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Abstract

We analyze convergence rates of quasi-Monte Carlo (QMC) quadratures for countably-
parametric solutions of linear, elliptic partial differential equations (PDE) in divergence
form with log-Gaussian diffusion coefficient, based on the error bounds in [James A. Nichols
and Frances Y. Kuo: Fast CBC construction of randomly shifted lattice rules achieving
O(N−1+δ) convergence for unbounded integrands over R

s in weighted spaces with POD
weights. J. Complexity, 30(4):444-468, 2014].

We prove, for representations of the Gaussian random field PDE input with locally sup-
ported basis functions, and for continuous, piecewise polynomial Finite Element discretiza-
tions in the physical domain error bounds in weighted spaces with product weights that
exploit localization of supports. The convergence rate O(N−1+δ) (independent of the pa-
rameter space dimension s) is achieved under weak summability conditions on the expansion
coefficients.

1 Introduction

A particular quasi-Monte Carlo (QMC for short) quadrature for the approximation of the mean
field of (output functions of) the solution of lognormal diffusion problems is analyzed. The
lognormal diffusion problem under consideration is an elliptic partial differential equation (PDE
for short) with lognormal stochastic diffusion coefficient a and with deterministic right hand
side f . For a bounded Lipschitz domain D ⊂ R

d, we thus consider

−∇ · (a∇u) = f in D, u = 0 on ∂D. (1)

Let Ω := R
N and define a Gaussian product measure on Ω by

µ(dy) :=
⊗

j≥1

1√
2π
e−

y2j
2 dyj , y ∈ Ω.

The triplet (Ω,
⊗

j≥1 B(R), µ) is a probability space, cp. for example [3, Example 2.3.5]. We
suppose that the Gaussian random field Z = log(a) : Ω → L∞(D) is (formally) represented in
the following way

Z :=
∑

j≥1

yjψj , (2)

where (ψj)j≥1 is a function system of real-valued, bounded, and measurable functions. In par-
ticular, with respect to µ the sequence y = (yj)j≥1 has independent and identically distributed

∗This work was supported in part by the Swiss National Science Foundation under grant No. 200021-159940
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(i.i.d. for short) components and for every j ≥ 1, yj is standard normally distributed. That is
to say, yj ∼ N (0, 1), i.i.d. for j ∈ N. The lognormal coefficient a in (1) is formally given by

a := exp(Z) . (3)

For a Banach space B and a strongly measurable mapping F : Ω → B that is µ-integrable, let
the expectation with respect to µ be denoted by the Bochner integral

E(F ) =

∫

Ω
F (y)µ(dy). (4)

The lognormal-parametric PDE in (1) is a prominent class of elliptic PDEs with unbounded
random coefficients, which was considered in [4, 13, 18, 15, 23]. Specifically, we are interested in
approximations of (4) with QMC quadrature. The integrands F := G(u) are linear, continuous
functionals G : H1

0 (D) → R of the solution u of (1). The evaluation of integrands F requires the
solutions of PDEs for realizations of u, which in general are solved numerically. Approximate
integrand evaluation through Galerkin Finite Element (FE for short) discretization introduces
an error, which is controlled by dimension-independent error bounds.

The assumptions for the QMC convergence theory in [13] on the functions (ψj)j≥1 relied on
the p-summability of their L∞(D)-norms: in [13], it was assumed that for some p ∈ (0, 1]

∑

j≥1

‖ψj‖pL∞(D) <∞. (5)

In this paper, we aim to extend the QMC convergence theory of [13] by analyzing conse-
quences for the QMC weights due to accounting for possible locality of the supports of (ψj)j≥1.
Similar to what has been shown for N -term convergence rates in [1], in certain cases this can
imply significant gains in the convergence rate. In the analysis in [13, 21], product and order
dependent (POD for short) QMC weights were essential. In this manuscript, we analyze, as in
the case of affine-parametetric coefficients, cp. [11], convergence rates of first order, randomly
shifted lattice rules from [25] for function systems (ψj)j≥1 used in the representation (2) which
have local supports in D. This is motivated, on the one hand, by the complexity of QMC rules
according to product weights scaling linearly with the dimension of integration, cp. [26, 27, 12].
On the other hand, systems of locally supported ψj may afford better local resolution in D.

Convergence in Lq(Ω;L∞(D)), q ∈ [1,∞), of the series in (2) will be shown under the
assumption that there exists a positive sequence (bj)j≥1 such that

K :=

∥∥∥∥∥∥

∑

j≥1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

<∞ (A1)

and that (bj)j≥1 ∈ ℓp(N) for some p ∈ (0,∞). The sequence (bj)j≥1 will enter the construction
of QMC integration rules via the product weights γ = (γu)u⊂N. These are defined by γ∅ = 1 and

γu :=
∏

j∈u

bρj , ∅ 6= u ⊂ N, |u| <∞, (6)

where ρ > 0 is a constant. If (bj)j≥1 ∈ ℓp(N) for p ∈ (2/3, 2), we obtain with a randomly
shifted lattice QMC quadrature rule with product weights (6) and Gaussian weight functions a
convergence rate of O(N−1/4−1/(2p)+ε) for sufficiently small ε > 0 1. In the case that (bj)j≥1 ∈
ℓp(N) for p ∈ (2/3, 1], a randomly shifted lattice QMC quadrature rule with exponential weight

1Here and throughout, all constants implied in O(·) are independent of the integration dimension s.
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functions and product weights (6) has a convergence rate of O(N−1/p+1/2). In either case, the
implied constants are independent of N , which is the number of sample points, and of s, which
is the integration-dimension.

In Section 2, we review results from [25] on QMC quadrature required in the following. In
Section 3, we show integrability and approximation of the lognormal diffusion coefficient, which
is applied in Section 5 to estimate the error that is introduced by truncating the expansion
of the Gaussian random field. Existence and uniqueness is shown in Section 4. The main
parametric regularity estimates are discussed in Section 6, which result in convergence rates of
the exact solution in Section 7. Section 8 addresses the impact of a FE discretization in D.
Section 9 discusses a particular choice of basis for representation of Gaussian random fields in
D, and verifies that this representation satisfies the previously made conditions in our QMC
convergence rate analysis. Finally, Section 10 presents some conclusions and generalizations.

2 QMC integration of Gaussian random fields

We recapitulate elements from randomly shifted lattice rules and weighted Sobolev spaces that
are necessary for the QMC convergence theory, cp. [25, Theorem 8].

We seek to approximate with a QMC quadrature s-dimensional integrals of the form

Is(F ) :=

∫

Rs

F (y)

s∏

j=1

φ(yj)dy, (7)

where s ∈ N and φ is the standard normal density function, i.e.,

φ(y) :=
1√
2π
e−

y2

2 , y ∈ R.

These intgrals arise by truncation of expansions of random quantities in particular function
systems that are random inputs for PDEs. The integrand F will be the composition of a linear
functional G(·) with the solution u. An N -point QMC quadrature for the s-dimensional integral
in (7) is an equal-weight quadrature rule and denoted by Q∆

s,N . Here, ∆ ∼ U((0, 1)s) denotes a
random shift (see, e.g., [8] and the references there). For every s,N ∈ N, let us define

Q∆

s,N (F ) :=
1

N

N−1∑

i=0

F (y(i)),

with particularly chosen points {y(0), . . . ,y(N−1)} ⊂ R
s.

The s-dimensional cumulative distribution function Φs corresponding to the probability den-
sity φ is defined by

Φs(y) :=

∫

y′≤y

s∏

j=1

φ(y′j) dy
′, y ∈ R

s,

where y
′ ≤ y is understood as y′j ≤ yj for j = 1, . . . , s. In the case that s = 1 we omit the

subscript. For randomly shifted lattice rules the points are obtained by

y
(i) := Φ−1

s

({
(i+ 1)z

N
+∆

})
, i = 0, . . . , N − 1, (8)

where z is a generating vector, and for every c ∈ (0,∞), {c} ∈ [0, 1) denotes the fractional part
of c. We refer to the surveys [8, 20] for further details and references.

