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Higher Order Quasi-Monte Carlo for Bayesian Shape Inversion*

R. N. Gantner’ and M. D. Peterst

Abstract. In this article, we consider a Bayesian approach towards data assimilation and uncertainty quan-
tification in diffusion problems on random domains. We provide a rigorous analysis of parametric
regularity of the posterior distribution given that the data exhibit only limited smoothness. More-
over, we present a dimension truncation analysis for the forward problem, which is formulated in
terms of the domain mapping method. Having these novel results at hand, we shall consider as a
practical example Electrical Impedance Tomography in the regime of constant conductivities. We
are interested in computing moments, in particular expectation and variance, of the contour of an
unknown inclusion, given perturbed surface measurements. By casting the forward problem into the
framework of elliptic diffusion problems on random domains, we can directly apply the presented
analysis. This straightforwardly yields parametric regularity results for the system response and
for the posterior measure, facilitating the application of higher order quadrature methods for the
approximation of moments of quantities of interest. As an example of such a quadrature method,
we consider here recently developed higher order quasi-Monte Carlo methods. To solve the forward
problem numerically, we employ a fast boundary integral solver. Numerical examples are provided
to illustrate the presented approach and validate the theoretical findings.

Key words. Quasi-Monte Carlo methods, uncertainty quantification, error estimates, high dimensional quadra-
ture, Electrical Impedance Tomography

AMS subject classifications. 65N21, 65N38, 65D30

1. Introduction. The present article considers the Bayesian approach, see e.g. [13, 15,
48], to assimilate measured data in the framework of elliptic diffusion equations on random
domains. The forward problem is solved by means of the domain mapping method as it has
been considered in [8, 33, 53]. In particular, we extend here the analysis presented in [33]
and consider the impact of dimension truncation on the system response. In view of the
computation of quantities of interest, the Bayesian approach boils down to the approximation
of high-dimensional integrals. In order to apply the higher order quasi-Monte Carlo methods
considered in [17, 27], we provide additionally a rigorous and general analysis of the posterior
measure, for a uniform prior and additive Gaussian noise, in the regime where the system
response provides only limited smoothness. This might occur in the present setting if the given
data, like loadings and boundary data, exhibit only limited regularity. The presented analysis
might be considered as an extension of previous works, see particularly [15, 33]. Having these
prerequisites at hand, we shall consider Electrical Impedance Tomography (EIT) as a practical
example. EIT is a non-invasive medical imaging procedure and has been extensively studied
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2 R. N. GANTNER AND M. D. PETERS

in the context of inverse problems, see e.g. [2, 3, 20, 21, 34]. Exploiting differences in the
electrical conductivity among different biological tissues, EIT reconstructs and images these
conductivities based on surface electrode measurements. In particular, we refer here to the case
of constant conductivities, where the goal is to determine the shape of an unknown inclusion,
see e.g. [7, 9, 30, 34, 39]. Especially in the absence of noise, it is possible to reconstruct the
inclusion from a single pair of current/voltage measurements, cf. [7]. This is in contrast to
the recent work [19], which also considers Bayesian inversion in the context of EIT. There,
the authors reconstruct a diffusion coefficient (representing varying conductivities) from noisy
measurements, instead of the shape of the domain.

Our goal will be to approximate the expected shape of an inclusion, given surface mea-
surements from the domain’s boundary. The Bayesian framework will allow also arbitrary
moments to be computed, allowing specification of a “confidence interval” for the inclusion’s
shape. A major advantage of the model problem under consideration is that it can be effi-
ciently solved by means of boundary integral equations as it has been done for example in
[20]. This allows for numerical studies concerning the convergence behaviour of the applied
higher order quasi-Monte Carlo quadrature.

The remainder of this article is structured as follows. In Section 2, we introduce the
Bayesian formulation in a rather abstract fashion and parametric regularity results for the
posterior measure are derived, given a general regularity estimate for the system response of
the forward problem. After this, in Section 3, we present the forward model under consider-
ation, i.e. diffusion problems on random domains, and provide an analysis for the impact of
dimension truncation. Section 4 deals with the EIT problem and recasts it into the framework
of a diffusion problem on a random domain. We comment also on the discretization by means
of boundary integral equations. Interlaced polynomial lattice rules are briefly discussed in the
subsequent Section 5, which are the higher-order quasi-Monte Carlo (HoQMC) methods we
will use in the computations. In Section 6, a numerical experiment is formulated to compare
HoQMC to conventional methods and the results are discussed.

2. Bayesian Inversion.

2.1. The Bayesian Framework. Let X denote some real and separable Banach space
and let A(y): X — X be a bounded linear operator for each given parameter sequence
ycU:=[-1/2,1/2]N . For f(y) € X*, we consider the parameteric operator equation

(1) A(y)a(y) = f(y).

We require that the system response q satisfies then a regularity estimate of the form
(2) 10y a(y)llx < Clu|lely¥  for all v € Fq,

where we denote by C, ¢ > 0 constants which are independent of the sequence v and v € P(N)
for p < 1, and we use the convention v* := Hk21 7.F. The set Fq is given by

faZ:{I/ENONil/Sa}, Whereae]:::{ueNg:Zl/k<oo},
E>1
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 3

i.e. Fq is the set of all finitely supported index sequences that are bounded by a € F.
Typically, such operator equations emerge from diffusion problems with random data, as
random diffusion coefficients or right hand sides, see e.g. [6, 11], or even random domains [33].

Since there exists an s € N such that v, = 0 for all k£ > s for all v € F,, we shall identify
index sequences with multi indices v = [vy,. .., v;s] € Nj without further notice.

Throughout what follows, we will assume the components of y to be stochastically inde-
pendent and identically uniformly distributed, i.e. we endow the set U with the structure of
a probability space with respect to the product measure

po(dy) = ] dus-

k>1

This measure will be referred to as the prior measure. We denote by
G:U—=X, y—qy)

the uncertainty-to-solution map, which maps a given instance y € U of the parameter sequence
to the corresponding solution ¢(y) € X.

In forward uncertainty quantification, the goal is to compute the expectation, with respect
to the prior measure g, of a quantity of interest (Qol) ¢: X — Z, where Z is a Banach space,
which is usually assumed to be a continuous linear functional of the parametric solution ¢(y).
The goal of Bayesian inverse uncertainty quantification as in [13] is to incorporate noisy
measurements of solutions to (14), after potentially incomplete observations. This is modeled
by first considering a bounded, linear observation operator O € L(X,Y") for a Banach space
Y, which models e.g. point evaluation of the system response ¢, or averaging over a certain
subdomain. In the following, we assume ¥ = RX with K < oo, i.e. we assume only finitely
many measurements of the system response. Then, we define the uncertainty-to-observation
mapping G by

(3) G=00G:U=Y, y—Gy) =0(qy)).

The measured data ¢ is modeled as resulting from an observation by O, perturbed with
additive Gaussian noise, § = (’)(q(y*)) + 7, where y* is the unknown, exact parameter, and
n ~ N(0,T'). Hereby, we assume I' to be a known symmetric, positive definite covariance
matrix I' € REXK,

The goal will then be to predict the expectation of the quantity of interest ¢, which
in general is an arbitrary continuous functional of the solution. In particular, it needs not
contain the observation operator, thus allowing prediction of “unobservable” phenomena,
given perturbed measurements of observable output. To that end, we define the Gaussian
potential, also referred to as the least-squares or data misfit functional, by &r: U x Y — R,

(0-G(y) T (6 —G(v)).

