
∣

∣ ,

and we are left with estimating the stochastic error. To this end, we insert for
Eh0

MLMC,{Ml}L
l=0

(u0) and write out the telescoping sum

νhL =

L
∑

l=1

(

νhl − νhl−1
)

+ νh0 ,

to obtain

∥

∥

∥〈ψ, 〈νhL − Eh0

MLMC,{Ml}L
l=0

(u0), g〉〉
∥

∥

∥

L2(Ω)
≤
∥

∥

∥

∥

∥

〈ψ, 〈νh0 − 1

M0

M0
∑

k=1

δ
u
h0
k

, g〉〉
∥

∥

∥

∥

∥

L2(Ω)

+

L
∑

l=1

∥

∥

∥

∥

∥

〈ψ, 〈νhl − νhl−1 −
Ml
∑

k=1

(

δ
u
hl,+

k

− δ
u
hl−1,−

k

)

, g〉〉
∥

∥

∥

∥

∥

L2(Ω)

.
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We appeal to (12) to obtain

∥

∥

∥〈ψ, 〈νh0 − EM0

h0
(u0), g〉〉

∥

∥

∥

L2(Ω)
=

√

Var(〈ψ, g(u0)〉)
M

1/2
0

.

For l = 1, . . . , L we set

Gl
k(ω) :=

∫

Rd×R+

ψ(z)
(

g(uhl,+
k )− g(u

hl−1,−
k )

)

dz,

and

G(ω) :=

∫

Rd×R+

ψ(z)
(

g(uhl,+)− g(uhl−1,−)
)

dz.

Applying Lemma 8, we get

∥

∥

∥

∥

∥

〈ψ, 〈νhl − νhl−1 −
(

Ml
∑

k=1

(

δ
u
hl,+

k

− δ
u
hl−1,−

k

)

)

, g〉〉
∥

∥

∥

∥

∥

L2(Ω)

=

√

Var(〈ψ, g(ul)− g(ul−1)〉)
M

1/2
l

.

Combining these estimates we obtain (15).
The last assertion is obtained by noting that if the samples are chosen indepen-

dently across levels, we have

∥

∥〈ψ, 〈νhL − νh,L, g〉〉
∥

∥

2

L2(Ω)
=
∥

∥

∥〈ψ, 〈νh0 − EM0

h0
(u), g〉〉

∥

∥

∥

2

L2(Ω)

+

L
∑

l=1

∥

∥

∥

∥

∥

〈ψ, 〈νhl − νhl−1 −
Ml
∑

k=1

(

δ
u
hl,+

k

− δ
u
hl−1,−

k

)

, g〉〉
∥

∥

∥

∥

∥

2

L2(Ω)

,

applying the same estimates yields the sharp bound.

Remark 5. As with the Monte-Carlo approach, one can compute the statistics
through evaluating the integral

∫

RN g(ξ) dE
h0

MLMC,{Ml}L
l=0

(u0). For the expectation, we

have

E(Eh0

MLMC,{Ml}L
l=0

(u0)) =

∫

RN

ξ dEh0

MLMC,{Ml}L
l=0

(u0) =
1

M0

M
∑

k=1

uh0

k

+
L
∑

l=1

1

Ml

Ml
∑

k=1

(

uhl

k − u
hl−1

k

)

.

A similar expression can be derived for the variance.

Remark 6. The theorem above involves a priori unknown functions g and ψ. In
practical computational examples, g and ψ are known as they are given through the
statistics, and we can calculate a concrete error estimate for the given g and ψ.
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3.2. Work analysis of MLMC. We extend the analysis of Subsection 2.7 to
the MLMC algorithm.

