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1

Introduction

Inverse problems in medical imaging are in their most general form ill-posed.
They literally have no solution. If, however, in advance one has additional
structural information or can supply missing information, then one may be
able to determine specific features about what one wishes to image with a
satisfactory resolution and accuracy. One such type of information can be that
the imaging problem is to find unknown small anomalies with significantly
different parameters from those of the surrounding medium. These anomalies
may represent potential tumors at an early stage. Over the last few years, an
expansion technique has been developed for the imaging of such anomalies.
It has proven useful in dealing with many medical imaging problems. The
method relies on linearizing the data with respect to the characteristic size of
the anomalies. A remarkable feature of this method is that it allows a stable
and accurate reconstruction of the location and of some geometric features
of the anomalies, even with moderately noisy data [64]. This is because the
method reduces the set of admissible solutions and the number of unknowns.
It can be seen as a kind of regularization in comparison with (nonlinear)
iterative approaches.

More recently, assuming that the material properties of the tissues have
known or partially known frequency profiles or spatial regularity, signal sep-
aration techniques have been successfully used for the robust solution of
biomedical imaging problems from multifrequency or multi-measurement set-
tings [12, 13, 48].

Another promising technique for efficient imaging is to combine into one
tomographic process different physical types of waves. Doing so, one alleviates
deficiencies of each separate type of waves, while combining their strengths.
Again, asymptotic analysis plays a key role in the design of robust and effi-
cient imaging techniques based on this concept of multi-waves. In the last
decade or so, work on multi-wave imaging in biomedical applications has
come a long way [24, 322]. The motivation is to achieve high-resolution and
high-contrast imaging. Multi-wave imaging modalities include photoacous-
tic and thermoacoustic imaging [345], magnetic resonance elastography [262],
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magneto-acousto-electrical tomography [308], magnetoacoustic tomography
with magnetic induction [346], and impediography [208].

Recently, driven by the search for new materials with interesting and
unique optical properties, the field of nanoparticle research has grown im-
mensely [256]. Nanoparticles have been proposed to be used as labels in
molecular biology. New types of cancer diagnostic nanoparticles are constantly
being developed. Plasmon resonant nanoparticles have unique capabilities of
enhancing the brightness and directivity of light and confining strong elec-
tromagnetic fields. Their optical response is dominated by the appearance of
plasmon resonances over a wide range of wavelengths [256]. Plasmon reso-
nant nanoparticles are also being used in thermotherapy as nanometric heat-
generators that can be activated remotely by external electromagnetic fields
[90]. Second-harmonic generation contrast mechanisms have been also used in
biomedical imaging. These emerging nonlinear optical contrast mechanisms
reveal new information from biological specimens and tissues [326].

Properties of Biological Tissues

Dielectric Properties

Dielectric properties of a material basically reflect the electric charge move-
ment inside the material in response to an external electric field. Dielectric
response of biological materials is always frequency dependent. It results from
the interaction of electromagnetic radiation with their constituents at the cel-
lular and molecular level. Information about tissue structure and composition
can be obtained by measuring the dielectric properties of the tissues [265].

Low-frequency, radio-frequency, and microwave dielectric properties of bi-
ological materials are of interest in electrical impedance tomography and mi-
crowave imaging. They are important for our understanding of the mecha-
nism of interaction of electromagnetic fields with biological systems in these
frequency ranges. The two electrical properties which define the electrical
characteristics are the dielectric constant and the conductivity. These dielec-
tric properties are frequency-dependent or dispersive. A significant change in
them over a frequency range is called a dielectric dispersion. Although the
dielectric properties of the tissues vary greatly from tissue to tissue, their typ-
ical behavior is characterized by three distinctly large dielectric dispersions,
referred to as α-, β-, and γ-dispersions [265]. The α-dispersion usually occurs
below a few kHz (low-frequencies), the β-dispersion in the frequency region
from tens of kHz to tens of MHz (radio-frequencies), and the γ-dispersion in
the microwave frequency region from 0.1 to 100 GHz. The mechanism of the
α-dispersion is associated with polarization in the tissue. The β-dispersion
is caused by the cellular structure of tissues, with poorly conducting mem-
branes separating intracellular and extracellular domains. It arises principally
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from interfacial polarization of cell membranes (Maxwell-Wagner-Fricke ef-
fect). The γ-dispersion arises mainly from polarization due to reorientation of
water molecules.