N =

) Br(y,0) i= 515~ G)]} =

Given the prior measure g, Bayes’ formula yields an expression for a posterior measure
ud on U, given the data 6.
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4 R. N. GANTNER AND M. D. PETERS

109 Theorem 1. Assume that the potential ®r: U XY — R is pg-measurable for § € Y. Then
110 the conditional distribution of y given 6, denoted by yl|d, exists and is denoted by pd. It is
111 absolutely continuous with respect to pg and its Radon-Nikodym derivative is given by

dud 1
112 P o(y) == — Pr(y. 5§
(5) d;u() (y) 7 eXp ( F(ya ))’
113 with Z := [;exp ( — @p(y,)) po(dy) > 0.
114 Proof. See e.g. [13]. [ |
115 The goal of computation is thus to approximate the posterior expectation EX’ [0(q)] =

116 Z'/Z, where Z is given in Theorem 1 and

17 (6) Z' = /U¢(q(y)) exp (— @r(y, 9)) po(dy).

118 The numerical approximation of E#’ [#(q)] will consist of three parts:

119 (i) truncation of the infinite-parametric problem (1) to s > 0 parameters y*) = [y, ..., 4|7 €]
120 UG :=1[-1/2,1/2°,

121 (ii) approximation of the solution ¢(*) (y(s)) to the dimensionally truncated problem by a

122 solution q}(f) (y(s)) obtained using a suitable discretization, and

123 (iii) approximation of the resulting s-dimensional integral over y*) € U,

124 For the latter, instead of resorting to Markov Chain Monte Carlo (MCMC) methods which
125 converge at a (low) rate of N~'/2 in the number of evaluations N of the forward model [38],
126 we will adopt a direct, deterministic approach similar to [10, 48] and considered in the form
127 used here for linear, affine-parametric problems in [15, 16]. To that end, we have to pro-
128 vide parametric regularity estimates for the posterior measure, which will be provided in the
129 following subsection.

130 2.2. Parametric regularity of the posterior. As stated above, it is well known that the
131 system response ¢ satisfies in relevant applications a parametric regularity estimate of the
132 form (2). Therefore, we will take this estimate as a starting point for our analysis.

133 In view of Lemma 20 from the Appendix, we obtain the following straightforward result.

134 Lemma 2. Assume that the solution q(y) to an operator equation of the form (1) satisfies
135 (2) with v € ¢P(N) for p < 1. Then the system response q satisfies the decay estimate

C ~
136 19y a(y)llx < ] VI3 for allv € Fy.

137 where Jy 1= v/ with a positive sequence X € £*(N) and cy = [ A1y < 1.

138 This means that, given a sufficiently fast decay of the sequence «, we can always replace the
130 factor |v|! by v! due to modifying v by an /!-sequence, e.g. {k‘l_a/E}k for arbitrary € > 0
140 and a normalization constant ¢ > 0.

141 Now, let O € £L(X;RX) and let G(y) be defined as in (3). We want to analyze the behavior
142 of the density

143 exp ( — Or(y, 5)),

This manuscript is for review purposes only.
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where the functional ®p(y, d) is given by (4). Since O is linear and bounded, we have
(M) 050(a®)[lax = 100 a®)[laxe < 1Ol crzmClofiely” for all v € Fa.

For the sake of simplicity let I be the identity matrix. Then, we start by considering

/ 1
0y exp < - XTX>.
2
In the univariate case, we know that

8 exp ( - ;mz) = (=1)" exp ( — ;:1;2> H, (z),

where H, is the probabilists’ Hermite polynomial of degree /. By a tensor product argument,
we obtain

/ 1 / 1
0y exp < — 2XTX) = (—1)"Texp ( — 2XTX) H, (x).
Herein, the tensor product Hermite polynomial is given by
HV/(X) = Hl’i (.%‘1) s Hl,}((xK)

Since the Hermite polynomials satisfy
2
|Hy/(x)| < cpgexp <4> V'l with cg = 1.0865,

cp. [1, (22.5.18), (22.14.17)], we have the following bound on the derivatives of the multivariate
squared exponential function:

/ 1
0% exp < — 2XTX>’ < iV

Now, consider the affine transform x — I'"1/2(§ — x), then we achieve the bound

o exp (= 46— X6 -0 )| < VAT, T

In particular, this implies that
U(x):=exp(—1/2(6 —x)TT7H(5 — x))

is an entire function on R since it is the composition of an affine mapping with the entire
squared exponential function. We make use of the following result from [12].

Theorem 3. Let f(x): RX — R be an entire function and g\ € CO‘(U) fori=1,... K.
Then, the derivatives of h(y) := f(g(l) (y),... ,g(K)(y)): U — R are given according to

(8) 'Z O fy,"x 0 Z HH y g y for allv € Fq.

1<|v/| s(pp')i=17=1

This manuscript is for review purposes only.
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6 R. N. GANTNER AND M. D. PETERS

Herein, the set s(v,V') is defined as

K vi
s(v, V) = {(ug ),...,u(%),...,ugK),...,u(éjv :p,g-z) € F and ZZN;) —I/}.

i=1 j=1
Proof. See [12] for a proof of this statement. [ ]
Combining this estimate with the bound (7), gives the main result of this section.

Theorem 4. Given that vy € (P(N) for p < 1/2, the derivatives of exp ( — Op(y, 5)) can be
bounded according to

‘8; exp (— @p(y,d))| < C(T, A, OYKwN(2e)VIFY  for all v € Fy,

where 3 = /A, with a positive sequence A € £1(N), cy 1= [Allery < 1, and C(T', A, 0) >0
15 a constant.

Proof. From Lemma 2 and estimate (7), we derive that
104G () ||prc < CNOWIIF” for all v € Fy,

where C(X, O) := C||O|| gx;rx)/(1 = cx).
Now, the application of Theorem 3 gives us, cp. (8),

o exp (— dr(y,8) =11 Y E Lo w”\xo ZHHa g

1<v/| s(v ') i=1j=1 J
We estimate
oY (x)| “J (y)
‘6Zexp( O (y )‘ <! Z | I = Ol Z HH (2), }
1<|v| s(vw')i=1j=1

K v 01elrs” 04"
cH||r||2 Clw, O)p 1
vy Z I111 1
1<|v/| s(v,w')i=1j=1 l’l’] :

’
[

1 vy C§||F||2_T 4
<wvlc"ly Z ——=—C(v,0) Z 1.