To compute Eh
MLMC,{Ml}(u0), we compute Ml finite volume simulations with res-

olution hl for each l ≥ 0, and Ml finite volume simulations with resolution hl−1 for
l > 0. Since the latter can be neglected, we obtain

(17)

WorkMLMC({Ml}) =
L
∑

l=0

MlWorkFVM(hl)

=

L
∑

l=0

O(Ml(h
−d−1
l ))

=

L
∑

l=0

O(Ml2
l(d+1)h−d−1

0 ).

3.3. Choosing optimal number of samples. The number of samples per
level, Ml, has so far been unspecified. It is common to optimize the number of
samples for a given convergence rate. We handle the general case, and optimize with
respect to the number of samples, where the variance across the levels is abstractly
given as

(18) Var(〈ψ, g(uhl)− g(uhl−1)〉) =: Vl.

We furthermore define the asymptotic speedup between two asymptotic work es-
timates W1 and W2 as

SpeedUp(W1,W2) :=
W2

W1
.

Theorem 12. Assume the variance between levels is given by (18). For a given
L > 0, the optimal number of samples per level, Ml, to ensure that

1

M
1/2
0

+

L
∑

l=1

√
Vl

M
1/2
l

≤ τ,

and minimizing the work (17), is given as

M
1/2
0 =

1

τ

(

1 +

L
∑

l=1

2(l(d+1))/3V
1/3
l

)

.

and

M
1/2
l =

V
1/6
l

(

1 +
∑L

l=1 2
(l(d+1))/3V

1/3
l

)

τ2(l(d+1))/3
.

Furthermore, if
Vl = O(hql ),

then
WorkMLMC({Ml}l) <WorkMC(τ

−2, hL) ⇔ q > 0.

Setting τ = O(hsL) we get

WorkMLMC({Ml}l) = O(h−2s−d−1
L /2qL),

and correspondingly

SpeedUp(WorkMLMC({Ml}l),WorkMC(h
−2s, hL)) = O(2−qL).
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Proof. In this proof, we let A ≃ B denote O(A) = O(B) and A ≺ B denote
O(A) < O(B). For a given L > 0, we solve the following optimization problem

(19)

minWorkMLMC({Ml}Ll=0) = min

L
∑

l=0

Ml2
l(d+1)h−d−1

0

s.t.
1

M
1/2
0

+

L
∑

l=1

√
Vl

M
1/2
l

≤ τ.

We use a Lagrange multiplier technique, and introduce the function

H(M0, . . . ,ML, λ) =

L
∑

l=0

Ml2
l(d+1)h−d−1

0 + λ

(

1

M
1/2
0

+

L
∑

l=1

√
Vl

M
1/2
l

− τ

)

.

The extremal point must obey

∂H

∂λ
=

∂H

∂Ml
= 0.

We readily compute

∂H

∂Ml
=







h−d−1
0 − λ 1

2M
3/2
0

if l = 0

−λ
√
Vl

2M
3/2
l

+ 2l(d+1)h−d−1
0 otherwise.

From ∂H
∂M0

= 0, we get

λ = h−d−1
0 2M

3/2
0 .

For l > 0 we solve for ∂H
∂Ml

for Ml to get

M
1/2
l =

V
1/6
l M

1/2
0

2(l(d+1))/3
.

Solving ∂H
∂λ = 0 for M0 gives us

M
1/2
0 =

1

τ

(

1 +

L
∑

l=1

2(l(d+1))/3V
1/3
l

)

.

Inserting this for Ml gives

M
1/2
l =

V
1/6
l

(

1 +
∑L

l=1 2
(l(d+1))/3V

1/3
l

)

τ2(l(d+1))/3
.

The work estimate is then

WorkMLMC({Ml}Ll=0) ≃ τ−2h−d−1
0

(

1 +

L
∑

l=1

2(l(d+1))/3V
1/3
l

)2

[

1 +
L
∑

l=1

V
1/3
l 2l(d+1)/3

]

.
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For the last assertion, insert
Vl = hql = hq02

−lq,

to see that
(

1 +

L
∑

l=1

2(l(d+1))/3V
1/3
l

)

≃
L
∑

l=1

V
1/3
l 2l(d+1)/3 =

L
∑

l=1

2−lq/32l(d+1)/3 ≃ 2[(d+1−s)/3]L.

