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Abstract

We analyze convergence rates of quasi-Monte Carlo (QMC) quadratures for countably-
parametric solutions of linear, elliptic partial differential equations (PDE) in divergence
form with log-Gaussian diffusion coefficient, based on the error bounds in [James A. Nichols
and Frances Y. Kuo: Fast CBC construction of randomly shifted lattice rules achieving
O(N−1+δ) convergence for unbounded integrands over R

s in weighted spaces with POD
weights. J. Complexity, 30(4):444-468, 2014].

We prove, for representations of the Gaussian random field PDE input with locally sup-
ported basis functions, and for continuous, piecewise polynomial Finite Element discretiza-
tions in the physical domain novel QMC error bounds in weighted spaces with product weights
that exploit localization of supports of the basis elements representing the input Gaussian
random field . In this case, the cost of the fast component-by-component algorithm for con-
structing the QMC points scales linearly in terms of the integration dimension. The QMC
convergence rate O(N−1+δ) (independent of the parameter space dimension s) is achieved
under weak summability conditions on the expansion coefficients.

1 Introduction

A particular quasi-Monte Carlo (QMC) quadrature for the approximation of the mean field of
(output functions of) the solution of lognormal diffusion problems is analyzed. The lognormal
diffusion problem under consideration is an elliptic partial differential equation (PDE) with
lognormal stochastic diffusion coefficient a and with deterministic right hand side f . For a
bounded Lipschitz domain D ⊂ R

d, we thus consider

−∇ · (a∇u) = f in D, u = 0 on ∂D. (1)

Let Ω := R
N and define a Gaussian product measure on Ω by

µ(dy) :=
⊗

j≥1

1√
2π
e−

y2j
2 dyj , y ∈ Ω.

The triplet (Ω,
⊗

j≥1 B(R), µ) is a probability space, cp. for example [3, Example 2.3.5]. We
suppose that the Gaussian random field Z = log(a) : Ω → L∞(D) is (formally) represented in
the following way

Z :=
∑

j≥1

yjψj , (2)

∗This work was supported in part by the Swiss National Science Foundation under grant No. 200021-159940.
The authors acknowledge the computational resources provided by the EULER cluster of ETH Zürich. They also
acknowledge the help of Magdalena Keller, a MSc student in the ETH Applied Maths program, for permission to
use her C++ implementation of the fast CBC algorithm.
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where (ψj)j≥1 is a function system of real-valued, bounded, and measurable functions. In par-
ticular, with respect to µ the sequence y = (yj)j≥1 has independent and identically distributed
(i.i.d.) components and for every j ≥ 1, yj is standard normally distributed. That is to say,
yj ∼ N (0, 1), i.i.d. for j ∈ N. The lognormal coefficient a in (1) is formally given by

a := exp(Z) . (3)

For a Banach space B and a strongly measurable mapping F : Ω → B that is µ-integrable,
denote the expectation with respect to µ by the Bochner integral

E(F ) =

∫

Ω
F (y)µ(dy). (4)

The lognormal-parametric PDE in (1) is a prominent example for a class of elliptic PDEs with
unbounded random coefficients, which was considered in [4, 14, 20, 17, 25]. Specifically, we are
interested in approximations of (4) with QMC quadrature. The integrands F := G(u) are linear,
continuous functionals G : H1

0 (D) → R of the parametric solution u of (1). The evaluation of
integrands F for many parameter instances given by QMC points requires solutions of the PDE
(1) for multiple realizations of the input Gaussian random field Z in (2) which in general are to be
solved numerically. Approximate integrand evaluation through Galerkin Finite Element (FE)
discretization introduces a discretization error which is controlled by dimension-independent
error bounds.

The assumptions for the QMC convergence theory in [14] on the functions (ψj)j≥1 relied on
the p-summability of their L∞(D)-norms: in [14], it was assumed that for some p ∈ (0, 1]

∑

j≥1

‖ψj‖pL∞(D) <∞. (5)

The resulting QMC error analysis in [14] requires so called product and order dependent (POD)
QMC weights. These weights are practically relevant for the construction of the generating
vector for the QMC points as they are taken as an input for the construction algorithm. The
computational cost with POD weights of the QMC points is O(sN log(N) + s2N), cp. [28,
Section 5.2], where s denotes the dimension of the integration domain and where N is the
number of QMC points. In the present paper, we extend the QMC convergence theory of
[14] by analyzing consequences for the QMC weights due to accounting for possible locality of
the supports of the functions (ψj)j≥1 in the representation (2) of the Gaussian random field
in the physical domain D. In the analysis in [14, 23], POD QMC weights were essential. As
one principal new contribution, we prove a convergence rate of QMC with randomly shifted
lattice rules from [28] and product weights which is independent of the dimension of integration
and which is (essentially) first order with respect to the number N of QMC points, under
weak summability conditions on the norms of ψj in (2). The computational cost of the
construction of QMC points with product weights is O(sN log(N)), cp. [29, 30], where s is
the dimension of integration and N is the number of QMC points. Another main result of
this paper is that with the use of Gaussian weight functions in the construction of the QMC
points a convergence rate can be shown under considerably weaker assumptions as compared to
exponential weight functions. Randomly shifted lattice rules with POD weights and exponential
weight functions have been analyzed in [14] and numerical experiments have been reported in
[14] as well. Since exponential weight functions have been analyzed before and public domain
software for computational QMC rule generation is available, we present the error analysis for
them as well; besides being of interest in its own right, this part of the present paper also
serves as point of comparison to the (asymptotically stronger) error estimates with Gaussian
weight functions. Theoretical analysis of QMC integration with product weights is relevant
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due to the smaller computational cost and simpler implementation on a computer compared to
QMC with POD weights. In [21, Section 5], the authors analyzed the error of multilevel QMC
with POD weights in the case of globally supported (ψj)j≥1 for a problem of the type of (1).
However, the numerical experiments in [21, Section 4] were performed using QMC with product
weights. Similar to what has been shown for N -term convergence rates in [1], in certain cases
this can imply significant gains in the convergence rate. Here we analyze, as in the case of affine-
parametric coefficients, cp. [12], convergence rates of first order, randomly shifted lattice rules
from [28] for function systems (ψj)j≥1 used in the representation (2) which have local supports
in D. This is motivated, on the one hand, by the complexity of QMC rules according to product
weights scaling linearly with the dimension of integration, cp. [29, 30, 13]. On the other hand,
systems of locally supported ψj may afford better local resolution of the Gaussian random field
Z in D. In particular, if the Gaussian random field is only numerically available, and is neither
stationary nor periodic as, e.g., in [9].

Convergence in Lq(Ω;L∞(D)), q ∈ [1,∞) of the series in (2) will be shown under the as-
sumption that there exists a positive sequence (bj)j≥1 such that

K :=

∥∥∥∥∥∥

∑

j≥1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

<∞ (A1)

and that (bj)j≥1 ∈ ℓp(N) for some p ∈ (0,∞). The sequence (bj)j≥1 will enter the construction
of QMC integration rules via the product weights γ = (γu)u⊂N. These are defined by γ∅ = 1 and

γu :=
∏

j∈u
bρj , ∅ 6= u ⊂ N, |u| <∞, (6)

where ρ > 0 is a constant. With weight sequence (bj)j≥1 ∈ ℓp(N) and for p ∈ (2/3, 2), we obtain
a convergence rate of O(N−1/4−1/(2p)+ε) for sufficiently small ε > 0 1 with a randomly shifted
lattice QMC quadrature rule with product weights (6) and Gaussian weight functions. In the
case that (bj)j≥1 ∈ ℓp(N) for p ∈ (2/3, 1], a randomly shifted lattice QMC quadrature rule with
exponential weight functions and product weights (6) has a convergence rate of O(N−1/p+1/2).
In either case, the implied constants are independent of N , the number of sample points, and
of s, the QMC integration dimension.

In Section 2, we review results from [28] on QMC quadrature required in the following. In
Section 3, we show integrability and approximation of the lognormal diffusion coefficient, which
is applied in Section 5 to estimate the error that is introduced by truncating the expansion of the
Gaussian random field. Existence and uniqueness is shown in Section 4. The main parametric
regularity estimates are discussed in Section 6, which result in convergence rates of the exact
solution in Section 7. Section 8 addresses the impact of a FE discretization in D. Section 9
discusses a particular choice of basis for representation of Gaussian random fields in D, and
verifies that this representation satisfies the conditions in our QMC convergence rate analysis.
Section 10 specializes the foregoing, general QMC-FE error bounds in terms of the widely used
models with Gaussian random fields that have Matérn covariance. Numerical experiments are
given in Section 11. Finally, Section 12 presents some conclusions and generalizations.

2 QMC integration of Gaussian random fields

We recapitulate elements from randomly shifted lattice rules and weighted Sobolev spaces that
are necessary for the QMC convergence theory, cp. [28, Theorem 8].

1Here and throughout, all constants implied in O(·) are independent of the integration dimension s.
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We seek to approximate with a QMC quadrature s-dimensional integrals of the form

Is(F ) :=

∫

Rs

F (y)
s∏

j=1

φ(yj)dy, (7)

where s ∈ N and φ is the standard normal density function, i.e.,

φ(y) :=
1√
2π
e−

y2

2 , y ∈ R.

These integrals arise by truncation of expansions of random quantities in particular function
systems that are random inputs for PDEs. The integrand F will be the composition of a linear
functional G(·) with the solution u. An N -point QMC quadrature for the s-dimensional integral
in (7) is an equal-weight quadrature rule and denoted by Q∆

s,N . Here, ∆ ∼ U((0, 1)s) denotes a
random shift (see, e.g., [8] and the references there). For every s,N ∈ N, let us define

Q∆

s,N (F ) :=
1

N

N−1∑

i=0

F (y(i)),

with judiciously chosen points {y(0), . . . ,y(N−1)} ⊂ R
s.

The s-dimensional cumulative distribution function Φs corresponding to the probability den-
sity φ is defined by

Φs(y) :=

∫

y′≤y

s∏

j=1

φ(y′j) dy
′, y ∈ R

s,

where y
′ ≤ y is understood as y′j ≤ yj for j = 1, . . . , s. In the case that s = 1 we omit the

subscript. For randomly shifted lattice rules the QMC points are obtained by

y
(i) := Φ−1

s

({
(i+ 1)z

N
+∆

})
, i = 0, . . . , N − 1, (8)

where z is a generating vector, and for every c ∈ (0,∞), {c} ∈ [0, 1) denotes the fractional part
of c. We refer to the surveys [8, 22] for further details and references.

The integrands in (7) that are under consideration in this paper belong to weighted, unan-
chored Sobolev spaces. The error analysis of randomly shifted lattice rules involves spaces of
type Wγ , which require weight functions for their definition. In this paper we consider two
particular kinds of coordinate weight functions. Specifically, let us define the Gaussian weight
functions with “variance” αg > 1

w
2
g,j(y) := e

− y2

2αg , y ∈ R, j ∈ N, (9)

and the exponential weight functions with variance αexp
−2 > 0

w
2
exp,j(y) := e−αexp|y|, y ∈ R, j ∈ N . (10)

For a Hilbert space H and for a collection of positive weights γ = (γu)u⊂N, define the weighted
Sobolev space Wγ(R

s;H) as a Bochner space of strongly measurable functions from R
s taking

values in the separable Hilbert space H that have finite Wγ(R
s;H)-norm. Here, for finite param-

eter dimension s ∈ N, the Wγ(R
s;H)-norm of unanchored, mixed first order partial derivatives

is defined by

‖F‖Wγ(Rs;H) :=

 ∑

u⊆{1:s}
γ−1
u

∫

R|u|

∥∥∥∥∥∥

∫

Rs−|u|

∂uF (y)
∏

j∈{1:s}\u
φ(yj)dy{1:s}\u

∥∥∥∥∥∥

2

H

∏

j∈u
w

2
j (yj)dyu




1/2

,
(11)
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where (wj)j≥1 denotes either of the weight functions defined in (9) or in (10) and where the
inner integral is understood as a Bochner integral (cp. for example [35, Chapter V.5]). In the
case that H = R, we simply write Wγ(R

s). We used the notation that {1 : s} denotes the set
of integers {1, . . . , s} and for y ∈ R

s and u ⊂ {1 : s}, y
u
denotes the coordinates (yj)j∈u of y.