The integrands in (7) that are under consideration in this paper belong to weighted, unan-
chored Sobolev spaces. The error analysis of randomly shifted lattice rules involves spaces
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of type Ws,γ , which require weight functions for their definition. In this paper we consider
two particular kinds of weight functions being centered, generally unnormalized Gaussian den-
sity functions with variance αg > 1 and exponentially decaying weight functions depending on
αexp > 0. Specifically, let us define the weight functions (wg,j)j≥1 and (wexp,j)j≥1 by

w
2
g,j(y) := e

− y2

2αg , y ∈ R, j ∈ N, (9)

and
w

2
exp,j(y) := e−αexp|y|, y ∈ R, j ∈ N. (10)

For a Hilbert space H and for a collection of positive weights γ = (γu)u⊂N, define the weighted
Sobolev space Wγ(R

s;H) as a Bochner space of strongly measurable functions from R
s taking

values in the separable Hilbert space H that have finite Wγ(R
s;H)-norm. Here, for finite param-

eter dimension s ∈ N, the Wγ(R
s;H)-norm of unanchored, mixed first order partial derivatives

is defined by

‖F‖Wγ(Rs;H) :=

 ∑

u⊆{1:s}

γ−1
u

∫

R|u|

∥∥∥∥∥∥

∫

Rs−|u|

∂uF (y)
∏

j∈{1:s}\u

φ(yj)dy{1:s}\u

∥∥∥∥∥∥

2

H

∏

j∈u

w
2
j (yj)dyu




1/2

,
(11)

where (wj)j≥1 denotes either of the weight functions defined in (9) or in (10) and where the
inner integral is understood as a Bochner integral (cp. for example [31, Chapter V.5]). In the
case that H = R, we simply write Wγ(R

s). We used the notation that {1 : s} denotes the set
of integers {1, . . . , s} and for y ∈ R

s and u ⊂ {1 : s}, y
u
denotes the coordinates (yj)j∈u of y.

We recall a version of [25, Theorem 8] for our choices of weight functions in (9) and in (10).

Theorem 1 Let γ = (γu)u⊆{1:s} be some product weights, s ∈ N the truncation level, and
(wj)j≥1 be either of the weight functions defined in (9) or in (10). Then, a randomly shifted
lattice rule with N points can be constructed in O(sN logN) operations using the fast CBC
algorithm of [27, 26] such that for every F ∈ Wγ(R

s) and for every λ ∈ (1/(2r), 1] there holds
the error bound

√
E∆(|Is(F )−Q∆

s,N (F )|2) ≤


(ϕ(N))−1

∑

∅6=u⊆{1:s}

γλ
u

∏

j∈u

ρ(λ)




1/(2λ)

‖F‖Wγ(Rs),

where Euler’s totient function is denoted by ϕ(·). For weight functions (wg,j)j≥1 defined in (9),

ρ(λ) = 2

(
4
√
2πα2

g

π2−1/αg(2αg − 1)

)λ

ζ(2rλ) and r = 1− 1

2αg

and for weight functions (wexp,j)j≥1 defined in (10)

ρ(λ) = 2

(√
2π exp(α2

exp/(4δ))

π2−2δ(1− δ)δ

)λ

ζ (2rλ) and r = 1− δ for any δ ∈
(
0,

1

2

)
.

This result is [25, Theorem 8]. The value of the first factor in the expression ρ(λ) and the
value of r that correspond to the weight functions (wg,j)j≥1 and (wexp,j)j≥1 are derived in [22,
Example 4 and Example 5] respectively.
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3 Lognormal random fields

The Gaussian random field Z is in (2) formally defined as the limit of a series expansion with
i.i.d. standard normally distributed coefficients. For any Banach space (B, ‖ · ‖B) and every
q ∈ [1,∞), let Lq(Ω;B) denote the space of all strongly measurable mappings X : Ω → B such
that ‖X‖qB is µ-integrable. We note that the measurability of ‖X‖B follows from the strong
measurability of X in B. We investigate convergence of the series in (2) in the following theorem.
In its proof and in what follows, for s ∈ N, we define partial sums of (2)

Zs :=
s∑

j=1

yjψj . (12)

Theorem 2 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for some K ∈
(0,∞). Then, the Gaussian random field Z is well defined and for every q ∈ [1,∞), Z ∈
Lq(Ω;L∞(D)). Moreover, for every ε ∈ (0, 1) there exists Cq,ε > 0 such that

‖Z − Zs‖Lq(Ω;L∞(D)) ≤ Cq,ε sup
j>s

{
b1−ε
j

}
,

where for r ∈ N such that r ≥ max{p0/(2ε), ⌈q/2⌉}, the constant Cq,ε is given by

Cq,ε := K‖(bj)j≥1‖εℓp0 (N)
√
2

π1/4
√
r.

Proof. For a sequence of i.i.d. standard normally distributed variables (yj)j≥1 and for every

s′ ∈ N, the finite sum Zs′ =
∑s′

j=1 yjψj is weakly measurable, i.e., for every ℓ ∈ (L∞(D))∗,
ℓ(Zs) =

∑s
j=1 yjℓ(ψj) is measurable as a finite sum of real valued random variables. Since the

span{ψj : j ∈ {1 : s}} is finite dimensional, Zs is separably valued in span{ψj : j ∈ {1 : s}} ⊂
L∞(D). Pettis’ theorem (e.g. cp. [31, Theorem V.4]) implies that Zs is also strongly measurable
in the space L∞(D). Let s < s1 ∈ N be arbitrary. We observe that

‖Zs1 − Zs‖Lq(Ω;L∞(D)) ≤

∥∥∥∥∥∥

∑

s<j≤s1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

∥∥∥∥∥ sup
s<j≤s1

{bj |yj |}
∥∥∥∥∥
Lq(Ω)

.

We set q′ := ⌈q/2⌉ such that 2q′ = 2⌈q/2⌉ is the smallest even natural number that is greater
or equal than q. We pick r ∈ N such that 2εr ≥ p0 and such that r ≥ q′ and conclude
with the Jensen inequality for concave functions and with the norm estimate ‖ · ‖ℓ∞({s+1:s1}) ≤
‖ · ‖ℓ2r({s+1:s1})

E



(

sup
s<j≤s1

{bj |yj |}
)2q′


 ≤

(
sup

s<j≤s1

{
b1−ε
j

})2q′

E





 ∑

s<j≤s1

b2εrj |yj |2r



q′/r



≤
(

sup
s<j≤s1

{
b1−ε
j

})2q′

E


 ∑

s<j≤s1

b2εrj |yj |2r





q′/r

≤
(

sup
s<j≤s1

{
b1−ε
j

})2q′

 ∑

s<j≤s1

b2εrj

(2r)!

2rr!




q′/r

≤
(

sup
s<j≤s1

{
b1−ε
j

})2q′

‖(bj)j≥1‖2εq
′

ℓp0 (N)

(
(2r)!

2rr!

)q′/r

,
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where we used the fact that for a random variable X ∼ N (0, 1), E(X2r) = (2r)!/(2rr!). The
assumption (bj)j≥1 ∈ ℓp0(N) implies that (Zs′)s′≥1 is a Cauchy sequence in Lq(Ω;L∞(D)), which

is a Banach space (cp. [9, Theorem III.6.6]). Define Z̃ to be the unique limit of (Zs′)s′≥1 in
Lq(Ω;L∞(D)). The continuous embedding Lq2(Ω;L∞(D)) ⊂ Lq1(Ω;L∞(D)), for every q1 ≤
q2 ∈ [1,∞), implies that the limit Z̃ does not depend on q. We denote this limit by Z. As an
element of Lq(Ω;L∞(D)), Z is a L∞(D)-valued µ-equivalence class.

The Stirling bounds
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, for every n ∈ N, cp. [10, (9.5)

and (9.8)], imply the assertion of the proposition with

(
(2r)!

2rr!

)1/(2r)

≤ 21/2
(

e√
π

)1/(2r)√r

e
.

✷

For the partial sum Zs in (12), we define

as := exp(Zs) , for every s ∈ N .

Proposition 3 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for K ∈
(0,∞). Then, for every q ∈ [1,∞), a ∈ Lq(Ω;L∞(D)) and there exists a constant C > 0 such
that for every s ∈ N

‖as‖Lq(Ω;L∞(D)) ≤ C .