]
1<|/| Ve s(vp')

Thus, it remains to estimate the cardinality of the set s(v,v’). The number of weak integer
compositions for vy of length || is given according to, see e.g. [35],

uk+\u’]—1>

|{(,u1,...,,u|,//‘) : u; € Ng and u1+...+u|,,/| :I/k}’ = ( ‘I//| 1

By multiplying the number of possible compositions in each component, we can determine
the cardinality of the set s(v,v’) by

s /
N v+ V] -1
’8(V7V)’_H< ’I/"—l .

k=1

This manuscript is for review purposes only.
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 7

We may bound this cardinality due to the estimate obtained by Lemma 22, i.e.
ﬁ v+ =1\ _ el (el =1 e
P V| —1 - vl V| —1 - vl

Therefore, we arrive at

’
L]

. cillTlly > v
0% exp (— Pr(y,d))| < w|!(2¢)13% E HEZ(20(X,0))
’ < VY

Obviously, the series
-3

Z CH”PHQ 20()\ O))";

l/ =0

is absolutely convergent with respect to each particular direction v;. We denote its limit by
C(T, X\, O). Hence, by taking the product of this limit with respect to the K components of
V', we arrive at the assertion. |

The following corollary establishes a regularity result similar to Theorem 4 for the entire
integrand in (6), i.e.

¢(q(y)) exp (— r(y,d)),

under the condition that gb(q(y)) € Z satisfies a regularity estimate similar to (2). Such an
estimate holds for example if ¢: X — R is a continuous linear functional.

Corollary 5. Let the quantity of interest gb(q(y)) € Z satisfy a reqularity estimate similar
to (2), i.e.

(9) 0¥ o (a(w))| 5 < Clvld¥lyY  for all v € Fq
with some constants C’,E > 0. Then, there holds
|05 [#(a(y)) exp ( — Pr(y,d))]] 5 < C(v| +1)1e¥3”  for allv e Fy

with some constants C’, ¢>0.

Proof. The application of the Leibniz rule for differentiation gives

0% [6(a(y) exp (— @r(y.0)] = > (:,)%'qﬁ(q(y))az—u’ exp (— @r(y,d))

v'<v

for all v € F,. Therefore, we infer by the triangle inequality

1025 law) exo (= ot 9D < 3 ()19 0o 2105~ exv (= Betan )]

v'<v

This manuscript is for review purposes only.
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8 R. N. GANTNER AND M. D. PETERS

Now, the application of Theorem 4 and (9) results in

1[0y [#(a(y)) exp (— Pr(y.9))]|| ;

Ale g v—v'|zv—v
<y (V,>C]V’]!c|” v O, A 0K v —V|1(20) 15

v'<v

< max {C,C(T', X, 0)% } (max{é, 2¢})15* > (:,) W\ — ),

v'<v

where we exploited that v < 4% for all £ € N. Therefore, in regard of

174
S (L)Wt == ]+ 1

v'<v

see e.g. [33], we arrive at the assertion. [ ]

Remark 6. The appearing factors of the form ¢! in (2), (2¢)*! in Theorem 4 and é*! in
Corollary 5 can always be removed by rescaling the sequences « or 4 accordingly. Exemplarily,
we obtain by exploiting || + 1 < 2| and setting 7,, := 2¢3, that

|[0%[6(a(y)) exp (— r(y,9))]|| 5 < Clw|!F” for all v € Fa.

Therefore, we may assume that all constants appearing in Theorem 4 and Corollary 5 are
independent of the support size of v € Fq.

3. Forward model.

3.1. The domain mapping method. In this section, we formulate the diffusion problem
on random domains as is has been addressed in [33]. To that end, let (92,.4,P) denote a
complete and separable probability space with o-algebra A and probability measure P. Here,
complete means that A contains all P-null sets. For a given Banach space X, we introduce
the Bochner space Li(; X), 1 < p < oo, which consists of all equivalence classes of strongly
measurable functions v: Q@ - X whose norm

([ 1ot-w1% dP(w))l/p, p< oo

esssup||v(-,w)]l.x, p=oo
wef

||UHLH’;(Q;X) =

is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space LE(€); X) is
isomorphic to the tensor product space LIQP(Q) ® X. For more details on Bochner spaces, we
refer the reader to [36].

Now, given a random domain D(w) C R? for d = 2,3, we assume the existence of a
reference domain Dy C R? and of a uniform C'-diffeomorphism V: Dy x © — R?, i.e.

(10) IV@)ller@gmay IV @)llor gy < Cuni - for P-ace. w € €,

This manuscript is for review purposes only.
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such that D(w) is implicitly given by the relation
D(w) = V(Dg,w).

Particularly, since V € L“(Q;Cl(ﬁo)) c L? (Q;Cl(ﬁo)), the vector field V exhibits a
Karhunen-Loeve expansion of the form

(11) V(x,w) = E[V](x) + Y Vi(x)Yi(w).
k=1

The anisotropy which is induced by the spatial parts {V }x, describing the fluctuations around
the nominal value E[V](x), is encoded by

(12) Vi = “VkHWLoo(DO;Rd)~
For our modeling, we shall also make the following common assumptions.

Assumption 7.

(i) The random variables {Yy} take values in [—1/2,1/2].

(i) The random variables {Yy}i are independent and identically distributed.
(iii) The sequence {Vi i is at least in (1(N).

By an appropriate reparametrization, we can achieve that E[V](x) = x. Moreover, if we

identify the random variables by their image y € U = [-1/2,1/2]", we end up with the
representation

o
(13) V(x,y) =x+ > Vi(x)y.

k=1

The Jacobian of V with respect to the spatial variable x is thus given by

J(Xv y) =I+ Z V;q(x)yk
k=1

Introducing the parametric domains D(y) := V(Dy,y), the forward problem which we con-
sider here becomes:
Find ¢ € H'(D(y)) such that

—Aq(y) =0 in D(y),
q(y) =g on dD(y).

To guarantee the solvability of the model problem for every realization of the parameter y € U,
it is reasonable to postulate that the Dirichlet data g are defined on the entire hold-all domain
D := UycyD(y). Moreover, to derive regularity results that are independent of the parameter
dimension, it is necessary that ¢ is an analytic function, see [33]. Nevertheless, in view of (2),
we shall weaken this estimate and only require that there holds

(14)

(15) HBZ(Ag o V)(y)HLoo(DO) < C’|u|!c|"|'y” for all v € Fq

This manuscript is for review purposes only.
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10 R. N. GANTNER AND M. D. PETERS

for some constants C,¢ > 0. Thus, it would be sufficient to postulate Ag € Cll (D(y)) for
all y € U. Hence, we can reformulate the problem by making the ansatz
a(y) = q(y) +g.

This results in:
Find g9 € H}(D(y)) such that

—Aqo(y) = Ag in D(y),
q(y) =0  on dD(y).

From this, we can easily derive the variational formulation:
Find ¢y € H} (D(y)) such that there holds for all v € Hg(D(y)) that

/ Vaqo(y)Vodx = / (Ag)v dx.
D(y) D(y)

Now, defining
(16) A(x,y) := [JTJ]_l(x, y)detJ(x,y) and f(x,y) = (Ag) (V(x,y)) det I(x, y),

we arrive at the variational formulation on the reference domain Dg, which reads:
Find go € HE (Do) such that there holds for all v € H}(Dy) that

A(y)Vio(y)Vodx = | f(y)vdx,
Dy Dg

We note that ¢o(y) = go o V! (y) and for all y € U, we derive
(17) Hagl;@O(y)HHé(Do) < Cly|lely¥ for all v € Fa,

for a sequence v € (P(N) for some p < 1, given here by (12), and some constants C, ¢ > 0,
see [33] for the details. A regularity estimate similar to (17) particularly accounts for the
system response ¢ of the forward problem (14) transported to Dy, which is a straightforward
consequence of the smoothness requirements (15) in the Dirichlet data and the application of
the Faa di Bruno’s formula.