We recall a version of [28, Theorem 8] for our choices of weight functions in (9) and in (10).

Theorem 1 Let γ = (γu)u⊆{1:s} be some product weights, s ∈ N the truncation level, and
(wj)j≥1 be either of the weight functions defined in (9) or in (10). Then, a randomly shifted
lattice rule with N points can be constructed in O(sN logN) operations using the fast CBC
algorithm of [30, 29] such that for every F ∈ Wγ(R

s) and for every λ ∈ (1/(2r), 1] there holds
the error bound

√
E∆(|Is(F )−Q∆

s,N (F )|2) ≤


(ϕ(N))−1

∑

∅6=u⊆{1:s}
γλ
u

∏

j∈u
ρ(λ)




1/(2λ)

‖F‖Wγ(Rs),

where Euler’s totient function is denoted by ϕ(·). For weight functions (wg,j)j≥1 defined in (9),

ρ(λ) = 2

(
4
√
2πα2

g

π2−1/αg(2αg − 1)

)λ

ζ(2rλ) and r = 1− 1

2αg

and for weight functions (wexp,j)j≥1 defined in (10)

ρ(λ) = 2

(√
2π exp(α2

exp/(4δ))

π2−2δ(1− δ)δ

)λ

ζ (2rλ) and r = 1− δ for any δ ∈
(
0,

1

2

)
.

This result is [28, Theorem 8]. The value of the first factor in the expression ρ(λ) and the
values of r that correspond to the weight functions (wg,j)j≥1 and (wexp,j)j≥1 are derived in [24,
Example 4 and Example 5], respectively.

3 Lognormal random fields

The Gaussian random field Z is in (2) formally defined as the limit of a series expansion with
i.i.d. standard normally distributed coefficients. For any Banach space (B, ‖ · ‖B) and every
q ∈ [1,∞), let Lq(Ω;B) denote the space of all strongly measurable mappings X : Ω → B such
that ‖X‖qB is µ-integrable. We note that the measurability of ‖X‖B follows from the strong
measurability of X in B. We investigate convergence of the series in (2) in the following theorem.
In its proof and in what follows, for s ∈ N, we define partial sums of (2)

Zs :=

s∑

j=1

yjψj . (12)

Theorem 2 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for some K ∈
(0,∞). Then, the Gaussian random field Z is well defined and for every q ∈ [1,∞), Z ∈
Lq(Ω;L∞(D)). Moreover, for every ε ∈ (0, 1) there exists Cq,ε > 0 such that

‖Z − Zs‖Lq(Ω;L∞(D)) ≤ Cq,ε sup
j>s

{
b1−ε
j

}
,

where for r ∈ N such that r ≥ max{p0/(2ε), ⌈q/2⌉}, the constant Cq,ε is given by

Cq,ε := K‖(bj)j≥1‖εℓp0 (N)
√
2

π1/4
√
r.
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Proof. For a sequence of i.i.d. standard normally distributed variables (yj)j≥1 and for every
s ∈ N, the finite sum Zs =

∑s
j=1 yjψj is weakly measurable, i.e., for every ℓ ∈ (L∞(D))∗, where

(L∞(D))∗ denotes the dual space of L∞(D), ℓ(Zs) =
∑s

j=1 yjℓ(ψj) is measurable as a finite sum
of real valued random variables.

Since the span{ψj : j ∈ {1 : s}} is finite dimensional, Zs is separably valued in span{ψj : j ∈
{1 : s}} ⊂ L∞(D). Pettis’ theorem (e.g. cp. [35, Theorem V.4]) implies that Zs is also strongly
measurable in the space L∞(D). Let s < s1 ∈ N be arbitrary. We observe that

‖Zs1 − Zs‖Lq(Ω;L∞(D)) ≤

∥∥∥∥∥∥

∑

s<j≤s1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

∥∥∥∥∥ sup
s<j≤s1

{bj |yj |}
∥∥∥∥∥
Lq(Ω)

.

We set q′ := ⌈q/2⌉ such that 2q′ = 2⌈q/2⌉ is the smallest even natural number that is greater
or equal than q. We pick r ∈ N such that 2εr ≥ p0 and such that r ≥ q′ and conclude
with the Jensen inequality for concave functions and with the norm estimate ‖ · ‖ℓ∞({s+1:s1}) ≤
‖ · ‖ℓ2r({s+1:s1})

E



(

sup
s<j≤s1

{bj |yj |}
)2q′


 ≤

(
sup

s<j≤s1

{
b1−ε
j

})2q′

E





 ∑

s<j≤s1

b2εrj |yj |2r



q′/r



≤
(

sup
s<j≤s1

{
b1−ε
j

})2q′

E


 ∑

s<j≤s1

b2εrj |yj |2r





q′/r

≤
(

sup
s<j≤s1

{
b1−ε
j

})2q′

 ∑

s<j≤s1

b2εrj

(2r)!

2rr!




q′/r

≤
(

sup
s<j≤s1

{
b1−ε
j

})2q′

‖(bj)j≥1‖2εq
′

ℓp0 (N)

(
(2r)!

2rr!

)q′/r

,

where we used the fact that for a random variable X ∼ N (0, 1), E(X2r) = (2r)!/(2rr!). The
assumption (bj)j≥1 ∈ ℓp0(N) implies that (Zs′)s′≥1 is a Cauchy sequence in Lq(Ω;L∞(D)), which

is a Banach space (cp. [10, Theorem III.6.6]). Define Z̃ to be the unique limit of (Zs′)s′≥1 in
Lq(Ω;L∞(D)). The continuous embedding Lq2(Ω;L∞(D)) ⊂ Lq1(Ω;L∞(D)), for every q1 ≤
q2 ∈ [1,∞), implies that the limit Z̃ does not depend on q. We denote this limit by Z. As an
element of Lq(Ω;L∞(D)), Z is a L∞(D)-valued µ-equivalence class.

The Stirling bounds
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, for every n ∈ N, cp. [11, Equa-

tions (9.5) and (9.8)], imply the assertion of the proposition with

(
(2r)!

2rr!

)1/(2r)

≤ 21/2
(

e√
π

)1/(2r)√r

e
.

✷

For the partial sum Zs in (12), we define

as := exp(Zs) , for every s ∈ N .

Proposition 3 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for K ∈
(0,∞). Then, for every q ∈ [1,∞), a ∈ Lq(Ω;L∞(D)) and there exists a constant C > 0 such
that for every s ∈ N

‖as‖Lq(Ω;L∞(D)) ≤ C .
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Proof. While the space L∞(D) is not separable, the strong measurability of a = exp(Z) in
L∞(D) follows because the composition with the exponential function is a continuous mapping
from L∞(D) to L∞(D). The proof of this proposition is based on an application of Fernique’s
theorem (e.g. cp. [3, Theorem 2.8.5] or [7, Theorem 2.7]). We verify the conditions in order to
apply Fernique’s theorem. Our approach is similar to the proof of [17, Proposition B.1]. We
detail the argument for the convenience of the reader. We claim that for every ℓ ∈ (L∞(D))∗,
ℓ(Z) is centered, normally distributed, i.e., the law of Z is a centered Gaussian measure on

L∞(D). Indeed, for arbitrary s′ ∈ N, ℓ(Zs′) ∼ N (0,
∑s′

j=1 ℓ(ψj)
2). Since

s′∑

j=1

ℓ(ψj)
2 ≤




s′∑

j=1

ℓ(ψj)




2

=


ℓ




s′∑

j=1

ψj






2

≤ ‖ℓ‖2(L∞(D))∗K
2 sup
j≥1

{
b2j
}
,

the monotone sequence
∑s′

j=1 ℓ(ψj)
2 indexed by s′ ∈ N is bounded and hence has a finite limit

that we denote by σ2ℓ . This implies that for fixed ℓ ∈ (L∞(D))∗, the characteristic functions
of the random variables (ℓ(Zs′) : s′ ∈ N) converge pointwise to the characteristic function of a
N (0, σ2ℓ ) distributed random variable as s′ → ∞. Since ℓ(Zs′) converges to ℓ(Z) as s′ → ∞ in
particular in the L2-sense by Theorem 2 and thus also in distribution, Lévy’s continuity theorem
(e.g. cp. [26, Theorem IV.13.2.B]) implies that ℓ(Z) ∼ N (0, σ2ℓ ) and we conclude that the law
of Z is a Gaussian measure on L∞(D), which is one of the conditions of Fernique’s theorem.

We will treat the case s < ∞ first. By Theorem 2, there exists an upper bound C of the
L2(Ω;L∞)-norm of the Gaussian random fields Z and Zs, that is independent of s. The existence
of this uniform upper bound C is the main ingredient of the remaining argument. Let in the
following X ∈ {Z,Zs} be arbitrary. Let κ1 ∈ (1/(1+ exp(−2)), 1) and set κ2 := C/

√
1− κ1 and

conclude with the Chebychev inequality that

1− µ(‖X‖L∞(D) ≤ κ2) = µ(‖X‖L∞(D) > κ2) ≤
E(‖X‖2L∞(D))

κ22
≤ C2

κ22
= 1− κ1.

Hence, µ(‖X‖L∞(D) ≤ κ2) ≥ κ1 > 1/(1 + exp(−2)) > 1/2 . Let us set λ := (1 − κ1)/(32C
2),

which implies that 32λκ22 ≤ 1. Thus, by the monotonicity of the logarithm

log

(
1− µ(‖X‖L∞(D) ≤ κ2)

µ(‖X‖L∞(D) ≤ κ2)

)
+ 32λκ22 ≤ log

(
1− κ1
κ1

)
≤ −1.

This is the second requirement in order to apply [7, Theorem 2.7]. Since Zs is in particular a
Gaussian measure on the separable Banach space span{ψj : j ∈ {1 : s}} with respect to the
L∞(D)-norm, [7, Theorem 2.7] implies that

E(exp(λ‖Zs‖2L∞(D))) ≤ exp(16λκ22) +
exp(2)

exp(2)− 1
. (13)

Since κ2 and λ do not depend on s (because C does not), the upper bound in (13) is uniform
with respect to s. For every x ∈ R, qx ≤ λx2+q2/(4λ) is concluded from 0 ≤ (

√
λx−q/(2

√
λ))2,

which yields the second assertion of the proposition, i.e.,

E(‖ exp(Zs)‖qL∞(D)) ≤ E(exp(λ‖Zs‖L∞(D))) exp

(
q2

4λ

)
. (14)

The case of Z (corresponding formally to the case of s = ∞) is treated separately. Since L∞(D)
is not separable, [7, Theorem 2.7] is not applicable. We argue with [3, Theorem 2.8.5] instead.
To this end, we define

λ̂ :=
1

24κ22
log

(
µ(‖Z‖L∞(D) ≤ κ2)

1− µ(‖Z‖L∞(D) ≤ κ2)

)
,
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which is strictly positive because κ1 > 1/2. Then, [3, Theorem 2.8.5] is applicable and we obtain

E(exp(λ̂‖Z‖2L∞(D))) <∞,

which implies as above, cp. (14), that E(‖ exp(Z)‖qL∞(D)) <∞. ✷

We note that the line of argument in the second paragraph of the proof originates from the proof
of [4, Proposition 3.10].

Remark 4 The property that a = exp(Z) ∈ Lq(Ω;L∞(D)), for every q ∈ [1,∞), also holds
under weaker summability assumptions on (bj)j≥1, cp. [1, Theorem 2.2] that was proven with
a different approach. However the membership of (bj)j≥1 in ℓp(N) for a certain range of p (as
assumed in Proposition 3) seems indispensible for the considered QMC rules to be applicable,
cp. Section 7. Also, our argument yields bounds of truncated expansions of Gaussian random
fields that are uniform in s.