Proof. While the space L∞(D) is not separable, the strong measurability of a = exp(Z) in
L∞(D) follows because the composition with the exponential function is a continuous mapping
from L∞(D) to L∞(D). The proof of this proposition is based on an application of Fernique’s
theorem (e.g. cp. [3, Theorem 2.8.5] or [7, Theorem 2.7]). We verify the conditions in order to
apply Fernique’s theorem. Our approach is similar to the proof of [15, Proposition B.1]. We
detail the argument for the convenience of the reader. We claim that for every ℓ ∈ (L∞(D))∗,
ℓ(Z) is centered, normally distributed, i.e., the law of Z is a centered Gaussian measure on

L∞(D). Indeed, for arbitrary s′ ∈ N, ℓ(Zs′) ∼ N (0,
∑s′

j=1 ℓ(ψj)
2). Since

s′∑

j=1

ℓ(ψj)
2 ≤




s′∑

j=1

ℓ(ψj)




2

=


ℓ




s′∑

j=1

ψj






2

≤ ‖ℓ‖2(L∞(D))∗K
2 sup
j≥1

{
b2j
}
,

the monotone sequence
∑s′

j=1 ℓ(ψj)
2 indexed by s′ ∈ N is bounded and hence has a finite limit

that we denote by σ2ℓ . This implies that for fixed ℓ ∈ (L∞(D))∗, the characteristic functions
of the random variables (ℓ(Zs′) : s′ ∈ N) converge pointwise to the characteristic function of a
N (0, σ2ℓ ) distributed random variable as s′ → ∞. Since ℓ(Zs′) converges to ℓ(Z) as s′ → ∞ in
particular in the L2-sense by Theorem 2 and thus also in distribution, Lévy’s continuity theorem
(e.g. cp. [24, Theorem IV.13.2.B]) implies that ℓ(Z) ∼ N (0, σ2ℓ ) and we conclude that the law
of Z is a Gaussian measure on L∞(D), which is one of the conditions of Fernique’s theorem.

We will treat the case s < ∞ first. By Theorem 2, there exists an upper bound C of the
L2(Ω;L∞)-norm of the Gaussian random fields Z and Zs, that is independent of s. The existence
of this uniform upper bound C is the main ingredient of the remaining argument. Let in the
following X ∈ {Z,Zs} be arbitrary. Let κ1 ∈ (1/(1+ exp(−2)), 1) and set κ2 := C/

√
1− κ1 and

conclude with the Chebychev inequality that

1− µ(‖X‖L∞(D) ≤ κ2) = µ(‖X‖L∞(D) > κ2) ≤
E(‖X‖2L∞(D))

κ22
≤ C2

κ22
= 1− κ1.
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Hence, µ(‖X‖L∞(D) ≤ κ2) ≥ κ1 > 1/(1 + exp(−2)) > 1/2 . Let us set λ := (1 − κ1)/(32C
2),

which implies that 32λκ22 ≤ 1. Thus, by the monotonicity of the logarithm

log

(
1− µ(‖X‖L∞(D) ≤ κ2)

µ(‖X‖L∞(D) ≤ κ2)

)
+ 32λκ22 ≤ log

(
1− κ1
κ1

)
≤ −1.

This is the second requirement in order to apply [7, Theorem 2.7]. Since Zs is in particular a
Gaussian measure on the separable Banach space span{ψj : j ∈ {1 : s}} with respect to the
L∞(D)-norm, [7, Theorem 2.7] implies that

E(exp(λ‖Zs‖2L∞(D))) ≤ exp(16λκ22) +
exp(2)

exp(2)− 1
. (13)

Since κ2 and λ do not depend on s (because C does not), the upper bound in (13) is uniform
with respect to s. For every x ∈ R, qx ≤ λx2+q2/(4λ) is concluded from 0 ≤ (

√
λx−q/(2

√
λ))2,

which yields the second assertion of the proposition, i.e.,

E(‖ exp(Zs)‖qL∞(D)) ≤ E(exp(λ‖Zs‖L∞(D))) exp

(
q2

4λ

)
. (14)

The case of Z (corresponding formally to the case of s = ∞) is treated separately. Since L∞(D)
is not separable, [7, Theorem 2.7] is not applicable. We argue with [3, Theorem 2.8.5] instead.
To this end, we define

λ̂ :=
1

24κ22
log

(
µ(‖Z‖L∞(D) ≤ κ2)

1− µ(‖Z‖L∞(D) ≤ κ2)

)
,

which is strictly positive because κ1 > 1/2. Then, [3, Theorem 2.8.5] is applicable and we obtain

E(exp(λ̂‖Z‖2L∞(D))) <∞,

which implies as above, cp. (14), that E(‖ exp(Z)‖qL∞(D)) <∞. ✷

We note that the line of argument in the second paragraph of the proof seems to originate with
the proof of [4, Proposition 3.10].

Remark 4 The property that a = exp(Z) ∈ Lq(Ω;L∞(D)), for every q ∈ [1,∞), also holds
under weaker summability assumptions on (bj)j≥1, cp. [1, Theorem 2.2] that was proven with
a different approach. However the membership of (bj)j≥1 in ℓp(N) for a certain range of p (as
assumed in Proposition 3) seems indispensible for the considered QMC rules to be applicable,
cp. Section 7. Also, our argument yields bounds of truncated expansions of Gaussian random
fields that are uniform in s.

Proposition 5 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for K ∈
(0,∞). Then, for every q ∈ [1,∞) and every ε ∈ (0, 1) there exists a constant C > 0 such that
for every s ∈ N

‖a− as‖Lq(Ω;L∞(D)) ≤ C sup
j>s

{
b1−ε
j

}
,

Proof. The fundamental theorem of calculus implies that for every t1, t2 ∈ R, |et2 − et1 | ≤
(et2 + et1)|t2 − t1|. Thus, by the Cauchy–Schwarz inequality

‖a− as‖Lq(Ω;L∞(D)) ≤ ‖a+ as‖L2q(Ω;L∞(D))‖Z − Zs‖L2q(Ω;L∞(D)).

The assertion follows with the triangle inequality, Theorem 2, and Proposition 3. ✷
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Our ensuing analysis of the solution to (1) will require the following random variables:

amin := ess inf
x∈D

a(x), amax := ‖a‖L∞(D), a
s
min := ess inf

x∈D
as(x), asmax := ‖as‖L∞(D) .

Here, s ∈ N is arbitrary, finite.

Corollary 6 Let the assumption of Proposition 3 be satisfied. Then, for every q ∈ [1,∞),
a−1
min ∈ Lq(Ω;L∞(D)) and there exists a constant C > 0 such that for every s ∈ N

∥∥∥∥
1

asmin

∥∥∥∥
Lq(Ω;L∞(D))

≤ C.

4 Existence and uniqueness

In this paper we are interested in mean field approximations. We consider the solution to (1)
as a µ-equivalence class taking values in V := H1

0 (D). The existence and uniqueness of the
solution to (1) is well known, cp. [4, Proposition 2.4]; we review the basic results, following the
presentation in [15, Section 3.1].

Since the right hand side in (1) is deterministic, we are interested in the data-to-solution
map Sf that maps a (realization of the) diffusion coefficient â ∈ L∞(D) to the solution û ∈ V for
fixed right hand side f ∈ V ∗. In what follows, we fix f ∈ V ∗ unless explicitly stated otherwise.
For every â ∈ L∞

+ (D) := {ã ∈ L∞(D) : ess infx∈D ã(x) > 0}, consider the deterministic diffusion
equation problem: find a unique û ∈ V such that

∫

D
â∇û · ∇v dx = f(v), ∀v ∈ V. (15)

For such â, the bilinear form (w, v) 7→
∫
D â∇w · ∇v dx is continuous and coercive on V × V ,

since by â ∈ L∞
+ (D)

∣∣∣∣
∫

D
â∇w · ∇v dx

∣∣∣∣ ≤ ‖â‖L∞(D)‖w‖V ‖v‖V , ∀w, v ∈ V,

and ∫

D
â∇w · ∇w dx ≥ ess inf

x∈D
{â(x)}‖w‖2V , ∀w ∈ V.

The Lax–Milgram lemma implies that the problem in (15) is well posed. Thus, for every fixed
f ∈ V ∗ the mapping

Sf : L∞
+ (D) → V : â 7→ û

is well defined. Moreover, the Lax–Milgram lemma implies that for every â ∈ L∞
+ (D)

‖Sf (â)‖V ≤ 1

ess infx∈D{â(x)}
‖f‖V ∗ . (16)

Also it is well known that Sf : L∞
+ (D) → V is Lipschitz continuous, which can be shown by the

second Strang lemma (see (18) ahead or [15] for details).
Let in the following a denote the lognormal random field in Proposition 3. The weak (or

variational) formulation of the parametric, elliptic PDE (1) for fixed, deterministic f ∈ V ∗ reads:
find a strongly measurable V -valued mapping u : Ω → V such that

∫

D
a∇u · ∇v dx = f(v), ∀v ∈ V . (17)

8



Due to Proposition 3, a is strongly measurable in L∞(D) and by Corolloary 6, amin > 0 µ-almost
surely (a.s. for short). Hence, a takes values in L∞

+ (D) and u := Sf (a) is the unique solution
to (17), where we recall that uniqueness is meant as V-valued µ-equivalence class. The strong
measurability in V of u is deduced from the strong measurability of a and the continuity of Sf .
By (16) and Corollary 6, for every q ∈ [1,∞) there holds

‖u‖Lq(Ω;V ) ≤
∥∥∥∥

1

amin

∥∥∥∥
Lq(Ω)

‖f‖V ∗ <∞ .

