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For time-harmonic electromagnetic waves scattered by either perfectly conducting or
dielectric bounded obstacles, we show that the fields depend holomorphically on the
shape of the scatterer. In the presence of random geometrical perturbations, our re-
sults imply strong measurability of the fields, in weighted spaces in the exterior of the
scatterer. These findings are key to prove dimension-independent convergence rates of
sparse approximation techniques of polynomial chaos type for forward and inverse com-
putational uncertainty quantification. Also, our shape-holomorphy results imply parsi-
monious approximate representations of the corresponding parametric solution families,
which are produced, for example, by greedy strategies such as model order reduction or

reduced basis approximations. Finally, the presently proved shape holomorphy results

imply convergence of shape Taylor expansions far-field patterns for fixed amplitude do-
main perturbations in a vicinity of the nominal domain, thereby extending the widely
used asymptotic linearizations employed in first-order, second moment domain uncer-
tainty quantification.
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1. Introduction

The efficient quantification of engineering systems’ responses subject to random

input data has attracted considerable attention in recent years, leading to the de-

velopment of computational Uncertainty Quantification (UQ). Loosely speaking,

aleatoric uncertainty deals with the propagation of uncertain inputs–material pa-

rameters, domains of definition, source terms, etc.–throughout otherwise assumed

known models into so-called Quantities of Interest (QoI). In computational electro-
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magnetics (EM), this constitutes the core computational UQ problem as epistemic

uncertainty, i.e. uncertainty in the mathematical model, is considered negligible. In

the present paper, we consider the impact of uncertainty in obstacle’s shapes on

diffracted time-harmonic EM waves.

Techniques such as polynomial chaos, Model Order Reduction (MOR) or the

stochastic finite-element method40,3,22 have been used by engineers for UQ in EM

scattering. Domain mapping approaches, alternatively, transfer uncertainty in the

scatterers’ geometry into parameter uncertainty8. Along these lines, one may stip-

ulate small (random) deviations with respect to both wavelength and scatterers’

shape from a nominal, reference shape, and perform a linearization of the scattered

fields with respect to the obstacle’s geometry. This naturally introduces the math-

ematical concept of shape derivative, as has been elaborated in several monographs

in recent years; we mention only Refs. 38, 32 wherein problems in mechanics have

been analyzed. For the EM problems considered here, by Hadamard’s theorem,

the resulting linearized equations for the first order shape sensitivities are homo-

geneous Maxwell equations posed on the nominal geometry, with inhomogeneous

boundary data only.35,25,32 In Ref. 27, we performed a sparse First-Order Second

Moment (FOSM) domain perturbation analysis and derived tensorized boundary

integral equations for direct computation of second order statistics (covariance) of

the scattered, time-harmonic EM fields. This approach, while being computationally

efficient, is allowed only for small amplitude domain perturbations and yields only

second order statistics. Nonetheless, in some cases the scattered field is required in,

as far as possible, explicit, parametric form with the parameters describing com-

pletely an admissible class of domain variations.

In the present note, rather than addressing the most general setting, we per-

form a shape holomorphy analysis for the time-harmonic, scattered EM fields aris-

ing from two types of bounded obstacles: perfect conductor (PC) and dielectric

(DE) ones. Explicitly, we show that the electric and magnetic fields solving these

problems depend holomorphically on the geometry of the corresponding scatterer’s

surface. Hence, for certain countably-parametric regular scattering surfaces, the

scattered waves are, as functions of the coordinates yj in the shape parametriza-

tion, a holomorphic map from the parameter space into certain Hilbert spaces. In

particular, when interpreted as elements of weighted Sobolev spaces imposing Silver-

Müller (outgoing) radiation conditions essentially (cp. Refs. 30, 1). Naturally, these

holomorphy results are closely related to so-called material derivatives of problems

(PC) and (DE). Our analysis therefore draws upon analytical tools from shape op-

timization, (cf. Ref. 38) and implies, as corollaries, the existence and local error

bounds for shape Taylor expansions, which arise in sparse tensor discretization of

FOSM approaches to computational UQ (cf. Ref. 24, 27 and references therein).

However, unlike the FOSM analysis in Ref. 27, the presently developed holomorphy

results apply also for large shape variations, albeit precluding topology changes.

The analytical results obtained here facilitate efficient computational treatment
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of shape uncertainty in computational EM scattering. Indeed, the presently obtained

shape holomorphy also implies sparsity results on generalized polynomial chaos

representations of the parametric EM fields corresponding to the uncertain scat-

terers’ geometries. Adaptive sparse tensor interpolation and numerical quadrature

schemes for countably-parametric functions were shown16,13,12 to yield dimension-

independent convergence rates for Hilbert space-valued functions of a sequence

y = (yj)j≥1 of parameters yj ∈ [−1, 1], provided that the parametric function

has certain sparsity properties. For example, based on the shape-holomorphy re-

sults established here, sparse adaptive collocation approximation algorithms allow

to compute dimensionally adaptive, sparse polynomial chaos surrogates of the scat-

tered EM fields, as well as far-field expansions for the considered problem classes.

Our results also justify the use of high-order Quasi-Monte-Carlo quadrature

(QMC) methods in order to efficiently compute numerically ensemble averages over

all possible shapes, for example to calculate far-field statistics from known shape

statistics. We refer to Refs. 21 and 20, and the references there for details. They

also allow to employ recently developed, high-order QMC methods for Bayesian

shape inversion (cf. Refs. 36, 37). Similar results as we shall prove in the following

are obtained in 14 for the nonlinear stationary Navier-Stokes equation.

The outline of this paper is as follows: in Section 2, notation and preliminary

results are introduced. Section 2.2 provides mathematical tools for the two Maxwell

problems considered, with particular emphasis on the underlying functional spaces

and a general strategy to prove existence and uniqueness. Section 2.5 contains

key domain transformation results for rotational fields. Precise formulations of our

model problems are given in Section 3, including their variational formulations

pulled back onto the nominal domain. Main results concerning shape holomorphy

are contained in Section 4. In Section 5, we establish (b, ǫ)-holomorphy for paramet-

ric domain-to-solution maps related to the Maxwell problems considered. Finally,

conclusions and possible directions of future work are succinctly indicated in Section

6.

2. Preliminaries

To set notation and to prepare the ensuing development, we review some known

results that will be required in the subsequent development. In particular, we spec-

ify functional spaces and trace operators appearing in variational formulations of

the model problems considered. Furthermore, we comment on the existence and

uniqueness of solutions for Maxwell problems in general, and introduce domain

transformations as they will be used throughout.

2.1. Notation

Let d ∈ {1, 2, 3}. For a bounded Lipschitz domain D ⊆ Rd, the set Cm(D), m ∈ N0,

denotes the space of m-times differentiable scalar functions on D, and similarly for

the space of infinitely differentiable, scalar continuous functions, we write C∞(D).



November 21, 2016 10:38 WSPC/INSTRUCTION FILE M3AS_JSZ16

4 C. Jerez-Hanckes, C. Schwab & J. Zech

The notation Cm
0 (D) denotes the space of compactly supported Cm-functions in D.

Let Lp(D) denote the class of p-integrable functions over D. Throughout, for any

real or complex Banach spaceX,X ′ denotes the dual space ofX. Generally, boldface

symbols for functional spaces represent vector-valued counterparts, e.g., L2(D) is

the space of vector-valued functions with d components in L2(D). Dual spaces

are defined in standard fashion with duality products denoted by angular brackets

〈·, ·〉D. For the L2-inner product on D we write (·, ·)D. If it will not cause any

confusion, the subscript indicating the underlying domain is omitted. The inner

product as well as any occurring dual products are always understood in the bilinear,

rather than sesquilinear, sense (cf. Remark 2.1).

We shall use standard Sobolev spaces W s,p(D) of functions with s ∈ R weak

derivatives in Lp(D) for p ≥ 1. In the case of p = 2, we use the standard notation

Hs(D), of complex-valued scalar functions with the customary convention H0(D) =

L2(D).

2.2. Maxwell Equations

Let now D ⊂ R3 be an open, bounded Lipschitz domain with simply connected

boundary surface ∂D. We denote the unbounded exterior domain corresponding to

D by Dc := R3\D.

We consider the time-harmonic propagation of EM waves for a circular frequency

ω > 0. Material parameters ε and µ denote the dielectric permittivity and mag-

netic permeability, respectively, assumed to be positive and piecewise constant with

further restrictions imposed later. We may also consider conductive media charac-

terized by the conductivity parameter σ ≥ 0. Denoting as usual by E and H the

electric and magnetic fields, respectively, Maxwell equations without sources reada

curlE− ıωµH = 0 , curlH+ (ıωε− σ)E = 0. (2.1)

Setting κ2 := ω2µε+ ıωµσ, (2.1) can be reduced to

curlµ−1
curlE− µ−1κ2E = 0, (2.2)

and, in case µ is constant, to

curl curlE− κ2E = 0. (2.3)

For σ = 0, the magnetic flux density is H = 1
ıωµ curlE, which is computed a

posteriori. In Dc, we impose the Silver-Müller radiation condition:

∣

∣

∣
curlE(x)× x

r
− ıκE(x)

∣

∣

∣
= O

(

1

r2

)

, x ∈ R3, r → ∞ , (2.4)

where r := ‖x‖2 and ‖·‖2 denotes the standard Euclidean norm.

aIn the following, we denote scalars in simple typeface, vector fields with boldface. Quantities
defined over volumes are written in capital letters and surface ones in lower case.
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As mentioned in the Introduction, we will consider two particular time-harmonic

EM wave scattering problems:

(PC) A bounded perfect conductor occupying D. This leads to an exterior Dirich-

let problem for (2.2) with boundary ∂D;

(DE) A dielectric interface, with different material parameters. This leads to a

transmission problem in D ∪Dc where ∂D is the interface.

Detailed discussions for each model problem will be given in Section 3.

2.3. Functional spaces

We recall the following vectorial spaces to formulate Maxwell problems:

H(curl, D) := {U ∈ L2(D) : curlU ∈ L2(D)} ,
H(curl curl, D) := {U ∈ H(curl, D) | curl curlU ∈ L2(D) } .