Proposition 5 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for K ∈
(0,∞). Then, for every q ∈ [1,∞) and every ε ∈ (0, 1) there exists a constant C > 0 such that
for every s ∈ N

‖a− as‖Lq(Ω;L∞(D)) ≤ C sup
j>s

{
b1−ε
j

}
,

Proof. The fundamental theorem of calculus implies that for every t1, t2 ∈ R, |et2 − et1 | ≤
(et2 + et1)|t2 − t1|. Thus, by the Cauchy–Schwarz inequality

‖a− as‖Lq(Ω;L∞(D)) ≤ ‖a+ as‖L2q(Ω;L∞(D))‖Z − Zs‖L2q(Ω;L∞(D)).

The assertion follows with the triangle inequality, Theorem 2, and Proposition 3. ✷

Our ensuing analysis of the solution to (1) will require the following random variables:

amin := ess inf
x∈D

{a(x)}, amax := ‖a‖L∞(D), a
s
min := ess inf

x∈D
{as(x)}, asmax := ‖as‖L∞(D) .

Here, s ∈ N is arbitrary.

Corollary 6 Let the assumption of Proposition 3 be satisfied. Then, for every q ∈ [1,∞),
a−1
min ∈ Lq(Ω;L∞(D)) and there exists a constant C > 0 such that for every s ∈ N

∥∥∥∥
1

asmin

∥∥∥∥
Lq(Ω;L∞(D))

≤ C.

4 Existence and uniqueness

In this paper we are interested in mean field approximations. We consider the solution to (1)
as a µ-equivalence class taking values in V := H1

0 (D). The existence and uniqueness of the
solution to (1) is well known, cp. [4, Proposition 2.4]; we review the basic results, following the
presentation in [17, Section 3.1].

Since the right hand side in (1) is deterministic, we are interested in the data-to-solution map
Sf that maps a (realization of the) diffusion coefficient â ∈ L∞(D) to the solution û ∈ V for fixed
right hand side f ∈ V ∗, where V ∗ denotes the dual space of V . In what follows, we fix f ∈ V ∗
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unless explicitly stated otherwise. For every â ∈ L∞
+ (D) := {ã ∈ L∞(D) : ess infx∈D{ã(x)} > 0},

consider the deterministic diffusion equation problem: find a unique û ∈ V such that
∫

D
â∇û · ∇v dx = f(v), ∀v ∈ V. (15)

For such â, the bilinear form (w, v) 7→
∫
D â∇w · ∇v dx is continuous and coercive on V × V ,

since by â ∈ L∞
+ (D)

∣∣∣∣
∫

D
â∇w · ∇v dx

∣∣∣∣ ≤ ‖â‖L∞(D)‖w‖V ‖v‖V , ∀w, v ∈ V,

and ∫

D
â∇w · ∇w dx ≥ ess inf

x∈D
{â(x)}‖w‖2V , ∀w ∈ V.

The Lax–Milgram lemma implies that the problem in (15) is well posed. Thus, for every fixed
f ∈ V ∗ the mapping

Sf : L∞
+ (D) → V : â 7→ û

is well defined. Moreover, the Lax–Milgram lemma implies that for every â ∈ L∞
+ (D)

‖Sf (â)‖V ≤ 1

ess infx∈D{â(x)}
‖f‖V ∗ . (16)

Also it is well known that Sf : L∞
+ (D) → V is locally Lipschitz continuous, which can be shown

by the second Strang lemma (see (18) ahead or [17] for details).
Let in the following a denotes the lognormal random field in Proposition 3. The weak (or

variational) formulation of the parametric, elliptic PDE (1) for fixed, deterministic f ∈ V ∗ reads:
find a strongly measurable V -valued mapping u : Ω → V such that

∫

D
a∇u · ∇v dx = f(v), ∀v ∈ V . (17)

Due to Proposition 3, a is strongly measurable in L∞(D) and by Corolloary 6, amin > 0 µ-
almost surely (a.s.). Hence, a takes values in L∞

+ (D) and u := Sf (a) is the unique solution
to (17), where we recall that uniqueness is meant as V-valued µ-equivalence class. The strong
measurability in V of u is deduced from the strong measurability of a and the continuity of Sf .
By (16) and Corollary 6, for every q ∈ [1,∞) there holds

‖u‖Lq(Ω;V ) ≤
∥∥∥∥

1

amin

∥∥∥∥
Lq(Ω)

‖f‖V ∗ <∞ .

5 Dimension truncation

In applications of QMC integration a finite dimensional integration domain is required, which
in our case will be Rs for s ∈ N. Truncation of the series in (2) will introduce a truncation error.
For every s ∈ N, us := Sf (a

s) uniquely solves
∫

D
as∇us · ∇v dx = f(v), ∀v ∈ V.

Proposition 7 Let the assumption in (A1) be satisfied for (bj)j≥1 ∈ ℓp0 for some p0 ∈ (0,∞)
and for some K > 0. Let further G(·) ∈ V ∗ and ε ∈ (0, 1) be arbitrary. For every q ∈ [1,∞)
there exists a positive constant Cε that is independent of f and such that for every s ∈ N

‖u− us‖Lq(Ω;V ) ≤ Cε‖f‖V ∗ sup
j>s

{
b1−ε
j

}
.
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Suppose further that the sequence (bj)j≥1 in assumption (A1) belongs to ℓp0(N) for some p0 ∈
(0, 4]. Then, there exists a constant C > 0 independent of f and of G(·) such that for every
s ∈ N

|E(G(u))− Is(G(u
s))| ≤ C‖G(·)‖V ∗‖f‖V ∗ sup

j>s

{
b
2−p0/2
j

}
.

Proof. The second Strang lemma implies that

‖u− us‖V ≤ 1

amin asmin

‖a− as‖L∞(D)‖f‖V ∗ . (18)

By the Hölder inequality

‖u− us‖Lq(Ω;V ) ≤
∥∥∥∥

1

amin

∥∥∥∥
L3q(Ω)

∥∥∥∥
1

asmin

∥∥∥∥
L3q(Ω)

‖a− as‖L3q(Ω;L∞(D))‖f‖V ∗ .

The first assertion follows with Proposition 5 and Corollary 6.
For the proof of the second estimate, we introduce the Wiener–Hermite polynomial chaos

expansion of the solution u

u(y) =
∑

τ∈F
uτHτ (y), uτ :=

∫

Ω
u(y)Hτ (y)µ(dy), Hτ (y) :=

∏

j≥1

Hτj (yj), (19)

where Hk(y) is the k-th order univariate Hermite polynomial such that Hk, k ∈ N0, are nor-
malized in L2(R, 1√

2π
e−y2/2dy). Note that F := {τ ∈ N

N
0 :
∑

j≥1 τj < ∞}. As a consequence,

(Hτ )τ∈F is an orthonormal basis of L2(Ω, µ;V ). This implies that the polynomial chaos expan-
sion in (19) converges in L2(Ω, µ;V ). Since H0(y) = 1 and H2k−1(0) = 0, k ∈ N,

E(u)− E(us) = −
∑

0 6=τ∈F
uτ

s∏

j=1

(∫

R

Hτj (yj)
1√
2π
e−y2j /2dyj

)∏

j>s

Hτj (0) = −
∑

τ∈Fs
2

uτHτ (0),

(20)
where

Fs
2 := {τ ∈ F : τ 6= 0, τj = 0, j = 1, . . . , s, τj ∈ 2N0, j > s}

and 2N0 = {0, 2, 4, . . .} denotes the set of even, nonnegative integers. Estimates of Her-
mite polynomials are given in [32, Chapter 1]. There, the author uses a convention that

H̃k(y) = (−1)key
2 dk

dyk
e−y2 (in [32, Chapter 1] also denoted by (Hk)k≥0). Note that Hk(y) =

H̃k(y/
√
2)/

√
2kk!, k ∈ N0, y ∈ R. By [32, Equations (1.1.2), (1.1.18), and (1.1.21)],

(H2k(0))
2 =

1√
π

Γ(k + 1/2)

Γ(k + 1)
≤ 1, k ∈ N0,

where Γ(·) denotes the Gamma function. Weighted ℓ2(F)-summability of the polynomial chaos
coefficients in this setting has been analyzed in [1, Section 5]. By [1, Theorems 3.3 and 4.1],
there exists a constant C > 0 such that

∑

τ∈F
Bτ‖uτ‖2V ≤ CE

(
amax

amin
‖u‖2V

)
, (21)

where for arbitrary integer r ∈ N and some κ ∈ (0, log(2)/(
√
rK)) with K as in (A1)

Bτ :=
∏

j≥1

(r∧τj∑

ℓ=0

(
τj
ℓ

)
ρ2ℓj

)
and ρj :=

κ

bj
, j ≥ 1.
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In the following we choose r = 2 and obtain the lower bound Bτ ≥∏j∈supp(τ ) ρ
2(2∧τj)
j . We note

that for real numbers y1, y2 ∈ R, y1 ∧ y2 := min{y1, y2}. Let (Aτ )τ∈Fs
2
∈ ℓ2(Fs

2). By (20) and
(21) and the Cauchy–Schwarz inequality,

|E(G(u))− Is(G(u
s))| ≤ ‖G(·)‖V ∗


∑

τ∈Fs
2

‖uτ‖2VA−2
τ




1/2
∑

τ∈Fs
2

A2
τ




1/2

≤ ‖G(·)‖V ∗ sup
τ∈Fs

2

{B−1/2
τ A−1

τ
}


∑

τ∈Fs
2

Bτ‖uτ‖2V




1/2
∑

τ∈Fs
2

A2
τ




1/2

.

We choose for some c ∈ (0, 1/‖(bj)j≥1‖ℓ∞(N))

Aτ :=
∏

j≥1

(cbj)
τjp0/4, τ ∈ Fs

2 ,

and observe that

∑

τ∈Fs
2

A2
τ
=
∏

j>s

∑

k≥0

(cbj)
(p0/4)4k =

∏

j>s

1

1− (cbj)(p0/4)4
≤ exp


∑

j>s

(cbj)
p0

1− (cbj)p0


 <∞, .

Here, we used the estimate 1+ x ≤ exp(x), x ≥ 0, and the fact that the multiindices in Fs
2 only

have even entries. We conculde now that there exists a constant C > 0 such that

|E(G(u))− Is(G(u
s))| ≤ C sup

j>s

{
b
2−p0/2
j

}
‖G(·)‖V ∗‖f‖V ∗ ,

where we crucially used that multiindices in Fs
2 satisfy that τj = 0, j = 1, . . . , s, and τj 6= 1,

j > s. ✷

Realizations of the Gaussian random field Zs can be obtained from Gaussian vectors y ∈ R
s.

Specifically, one realization of Zs requires s draws of independent, standard normally distributed
random variables which results in a vector (y1, . . . , ys)

⊤ ∈ R
s. Since the support of the s-

dimensional multivariate Gaussian measure on R
s with covariance equal to the identity is R

s,
the whole of Rs is the parameter set. We denote realizations of Zs by Zs(y) :=

∑s
j=1 yjψj , where

y = (y1, . . . , ys)
⊤ ∈ R

s is the particular realization of the i.i.d. standard normally distributed
coefficient sequence (yj)1≤j≤s. Moreover, for every s ∈ R

s, Zs also denotes the respective
mapping from R

s to L∞(D). Similarly, for every s ∈ R
s, as also denotes the respective mapping

from R
s to L∞

+ (D), asmin and asmax also denote the respective mappings from R
s to (0,∞), and

us also denotes the respective mapping from R
s to V .

6 Parametric regularity

By the definition of the weighted Sobolev norm in (11), it is crucial for the QMC convergence
analysis to derive estimates of the mixed partial derivatives ∂uus, u ⊂ {1 : s}, in order to bound
the Wγ(R

s;V )-norm of us uniformly in the parameter dimension s.
Bounds on the parametric partial derivatives of the solution us have been proven in [20, 14, 1].