Assume a time-harmonic electric field ℜ(E(x)eiωt) is applied to a biological
material. The total induced current density ℜ(Jtot(x)eiωt) inside the material
is given by

Jtot = (σ0 + iωε)E = (σ0 + ωε′′)E + iωε′E ,

where ω is the angular frequency of the applied field, σ0 is the conductivity of
the material at very low frequencies, ε := ε′ − iε′′ is the complex permittivity
of the material, ε′ is the dielectric constant, and ε′′ is the loss factor of the
material. The (frequency-dependent) conductivity σ of the material is given
by

σ(ω) = σ0 + ωε′′(ω) .

We call
κ(ω) = σ(ω) + iωε′(ω)

the electrical admittivity of the material.
The dielectric constant ε′ and the loss factor ε′′ are not independent of each

other. For linear and causal dielectric response, the Kramers-Kronig relations
give a necessary connection between them. We have

ε′(ω)− ε∞ =
2

π
p.v.

∫ +∞

0

sε′′(s)

s2 − ω2
ds ,

ε′′(ω) = −2ω

π
p.v.

∫ +∞

0

ε′(s)− ε∞
s2 − ω2

ds ,

where ε∞ is the dielectric constant at very high frequencies and p.v. denotes
the Cauchy principal value. A linear response means that the dielectric prop-
erties are independent of the applied field strength, which is true for biological
tissue when the external electric field is not very strong. On the other hand,
causality is one of the fundamental principles in physics. It states that the
effect cannot precede the cause. For scattering of electromagnetic waves, it in-
dicates that no scattered wave can exist before the incident wave has reached
the scattering object, whose size is assumed to be finite.

Idealized approaches have been used to interpret experimental data for the
frequency-dependence of the dielectric constant and the conductivity:

• Debye model:

ε(ω) = ε∞ +
ε0 − ε∞
1 + iωτ

;

• Cole-Cole model:

ε(ω) = ε∞ +
ε0 − ε∞

1 + (iωτ)1−η
,
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where ε0 is the dielectric constant at very low frequencies, τ is a relaxation
time, and τ and 0 < η < 1 depend on the nature of the biological material.

As will shown later, membranes are responsible of the dielectric prop-
erties of tissues at low- and radio-frequencies (α- and β-dispersion ranges).
Charges accumulate at membranes from extra and intracellular fluids and lead
to anisotropic overall dielectric properties because of the orientation of cells.
The pertinent mathematical theory for analyzing this fundamental mechanism
is based on homogenization of double layers.

Dielectric properties at microwave frequencies are largely determined by
the strongly dispersive behavior of water. The cell membranes impose no
hindrance on the flow of electricity through the cell interior for frequencies
in the γ-dispersion range. Consequently, since cell structure does not affect
microwave data, dielectric properties of tissues at microwave frequencies can
be considered isotropic. Moreover, they are solely determined by water and
macromolecular content of tissues.

The interaction of electromagnetic radiation with (nonmagnetic) biologi-
cal tissues can be modeled by using Maxwell’s equations. Let Ω denote the
medium. In the time-domain, these governing equations in Ω × R+ are





∇× E = −∂H
∂t

, ∇×H = J +
∂D

∂t
,

∇ ·H = 0, ∇ ·D = ρ,
(1.1)

where E is the electric field, H is the magnetic field, D is the electric flux
density, ∂D/∂t is the displacement current, ρ and J are the electric charge
and current densities, and t denotes time. The charge and current densities
ρ and J are the sources of the electromagnetic fields. For wave propagation,
they are localized in space. From (1.1), they satisfy in Ω × R+ the equation
of conservation of charges:

∇ · J +
∂ρ

∂t
= 0 . (1.2)

On the other hand, Ohm’s law is valid and is expressed as

J = σ0E in Ω × R+ . (1.3)

The total current density Jtot = J + ∂D/∂t = σ0E + ∂D/∂t. The electric
flux density D is related to the electric field E via the so-called constitutive
relation, whose precise form depends on the material in which the fields exist.
When a time-varying electric field is applied, the polarization response of the
biological material is local but not instantaneous. Such (dispersive) response
can be described by the causal constitutive relationship:

D(x, t) =

∫ t

−∞
ε(x, t− s)E(x, s)ds, (x, t) ∈ Ω × R+ . (1.4)
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Through the inverse Fourier transform, general solutions of Maxwell’s equa-
tion can be built as linear combinations of single-frequency (or time-harmonic)
solutions. We assume that the fields are time-harmonic

E(x, t) = ℜ(E(x, ω)eiωt), H(x, t) = ℜ(H(x, ω)eiωt),

D(x, t) = ℜ(D(x, ω)eiωt), etc

where E(x, ω), H(x, ω), D(x, ω), etc, are complex-valued functions. Replacing
time derivatives ∂/∂t by iω, and writing here

ε(x, ω) =

∫ ∞

−∞
ε(x, t)e−iωt dt ,

the constitutive relation (1.4) becomes multiplicative in the frequency domain:

D(x, ω) = ε(x, ω)E(x, ω) .