5 Dimension truncation

In applications of QMC integration a finite dimensional integration domain is required, which
in our case will be Rs for s ∈ N. Truncation of the series in (2) will introduce a truncation error.
For every s ∈ N, us := Sf (a

s) uniquely solves

∫

D
as∇us · ∇v dx = f(v), ∀v ∈ V.

Proposition 7 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and for K > 0.
Let G(·) ∈ V ∗ and ε ∈ (0, 1) be arbitrary. There exists a constant C independent of f and of
G(·) such that for every s ∈ N

|E(G(u))− Is(G(u
s))| ≤ C‖G(·)‖V ∗‖f‖V ∗ sup

j>s

{
b1−ε
j

}
.

Proof. The second Strang lemma implies that

‖u− us‖V ≤ 1

amin asmin

‖a− as‖L∞(D)‖f‖V ∗ . (18)

By the linearity and continuity of G(·) and by the Hölder inequality

|E(G(u))− Is(G(u
s))| ≤ ‖G(·)‖V ∗‖u− us‖L1(Ω;V )

≤ ‖G(·)‖V ∗

∥∥∥∥
1

amin

∥∥∥∥
L3(Ω)

∥∥∥∥
1

asmin

∥∥∥∥
L3(Ω)

‖a− as‖L3(Ω;L∞(D))‖f‖V ∗ .

The assertion follows with Proposition 5 and Corollary 6. ✷

Realizations of the Gaussian random field Zs can be obtained from Gaussian vectors y ∈ R
s.

Specifically, one realization of Zs requires s draws of independent, standard normally distributed
random variables which results in a vector (y1, . . . , ys)

⊤ ∈ R
s. Since the support of the s-

dimensional multivariate Gaussian measure on R
s with covariance equal to the identity is R

s,
the whole of Rs is the parameter set. We denote realizations of Zs by Zs(y) :=

∑s
j=1 yjψj , where

y = (y1, . . . , ys)
⊤ ∈ R

s is the particular realization of the i.i.d. standard normally distributed
coefficient sequence (yj)1≤j≤s. Moreover, for every s ∈ R

s, Zs also denotes the respective
mapping from R

s to L∞(D). Similarly, for every s ∈ R
s, as also denotes the respective mapping

from R
s to L∞

+ (D), asmin and asmax also denote the respective mappings from R
s to (0,∞), and

us also denotes the respective mapping from R
s to V .
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6 Parametric regularity

By the definition of the weighted Sobolev norm in (11), it is crucial for the QMC convergence
analysis to derive estimates of the mixed partial derivatives ∂uus, u ⊂ {1 : s}, in order to bound
the Wγ(R

s;V )-norm of us uniformly in the parameter dimension s.
Bounds on the parametric partial derivatives of the solution us have been proven in [18, 13, 1].

It is well known that for every 0 6= τ ∈ N
s
0 and for every y ∈ R

s there holds

∫

D
as(y)∇∂τus(y)·∇v dx = −

∫

D

∑

ν≤τ ,ν 6=τ

(
τ

ν

) ∏

j∈supp(τ )

ψ
τj−νj
j as(y)∇∂νus(y)·∇v dx, ∀v ∈ V,

(19)
cp. for example [1, Lemma 3.1] and see also [18, (3.6)]. The arguments in [18, 13] rely on global
bounds of the functions (ψj)j≥1. Specifically, the L

∞(D)-norm of the functions (ψj)j≥1 was (in
these references) taken inside the summation over multiindices in (19). This way information of
locality of the support of the functions (ψj)j≥1 is lost. For the quantitative analysis of parametric
regularity, we introduce for every s ∈ N, for every y ∈ R

s and every v ∈ V the parametrized
energy norm ‖v‖as(y) by

‖v‖as(y) :=
√∫

D
as(y) |∇v|2 dx .

For every y ∈ R
s and every v ∈ V there holds

(asmin(y))
1/2‖v‖V ≤ ‖v‖as(y) ≤ (asmax(y))

1/2‖v‖V . (20)

The following proposition was proven with an approach that accounts for possible locality of the
supports. We state a version of first order mixed partial derivatives and truncated dimension.

Proposition 8 [1, Theorem 4.1] Assume that there exists a positive sequence (ρj)j≥1 such that

∥∥∥∥∥∥

∑

j≥1

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

< log(2) .

Then, there exists a constant C > 0 such that for every s ∈ N and every y ∈ R
s

∑

u⊂{1:s}

‖∂uus(y)‖2as(y)
∏

j∈u

ρ2j ≤ C‖us(y)‖2as(y) .

We extend the parametric regularity estimates that are given in Proposition 8 in order to obtain
estimates that are suitable to yield dimension independent convergence rates of randomly shifted
lattice rules.

Theorem 9 Let the assumption in (A1) be satisfied for some K > 0. Let (wj)j≥1 be either
of the weight functions defined in (9) and (10). Let κ ∈ (0, log(2)/K) be fixed and p′ ∈ (0, 1).
There exists a constant C > 0 such that for every s ∈ N, and for positive γ,

‖us‖2Wγ(Rs;V ) ≤ C‖f‖2V ∗

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u

φ(yj)



 dy

× sup
u⊂{1:s}

γ−1
u

∏

j∈u

b2p
′

j .
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Proof. We obtain with the Jensen inequality, for any s ∈ N,

‖us‖2Wγ(Rs;V )

≤
∑

u⊂{1:s}

1

γ
u

∫

Rs

‖∂uu(y)‖2V
∏

j∈{1:s}\u

φj(yj)
∏

j∈u

w
2
j (yj)dy

≤
∫

Rs

∑

u⊂{1:s}

κ2|u|

γ
u

∏
j∈u b

2(1−p′)
j

‖∂uu(y)‖2V sup
u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u

φ(yj)



 dy.

In the present setting, the assumption of Proposition 8 is satisfied by the sequence (ρj)j≥1 =
(κ/bj)j≥1. Hence, by the Hölder inequality and Proposition 8, and using (20) we obtain the
following bound

‖us‖2Wγ(Rs;V ) ≤
∫

Rs

1

asmin(y)


 ∑

u⊂{1:s}

‖∂uus(y)‖2as(y)γ−1
u

∏

j∈u

κ2

b
2(1−p′)
j




× sup
u⊂{1:s}

∏

j∈u






b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u

φ(yj)



 dy

≤
∫

Rs

1

asmin(y)
C‖us(y)‖2as(y) sup

u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u

φ(yj)



 dy

× sup
u⊂{1:s}

γ−1
u

∏

j∈u

b2p
′

j

≤ C‖f‖2V ∗

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u


b

2(1−p′)
j

κ2


w

2
j (yj)

∏

j∈{1:s}\u

φ(yj)



 dy

× sup
u⊂{1:s}

γ−1
u

∏

j∈u

b2p
′

j ,

where we have used that ‖us(y)‖as(y) ≤ ‖f‖V ∗/
√
asmin(y). ✷

Corollary 10 Under the assumption of Theorem 9, there exists a finite constant C such that
for every s ∈ N and for every G(·) ∈ V ∗ holds for F = G(us)

‖F‖Wγ(Rs) ≤ C‖G(·)‖V ∗‖f‖V ∗

√√√√√
∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}

∏

j∈u

(
b
2(1−p′)
j

κ2

)
w

2
j (yj)

∏

j∈{1:s}\u

φ(yj)dy

× sup
u⊂{1:s}

γ
−1/2
u

∏

j∈u

bp
′

j .

7 QMC analysis for the exact solution

In this section we show dimension-independent convergence rates for QMC integration of (func-
tionals of) the parametric solution us(y), which are obtained from the parametric regularity
bounds shown in Section 6. The cases of Gaussian and exponential weight functions in the
norm (11) will be treated separately, since the ensuing analysis suggests that the convergence
rates hold under different summability assumptions on the sequence (bj)j≥1. In this section
we assume that the integrand functions can be evaluated exactly. Ahead, in Section 8, the
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additional discretization error that arises by single-level Petrov-Galerkin discretizations of the
parametric PDE (17) is taken into account.