It is well known that for every 0 6= τ ∈ N
s
0 and for every y ∈ R

s there holds

∫

D
as(y)∇∂τus(y)·∇v dx = −

∫

D

∑

ν≤τ ,ν 6=τ

(
τ

ν

) ∏

j∈supp(τ )
ψ
τj−νj
j as(y)∇∂νus(y)·∇v dx, ∀v ∈ V,

(22)
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cp. for example [1, Lemma 3.1] and see also [20, Equation (3.6)]. The arguments in [20, 14]
rely on global bounds of the functions (ψj)j≥1. Specifically, the L∞(D)-norm of the functions
(ψj)j≥1 was (in these references) taken inside the summation over multiindices in (22). This
way information of locality of the support of the functions (ψj)j≥1 is lost. For the quantitative
analysis of parametric regularity, we introduce for every s ∈ N, for every y ∈ R

s and every v ∈ V
the parametrized energy norm ‖v‖as(y) by

‖v‖as(y) :=
√∫

D
as(y) |∇v|2 dx .

For every y ∈ R
s and every v ∈ V there holds

(asmin(y))
1/2‖v‖V ≤ ‖v‖as(y) ≤ (asmax(y))

1/2‖v‖V . (23)

The following proposition was proven with an approach that accounts for possible locality of the
supports. We state a version of first order mixed partial derivatives and truncated dimension.

Proposition 8 [1, Theorem 4.1] Assume that there exists a sequence (ρj)j≥1 of positive reals
such that ∥∥∥∥∥∥

∑

j≥1

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

< log(2) .

Then, there exists a constant C > 0 such that for every s ∈ N and every y ∈ R
s

∑

u⊂{1:s}
‖∂uus(y)‖2as(y)

∏

j∈u
ρ2j ≤ C‖us(y)‖2as(y) .

We extend the parametric regularity estimates that are given in Proposition 8 in order to obtain
estimates that are suitable to yield dimension independent convergence rates of randomly shifted
lattice rules.

Theorem 9 Let the assumption in (A1) be satisfied for some K > 0. Let (wj)j≥1 be either
of the weight functions defined in (9) and (10). Let κ ∈ (0, log(2)/K) be fixed and p′ ∈ (0, 1).
There exists a constant C > 0 such that for every s ∈ N, and for positive γ,

‖us‖2Wγ(Rs;V ) ≤ C‖f‖2V ∗

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u
φ(yj)



 dy

× sup
u⊂{1:s}

γ−1
u

∏

j∈u
b2p

′

j .

Proof. We obtain with the Jensen inequality, for any s ∈ N,

‖us‖2Wγ(Rs;V )

≤
∑

u⊂{1:s}

1

γ
u

∫

Rs

‖∂uu(y)‖2V
∏

j∈{1:s}\u
φj(yj)

∏

j∈u
w

2
j (yj)dy

≤
∫

Rs

∑

u⊂{1:s}

κ2|u|

γ
u

∏
j∈u b

2(1−p′)
j

‖∂uu(y)‖2V sup
u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u
φ(yj)



 dy.
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In the present setting, the assumption of Proposition 8 is satisfied by the sequence (ρj)j≥1 =
(κ/bj)j≥1. Hence, by the Hölder inequality and Proposition 8, and using (23) we obtain the
following bound

‖us‖2Wγ(Rs;V ) ≤
∫

Rs

1

asmin(y)


 ∑

u⊂{1:s}
‖∂uus(y)‖2as(y)γ−1

u

∏

j∈u

κ2

b
2(1−p′)
j




× sup
u⊂{1:s}

∏

j∈u






b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u
φ(yj)



 dy

≤
∫

Rs

1

asmin(y)
C‖us(y)‖2as(y) sup

u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u
φ(yj)



 dy

× sup
u⊂{1:s}

γ−1
u

∏

j∈u
b2p

′

j

≤ C‖f‖2V ∗

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u
φ(yj)



 dy

× sup
u⊂{1:s}

γ−1
u

∏

j∈u
b2p

′

j ,

where we have used that ‖us(y)‖as(y) ≤ ‖f‖V ∗/
√
asmin(y). ✷

Corollary 10 Under the assumption of Theorem 9, there exists a finite constant C such that
for every s ∈ N and for every G(·) ∈ V ∗ holds for F = G(us)

‖F‖Wγ(Rs) ≤ C‖G(·)‖V ∗‖f‖V ∗

√√√√√
∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}

∏

j∈u

(
b
2(1−p′)
j

κ2

)
w

2
j (yj)

∏

j∈{1:s}\u
φ(yj)dy

× sup
u⊂{1:s}

γ
−1/2
u

∏

j∈u
bp

′

j .

7 QMC analysis for the exact solution

In this section we show dimension-independent convergence rates for QMC integration of (func-
tionals of) the parametric solution us(y), which are obtained from the parametric regularity
bounds shown in Section 6. The cases of Gaussian and exponential weight functions in the
norm (11) will be treated separately, since the ensuing analysis suggests that the convergence
rates hold under different summability assumptions on the sequence (bj)j≥1. In this section we
assume that the integrand functions can be evaluated exactly. Ahead, in Section 8, the addi-
tional discretization error that arises by single-level Galerkin discretizations of the parametric
PDE (17) is taken into account.

Theorem 11 [Gaussian weight functions] Let assumption (A1) be satisfied for K > 0 and for
(bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2). For some ε ∈ (0, 3/4− 1/(2p)) such that ε ≤ 1/(2p)− 1/4
set p′ = p/4 + 1/2− εp. Let (wg,j)j≥1 be the weight functions defined in (9) with

αg ∈
(

p

2(p− p′)
,

p

p− 2(1− p′)

)
. (24)
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Define the product weights

γu :=
∏

j∈u
b2p

′

j , u ⊂ N, |u| <∞ . (25)

Let s ∈ N and G(·) ∈ V ∗ be given. Then, for every N ∈ N a randomly shifted lattice rule with
N points can be constructed in O(sN logN) operations using the fast CBC algorithm of [30, 29]
such that the root-mean square error over all random shifts can be estimated as follows: there
exists a constant C > 0 that is independent of s and N such that

√
E∆(|Is(G(us))−Q∆

s,N (G(us))|2) ≤ C (ϕ(N))−(1/(2p)+1/4−ε).

Proof. The assertion of the theorem will follow by Theorem 1 once the Wγ(R
s;V )-norm of

us has been bounded independently of s, which in turn will be deduced from the bound in
Theorem 9 and in Corollary 10. To this end, fix κ ∈ (0, log(2)/K). Since p > 2(1−p′) is implied
by (3/4− 1/(2p)) > ε, thus q := p/(2(1− p′)) > 1. From the Jensen inequality we obtain

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
g,j(yj)

∏

j∈{1:s}\u
φ(yj)



 dy

≤
∫

Rs



(

1

(asmin(y))
2

)q ∑

u⊂{1:s}

∏

j∈u

bpj
κ2q

w
2q
g,j(yj)

∏

j∈{1:s}\u
φ(yj)

q




1/q

dy

≤



∫

Rs

(
1

(asmin(y))
2

)q ∑

u⊂{1:s}

∏

j∈u

bpj
κ2q

w
2q
g,j(yj)φ(yj)

−q
∏

j∈{1:s}
φ(yj)dy




1/q

=


 ∑

u⊂{1:s}

∏

j∈u

bpj
κ2q

∫

Rs

(
1

(asmin(y))
2

)q∏

j∈u
w

2q
g,j(yj)φ(yj)

−q
∏

j∈{1:s}
φ(yj)dy




1/q

.

(26)

Here, we inserted the factor 1 =
∏

j∈{1:s} φ(yj)φ(yj)
−1 and we moved factors under the exponent

1/q to move the exponent 1/q outside of the integral with the Jensen inequality.
The parameter αg > 1 of the weight functions (wg,j)j≥1 is chosen such that αg < q/(q − 1),

which implies that 1 > (1−1/αg)q. The function x 7→ x/(x−1) is strictly decreasing on (1,∞).
Thus, there exists q′ > q such that αg < q′/(q′ − 1) and therefore also 1 > (1 − 1/αg)q

′. Since∫
R
exp(−y2/(2σ2))dy =

√
2πσ for every σ > 0, it holds that

∫

R

w
2q′

g,j (y)φ(y)
−q′φ(y)dy = (

√
2π)q

′−1

∫

R

e
− y2

2

(
1−

(
1− 1

αg

)
q′
)

dy =

√
(2π)q′

αg

αg − (αg − 1)q′
=: C ′.

The Hölder inequality applied with q′/q > 1 and conjugate q′/(q′ − q) results in
∫

Rs

(
1

(asmin(y))
2

)q∏

j∈u
w

2q
g,j(yj)φ(yj)

−q
∏

j∈{1:s}
φ(yj)dy

≤



∫

Rs

(
1

(asmin(y))
2

)qq′/(q′−q) ∏

j∈{1:s}
φ(yj)dy




(q′−q)/q′

∫

R|u|

∏

j∈u
w

2q′

g,j (yj)φ(yj)
−q′φ(yj)dy




q/q′

=



∫

Rs

(
1

(asmin(y))
2

)qq′/(q′−q) ∏

j∈{1:s}
φ(yj)dy




(q′−q)/q′

(C ′)|u|q/q
′

=

(
E

((
1

(asmin)
2

)qq′/(q′−q)
))(q′−q)/q′

(C ′)|u|q/q
′
=: C ′′(C ′)|u|q/q

′
,
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where C ′′ can be bounded independently of s by Corollary 6 and by the Cauchy–Schwarz in-
equality. Together with (26) and [23, Lemma 6.3], we obtain that

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
g,j(yj)

∏

j∈{1:s}\u
φ(yj)



 dy ≤


C ′′ ∑

u⊂{1:s}

∏

j∈u

bpj (C
′)q/q

′

κ2q




1/q

≤ (C ′′)1/q exp


(C ′)q/q

′

qκ2q

∑

j≥1

bpj


 ,

which bound is independent of s and finite by the assumption (bj)j≥1 ∈ ℓp(N). Then, by
Corollary 10, there exists a constant C independently of s such that for our chosen weights

‖G(us)‖Ws,γ(Rs) ≤ C‖G(·)‖V ∗‖f‖V ∗ .

The parameter αg of the weight functions (wg,j)j≥1 is chosen such that αg > p/(2(p − p′)),
which implies that λ > 1/(2r), where λ := p/(2p′) and r := 1 − 1/(2αg). Also note that
ε ≤ 1/(2p)− 1/4 implies λ ≤ 1. We recall from Theorem 1

ρ(λ) := 2

(
4
√
2πα2

g

π2−1/αg(2αg − 1)

)λ

ζ (2rλ) .

The two conditions on the parameter αg of the weight functions, that αg < q/(q − 1) and that
αg > p/(2(p− p′)), are compatible, since

p

2(p− p′)
<

q

q − 1
=

p

p− 2(1− p′)

is implied by

p′ <
p

4
+

1

2
.

Note that p > p/4 + 1/2 > p′ implies that αg is well defined. Since product weights are
considered, [23, Lemma 6.3] implies with the assumption (bj)j≥1 ∈ ℓp(N) that

∑

∅6=u⊂{1:s}
γλ
u
ρ(λ)|u| ≤

∑

u⊂N,|u|<∞

∏

j∈u
bpjρ(λ)

|u| ≤ exp


∑

j≥1

bpjρ(λ)


 <∞,

which bound is uniform in s. The assertion of the theorem follows with Theorem 1 applied
with the choices λ = p/(2p′) and p/(2(p− p′)) < αg < p/(p− 2(1− p′)). The convergence rate
resulting from Theorem 1 is 1/(2λ) = p′/p = 1/(2p) + 1/4− ε. ✷

Remark 12 In Theorem 11, the case p = 2 does not seem accessible with the present argument,
since in Theorem 1 neither of the choices λ > 1 nor αg = 1 are permitted.