3.2. Dimension truncation. In this subsection, we shall supplement the analysis pre-
sented in [33] by discussing the error of dimension truncation. As a starting point, we con-
sider the general representation (13) of the vector field. We refer to s as the truncation
dimension or parametric dimension of the problem. By considering now sequences of the
form y = {y1,...,9s,0,...}, the following lemma is immediate.

Lemma 8. Let the Jacobian of the truncated expansion of the vector field V be defined as

J(S)(X7y) =1 + ZV%(X)yk and set 5,%,9) = Z V-
k=1 k=s+1

Then, there holds

1 < HJ(S) < Chni

CYuni -
with the same constant as in (10), where the bounds hold uniformly in s.

(y) HLOO(DO;RdXd)

This manuscript is for review purposes only.
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 11

Now, we consider the impact of truncation on det J(y) and [JTJ](y) separately.

Lemma 9. The determinant of the truncated Jacobian satisfies the estimate

| det J(y) — det J©) (y)| < dCd- el

uni

Proof. For the determinant function and two matrices M, M’ € R%“ with bounded
columns ||M;|l2, [Mi]l2 < cfori=1,...,d and ¢ > 0, we know

| det M — det M| < de?~1||M — M/||5.
Obviously, we can bound each column of J and J () by Cuni- Therefore, we arrive at

| det I(y) — det 7O ()| < dCY I (y) — I ()], < dCLeS. ¥

uni uni

Lemma 10. For the truncation of the matrix [JTJ]fl(y), there holds the estimate

-1 s s 2 S 2
11373) 7 () = [ IO W)l sy < ey +O()”

uni

Proof. A straightforward calculation yields

[3731) = (@) IO @) | ooy < 2Cumisy” + O(ER7)

Moreover, for two Matrices M, M/ € R%*? 4 first order Taylor expansion yields
M= M) - (M) M - M)(M) "+ O(M - M)?).

The latter can easily be verified using the first and second order Gateaux derivatives of the
Function f(M) = M~ at the point M’ with respect to the direction D = M — M.
Therefore, we conclude

11373] " () = [(3¢) T3]

y)HLOO(DO;RdX'i)

= 20111115‘/)" [T y)HiOO(DO;RdXd) + 0(5(78))2

< 222n1 (s) +O( (s ))2
where we applied the bound
1 1
1[373] y)HLOO(DO;]RdXd) o2 -

uni

Having these lemmata at hand, we can bound the truncation error in the diffusion matrix
and in the right hand side.
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Theorem 11. The truncation errors in the diffusion matriz and in the right hand side
satisfy the error estimates

and

HA(y) _A(S HLOO Do) (2—|—d)C’d 3 (5) +O( ())

uni

1) = FOD gy < (@ + Cunt) [Ag 1. Citel.

In these estimates, the quantities A®) (y) and f() (y) are simply obtained by replacing J in

(16) by I,

)

Proof. By the application of the triangle inequality, we can now simply bound the trun-
cation error for the diffusion matrix according to

HA(y) - A(S) (y) HLoo(DO.Rdxd)

<[Jaw) b waeaw]l,

) @ e s @) - AW

2 S S
< CTdCffml e+ o 53)03111 +0(5)’

uni uni

uni

where we applied the bounds

H[JTJ]_I y)HL‘”(Do;RdXd) C’T and | det I (y)| < Ciy.

uni

In complete analogy, we can bound the truncation error in the right hand side according

to

Hf( - A(s) HLOO(DO)
<Hf — (Ago V)(y)det I®(y

+[[(Ag o V) (y) det I (y) — f(y

HLOO Do)

HLOO Do)
< | &gl oo (0ydCEL1ES) + (| Agllroo el CLy

uni uni

< (d—l—Cuni)HAgHWlooC’d 1els)

uni

From Lemma 8, we infer that the diffusion matrix A(s)(y) is always elliptic, i.e. there

holds

Thus, let ¢

(
0

zTA®) (X,Y)Z > amin >0 forall z € R? uniformly in s.

<) e HE (Do) be the unique solution of the variational formulation

A® () Vi) Vo dx = / FO ()0 dx.

Dy Dy

Having the impact of truncating the Jacobian on the diffusion coefficient and the right hand
side at hand, we may now bound the respective error of the solution in analogy to Strang’s

lemma.
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Theorem 12. There holds for a constant C' > 0, which depends on the domain Dgy, the
spatial dimension d as well as ||Ag|lywi.0c and Cuni, the error estimate

X ~(s) C
W%_%)@W%wmga

min

(1+ ”@0(9)“H3(D0))5$) + O(gfys))%

Proof. Making use of the ellipticity of the bilinear form induced by A(®)(y), we have

aminH ((_?0 - qAéS)) (y) ||§{3 (Do)

</ AL (Y)Y (do — a5) )V (o — 45 (w) dx

= | AD@Yaw)V (@ - i) dx— | 7w (- a5”) ) ax

- /D (A — A) (1) Vo (y) V(4o — i) () dx
_ /D (F9 — F)w) (do — &) () dx

< Ay) - A® (y)HLOO(DO;RdXd)H (40 — d(()S))(y)HH&(DO)”QO(y)HHé(Do)

+ Hf(y) - f(s)(y)HHfl(Do)H (qu - (j(()S))(y)HHé(DO)'

Now, we exploit

17) = PO 100y < VDO ) = FOD | -

where cp > 0 is the Poincare constant for Dy and | Dyl is the Lebesgue measure of Dy. Then,
simplifying this expression and inserting the bounds from Theorem 11 results in

A Al S 1 - S A S
(@0 = @) )l 3 0y < —— @+ DCEE a0 @)Ly oy + O ()’

min

ep\/IDol(d + Cuni) | Ag iy C 8.

a
+ uni

Omin
Remark 13. Taking the previous theorem as a starting point, it is easy to derive

[(6(do) — 6(@$)) ()] < CY)

for some constant C' > 0, given that the quantity of interest ¢: H&(Do) — Z is at least
Lipschitz continuous.

The preceeding analysis establishes an estimate of the dimension truncation error for the
system response, pointwise in y, depending on the remainder 5,(\,5 ). Next, we reformulate this

in terms of the p-summability of the sequence ~.
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14 R. N. GANTNER AND M. D. PETERS

Lemma 14. Let 5_(5) be defined as in Lemma 8. Assume that the sequence v is nonincreas-
ing, y1 > 7v2..., and assume additionally that there exists p € (0,1) such that v € (P(N).
Then,

(18) e < C(p,y)s Pt

with C(p,) = min ((1/p — 1)1 1) [¥ler-
Proof. See e.g. [17, Thm. 2.6]. [ ]

The bound in Remark 13 applies to the pointwise dimension truncation error, i.e. for a
fixed y € U. However, we aim to approximate expectations over y; in this case, in which
the variables y; are integrated out, higher dimension truncation convergence rates can be
obtained. The following statement is required for the analysis of the total error in Section 5.2
and concerns the dimension truncation error of the integral, with respect to the parameter
sequence y, of a functional of the system response, as this is what is computed both in forward
and Bayesian inverse UQ.