Theorem 11 [Gaussian weight functions] Let assumption (A1) be satisfied for K > 0 and for
(bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2). For some ε ∈ (0, 3/4− 1/(2p)) such that ε ≤ 1/(2p)− 1/4
set p′ = p/4 + 1/2− εp. Let (wg,j)j≥1 be the weight functions defined in (9) with

αg ∈
(

p

2(p− p′)
,

p

p− 2(1− p′)

)
. (21)

Define the product weights

γu :=
∏

j∈u

b2p
′

j , u ⊂ N, |u| <∞ . (22)

Let s ∈ N and G(·) ∈ V ∗ be given. Then, for every N ∈ N a randomly shifted lattice rule with
N points can be constructed in O(sN logN) operations using the fast CBC algorithm of [27, 26]
such that the root-mean square error over all random shifts can be estimated as follows: there
exists a constant C > 0 that is independent of s and N such that

√
E∆(|Is(G(us))−Q∆

s,N (G(us))|2) ≤ C (ϕ(N))−(1/(2p)+1/4−ε).

Proof. The assertion of the theorem will follow by Theorem 1 once the Wγ(R
s;V )-norm of

us has been bounded independently of s, which in turn will be deduced from the bound in
Theorem 9 and in Corollary 10. To this end, fix κ ∈ (0, log(2)/K). Since p > 2(1−p′) is implied
by (3/4− 1/(2p)) > ε, thus q := p/(2(1− p′)) > 1. From the Jensen inequality we obtain

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
g,j(yj)

∏

j∈{1:s}\u

φ(yj)



 dy

≤
∫

Rs



(

1

(asmin(y))
2

)q ∑

u⊂{1:s}

∏

j∈u

bpj
κ2q

w
2q
g,j(yj)

∏

j∈{1:s}\u

φ(yj)
q




1/q

dy

≤



∫

Rs

(
1

(asmin(y))
2

)q ∑

u⊂{1:s}

∏

j∈u

bpj
κ2q

w
2q
g,j(yj)φ(yj)

−q
∏

j∈{1:s}

φ(yj)dy




1/q

=


 ∑

u⊂{1:s}

∏

j∈u

bpj
κ2q

∫

Rs

(
1

(asmin(y))
2

)q∏

j∈u

w
2q
g,j(yj)φ(yj)

−q
∏

j∈{1:s}

φ(yj)dy




1/q

.

(23)

Here, we inserted the factor 1 =
∏

j∈{1:s} φ(yj)φ(yj)
−1 and we moved factors under the exponent

1/q to move the exponent 1/q outside of the integral with the Jensen inequality.
The parameter αg > 1 of the weight functions (wg,j)j≥1 is chosen such that αg < q/(q − 1),

which implies that 1 > (1−1/αg)q. The function x 7→ x/(x−1) is strictly decreasing on (1,∞).
Thus, there exists q′ > q such that αg < q′/(q′ − 1) and therefore also 1 > (1 − 1/αg)q

′. Since∫
R
exp(−y2/(2σ2))dy =

√
2πσ for every σ > 0, it holds that

∫

R

w
2q′

g,j (y)φ(y)
−q′φ(y)dy = (

√
2π)q

′−1

∫

R

e
− y2

2

(
1−

(
1− 1

αg

)
q′
)

dy =

√
(2π)q′

αg

αg − (αg − 1)q′
=: C ′.
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The Hölder inequality applied with q′/q > 1 and conjugate q′/(q′ − q) results in
∫

Rs

(
1

(asmin(y))
2

)q∏

j∈u

w
2q
g,j(yj)φ(yj)

−q
∏

j∈{1:s}

φ(yj)dy

≤



∫

Rs

(
1

(asmin(y))
2

)qq′/(q′−q) ∏

j∈{1:s}

φ(yj)dy




(q′−q)/q′

∫

R|u|

∏

j∈u

w
2q′

g,j (yj)φ(yj)
−q′φ(yj)dy




q/q′

=



∫

Rs

(
1

(asmin(y))
2

)qq′/(q′−q) ∏

j∈{1:s}

φ(yj)dy




(q′−q)/q′

(C ′)|u|q/q
′

=

(
E

((
1

(asmin)
2

)qq′/(q′−q)
))(q′−q)/q′

(C ′)|u|q/q
′
=: C ′′(C ′)|u|q/q

′
,

where the bound C ′′ is independent of s by Corollary 6 and by the Cauchy–Schwarz inequality.
Together with (23) and [21, Lemma 6.3], we obtain that

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
g,j(yj)

∏

j∈{1:s}\u

φ(yj)



 dy ≤


C ′′

∑

u⊂{1:s}

∏

j∈u

bpj (C
′)q/q

′

κ2q




1/q

≤ (C ′′)1/q exp


(C ′)q/q

′

qκ2q

∑

j≥1

bpj


 ,

which bound is independent of s and finite by the assumption (bj)j≥1 ∈ ℓp(N). Then, by
Corollary 10, there exists a constant C independently of s such that for our chosen weights

‖G(us)‖Ws,γ(Rs) ≤ C‖G(·)‖V ∗‖f‖V ∗ .

The parameter αg of the weight functions (wg,j)j≥1 is chosen such that αg > p/(2(p − p′)),
which implies that λ > 1/(2r), where λ := p/(2p′) and r := 1 − 1/(2αg). Also note that
ε ≤ 1/(2p)− 1/4 implies λ ≤ 1. We recall from Theorem 1

ρ(λ) := 2

(
4
√
2πα2

g

π2−1/αg(2αg − 1)

)λ

ζ (2rλ) .

The two conditions on the parameter αg of the weight functions, that αg < q/(q − 1) and that
αg > p/(2(p− p′)), are compatible, since

p

2(p− p′)
<

q

q − 1
=

p

p− 2(1− p′)

is implied by

p′ <
p

4
+

1

2
.

Note that p > p/4 + 1/2 > p′ implies that αg is well defined. Since product weights are
considered, [21, Lemma 6.3] implies with the assumption (bj)j≥1 ∈ ℓp(N) that

∑

∅6=u⊂{1:s}

γλ
u
ρ(λ)|u| ≤

∑

u⊂N,|u|<∞

∏

j∈u

bpjρ(λ)
|u| ≤ exp


∑

j≥1

bpjρ(λ)


 <∞,

which bound is uniform in s. The assertion of the theorem follows with Theorem 1 applied
with the choices λ = p/(2p′) and p/(2(p− p′)) < αg < p/(p− 2(1− p′)). The convergence rate
resulting from Theorem 1 is 1/(2λ) = p′/p = 1/(2p) + 1/4− ε. ✷
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Remark 12 In Theorem 11, the case p = 2 does not seem accessible with the present argument,
since in Theorem 1 neither of the choices λ > 1 nor αg = 1 are permitted.

Theorem 13 [Exponential weight functions]
Let assumption (A1) be satisfied for K > 0 and for (bj)j≥1 ∈ ℓp(N) for p ∈ (2/3, 1]. Let

(wexp,j)j≥1 be the weight functions defined in (10) with αexp > 2K supj≥1{bj}. Define p′ :=
1− p/2 ∈ [1/2, 2/3). Let s ∈ N and G(·) ∈ V ∗ be given and define product weights

γu :=
∏

j∈u

b2p
′

j u ⊂ N, |u| <∞ . (24)

Then, for every N ∈ N a randomly shifted lattice rule with N points can be constructed in
O(sN logN) operations using the fast CBC algorithm of [27, 26] such that the root-mean square
error over all random shifts can be estimated independently of s and N , i.e., there exists a
constant C > 0 that is independent of s and N such that

√
E∆(|Is(G(us))−Q∆

s,N (G(us))|2) ≤ C (ϕ(N))−1/p+1/2 .

Proof. The assertion of the theorem will follow from Theorem 1 once the Wγ(R
s;V )-norm of

us has been bounded independently of s. This, in turn, will be shown using Theorem 9. Let
κ ∈ (0, log(2)/K) be fixed. The choice p′ = 1− p/2 implies that 2(1− p′) = p and we obtain

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
exp,j(yj)

∏

j∈{1:s}\u

φ(yj)



 dy

≤
∫

Rs

(
1

(asmin(y))
2

) ∑

u⊂{1:s}

∏

j∈u

bpj
κ2

w
2
exp,j(yj)

∏

j∈{1:s}\u

φ(yj)dy

=
∑

u⊂{1:s}

∏

j∈u

bpj
κ2

∫

Rs

(
1

(asmin(y))
2

)∏

j∈u

w
2
exp,j(yj)

∏

j∈{1:s}\u

φ(yj)dy.

