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Higher Order Quasi-Monte Carlo for Bayesian Shape Inversion∗

R. N. Gantner† and M. D. Peters‡

Abstract. In this article, we consider a Bayesian approach towards data assimilation and uncertainty quan-
tification in diffusion problems on random domains. We provide a rigorous analysis of parametric
regularity of the posterior distribution given that the data exhibit only limited smoothness. More-
over, we present a dimension truncation analysis for the forward problem, which is formulated in
terms of the domain mapping method. Having these novel results at hand, we shall consider as a
practical example Electrical Impedance Tomography in the regime of constant conductivities. We
are interested in computing moments, in particular expectation and variance, of the contour of an
unknown inclusion, given perturbed surface measurements. By casting the forward problem into the
framework of elliptic diffusion problems on random domains, we can directly apply the presented
analysis. This straightforwardly yields parametric regularity results for the system response and
for the posterior measure, facilitating the application of higher order quadrature methods for the
approximation of moments of quantities of interest. As an example of such a quadrature method,
we consider here recently developed higher order quasi-Monte Carlo methods. To solve the forward
problem numerically, we employ a fast boundary integral solver. Numerical examples are provided
to illustrate the presented approach and validate the theoretical findings.

Key words. Quasi-Monte Carlo methods, uncertainty quantification, error estimates, high dimensional quadra-
ture, Electrical Impedance Tomography
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1. Introduction. The present article considers the Bayesian approach, see e.g. [11, 13,
40], to assimilate measured data in the framework of elliptic diffusion equations on random
domains. The forward problem is solved by means of the domain mapping method as it has
been considered in [6, 27, 44]. In particular, we extend here the analysis presented in [27]
and consider the impact of dimension truncation on the system response. In view of the
computation of quantities of interest, the Bayesian approach boils down to the approximation
of high-dimensional integrals. In order to apply the higher order quasi-Monte Carlo methods
considered in [15, 21], we provide additionally a rigorous and general analysis of the posterior
measure, for a uniform prior and additive Gaussian noise, in the regime where the system
response provides only limited smoothness. This might occur in the present setting if the given
data, like loadings and boundary data, exhibit only limited regularity. The presented analysis
might be considered as an extension of previous works, see particularly [13, 27]. Having these
prerequisites at hand, we shall consider Electrical Impedance Tomography (EIT) as a practical
example. EIT is a non-invasive medical imaging procedure and has been extensively studied
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in the context of inverse problems, see e.g. [2, 3, 18, 19, 28]. Exploiting differences in the
electrical conductivity among different biological tissues, EIT reconstructs and images these
conductivities based on surface electrode measurements. In particular, we refer here to the case
of constant conductivities, where the goal is to determine the shape of an unknown inclusion,
see e.g. [5, 7, 24, 28, 33]. Especially in the absence of noise, it is possible to reconstruct the
inclusion from a single pair of current/voltage measurements, cf. [5]. This is in contrast to
the recent work [17], which also considers Bayesian inversion in the context of EIT. There,
the authors reconstruct a diffusion coefficient (representing varying conductivities) from noisy
measurements, instead of the shape of the domain.

Our goal will be to approximate the expected shape of an inclusion, given surface mea-
surements from the domain’s boundary. The Bayesian framework will allow also arbitrary
moments to be computed, allowing specification of a “confidence interval” for the inclusion’s
shape. A major advantage of the model problem under consideration is that it can be effi-
ciently solved by means of boundary integral equations as it has been done for example in
[18]. This allows for numerical studies concerning the convergence behaviour of the applied
higher order quasi-Monte Carlo quadrature.

The remainder of this article is structured as follows. In Section 2, we introduce the
Bayesian formulation in a rather abstract fashion and parametric regularity results for the
posterior measure are derived, given a general regularity estimate for the system response of
the forward problem. After this, in Section 3, we present the forward model under consider-
ation, i.e. diffusion problems on random domains, and provide an analysis for the impact of
dimension truncation. Section 4 deals with the EIT problem and recasts it into the framework
of a diffusion problem on a random domain. We comment also on the discretization by means
of boundary integral equations. Interlaced polynomial lattice rules are briefly discussed in the
subsequent Section 5, which are the higher-order quasi-Monte Carlo (HoQMC) methods we
will use in the computations. In Section 6, a numerical experiment is formulated to compare
HoQMC to conventional methods and the results are discussed.

2. Bayesian Inversion.

2.1. The Bayesian Framework. Let X denote some real and separable Banach space
and let A(y) : X → X ∗ be a bounded linear operator for each given parameter sequence
y ∈ U := [−1/2, 1/2]N . For f(y) ∈ X ∗, we consider the parameteric operator equation

(1) A(y)q(y) = f(y).

We require that the system response q satisfies then a regularity estimate of the form

(2) ‖∂ν
y q(y)‖X ≤ C|ν|!c|ν|γν for all ν ∈ Fα,

where we denote by C, c > 0 constants which are independent of the sequence ν and γ ∈ ℓp(N)
for p < 1, and we use the convention γν :=

∏
k≥1 γ

νk
k . The set Fα is given by

Fα :=
{
ν ∈ N

N

0 : ν ≤ α
}
, where α ∈ F :=

{
ν ∈ N

N

0 :
∑

k≥1

νk < ∞
}
,
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i.e. Fα is the set of all finitely supported index sequences that are bounded by α ∈ F .
Typically, such operator equations emerge from diffusion problems with random data, as
random diffusion coefficients or right hand sides, see e.g. [4, 9], or even random domains [27].

Since there exists an s ∈ N such that νk = 0 for all k > s for all ν ∈ Fα, we shall identify
index sequences with multi indices ν = [ν1, . . . , νs] ∈ N

s without further notice.
Throughout what follows, we will assume the components of y to be stochastically inde-

pendent and identically uniformly distributed, i.e. we endow the set U with the structure of
a probability space with respect to the product measure

µ0(dy) =
∏

k≥1

dyk.

This measure will be referred to as the prior measure. We denote by

G : U → X , y 7→ q(y)

the uncertainty-to-solution map, which maps a given instance y ∈ U of the parameter sequence
to the corresponding solution q(y) ∈ X .

In forward UQ, the goal is to compute the expectation, with respect to the prior measure
µ0, of a quantity of interest φ : X → Z, which is usually assumed to be a continuous linear
functional of the parametric solution q(y). The goal of Bayesian inverse UQ as in [11] is to
incorporate noisy measurements of solutions to (12), after potentially incomplete observations.
This is modeled by first considering a bounded, linear observation operator O ∈ L(X , Y ) for
a Banach space Y , which models e.g. point evaluation of the system response q, or averaging
over a certain subdomain. In the following, we assume Y = R

K with K < ∞, i.e. we assume
only finitely many measurements of the system response. Then, we define the uncertainty-to-
observation mapping G by

(3) G = O ◦G : U → Y, y 7→ G(y) = O
(
q(y)

)
.

The measured data δ is modeled as resulting from an observation by O, perturbed with
additive Gaussian noise, δ = O

(
u(y⋆)

)
+ η, where y⋆ is the unknown, exact parameter, and

η ∼ N (0,Γ). Hereby, we assume Γ to be a known symmetric, positive definite covariance
matrix Γ ∈ R

K×K .
The goal will then be to predict expectations of the quantity of interest φ, which in general

is an arbitrary continuous functional of the solution. In particular, it needs not contain the
observation operator, thus allowing prediction of “unobservable” phenomena, given perturbed
measurements of observable output. To that end, we define the Gaussian potential, also
referred to as the least-squares or data misfit functional, by ΦΓ : U × Y → R,

(4) ΦΓ(y, δ) :=
1

2
‖δ − G(y)‖2Γ =

1

2

(
δ − G(y)

)⊺
Γ−1

(
δ − G(y)

)
.