Lemma 15. Let ¢: H&(Do) — Z denote a quantity of interest functional that is at least
Lipschitz continuous. Then, there exists a C > 0 depending on p and v such that

S 61870/}7*H|.7
zZ

(19 |

/U (6(a(®)) — 6(¢®) (®))) p(dy)

where § = 1 in general for p being either the prior or posterior measure. In the case that q(y)
is the solution to an affine-parametric operator equation and the measure u is centered with
bounded moments we have 0 = 2.

Proof. Exploiting the Lipschitz dependence of the solution ¢(y) on the parametrization
from (13), we can proceed as in [18, Thm. 2.1] and [42]. The case of a posterior distribution
is considered in [16] and the affine-parametric case is considered in detail in [24]. [ ]

Remark 16. Note that the coefficient obtained by the domain mapping method involves a
nonlinear function of the boundary parametrization, implying § = 1 in Lemma 15. However,
it was observed in [23] that § = 2 seems to hold in various non-affine cases, in particular for
Bayesian inversion and for a similar example in domain uncertainty.

4. Electrical Impedance Tomography. Now, let D C R? denote a simply-connected and
convex domain with Lipschitz continuous boundary ¥ := 0D. Inside the domain, we suppose
that there exists a simply connected subdomain S € D with boundary I' := 05. The boundary
I" shall be of co-dimension 1 and, thus, separate the interior domain S and the outer domain
D. The resulting, annular domain D \ S shall be referred to as D.

A sketch of the situation can be found in Figure 1. The inner domain .S models a material
of constant conductivity that is significantly different from the (also constant) conductivity of
the material in the annular domain D. We are interested in the identification of the inclusion
S. To that end, for a given voltage distribution gp € H/ 2(¥), we measure the corresponding
current distribution gy € H~/2(X). This means that we are looking for a domain D which
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119

420

432

133
434
135
436
137
438
439

HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 15

Figure 1: The domain D with inner and outer boundaries I" and X, respectively, and the
inclusion S.

satisfies the overdetermined boundary value problem

Ag=0 in D,
20) Yobkg=0 onT,
Whg=gp on ¥,

int

71,29 = gNn On 2.

Herein, the operators 7(1)’:113 and 7&‘% denote the interior trace operators at I' and 3, re-

spectively, whereas 'yilntz is the co-normal derivative at . Instead of successively solving this
problem by an 0ptimiz7ati0n procedure, as it has been done in e.g. [20], we will approach it here
by means of Bayesian inversion. In this context, we assume that the measured Neumann data
at X are subject to uncertainty and assume a prior distribution on the parameters describing
the boundary. In order to quantify the resulting uncertainty inherent in this problem, we
reformulate the associated forward problem in terms of an elliptic diffusion problem which is
stated on a random domain.

Due to our lack of knowledge on the shape of the inclusion, we consider the interior
domain to be random. This uncertainty is incorporated by assuming the interior boundary to
be P-a.s. star-shaped and modeling it according to

(21) Nw)={x=0o(tw) e R?:o(t,w) = u(t,w)e(t), t € I},

where o(t,w) is a random field. Furthermore, let e(t) := [cos(t),sin(¢)]T denote the radial
direction and I := [0,27] be the interval for the angle ¢. We note that with the techniques
presented in the previous section it is possible to treat more general inclusions. Nevertheless,
our particular choice facilitates a sensible definition of an expected shape. Additionally, the
variance (or higher moments) of the parameters can be computed, yielding via (21) a confi-
dence region for the inclusion. In accordance with [31], we define the boundary’s mean and
variance as

ElM(w)] = {x € R? : x = E[u(t,w)]e(t), t € I}
V[(w)] = {x € R* : x = V[u(t,w)]e(t), t € I}.

This manuscript is for review purposes only.
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16 R. N. GANTNER AND M. D. PETERS

To that end, the radial function u(t,w) > ¢ > 0 has to be in the Bochner space L?(Q; C2., (1)),
where Cger(f ) denotes the Banach space of periodic, twice continuously differentiable func-
tions, i.e.

C2..(I):={feC*(I): fD0) = fD(2n), i =0,1,2},

per

equipped with the norm
2
1fllez,. ) = 2%‘?2}( | fD(2)].
1=
If u(t,w) is described by its expectation

E[u](t) = /Q u(t,w) dP(w)
and its covariance
Covlu](t,t) = Elu(t,w)u(t,w)] = /Qu(t,w)u(t’,w) dP(w),

then we can represent it by its Karhunen-Loéve expansion, cf. [43],
o
u(t,w) =Eul(t) + > ug(t)Yi(w).
k=1

Herein, the functions {uy(¢)}r are scaled versions of the eigenfunctions of the Hilbert-Schmidt
operator associated to Cov|[u](¢,t). Common approaches to numerically recover the Karhunen-
Loeve expansion from these quantities are e.g. given in [32, 50]. We would like to emphasize
that the chosen representation of the random vector field (13) in terms of polar coordinates is
only one possibility, given a star shaped inclusion. Alternative and more flexible approaches
would describe the spatial functions Vi by e.g. B-splines [37, 46] or other systems with finite
support [25, 26]. See particularly [19], wherein star-shaped inclusions are considered, along
with two additional approaches: an unknown coefficient function and a so-called level-set
prior.

By construction, the random variables {Y;(w)}x in the Karhunen-Loéve expansion are
uncorrelated. For our modeling, we shall also impose the conditions of Assumption 7, where
we modify the third condition as follows:

(iii)” The sequence {4 }x = {Huk”wl,oo(()’Qﬂ-)}k is at least in £*(N).

The domain D(w) shall now be identified by its boundaries I'(w) and ¥. Then, we face
the following forward problem:

Find ¢ € H'(D(w)) such that

—Aq(w)=0 in D(w),

(22) @) =g ondDW)

where g|r(,) = 0 and g|s = gp.
The parametric regularity may now be obtained as in the previous section. To that end,
we cast the forward model into the framework of the domain mapping method as it has been
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HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 17

done in [33] and employ the regularity results presented there. The boundary I'(w) in (21) is
already parametrized with respect to the reference boundary I'y := E[I']. Hence, it is sensible
to introduce the reference domain Dy C R? that is enclosed by the boundaries I'y and X.

Thus, by a suitable extension, we can achieve that I'(w) is given by the application of a
vector field V: Dy x Q — R?, ie. I'(w) = V(I'g,w). If Ty is of class C2, a possibility to define
V is given as follows:

cos(arg Px)

(23) V(x,w) :=x+ Zuk(arg Px) [sin(arg Px)

} B(|x — Px|}2)Vi(w).
k=1

where Px is the orthogonal projection of x onto I'g and B: [0,00) — [0, 1] is a smooth blending
function with B(0) = 1 and B(t) = 0 for all ¢ > essinf,,cq dist (I'(w),¥). Notice that if I'y
is of class C2, the orthogonal projection P onto I'g and thus V(x,w) is at least of class C?,
cf. [40]. By this choice of B, we particularly guarantee that V(X,w) = X. Finally, after a
possible scaling of the perturbation’s amplitude, we can always guarantee that this choice of
V satisfies the uniformity condition (10), cp. [51]. Now, assuming that

= e S 2] 81

is still in ¢*(N), we can carry over the regularity results from the previous section to our
forward model (22) one-to-one.