We observe that for every y ∈ R
s,

(
1

(asmin(y))
2

)
≤ e2‖Z(y)‖L∞(D) ≤ e2K supj∈{1:s}{|yj |bj} ≤ e2K

∑
j∈{1:s} |yj |bj ,

which allows for an upper bound of the integrand that is in product form to separate the integrals.
Since the parameter αexp of the weight functions satisfies that αexp > 2K‖(bj)j≥1‖ℓ∞(N), we
obtain that for every j ∈ {1 : s}

∫

R

e2K|yj |bj
w

2
j (yj)dyj =

1

αexp − 2Kbj

and (as in [13, Eq.(4.15)])

1 ≤
∫

R

e2K|yj |bjφ(yj)dyj = 2 exp

(
(2Kbj)

2

2

)
Φ(2Kbj) ≤ exp

(
(2Kbj)

2

2
+

4Kbj√
2π

)
.

Here, we used the bound Φ(y) ≤ 1/2 exp(2y/
√
2π) for every y ≥ 0, which can be shown by an

affine approximation of Φ and the elementary bound 1+x ≤ ex for every x ∈ [0,∞) (we refer to
[13, p. 355] for details). By the assumption that (bj)j≥1 ∈ ℓp(N) ⊂ ℓ1(N), for every u ⊂ {1 : s}
holds

∏

j∈u

exp

(
(2Kbj)

2

2
+

4Kbj√
2π

)
≤ exp


∑

j≥1

(2Kbj)
2

2
+

4Kbj√
2π


 =: C <∞ .
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We conclude with [21, Lemma 6.3] and the assumption (bj)j≥1 ∈ ℓp(N) that

∫

Rs

1

(asmin(y))
2

sup
u⊂{1:s}




∏

j∈u

b
2(1−p′)
j

κ2
w

2
exp,j(yj)

∏

j∈{1:s}\u

φ(yj)



 dy

≤ C
∑

u⊂{1:s}

∏

j∈u

bpj/κ
2

αexp − 2Kbj

≤ C exp


∑

j≥1

bpj/κ
2

αexp − 2Kbj


 <∞.

By Theorem 9 we obtain for our choice (24) of product weights γ

‖G(us)‖Ws,γ(Rs) ≤
√
C exp


1

2

∑

j≥1

bpj/κ
2

αexp − 2Kbj


 <∞.

Here, the constant C > 0 is independent of the integration dimension s. The assertion now
follows similarly as in the proof of Theorem 11 from Theorem 1. We have chosen the weight
functions defined in (10) with λ = p/(2p′) and δ < 1− 1/(2λ). We note that by the assumption
(bj)j≥1 ∈ ℓp(N) and [21, Lemma 6.3], for every s ∈ N,

∑

u⊂{1:s}

γλ
u
ρ(λ)|u| =

∑

u⊂{1:s}

∏

j∈u

(
bpjρ(λ)

)
≤ exp


∑

j≥1

bpjρ(λ)


 <∞.

✷

The QMC convergence rate bounds in Theorems 11 and 13 are also applicable for globally
supported functions (ψj)j≥1 as studied in [13]. The product structure of the QMC weight
sequences γ = (γu)u⊂N,|u|<∞ considered here entails stronger summability conditions on the
sequence (bj)j∈N to achieve a prescribed, dimension-independent convergence rate.

Corollary 14 Under the assumption that (5) is satisfied for some p ∈ (2/5, 2/3). Define the
sequence (bj)j≥1 by bj := ‖ψj‖1−p

L∞(D), j ≥ 1. Then,

1. a randomly shifted lattice QMC rule based on Gaussian weight functions with product
weights converges with rate 1/(2p)− 1/4− ε for ε > 0 sufficiently small.

2. a randomly shifted lattice QMC rule based on exponential weight functions with product
weights for p ∈ (2/5, 1/2] converges with rate 1/p− 3/2.

We remark that in [13], for exponential weight functions, globally supported (ψj)j≥1 and for
summability exponent p ∈ (2/3, 1), the dimension-independent convergence rate 1/p − 1/2 in
terms of N was established for a randomly shifted lattice rule with product and order depen-
dent weights, from [25]. For such weights, however, the fast CBC construction of QMC rules
has cost which increases quadratically w.r. to the quadrature dimension s, whereas fast CBC
constructions for product weights scale linearly w.r. to s.
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8 Combined QMC Finite Element discretization

In general, the exact evaluation of the solution of (1) is not possible as required for the compu-
tation of Q∆

s,N (G(us)) for a functional G(·) ∈ V ∗. We approximate the solution by a Galerkin
FE method. For simplicity we introduce the assumption that

D ⊂ R
d is a bounded polyhedron with plane faces. (A2)

Let {Th}h>0 be a family of nested, shape regular simplicial triangulations of the polygonal resp.
polyhedral domain D, where h is the maximal diameter of all elements in Th. Let Vh denote
all continuous piecewise polynomal functions of total degree r ≥ 1, that vanish on ∂D. Thus,
Vh ⊂ V is a subspace such that dim(Vh) = O(h−d) as h → 0. The deterministic Galerkin
discretization reads: for every â ∈ L∞

+ (D) find ûh ∈ Vh such that

∫

D
â∇ûh · ∇vh dx = f(v), ∀vh ∈ Vh. (25)

From the discussion in Section 4 we know that the problem in (25) is well posed. Similar to
Section 4, we denote by Sh

f the discretized data-to-solution map that maps a (realization of the)

diffusion coefficient â ∈ L∞
+ (D) to the FE solution ûh ∈ Vh for fixed right hand side f ∈ V ∗. We

note that Sh
f : L∞

+ (D) → Vh ⊂ V is continuous. This implies that the FE solution

us,h := Sh
f (a

s)

is strongly measurable in V for every h > 0 and s ≥ 1. It is the unique solution to the
s-parametric, deterministic variational problem

∫

D
as∇us,h · ∇vh dx = f(v), ∀vh ∈ Vh

as a Vh-valued µ-equivalence class; see also [15, Section 4.1] for details.
Let Ct(D), t ∈ [0,∞), denote the Hölder spaces such that for k ∈ N, Ck(D) is the space of

k-times continuously differentiable functions on D with bounded derivatives on D. Regularity
of solutions to (15) in Sobolev scales accounting for singularities due to re-entrant corners has
been studied for d = 2 in [28, 14], where in [28, Lemma 5.2] the explicit dependence of the
constant in the error bound has been tracked: let t ∈ (0, 1), τ ∈ (0,max{t, π/βmax})\{1/2}, and
assume that f ∈ H−1+τ (D) and â ∈ Ct(D) ∩L∞

+ (D), then Sf (â) ∈ H1+τ (D) and there exists a
constant C such that for every f ∈ H−1+τ (D) and for every â ∈ Ct(D) ∩ L∞

+ (D)

‖Sf (â)‖H1+τ (D) ≤ C
‖â‖L∞(D)

(ess infx∈D â(x))4
‖â‖2

Ct(D)
‖f‖H−1+τ (D), (26)

where βmax is the maximal opening angle of the interior tangent cones to ∂D with vertex in the
corner points of D. Under (A2), for d = 2, in Sobolev scales the regularity of the inverse of
the Dirichlet Laplacean (−∆)−1 : V ∗ → V is limited by the maximal interior angle βmax of D
such that (−∆)−1 : H−1+τ (D) → H1+τ (D) ∩ V is bounded for every τ ∈ [0, π/βmax), cp. [14,
Section 5].

We impose the hypothesis (see Proposition 18 ahead for a class of instances) that for some
t > 0, a and as are strongly measurable in Ct(D), for every s ∈ N. Moreover, we assume that
for every q ∈ [1,∞) there exists a constant C such that for every s ∈ N

‖as‖Lq(Ω;Ct(D)) ≤ C. (A3)
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Proposition 15 Let the assumption in (A1) be satisfied for some p0 ∈ (0,∞) and let the
assumption in (A2) and in (A3) hold for some t > 0. Let f ∈ H−1+τ (D) and let G(·) ∈
H−1+τ ′(D) for τ, τ ′ ∈ (0,max{t, π/βmax})\{1/2 + N0}. For every q ∈ [1,∞) there exists a
constant C independent of h > 0 such that for every s ≥ 1

‖G(us)−G(us,h)‖Lq(Ω) ≤ Chmin{τ,r}+min{τ ′,r} .