In the ensuing discussion of strong measurability of scattered fields for random

shape perturbations as well as in the verification of shape holomorphy for exterior

problems, we find it convenient to work in weighted Hilbert spaces over the exterior

domain (cf. Remark 3.2 and Section 5.3 in Ref. 30):

Hκ(curl, D
c) :=

{

U : U satisfies (2.4), U/r ∈ L2(Dc), curlU/r ∈ L2(Dc) ,
U·x
r ∈ L2(Dc), curlU·x

r ∈ L2(Dc)
}

, (2.5)

Hκ(curl curl, D
c) :=

{

U ∈ Hκ(curl, D
c) : curlU ∈ Hκ(curl, D

c)
}

.

Observe that if U ∈ H(curl, D) (resp. U ∈ Hκ(curl, D
c)) solves the

homogeneous Maxwell equations, then U ∈ H(curl curl, D) (resp. U ∈
Hκ(curl curl, D

c)). The dependence on κ in Hκ enters through the radiation con-

dition (2.4).

Moreover, we denote by γ the standard trace operator mapping γ : Hs+1/2(D) →
Hs(∂D), u 7→ u|∂D, s ∈ (0, 1), continuously. Similar considerations hold

component-wise for vector spaces Hs(∂D). For a Lipschitz surface Γ = ∂D, we

will mainly be concerned with the trace spaces:

H
−1/2
div (Γ) := {U ∈ H−1/2(Γ) : U · n = 0, divΓ U ∈ H−1/2(Γ)} ,

H
−1/2
curl (Γ) := {U ∈ H−1/2(Γ) : U · n = 0, curlΓ U ∈ H−1/2(Γ)},

endowed with corresponding graph norms. Here, the normal vector n on the scat-

tering boundary points from D to Dc and divΓ, curlΓ denote surface divergence and

scalar surface curl, respectively (cp. Refs. 30, Chap. 2.5, and Ref. 5 for definitions

of these operators).

Definition 2.1. For U ∈ C∞(D), we define the tangential Dirichlet and Neumann

traces by

γDU := n× (U× n)|∂D and γNU := (n× curlU)|∂D ,
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respectively. The flipped tangential trace γ×D is γ×DU := (n×U)|∂D.

The trace operators γ×D and γN can be extended to linear and continuous opera-

tors from H(curl, D) and H(curl curl, D), respectively, to H
−1/2
div (∂D). Likewise,

γD : H(curl, D) → H
−1/2
curl (∂D) continuously 5. Moreover, the traces γD, γ×D and γN

admit linear and continuous right inverses. For U ∈ Hκ(D
c), V ∈ Hκ(curl, D

c),

we define γcDU and γcNV in the same way and similar mapping properties hold.

With the trace operator γ×D , we define for a subset S of ∂D of positive surface

measure:

HS(curl, D) := {U ∈ H(curl, D) : γ×DU = 0 on S} . (2.6)

If S = ∂D, we set

H0(curl, D) := {U ∈ H(curl, D) : γ×DU = 0 on ∂D} . (2.7)

By continuity of γ×D , HS(curl, D) is a closed subspace of H(curl, D).

Finally, for U, V ∈ H(curl, D), where D is again bounded Lipschitz, there

holds Green’s formula 5 :

(U, curlV)D − (curlU,V)D = −〈γ×DU, γDV〉∂D = 〈γDU, γ×DV〉∂D , (2.8)

where 〈·, ·〉∂D denotes the H
−1/2
div (∂D) dual product since H

−1/2
div (∂D)′ =

H
−1/2
curl (∂D) (cf. Thm. 2 in 6).

2.4. Existence and uniqueness of solutions

Existence proofs for time-harmonic scattering of EM waves are typically based on29:

(i) a Helmholtz (Hodge) decomposition; (ii) the Fredholm alternative; and, (iii) a

unique continuation result.

Even though not always explicitly stated in the respective references, this ap-

proach in general implies that the according operator is an isomorphism. Since we

shall need this property in our analysis, we outline the general line of arguments

for future reference.

Lemma 2.1. Let X be a Banach space and A : X → X ′ a bounded linear operator.

Furthermore, let X = X1+X2 for some linear subspaces X1, X2 of X, and suppose

that

〈Ax2, y1〉 = 0 ∀ x2 ∈ X2, ∀ y1 ∈ X1. (2.9)

Set the embedding ιj : X ′ →֒ X ′
j and define Aj := ιj ◦ A|Xj : Xj → X ′

j, j = 1, 2.

Then,

(i) assuming injectivity of A1, A is injective iff A2 is injective;

(ii) if Aj : Xj → X ′
j are isomorphisms with ‖A−1

j ‖ ≤ Cj for j = 1, 2, then

A : X → X ′ is an isomorphism with ‖A−1‖ ≤ C1 + C2 + C1C2‖A‖.



November 21, 2016 10:38 WSPC/INSTRUCTION FILE M3AS_JSZ16

Electromagnetic Wave Scattering by Random Surfaces: Shape Holomorphy 7

Proof. In the following, x = x1 + x2 ∈ X, y = y1 + y2 ∈ X with xj , yj ∈ Xj for

j = 1, 2.

(i) Let A be injective and A2x2 = 0. Then 〈Ax2, y2〉 = 〈Ax2, y1 + y2〉 = 0 for all

y1 ∈ X1 and y2 ∈ X2, hence x2 = 0 and therefore A2 is injective. To show

the converse, assume that A1 and A2 are injective. It then follows that Ax = 0

implies 〈A(x1 + x2), y1〉 = 〈Ax1, y1〉 = 0 for all y1 ∈ X1, and thus x1 = 0. Now,

〈Ax, y2〉 = 〈Ax2, y2〉 = 0 for all y2 ∈ X2 gives x2 = 0, and consequently A is

injective.

(ii) The first item implies injectivity of A, so that it remains to show surjectivity of

A and the bound on the inverse. For f ∈ X ′ arbitrary, let x1 such that A1x1 =

f |X1
, and choose x2 with A2x2 = f |X2

− Ax1|X2
. We observe that Ax = f ,

and consequently A : X → X ′ is bijective. Furthermore, ‖x1‖X ≤ C1‖f‖X′ and

‖x2‖X ≤ C2(‖f‖X′ + ‖A‖‖x1‖X) imply ‖A−1‖ ≤ ‖f‖X′(C1 +C2 +C1C2‖A‖).

Let us recall the Fredholm alternative as in Thm. 5.4.5, Ref. 30:

Proposition 2.1. Let V , H be real or complex Hilbert spaces with injective compact

embedding V →֒ H. Assume given A : V → V ′ continuous and satisfying a Gårding

inequality: there exist constants α > 0 and c ≥ 0 and a linear isomorphism Θ : V →
V such that

∀ u ∈ V : Re[〈Au,Θu〉] ≥ α‖u‖2V − c‖u‖2H . (2.10)

Then, A : V → V ′ satisfies the Fredholm dichotomy: either, A is an isomorphism,

or A has a finite dimensional kernel N ⊂ V . In this case, for g ∈ V ′ such that

g(N ) = 0, the problem of finding u with Au = g admits a solution u ∈ V which is

unique up to N .

The splitting in Lemma 2.1, is achieved through a Helmholtz or Hodge decom-

position. It then remains to show that A1 and A2 are isomorphisms. This can be

established by verifying Fredholmness and injectivity of Aj for j = 1, 2. According

to Lemma 2.1 (i), it may alternatively be shown that A—rather than A2—is one-to-

one. In this step, unique continuation results42,33,31,2 play an important role. Once

this is obtained, Lemma 2.1 shows that A is an isomorphism.

Remark 2.1. As mentioned in Section 2.1, all inner products and duality pairings

will be considered in the bilinear sense, i.e. without conjugation of the second ar-

gument as customary when dealing with complex-valued functions. This will also

hold for all occurring bilinear forms, and similarly, we will consider linear instead of

antilinear functionals. The reason for this convention is that we aim to show holo-

morphy of certain maps, and the operation of conjugation is not holomorphic. At

the same time, the references we cite work with conjugation. These results are not

affected by our convention, and we will not comment on this at every instance: let X

be a complex Banach space, X ′ the continuous linear forms and X∗ the continuous
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antilinear forms on X. Then, the map ι : X ′ → X∗ defined via 〈ιf, v〉 := 〈f, v〉 is

an isomorphism. Hence, A : X → X ′ is an isomorphism iff ιA : X → X∗ is.

2.5. Domain Transformation

We shall work with families of bounded domains {DT }T parametrized by domain

mappings T : there holds DT = T (D̂), where D̂ ⊂ R3 is a bounded Lipschitz domain

henceforth referred to as nominal domain. We denote sets of admissible domain

transformations by the symbol T, with a superscript pc and de indicating corre-

sponding transformations for each problem class mentioned in Section 2.2. For all

domain transformations T ∈ T, we shall assume the following:

Assumption 2.1. The set T ⊆ W 1,∞(D̂,R3) is compact. Moreover, every map T :

D̂ → DT in T is bijective and bi-Lipschitz, and D̂, DT ⊆ R3 are bounded Lipschitz

domains.

In the ensuing analysis of shape holomorphy, a crucial role will be played by

the transformation of the operator curl under domain transformations T (cf. 29 ).

Subsequently, for any T as in Assumption 2.1, dT : D → R3×3 denotes the Jacobian

of T .

Lemma 2.2. Let D̂, DT , T be as in Assumption 2.1. The map

U 7→ Û := dT⊤(U ◦ T ) (2.11)

admits a bounded extension from H(curl, DT ) → H(curl, D̂), such that this exten-

sion is an isomorphism. The result remains true if we replace the spaces H (curl, ·)
by H0(curl, ·). Furthermore, there holds in L2(D̂)

curl Û = (det dT )dT−1((curlU) ◦ T ) . (2.12)

Proof. We begin with the case of H (curl, DT ) and first assume U ∈ C∞(DT )

and T ∈ C∞(D̂,R3). Then, dT co
curlU◦T = curl(dT⊤

U◦T ), where dT co denotes

the cofactor matrix of dT . Now, assume again that T is only Lipschitz but still

U ∈ C∞(DT ). Then Û ∈ L∞(D̂) is well defined. We claim that there exists a

sequence (Tn)n∈N ⊆ C∞(D̂,R3), such that Tn → T in (H1∩L∞)(D̂,R3) as n→ ∞.