‘Wl,oo(Do,n@)

Remark 17. Since we aim at reconstructing the inclusion S from measurements of the
Neumann data at the fixed boundary ¥ and since we impose that V(X,w) = %, the Cauchy
data, i.e. Dirichlet data and Neumann data, are independent of the particular choice of the
blending function.

4.1. Discretization. Our approach to determine for the given pair [fyé?%q,fyé‘}li(y)q] =

[9D, 0] the respective solution ¢(x,y) to (14) relies on the reformulation of the boundary
value problem as a boundary integral equation by means of Green’s fundamental solution

1
k(x,x") = ~5- log ||x — x/[|2-

Namely, the solution ¢(x,y) of (20) is given in each point x € D(y) by Green’s representation
formula

int

Ok (x,x’
g% q(x', y) dsy.

(24) o, y) = / k(X ), ) —
I(y)Us Ony

Using the jump properties of the layer potentials, we arrive at the direct boundary integral
formulation which reads

Ok(x,x")

al’lxl

int

1 in in
(25) 3% tq(x,y)z/ k(x,x") ™" q(x', y) dsx’_/ 10 q(x', y) dsxr,
T'(y)uz T'(y)uz
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18 R. N. GANTNER AND M. D. PETERS

where x € T'(y) U X, see e.g. [47]. If we label the boundaries by A, B € {I'(y), X}, then (25)
includes the single layer operator

1
(26) V:C(A) — C(B), (VABp)(x) = —%/Along—x’HQp(X') dsy,
and the double layer operator

1 (x — X/, ny)
2 :C(A B =— [ = (%) dsys
(1) K10 > CB), (Kann) ) = 5 [ S0l o) dse

with the densities p € C(A) being the Cauchy data of ¢ on A. The equation (25) in combi-
nation with (26) and (27) indicates the Dirichlet-to-Neumann map, which for problem (14)
induces the following system of integral equations

(28) Vss Vsr(y) :| [ 12> :| _ |:1/21d+/C22 /Cgp(y) ] |:gD:|
Vrw)s Vrwrw)) LPra) Krs  1/21d+Krre] [0 ]

where Id denotes the identity operator. The boundary integral operator on the left hand side
of this coupled system of boundary integral equations is uniformly elliptic and continuous
provided that diam (D(y)) = diam(X) < 1. This guarantees the unique solvability by the
Lax-Milgram lemma, see e.g. [52].

For the approximation of the unknown Cauchy data, we use the collocation method based
on trigonometric polynomials. Applying the trapezoidal rule for the numerical quadrature
and the regularization technique along the lines of [41] to deal with the singular integrals,
we arrive at an exponentially convergent Nystrom method provided that the data and the
boundaries and thus the solution are analytic. More precisely, we have the following result.

Proposition 18. Let p € C¥(0D(y)) be the solution to (28). Then, there holds

lp = palle@p@) < Cn~*lplles@pi):

where p, is obtained from the Nystrom method with n = 2j points for some j € N.
Proof. For a proof of this statement, see [41]. [ ]

Thus, if the density p is even analytic, we arrive at the error estimate

1P = pnllLe@Dy)) < Cexp(—cn),
for some constants C, ¢ > 0.

5. Higher-Order Quasi-Monte Carlo. In light of the recent development of higher-order
quasi-Monte Carlo (QMC) methods, in particular so-called interlaced polynomial lattice (IPL)
rules [14, 17, 29], and their application to problems in uncertainty quantification [15, 18, 27],
we consider here the approximation of prior and posterior expectations by such deterministic
QMC rules. IPL rules are adapted to the integrand function in a preprocessing step using the
Component-by-Component (CBC) algorithm [44, 45], which requires as an input some bounds
on the parametric derivatives of the integrand. By the analysis of the previous section, we
have such bounds at our disposal.
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We consider approximations of Z, Z’ given in Theorem 1 and (6), respectively, where we
assume a uniform prior distribution p(dy) = [[;_; dyx on the truncated parameter sequence,
which we denote here by y,.,. Given a collection Py = {yq,...,yn_1} C [0, 1]* of QMC points
in s dimensions, the QMC approximation Qu s of the prior mean of a function g: U — R is
given by

N-1
(29) E[g] = /Ug(y)u(dy) ~ Qnslg] = % > g<yn — ;)
n=0

With the choices g(y) = exp ( — <I>(y,5)) and g(y) = (;S(q(y)) exp ( — O(y, 6)), we obtain the
integrals Z and Z’, which we approximate with (29). The posterior mean is then simply given
as the ratio EX’ [poq) =Z'/Z, see Theorem 1.

5.1. Interlaced Polynomial Lattice Rules. To give the points y,, n = 0,...,N — 1,
we require some definitions and notation. A polynomial lattice rule (without interlacing) is
a rule with N = b points for some prime b and a positive integer m, and is given by a
generating vector q whose components ¢;(x) are polynomials over the finite field Z; of degree
less than m. Let Z[x] denote the set of polynomials over Z;. We associate with each integer
n=0,...,b™—1 a polynomial n(x) = ZZ@:_OI &xz®, where &, are the digits of n in base b, that
isn=¢& + &b+ &2+ ...+ &, 1™ L. To obtain points in [0,1] from the generating vector
q, we require the mapping vy, : Zy(z =) — [0,1) given for integer w by

m

Um, (Z Ekl‘_k> = Z &b r.
k=w

k=max(1,w)

For an irreducible polynomial P € Zj|x| of degree m, the j-th component of the n-th point of
the point set Py is given by

0 = o (P8

To obtain orders of convergence higher than one, we consider an additional interlacing step.
To this end, we denote the digit interlacing function of « € N points as D,: [0,1)* — [0, 1),

Do(x1,...,24) = i za: ijab_j_(a_l)o‘,
a=1 j=1

where ;, is the a-th digit in the expansion of the j-th point z; € [0,1) in base b1, T =
£j71b_1 +§j72b_2 +.... For vectors in as dimensions, digit interlacing is defined block-wise and
denoted by Dy : [0,1)* — [0,1)® with

D1y . xas) = (Da(xl, o3 Za); Da(Tatts -5 2a), -+ DalT(s—1yat1, - - - ajsa)).

For a generating vector q € (Zy[z])** containing o components for each of the s dimensions,
the interlaced polynomial lattice point set is D, (Pn) C [0,1)°, where Py C [0,1)*® denotes
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20 R. N. GANTNER AND M. D. PETERS

the (classical) polynomial lattice point set in as dimensions with generating vector q. For
more details on this method, see e.g. [14, 17, 29]. The following theorem states the higher order
rates that are obtainable under suitable sparsity assumptions of the form stated in Section 2.

Proposition 19 (Thm. 3.1 from [17]). For m > 1 and a prime b, let N = b™ denote the
number of QMC points. Let s > 1 and B = (B;)j>1 be a sequence of positive numbers, and let
Bs = (Bj)i<j<s denote the first s terms. Assume that 3 € ¢P(N) for some p < 1.