Therefore,

WorkMLMC({Ml}Ll=0) ≃ τ−2h−d−1
0 2[(d+1−q)]L

≺ τ−2h−d−1
L ⇔ q > 0

= WorkMC(τ
−2, hL).

The last work estimate is then found by insertion.

3.4. Scalar conservation laws. In the case of a scalar conservation law, we
can appeal to the readily available sample convergence of the numerical scheme to
produce an error estimate close to the MLMC error estimate found in [20]. Here we
assume that our scheme is able to reproduce the exact solution up to an order s. In
other words, we assume

(20) ‖u(·, t)− Sh(u0)(·, t)‖L1(Rd) ≤ Chs,

where u is the unique, exact solution of (1). For scalar conservation laws, such schemes
are readily available, see for instance [11] and [16].

Corollary 13 (MLMC for Scalar Conservation Laws). Assume N = 1, and
let σ ∈ Y(Rd,RN ), and Eh0

MLMC,{Ml}L
l=0

(u0) be generated by Algorithm 2, let g ∈
Cb(R

N ) ∩ Lip(RN ) and ψ ∈ L1(Rd) ∩ L∞(Rd), and assume the numerical evolution
operator satisfies (20), then

(21)
∥

∥

∥〈ψ, 〈ν − Eh0

MLMC,{Ml}L
l=0

(u0), g〉〉
∥

∥

∥

L2(Ω)
≤
∣

∣〈ψ, 〈ν − νhL , g〉〉
∣

∣

+ C1

√

Var(〈ψ, g(u0)〉)
M

1/2
0

+ C2

L
∑

l=1

‖ψ‖L∞(Rd)‖g‖Liphsl
M

1/2
l

.

Proof. By Theorem 11, the only thing we need to show is

Var(〈ψ, g(ul)− g(ul−1)〉) ≤ C‖ψ‖2L∞(Rd)‖g‖2Liph2sl .
Since each sample will converge, we readily estimate
∫

Rd×[0,T )

ψ(x, t)(g(ul)−g(ul−1))dxdt ≤ ‖ψ‖L∞(Rd×[0,T ))‖g‖Lip‖ul−ul−1‖L1(Rd×[0,T )).

Owing to (20) and the triangle inequality, we see that

‖ψ‖L∞(Rd×[0,T ))‖g‖Lip‖ul − ul−1‖L1(Rd×[0,T )) ≤ C‖ψ‖L∞(Rd×[0,T ))‖g‖Liphsl .
Now, we easily obtain

Var(〈ψ, g(ul)− g(ul−1)〉) = E(〈ψ, g(ul)− g(ul−1)〉2)− E(〈ψ, g(ul)− g(ul−1)〉)2

≤
∫

Ω

C‖ψ‖2L∞(Rd×[0,T ))‖g‖2Liph2sl dP(ω)

= C‖ψ‖2L∞(Rd×[0,T ))‖g‖2Liph2sl ,
taking square roots gives the claim.
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Remark 7. In the above theorem, we had to put restrictions on g and ψ. This is
only needed to give known bounds on Vl. Indeed, owing to the dominted convergence
theorem, Vl → 0 for any g ∈ Cb(R

N ) and ψ ∈ L1(Rd×R
+), but not with a necessarily

with a computeable decay rate.

3.5. Systems of conservation laws. For systems of conservation laws, we can
not appeal to any convergence result for a numerical scheme as we did for scalar
conservation laws. However, we can measure the decay of the variance between the
levels, Vl, numerically.

4. Numerical experiments. We perform numerical experiments to assess the
applicability of MLMC for entropy measure valued solutions.