Given the prior measure µ0, Bayes’ formula yields an expression for a posterior measure
µδ on U , given the data δ.
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Theorem 1. Assume that the potential ΦΓ : U × Y → R is µ0-measurable for δ ∈ Y . Then
the conditional distribution of y given δ, denoted by y|δ, exists and is denoted by µδ. It is
absolutely continuous with respect to µ0 and its Radon-Nikodym derivative is given by

(5)
dµδ

dµ0
(y) =

1

Z
exp

(
− ΦΓ(y, δ)

)
,

with Z :=
∫
U exp

(
− ΦΓ(y, δ)

)
µ0(dy) > 0.

Proof. See e.g. [11].

The goal of computation is thus to approximate the posterior expectation E
µδ
[φ(q)] =

Z ′/Z, where Z is given in Theorem 1 and

(6) Z ′ :=

∫

U
φ
(
q(y)

)
exp

(
− ΦΓ(y, δ)

)
µ0(dy).

The numerical approximation of Eµδ
[φ(q)] will consist of three parts:

(i) truncation of the infinite-parametric problem (1) to s > 0 parameters y(s) = [y1, . . . , ys]
⊺ ∈

U (s) := [−1/2, 1/2]s,
(ii) approximation of the solution q(s)

(
y(s)

)
to the dimensionally truncated problem by a

solution q
(s)
h

(
y(s)

)
obtained using a suitable discretization, and

(iii) approximation of the resulting s-dimensional integral over y(s) ∈ U (s).
For the latter, instead of resorting to Markov Chain Monte Carlo (MCMC) methods which
converge at a (low) rate of N−1/2 in the number of evaluations N of the forward model [32],
we will adopt a direct, deterministic approach similar to [8, 40] and considered in the form
used here for linear, affine-parametric problems in [13, 14]. To that end, we have to pro-
vide parametric regularity estimates for the posterior measure, which will be provided in the
following subsection.

2.2. Parametric regularity of the posterior. As stated above, it is well known that the
system response q satisfies in relevant applications a parametric regularity estimate of the
form (2). Therefore, we will take this estimate as a starting point for our analysis.

In view of Lemma 15 from the Appendix, we obtain the following straightforward result.

Lemma 2. Assume that the solution q(y) to an operator equation of the form (1) satisfies
(2) with γ ∈ ℓp(N) for p < 1. Then the system response q satisfies the decay estimate

‖∂ν
y q(y)‖X ≤ C

1− cλ
ν!c|ν|γ̃ν for all ν ∈ Fα.

where γ̃k := γk/λk with a positive sequence λ ∈ ℓ1(N) and cλ := ‖λ‖ℓ1(N) < 1.

This means that, given a sufficiently fast decay of the sequence γ, we can always replace the
factor |ν|! by ν! due to modifying γ by an ℓ1-sequence, e.g.

{
k−1−ε/c̃

}
k
for arbitrary ε > 0

and a normalization constant c̃ > 0.
Now, let O ∈ L(X ;RK) and let G(y) be defined as in (3). We want to analyze the behavior

of the density
exp

(
− ΦΓ(y, δ)

)
,
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where the functional ΦΓ(y, δ) is given by (4). Since O is linear and bounded, we have

(7)
∥∥∂ν

y

(
Oq(y)

)∥∥
RK =

∥∥O
(
∂ν
y q(y)

)∥∥
RK ≤ ‖O‖L(X ;RK)C|ν|!c|ν|γν for all ν ∈ Fα.

For the sake of simplicity let Γ be the identity matrix. Then, we start by considering

∂ν′

x exp

(
− 1

2
x⊺x

)
.

In the univariate case, we know that

∂ν′

x exp

(
− 1

2
x2
)

= (−1)ν
′
exp

(
− 1

2
x2
)
Hν′(x),

where Hν′ is the probabilists’ Hermite polynomial of degree ν ′. By a tensor product argument,
we obtain

∂ν′

x exp

(
− 1

2
x⊺x

)
= (−1)|ν

′| exp

(
− 1

2
x⊺x

)
Hν′(x).

Herein, the tensor product Hermite polynomial is given by

Hν′(x) := Hν′1
(x1) · · ·Hν′

K
(xK).

Since the Hermite polynomials satisfy

|Hν′(x)| ≤ cH exp

(
x2

2

)√
ν ′! with cH := 1.0685,

cp. [1], we have the following bound on the multivariate squared exponential function
∣∣∣∣∂

ν′

x exp

(
− 1

2
x⊺x

)∣∣∣∣ ≤ cKH
√
ν ′!.

Now, consider the affine transform x 7→ Γ−1/2(δ − x), then we achieve the bound
∣∣∣∣∂

ν′

x exp

(
− 1

2
(δ − x)⊺Γ−1(δ − x)

)∣∣∣∣ ≤ cKH
√
ν ′!‖Γ‖−

|ν′|
2

2 .

In particular, this implies that

Ψ(x) := exp
(
− 1/2(δ − x)⊺Γ−1(δ − x)

)

is an entire function on R
K . We make use of the following result from [10].

Theorem 3. Let f(x) : RK → R be an entire function and g(i) ∈ Cα
(
U (s)

)
for i = 1, . . . ,K.

Then, the derivatives of h(y) := f
(
g(1)(y), . . . , g(K)(y)

)
: U (s) → R are given according to

(8) ∂ν
yh(y) = ν!

∑

1≤|ν′|

∂ν′

x f(x)|x=0

ν ′!

∑

s(ν,ν′)

K∏

i=1

ν′i∏

j=1

∂
µ

(i)
j

y g(i)(y)

µ
(i)
j !

for all ν ∈ Fα.

Herein, the set s(ν,ν ′) is defined as

s(ν,ν ′) :=

{(
µ
(1)
1 , . . . ,µ

(1)
ν′1

, . . . ,µ
(K)
1 , . . . ,µ

(K)
ν′
K

)
: µ

(i)
j ∈ N

s and
K∑

i=1

ν′i∑

j=1

µ
(i)
j = ν

}
.
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Proof. See [10] for a proof of this statement.

Combining this estimate with the bound (7), gives the main result of this section.

Theorem 4. Given that γ ∈ ℓp(N) for p < 1/2, the derivatives of exp
(
− ΦΓ(y, δ)

)
can be

bounded according to
∣∣∂ν

y exp
(
− ΦΓ(y, δ)

)∣∣ ≤ C(Γ,λ,O)K |ν|!(2c)|ν|γ̃ν for all ν ∈ Fα,

where γ̃k := γk/λk with a positive sequence λ ∈ ℓ1(N), cλ := ‖λ‖ℓ1(N) < 1, and C(Γ,λ,O) > 0
is a constant.

Proof. From Lemma 2 and estimate (7), we derive that
∥∥∂ν

yG(y)
∥∥
RK ≤ C(λ,O)ν!c|ν|γ̃ν for all ν ∈ Fα,

where C(λ,O) := C‖O‖L(X ;RK)/(1− cλ).
Now, the application of Theorem 3 gives us, cp. (8),

∂ν
y exp

(
− ΦΓ(y, δ)

)
= ν!

∑

1≤|ν′|

∂ν′

x Ψ(x)|x=0

ν ′!

∑

s(ν,ν′)

K∏

i=1

ν′i∏

j=1

∂
µ

(i)
j

y G(i)(y)

µ
(i)
j !

.

We estimate

∣∣∂ν
y exp

(
− ΦΓ(y, δ)

)∣∣ ≤ ν!
∑

1≤|ν′|

∣∣∂ν′

x Ψ(x)|x=0

∣∣
ν ′!