Proof. The first part of the proof follows similarly as respective arguments that resulted in [15,
Theorem 3.7].

We decompose τ = ⌊τ⌋ + {τ}, where {τ} is the fractional part, and show by induction on
n ∈ {0, . . . , ⌊τ⌋} that the Lq(Ω;H1+n+{τ}(D))-norm of Sf (a

s) can be uniformly bounded in
s for every q ∈ [1,∞). The base case, i.e., n = 0, follows by (26) and (A3) with a twofold
application of the Cauchy–Schwarz inequality. For n ∈ {1, . . . , ⌊τ⌋}, t > 1 and thus as takes
values in C1(D). Let us assume the statement holds for n− 1 as induction hypothesis. Hence,
the equation (1) can be reformulated as

−∆Sf (a
s) =

1

as
(f +∇as · ∇Sf (a

s)) =: f̃

with equality in V ∗. Since for a constant C that is independent of as and f

‖f̃‖H−1+n+{τ}(D) ≤ C
(
‖1/as‖Ct(D)

(
‖f‖H−1+n+{τ}(D) + ‖as‖Ct(D)‖Sf (a

s)‖Hn+{τ}(D)

))
,

where we used that the pointwise product of functions in C t̃(D) with functions in H τ̃ (D) is
continuous for all 0 ≤ τ̃ < t̃, cp. [14, Theorem 1.4.1.1]. This implies with the induction hypothesis
and a twofold application of the Cauchy–Schwarz inequality that the Lq(Ω;H−1+n+{τ}(D))-
norm of f̃ is bounded uniformly in s for every q ∈ [1,∞). Since (−∆)−1 : H−1+n+{τ}(D) →
H1+n+{τ}(D)∩V is bounded the induction step is completed and thus the Lq(Ω;H1+τ (D))-norm
of Sf (a

s) is bounded uniformly in s for every q ∈ [1,∞). Note that the strong measurability
of Sf (a

s) in H1+τ (D) follows, since Sf : Ct(D) ∩ L∞
+ (D) → H1+τ (D) is continuous, which can

be shown with the estimate in (26) and a perturbation argument with respect to the diffusion
coefficient; see the proof of [15, Proposition 3.6] for details. Verbatim, it holds that for every q ∈
[1,∞), the Lq(Ω;H1+τ ′(D))-norm of SG(a

s) can be bounded by a constant which is independent
of s. By the Aubin–Nitsche lemma, cp. [5, Theorem 3.2.4 and (3.2.23)],

|G(us)−G(us,h)| ≤ ‖as‖L∞(D)‖Sf (a
s)− Sh

f (a
s)‖V ‖SG(a

s)− Sh
G(a

s)‖V ,

which implies with the approximation property of Vh in V , cp. [5, Theorem 3.2.1] (which can
be interpolated to non-integer Sobolev scales), Céa’s lemma, and the Hölder inequality that for
every q ∈ [1,∞)

‖G(us)−G(us,h)‖Lq(Ω) ≤ C

∥∥∥∥
(asmax)

3

(asmin)
2

∥∥∥∥
L3q(Ω)

‖Sf (a
s)‖L3q(Ω;H1+τ (D))‖SG(a

s)‖L3q(Ω;H1+τ ′ (D))

× hmin{τ,r}+min{τ ′,r},

where the constant C is due to the approximation property. The assertion of the proposition
follows by Proposition 3 and Corollary 6 with the Cauchy–Schwarz inequality and by the fact
shown above that the L3q(Ω;H1+τ (D))-norm and the L3q(Ω;H1+τ ′(D))-norm of Sf (a

s) and
respectively of SG(a

s) can be bounded uniformly with respect to s. ✷

Remark 16 In Proposition 15, the cases τ, τ ′ ∈ {1/2 + N0} are permitted if f ∈ H−1+τ+ε(D),
respectively if G(·) ∈ H−1+τ ′+ε(D), for some ε > 0.
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Theorem 17 Let the assumption in (A1) be satisfied with (bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2)
and let the assumption in (A2) and in (A3) be satisfied for some t > 0. Let f ∈ H−1+τ (D) and
let G ∈ H−1+τ ′(D) for τ, τ ′ ∈ (0,max{t, π/βmax})\{1/2 + N0} such that max{τ, τ ′} ≤ r. The
error incurred in the approximation Q∆

s,n(G(u
s,h)) with the N -point randomly shifted lattice rule

Q∆

s,N applied to the s-variate, dimensionally truncated integral Is(G(u
s,h)) satisfies:

1. For p ∈ (2/3, 2) and ε ∈ (0, 3/4−1/(2p)) such that ε ≤ 1/(2p)−1/4, with Gaussian weight
functions (wg,j)j≥1 defined in (9) with αg as in (21) the error is bounded by

√
E∆(|E(G(u))−Q∆

s,N (G(us,h))|2) ≤ C

(
(ϕ(N))−1/4−1/(2p)+ε + sup

j>s

{
b1−ε
j

}
+ hτ+τ ′

)
.

(27)

2. For p ∈ (2/3, 1] and ε ∈ (0, 1), with exponential weight functions (wexp,j)j≥1 defined in (10)
with αexp > 2K supj≥1{bj} the error is bounded by

√
E∆(|E(G(u))−Q∆

s,N (G(us,h))|2) ≤ C

(
(ϕ(N))−1/p+1/2 + sup

j>s

{
b1−ε
j

}
+ hτ+τ ′

)
. (28)

The constant C in the error bounds (27) and (28) is independent of N , s, and h.

Note that (ϕ(N))−1 ≤ N−1 · (eγ̂ log logN + 3/ log logN), for every N ≥ 3, where γ̂ ≈ 0.5772 is
the Euler–Mascheroni constant.

Proof. By the definition of the QMC points in (8), {y(0), . . . ,y(N−1)} are identically N (0, IdRs)-
distributed. We observe that by the triangle inequality, for every square integrable function F
with respect to the s-dimensional normal distribution with covariance being the identity,

√
E∆(|Q∆

s,N (F )|2 ≤ 1

N

N−1∑

i=0

√
E∆(|F (y(i))|2 =

√√√√
∫

Rs

|F (y)|2
∏

j∈{1:s}

φ(yj)dy.

Thus, by the triangle inequality,

√
E∆(|E(G(u))−Q∆

s,N (G(us,h))|2) ≤ |E(G(u))− Is(G(u
s))|

+
√
E∆(|Is(G(us))−Q∆

s,N (G(us))|2)
+ ‖G(us)−G(us,h)‖L2(Ω).

The assertion now follows with Proposition 7, Proposition 15, and by Theorem 11 for Gaussian
weight functions and respectively by Theorem 13 for exponential weight functions. ✷

9 Multiresolution representation of Gaussian random fields

We investigate expansions of Gaussian random fields Z in particular function systems with local
supports, for related recent work see [2]. In the polyhedral domain D, cp. the assumption (A2),
consider an isotropic multiresolution analysis (MRA) Ψ = {ψλ : λ ∈ ∇} whose members ψλ are
indexed by λ ∈ ∇, and are obtained from one or from a finite number of generating elements ψ
by translation and scaling, i.e.,

ψλ(x) = 2d|λ|/2ψ(2|λ|x− k) , k ∈ ∇|λ| , (29)
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where the index set ∇|λ| is of cardinality O(2d|λ|), and where diam supp(ψλ) = O(2−|λ|). The

scaling in (29) by the factor 2d|λ|/2 refers to a normalization in L2(D), i.e., ‖ψλ‖L2(D) ∼ ‖ψ‖L2(D),
λ ∈ ∇. For suitable, sufficiently smooth families of wavelets it can be shown that for every
q ∈ [1,∞) and every t ≥ 0, there exists a constant C such that

∥∥∥∥∥
∑

λ∈∇

cλψλ

∥∥∥∥∥
Bt

q,q(D)

≤ C


∑

ℓ≥0

2tqℓ2(q/2−1)dℓ
∑

k∈∇ℓ

|cℓ,k|q



1/q

, (30)

cp. for example for the case of orthonormal wavelets [30, Theorem 4.23], where Bs
p,q(D) denote

Besov spaces on D, s ∈ [0,∞), p, q ∈ [1,∞]. However, in this manuscript we adopt for the
(ψλ)λ∈∇ a pointwise normalization, such that for some α̂ > 0 and σ > 0 at our disposal,

‖ψλ‖L∞(D) ≃ σ2−α̂|λ|, λ ∈ ∇. (31)

With the scaling (31), the norm estimate in (30) then reads that for every q ∈ [1,∞) and every
t ≥ 0, there exists a constant C such that

∥∥∥∥∥
∑

λ∈∇

cλψλ

∥∥∥∥∥
Bt

q,q(D)

≤ C


∑

ℓ≥0

2tqℓ2−(d+α̂q)ℓ
∑

k∈∇ℓ

|cℓ,k|q



1/q

. (A4)

We assume that there exists a suitable enumeration of elements of the index set∇, i.e., a bijective
mapping j : ∇ → N, which we denote by j(λ), λ ∈ ∇, such that |j−1(s1)| ≤ |j−1(s2)| for positive
integers s1 ≤ s2. The amount of overlap of the supports at refinement level |λ| is assumed to be
bounded by an absolute multiple M times 2−|λ| such that

|{λ ∈ ∇ : |λ| = ℓ, ψλ(x) 6= 0}| ≤M, for all x ∈ D, ℓ ≥ 0 .