4.1. Scalar conservation laws. Owing to (21) and the optimal work estimates
derived in Theorem 12, in the scalar case we already expect that the MLMC method
will provide a speedup compared to ordinary Monte-Carlo.

In this subsection, we consider the Burgers equation in one space dimension, given
here as

(22) ut +

[

u2

2

]

x

= 0.

Here u : R× R
+ → R is the unknown. We consider the initial data

(23) u0(x, ω) =

{

1 x < 1/2 + ǫX(ω)

0 otherwise
x ∈ [0, 1],

where X is uniformly distributed on [−0.5, 0.5]. We pick the number of samples in
accordance with Theorem 12 and Corollary 13. Here s ≈ 1.

We measure the convergence against the Dirac solution when ǫ → 0, given as
δu(x,t), where

u(x, t) =

{

1 x < 1/2 + t

0 otherwise
x ∈ [0, 1],

and we simulate to t = 0.1. The results are shown in Figure 1. As is expected, the
convergence rate of the MLMC algorithm is linear with respect to the runtime, while
the Monte-Carlo algorithm scales as O(ǫ−3).

4.2. System of conservation laws. We consider the Euler equations, given
here as

(24)
∂

∂t









ρ
ρwx

ρwy

ρE









+
∂

∂x1









ρwx

ρw2
x + p

ρwywy

ρ(E + p)wx









+
∂

∂x2









ρwy

ρwxwy

ρw2
y + p

ρ(E + p)wy









= 0.

Here the pressure p, the density ρ, the total energy E and the velocity field (wx, wy)
are related through

E =
p

γ − 1
+
ρ
(

w2
x + w2

y

)

2
,

where γ is the adiabatic constant, which we set to 1.4.
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Fig. 1: Wasserstein convergence, comparing MC with MLMC, with initial data (23)

.

(a) Variance and mean computed by
MLMC.

(b) Variance and mean from reference so-
lution.

Fig. 2: MLMC computed results for the Riemann problem (23).

4.2.1. Shockvortex interaction. We consider the initial data

(25) u0(ω, x) =

{

uL x1 < I

uR otherwise.
x ∈ [0, 1]2
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with ρL = 2, ρR = 1/1.1,

wx
L =

√
γ + δb exp(α(1− b2)) sin(θ),

wy
L =

√
γ − δb exp(α(1− b2)) cos(θ),

pL = 1− (γ − 1)δ2
exp(2α(1− b2))

(4αγ)
ρL

wx
L = 1.1

√
γ, wy

R = 0 and pR = 1− 0.1γ. Here

b =

√

(x− 0.25)2 + (y − 0.5)2

0.05

and θ is the angle between the x-axis and the line spanned by (x− 0.25, y− 0.5). We
set δ = 0.3. In addition, we perturb the interfaces I by setting

I = 0.5 + ǫY (x, ω)

where ǫ > 0 will be a parameter to the simulation, and

Y (x, ω) =
m
∑

n=1

an(ω) cos(bn(ω) + 2nπx2).

We simulate to T = 0.35. In the simulation, we set m = 10 and ǫ = 0.1.
In lieu of (11) and Theorem 12, the MLMC algorithm will only give a computa-

tional speed up compared to Monte-Carlo if the variance between the samples decays
with hq for some q > 0, in other words if

Var(〈ψ, g(ul)− g(ul−1)〉) ≤ Chq.

To measure the decay rate of the variance between the samples, we do a regular
Monte-Carlo simulation to measure Vl. Concretely, we approximate

(26) Vl ≈
1

M

M
∑

k=1

(

〈ψ, g(ulk)− g(ul−1
k )〉

)2 −
(

1

M

M
∑

k=1

(

〈ψ, g(ulk)− g(ul−1
k )〉

)

)2

.

We display the result in Figure 3. In this case the variance actually decays with
the levels, and the decay rate is close to 1. Therefore, it is expected that the MLMC
method works. We pick the number of samples per level in accordance with the decay
rate and Theorem 12.