First, since D̂ is Lipschitz, we can extend T to a locally supported Lipschitz function

T̃ from R3 → R3 39 . For a mollifier φ(x) with the properties that: φ ∈ C∞(R3),

suppφ ⊆ B1—the ball of radius one centered at the origin—, φ ≥ 0 and
∫

R3 φ = 1,

we set for ǫ > 0, φǫ(x) :=
1
ǫ3φ(

x

ǫ ) and T̃ǫ := T̃ ∗φǫ. Using T̃ ∈ (W 1,∞∩H1)(R3,R3),

it is not hard to see that T̃ǫ → T̃ in (H1 ∩ L∞)(R3,R3). Consequently, the same is

true for the restriction of the T̃ǫ to D̂, which proves our claim with Tn := (T̃1/n)|D̂.

Furthermore, again by Ref. 39, Sec. VI, 3.2, we may extend U to a compactly

supported Ũ ∈ C∞(R3). Now, with Ũn := Ũ ◦ Tn and for V̂ ∈ C∞
0 (D̂) arbitrary,
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it holds

(curl V̂, dT⊤
n Ũ ◦ Tn)D̂ = (V̂, curl(dT⊤

n Ũ ◦ Tn))D̂ = (V̂, dT co
n curl Ũ ◦ Tn)D̂ .

(2.13)

Since curl Ũ ∈ C1(R3) and Tn → T in L∞(D̂,R3), we observe that curl Ũ ◦ Tn →
curl Ũ ◦ T = curlU ◦ T in L∞(D̂) as n → ∞. Next, dT co

n consists of sums of

elements of the type
∂(Tn)j
∂xi

∂(Tn)l
∂xm

, for i, j, l,m ∈ {1, 2, 3}. Due to Tn → T in

H1(D̂,R3), we thus obtain dT co
n → dT co in L1(D̂,R3×3) as n → ∞. Hence, the

right-hand side in (2.13) converges to (V̂, dT co
curlU ◦ T )D̂, whereas, by similar

arguments, the left-hand side converges to (curl V̂, dT⊤
U ◦ T )D̂ = (curl V̂, Û)D̂.

Since dT co = (det dT )−1dT−1— as T is bi-Lipschitz—we arrive at curl Û =

(det dT )dT−1(curlU ◦ T ) in the sense of distributions. The latter function is in

L∞(D̂) by our assumptions on T , so that Û ∈ H (curl, D̂).

Next, we consider U ∈ H (curl, DT ). By the above,

‖Û‖
H (curl,D̂) ≤ C(T )‖U‖H (curl,DT ), ∀ U ∈ C∞(D̂).

Since the map U 7→ Û is linear, it allows a bounded extension from the dense subset

C∞(DT ) ⊆ H (curl, DT ) (cf. Thm. 3.26, Ref. 29) to the whole of H (curl, DT ) as

DT is Lipschitz. By symmetry, also Û 7→ d(T−1)⊤Û ◦ T−1 from H (curl, D̂) to

H (curl, DT ) is well defined and bounded. Clearly, it is the inverse of the former

map. We conclude that they are isomorphisms.

Finally, consider the transformation of functions in H0(curl, DT ). In this case,

we argue analogously as above except that we start with U ∈ C∞
0 (DT ) instead

of U ∈ C∞(DT ), and use density of C∞
0 (DT ) in H0(curl, DT ) (cp. (3.42) and

Thm. 3.33 in Ref. 29). We merely need to check whether Û ∈ H0(curl, D̂) holds

true. For x ∈ ∂DT with normal vector n(x), the corresponding normal vector

n̂(T−1(x)) at x̂ := T−1(x) ∈ ∂D̂ is given by

n̂(T−1(x)) =
dT⊤

n(x)

‖dT⊤n(x)‖2
almost everywhere on ∂D̂ (see, e.g., Eq. (2.1.94) in Ref. 4). Then,

n̂(x̂)× Û(x̂) =
1

‖dT⊤n(x)‖22
dT⊤

n(x)× dT⊤
U(x) .

The identity Ma × Mm = M(a × m) gives

n̂(x̂) × Û(x̂) =
∥

∥dT⊤
n(x)

∥

∥

−1

2
(dT⊤)co(n(x) × U(x)). Therefore, if γ×DU vanishes,

so does γ×DÛ .

Remark 2.2. Suppose that D is bounded Lipschitz with ∂D = Γ1 ∪ Γ2 where

Γ1, Γ2 are closed and Γ1 ∩ Γ2 = ∅. Then, we can find Lipschitz domains D1, D2

such that D1 ∪ D2 = D and Dj ∩ Γi = ∅ if i 6= j as well as Di ∩ Γi = Γi for all

i, j ∈ {1, 2}. Furthermore, let ψ ∈ C∞
0 (R3) such that ψ ≡ 1 in a neighbourhood

of Γ1 and suppψ ⊆ D1. For a function U ∈ H (curl, D) with γ×DU|Γ1
= 0, using
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density of C∞
0 (D1) in H0(curl, D1) respectively density of C∞(D) in H0(curl, D),

it is then easy to see, that we may find functions U
1
n ∈ C∞

0 (D1) converging to

Uψ|D1 ∈ H0(curl, D1) and U
2
n ∈ C∞(D) with U

2
n|Γ1 ≡ 0 converging to (1−ψ)U ∈

H0(curl, D) as n → ∞. Overall, we obtain density of {ϕ ∈ C∞(D) : ϕ|Γ1
≡ 0}

in {U ∈ H (curl, D) : γ×DU|Γ1 ≡ 0}. Consequently, with an analogous proof, the

statement of Lemma 2.2 also remains true if γ×DU = 0 does not hold on ∂D, but

merely on some part Γ1 of ∂D, closed and separated from ∂D\Γ1 in the above sense.

Lemma 2.3. Let Assumption 2.1 be satisfied and let ε, µ ∈ L∞(DT ,C
3×3) be

given. For U, V ∈ H (curl, DT ) there holds
∫

DT

ε curlU · curlV =

∫

D̂

1

det dT
(ε ◦ T )dT curl Û · dT curl V̂ (2.14)

∫

DT

µU ·V =

∫

D̂

det dT (µ ◦ T )dT−⊤
Û · dT−⊤

V̂ . (2.15)

Proof. According to (2.11) and (2.12), U ◦ T = dT−⊤
Û and curlU ◦ T =

(det dT )−1dT curl Û for all U ∈ H (curl, DT ). Since all integrands are in L1(DT )

or L1(D̂), (2.14), (2.15) are an immediate consequence of the transformation for-

mulae (2.11), (2.12).

3. Maxwell Model Problems

We introduce two model problems to be considered in what follows. At this stage,

we formulate models for a generic bounded scatterer geometry denoted by D̃; it is

associated with the computational domain D, wherein the corresponding variational

formulation will be stated and our analysis performed. The relation between D̃ and

D depends on the model under consideration and will be made clear subsequently

though attention should be given to this. Furthermore, D will stand either for

the nominal domain D̂ or for an instance DT of a parametric family of domains

diffeomorphic to D̂ as in Section 2.5. Later on, we will denote by S ⊆ ∂D̃ the part

of the volume boundary subject to shape uncertainty.

The occurring bilinear forms for problems (PC) and (DE) will be denoted by

a
pc, ade, respectively. Furthermore, we write Apc and Ade for the operators induced

by those bilinear forms accordingly.

3.1. Scattering by a perfect conductor

The scattering of time-harmonic, EM waves by a perfect electrical conductor is a

classical problem in computational EM; we refer, for example, to Sec. 5.4 in Ref. 30,

and Chap. 10 in Ref. 29.

We assume the bounded Lipschitz domain D̃ to be filled by either a PC or a

purely dielectric exterior domain D̃c = R3\D̃ with material constants:

µ, ε > 0, σ = 0 and κ := ω
√
µε . (3.1)
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Here, the uncertain scatterer geometry is given by the surface S = ∂D̃. We assume

the incident field E
inc ∈ H loc(curl, D̃

c) as given and such that curl curlE
inc −

κ2Einc = 0. If Escat denotes the field scattered by the PC, the total electric field

in D̃c can be written as E = E
inc + E

scat, satisfying γDE = 0 over S = ∂D̃. This

implies

γDE
scat = −γDEinc =: mpc on S. (3.2)

The scattering of a time-harmonic incident wave by a perfect conductor can be

stated as follows: given mpc ∈ H
−1/2
div (S), we seek a scattered field E

scat satisfying

(2.2) in D̃c, as well as (2.4) and (3.2) such that

E
scat ∈ Hκ(curl, D̃

c) . (3.3)

3.1.1. Reduction to a bounded domain

As is customary (cf. Ref. 29, Sec. 10.2, and Ref. 30, Sec. 5.4.2), we reduce the

exterior problem (PC) to a bounded domain using a Calderón operator: to this end,

fix R > 0 such that the closure of D̃ is contained in the ball BR/2 of radius R/2

around the origin. According to Sec. 9.4.1 in Ref. 29 or Sec. 5.3.2 in Ref. 30, there

exists a bounded linear Dirichlet-to-Neumann (DtN) operator Λpc : H
−1/2
div (∂BR) →

H
−1/2
div (∂BR) on ∂BR corresponding to radiating solutions of (2.2), (2.4) in Bc

R :=

R3 \BR.