∑

s(ν,ν′)

K∏

i=1

ν′i∏

j=1

∣∣∂µ
(i)
j

y G(i)(y)
∣∣

µ
(i)
j !

≤ ν!
∑

1≤|ν′|

cKH‖Γ‖−
|ν′|
2

2√
ν ′!

∑

s(ν,ν′)

K∏

i=1

ν′i∏

j=1

C(ν,O)µ
(i)
j !c|µ

(i)
j |

γ̃
µ

(i)
j

µ
(i)
j !

≤ ν!c|ν|γ̃ν
∑

1≤|ν′|

cKH‖Γ‖−
|ν′|
2

2√
ν ′!

C(ν,O)|ν
′|
∑

s(ν,ν′)

1.

Thus, it remains to estimate the cardinality of the set s(ν,ν ′). The number of weak integer
compositions for νk of length |ν ′| is given according to, see e.g. [29],

∣∣{(µ1, . . . , µ|ν′|

)
: µi ∈ N and µ1 + . . .+ µ|ν′| = νk

}∣∣ =
(
νk + |ν ′| − 1

|ν ′| − 1

)
.

By multiplying the number of possible compositions in each component, we can determine
the cardinality of the set s(ν,ν ′) by

|s(ν,ν ′)| =
s∏

k=1

(
νk + |ν ′| − 1

|ν ′| − 1

)
.

We may bound this cardinality due to the estimate obtained by Lemma 17, i.e.

s∏

k=1

(
νk + |ν ′| − 1

|ν ′| − 1

)
≤ |ν|!

ν!

(|ν|+ |ν ′| − 1

|ν ′| − 1

)
≤ |ν|!

ν!
2|ν|+|ν′|.
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Therefore, we arrive at

∣∣∂ν
y exp

(
− ΦΓ(y, δ)

)∣∣ ≤ |ν|!(2c)|ν|γ̃ν
∑

1≤|ν′|

cKH‖Γ‖−
|ν′|
2

2√
ν ′!

(
2C(λ,O)

)|ν′|
.

Obviously, the series

∞∑

ν′
i=0

cH‖Γ‖−
ν
′
i
2

2√
ν ′
i!

(
2C(λ,O)

)ν′
i

is absolutely convergent with respect to each particular direction ν ′
i. Let its limit be C(Γ,λ,O).

Hence, by taking the product of this limit with respect to the K components of ν ′, we arrive
at the assertion.

3. Forward model.

3.1. The domain mapping method. In this section, we formulate the diffusion problem
on random domains as is has been addressed in [27]. To that end, let (Ω,A,P) denote a
complete and separable probability space with σ-algebra A and probability measure P. Here,
complete means that A contains all P-null sets. For a given Banach space X , we introduce
the Bochner space Lp

P
(Ω;X ), 1 ≤ p ≤ ∞, which consists of all equivalence classes of strongly

measurable functions v : Ω → X whose norm

‖v‖Lp
P
(Ω;X ) :=





(∫

Ω
‖v(·, ω)‖pX dP(ω)

)1/p

, p < ∞

ess sup
ω∈Ω

‖v(·, ω)‖X , p = ∞

is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space Lp
P
(Ω;X ) is

isomorphic to the tensor product space L2
P
(Ω) ⊗ X . For more details on Bochner spaces, we

refer the reader to [31].
Now, given a random domain D(ω) ⊂ R

d for d = 2, 3, we assume the existence of a
reference domain D0 ⊂ R

d and of a uniform C1-diffeomorphism V : D0 × Ω → R
d, i.e.

(9) ‖V(ω)‖C1(D0;Rd), ‖V−1(ω)‖C1(D0;Rd) ≤ Cuni for P-a.e. ω ∈ Ω,

such that D(ω) is implicitly given by the relation

D(ω) = V(D0, ω).

Particularly, since V ∈ L∞
(
Ω;C1(D0)

)
⊂ L2

(
Ω;C1(D0)

)
, the vector field V exhibits a

Karhunen-Loève expansion of the form

V(x, ω) = E[V](x) +
∞∑

k=1

Vk(x)Yk(ω).
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The anisotropy which is induced by the spatial parts {Vk}k, describing the fluctuations around
the nominal value E[V](x), is encoded by

(10) γk := ‖Vk‖W 1,∞(D0;Rd).

For our modeling, we shall also make the following common assumptions.

Assumption 5.
(i) The random variables {Yk}k take values in [−1/2, 1/2].
(ii) The random variables {Yk}k are independent and identically distributed.
(iii) The sequence {γk}k is at least in ℓ1(N).

By an appropriate reparametrization, we can achieve that E[V](x) = x. Moreover, if we
identify the random variables by their image y ∈ U = [−1/2, 1/2]N, we end up with the
representation

(11) V(x,y) = x+
∞∑

k=1

Vk(x)yk.

The Jacobian of V with respect to the spatial variable x is thus given by

J(x,y) = I+
∞∑

k=1

V′
k(x)yk.

Introducing the parametric domains D(y) := V(D0,y), the forward problem which we con-
sider here becomes:

Find q ∈ H1
(
D(y)

)
such that

(12)
−∆q(y) = 0 in D(y),

q(y) = g on ∂D(y).

To guarantee the solvability of the model problem for every realization of the parameter y ∈ U ,
it is reasonable to postulate that the Dirichlet data g are defined on the entire hold-all domain
D := ∪y∈UD(y). Moreover, to derive regularity results that are independent of the parameter
dimension, it is necessary that g is an analytic function see [27]. Nevertheless, in view of (2),
we shall weaken this estimate and only require that there holds

(13) ‖∂ν
y (∆g ◦V)(y)‖L∞(D0) ≤ C|ν|!c|ν|γν for all ν ∈ Fα

for some constants C, c > 0. Thus, it would be sufficient to postulate ∆g ∈ C |α|
(
D(y)

)
for

all y ∈ U . Hence, we can reformulate the problem by making the ansatz

q(y) = q0(y) + g.

This results in:
Find q0 ∈ H1

0

(
D(y)

)
such that

−∆q0(y) = ∆g in D(y),

q0(y) = 0 on ∂D(y).
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From this, we can easily derive the variational formulation:
Find q0 ∈ H1

0

(
D(y)

)
such that there holds for all v ∈ H1

0

(
D(y)

)
that

∫

D(y)
∇q0(y)∇v dx =

∫

D(y)
(∆g)v dx.

Now, defining

(14) A(x,y) :=
[
J⊺J

]−1
(x,y) detJ(x,y) and f̂(x,y) := (∆g)

(
V(x,y)

)
detJ(x,y),

we arrive at the variational formulation on the reference domain D0, which reads:
Find q̂0 ∈ H1

0 (D0) such that there holds for all v ∈ H1
0 (D0) that

∫

D0

A(y)∇q̂0(y)∇v dx =

∫

D0

f̂(y)v dx.

We note that q0(y) = q̂0 ◦V−1(y) and for all y ∈ U , we derive

(15)
∥∥∂ν

y q̂0(y)
∥∥
H1

0 (D0)
≤ C|ν|!c|ν|γν for all ν ∈ Fα,

for a sequence γ ∈ ℓp(N) for some p < 1, given here by (10), and some constants C, c > 0,
see [27] for the details. A regularity estimate similar to (15) particularly accounts for the
system response q̂ of the forward problem (12) transported to D0, which is a straightforward
consequence of the smoothness requirements (13) in the Dirichlet data and the application of
the Faà di Bruno’s formula.