If there exists a ¢ > 0 such that a function F satisfies for a:= |1/p| + 1 that

(30) (05 F)(y)| < clv|!BY forallv e {0,1,...,a}% s €N,

then an interlaced polynomial lattice rule of order o with N points can be constructed in
O(asNlog N + a2 s2N) operations, such that for the quadrature error holds

(31) IL(F) — Ono(F)| < Cagsp N7,
where the constant Cq gp,p < 00 is independent of s and N.

Note that by the previous proposition, the CBC algorithm used to obtain generating
vectors for IPL rules scales quadratically in the number of dimensions s, and is thus not
subject to the curse of dimensionality. The main ingredient in this method that allows higher-
order convergence rates is digit interlacing, which is taken into account during the construction
of the generating vector, cf. [17]. Numerical experiments detailing observations of such higher
rates are given in [23, 27].

5.2. Combined Error Estimate. As mentioned in Section 2, we consider three approxi-
mations to the exact solution: dimension truncation, discretization of the partial differential
equation (PDE), and quadrature approximation of the high-dimensional Bayesian integrals.

Combining Lemma 15 with (18) and considering the estimate (31) and Theorem 18, we
obtain by the triangle inequality the following total error bound, where p < 1 denotes the
summability of the sequence - in a bound of the form (2) on the integrand function,

1T[6(q)] — Qn[p(g{))]| < C (s /Pt 4k 4 N=1P),

where C' > 0 is independent of the parametric dimension s, the number of discretization
points n and the number of QMC points N. A similar combined error estimate is applied
to a related model problem involving domain uncertainty in [23, Ch. 11.3] in the context of
single-level and multilevel methods. There, the parameters N and s are chosen depending
on the discretization error, which decreases on a suitably chosen hierarchy of finite element
meshes.

5.3. Total Work. In the context of single-level and multilevel methods, an expression for
the work required for evaluation of the approximation is required. Here, the total work of

evaluating Q [(b (q,(f))] can be given in terms of the parameters N, s, and n by

W(N,s,n) = O(Nsn?’),

where O(n?) comes from the solution of a dense, n x n linear system of equations required in
the boundary integral equation solver, which requires O(s) work to compute each element of
the matrix. This procedure is then repeated N times in the outer quadrature loop.
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6. Numerical Experiments.

6.1. Setup. We consider the parametric problem (14) with the uncertain domain bound-
ary I'(w) parametrized as described in Section 4. More precisely, we shall impose that the
Karhunen-Loeve expansion is given by a Fourier series with random coefficients, i.e.

uip,w) = u() + 0 Y Vie(w)ur ().
k=1

Letting Y3 € [—1/2,1/2] be uniformly distributed, we can identify the random variables
{Y3.}1. by their image y € U = [~1/2,1/2]N. We additionally assume a constant nominal
value ug(¢) = ug € (0,00) and write ugg(p) = Yo, cos(ky) and ugg—1 = Vop—1 sin(kyp) yielding
the parametric representation

(32) u(p,y) =uo+ 0y yru(e),
k=1

where we choose throughout the following ug = 0.3, o = 0.125 and J9p, = Vo1 = k=¢. The
last choice enforces the decay sup,, [ux(¢)| < Ck=¢ where we choose ¢ = 4, implying that
the unknown boundary I' of the inclusion is at least four times continuously differentiable.
We truncate the sum (32) at s = 100 terms, and are interested in the convergence of the
QMC approximation to the resulting 100-dimensional integral with respect to the number
of quadrature points. Assuming the dimension truncation error to converge like (9(3_2/ Pl
cf. Lemma 14, we have for p = 1/¢ = 1/4 the behavior O(s~"). Letting this be of the order
10~ to omit contributions of the dimension truncation error justifies the choice s = 100.

In the present context, considering the parametrization (21), we will be interested in
computing prior (i = p) and posterior (1 = u’) expectation and variance,

(33) E“[D(y)] = {x € R? : x = E*[u(t, y)le(t), t € I}
(34) VI (y)] = {x € R? : x = V*{u(t,y)le(t), t € I}.

Based on the analysis in Section 2.2, we consider higher-order quasi-Monte Carlo with
smoothness-driven product and order dependent (SPOD) weights, as introduced in [17]. For
the experiments presented here, we used generating vectors constructed by the fast CBC
method and made available in [28], with parameters a = (, sequence ; = ov;, and Walsh
coefficient bound C' = 0.1. The construction was executed for ¢ € {2,3,4}; see below for
a discussion of the different cases. See also [27] for more computational details on CBC
construction of IPL rules and the mentioned parameters. For the implementation, we used a
custom boundary integral solver coupled with the gMLQMC library [22] for applying HOQMC.

As observation operator O, we consider the evaluation of the solution’s Neumann data
0q/0n in K = 16 equi-spaced points (with respect to the angle) on the outer boundary ¥,
and thus § = O(q) + n € R®. For smaller values of K, we expect the posterior to be less
concentrated, yielding an “easier” integration problem. In the limit of large K, concentration
effects similar to those in the small I' limit arise, see below. We do not consider here the
problem of experimental design, i.e. which evaluation points to choose or what the optimal
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EIT Setup Realizations and Nominal Domain
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Figure 2: a Simulation setup with outer boundary X, the nominal inner boundary I'g, and
locations of the K = 16 sensors. b Realizations of the inclusion I'(y) resulting from the IPL
point set with m = 5.

number of measurements might be, see e.g. [4, 5] for approaches related to experimental design
in the Bayesian context.

As quantity of interest, we are interested in the interior boundary, which we represent as
a vector of radius values of length M, for equispaced points in the angle ¢. Thus, the Qol
o(q(y)) € RM is, for each parameter vector y, a discrete approximation of the shape of the
inclusion. Figure 2 shows a setup of the experiment with the enclosing ellipse ¥ (semiaxes
0.45 and 0.3), the nominal domain I'g, and various realizations of the parametric domain I'(y).

Finally, the prescribed Dirichlet data at X are given by gp(x) = 2?2 — z2.

6.2. Results. The prior and posterior expectations of the domain shape are given in
Figure 3, which shows that incorporation of measurement data gives a reasonable estimate
of the “true” shape. Moreover, the Bayesian framework allows specification of a confidence
interval to assess the inherent uncertainty in the model and measurement process; in this
example, the true shape is fully contained in the lo-confidence interval around the posterior
mean, whereas the prior mean deviates significantly.

We are particularly interested in the verification of convergence rates of the approximations
to the high-dimensional integrals Z and Z’ from Theorem 1 and (6) using interlaced polynomial
lattice rules (IPL). The prior expectation of the inclusion’s shape in this case does not depend
on the solution to the PDE (20); moreover, it is by the parametrization (23) simply an affine
function of the parameters y;. Prescribing a decay ( = 4, we thus expect due to (31) a
convergence rate of N~% for the prior expectation, for interlacing factor & = 4. In the case
where the Qol depends on the solution, the condition that the sequence of Wh*-norms in 7
from (12) is summable implies the loss of one order of convergence, which would imply the
rate N3 for the prior approximation, and the use of ( = 3 also in the CBC construction.
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For the posterior, Theorem 4 implies an additional loss of one order of convergence; assuming
the condition in (2) on the parameter-to-solution map G: y — ¢(y;-) for 1/{ < p < 1/3, we
thus obtain an expected higher-order QMC convergence rate of N~¢T2. For the case of ( = 4
considered here, we thus expect N2 when using IPL rules with interlacing factor a > 2. We
note that the generating vectors used in the posterior mean approximation were based on
¢ = 2 with interlacing factor o = 2.