Remark 3.1. In fact, the Calderón operator and general discussion in Secs. 9-10

in Ref. 29 only consider the case ε = µ = 1. However, this is no real restriction: let

E, H solve (2.1) in D̃c (again σ = 0), together with (2.4). Set H̃ :=
√

µ
εH. Then

E, H̃ satisfy

curlE− ıω
√
εµ H̃ = 0 , curl H̃+ ıω

√
εµE = 0 in Bc

R, (3.4)

and (2.4) remains true for E with κ = ω
√
εµ corresponding to the occurring factor

in (3.4). Thus, problem (3.4)—covered by the analysis in Ref. 29 with wavenumber

κ = ω
√
εµ—leads to the same partial differential equation for the electrical field

E when eliminating the magnetic field H̃ from the equation. Applying the results

from Sec. 9.4.1 in Ref. 29 to the solution of (3.4), the Calderón operator Λpc then

satisfies Λpcγ×DE = γ×DH̃ = 1
ıω

√
εµγNE.

Defining D := D̃c ∩ BR, the Maxwell equation (2.2) in D̃c together with the

radiation condition (2.4) for E
scat, is equivalent to

curlµ−1
curlE− ω2εE = 0 in D, (3.5a)

γ×DE = 0 on S, (3.5b)

γN(E−E
inc) = ıω

√
εµΛpcγ×D (E−E

inc) on ∂BR, (3.5c)

for the total electric field E = E
inc+E

scat, with Λpc as in Remark 3.1, and as before

S = ∂D̃. We have applied the Calderón operator Λpc to E
scat = E − E

inc, since



November 21, 2016 10:38 WSPC/INSTRUCTION FILE M3AS_JSZ16

12 C. Jerez-Hanckes, C. Schwab & J. Zech

per assumption only E
scat—not necessarily E

inc—satisfies the radiation condition

(2.4).

3.1.2. Variational formulation

Again with D := D̃c ∩ BR, there holds ∂D = S ∪ ∂BR. Multiplying (3.5a) with

V ∈ HS(curl, D) (cf. (2.6)) and integrating by parts as in (2.8), there holds
∫

D

µ−1
curlE · curlV − ω2

∫

D

εE ·V

= −
∫

S

γ×D (µ−1
curlE) · γDV −

∫

∂BR

γ×D (µ−1
curlE) · γDV,

where the normal vectors used to define the trace operators on S and ∂BR are

always considered pointing outwards of D. Using (3.5c) we derive

γ×D (µ−1
curlE) = µ−1

[

ıω
√
εµΛpcγ×D (E−E

inc) + γ×D (curlEinc)
]

on ∂BR.

Since γDV|S = 0, and thus γ×DV|S = 0, we obtain the following variational formu-

lation of problem (PC) (3.5) (see, e.g., Eq. (10.2) in Ref. 29): find E ∈ HS(curl, D)

such that

a
pc (E,V) = f

pc (V) ∀ V ∈ HS(curl, D), (3.6)

where the bilinear and linear forms are defined by

a
pc (E,V) := (µ−1

curlE, curlV)D − ω2(εE,V)D + ıω
〈
√

ε
µΛ

pcγ×DE, γDV
〉

∂BR

,

(3.7)

f
pc (V) := −

〈

µ−1γNE
inc, γDV

〉

∂BR
+ ıω

〈
√

ε
µΛ

pcγ×DE
inc, γDV

〉

∂BR

, (3.8)

with 〈·, ·〉∂BR
denoting, in both definitions, the dual pairing in H

−1/2
div (∂BR) without

conjugating the second argument.

3.1.3. Well-posedness

Problem (3.6) is well posed, in the sense that the operator Apc : HS(curl, D) →
HS(curl, D)′ induced by a

pc is an isomorphism. According to Lemma 10.3 in

Ref. 29, it holds HS(curl, D) = X1 ⊕X2 with the subspaces:

X1 := {∇V : V ∈ H1(D), V |S = 0} , (3.9)

X2 := {E ∈ HS(curl, D) : −ω2(εE,V) + ıω
〈
√

ε
µΛ

pcγ×DE, γDV
〉

= 0, ∀V ∈ X1} ,
(3.10)

of HS(curl, D). It is easily verified that a
pc(E,V) = 0 for all E ∈ X2, V ∈ X1.

With A := Apc and the notation from Sec. 2.4, Theorem 10.2 in Ref. 29 states that

A1 : X1 → X ′
1 is an isomorphism, and by Thm. 10.6 in Ref. 29, A2 : X2 → X ′

2 is

an isomorphism. Hence, Apc = A is an isomorphism by Lemma 2.1.
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Fig. 1. Nominal domain D̂ and physical domain DT for problem (PC): bi-Lipschitzian transfor-
mation T allows for corners and edges in DT with smooth nominal D̂.

Remark 3.2. The variational formulation (3.6) is posed on the bounded domain

D̃c ∩ BR, using the DtN operator Λpc. The unique solution E
scat admits a unique

extension to Bc
R belonging to the weighted space Hκ(curl, B

c
R) (cf. Thm. 2.6.5

and Lemma 2.6.5 in Ref. 30), and which satisfies in D̃c the Silver-Müller radiation

condition (2.4). This avoids the use of non-Hilbertian spaces of locally integrable

functions on D̃c. The separability and reflexivity of the Hilbert spaces Hκ(curl, D̃
c)

introduced in Section 2.1 facilitates the use of Bochner integrals in the mathemat-

ical description of random input data and in the formulation of polynomial chaos

approximations from Refs. 13 and 16.

3.1.4. Transformed problem

We work under the following assumption:

Assumption 3.1. Assumption 2.1 is satisfied for some T = Tpc ⊆ W 1,∞(D̂,R3).

Furthermore, there exists R > 0 such that Bc
R/2∩BR ⊆ D̂ ⊆ BR and T |BR∩Bc

R/2
= I

for all T ∈ Tpc.

For T ∈ Tpc, we recall DT = T (D̂). This signifies that the scatterer occupies

the domain D̃T := Dc
T ∩ BR, whereas DT constitutes the computational domain

surrounding the scatterer, restricted to the artificial ball BR as shown in Figure 1.

As an immediate consequence of the unique solvability of problem (3.6) in D := DT ,

we obtain well-posedness of the transformed problem on the nominal domain D̂, for

every T ∈ Tpc.

Lemma 3.1. For every T ∈ Tpc, problem (PC) (3.6) with data ε, µ ∈ L∞(DT ),



November 21, 2016 10:38 WSPC/INSTRUCTION FILE M3AS_JSZ16

14 C. Jerez-Hanckes, C. Schwab & J. Zech

such that ε, µ are constant on Bc
r for some r < R with R as in Assump-

tion 3.1, admits a unique solution ET ∈ HS(curl, DT ) iff there exists a unique
“ET ∈ HS(curl, D̂) such that

â
pc
T (“ET , V̂) = f̂

pc(V̂) for all V̂ ∈ HS(curl, D̂), (3.11)

where µT := µ ◦ T and εT := ε ◦ T ,

â
pc
T (Ê, V̂) :=

(

1

det dT
µ−1
T dT curl Ê, dT curl V̂

)

D̂

− ω2
(

(det dT )εT dT
−⊤

Ê, dT−⊤
V̂

)

D̂
+ ıω

〈
√

εT
µT

Λpcγ×D Ê, γDV̂
〉

∂BR

,

f̂
pc
T (V̂) :=

〈

−µ−1
T γ×D curlE

inc + ıω
√

εT
µT

ΛpcγDE
inc, γDV̂

〉

∂BR

.

In this case, “ET = ÊT , with ÊT related to ET as in (2.12). Furthermore, if Apc
T

denotes the operator associated to the bilinear form in (3.6) on DT , then Âpc
T is an

isomorphism iff Apc
T is.

Proof. Let T ∈ Tpc and let E, V ∈ HS(curl, DT ) be fixed. Then, the L2-inner

products:

(µ−1
curlE, curlV)DT

− ω2(εE,V)DT
(3.12)

are well defined and may be transformed into integrals over D̂ as follows: by (2.12)

in Lemma 2.2, det(dT )(curlE)◦T = dT−⊤
curl Ê ∈ L2(D̂), and Ê ∈ HS(curl, D̂)

is well defined. Based on (2.14) and (2.15), (3.12) is equal to
(

1

det dT
µ−1
T dT curl Ê, dT curl V̂

)

D̂

− ω2
(

(det dT )εT dT
−⊤

Ê, dT−⊤
V̂

)

D̂
.

Due to Assumption 3.1, the dual products over ∂BR are not affected by the

transformation, and are well defined since ε, µ are constant on Bc
R. Therefore,

â
pc
T (ÊT , V̂) = f̂

pc
T (V̂). Note that ∂D = S ∪ ∂BR, with S ∩ ∂Br = ∅. By Lemma

2.2 and Remark 2.2, HS(curl, DT ) ∋ V 7→ V̂ ∈ HS(curl, D̂) is an isomorphism,

and since V ∈ HS(curl, DT ) is arbitrary, we obtain â
pc
T (ÊT ,Ŵ) = f̂

pc
T (Ŵ) for

all Ŵ ∈ HS(curl, D̂). By the same arguments, one shows the converse direction,

which concludes the first part of the proof.

The last statement is an immediate consequence of Lemma 2.2, Remark 2.2 and

a
pc
T (U,V) = â

pc
T (Û, V̂) for all U, V ∈ HS(curl, DT ).

We refer to (3.11) as problem (̂PC) in the following.

3.2. Scattering by a dielectric obstacle

For this case, we follow primarily Ref. 25 wherein shape and material derivatives

for the scattering problem of time-harmonic, EM waves were considered.

We assume given a dielectric medium occupying a bounded obstacle D̃, with

electric conductivity σ1 ≥ 0, electric permittivity ε1 > 0 and magnetic permeability
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µ1 > 0. Its complement, D̃c := R3\D̃, is assumed to be occupied by an isotropic,

homogeneous medium with constant parameters ε0, µ0 > 0 and σ0 = 0. In summary,

ε =

{

ε1 > 0 in D̃,

ε0 > 0 in D̃c,
µ =

{

µ1 > 0 in D̃,

µ0 > 0 in D̃c,
and σ =

{

σ1 ≥ 0 in D̃,

0 in D̃c,

(3.13)

with corresponding wavenumbers denoted by κ2i := ω2µiεi + ıωµiσi, i = 0, 1.