3.2. Dimension truncation. In this subsection, we shall supplement the analysis pre-
sented in [27] by discussing the error of dimension truncation. As a starting point, we con-
sider the general representation (11) of the vector field. We refer to s as the truncation
dimension or parametric dimension of the problem. By considering now sequences of the
form y = {y1, . . . , ys, 0, . . .}, the following lemma is immediate.

Lemma 6. Let the Jacobian of the truncated expansion of the vector field V be defined as

J(s)(x,y) := I+

s∑

k=1

V′
k(x)yk and set ε

(s)
γ :=

∞∑

k=s+1

γk.

Then, there holds
1

Cuni
≤
∥∥J(s)(y)

∥∥
L∞(D0;Rd×d)

≤ Cuni

with the same constant as in (9), where the bounds hold uniformly in s.

Given sufficient summability of the sequence γ, we obtain the following bound on the
truncation error.

Lemma 7. Let ε
(s)
γ be defined as in Lemma 6. Assume that the sequence γ is nonincreasing,

γ1 ≥ γ2 . . ., and assume additionally that there exists p ∈ (0, 1) such that γ ∈ ℓp(N). Then,

(16) ε
(s)
γ ≤ C(p,γ)s−θ(1/p−1),

with C(p,γ) = min
(
(1/p− 1)−1, 1

)
‖γ‖ℓp and θ = 1 in general. If

∫ 1/2
−1/2 yj µ0(dyj) = 0 for all

j ∈ N, we have θ = 2.
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Proof. See e.g. [15, Thm. 2.6] and [36].

Now, we consider the impact of truncation on detJ(y) and
[
J⊺J

]
(y) separately.

Lemma 8. The determinant of the truncated Jacobian satisfies the estimate

∣∣ detJ(y)− detJ(s)(y)
∣∣ ≤ dCd−1

uni ε
(s)
γ .

Proof. For the determinant function and two matrices M,M′ ∈ R
d×d with bounded

columns ‖Mi‖2, ‖M′
i‖2 ≤ c for i = 1, . . . , d and c > 0, we know

| detM− detM′| ≤ dcd−1‖M−M′‖2.

Obviously, we can bound each column of J and J(s) by Cuni. Therefore, we arrive at

∣∣ detJ(y)− detJ(s)(y)
∣∣ ≤ dCd−1

uni

∥∥J(y)− J(s)(y)
∥∥
2
≤ dCd−1

uni ε
(s)
γ .

Lemma 9. For the truncation of the matrix
[
J⊺J

]−1
(y), there holds the estimate

∥∥[J⊺J
]−1

(y)−
[(
J(s)

)⊺
J(s)

]−1
(y)
∥∥
L∞(D0;Rd×d)

≤ 2

Cuni
ε
(s)
γ +O

(
ε
(s)
γ

)2
.

Proof. A straightforward calculation yields

∥∥[J⊺J](y)−
[(
J(s)

)⊺
J(s)

]
(y)
∥∥
L∞(D0;Rd×d)

≤ 2Cuniε
(s)
γ +O

(
ε
(s)
γ

)2
.

Therefore, a first order Taylor expansion gives us, see e.g. [30],

∥∥[J⊺J
]−1

(y)−
[(
J(s)

)⊺
J(s)

]−1
(y)
∥∥
L∞(D0;Rd×d)

≤ 2Cuniε
(s)
γ

∥∥[J⊺J
]
(y)
∥∥
L∞(D0;Rd×d)

∥∥[J⊺J
]−1

(y)
∥∥2
L∞(D0;Rd×d)

+O
(
ε
(s)
γ

)2

≤ 2
Cuni

C2
uni

ε
(s)
γ +O

(
ε
(s)
γ

)2
,

where we applied the bounds
∥∥[J⊺J

]−1
(y)
∥∥
L∞(D0;Rd×d)

≤ 1/C2
uni and

∥∥[J⊺J
]
(y)
∥∥
L∞(D0;Rd×d)

≤ C2
uni.

Having these lemmata at hand, we can bound the truncation error in the diffusion matrix
and in the right hand side.

Theorem 10. The truncation errors in the diffusion matrix and in the right hand side
satisfy the error estimates

∥∥A(y)−A(s)(y)
∥∥
L∞(D0;Rd×d)

≤ (2 + d)Cd−1
uni ε

(s)
γ +O

(
ε
(s)
γ

)2

and ∥∥f̂(y)− f̂ (s)(y)
∥∥
L∞(D0)

≤ (d+ Cuni)‖∆g‖W 1,∞Cd−1
uni ε

(s)
γ .

In these estimates, the quantities A(s)(y) and f̂ (s)(y) are simply obtained by replacing J in
(14) by J(s).
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Proof. By the application of the triangle inequality, we can now simply bound the trun-
cation error for the diffusion matrix according to

∥∥A(y)−A(s)(y)
∥∥
L∞(D0;Rd×d)

≤
∥∥∥A(y)−

[
J⊺J

]−1
(y) detJ(s)(y)

∥∥∥
L∞(D0;Rd×d)

+
∥∥∥
[
J⊺J

]−1
(y) detJ(s)(y)−A(s)(y)

∥∥∥
L∞(D0;Rd×d)

≤ 1

C2
uni

dCd−1
uni ε

(s)
γ +

2

Cuni
ε
(s)
γ Cd

uni +O
(
ε
(s)
γ

)2

≤ (2 + d)Cd−1
uni ε

(s)
γ +O

(
ε
(s)
γ

)2
.

where we applied the bounds

∥∥[J⊺J
]
(y)
∥∥
L∞(D0;Rd×d)

≤ 1

C2
uni

and
∣∣ detJ(s)(y)

∣∣ ≤ Cd
uni.

In complete analogy, we can bound the truncation error in the right hand side according
to ∥∥f̂(y)− f̂ (s)(y)

∥∥
L∞(D0)

≤
∥∥f̂(y)− (∆g ◦V)(y) detJ(s)(y)

∥∥
L∞(D0)

+
∥∥(∆g ◦V)(y) detJ(s)(y)− f̂ (s)(y)

∥∥
L∞(D0)

≤ ‖∆g‖L∞(D)dC
d−1
uni ε

(s)
γ + ‖∆g‖W 1,∞(D)ε

(s)
γ Cd

uni

≤ (d+ Cuni)‖∆g‖W 1,∞Cd−1
uni ε

(s)
γ .

From Lemma 6, we infer that the diffusion matrix A(s)(y) is always elliptic, i.e. there
holds

z⊺A(s)(x,y)z ≥ amin > 0 for all z ∈ R
d uniformly in s.

Thus, let q̂
(s)
0 ∈ H1

0 (D0) be the unique solution of the variational formulation

∫

D0

A(s)(y)∇q̂
(s)
0 ∇v dx =

∫

D0

f̂ (s)(y)v dx.

Having the impact of truncating the Jacobian on the diffusion coefficient and the right hand
side at hand, we may now bound the respective error of the solution in analogy to Strang’s
lemma.