Theorem 13 [Exponential weight functions] Let assumption (A1) be satisfied for K > 0 and
for (bj)j≥1 ∈ ℓp(N) for p ∈ (2/3, 1]. Let (wexp,j)j≥1 be the weight functions defined in (10) with
αexp > 2K supj≥1{bj}. Define p′ := 1− p/2 ∈ [1/2, 2/3). Let s ∈ N and G(·) ∈ V ∗ be given and
define product weights

γu :=
∏

j∈u
b2p

′

j , u ⊂ N, |u| <∞ . (27)

Then, for every N ∈ N a randomly shifted lattice rule with N points can be constructed in
O(sN logN) operations using the fast CBC algorithm of [30, 29] such that the root-mean square
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error over all random shifts can be estimated independently of s and N , i.e., there exists a
constant C > 0 that is independent of s and N such that

√
E∆(|Is(G(us))−Q∆

s,N (G(us))|2) ≤ C (ϕ(N))−1/p+1/2 .

Proof. The assertion of the theorem will follow from Theorem 1 once the Wγ(R
s;V )-norm of

us has been bounded independently of s. This, in turn, will be shown using Theorem 9. Let
κ ∈ (0, log(2)/K) be fixed. The choice p′ = 1− p/2 implies that 2(1− p′) = p and we obtain

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
exp,j(yj)

∏

j∈{1:s}\u
φ(yj)



 dy

≤
∫

Rs

(
1

(asmin(y))
2

) ∑

u⊂{1:s}

∏

j∈u

bpj
κ2

w
2
exp,j(yj)

∏

j∈{1:s}\u
φ(yj)dy

=
∑

u⊂{1:s}

∏

j∈u

bpj
κ2

∫

Rs

(
1

(asmin(y))
2

)∏

j∈u
w

2
exp,j(yj)

∏

j∈{1:s}\u
φ(yj)dy.

We observe that for every y ∈ R
s,

(
1

(asmin(y))
2

)
≤ e2‖Z(y)‖L∞(D) ≤ e2K supj∈{1:s}{|yj |bj} ≤ e2K

∑
j∈{1:s} |yj |bj ,

which allows for an upper bound of the integrand that is in product form to separate the integrals.
Since the parameter αexp of the weight functions satisfies that αexp > 2K‖(bj)j≥1‖ℓ∞(N), we
obtain that for every j ∈ {1 : s}

∫

R

e2K|yj |bj
w

2
j (yj)dyj =

1

αexp − 2Kbj

and (as in [14, Equation (4.15)])

1 ≤
∫

R

e2K|yj |bjφ(yj)dyj = 2 exp

(
(2Kbj)

2

2

)
Φ(2Kbj) ≤ exp

(
(2Kbj)

2

2
+

4Kbj√
2π

)
.

Here, we used the bound Φ(y) ≤ 1/2 exp(2y/
√
2π) for every y ≥ 0, which can be shown by an

affine approximation of Φ and the elementary bound 1+x ≤ ex for every x ∈ [0,∞) (we refer to
[14, p. 355] for details). By the assumption that (bj)j≥1 ∈ ℓp(N) ⊂ ℓ1(N), for every u ⊂ {1 : s}
holds

∏

j∈u
exp

(
(2Kbj)

2

2
+

4Kbj√
2π

)
≤ exp


∑

j≥1

(2Kbj)
2

2
+

4Kbj√
2π


 =: C <∞ .

We conclude with [23, Lemma 6.3] and the assumption (bj)j≥1 ∈ ℓp(N) that

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
exp,j(yj)

∏

j∈{1:s}\u
φ(yj)



 dy

≤ C
∑

u⊂{1:s}

∏

j∈u

bpj/κ
2

αexp − 2Kbj

≤ C exp


∑

j≥1

bpj/κ
2

αexp − 2Kbj


 <∞.
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By Theorem 9 we obtain for our choice (27) of product weights γ

‖G(us)‖Wγ(Rs) ≤
√
C exp


1

2

∑

j≥1

bpj/κ
2

αexp − 2Kbj


 <∞.

Here, the constant C > 0 is independent of the integration dimension s. The assertion now
follows similarly as in the proof of Theorem 11 from Theorem 1. We have chosen the weight
functions defined in (10) with λ = p/(2p′) and δ < 1− 1/(2λ). We note that by the assumption
(bj)j≥1 ∈ ℓp(N) and [23, Lemma 6.3], for every s ∈ N,

∑

u⊂{1:s}
γλ
u
ρ(λ)|u| =

∑

u⊂{1:s}

∏

j∈u

(
bpjρ(λ)

)
≤ exp


∑

j≥1

bpjρ(λ)


 <∞.

✷

The QMC convergence rate bounds in Theorems 11 and 13 are also applicable for globally sup-
ported functions (ψj)j≥1 as studied in [14]. The product structure of the QMC weight sequences
γ = (γu)u⊂N,|u|<∞ considered here entails stronger summability conditions than those in these
references on the sequence (bj)j∈N to achieve a prescribed, dimension-independent convergence
rate.

Corollary 14 Suppose that the assumption that (5) is satisfied for some p ∈ (2/5, 2/3). Define
the sequence (bj)j≥1 by bj := ‖ψj‖1−p

L∞(D), j ≥ 1. Then,

1. a randomly shifted lattice QMC rule based on Gaussian weight functions with product
weights converges with rate 1/(2p)− 1/4− ε for ε > 0 sufficiently small.

2. a randomly shifted lattice QMC rule based on exponential weight functions with product
weights for p ∈ (2/5, 1/2] converges with rate 1/p− 3/2.

We remark that in [14], for exponential weight functions, globally supported (ψj)j≥1 and for
summability exponent p ∈ (2/3, 1), the dimension-independent convergence rate 1/p − 1/2 in
terms of N was established for a randomly shifted lattice rule with product and order dependent
weights, from [28]. For such weights, however, the fast CBC construction of QMC rules has
cost which increases quadratically w.r. to the quadrature dimension s, whereas fast CBC con-
structions for product weights scale linearly w.r. to s. A trivial case where QMC with product
weights is beneficial also for globally supported ψj ’s is for p ≈ 2/5. Since QMC by randomly
shifted lattice rules converges at most at first order, QMC with POD and product weights
achieve essentially the same convergence rate, whereas QMC with product weights has a signif-
icantly smaller computational cost to construct N QMC points in s dimensions: O(sN log(N))
vs. O(sN log(N) + s2N).

8 Combined QMC Finite Element discretization

In general, the exact evaluation of the solution of (1) is not possible as required for the compu-
tation of Q∆

s,N (G(us)) for a functional G(·) ∈ V ∗. We approximate the solution by a Galerkin
FE method. For simplicity we introduce the assumption that

D ⊂ R
d is a bounded polyhedron with plane faces. (A2)

Let {Th}h>0 be a family of shape regular, simplicial triangulations of the polygonal resp. poly-
hedral domain D, where h is the maximal diameter of all elements in Th. Let Vh denote all
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continuous piecewise polynomal functions of total degree r ≥ 1, that vanish on ∂D. Thus,
Vh ⊂ V is a subspace such that dim(Vh) = O(h−d) as h → 0. The deterministic Galerkin
discretization reads: for every â ∈ L∞

+ (D) find ûh ∈ Vh such that

∫

D
â∇ûh · ∇vh dx = f(v), ∀vh ∈ Vh. (28)

From the discussion in Section 4 we know that the problem in (28) is well posed. Similar to
Section 4, we denote by Sh

f the discretized data-to-solution map that maps a (realization of the)

diffusion coefficient â ∈ L∞
+ (D) to the FE solution ûh ∈ Vh for fixed right hand side f ∈ V ∗. We

note that Sh
f : L∞

+ (D) → Vh ⊂ V is continuous. This implies that the FE solution

us,h := Sh
f (a

s)

is strongly measurable in V for every h > 0 and s ≥ 1. It is the unique solution to the
s-parametric, deterministic variational problem

∫

D
as∇us,h · ∇vh dx = f(v), ∀vh ∈ Vh

as a Vh-valued µ-equivalence class; see also [17, Section 4.1] for details.
Let Ct(D), t ∈ [0,∞), denote the Hölder spaces such that for k ∈ N, Ck(D) is the space of

k-times continuously differentiable functions on D with bounded derivatives on D. Regularity
of solutions to (15) in Sobolev scales accounting for singularities due to re-entrant corners has
been studied for d = 2 in [31, 15], where in [31, Lemma 5.2] the explicit dependence of the
constant in the error bound has been tracked: let t ∈ (0, 1), τ ∈ (0,max{t, π/βmax})\{1/2}, and
assume that f ∈ H−1+τ (D) and â ∈ Ct(D) ∩L∞

+ (D), then Sf (â) ∈ H1+τ (D) and there exists a
constant C such that for every f ∈ H−1+τ (D) and for every â ∈ Ct(D) ∩ L∞

+ (D)

‖Sf (â)‖H1+τ (D) ≤ C
‖â‖L∞(D)

(ess infx∈D{â(x)})4
‖â‖2

Ct(D)
‖f‖H−1+τ (D), (29)

where βmax is the maximal opening angle of the interior tangent cones to ∂D with vertex in the
corner points of D. Under (A2), for d = 2, in polygons D with straight sides the regularity of
the inverse of the Dirichlet Laplacean (−∆)−1 : V ∗ → V is, in Sobolev scales, limited by the
maximal interior angle βmax of D such that (−∆)−1 : H−1+τ (D) → H1+τ (D) ∩ V is bounded
for every τ ∈ [0, π/βmax), cp. [15, Section 5]. Let to the end of this section d = 2.

We impose the hypothesis (see Proposition 18 ahead for a class of instances) that for some
t > 0, a and as are strongly measurable in Ct(D), for every s ∈ N. Moreover, we assume that
for every q ∈ [1,∞) there exists a constant C such that for every s ∈ N

‖as‖Lq(Ω;Ct(D)) ≤ C. (A3)

Proposition 15 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and let the
assumption in (A2) and in (A3) hold for d = 2 and for some t > 0. Let f ∈ H−1+τ (D) and let
G(·) ∈ H−1+τ ′(D) for τ, τ ′ ∈ (0,max{t, π/βmax})\{1/2 + N0}. For every q ∈ [1,∞) there exists
a constant C independent of h > 0 such that for every s ≥ 1

‖G(us)−G(us,h)‖Lq(Ω) ≤ Chmin{τ,r}+min{τ ′,r} .