To verify the assertion in the previous paragraph, we perform numerical exper-
iments with MLMC and regular single level Monte-Carlo. We compute a reference
solution at resolution 1024 × 1024 using 1000 samples. In Figure 7, we compare the
errors of single level Monte-Carlo to that of multilevel Monte-Carlo using a varying
amount of samples at the finest level. Our claims are confirmed in Figure 4. As we can
see, the MLMC method starts of with a low error even with a low number of samples
on the highest level. With a higher number of samples, the Monte-Carlo algorithm
eventually beats the MLMC algorithm, as is expected.

In Figure 5 we display the results of the computation. As is clear, the MLMC
algorithm works well for this initial data, since we actually do observe decay in the
variance.
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Fig. 3: Measured Vl, the variance across levels, for the shock vortex simulation (25)
at time T = 0.35.

Fig. 4: Comparison of error of MLMC and MC for the shock vortex initial data (25)
at time T = 0.35.

4.2.2. Kelvin-Helmholtz initial data. We use the initial data

(27) u0(ω, x) =

{

uL I1 < x2 < I2

uR otherwise.
x ∈ [0, 1]2

with ρL = 2, ρR = 1, wx
L = −0.5, wx

R = 0.5, wy
L = wy

R = 0 and pL = pR = 2.5. In
addition, we perturb the interfaces I1 and I2 by setting

Ij = Jj + ǫYj(x, ω) j = 1, 2

where ǫ > 0 will be a parameter to the simulation, and

Yj(x, ω) =

m
∑

n=1

anj (ω) cos(b
n
j (ω) + 2nπx1) j = 1, 2
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(a) Mean from MLMC. (b) Mean from reference solution.

(c) Variance from MLMC. (d) Variance from reference solution.

Fig. 5: Comparison of the singlelevel Monte-Carlo algorithm against the MLMC al-
gorithm for the shockvortex interaction initial data (25) at time T = 0.035. We used
ML = 16 samples on the finest level for the MLMC computation..

for uniformly distributed random variables anj : Ω → [0, 1] and bnj : Ω → [0, 2π]. In
[10], numerical experiments indicated that no relevant numerical scheme was able to
obtain sample convergence for this initial data. However, the FKMT algorithm did
produce a numerical approximation that converged. We simulate to T = 2. In the
simulation, we set m = 10 and ǫ = 0.1. We simulate using a 3-wave HLL solver [23]
with third order WENO reconstruction [17].

In Figure 6, we plot the numerically computed variance. What is immediately
clear from the plot, is that the variance does not decrease in any significant way.
Hence, we can not expect that MLMC will improve upon Monte-Carlo. There is also
no observed variance decay for the functionals 〈ψ, g(ul)〉 for ψ = 1 and g being set as
an k-order Legendre polynomial, for k > 1.

To verify the assertion in the previous paragraph, we perform numerical exper-
iments with MLMC and regular single level Monte-Carlo. We compute a reference
solution at resolution 2048 × 2048 using 2000 samples. In Figure 7, we compare the
errors of single level Monte-Carlo to that of multilevel Monte-Carlo using a varying
amount of samples at the finest level. The figure clearly shows that the MLMC algo-
rithm, even with more work performed than the Monte-Carlo algorithm, is no better
than the Monte-Carlo algorithm. Plots of the numerical results are shown in Figure 8.
As is clear from the figures and theory, MLMC can not give a speed up compared to
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MC for the unstable Kelvin-Helmholtz initial data.

4.2.3. MLMC with relaxation. In the case of the Kelvin-Helmholtz equation,
we do observe sample convergence for small times. That is, for 0 ≤ t ≤ T0 = 0.05, we
observe

(28) ‖uhl(·, t)− uhl−1(·, t)‖L1(Rd,RN ) ≤ Chs,

for some s ≈ 1. We can exploit this to try to correct the MLMCmethod by introducing
a so-called relaxation time, described here. We fix T0 ≈ 0.05, and then we reset the
coarse samples with the fine samples for every t = nT0. In other words, we run the
simulation between t = (n− 1)T0 and t = nT0, then we reset the coarse samples by

u
hl−1

k (ω, x, nT0) = uhl

k (ω, x, nT0).