As said earlier, the Kramers-Kronig relations are the frequency-domain ex-
pression of causality and relate the real and imaginary parts, ε′ and −ε′′, of
ε as functions of ω. The Maxwell equations (1.1) can be written in the form:

∇×∇× E − ω2
(
ε′ +

σ

iω

)
E = 0 . (1.5)

At ω → 0, ∇× E = 0, and therefore, E = ∇u, where the electric potential u
is solution to the conductivity equation

∇ ·
(
σ + iωε′

)
∇u = 0 .

On the other hand, at microwave frequencies, the Helmholtz equation can be
used to approximate (1.5). Let

n2 =
(
ε′ +

σ

iω

)
.

Using the vectorial identity ∇×∇ = −∆+∇∇·, it follows that

∆E + ω2n2E + 2∇
(∇n
n

· E
)
= 0 .

Assume that

ω
∣∣∇n
n

∣∣≪ 1 ,

which means that ε′ and ε′′ vary slowly on the scale of the wavelength 2π/ω.
Then, any of the components Ej of E satisfies (approximately) the Helmholtz
equation:

∆Ej + ω2n2Ej = 0 . (1.6)

We refer to (1.6) as the scalar approximation of Maxwell’s equations.
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Optical Properties

Electromagnetic fields can be transmitted through a biological medium with
varying degrees of absorption, reflection, and scattering. Absorption is a func-
tion of the molecular composition of tissue and is therefore sensitive to tissue
pathologies and functions, reflection occurs at tissues boundaries and scatter-
ing is caused by inhomogeneities of the order of a wavelength in tissues. At
optical wavelengths, electromagnetic wave propagation is dominated by scat-
tering because the inhomogeneities of cellular structures and particle sizes are
of the order of an optical wavelength. Optical propagation in biological ma-
terials can be investigated in three scales [82]. The mathematical description
of light propagation changes according to the length scale of interest [307].
Maxwell’s equations in random media are valid on the microscopic scale. The
mesoscale, in which the characteristic scale is set by the scattering length, can
be described by the radiative transport equation. The radiative transfer equa-
tion can be derived by considering the high-frequency asymptotics of wave
propagation in a random medium. The random medium is assumed to be sta-
tistically homogeneous and its dielectric properties are described by a random
field and are weakly fluctuating. Finally, the macroscale can be described by
the diffusion approximation to the radiative transfer approximation.

In radiative transport theory, the propagation of light through a material
medium is formulated in terms of a conservation law that accounts for gains
and losses of photons due to scattering and absorption. The fundamental
quantity of interest is the specific intensity I(x, ξ), defined as the intensity at
the position x in the direction ξ. The specific intensity obeys the radiative
transfer equation (RTE):

1

c

∂I

∂t
+ ξ · ∇I + (µa + µs)I = µs

∫

S

p(ξ′, ξ)I(x, ξ′, t)dξ′ (1.7)

for (x, ξ, t) ∈ Ω×S ×R+, where µa and µs are the absorption and scattering
coefficients, c is the speed of light, and S is the unit sphere. The specific
intensity I also satisfies the half-range boundary condition

I(x, ξ, t) = I in(x, ξ, t) , ξ · ν < 0 , (x, t) ∈ ∂Ω × R+ , (1.8)

where I in is the incident specific intensity at the boundary and ν is the outward
normal to ∂Ω. The phase function p is symmetric with respect to interchange
of its arguments and obeys the normalization condition

∫

S

p(ξ, ξ′)dξ′ = 1 , (1.9)

for all ξ. For scattering by spherically-symmetric particles, p(ξ, ξ′) depends
only upon the angle between ξ and ξ′. For isotropic scattering, p = 1/(4π).

If the medium is composed of spatially uncorrelated point particles with
number density ρ, then
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µa = ρσa , µs = ρσs , p =
dσs
dΘ

/σs , (1.10)

where σa and σs are the absorption and scattering cross sections of the par-
ticles and dσs/dΘ is the differential scattering cross section. Here, Θ is the
solid angle. Note that σa, σs and p are wavelength dependent quantities.