Proof. The first part of the proof follows similarly as respective arguments that resulted in [17,
Theorem 3.7]. We decompose τ = ⌊τ⌋ + {τ}, where {τ} is the fractional part, and show by
induction on n ∈ {0, . . . , ⌊τ⌋} that the Lq(Ω;H1+n+{τ}(D))-norm of Sf (a

s) can be uniformly
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bounded in s for every q ∈ [1,∞). The base case, i.e., n = 0, follows by (29) and (A3) with a
twofold application of the Cauchy–Schwarz inequality. For n ∈ {1, . . . , ⌊τ⌋}, t > 1 and thus as

takes values in C1(D). Let us assume the statement holds for n − 1 as induction hypothesis.
Hence, the equation (1) can be reformulated as

−∆Sf (a
s) =

1

as
(f +∇as · ∇Sf (a

s)) =: f̃

with equality in V ∗. Since for a constant C that is independent of as and f

‖f̃‖H−1+n+{τ}(D) ≤ C
(
‖1/as‖Ct(D)

(
‖f‖H−1+n+{τ}(D) + ‖as‖Ct(D)‖Sf (a

s)‖Hn+{τ}(D)

))
,

where we used that the pointwise product of functions in C t̃(D) with functions in H τ̃ (D) is
continuous for all 0 ≤ τ̃ < t̃, cp. [15, Theorem 1.4.1.1]. This implies with the induction hypothesis
and a twofold application of the Cauchy–Schwarz inequality that the Lq(Ω;H−1+n+{τ}(D))-
norm of f̃ is bounded uniformly in s for every q ∈ [1,∞). Since (−∆)−1 : H−1+n+{τ}(D) →
H1+n+{τ}(D)∩V is bounded the induction step is completed and thus the Lq(Ω;H1+τ (D))-norm
of Sf (a

s) is bounded uniformly in s for every q ∈ [1,∞). Note that the strong measurability
of Sf (a

s) in H1+τ (D) follows, since Sf : Ct(D) ∩ L∞
+ (D) → H1+τ (D) is continuous, which can

be shown with the estimate in (29) and a perturbation argument with respect to the diffusion
coefficient; see the proof of [17, Proposition 3.6] for details. Verbatim, it holds that for every q ∈
[1,∞), the Lq(Ω;H1+τ ′(D))-norm of SG(a

s) can be bounded by a constant which is independent
of s. By the Aubin–Nitsche lemma, cp. [5, Theorem 3.2.4 and Equation (3.2.23)],

|G(us)−G(us,h)| ≤ ‖as‖L∞(D)‖Sf (a
s)− Sh

f (a
s)‖V ‖SG(a

s)− Sh
G(a

s)‖V ,
which implies with the approximation property of Vh in V , cp. [5, Theorem 3.2.1] (which can
be interpolated to non-integer Sobolev scales), Céa’s lemma, and the Hölder inequality that for
every q ∈ [1,∞)

‖G(us)−G(us,h)‖Lq(Ω) ≤ C2

∥∥∥∥
(asmax)

3

(asmin)
2

∥∥∥∥
L3q(Ω)

‖Sf (a
s)‖L3q(Ω;H1+τ (D))‖SG(a

s)‖L3q(Ω;H1+τ ′ (D))

× hmin{τ,r}+min{τ ′,r},

where the constant C is due to the approximation property. The assertion of the proposition
follows by Proposition 3 and Corollary 6 with the Cauchy–Schwarz inequality and by the fact
shown above that the L3q(Ω;H1+τ (D))-norm and the L3q(Ω;H1+τ ′(D))-norm of Sf (a

s) and
respectively of SG(a

s) can be bounded uniformly with respect to s. ✷

Remark 16 In Proposition 15, the cases τ, τ ′ ∈ {1/2 + N0} are permitted if f ∈ H−1+τ+ε(D),
respectively if G(·) ∈ H−1+τ ′+ε(D), for some ε > 0.

Theorem 17 Let the assumption in (A1) be satisfied with (bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2)
and let the assumption in (A2) and in (A3) be satisfied for d = 2 and for some t > 0.
Let f ∈ H−1+τ (D) and let G ∈ H−1+τ ′(D) for τ, τ ′ ∈ (0,max{t, π/βmax})\{1/2 + N0} such
that max{τ, τ ′} ≤ r. The error incurred in the approximation Q∆

s,n(G(u
s,h)) with the N -point

randomly shifted lattice rule Q∆

s,N applied to the s-variate, dimensionally truncated integral

Is(G(u
s,h)) satisfies:

1. For p ∈ (2/3, 2) and ε ∈ (0, 3/4−1/(2p)) such that ε ≤ 1/(2p)−1/4, with Gaussian weight
functions (wg,j)j≥1 defined in (9) with αg as in (24) the error is bounded by

√
E∆(|E(G(u))−Q∆

s,N (G(us,h))|2) ≤ C

(
(ϕ(N))−1/4−1/(2p)+ε + sup

j>s

{
b1−ε
j

}
+ hτ+τ ′

)
.

(30)
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2. For p ∈ (2/3, 1] and ε ∈ (0, 1), with exponential weight functions (wexp,j)j≥1 defined in (10)
with αexp > 2K supj≥1{bj} the error is bounded by

√
E∆(|E(G(u))−Q∆

s,N (G(us,h))|2) ≤ C

(
(ϕ(N))−1/p+1/2 + sup

j>s

{
b1−ε
j

}
+ hτ+τ ′

)
. (31)

The constant C in the error bounds (30) and (31) is independent of N , s, and h.

Note that (ϕ(N))−1 ≤ N−1 · (eγ̂ log logN + 3/ log logN), for every N ≥ 3, where γ̂ ≈ 0.5772 is
the Euler–Mascheroni constant.

Proof. By the definition of the QMC points in (8), {y(0), . . . ,y(N−1)} are identically N (0, IdRs)-
distributed. We observe that by the triangle inequality, for every square integrable function F
with respect to the s-dimensional normal distribution with covariance being the identity,

√
E∆(|Q∆

s,N (F )|2 ≤ 1

N

N−1∑

i=0

√
E∆(|F (y(i))|2 =

√√√√
∫

Rs

|F (y)|2
∏

j∈{1:s}
φ(yj)dy.

Thus, by the triangle inequality,
√

E∆(|E(G(u))−Q∆

s,N (G(us,h))|2) ≤ |E(G(u))− Is(G(u
s))|

+
√
E∆(|Is(G(us))−Q∆

s,N (G(us))|2)
+ ‖G(us)−G(us,h)‖L2(Ω).

The assertion now follows with Proposition 7, Proposition 15, and by Theorem 11 for Gaussian
weight functions and respectively by Theorem 13 for exponential weight functions. ✷

9 Multiresolution representation of Gaussian random fields

We investigate expansions of Gaussian random fields Z in particular function systems with local
supports, for related recent work see [2]. In the polyhedral domain D, cp. the assumption (A2),
consider an isotropic multiresolution analysis (MRA) Ψ = {ψλ : λ ∈ ▽} whose members ψλ are
indexed by λ ∈ ▽, and are obtained from one or from a finite number of generating elements ψ
by translation and scaling, i.e.,

ψλ(x) = 2d|λ|/2ψ(2|λ|x− k) , k ∈ ▽|λ| , (32)

where the index set ∇|λ| is of cardinality O(2d|λ|), and where diam supp(ψλ) = O(2−|λ|). The

scaling in (32) by the factor 2d|λ|/2 refers to a normalization in L2(D), i.e., ‖ψλ‖L2(D) ∼ ‖ψ‖L2(D),
λ ∈ ▽. For suitable, sufficiently smooth families of wavelets it can be shown that for every
q ∈ [1,∞) and every t ≥ 0, there exists a constant C such that

∥∥∥∥∥∥

∑

λ∈▽
cλψλ

∥∥∥∥∥∥
Bt

q,q(D)

≤ C


∑

ℓ≥0

2tqℓ2(q/2−1)dℓ
∑

k∈∇ℓ

|cℓ,k|q



1/q

, (33)

cp. for example for the case of orthonormal wavelets [34, Theorem 4.23], where Bs
p,q(D) denote

Besov spaces on D, s ∈ [0,∞), p, q ∈ [1,∞]. However, in this manuscript we adopt for the
(ψλ)λ∈▽ a pointwise normalization, such that for some α̂ > 0 and σ > 0 at our disposal,

‖ψλ‖L∞(D) ≃ σ2−α̂|λ|, λ ∈ ▽. (34)
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With the scaling (34), the norm estimate in (33) then reads that for every q ∈ [1,∞) and every
t ≥ 0, there exists a constant C such that

∥∥∥∥∥∥

∑

λ∈▽
cλψλ

∥∥∥∥∥∥
Bt

q,q(D)

≤ C


∑

ℓ≥0

2tqℓ2−(d+α̂q)ℓ
∑

k∈▽ℓ

|cℓ,k|q



1/q

. (A4)

We assume that there exists a suitable enumeration of elements of the index set ▽, i.e., a
bijective mapping j : ▽ → N, which we denote by j(λ), λ ∈ ▽, such that |j−1(s1)| ≤ |j−1(s2)|
for positive integers s1 ≤ s2. The amount of overlap of the supports at refinement level |λ| is
assumed to be bounded by an absolute multiple M times 2−|λ| such that

|{λ ∈ ▽ : |λ| = ℓ, ψλ(x) 6= 0}| ≤M, for all x ∈ D, ℓ ≥ 0 .

For given α̂ > 0 we define the sequence (bj)j≥1 for β̂ < α̂ and for some c > 0 by

bj(λ) = bλ := c2−β̂|λ|, λ ∈ ▽. (35)

We observe that bj ∼ j−β̂/d, j ≥ 1. This sequence satisfies (A1), i.e.,

∥∥∥∥∥∥

∑

λ∈▽

|ψλ|
bλ

∥∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥∥

∑

ℓ≥0

∑

k∈▽ℓ

|ψℓ,k|
bℓ,k

∥∥∥∥∥∥
L∞(D)

≤ σM/c
∑

ℓ≥0

2−(α̂−β̂)ℓ =
σM/c

1− 2−(α̂−β̂)
<∞.

Proposition 18 Let (ψj)j≥1 satisfy the scaling in (34) for some α̂ > 0 and let (A4) hold. For
every t ∈ (0, α̂) and every q ∈ [1,∞), Z ∈ Lq(Ω;Ct(D)) and for every ε ∈ (0, α̂− t) there exists
a constant C such that for every s ∈ N,

‖Z − Zs‖Lq(Ω;Ct(D)) ≤ C sup
ℓ≥|j−1(s)|

{
2−(α̂−t−ε)ℓ

}
.

Proof. A sequence (bj)j≥1 can be defined by (35) for some 0 < β̂ < α̂. Since bj ∼ j−β̂/d, j ≥ 1,

(bj)j≥1 ∈ ℓp(N), for every p > d/β̂. Hence, by Theorem 2, Z = lims′→∞ Zs′ with convergence
in the Lq(Ω;L∞(D))-norm, which equals the Lq(Ω;C0(D))-norm. Since (ψj)j≥1 are continuous
on D, Z ∈ Lq(Ω;C0(D)).

Let t′ ∈ (t, t + ε). We set q′ := ⌈q/2⌉ such that 2q′ = 2⌈q/2⌉ is the smallest even natural
number that is greater or equal than q and pick r ∈ N such that r ≥ q′ and such that r >
d/(2(t′−t)), which implies that t′−d/(2r) > t. By the continuous embedding Bt′

2r,2r(D) ⊂ Ct(D)

using t′ − d/(2r) > t, cp. [33, Theorem 1.107], ψj ∈ Ct(D), j ≥ 1. By [33, Theorem 1.122 and
Remark 1.121], the spaces Ct′(D) and Bt′

∞,∞(D), t′ ∈ [0,∞)\N0, are isomorphic with equivalent

norms. Since Zs′ is separably valued in Ct(D), it is strongly measurable in Ct(D) by Pettis’
theorem (e.g. cp. [35, Theorem V.4]) for every s′ ≥ 1 (arguing as in the proof of Theorem 2).
Also by the same embedding and (A4) it follows similarly as in the proof of Theorem 2 that

‖Zs′ − Zs‖2r
L2r(Ω;Ct(D))

≤ C
∑

j(ℓ,k)∈{s+1:s′}
2−(α̂−t′)2rℓ2−dℓ

E(|yℓ,k|2r)

≤ C ′ ∑

ℓ≥|j−1(s)|
2−(α̂−t′)2rℓ (2r)!

2rr!

≤ C ′ (2r)!
2rr!

sup
ℓ≥|j−1(s)|

{
2−(α̂−t−ε)2rℓ

}∑

ℓ≥0

2−(t+ε−t′)2rℓ <∞,
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where we used that #(▽ℓ) = O(2dℓ). Note that (yℓ,k : ℓ ≥ 0, k ∈ ▽ℓ) is a sequence of
i.i.d. N (0, 1)-distributed random variables. We observe that (Zs′)s′≥1 is a Cauchy sequence

in Lq(Ω;Ct(D)) with limit Z̃. Since limits in Lq(Ω;C0(D)) are unique and since the embedding
Ct(D) ⊂ C0(D) is continuous, Z = Z̃ up to indistinguishability. ✷

The following proposition will give conditions for a class of systems (ψj)j≥1 such that the re-
sulting lognormal random fields satisfy the assumption in (A3).