For a given incident field E
inc ∈ H loc(curl, D̃

c) such that curl curlE
inc −

κ20E
inc = 0, we seek again time-harmonic fields E

i, for i ∈ {0, 1}, with common

circular frequency ω satisfying (2.2) such that

E
1 ∈ H(curl, D̃) , E

0 ∈ Hκ0
(curl, D̃c) , (3.14)

curlµ−1
1 curlE

1 − µ−1
1 κ21E

1 = 0 in D̃ , curlµ−1
0 curlE

0 − µ−1
0 κ20E

0 = 0 in D̃c .

(3.15)

Observe that E1 in D̃ is the total field while E0 is the exterior scattered field, so that

the total exterior field is E
inc + E

0 in D̃c. The problem (3.14)–(3.15) is completed

with transmission conditions:

[γDE]± = 0 , [γDH]± = 0 on S := ∂D̃, (3.16)

and by the radiation condition (2.4). Here, [·]± denotes subtraction of corresponding

traces taken from D̃ and D̃c at S, respectively. Equation (3.16) states, that the

tangential components of the electric field and magnetic flux densities should be

continuous across S. The normal components of E and H satisfy

[γ (εn ·E)]± = 0 , [γ (µn ·H)]± = 0 on S .

3.2.1. Variational formulation

The variational formulation of (3.14), (3.15) and (3.16) is standard (cf. Chap. 10 in

Ref. 29, Sec. 2 in Ref. 25, and Chap. 5 in Ref. 30). Fix R > 0 such that D̃ ⊆ BR/2.

We denote by Λde : H
−1/2
div (∂BR) → H

−1/2
div (∂BR) the dielectric Calderón operator,

which coincides with Λpc introduced in Sec. 3.1.

Remark 3.3. Remark 3.1 also applies for the dielectric problem, with H̃ :=
√

µ0

ε0
H.

That is, if (E,H) is a solution pair of the dielectric Maxwell problem (2.1) for data

(3.13), then E, H̃ solve the same problem for ωr := ω
√
ε0µ0,

σr(x) :=

{

σ1 x ∈ D̃,

0 x ∈ D̃c,
µr(x) :=

{

µ1

µ0
x ∈ D̃,

1 x ∈ D̃c,
and εr(x) :=

{

ε1+ıσ1/ω
ε0

x ∈ D̃,

1 x ∈ D̃c.

(3.17)

The fact that εr = µr = 1 and σr = 0 in D̃c, allows the use of the Calderón

operator from 29 on ∂BR, and we obtain as in Remark 3.1 that ΛdeγDE = γDH̃ =
1

ıω
√
ε0µ0

γNE.



November 21, 2016 10:38 WSPC/INSTRUCTION FILE M3AS_JSZ16

16 C. Jerez-Hanckes, C. Schwab & J. Zech

Denoting by E the electric field in (D̃∪D̃c)∩BR, we introduce on H(curl, BR)×
H(curl, BR) the bilinear form:

a
de (E,V) =

(

µ−1
curlE, curlV

)

BR
−ω2 (εE,V)BR

+ıω
〈
√

ε0
µ0
Λdeγ×DE, γDV

〉

∂BR

,

(3.18)

and the functional:

f
de (V) :=

〈

−µ−1
0 γNE

inc + ıω
√

ε0
µ0
Λdeγ×DE

inc, γDV
〉

∂BR

. (3.19)

Again, we point out that a
de(·, ·) is linear and not sesquilinear in both arguments,

and that f
de (·) is also linear and not antilinear in its argument. The variational

formulation of problem (DE) reads: find E ∈ H(curl, BR) such that

a
de (E,V) = f

de (V) , ∀V ∈ H(curl, BR) . (3.20)

3.2.2. Well-posedness

Existence and uniqueness of solutions for the exterior problem (3.20) is established,

for example, in the Refs. 7 and 30. As in Section 3.1.3, and cited works therein, we

observe that the operator Ade : H(curl, BR) → H(curl, BR)
′, induced by a

de, is

an isomorphism.

3.2.3. Transformed problem

For problem (DE), the computational domain BR will be independent of the trans-

formation, which in this case serves the purpose of determining the interface.

Assumption 3.2. Assumption 2.1 is satisfied for some T = Tde ⊆W 1,∞(D̂,R3) with

D̂ := BR and R > 0 fixed. For every T ∈ Tde, DT = BR and T |BR∩Bc
R/2

= I.

For D̃ ⊆ BR/2 fixed, we set D̃T := T (D̃), which will represent the transformed

problem geometry with interface ∂D̃T . It represents one of two different homogenous

isotropic materials, the second one occupying its complement. This will be irrelevant

in the next lemma, which is formulated for more general data than just piecewise

constants in D̃T , D̃c
T , but we shall return to this viewpoint when we prove shape

holomorphy. By the same reasoning as in Section 3.1.4, we obtain the well-posedness

of the transformed problem on the nominal domain. We point out that in the

following result DT = D̂ = BR.

Lemma 3.2. For every T ∈ Tde, problem (DE) (3.20), with data ε, µ ∈ L∞(BR)

admits a unique solution ET ∈ H(curl, DT ) iff there exists a unique “ET ∈
H(curl, D̂) such that

â
de
T (“ET , V̂) = f̂

de
T (V̂) for all V̂ ∈ H(curl, D̂), (3.21)

where the bilinear form â
de
T and the linear functional f̂deT are as in (3.18) and (3.19),

respectively, with material parameters:

εT = ε ◦ T ∈ L∞(D̂) , µT = µ ◦ T ∈ L∞(D̂) , (3.22)
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and domain of integration D̂. In this case, “ET = ÊT and ÊT is related to ET by

(2.11). Furthermore, if Ade
T denotes the operator associated with the bilinear form

(3.20), then Âde
T is an isomorphism iff Ade

T is.

We refer to (3.21) as problem (̂DE) in the following.

4. Shape Holomorphy

We are now ready to prove the main results of the present paper: the shape holo-

morphy of the scattering problems (PC) and (DE). Specifically, we show that the

pulled back solutions of the Maxwell model problems in Sections 3.1 and 3.2 depend

holomorphically on domain transformations T . They represent the scatterer as the

image of a nominal domain, denoted throughout as D̂, under T . We emphasize that,

in fact, shape holomorphy will not require T to be smooth. Indeed, we shall admit

bi-Lipschitz transformations in our analysis so that, in particular, DT = T (D̂) can

be a polyhedron even in the case that D̂ has a smooth boundary ∂D̂.

Our general strategy to verify shape holomorphy is as follows: we first extend

the variational formulations and domain mappings of the Maxwell model problems

(cf. Sections 3.1 and 3.2) holomorphically to complex-valued transformations. We

then verify, by previously known existence and uniqueness results as well as a per-

turbation argument, that the corresponding bilinear forms from Sections 3.1 and

3.2 remain continuous and boundedly invertible for such complex extensions of the

transformations T . Thus, the model problems remain well-posed in the nominal

domain within this framework.

Finally, the proof of shape holomorphy is accomplished. Complex differentiabil-

ity of the solutions on the domain mappings T will be obtained by a difference quo-

tient argument reminiscent to the differentials which appear in real-variable shape

calculus. This amounts, in fact, to the calculation of what is referred to in the shape

optimization literature as material or domain derivatives in a neighbourhood of T ,

and to the investigation of its isomorphism properties.

The outline of the rest of this Section is as follows. In Section 4.1, we extend the

domain mappings T as well as several expressions appearing in the transformation

formulas (2.14), (2.15) holomorphically to the complex domain. Lemma 4.1 will be

instrumental for the verification of shape holomorphy of problems (PC) and (DE),

in Sections 4.2 and 4.3, respectively. We start the analysis with auxiliary results on

the holomorphy of expressions emerging from the transformed bilinear and linear

forms of pullback formulations.

4.1. Holomorphic extensions

We denote by D ⊂ R3 a bounded Lipschitz domain. In the holomorphic extensions

of problems (̂PC) and (̂DE), the following results will be used for D = DT , D̂,

respectively.
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Lemma 4.1. The following two maps are holomorphic:

F1 :W 1,∞(D,C3) → L∞(D,C3×3) : T 7→ dT , (4.1)

F2 :W 1,∞(D,C3) → L∞(D,C) : T 7→ det dT , (4.2)

with Fréchet derivatives along the direction H ∈ W 1,∞(D,C3) at T : dF1(T )(H) =

dH and dF2(T )(H) = tr(dT adjdH), where dT adj denotes the adjugate of dT , i.e. the

transpose of the cofactor matrix. If additionally, T−1 ∈W 1,∞(T (D), D), then also

F3 :W 1,∞(D,C3) → L∞(D,C3×3) : T 7→ dT−1, (4.3)

is holomorphic at T with differential dF3(T )(H) = −dT−1dHdT−1.

Proof. The map F1 is linear and bounded, so the statement is trivial. For F2,

the Fréchet derivative of the determinant map C3×3 ∋ A 7→ detA ∈ C is given by

Jacobi’s formula, and reads for each B ∈ C3×3, d det(A)(B) = tr(AadjB). Since det :

C3×3 → C is holomorphic, and in particular in C2(C3×3,C), for all A, B ∈ C3×3

we get det(A+B) = detA+tr(AadjB)+d2(detA)(ζB)(ζB) for some ζ ∈ [0, 1]. For

‖H‖W 1,∞(D,C3) ≤ 1, we thus obtain

‖ det dT − det d(T +H)− tr(dT adjdH)‖L∞(D)

≤ sup
{A∈C3×3:‖A‖≤‖dT (x)‖L∞(D)+1}

‖d2 detA‖L∞(D)‖H‖2W 1,∞(D) = O
(

‖H‖2W 1,∞(D,C3)

)

as ‖H‖W 1,∞(D,C3) → 0, which shows holomorphy of F2. The derivative of C3×3 ∋
A 7→ A−1 ∈ C3×3 at A along the direction of B is −A−1BA−1, as can be shown by

a Neumann series. Similarly as above, we obtain the statement about F3.