Theorem 11. There holds for a constant C > 0, which depends on the domain D0, the
spatial dimension d as well as ‖∆g‖W 1,∞ and Cuni, the error estimate

∥∥(q̂0 − q̂
(s)
0

)
(y)
∥∥
H1

0 (D0)
≤ C

amin

(
1 + ‖q̂0(y)‖H1

0 (D0)

)
ε
(s)
γ +O

(
ε
(s)
γ

)2
.
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Proof. Making use of the ellipticity of the bilinear form induced by A(s)(y), we have

amin

∥∥(q̂0 − q̂
(s)
0

)
(y)
∥∥2
H1

0 (D0)

≤
∫

D0

A(s)(y)∇
(
q̂0 − q̂

(s)
0

)
(y)∇

(
q̂0 − q̂

(s)
0

)
(y) dx

=

∫

D0

A(s)(y)∇q̂0(y)∇
(
q̂0 − q̂

(s)
0

)
(y) dx−

∫

D0

f̂ (s)(y)
(
q̂0 − q̂

(s)
0

)
(y) dx

=

∫

D0

(
A(s) −A

)
(y)∇q̂0(y)∇

(
q̂0 − q̂

(s)
0

)
(y) dx

−
∫

D0

(
f̂ (s) − f̂

)
(y)
(
q̂0 − q̂

(s)
0

)
(y) dx

≤
∥∥A(y)−A(s)(y)

∥∥
L∞(D0;Rd×d)

∥∥(q̂0 − q̂
(s)
0

)
(y)
∥∥
H1

0 (D0)
‖q̂0(y)‖H1

0 (D0)

+
∥∥f̂(y)− f̂ (s)(y)

∥∥
H−1(D0)

∥∥(q̂0 − q̂
(s)
0

)
(y)
∥∥
H1

0 (D0)
.

Now, we exploit

∥∥f̂(y)− f̂ (s)(y)
∥∥
H−1(D0)

≤ cP
√

|D0|
∥∥f̂(y)− f̂ (s)(y)

∥∥
L∞(D0)

,

where cP > 0 is the Poincare constant for D0 and |D0| is the Lebesgue measure of D0. Then,
simplifying this expression and inserting the bounds from Theorem 10 results in

∥∥(q̂0 − q̂
(s)
0

)
(y)
∥∥
H1

0 (D0)
≤ 1

amin
(2 + d)Cd−1

uni ε
(s)
γ ‖q̂0(y)‖H1

0 (D0) +O
(
ε
(s)
γ

)2

+
1

amin
cP
√

|D0|(d+ Cuni)‖∆g‖W 1,∞Cd−1
uni ε

(s)
γ .

4. Electrical Impedance Tomography. Now, let D ⊂ R
2 denote a simply-connected and

convex domain with Lipschitz continuous boundary Σ := ∂D. Inside the domain, we suppose
that there exists a simply connected subdomain S ⋐ D with boundary Γ := ∂S. The boundary
Γ shall be of co-dimension 1 and, thus, separate the interior domain S and the outer domain
D. The resulting, annular domain D \ S shall be referred to as D.

S Γ D Σ

Figure 1: The domain D with inner and outer boundaries Γ and Σ, respectively, and the
inclusion S.
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A sketch of the situation can be found in Figure 1. The inner domain S models a material
of constant conductivity that is significantly different from the (also constant) conductivity of
the material in the annular domain D. We are interested in the identification of the inclusion
S. To that end, for a given voltage distribution gD ∈ H1/2(Σ), we measure the corresponding
current distribution gN ∈ H−1/2(Σ). This means that we are looking for a domain D which
satisfies the overdetermined boundary value problem

(17)

∆q = 0 in D,

γint0,Γq = 0 on Γ,

γint0,Σq = gD on Σ,

γint1,Σq = gN on Σ.

Herein, the operators γint0,Γ and γint0,Σ denote the interior trace operators at Γ and Σ, re-

spectively, whereas γint1,Σ is the co-normal derivative at Σ. Instead of successively solving this
problem by an optimization procedure, as it has been done in e.g. [18], we will approach it here
by means of Bayesian inversion. In this context, we assume that the measured Neumann data
at Σ are subject to uncertainty and assume a prior distribution on the parameters describing
the boundary. In order to quantify the resulting uncertainty inherent in this problem, we
reformulate the associated forward problem in terms of an elliptic diffusion problem which is
stated on a random domain.

Due to our lack of knowledge on the shape of the inclusion, we consider the interior
domain to be random. This uncertainty is incorporated by assuming the interior boundary to
be P-a.s. star-shaped and modeling it according to

(18) Γ(ω) =
{
x = σ(t, ω) ∈ R

2 : σ(t, ω) = u(t, ω)e(t), t ∈ I
}
,

where σ(t, ω) is a random field. Furthermore, let e(t) := [cos(t), sin(t)]⊺ denote the radial
direction and I := [0, 2π] be the interval for the angle t. We note that with the techniques
presented in the previous section it is possible to treat more general inclusions. Nevertheless,
our particular choice facilitates a sensible definition of an expected shape. Additionally, the
variance (or higher moments) of the parameters can be computed, yielding via (18) a confi-
dence region for the inclusion. In accordance with [25], we define the boundary’s mean and
variance as

E[Γ(ω)] =
{
x ∈ R

2 : x = E[u(t, ω)]e(t), t ∈ I
}

V[Γ(ω)] =
{
x ∈ R

2 : x = V[u(t, ω)]e(t), t ∈ I
}
.

To that end, the radial function u(t, ω) ≥ c > 0 has to be in the Bochner space L2
(
Ω;C2

per(I)
)
,

where C2
per(I) denotes the Banach space of periodic, twice continuously differentiable func-

tions, i.e.
C2
per(I) :=

{
f ∈ C2(I) : f (i)(0) = f (i)(2π), i = 0, 1, 2

}
,

equipped with the norm

‖f‖C2
per(I)

:=
2∑

i=0

max
x∈I

∣∣f (i)(x)
∣∣.
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If u(t, ω) is described by its expectation

E[u](t) =

∫

Ω
u(t, ω) dP(ω)

and its covariance

Cov[u](t, t′) = E[u(t, ω)u(t, ω)] =

∫

Ω
u(t, ω)u(t′, ω) dP(ω),

then we can represent it by its Karhunen-Loève expansion, cf. [37],

u(t, ω) = E[u](t) +
∞∑

k=1

uk(t)Yk(ω).

Herein, the functions {uk(ϕ)}k are scaled versions of the eigenfunctions of the Hilbert-Schmidt
operator associated to Cov[u](t, t′). Common approaches to numerically recover the Karhunen-
Loève expansion from these quantities are e.g. given in [26, 42]. By construction, the random
variables {Yk(ω)}k in the Karhunen-Loève expansion are uncorrelated. For our modeling, we
shall also impose the conditions of Assumption 5, where we modify the third condition as
follows:
(iii)’ The sequence {γ̂k}k :=

{
‖uk‖W 1,∞(0,2π)

}
k
is at least in ℓ1(N).

The domain D(ω) shall now be identified by its boundaries Γ(ω) and Σ. Then, we face
the following forward problem:

Find q ∈ H1
(
D(ω)

)
such that

(19)
−∆q(ω) = 0 in D(ω),

q(ω) = g on ∂D(ω),

where g|Γ(ω) = 0 and g|Σ = gD.
The parametric regularity may now be obtained as in the previous section. To that end,

we cast the forward model into the framework of the domain mapping method as it has been
done in [27] and employ the regularity results presented there. The boundary Γ(ω) in (18) is
already parametrized with respect to the reference boundary Γ0 := E[Γ]. Hence, it is sensible
to introduce the reference domain D0 ⊂ R

2 that is enclosed by the boundaries Γ0 and Σ.
Thus, by a suitable extension, we can achieve that Γ(ω) is given by the application of a

vector field V : D0 ×Ω → R
2, i.e. Γ(ω) = V(Γ0, ω). If Γ0 is of class C2, a possibility to define

V is given as follows:

(20) V(x, ω) := x+

∞∑

k=1

uk(argPx)

[
cos(argPx)
sin(argPx)

]
B(‖x− Px‖2)Yk(ω),

where Px is the orthogonal projection of x onto Γ0 and B : [0,∞) → [0, 1] is a smooth blending
function with B(0) = 1 and B(t) = 0 for all t ≥ c for some constant c ∈ (0,∞). Notice that
if Γ0 is of class C2, the orthogonal projection P onto Γ0 and thus V(x, ω) is at least of class
C1, cf. [34]. Choosing c sufficiently small, we can guarantee that V(Σ, ω) = Σ. Finally, after
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a possible scaling of the perturbation’s amplitude, we can always guarantee that this choice
of V satisfies the uniformity condition (9), cp. [43]. Now, assuming that

γk :=

∥∥∥∥uk
[
cos(argP ·)
sin(argP ·)

]
B(‖ · −P · ‖2)

∥∥∥∥
W 1,∞(D0,R2)

is still in ℓ1(N), we can carry over the regularity results from the previous section to our
forward model (19) one-to-one.