We consider both the prior and posterior expectations of the quantity of interest ¢, which,
as described above, yields a discrete approximation of the boundary ry(¢) with M points
©1,...,¢r. We compute the error by approximating the L?-norm over the angle ¢, given for
the prior by

27
(3) B = Ol Maqoamy = [ (Blr(e)] - Onlrae]) de
1

and analogously for the posterior mean EX over y € U. Due to the lack of an analytically
given exact solution, we use a reference solution computed with N = 220 points using an
interlaced polynomial lattice (IPL) rule, and consider in the following convergence plots the
values N = 2% for k =1,...,19. As a comparison to IPL rules, we also compute Halton and
“plain vanilla” Monte Carlo (MC) estimates of the involved integrals for the same values of
N, where the expected convergence rates in this case are N1 and N~/2, respectively. For
MC, we approximate the L?-error by averaging over R = 10 repetitions.

Figures 4 and 5 show the convergence of approximations to the prior and posterior ex-
pectation obtained using the methods mentioned above. A linear least squares fit is included
to measure the convergence rate; the points used in the fit correspond to the points at which
the linear fit is evaluated. Note that in Figure 4, the prior expectation does not involve the
solution of the PDE, thus we obtain the full rate N~¢. If the Qol were to depend on the
solution ¢(y), we would expect a rate N —¢+1. In Figure 5, various values of the observation
noise covariance I' are considered.

For small I, concentration effects cause the performance of the methods to deteriorate, as
is to be expected, see e.g. [49]. More precisely, assuming a unimodal posterior distribution,
the posterior converges to a Dirac distribution as I' — 0. For small positive values of I", the
region of parameter space where the posterior takes relatively large values (and thus the set
of important parameters) decreases in size as I' becomes smaller. For QMC approximation
of the integral, this implies that many of the quadrature points lie in a region of parameter
space which does not contribute significantly to the value of the integral. The expected IPL
rate here is N2, which can be seen for large I' in Figure 5.

7. Conclusion. In this article we have described the application of higher-order quasi-
Monte Carlo methods to a Bayesian approach for shape uncertainty quantification based on
a parametric partial differential equation forward model. In particular, we have established a
rigorous analysis of the posterior measure and a dimension truncation analysis for the forward
model. This analysis supplements the results from [33] for diffusion problems on random
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Prior and Posterior Expectations

0.05F
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Figure 3: Prior and posterior expectations of the inclusion for I' = (0.1)2. The grey shaded
area is a lo-confidence interval, which in this case contains the “truth” I'(y*). It can be seen
that the prior expectation deviates significantly from I'(y*).

domains. The presented regularity analysis can be applied to any elliptic diffusion problem
with a random coefficient. In particular, we have addressed the case of limited smoothness in
the data. Furthermore, the article at hand covers the parameter estimation for the random
vector field which is used to model random domains. The presented bounds on mixed partial
derivatives of the posterior imply higher-order convergence rates of the quadrature error versus
the number of nodes. The obtained convergence rates depend on the quantity of interest
and choice of either prior or posterior measure. Numerical results conducted for an elliptic
equation arising in Electrical Impedance Tomography confirm the theoretically derived rates
in s = 100 parametric dimensions. A comparison with Halton and Monte Carlo sampling
shows the superiority of the applied interlaced polynomial lattice rules in the case where the
observation noise covariance is not too small.

Acknowledgments. We would like to thank Helmut Harbrecht and Christoph Schwab for
suggesting the present analysis and for the fruitful discussions and many helpful remarks.

Appendix A. Multivariate Combinatorics. We start this section by defining the arith-
metic for multi-indices. To that end, let o, 8 € N{j for some s € N. We define the addition
and subtraction of two multi-indices in the canonical way. Moreover, we define

af = 0/131 ---afs
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Figure 4: Approximations to the prior expectation with IPL, Halton and MC rules. The
expected rates are N~ for IPL, N~! for Halton and N ~1/2 for MC, which are all confirmed
by these results.

with the convention 0° = 1. The modulus of a is given by

S
la := Z ;
i=1

and its factorial is defined according to
al =l agl.

Then, we can also define the multivariate binomial coefficient

(5) =@ am

where we assume 3 < a and the relation < has to be understood component-wise.
The following lemma is a special case of formula (7.4) in [11].

Lemma 20. Let v = {yx}x € ¢*(N) with v, > 0. Moreover, assume that cy := ||v|[p < 1.
Then, it holds

! 1
> ”’7'7" = for allv € F.
v! 1—cy

v

and therefore there exists a constant with |v|!/v\vY < c for allv € F.
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Figure 5: Convergence of IPL, Halton and MC approximations to the posterior expectation
for different I', with the error computed as in (35) wrt. a reference solution with N = 229 IPL
points.

Proof. Let F©) := {v € F : 1, = 0 for all k > s}. Then, we have obviously F = UzenF ).
Now, there holds for all v € F(®) that

R SR TR A NGRS
D= > = () S d =
v k=0 |v|=k k=0  j=1 k=0 v

by the multinomial theorem and the limit of the geometric series. Since the derived bound is
uniform in the support size s € N of the index sequences, we arrive at the assertion. |
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740 Lemma 21. For all o, B, € Ng with r > 0 it holds

741 at+r—1\(/B+r—1 <M a+p+r—1
‘ r—1 r—1 - Oé'ﬂ' r—1 :

742 Proof. Tt holds

_ at+r—1\/p+r—1 <(a+ﬂ)! a+pB+r—1
o r—1 r—1 - alp! r—1
a+r—1 — 1! ! —1)!
. + (B+7r—1) g(a—i-,B) (a+B+r
r—1 Bl(r—1)! alp! (oz—I—ﬂ)!(r—l).
a+r-—1 Q@ r—1)!
ol
« —1 -1
746 = tr < (“ B4 )
748 The last inequality is true due to the monotonically increasing diagonals in Pascal’s triangle.
749  This proves the assertion. |
750 Lemma 22. Tt holds for a € N, &’ € N that
S / /
o; + || —1 all [a ao|—1
751 11 i+ ] SH laf + || .
Pl la/| —1 al la/| — 1
752 Proof. The proof is by induction on s. For s = 1, we have
— o+ e[ =1\ ol feq +]a| -1
o lo/| —1 ol /| =1 )7
754 which holds with equality. Let the induction hypothesis be valid for s — 1 and set as—1 =
755 [ai,...,as—1]. Then, we derive with the previous lemma that
ﬁ a; + o] =1 <|as_1]! las—1] + || — 1\ [as + |&| = 1
paley la/| — 1 T asq! la/| — 1 r—1
|as 1|' (|as 1| +as) (|as 1| +as + ’a,| — 1>
T oo oo |lag! la/| — 1
_ ol la] +a/| =1
756 al la’| — 1 ' [}
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