We now verify shape holomorphy for problems (̂PC) and (̂DE).

4.2. Perfect conductor (PC)

We continue to work under Assumption 3.1. Also, we assume that all materials are

homogeneous and isotropic in DT ∪Bc
R, i.e. outside of the perfect conductor, for all

T ∈ Tpc, with ε, µ, σ fixed as in (3.1).

We extend the set Tpc of admissible domain transformations T to the com-

plex domain, and consider the following set of admissible, complex-valued domain

transformations: for Tpc as in Assumption 3.1 and for δ > 0, it is given by

T
pc
δ := {T ∈W 1,∞(D̂,C3) : ∃ T̃ ∈ T

pc : ‖T − T̃‖W 1,∞(D̂,C3) ≤ δ} . (4.4)

4.2.1. Shape Holomorphy

In order to prove holomorphy of the domain-to-solution map

W 1,∞(D̂,C3) ∋ T 7→ ÊT ∈ HS(curl, D̂), (4.5)
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we verify Fréchet differentiability of this map locally, around a certain T . This has

already been done for the dielectric problem in Ref. 25, Thm. 3.3, however only in

the real valued setting at T = I ∈ C1(D̂,R3). Since in the complex-valued case the

formal computations are analogous, we only sketch the technical arguments. We

remark at this point that the condition T |BR∩Bc
R/2

= I in Assumption 3.1 implies

in particular that the complex differential of the domain-to-solution map in the

ensuing Theorem 4.1 will not depend on the far-field integral over ∂BR.

Theorem 4.1. Under Assumption 3.1, there exists δ > 0 such that the domain-to-

solution map of problem (̂PC)

Spc : Tpc → HS(curl, D̂) : T 7→ ÊT

admits a bounded holomorphic extension onto T
pc
δ , also denoted by Spc. Fur-

thermore, the Fréchet derivative dSpc(T )(H) of Spc in the space W 1,∞(D̂,C3)

at T ∈ Tpc in the direction H ∈ W 1,∞(D̂,C3) is given by the unique solution

Ŵ ∈ HS(curl, D̂) of the problem:

â
pc
T (Ŵ, V̂) = k̂

pc
T,H(ÊT ; V̂) for all V̂ ∈ HS(curl, D̂) . (4.6)

Here, for T ∈ Tpc, H ∈ W 1,∞(D̂,C3), and for all V̂ ∈ HS(curl, D̂), we have

defined

k̂
pc
T ;H(ÊT , V̂) :=
([

tr(dT adjdH)

(det dT )2
dT⊤µ−1dT − 1

det dT
(dH⊤µ−1dT + dT⊤µ−1dH)

]

curl ÊT , curl V̂

)

D̂

+ ω2
(

[

tr(dT adjdH)dT−1εdT−⊤−det dT
(

dT−1dHdT−1εdT−⊤+dT−1εdT−⊤dH⊤dT−⊤)]
ÊT , V̂

)

D̂
.

Proof. We now consider Ŵ : W 1,∞(D̂,C3) → HS(curl, D̂) : H 7→ Ŵ(H), the

mapping taking H to the solution of (4.6). Since f̂
pc
T is independent of T (3.8), by

(3.6) we have for H ∈W 1,∞(D̂,C3) and for every V̂ ∈ HS(curl, D̂):

â
pc
T (ÊT+H − ÊT − Ŵ(H), V̂) = â

pc
T (ÊT+H)− â

pc
T+H(ÊT+H , V̂)− â

pc
T (Ŵ(H), V̂)

= −
([

1

det d(T +H)
d(T +H)⊤µ−1d(T +H)− 1

det dT
dT⊤µ−1dT

]

curl ÊT+H , curl V̂

)

D̂

+ ω2
(

[

det d(T +H)d(T +H)−1εd(T +H)−⊤ − det dTdT−1εdT−⊤]
ÊT+H , V̂

)

− k̂
pc
T ;H(V̂) .

(4.7)
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By Lemma 4.1

1

det d(T +H)
d(T +H)⊤µ−1d(T +H)

=

(

1

det dT
− tr(dT adjdH)

(det dT )2
+R1(H)

)

(dT + dH)⊤µ−1(dT + dH)

=
1

det dT
dT⊤µ−1dT

+

(

− tr(dT adjdH)

(det dT )2
dT⊤µ−1dT +

1

det dT
(dH⊤µ−1dT + dT⊤µ−1dH)

)

+R2(H),

(4.8)

where ‖R1(H)‖L∞(D̂,C) = o
(

‖H‖W 1,∞(D̂,C3)

)

and ‖R2(H)‖L∞(D̂,C3×3) =

o
(

‖H‖W 1,∞(D̂,C3)

)

as ‖H‖W 1,∞(D̂,C3) → 0. Similarly,

det
(

d(T +H)d(T +H)−1εd(T +H)−⊤)

= det dTdT−1εdT−⊤ +
(

tr(dT adjdH)dT−1εdT−⊤

− det dT
(

dT−1dHdT−1εdT−⊤ + dT−1εdT−⊤dH⊤dT−⊤)
)

+R3(H),

(4.9)

with ‖R3(H)‖L∞(D̂,C3×3) = o
(

‖H‖W 1,∞(D̂,C3)

)

as ‖H‖W 1,∞(D̂,C3) → 0.

Consider now the set Liso(HS(curl, D̂),HS(curl, D̂)′) of boundedly invert-

ible linear operators. This set is open and the map associating its elements with

their inverses is continuous. According to Section 3.1.3, Apc
T is as a mapping from

HS(curl, DT ) to HS(curl, DT )
′, such that it holds

Apc
T ∈ Liso (HS(curl, DT ),HS(curl, DT )

′) .

By Lemma 3.1, we have

Âpc
T ∈ Liso

(

HS(curl, D̂),HS(curl, D̂)′
)

.

The set of boundedly invertible linear operators Liso being open in the set of

bounded linear operators L, the continuous dependence of Âpc
T ∈ Liso on T ∈

W 1,∞(D̂,C3) implies Âpc
T+H ∈ Liso provided that ‖H‖W 1,∞(D̂,C3) is sufficiently

small. Thus, ÊT+H is well defined, and furthermore, ÊT+H → ÊT in HS(curl, D̂)

as ‖H‖W 1,∞(D̂,C3) → 0. The definition of Ŵ(H), along with (4.7), (4.8) and (4.9)

show that

â
pc
T (ÊT+H − ÊT − Ŵ(H), V̂) = k̂

pc
T ;H(ÊT+H − ÊT , V̂) +R4(H) (4.10)

where |R4(H)| = o
(

‖H‖W 1,∞(D̂,C3)

)

. Note that

|k̂pcT (Ê, V̂)| ≤ C(T )‖H‖W 1,∞(D̂,C3)‖Ê‖
HS(curl,D̂)‖V̂‖

HS(curl,D̂).
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Therefore,

‖âpcT (ÊT+H−ÊT−Ŵ(H), ·)‖
HS(curl,D̂)′ = o

(

‖H‖W 1,∞(D̂,C3)

)

as ‖H‖W 1,∞(D̂,C3) → 0 .

(4.11)

Furthermore, the fact that Âpc
T is an isomorphism entails the existence of C =

C(T ) > 0 such that

‖Âpc
T E‖

HS(curl,D̂)′ ≥ C‖E‖
HS(curl,D̂) ∀E ∈ HS(curl, D̂) . (4.12)

Together with (4.11), this proves Ŵ = dSpc(T ) at every T ∈ Tpc. We remark

that the differential is uniformly stable with respect to T : there holds C−(T
pc
δ ) :=

infT∈T
pc
δ
C(T ) > 0 as a consequence of the continuous dependence of âpcT on T and

of the compactness of T
pc
δ ⊂ W 1,∞(D̂,C3) by Assumption 2.1. Finally, uniform

boundedness of ‖ÊT ‖HS(curl,D̂) for T ∈ Tδ can be ensured by choosing δ > 0 small

enough, since T is compact and Tδ ∋ T 7→ ÊT ∈ HS(curl, D̂) is continuous.

In the preceding proof, the difference quotient argument to verify that the com-

plex differential with respect to the transformation is regular, does not involve the

DtN term. Based on Remark 3.2, this result implies in particular shape holomor-

phy of the exterior problem in the weighted spaces Hκ(curl, D
c). We refer also to

Remark 5.1 ahead.

4.3. Dielectric scatterer (DE)

Here, we consider sets Tde ⊂ W 1,∞(BR;R
3) of holomorphic, bi-Lipschitz transfor-

mations as in Assumption 3.2. We again set DT := T (D̂). In order to give data

determining the material, we assume D ⊆ BR/2 to be fixed throughout what fol-

lows, with R > 0 as in Assumption 3.2 and set DT := T (D̂). We fix ε, µ, σ as in

(3.13) for the domain D and define

σ̌T := σ ◦ T−1, µ̌T := µ ◦ T−1, ε̌T := ε ◦ T−1 , (4.13)

which is piecewise constant data with respect to the transformed problem geometry

DT . Then, under Assumption 3.2, DT ⊂ BR/2, and in particular, the dielectric

interface ∂DT ⊂ BR/2, for T ∈ Tde. As before, the condition T |BR∩Bc
R/2

= I in

Assumption 3.2 implies that the complex domain differential in Theorem 4.2 ahead

will not involve the far-field integral over ∂BR appearing in the bilinear form a
de (·, ·)

in (3.20).

We set

T
de
δ := {T ∈W 1,∞(D̂,C3) : ∃ T̃ ∈ T

de : ‖T − T̃‖W 1,∞(D̂,C3) ≤ δ} . (4.14)

4.3.1. Shape Holomorphy

In the following, let ET be the solution of (3.20), for data (4.13), and let ÊT be

related to ET as in (2.11). Similar arguments as in Section 4.2.1 lead to:
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Theorem 4.2. Under Assumption 3.2, there exists δ > 0 such that the domain-to-

solution map of problem (̂DE) and data (4.13), i.e. the map

Sde : Tde → H (curl, BR) : T 7→ ÊT ,

admits a uniformly bounded holomorphic extension onto T
pc
δ , also denoted by Sde.