Remark 12. Since we aim at reconstructing the inclusion S from measurements of the
Neumann data at the fixed boundary Σ and since we impose that V(Σ, ω) = Σ, the Cauchy
data, i.e. Dirichlet data and Neumann data, are independent of the particular choice of the
blending function.

4.1. Discretization. Our approach to determine for the given pair [γint0,Σq, γ
int
0,Γ(y)q] = [f, 0]

the respective solution q(x,y) to (12) relies on the reformulation of the boundary value prob-
lem as a boundary integral equation by means of Green’s fundamental solution

k(x,x′) = − 1

2π
log ‖x− x′‖2.

Namely, the solution q(x,y) of (17) is given in each point x ∈ D(y) by Green’s representation
formula

(21) q(x,y) =

∫

Γ(y)∪Σ
k(x,x′)γint1 q(x′,y)− ∂k(x,x′)

∂nx′
γint0 q(x′,y) dsx′ .

Using the jump properties of the layer potentials, we arrive at the direct boundary integral
formulation which reads

(22)
1

2
γint0 q(x,y) =

∫

Γ(y)∪Σ
k(x,x′)γint1 q(x′,y) dsx′ −

∫

Γ(y)∪Σ

∂k(x,x′)

∂nx′
γint0 q(x′,y) dsx′ ,

where x ∈ Γ(y) ∪ Σ. If we label the boundaries by A,B ∈ {Γ(y),Σ}, then (22) includes the
single layer operator

(23) V : C(A) → C(B),
(
VABρ

)
(x) = − 1

2π

∫

A
log ‖x− x′‖2 ρ(x′) dsx′ ,

and the double layer operator

(24) K : C(A) → C(B),
(
KABρ

)
(x) =

1

2π

∫

A

〈x− x′,nx′〉
‖x− x′‖22

ρ(x′) dsx′ ,

with the densities ρ ∈ C(A) being the Cauchy data of q on A. The equation (22) in combi-
nation with (23) and (24) indicates the Dirichlet-to-Neumann map, which for problem (12)
induces the following system of integral equations

(25)

[ VΣΣ VΣΓ(y)

VΓ(y)Σ VΓ(y)Γ(y)

] [
ρΣ

ρΓ(y)

]
=

[
1/2 Id+KΣΣ KΣΓ(y)

KΓ(y)Σ 1/2 Id+KΓ(y)Γ(y)

] [
f
0

]
.
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The boundary integral operator on the left hand side of this coupled system of boundary inte-
gral equations is uniformly elliptic and continuous provided that diam

(
D(y)

)
= diam(Σ) < 1.

This guarantees the unique solvability by the Lax-Milgram lemma.
For the approximation of the unknown Cauchy data, we use the collocation method based

on trigonometric polynomials. Applying the trapezoidal rule for the numerical quadrature
and the regularization technique along the lines of [35] to deal with the singular integrals,
we arrive at an exponentially convergent Nyström method provided that the data and the
boundaries and thus the solution are analytic. More precisely, we have the following result.

Proposition 13. Let ρ ∈ Ck
(
∂D(y)

)
be the solution to (25). Then, there holds

‖ρ− ρn‖L∞(D(y)) ≤ Cn−k‖ρ‖Ck(D(y)),

where ρn is obtained from the Nyström method with n = 2j points for some j ∈ N.

Proof. For a proof of this statement, see [35].

Thus, if the density ρ is even analytic, we arrive at the error estimate

‖ρ− ρn‖L∞(D(y)) ≤ C exp(−cn),

for some constants C, c > 0.

5. Higher-Order Quasi-Monte Carlo. In light of the recent development of higher-order
quasi-Monte Carlo (QMC) methods, in particular so-called interlaced polynomial lattice (IPL)
rules [12, 15, 23], and their application to problems in uncertainty quantification [13, 16, 21],
we consider here the approximation of prior and posterior expectations by such deterministic
QMC rules. IPL rules are adapted to the integrand function in a preprocessing step using the
Component-by-Component (CBC) algorithm [38, 39], which requires as an input some bounds
on the parametric derivatives of the integrand. By the analysis of the previous section, we
have such bounds at our disposal.

We consider approximations of Z, Z ′ given in Theorem 1 and (6), respectively, where we
assume a uniform prior distribution µ0(dy) =

∏s
k=1 dyk on the truncated parameter sequence,

which we denote here by y1:s. Given a collection PN = {y0, . . . ,yN−1} ⊂ [0, 1]s of QMC points
in s dimensions, the QMC approximation QN,s of the prior mean of a function g : U → R is
given by

(26) E[g] =

∫

U
g(y)µ(dy) ≈ QN,s[g] :=

1

N

N−1∑

n=0

g

(
yn − 1

2

)
.

With the choices g(y) = exp
(
− Φ(y, δ)

)
and g(y) = φ

(
q(y)

)
exp

(
− Φ(y, δ)

)
, we obtain the

integrals Z and Z ′, which we approximate with (26). The posterior mean is then simply given

as the ratio E
µδ
[φ ◦ q] = Z ′/Z, see Theorem 1.

5.1. Interlaced Polynomial Lattice Rules. To give the points yn, n = 0, . . . , N − 1,
we require some definitions and notation. A polynomial lattice rule (without interlacing) is
a rule with N = bm points for some prime b and a positive integer m, and is given by a
generating vector q whose components qj(x) are polynomials over the finite field Zb of degree
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less than m. Let Zb[x] denote the set of polynomials over Zb. We associate with each integer
n = 0, . . . , bm−1 a polynomial n(x) =

∑m−1
k=0 ξkx

k, where ξk are the digits of n in base b, that
is n = ξ0 + ξ1b+ ξ2b

2 + . . .+ ξm−1b
m−1. To obtain points in [0, 1] from the generating vector

q, we require the mapping vm : Zb(x
−1) → [0, 1) given for integer w by

vm

(
∞∑

k=w

ξkx
−k

)
=

m∑

k=max(1,w)

ξkb
−k.

For an irreducible polynomial P ∈ Zb[x] of degree m, the j-th component of the n-th point of
the point set PN is given by

(yn)j = vm

(
n(x)qj(x)

P (x)

)
.

To obtain orders of convergence higher than one, we consider an additional interlacing step.
To this end, we denote the digit interlacing function of α ∈ N points as Dα : [0, 1)

α → [0, 1),

Dα(x1, . . . , xα) =

∞∑

a=1

α∑

j=1

ξj,ab
−j−(a−1)α,

where ξj,a is the a-th digit in the expansion of the j-th point xj ∈ [0, 1) in base b−1, xj =
ξj,1b

−1+ ξj,2b
−2+ . . .. For vectors in αs dimensions, digit interlacing is defined block-wise and

denoted by Dα : [0, 1)
αs → [0, 1)s with

Dα(x1, . . . , xαs) =
(
Dα(x1, . . . , xα), Dα(xα+1, . . . , x2α), . . . , Dα(x(s−1)α+1, . . . , xsα)

)
.