Since we observe short time sample convergence, this guarantees that

Var
(

〈ψ, g(ul)− g(ul−1)〉
)

≤ Ch2s,

as illustrated in Figure 9. However, by resetting the coarse samples, we introduce an
error term of the form

L−1
∑

l=0

|〈ψ, 〈νhl − νhl−1 , g〉〉| = O(hs0).

The error term is independent of the number of samples on each level, and scales as
the coarsest resolution. This can clearly be seen in Figure 10. Also with the relaxation
time, the MLMC is outperformed by the Monte-Carlo algorithm. The plots are shown
in Figure 11.

Fig. 6: Numerically approximated variance between levels,Var(〈ψ, g(ul) − g(ul−1)〉)
for the Kelvin-Helmholtz initial data (27) at time T = 2.
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Fig. 7: Error in computed mean for Kelvin-Helmholtz initial data at time T = 2.

(a) Mean from MLMC. (b) Mean from reference solution.

(c) Variance from MLMC. (d) Variance from reference solution.

Fig. 8: Comparison of the singlelevel Monte-Carlo algorithm against the MLMC al-
gorithm for initial data (27) at time T = 2. We used ML = 16 samples on the finest
level for the MLMC computation.
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Fig. 9: Numerically approximated variance between levels,Var(〈ψ, g(ul) − g(ul−1)〉)
for the Kelvin-Helmholtz initial data (27) at time T = 2, using a relaxation time of
T0 = 0.05.

Fig. 10: Error in computed mean for Kelvin-Helmholtz initial data at time T = 2.
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(a) Mean from MLMC with relaxation. (b) Mean from reference solution.

(c) Variance from MLMC with relaxation. (d) Variance from reference solution.

Fig. 11: Comparison of the singlelevel Monte-Carlo algorithm against the MLMC
algorithm for initial data (27) at time T = 2. We used ML = 16 samples on the finest
level for the MLMC computation, we use a relaxation time of T = 0.05.
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5. Conclusions. In this paper, we reviewed the concept of entropy measure
valued solutions for hyperbolic conservation laws. We have laid the theoretical foun-
dations for a multilevel Monte-Carlo algorithm for computing entropy measure valued
solutions.

In Theorem 11, an error estimate of the MLMC algorithm in the narrow topology
was derived. We furthermore derived a precise criterion on the variance decay for
gaining an asymptotic speed-up with MLMC compared to singlelevel Monte-Carlo.

5.1. Applicability of MLMC for scalar conservation laws. The theory
and numerical experiments reveal, that the MLMC method does work well for ap-
proximating EMVS of scalar conservation laws. The numerical experiment agrees
with the theory. Furthermore, the MLMC was shown to considerably outperform the
MC algorithm both theoretically and through numerical experiments.

5.2. Applicability of MLMC for systems of conservation laws. As was
made clear by Theorem 12, we can only expect the MLMC algorithm to give a speed-
up compared to the MC algorithm if Vl → 0 as l → ∞. The numerical experiments
show mixed results in this respect. For the case of the Kelvin-Helmholtz initial data
(27), the experiments indicated no variance reductions, and the numerical validation
agrees. This serves as an example of a case where the measure valued solution is well-
defined, and where the Monte-Carlo algorithm converges as a measure, but where the
Multilevel Monte-Carlo algorithm can not improve the runtime of singlelevel Monte-
Carlo.

However, in the case of the shockvortex interaction, there is a decay in the variance
Vl, and as expected, the MLMC algorithm does beat the MC algorithm.
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