Furthermore, the Fréchet derivative dSde(T )(H) of Sde in the space W 1,∞(D̂,C3)

at T ∈ Tpc along the direction H ∈ W 1,∞(D̂,C3) is given by the unique solution

Ŵ ∈ H (curl, D̂) of the following problem:

â
de
T (Ŵ, V̂) = k̂

de
T ;H(ÊT ; V̂) for all V̂ ∈ H (curl, BR) , (4.15)

where

k̂
de
T ;H(ÊT , V̂) :=
([

tr(dT adjdH)

(det dT )2
dT⊤µ−1dT − 1

det dT
(dH⊤µ−1dT + dT⊤µ−1dH)

]

curl ÊT , curl V̂

)

D̂

+ ω2
(

[

tr(dT adjdH)dT−1εdT−⊤−det dT
(

dT−1dHdT−1εdT−⊤+dT−1εdT−⊤dH⊤dT−⊤)]
ÊT , V̂

)

D̂
.

5. Parametric Holomorphy

In the previous section, we proved an abstract holomorphy result of domain-to-

solution maps, Spc and Sde, where the admissible domain parameterizations ranged

in a subset of W 1,∞(D̂;R3). In computational applications, in particular from UQ,

but also in Reduced Basis and MOR, error bounds are required for approximations

of integrals over all shapes or of interpolants and other “surrogates” in the space of

all shapes. To this end, parametric representations of transformations T are chosen

from a suitable set of representations. We mention as examples B-splines, NURBS,

Fourier and wavelet representations.19,34,15,18 We also refer to Sec. 5 in Ref. 14 where

the ensuing discussion is carried out for the Stokes and Navier-Stokes equation.

In general, transformations can be parametrized, for example, in an affine-

parametric manner, i.e. in terms of a sequence y = (yj)j≥1 ⊂ U := [−1, 1]N of

the form:

Ty = I+
∑

j≥1

yjTj , (5.1)

where the sequence (Tj)j≥1 is assumed to be an unconditional basis of a subspace

S(D̂) of W 1,∞(D̂;R3), endowed with the norm ‖ · ‖W 1,∞(D̂). For the sake of sim-

plicity and clarity, we shall discuss the case of affine-parametric families of domain

mappings (5.1) in more detail, but we point out that considerably more general

parametrizations are possible with our approach, with precise requirements speci-

fied in Theorem 5.1 below.

Let us now assume

∃ τ < 1 :

∥

∥

∥

∥

∥

∥

∑

j≥1

|dTj |

∥

∥

∥

∥

∥

∥

L∞(D̂;R3)

≤ τ , (5.2)
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and sparsity:

∃ p ∈ (0, 1) : b ∈ ℓp(N) , where bj := ‖Tj‖W 1,∞(D̂) . (5.3)

For parametric transformations Ty, we denote the corresponding parametric

Maxwell solutions by Ey = ETy
for the two problems considered. For Ey, the shape

holomorphy of solutions will imply, via composition of holomorphic functions, para-

metric holomorphy. We next recall the definition from Ref. 16b. Throughout what

follows, the parameter set U will be equipped with the product topology.

Definition 5.1. For a positive sequence b = (bj)j≥1 ∈ ℓ1(N), a parametric mapping

U → X : y 7→ uy satisfies the (b, ǫ)-holomorphy assumption in the complex Banach

space X if and only if for some ǫ ∈ (0, 1) there exists a constant Cǫ <∞ such that

for any sequence ρ := (ρj)j≥1 of semi-axis sums ρj > 1 that is (b, ǫ)-admissible, i.e.

∞
∑

j=1

(ρj − 1)bj ≤ ǫ, (5.4)

the parametric map y 7→ uy ∈ X admits a continuous extension to complex param-

eters z 7→ uz that is a holomorphic mapping with respect to each variable zj in a

cylindrical set of the form Oρ :=
⊗

j≥1 Oρj
. Herein, Oρj

⊂ C is an open set contain-

ing Eρj , the Bernstein ellipse in C with foci ±1 and semiaxis sum ρj > 1, and the

modulus ‖uz‖X of this extension is bounded on the cylinder Eρ := Eρ1
×Eρ2

×... ⊂ CN

according to

sup
z∈Eρ

‖uz‖X ≤ Cǫ . (5.5)

The importance of the above definition lies in the fact that (b, ǫ)-holomorphic

maps with b = (bj)j∈N ∈ ℓp for some p ∈ (0, 1), are shown to allow sparse polynomial

approximations on U, with best n-term convergence rates 1/p − 1 and 1/p − 1/2

corresponding to the norms ‖ · ‖L∞(U), ‖ · ‖L2(U) respectively. Furthermore, these

convergence rates can be achieved, among others, by Smolyak type interpolation

algorithms16 (also see Cor. 5.1 ahead).

Assumptions (5.2) and (5.3) imply (b, ǫ)-holomorphy of the parametric family

U ∋ y 7→ Ty ∈W 1,∞(D̂).

Proposition 5.1. Under assumption (5.2) and (5.3), the affine-parametric trans-

formations (5.1) are continuous U ∋ y 7→ Ty ∈ W 1,∞(D̂), bijective and (b, ǫ)-

holomorphic, with T−1
y ∈W 1,∞(Ty(D̂)) for every y ∈ U.

Proof. The continuity of U ∋ y 7→ Ty ∈W 1,∞(D̂) follows from (5.3): the inclusion

ℓp(N) ⊂ ℓ1(N) implies uniform unconditional convergence of the series (5.1), in the

bIn fact, we use a slight adjustment of Def. 2.1 in Ref. 16: we state it here only for the case of X

being a complex Banach space; and, more importantly, we additionally assume the extensions to
be continuous. The latter is necessary, in order for certain results in Ref. 16 on the convergence
of collocation approximations to be valid.
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norm of W 1,∞, with respect to y ∈ U. It also implies uniform–with respect to

z ∈ Oρ–unconditional convergence of the series (5.1), with zj ∈ C in place of yj , in

the norm of S(D̂) ⊂W 1,∞(D̂;C3).

The smallness condition (5.2) implies moreover that, for every x,x′ ∈ D̂ with

conv(x,x′) ⊂ D̂ where conv(x,x′) denotes the line segment connecting x and x
′,

and for every y ∈ U, it holds

(1− τ)‖x− x
′‖2 ≤ ‖Ty(x)− Ty(x

′)‖2 ≤ (1 + τ)‖x− x
′‖2 . (5.6)

This implies bijectivity of Ty, and det(dTy)(x) ∈ [1 − τ, 1 + τ ] for x ∈ D̂ and for

every y, e.g., Lemma 7.5 in Ref. 41. Furthermore, as a consequence of (5.6), we

have T−1
y ∈W 1,∞(T (D̂), D̂), which concludes the proof.

To state the next Lemma, we introduce the set

Oǫ :=
⋃

{ρ :ρ is (b,ǫ)-admissible}
Oρ ⊆ CN, (5.7)

where CN is equipped with the product topology, and Oǫ ⊆ CN with the subspace

topology. Then, with X denoting a Banach space, there holds

Lemma 5.1. Let U ∋ y 7→ uy ∈ X be (b, ǫ)-holomorphic in the sense of Definition

5.1. Then U ∋ y 7→ uy ∈ X admits a unique extension onto Oǫ, with the property

that the map is continuous and holomorphic in each yj. Furthermore

lim sup
ǫ̃→0

sup
z∈Oǫ̃

inf
y∈U

‖uy − uz‖X = 0. (5.8)

Proof. We first show the existence of the extension. Let (z1, z2, . . . ) = z ∈
Oρ1

∩ Oρ2
, with ρj being (b, ǫ)-admissible, j ∈ {1, 2}. Denote the respective ex-

tensions onto Oρj
by fj , and set zk := (z1, . . . , zk, 0, 0, . . . ). Then, fj(zk) → fj(z)

for k → ∞ since the maps are continuous. Next, fj is separately and therefore

jointly holomorphic as a function of the first k arguments by Hartogs’ theorem

(cf. Thm. 2.2.8 in Ref. 26). Furthermore f1|[−1,1]k = f2|[−1,1]k , and thus f1, f2 coin-

cide with the unique analytic extension of u in its first k arguments and we obtain

f1(zk) = f2(zk) for all k ∈ N. Thus f1(z) = f2(z), and the extension to Oǫ is

well-defined.

Fix ε > 0. In order to show (5.8), we note that the continuity of the extension of

uz on Oǫ implies that for any neighbourhood NX of {uy : y ∈ U} ⊆ X, there exists

a neighbourhood NU ⊆ Oǫ of the compact set U such that {uz : z ∈ NU} ⊆ NX .

Setting NX := {v ∈ X : ∃y ∈ U s.t. ‖v − uy‖X ≤ δ} for δ > 0 arbitrary, it is

sufficient to prove that Oǫ̃ ⊆ NU for all ǫ̃ ≤ ǫ0, with ǫ0 ≤ ǫ small enough.

Assume at first that there exists j with bj = 0. Then, setting ρj := ∞, uy as

a function of yj admits per assumption a bounded holomorphic extension onto C.

Thus, uy is constant in and therefore independent of yj . Hence, we may assume,

without loss of generality, bj > 0 for all j ∈ N. SinceNU is a neighbourhood of U with

respect to the product topology, we can find open sets Nj ⊆ C containing [−1, 1]
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s.t. Nj = C for all j ≥ J0 and
⊗

j Nj ⊆ NU. Since bj > 0 for all j, and any z ∈ Oǫ̃

is contained in some Oρ with
∑

j(ρj −1)bj ≤ ǫ̃, we have ρj −1 ≤ ǫ̃/bj and therefore

(cf. Lemma 4.4 in Ref. 16) dist(zj , [−1, 1]) ≤ ρj − 1 ≤ ǫ̃/bj for all j = 1, . . . , J0.