Proposition 19 Let (ψj)j≥1 satisfy the scaling in (34) for some α̂ > 0 and let (A4) hold. For
every t ∈ (0, α̂) and every q ∈ [1,∞), a ∈ Lq(Ω;Ct(D)) and there exists a constant C such that
for every s ∈ N,

‖as‖Lq(Ω;Ct(D)) ≤ C.

Proof. Without loss of generality, let us assume that t /∈ Z. Hölder norms of compositions with
the exponential function have been estimated in [17, Lemma A.1]. We recall from its proof the
following estimate [17, Equation (28)]: there exists a constant C such that for every v ∈ Ct(D),

‖ exp(v)‖Ct(D) ≤ C‖ exp(v)‖C0(D)

(
1 + ‖v‖⌈t⌉

Ct(D)

)
.

This estimate follows by induction (cp. the proof of [17, Lemma A.1]) based on the facts that
‖ exp(v)‖Ct′ (D) ≤ ‖ exp(v)‖C0(D)(1 + ‖v‖Ct′ (D)) for every v ∈ Ct′(D), t′ ∈ (0, 1), and that there

exists a constant C ′ such that for every w, v ∈ Ct(D), ‖wv‖Ct(D) ≤ C ′‖w‖Ct(D)‖w‖Ct(D). The

first estimate is easily seen, the second estimate is for example due to [6, Theorem 16.28].
The assertion follows now with an application of the Cauchy–Schwarz inequality, Proposi-

tion 3, and Proposition 18, where the strong measurability of a = exp(Z) in Ct(D) follows since
the composition with the exponential function is a continuous mapping from Ct(D) to Ct(D).
✷

10 Application to Gaussian random fields with Matérn covari-

ance

A frequently considered example is the case that the Gaussian random field Z is stationary.
Then, the covariance kernel k(x, x′) of Z depends only on x − x′. A particular, parametric
family of covariances for stationary Gaussian random fields which is widely used in applications
is due to B. Matérn [27]. Its parametric covariance kernel in the isotropic case is given by

E(Z(x)Z(x′)) = k(x− x′) =
21−ν

Γ(ν)

(√
2ν|x− x′|

λ

)ν

Kν

(√
2ν|x− x′|

λ

)
, x, x′ ∈ D, (36)

where Γ denotes the gamma function and Kν denotes the modifed Bessel function of the second
kind. Gaussian random fields with Matérn covariance have become widely used in numerical
modelling of problems of the type considered in this paper, cp. [14, 2, 27]. We will briefly
recall known MRA representations of Gaussian random fields with Matérn covariance from
[2] and compare our QMC convergence results with product weights to corresponding QMC
convergence results with POD weights from [14], where also Gaussian random fields with Matérn
covariance were analyzed using the Karhunen–Loève expansion. Function systems (ψj)j≥1 result
by applying the square root of the covariance operator C of Z that corresponds to the kernel
k to a L2-orthonormal basis (ψ̃j)j≥1 in the case that Z is obtained by restricting an auxiliary
Gaussian random field defined to an axiparallel cube containing the physical domain D, cp. [2,
Sections 4 and 2]. The parameter ν > 0 corresponds to the smoothness of (realisations of) Z.

22



By a similar argument used to prove [17, Theorem 2.2], Z takes values in Ct(D), µ-a.s., and
Z ∈ Lq(Ω;Ct(D)), for every t < ν and every q ∈ [1,∞). The parameter λ > 0 is referred to as
correlation length. It has been shown [2, Corollary 4.3] that for tensorized, orthonormal Meyer

wavelets (ψONB,j)j≥1, ψwav,j =
√
CψONB,j , j ≥ 1, satisfy Assumption (A1) with bj ∼ j−β̂/d,

j ≥ 1, for every β̂ < ν and that the Gaussian random field Z =
∑

j≥1 yjψwav,j has the desired
Matérn covariance for i.i.d. y = (yj)j≥1. Globally supported Karhunen–Loève bases denoted by
(ψKL,j)j≥1 are also available, cp. [2, Sections 3 and 4], which are restrictions of trigonometric
functions, cp. [2, Section 3], and Z =

∑
j≥1 yj

√
λjψKL,j for i.d.d., standard normally distributed

(yj)j≥1, where (λj)j≥1 are the eigenvalues of C in descending order. Let us denote by uswav the
dimensionally truncated solution w.r. to (ψwav,j)j≥1 and by usKL the dimensionally truncated
solution w.r. to (ψKL,j)j≥1.

The truncation error with respect to (ψwav,j)j≥1 is with right hand side f ∈ V ∗, functional
G(·) ∈ V ∗, and d/ν ≤ 4 by Proposition 7, for any arbitrarily small ε > 0,

|E(G(u))− E(G(uswav))| = O
(
s−(2ν/d−1/2)+ε

)

Suppose that f ∈ H−1+τ and G(·) ∈ H−1+τ ′ for max{τ, τ ′} < min{ν/d, π/βmax}. The combined
error of dimension truncation and QMC with product weights w.r. to Gaussian weight functions
applied to (ψwav,j)j≥1 and FE discretization is by Theorem 17 for arbitrary ε > 0

√
E∆(|E(G(u))−Qs,N (G(us,hwav))|2) = O

(
s−(2 ν

d
− 1

2
)+ε + (ϕ(N))−( 1

2
min{ 3

2
, ν
d}+ 1

4
)+ε + hτ+τ ′

)
.

(37)
The truncation error for usKL is analyzed in [14, Proposition 9], where it was shown that

|E(G(u))− E(G(usKL))| = O
(
s−(ν/d−1/2)+ε

)
.

With reference to a numerical experiment in [14, Section 6] it was conjectured on [14, p. 341]
that an improved rate of ≈ ν/d could hold. In the particular setting here (Z is the restriction
of a Gaussian random field with Matérn covariance defined on a suitable product domain which
contains the physical domain D), we prove this in the following proposition to be able to arrive
at a comparison between the overall computational cost of QMC with product weights and
(ψwav,j)j≥1 and of QMC with POD weights and (ψKL,j)j≥1. The difference in our proof technique
will be not to rely on estimates of the gradients of the Karhunen–Loève eigenfunctions.

Proposition 20 Suppose that a ∈ Lq(Ω;Ct(D)) for every q ∈ [1,∞) and some t > 0. Suppose
also that ‖ψKL,j‖L∞(D) is uniformly bounded in j ≥ 1 and f ∈ H−1+τ (D) for some τ > 0. Then,

|E(G(u))− E(G(usKL))| = O
(
s−ν/d+ε

)
.

Proof. By [14, Corollary 5] or [2, Theorem 3.1 and Remark 2.2], there exists a constant C > 0
such that the eigenvalues of the covariance operator induced by the integration kernel k(·) in
(36) satisfy

λj ≤ Cj−(1+2ν/d), j ≥ 1. (38)

Let n ∈ N be arbitrary. Since in the considered case the Karhunen–Loève eigenfunctions
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(ψKL,j)j≥1 are uniformly bounded w.r. to x ∈ D and j ≥ 1,

‖Z − Zs
KL‖2nL2n(Ω;L2n(D)) =

∫

D
E




∑

j>s

√
λjyjψKL,j




2n
 dx

=
(2n)!

2nn!

∫

D


∑

j>s

λjψ
2
KL,j




n

dx

≤ (2n)!

2nn!
|D|C2n


∑

j>s

λj




n

,

where C = supj≥1 ‖ψKL,j‖L∞(D). Here, we used
∑

j>s

√
λjψKL,j(x) ∼ N (0,

∑
j>s λjψ

2
KL,j(x)),

a.e. x ∈ D, and the fact that the moments of a centered Gaussian random variable satisfy that
E(X2n) = (2n)!/(2nn!)E(X2)n. By (38), for every n ∈ N and ε > 0, there exist C,C ′ > 0 such
that

‖Z − Zs
KL‖L2n(Ω;L2n(D)) ≤ C


∑

j>s

λj




1/2

≤ C ′s−ν/d+ε. (39)

The solution map Sf is locally Lipschitz continuous, i.e., for p ∈ (2,∞) and p′ = 2p/(p− 2),

‖u− usKL‖V ≤ 1

asKL,min

‖∇u‖Lp(D)‖a− asKL‖Lp′ (D). (40)

Since a ∈ Lq(Ω;Ct(D)) for every q ∈ [1,∞) and some t > 0, by (29) there exists τ ′ ≤ τ such that
τ ′ ∈ (0,max{t, π/βmax})\{1/2} such that u ∈ Lq(Ω;H1+τ ′); by assumption f ∈ H−1+τ (D). The
Sobolev embedding theorem (see for example [33, Theorem 1.107]) implies that the embedding
H1+τ ′(D) ⊂W 1,p(D) is continuous for 1+τ ′−2/d > 1−d/p, which is satisfied by any p ∈ R such
that 2 < p < 2d/(d−2τ ′) for d−2τ ′ ≥ 0 and p ∈ (2,∞) otherwise. We fix such a p and conclude
with (40) (using n = max{⌈p′/2⌉, 4}), (39), and the simple estimate |eb1−eb2 | ≤ (eb1+eb2)|b1−b2|,
for any b1, b2 ∈ R,

|E(G(u))− E(G(usKL))| ≤ C‖G‖V ∗‖u‖L2(Ω;H1+τ ′ (D))‖a− asKL‖L2(Ω;Lp′ (D))

≤ C ′‖u‖L2(Ω;H1+τ ′ (D))‖a+ asKL‖L4(Ω;Lp′ (D))‖Z − Zs
KL‖L2n(Ω;L2n(D))

≤ C ′′s−ν/d+ε,

where ‖u‖L2(Ω;H1+τ ′ (D)) is finite by a multiple application of the Cauchy–Schwarz inequality,

(29), and by the assumption that a ∈ Lq(Ω;Ct(D)) for every q ∈ [1,∞) and t > 0. The term
‖asKL‖L4(Ω;Lp′ (D)) can be bounded independently of s by a version of Proposition 3, where it is

easy to see that the law of a is a Gaussian measure on Lp′(D) using (38), since Lp′(D) is a
reflexive Banach space. ✷

Remark 21 Generally, the uniform bound on ‖ψKL,j‖L∞(D) with respect to j ≥ 1 in Propo-
sition 20 can be achieved by rescaling λj accordingly. Then, by the proof of Proposition 20, if
λj ∼ j−(1+2η) for some η > 0, the truncation error satisfies the asymptotic bound O(s−η+ε) for
any ε ∈ (0, η).

Recall that f ∈ H−1+τ (D) and G(·) ∈ H−1+τ ′(D) for max{τ, τ ′} < min{ν/d, π/βmax}. The
overall error of QMC with POD weights with the Karhunen–Loève expansion with (ψKL,j)j≥1

is by [14, Theorem 20 and Corollary 5] and Proposition 20
√

E∆(|E(G(u))−Q∆

s,N (usKL)|2) = O
(
s−ν/d+ε + (ϕ(N))−min{1, ν

d
}+ε + hτ+τ ′

)
. (41)

24



The computational cost of either of the variants is the cost of constructing the QMC points
by the fast CBC algorithm plus the cost of evaluating the QMC quadrature with approximate
integrands obtained by FE discretization. We assume the cost of one integrand evaluation to
equal the cost to assemble the stiffness matrix plus the cost to solve the linear system. Since
for both representation systems FFT techniques are available, we suppose that the cost of
assembling the stiffness matrix is O(M log(M) + s log(s)), where M = dim(Vh) = O(h−d) (this
assumes that the FE basis functions have isotropic support as is customary in most engineering
FE applications; for sparse grid FEM in D analogous considerations can be made). The solution
of the linear system may be approximated by an iterative solver such as a multigrid method
or preconditioned conjugate gradient methods. This has been analyzed with consistency in
the Lq(Ω;V )-norm, q ∈ [1,∞), in [16] with computational cost O(M1+ε) for any ε > 0, cp. [16,
Corollary 6.3]. Therefore, we may suppose that the cost of the approximate solution is O(M1+ε).