For given α̂ > 0 we define the sequence (bj)j≥1 for β̂ < α̂ by

bj(λ) = bλ := 2−β̂|λ|, λ ∈ ∇. (32)

We observe that bj ∼ j−β̂/d, j ≥ 1. This sequence satisfies (A1), i.e.,

∥∥∥∥∥
∑

λ∈∇

|ψλ|
bλ

∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥∥

∑

ℓ≥0

∑

k∈∇ℓ

|ψℓ,k|
bℓ,k

∥∥∥∥∥∥
L∞(D)

≤ σM
∑

ℓ≥0

2−(α̂−β̂)ℓ =
σM

1− 2−(α̂−β̂)
<∞.

Proposition 18 Let (ψj)j≥1 satisfy the scaling in (31) for some α̂ > 0 and let (A4) hold. For
every t ∈ (0, α̂) and every q ∈ [1,∞), Z ∈ Lq(Ω;Ct(D)) and for every ε ∈ (0, α̂− t) there exists
a constant C such that for every s ∈ N,

‖Z − Zs‖Lq(Ω;Ct(D)) ≤ C sup
ℓ≥|j−1(s)|

{
2−(α̂−t−ε)ℓ

}
.

Proof. A sequence (bj)j≥1 can be defined by (32) for some 0 < β̂ < α̂. Since bj ∼ j−β̂/d, j ≥ 1,

(bj)j≥1 ∈ ℓp(N), for every p > d/β̂. Hence, by Theorem 2, Z = lims′→∞ Zs′ with convergence
in the Lq(Ω;L∞(D))-norm, which equals the Lq(Ω;C0(D))-norm. Since (ψj)j≥1 are continuous
on D, Z ∈ Lq(Ω;C0(D)).

Let t′ ∈ (t, t + ε). We set q′ := ⌈q/2⌉ such that 2q′ = 2⌈q/2⌉ is the smallest even natural
number that is greater or equal than q and pick r ∈ N such that r ≥ q′ and such that r >
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d/(2(t′−t)), which implies that t′−d/(2r) > t. By the continuous embedding Bt′
2r,2r(D) ⊂ Ct(D)

using t′ − d/(2r) > t, cp. [29, Theorem 1.107], ψj ∈ Ct(D), j ≥ 1. By [29, Theorem 1.122 and
Remark 1.121], the spaces Ct′(D) and Bt′

∞,∞(D), t′ ∈ [0,∞)\N0, are isomorphic with equivalent

norms. Since Zs′ is separably valued in Ct(D), it is strongly measurable in Ct(D) by Pettis’
theorem (e.g. cp. [31, Theorem V.4]) for every s′ ≥ 1 (arguing as in the proof of Theorem 2).
Also by the same embedding and (A4) it follows similarly as in the proof of Theorem 2 that

‖Zs′ − Zs‖2r
L2r(Ω;Ct(D))

≤ C
∑

j(ℓ,k)∈{s+1:s′}

2−(α̂−t′)2rℓ2−dℓ
E(|yℓ,k|2r)

≤ C ′
∑

ℓ≥|j−1(s)|

2−(α̂−t′)2rℓ (2r)!

2rr!

≤ C ′ (2r)!

2rr!
sup

ℓ≥|j−1(s)|

{
2−(α̂−t−ε)2rℓ

}∑

ℓ≥0

2−(t+ε−t′)2rℓ <∞,

where we used that the #(∇ℓ) = O(2dℓ). Note that (yℓ,k : ℓ ≥ 0, k ∈ ∇ℓ) is a sequence of
i.i.d. N (0, 1)-distributed random variables. We observe that (Zs′)s′≥1 is a Cauchy sequence in

Lq(Ω;Ct(D)) with limit Z̃. Since limits in Lq(Ω;C0(D)) are unique and since the embedding
Ct(D) ⊂ C0(D) is continuous, Z = Z̃. ✷

The following proposition will give conditions for a class of systems (ψj)j≥1 such that the re-
sulting lognormal random fields satisfy the assumption in (A3).

Proposition 19 Let (ψj)j≥1 satisfy the scaling in (31) for some α̂ > 0 and let (A4) hold. For
every t ∈ (0, α̂) and every q ∈ [1,∞), a ∈ Lq(Ω;Ct(D)) and there exists a constant C such that
for every s ∈ N,

‖as‖Lq(Ω;Ct(D)) ≤ C.

Proof. Without loss of generality, let us assume that t /∈ Z. Hölder norms of compositions with
the exponential function have been estimated in [15, Lemma A.1]. We recall from its proof the
following estimate [15, (28)]: there exists a constant C such that for every v ∈ Ct(D),

‖ exp(v)‖Ct(D) ≤ C‖ exp(v)‖C0(D)

(
1 + ‖v‖⌈t⌉

Ct(D)

)
.

This estimate follows by induction (cp. the proof of [15, Lemma A.1]) based on the facts that
‖ exp(v)‖Ct′ (D) ≤ ‖ exp(v)‖C0(D)(1 + ‖v‖Ct′ (D)) for every v ∈ Ct′(D), t′ ∈ (0, 1), and that there

exists a constant C ′ such that for every w, v ∈ Ct(D), ‖wv‖Ct(D) ≤ C ′‖w‖Ct(D)‖w‖Ct(D). The

first estimate is easily seen, the second estimate is for example due to [6, Theorem 16.28].
The assertion follows now with an application of the Cauchy–Schwarz inequality, Proposi-

tion 3, and Proposition 18, where the strong measurability of a = exp(Z) in Ct(D) follows since
the composition with the exponential function is a continuous mapping from Ct(D) to Ct(D).
✷

10 Conclusions and generalizations

We extended and refined the QMC error analysis for the parametric, deterministic solutions
of the linear elliptic partial differential equation (1) with log-Gaussian coefficient a as given in
(2), (3). In particular, we considered locally supported functions (ψj)j≥1 in (2). The assumed
local support of the ψj and p-summability implied dimension-independent convergence rates of
randomly shifted lattice rule quadratures of the parametric solution of (1) - (3) with product
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weight sequences. The present results constitute an extension of the convergence rate bounds
in [13], wherein the global supports of the (ψj)j≥1 implied POD weight sequences for the QMC
quadratures. As a byproduct of the present analysis, we also obtained dimension-independent
convergence rate estimates for globally supported (ψj)j≥1 as in [13], and with exponential weight
functions. The use of product weights, however, entails stronger summability conditions on
(‖ψj‖L∞(D))j≥1 than those in [13] in order to achieve a certain convergence rate (Corollary 14,
item 2.). This drawback may be offset by the linear with respect to dimension s scaling con-
struction cost for the QMC quadrature rules. In the case of Gaussian weight functions in the
norm (9), however, in Theorem 11, (bj)j≥1 ∈ ℓp(N) for 2/3 < p < 2 was admissible, for locally
supported ψj , which constitutes a refinement over the error bounds in [13].

The present work addressed only the single-level QMC Finite-Element algorithm, where the
same FE space is employed for PDE discretization in all QMC points. The principal results of
the present paper, Theorems 11 and 13, allow for multi-level extensions of the presently proposed
algorithms, which can be designed and analyzed along the lines of [19]. These extensions, as
well as numerical experiments, are developed in [16, 17].
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