Thus Oρ ⊆ ⊗

j Nj and consequently Oǫ̃ ⊆
⊗

j Nj ⊆ NU for ǫ̃ sufficiently small.

Next, we show that the property of the transformation family being (b, ǫ)-

holomorphic is inherited by the parametric solution maps for problems (PC) and

(DE). In Proposition 5.1, we have seen that Ty as in (5.1), satisfying (5.2) and (5.3)

is an example of a (b, ǫ)-holomorphic parametrization, however.

Theorem 5.1. Let y 7→ Ty be (b, ǫ)-holomorphic such that, with T := {Ty : y ∈
U}, Assumptions 3.1 for problem (PC) and 3.2 in the case of (DE) are satisfied for

some D̂. Then, there exist ǫ = ǫ(D̂,T) > 0 such that for problems (PC) and (DE),

the parametric domain-to-solution maps y 7→ Êy = ÊTy
are (b, ǫ)-holomorphic.

More precisely, for problem (PC) of a perfect conductor in Section 3.1 occupying

a bounded domain Dc
Ty

∩Br with respect to the Hilbert space X = HS(curl, D̂) and

for problem (DE) of scattering at a dielectric interface in Section 3.2 with respect

to the Hilbert space X = H(curl, BR) in (3.20).

Proof. Consider problem (PC) and note that compactness of Tpc = T already

follows from (b, ǫ)-holomorphy of y 7→ Ty, since it is then the image of the compact

set U under a continuous map. Under Assumption 3.1, we showed in Theorem 4.1

the existence of a holomorphic extension of the domain-to-solution map Spc : Tpc →
HS(curl, D̂) : T 7→ ÊT to the set Tpc

δ of admissible maps defined in (4.4), for some

δ > 0.

For ǫ > 0 sufficiently small, by Lemma 5.1 it holds that Tz ∈ T
pc
δ for z ∈ Oǫ

as defined in (5.7) and for the affine-parametric transformations (5.1). Thus, the

composition Oǫ ∋ z 7→ Êz := ÊTz
is well defined. It is also (b, ǫ)-holomorphic: Oǫ ∋

z 7→ Êz is continuous, as composition of continuous maps. Uniform boundedness

of Tpc
δ ∋ T 7→ ‖ÊT ‖X by Theorem 4.1, implies Cǫ := supz∈Oρ

‖Êz‖X <∞. Finally,

Oǫ ∋ z 7→ Êz is also separately holomorphic with respect to each zj ∈ Oρj
⊂ C, as

composition of holomorphic maps. The arguments for problem (DE) are along the

same lines.

Remark 5.1. For the variational formulation (3.6), we used a Calderón operator

to be able to work on bounded domains. As already mentioned in Remark 3.2,

problem (PC) on D := BR ∩ D̃c (i.e. with the scatterer D̃) can equivalently be

stated in the weighted space Hκ(curl, D̃
c) on the unbounded domain D̃c= D ∪Bc

R.

Let T : D̂ → D as in Assumption 3.1. Apart from problems (PC) and (̂PC) given

in (3.6), (3.11) respectively, we now additionally introduce problems (PC)κ and

(̂PC)κ, the former being the equivalent formulation of (PC) on D ∪ Bc
R, and the

latter its transformation to D̂ ∪ Bc
R. Here we use that, thanks to Assumption 3.1,

the transformation T : D̂ → D can naturally be extended from D̂ ∪Bc
R to D ∪Bc

R,

by defining it as the identity on Bc
R.
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The mapping of a solution of (PC) in HS(curl, D̂) to the corresponding solution

of (̂PC) in Hκ(curl, D̂ ∪ Bc
R) is bounded and linear (cp. Thm. 5.3.3 in Ref. 30).

As a corollary, Theorem 5.1 therefore also yields shape holomorphy for problem

(PC)κ, i.e. the existence of a holomorphic extension of the solution map to (̂PC)κ
formulated in the weighted space Hκ(curl, D̂ ∪Bc

R) over the unbounded domain

D̂ ∪Bc
R. An analogous statement is true for problem (DE).

As already indicated, the significance of our results lies in that they entail di-

mension independent convergence rates for polynomial approximations of the solu-

tion manifold, respectively for approximations of the expectation via quadrature.

In order to state these results, we introduce some notation: Let z = (zj)j∈N0 be a

sequence of distinct points in [−1, 1]. For ν = (νj)j∈N ∈ NN
0 set zν := (zνj

)j∈N ∈ U.

We call a set Λ ⊆ {ν ∈ NN
0 :

∑

j νj <∞} downward closed, if ν ∈ Λ entails µ ∈ Λ

whenever µj ≤ νj for all j ∈ N. The interpolation operator mapping E ∈ C0(U, X)

to the (unique) multivariate polynomial in span{∏j∈N
y
νj

j tν : ν ∈ Λ, tν ∈ X}
coinciding with E at zν for each ν ∈ Λ, is denoted by IΛ.

Corollary 5.1. Let the assumptions of Thm. 5.1 be satisfied and let X be either

as in Thm. 5.1 or as in Rmk. 5.1. Assume that there exists θ < ∞ such that the

Lebesgue constant of (z1, . . . , zn) is bounded by (1 + n)θ for all n ∈ N. Then there

exists C < ∞ and a sequence of nested downward closed sets (ΛN )N∈N such that,

for each N ∈ N, it holds |ΛN | ≤ N and

‖Êy − IΛN
Êy‖L∞(U,X) ≤ CN−r, r =

1

p
− 1. (5.9)

It is immediate that the interpolatory quadrature rules such as, for example,

Smolyak type quadratures, originating from the interpolation operators IΛN
can also

yield the convergence rate r = 1/p− 1 provided that the index sets ΛN are known

(see, e.g., Ref. 36), when approximating the expectation of Êy. An alternative option

are recently developed, higher-order quasi-Monte Carlo methods, which have been

proven21 to achieve the dimension-independent rate r = 1/p. For further details on

this result and the above corollary we refer to Refs. 16 and 21.

Finally, we remark that the above deterministic statements can be employed

in frameworks built upon random perturbations of the domain. In particular, the

continuous dependence of Êy on y ∈ U, yields:

Corollary 5.2. Let the assumption of Thm. 5.1 be satisfied. Let (Ω,A, P ) be a prob-

ability space and assume that (Xj)j∈N is a sequence of independent uniformly dis-

tributed random variables on Ω mapping to [−1, 1] equipped with the Borel σ-algebra.

For ω ∈ Ω denote by Ê
pc(ω) the solution to (̂PC) (resp. (̂PC)κ) corresponding to

the transformation Ty(ω) where y(ω) := (Xj(ω))j∈N. Then, for any q ∈ (0,∞] it

holds Ê
pc ∈ Lq(Ω, X), where X := HS(curl, D̂) (resp. X := Hκ(curl, D̂ ∪ Bc

R))

and the map is strongly measurable. An analogous statement is true for problem

(DE).
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Proof. We have already established that the map U → X : y 7→ Ê
pc
y is continuous

on the compact set U. Therefore ‖Êpc(ω)‖X is uniformly bounded on Ω. It remains

to verify strong measurability: again, by employing the compactness of U, it is clear

that the continuous map U → X : y 7→ Ê
pc
y may be approximated uniformly by

simple functions –with respect to the Borel σ-Algebra on U. By measurability of

Ω → U : ω 7→ (Xj(ω))j∈N, this implies the same for Ω → X : ω 7→ Ê
pc
y(ω) = Ê

pc(ω).

6. Concluding Remarks

In the present derivations, we assumed piecewise homogeneous material, i.e. con-

stitutive parameters are constant in each subdomain. This assumption allows to

infer well-posedness for the physical problem by means of a Fredholm alternative

and a unique continuation principle which is classical for homogeneous materials

(cf. Ref. 29). Well-posedness of the transformed problem in the nominal domain is

an immediate consequence in the case of sufficiently smooth transformations and

domains. The presented analysis remains valid also for inhomogeneous materials

in Lipschitz domains, defined as in (4.13) on the physical domains. The required

smoothness of the inhomogeneous constitutive parameters describing the heteroge-

neous materials is dictated by the available unique continuation results; we refer to
28,33 and references therein.

For several time-harmonic, EM scattering problems that admit a shape deriva-

tive, we proved, for affine-parametric shape parametrization with a parameter se-

quence y = (yj)j≥1, that the corresponding parametric solution families y → Êy

on the nominal domain D̂ admit a (b, ǫ)-holomorphic extension to complex pa-

rameter domains. The possibly infinite sequence b here belongs to ℓp(N) for some

0 < p < 1 which summability implies, in turn, sparsity of gpc expansions of the para-

metric solution families. Specifically, the p-summability of the shape uncertainty

parametrization implies dimension-independent polynomial chaos approximation

rates of the parametric scattered fields, and a dimension-independent convergence

rate r = 1/p − 1 of adaptive interpolation to compute parametric surrogate maps,

in case b ∈ ℓp, p ∈ (0, 1). Moreover, higher-order quasi Monte-Carlo quadratures for

iterated high-dimensional integrals arising in Bayesian shape inversion converge at

rate r = 1/p. We refer to Refs. 10, 9, 23, 20 and references there for further details

on Bayesian shape inversion for holomorphic, parametric forward maps.

The presently established shape holomorphy implies, in particular, the conver-

gence of so-called shape Taylor expansions which occur, for example, in shape Taylor

expansion approaches for domain uncertainty analysis, for domain deformations in

a neighborhood of the nominal domain. Such expansions are usually only justified

asymptotically, i.e. as the size of the domain perturbation tends to zero (see, e.g.,

Refs. 11, 17). The shape holomorphy results in Thms. 4.1, 4.2 and 5.1 ensure, how-

ever, the convergence of higher-order truncations of shape Taylor expansions at

perturbations of fixed size–but still sufficiently small–about the nominal domain.

The holomorphic dependence of the scattered fields in the weighted spaces intro-
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duced in (2.5) in Section 2.3 will then ensure the convergence of the corresponding

far-field patterns for the class of exterior EM scattering problems considered.
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