For a generating vector q ∈ (Zb[x])
αs containing α components for each of the s dimensions,

the interlaced polynomial lattice point set is Dα(P̃N ) ⊂ [0, 1)s, where P̃N ⊂ [0, 1)αs denotes
the (classical) polynomial lattice point set in αs dimensions with generating vector q. For
more details on this method, see e.g. [12, 15, 23]. The following theorem states the higher order
rates that are obtainable under suitable sparsity assumptions of the form stated in Section 2.

Proposition 14 (Thm. 3.1 from [15]). For m ≥ 1 and a prime b, let N = bm denote the
number of QMC points. Let s ≥ 1 and β = (βj)j≥1 be a sequence of positive numbers, and let
βs = (βj)1≤j≤s denote the first s terms. Assume that β ∈ ℓp(N) for some p < 1.

If there exists a c > 0 such that a function F satisfies for α := ⌊1/p⌋+ 1 that

(27) |(∂ν
yF )(y)| ≤ c |ν|!βν

s for all ν ∈ {0, 1, . . . , α}s, s ∈ N,

then an interlaced polynomial lattice rule of order α with N points can be constructed in
O(α sN logN + α2 s2N) operations, such that for the quadrature error holds

(28) |Is(F )−QN,s(F )| ≤ Cα,β,b,pN
−1/p,

where the constant Cα,β,b,p < ∞ is independent of s and N .
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5.2. Combined Error Estimate. As mentioned in Section 2, we consider three approxi-
mations to the exact solution: dimension truncation, discretization of the partial differential
equation (PDE), and quadrature approximation of the high-dimensional Bayesian integrals.

Combining Theorem 11 with (16) and considering the estimate (28) and Theorem 13, we
obtain by the triangle inequality the following total error bound, where p < 1 denotes the
summability of the sequence γ in a bound of the form (2) on the integrand function,

∣∣I[φ(q)]−QN [φ(q(s)n )]
∣∣ ≤ C

(
s−θ(1/p−1) + n−k +N−1/p

)
,

where C > 0 is independent of the parametric dimension s, the number of discretization points
n and the number of QMC points N .

6. Numerical Experiments.

6.1. Setup. We consider the parametric problem (12) with the uncertain domain bound-
ary Γ(ω) parametrized as described in Section 4. More precisely, we shall impose that the
Karhunen-Loève expansion is given by a Fourier series with random coefficients, i.e.

u(ϕ, ω) = u0(ϕ) + σ

∞∑

k=1

Yk(ω)uk(ϕ).

Letting Yk ∈ [−1/2, 1/2] be uniformly distributed, we can identify the random variables
{Yk}k by their image y ∈ U = [−1/2, 1/2]N. We additionally assume a constant nominal
value u0(ϕ) ≡ u0 ∈ (0,∞) and write u2k(ϕ) = ϑ2k cos(kϕ) and u2k−1 = ϑ2k−1 sin(kϕ) yielding
the parametric representation

(29) u(ϕ,y) = u0 + σ

∞∑

k=1

ykuk(ϕ),

where we choose throughout the following u0 = 0.3, σ = 0.125 and ϑ2k = ϑ2k−1 = k−ζ . The
last choice enforces the decay supϕ |uk(ϕ)| ≤ Ck−ζ where we choose ζ = 4, implying that
the unknown boundary Γ of the inclusion is at least four times continuously differentiable.
We truncate the sum (29) at s = 100 terms, and are interested in the convergence of the
QMC approximation to the resulting 100-dimensional integral with respect to the number of
quadrature points.

In the present context, considering the parametrization (18), we will be interested in
computing prior (µ = µ0) and posterior (µ = µδ) expectation and variance,

E
µ[Γ(y)] =

{
x ∈ R

2 : x = E
µ[u(t,y)]e(t), t ∈ I

}
(30)

V
µ[Γ(y)] =

{
x ∈ R

2 : x = V
µ[u(t,y)]e(t), t ∈ I

}
.(31)

Based on the analysis in Section 2.2, we consider higher-order quasi-Monte Carlo with
smoothness-driven product and order dependent (SPOD) weights, as introduced in [15]. For
the experiments presented here, we used generating vectors constructed by the fast CBC
method and made available in [22], with parameters α = ζ, sequence βj = σϑj , and Walsh
coefficient bound C = 0.1. The construction was executed for ζ ∈ {2, 3, 4}; see below for
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Figure 2: a Simulation setup with outer boundary Σ, the nominal inner boundary Γ0, and
locations of the K = 16 sensors. b Realizations of the inclusion Γ(y) resulting from the IPL
point set with m = 5.

a discussion of the different cases. See also [21] for more computational details on CBC
construction of IPL rules and the mentioned parameters. For the implementation, we used a
custom boundary integral solver coupled with the gMLQMC library [20] for applying higher-order
QMC.

As observation operator O, we consider the evaluation of the solution’s Neumann data
∂q/∂n in K = 16 equi-spaced points (with respect to the angle) on the outer boundary Σ, and
thus δ = O(q) + η ∈ R

16. As quantity of interest, we are interested in the interior boundary,
which we represent as a vector of radius values of length M , for equispaced points in the angle
ϕ. Thus, the QoI φ(q(y)) ∈ R

M is, for each parameter vector y, a discrete approximation of
the shape of the inclusion. Figure 2 shows a setup of the experiment with the enclosing ellipse
Σ (semiaxes 0.45 and 0.3), the nominal domain Γ0, and various realizations of the parametric
domain Γ(y). Finally, the prescribed Dirichlet data at Σ are given by gD(x) = x21 − x22.

6.2. Results. The prior and posterior expectations of the domain shape are given in
Figure 3, which shows that incorporation of measurement data gives a reasonable estimate
of the “true” shape. Moreover, the Bayesian framework allows specification of a confidence
interval to assess the inherent uncertainty in the model and measurement process; in this
example, the true shape is fully contained in the 1σ-confidence interval around the posterior
mean, whereas the prior mean deviates significantly.

We are particularly interested in the verification of convergence rates of the approximations
to the high-dimensional integrals Z and Z ′ from Theorem 1 and (6) using interlaced polynomial
lattice rules (IPL). The prior expectation of the inclusion’s shape in this case does not depend
on the solution to the PDE (17); moreover, it is by the parametrization (20) simply an affine
function of the parameters yj . Prescribing a decay ζ = 4, we thus expect due to (28) a
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convergence rate of N−4 for the prior expectation, for interlacing factor α = 4. In the case
where the QoI depends on the solution, the condition that the sequence of W 1,∞-norms in γk
from (10) is summable implies the loss of one order of convergence, which would imply the
rate N−3 for the prior approximation, and the use of ζ = 3 also in the CBC construction.
For the posterior, Theorem 4 implies an additional loss of one order of convergence; assuming
the condition in (2) on the parameter-to-solution map G : y → q(y; ·) for 1/ζ < p < 1/3, we
thus obtain an expected higher-order QMC convergence rate of N−ζ+2. For the case of ζ = 4
considered here, we thus expect N−2 when using IPL rules with interlacing factor α ≥ 2. We
note that the generating vectors used in the posterior mean approximation were based on
ζ = 2 with interlacing factor α = 2.