To compare the error versus the computational cost of both algorithms, we equilibrate the
error contributions in (37) and in (41) of the FE discretization and the dimension truncation,
respectively. Starting with the case of QMC-FE with product weights and multiresolution
representation of the Gaussian random field input, this results in the choices s =M (τ+τ ′)/(2ν−d/2)

and N = M4(τ+τ ′)/(2ν+d) for d/ν ∈ (2/3, 2), where we have used the work bound with the
(formal) limiting value ε = 0. To calculate the computational cost we will continue to use
ε = 0 and, moreover, ignore log-factors for simplicity. The computational cost for QMC-FE
with product weights and a multiresolution representation is then

workPROD,wav = O(sN +N(s+M)) = O(N(s+M)) = O
(
M

4(τ+τ ′)
2ν+d

+max{ τ+τ ′

2ν−d/2
,1}
)
.

For a prescribed error 0 < δ = O(M−(τ+τ ′)/d) and assuming d/ν ∈ (2/3, 2),

error = O(δ) is ensured with workPROD,wav = O
(
(δ−1)d(

4
2ν+d

+1/min{2ν−d/2,τ+τ ′})
)
.

In the case of QMC with POD weights and Karhunen–Loève expansion equilibrating the error
contributions in (41) of the FE discretization and dimension truncation gives the choices s =
M (τ+τ ′)/ν and N = M (τ+τ ′)/ν for d/ν ∈ (1, 2). For d/ν ≤ 1, choose N = M (τ+τ ′)/d. The
computational cost for QMC-FE with POD weights and Karhunen–Loève expansion is then
(again ignoring log-factors)

workPOD,KL = O(s2N +N(s+M)) = O(N(s2 +M)) = O
(
M

τ+τ ′

ν
+max{ 2(τ+τ ′)

ν
,1}
)
,

where the s2 term is a consequence of the cost of the CBC construction with POD weights. For
an error threshold 0 < δ = O(M−(τ+τ ′)/d) and assuming d/ν ∈ (1, 2),

error = O(δ) is ensured with workPOD,KL = O
(
(δ−1)d(

1
ν
+1/min{ ν

2
,τ+τ ′})

)
.

As an illustration we now consider the two borderline cases d/ν ∈ {1, 2} and compare the
asymptotic complexity of the two algorithms. For d/ν = 1, we obtain that

workPROD,wav = O
(
(δ−1)

4
3
+max{ 2

3
, d
τ+τ ′

}
)

vs. workPOD,KL = O
(
(δ−1)

1+max{2, d
τ+τ ′

}
)
.

Here, workPROD,wav is asymptotically smaller than workPOD,KL in the regime that d/(τ + τ ′) ≤
5/3. For d = 2, this implies that QMC-FE with product weights and multiresolution represen-
tation is superior if τ + τ ′ ≥ 5/6. For the limiting case d/ν = 2, we formally obtain

workPROD,wav = O
(
(δ−1)

2+max{2, d
τ+τ ′

}
)

vs. workPOD,KL = O
(
(δ−1)

2+max{4, d
τ+τ ′

}
)
.
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Then, the complexity for QMC-FE with product weights and multiresolution representation of
the Gaussian random field is always asymptotically smaller. Notice that the appearance of 4
in the POD weight case, where in the product weight case there is 2, is a consequence of the
construction cost of the QMC points which is, for POD weights, O(sN log(N) + s2N) and in
the case of product weights O(sN log(N)).

Remark 22 In [21, Equation (4.3)] the authors stipulated an error estimate for the dimension
truncation with rate 2ν/d. As a consequence, for QMC-FE with POD weights and Karhunen–
Loève expansion the truncation dimension would be chosen as s = M (τ+τ ′)/(2ν). Then, for
example in the case d/ν = 2/3 and d = 2, QMC-FE with product weights and multiresolution
representation would have a strictly smaller complexity than QMC-FE with POD weights and
Karhunen–Loève expansion for τ + τ ′ > 3. For τ + τ ′ ≤ 3, the complexity of both would be
asymptotically equal (again ignoring log-factors and considering the formal case ε = 0). For
more details on estimates of the truncation error with globally supported ψj, j ≥ 1, the reader
is referred to [4].

11 Numerical experiments

To illustrate our error bounds, we consider a univariate model problem on the interval D =
(0, 1). The Gaussian random field Z will be a Wiener process conditioned on Z(0) = 0 = Z(1)
(a.k.a. “Brownian bridge”) which is well-known to admit Karhunen–Loève expansions (i.e., the
functions ψj are globally supported in D) and Lévy–Ciesielski expansions where the ψj have
localized supports in D. Specifically,

Z =
∑

ℓ≥0

2ℓ−1∑

k=0

yℓ,kψwav,ℓ,k, ψwav,ℓ,k(x) := 2−α̂ℓψ(2ℓx− k), ℓ ≥ 0, k = 0, . . . , 2ℓ − 1, (42)

where ψ(x) := max{1 − |2x − 1|, 0}. The Lévy–Ciesielski or Brownian bridge representation
of the Gaussian random field is realized for α̂ = 1/2. The function system ψwav,ℓ,k, ℓ ≥
0, k = 0, . . . , 2ℓ − 1, satisfies (A1) with bℓ,k := c2−β̂ℓ, ℓ ≥ 0, k = 0, . . . , 2ℓ − 1, for every

β̂ ∈ (0, α̂) and some c > 0. The Karhunen–Loève expansion is for α̂ = 1/2 obtained with√
λjψKL,j(x) :=

√
2 sin(πjx)/(πj), j ≥ 1. We consider the lognormal coefficient

a = exp(σZ)

with a scaling parameter σ > 0 and Z given by the expansion in (42). The functional G(·) is
chosen to be point evaluation at x̄ = 0.7, i.e., G(v) := v(0.7) for every v ∈ H1

0 (D), which is
continuous if D is an interval due to the continuous embedding Hr(D) ⊂ Ct(D) for 0 < t <
r − 1/2.

We present numerical experiments with QMC by randomly shifted lattice rules from [28] with
Gaussian weight functions, where the generating vector is computed by the fast CBC algorithm
from [29, 30], and we use product weights according to (25). Note that the use of product weights
simplifies the fast CBC algorithm which is for POD weights discussed in [28, Section 5.2]. We
use first order FE to discretize the spatial variable and keep the mesh width h and truncation
dimension s fixed to be able to examine the QMC error. The FE mesh and the number of terms
in the truncated, piecewise linear expansion of Z with ψwav,ℓ,k is aligned such that the stiffness
matrix can be computed exactly. This can be achived with s = 2L+1 − 1 and h = 2−(L+1),
L ≥ 1. We show numerical experiments for L = 12, which results in s = 8191 dimensions. Also
we choose the borderline values α̂ = β̂ and ε = 0 in (25). We consider QMC points N = 3m,
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m = 1, . . . , 11. The mean square error is approximated by the empirical variance of R samples
Qj corresponding to i.i.d. random shifts, with the unbiased estimator

√√√√ 1

R− 1

R∑

j=1

(Qj − Q̄)2 ≈
√
E∆(|G(us,h)−Q∆

s,N (G(us,h))|2).

The reference value Q̄ is the average over R i.i.d. random shifts of Q∆

s,N (G(us,h)) with N = 312

QMC points. The FE solver and QMC integration routine is executed using Python. The
empirical rates in Figures 1 and 2 are computed by a least squares approximation taking into
account the 7 data points that correspond to N = 3m, m = 5, . . . , 11.

100 101 102 103 104 105 106

Number of Points N=3m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

R
e
la

ti
v
e
 E

rr
o
r

QMC Convergence
σ=2.0

fit: −0.653
σ=1.0

fit: −0.779
σ=0.5

fit: −0.832

Figure 1: Parameter choices α̂ = 1/2 = β̂, σ ∈ {0.5, 1.0, 2.0}, αg = 1.05, c = 0.1, s = 8191
dimensions, and R = 20 random shifts

In Figure 1, convergence tests with QMC with product weights and Gaussian weight functions
are presented for the Brownian bridge (α̂ = 1/2). This is the borderline case of our theory on
QMC with product weights and Gaussian weight functions. There, exponential weight functions
are not applicable according to Theorem 13. In line with theory, a convergence rate of ≈ 1/2 is
expected, which is the same as for Monte Carlo sampling. However, the observed rate is higher
and seems to depend on the scaling factor σ of the Gaussian random field Z. This dependence was
also observed in the numerical experiments using the Karhunen–Loève expansion representation
of Z and POD weights in [14, Tables 1 and 2]. In Figure 2, also QMC with product weights
and Gaussian weight functions is used and the decay of the functions ψwav,ℓ,k is chosen to be
stronger, i.e., α̂ = 1. Then, Theorem 11 implies a convergence rate of ≈ 0.75. Note that in this
case with exponential weight functions, only a convergence rate of ≈ 1/2 can be deduced from
Theorem 13. Numerical experiments with QMC with product weights and exponential weight
functions are reported by the authors in [19]. There, larger values of α̂ were required to achieve
the presently observed rates.
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Figure 2: Parameter choices α̂ = 1 = β̂, σ ∈ {0.5, 1.0, 2.0}, αg = 2.05, c = 0.1, s = 8191
dimensions, and R = 20 random shifts

12 Conclusions and generalizations

We extended and refined the QMC error analysis for the parametric, deterministic solutions
of the linear elliptic partial differential equation (1) with log-Gaussian coefficient a as given in
(2), (3). In particular, we considered locally supported functions (ψj)j≥1 in (2). The assumed
local support of the ψj and p-summability implied dimension-independent convergence rates of
randomly shifted lattice rule quadratures of the parametric solution of (1) - (3) with product
weight sequences. The present results constitute an extension of the convergence rate bounds
in [14], wherein the global supports of the (ψj)j≥1 implied POD weight sequences for the QMC
quadratures. Moreover in Section 10 the presently developed QMC-FE theory is compared to the
one from [14] for Gaussian random fields with Matérn covariance in terms of computational cost
versus accuracy. For certain values of the Matérn smoothness parameter ν the computational
cost of the resulting QMC-FEM is significantly smaller using the newly introduced QMC-FE with
product weights and multiresolution representation of the Gaussian random field Z. In the case
of Gaussian weight functions in the norm (9), in Theorem 11 the summability (bj)j≥1 ∈ ℓp(N)
for 2/3 < p < 2 was admissible in the present QMC convergence analysis for representations of
Z in terms of locally supported ψj . This constitutes a refinement over the error vs. computation
cost bounds resulting from [14]. Another insight of this paper is that for locally supported ψj ,
QMC-FE with Gaussian weight functions seems to satisfy error bounds that are superior to
those obtained with exponential weight functions. As a byproduct of the present analysis, we
also obtained dimension-independent convergence rate estimates for globally supported (ψj)j≥1

as in [14], and with exponential weight functions. The use of product weights, however, entails
stronger summability conditions on (‖ψj‖L∞(D))j≥1 than those in [14] in order to achieve a
certain convergence rate (Corollary 14, item 2.). This drawback may be offset by the linear
with respect to dimension s scaling construction cost for the QMC quadrature rules provided
stronger summability conditions are satisfied, for example for sufficiently large ν in the case of
Gaussian random fields with Matérn covariance.
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Numerical experiments in Section 11 confirm the theoretical error bounds and illustrate the
practicality of QMC with product weights and Gaussian weight functions. The experiments
considered piecewise linear multiscale approximations of the Gaussian random field. Another
class of admissible models are piecewise constant approximations of Gaussian random fields as
for example by Haar wavelets (considered in [12, Section 9] in the case of “affine-coefficients”)
or by indicator functions of s disjoint subsets of D multiplied by a suitable decreasing sequence.
Then, the QMC convergence rate also does not depend on the dimension s.

The present work addressed only the single-level QMC Finite-Element algorithm, where the
same FE space is employed for PDE discretization in all QMC points. The principal results of
the present paper, Theorems 11 and 13, allow for multi-level extensions of the presently proposed
algorithms, which can be designed and analyzed along the lines of [21]. These extensions, as
well as additional numerical experiments, are developed by the authors in [18, 19].
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