We consider both the prior and posterior expectations of the quantity of interest φ, which,
as described above, yields a discrete approximation of the boundary ry(ϕ) with M points
ϕ1, . . . , ϕM . We compute the error by approximating the L2-norm over the angle ϕ, given for
the prior by

‖(Eµ0 −QN )[ry(·)]‖2L2([0,2π]) =

∫ 2π

0

(
E
µ0 [ry(ϕ)]−QN [ry(ϕ)]

)2
dϕ(32)

≈ 1

M

M∑

i=1

(
E
µ0 [ry(ϕi)]−QN [ry(ϕi)]

)2
,

and analogously for the posterior mean E
µδ

over y ∈ U . Due to the lack of an analytically
given exact solution, we use a reference solution computed with N = 220 points using an
interlaced polynomial lattice (IPL) rule, and consider in the following convergence plots the
values N = 2k for k = 1, . . . , 19. As a comparison to IPL rules, we also compute Halton and
“plain vanilla” Monte Carlo (MC) estimates of the involved integrals for the same values of
N , where the expected convergence rates in this case are N−1 and N−1/2, respectively. For
MC, we approximate the L2-error by averaging over R = 10 repetitions.

Figures 4 and 5 show the convergence of approximations to the prior and posterior ex-
pectation obtained using the methods mentioned above. A linear least squares fit is included
to measure the convergence rate; the points used in the fit correspond to the points at which
the linear fit is evaluated. Note that in Figure 4, the prior expectation does not involve the
solution of the PDE, thus we obtain the full rate N−ζ . If the QoI were to depend on the
solution q(y), we would expect a rate N−ζ+1. In Figure 5, various values of the observation
noise covariance Γ are considered. For small Γ, concentration effects cause the performance
of the methods to deteriorate, as is to be expected, see e.g. [41]. The expected IPL rate here
is N−2, which can be seen for large Γ.

7. Conclusion. In this article we have described the application of higher-order Quasi-
Monte Carlo methods to a Bayesian approach for shape uncertainty quantification based on
a parametric partial differential equation forward model. In particular, we have established a
rigorous analysis of the posterior measure and a truncation analysis for the forward model. The
presented bounds on mixed partial derivatives of the posterior imply higher-order convergence
rates of the quadrature error versus the number of nodes. The obtained convergence rates
depend on the quantity of interest and choice of either prior or posterior measure. Numerical
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Figure 3: Prior and posteror expectations of the inclusion for Γ = (0.1)2. The grey shaded
area is a 1σ-confidence interval, which in this case contains the “truth” Γ(y⋆). It can be seen
that the prior expectation deviates significantly from Γ(y⋆).

results conducted for an elliptic equation arising in Electrical Impedance Tomography confirm
the theoretically derived rates in s = 100 parametric dimensions. A comparison with Halton
and Monte Carlo sampling shows the superiority of the applied interlaced polynomial lattice
rules in the case where the observation noise covariance is not too small.

Acknowledgments. We would like to thank Christoph Schwab for suggesting the present
analysis and Helmut Harbrecht for the fruitful discussions and many helpful remarks.

Appendix A. Multivariate Combinatorics. We start this section by defining the arith-
metic for multi-indices. To that end, let α,β ∈ N

s for some s ∈ N with s ≥ 1. The set
of natural numbers is always supposed to include the element 0, i.e. 0 ∈ N. We define the
addition and subtraction of two multi-indices in the canonical way. Moreover, we define

αβ := αβ1
1 · · ·αβs

s

with the convention 00 = 1. The modulus of α is given by

|α| :=
s∑

i=1

αi

and its factorial is defined according to

α! := α1! · · ·αs!.
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Figure 4: Approximations to the prior expectation with IPL, Halton and MC rules. The
expected rates are N−4 for IPL, N−1 for Halton and N−1/2 for MC, which are all confirmed
by these results.

Then, we can also define the multivariate binomial coefficient

(
α

β

)
:=

α!

(α− β)!β!
,

where we assume β ≤ α and the relation ≤ has to be understood component-wise.
The following lemma is a special case of formula (7.4) in [9].

Lemma 15. Let γ = {γk}k ∈ ℓ1(N) with γk ≥ 0. Moreover, assume that cγ := ‖γ‖ℓ1 < 1.
Then, it holds

∑

ν

|ν|!
ν!

γν =
1

1− cγ
for all ν ∈ F .

and therefore there exists a constant with |ν|!/ν!γν ≤ c for all ν ∈ F .

Proof. Let F (s) := {ν ∈ F : νk = 0 for all k > s}. Then, we have obviously F = ∪s∈NF (s).
Now, there holds for all ν ∈ F (s) that

∑

ν

|ν|!
ν!

γν =
∞∑

k=0

∑

|ν|=k

k!

ν!
γν =

∞∑

k=0

( s∑

j=1

γj

)k

≤
∞∑

k=0

ckγ =
1

1− cγ

by the multinomial theorem and the limit of the geometric series. Since the derived bound is
uniform in the support size s ∈ N of the index sequences, we arrive at the assertion.
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(c) Γ = (0.1)2.
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Figure 5: Convergence of IPL, Halton and MC approximations to the posterior expectation
for different Γ, with the error computed as in (32) wrt. a reference solution with N = 220 IPL
points.

Lemma 16. For all α, β, r ∈ N with r > 0 it holds

(
α+ r − 1

r − 1

)(
β + r − 1

r − 1

)
≤ (α+ β)!

α!β!

(
α+ β + r − 1

r − 1

)
.



24 R. N. GANTNER AND M. D. PETERS

Proof. It holds

(
α+ r − 1

r − 1

)(
β + r − 1

r − 1

)
≤ (α+ β)!

α!β!

(
α+ β + r − 1

r − 1

)

⇐⇒
(
α+ r − 1

r − 1

)
(β + r − 1)!

β!(r − 1)!
≤ (α+ β)!

α!β!

(α+ β + r − 1)!

(α+ β)!(r − 1)!

⇐⇒
(
α+ r − 1

r − 1

)
(β + r − 1)! ≤ (α+ β + r − 1)!

α!

⇐⇒
(
α+ r − 1

r − 1

)
≤
(
α+ β + r − 1

β + r − 1

)
.

The last inequality is true due to the monotonically increasing diagonals in Pascal’s triangle.
This proves the assertion.

Lemma 17. It holds for α ∈ N
s,α′ ∈ N

s′ that

s∏

i=1

(
αi + |α′| − 1

|α′| − 1

)
≤ |α|!

α!

(|α|+ |α′| − 1

|α′| − 1

)
.

Proof. The proof is by induction on s. For s = 1, we have

(
α1 + |α′| − 1

|α′| − 1

)
=

α1!

α1!

(
α1 + |α′| − 1

|α′| − 1

)
,

which holds with equality. Let the induction hypothesis be valid for s − 1 and set αs−1 =
[α1, . . . , αs−1]. Then, we derive with the previous lemma that

s∏

i=1

(
αi + |α′| − 1

|α′| − 1

)
≤ |αs−1|!

αs−1!

(|αs−1|+ |α′| − 1

|α′| − 1

)(
αs + |α′| − 1

r − 1

)

≤ |αs−1|!
αs−1!

(|αs−1|+ αs)!

|αs−1|!αs!

(|αs−1|+ αs + |α′| − 1

|α′| − 1

)

=
|α|!
α!

(|α|+ |α′| − 1

|α′| − 1

)
.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and
Mathematical Tables, Applied mathematics series, Dover Publications, N. Chemsford, MA, 1964.

[2] I. Akduman and R. Kress, Electrostatic imaging via conformal mapping, Inverse Problems, 18 (2002),
p. 1659.

[3] G. Alessandrini, V. Isakov, and J. Powell, Local uniqueness in the inverse conductivity problem with
one measurement, Transactions of the American Mathematical Society, 347 (1995), pp. 3031–3041.

[4] J. Beck, R. Tempone, F. Nobile, and L. Tamellini, On the optimal polynomial approximation of
stochastic PDEs by Galerkin and collocation methods, Mathematical Models and Methods in Applied
Sciences, 22 (2012), pp. 1250023.



HIGHER ORDER QUASI-MONTE CARLO FOR BAYESIAN SHAPE INVERSION 25
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