The diffusion approximation (DA) to the RTE is widely used in applica-
tions. It is valid in the regime where the scattering mean free path 1/µs is
small compared to the distance of propagation. The diffusion approximation
is derived using asymptotic methods. The advantage of this approach is that
it leads to error estimates and treats the problem of boundary conditions for
the resulting diffusion equation in a natural way.

The diffusion approximation holds when the scattering coefficient is large,
the absorption coefficient is small, the point of observation is far from the
boundary of the medium and the time-scale is sufficiently long. Accordingly,
we perform the rescaling

µa → ǫµa , µs →
1

ǫ
µs , t→ 1

ǫ
t , (1.11)

where ǫ≪ 1. Thus the RTE (1.7) becomes

ǫ2

c

∂I

∂t
+ ǫξ · ∇I + ǫ2µaI + µsI = µs

∫

S

p(ξ, ξ′)I(x, ξ′, t)dξ′ . (1.12)

We then introduce the asymptotic expansion for the specific intensity

I(x, ξ, t) = I0(x, ξ, t) + ǫI1(x, ξ, t) + ǫ2I2(x, ξ, t) + · · · (1.13)

which we substitute into (1.12). Upon collecting terms of O(1), O(ǫ) and O(ǫ2)
we have

∫

S

p(ξ, ξ′)I0(x, ξ
′, t)dξ′ = I0(x, ξ, t) , (1.14)

ξ · ∇I0 + µsI1 = µs

∫

S

p(ξ, ξ′)I1(x, ξ
′, t)dξ′ , (1.15)

ξ · ∇I1 + µaI0 + µsI2 = µs

∫

S

p(ξ, ξ′)I2(x, ξ
′, t)dξ′ . (1.16)

The normalization condition (1.9) forces I0 to be independent of ξ. If p(ξ, ξ′)
depends only upon the quantity ξ · ξ′, it can be seen that

I1(x, ξ, t) = − 1

1− g
ξ · ∇I0(x, t) , (1.17)

where the anisotropy g is given by

g =

∫

S

ξ · ξ′p(ξ · ξ′)dξ′ , (1.18)
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with −1 < g < 1. Note that g = 0 corresponds to isotropic scattering and
g = 1 to extreme forward scattering. If we insert the above expression for
I1 into (1.16) and integrate over ξ, we obtain the (approximate) diffusion
equation for the energy density Φ(x, t) = 1

c

∫
I(x, ξ, t) dξ:

∂Φ(x, t)

∂t
−∇ · [D(x)∇Φ(x, t)] + cµa(x)Φ(x, t) = 0 . (1.19)

Here the diffusion coefficient is defined by

D =
c

3(1− g)µt
, (1.20)

where µt = µa + µs is the extinction coefficient. The above derivation of the
diffusion approximation holds in an infinite medium. In a bounded domain, it
is necessary to account for boundary layers, since the boundary conditions for
the diffusion equation and the RTE are not compatible. In addition to (1.19),
the energy density must satisfy the boundary condition

Φ+ ℓextν · ∇Φ = f on ∂Ω × R+ , (1.21)

where f is the source and the extrapolation length ℓext can be computed from
radiative transport theory. We note that ℓext = 0 corresponds to an absorbing
boundary and ℓext → ∞ to a reflecting boundary.

Assuming a time-harmonic source f(x, t) = ℜ(f(x)eiωt) with modulation
frequency ω, the energy density is of the form |Phi(x, t) = ℜ(|Phi(x)eiωt)
where the density Φ(x) obeys the equation

−∇ · [D(x)∇Φ(x)] + (cµa(r) + iω)Φ(x) = 0 in Ω , (1.22)

with the boundary condition (1.21) on ∂Ω.

Elastic Properties

Elasticity imaging for medical diagnosis aims at providing a quantitative vi-
sualization of mechanical properties of tissues. Biological tissues are linear,
isotropic (visco-)elastic materials. The elastic properties of tissues carry infor-
mation about their composition, micro-structure, physiology, and pathology.
Changes in tissue elasticity are generally correlated with pathological phe-
nomena such as weakening of vessel walls or cirrhosis of the liver. Many can-
cers appear as extremely hard nodules because of the recruitment of collagen
during tumorigenesis. It is therefore very interesting and challenging for di-
agnostic applications to find ways for generating resolved images that depict
tissue elasticity or stiffness [262].

Let (λ, µ) be the Lamé coefficients of the medium and let ρ be its density.
We also introduce the bulk modulus β := λ + 2µ/d. The compression mod-
ulus λ measures the resistance of the material to compression and the shear
modulus µ measures the resistance to shearing.
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Let F be a mechanical force. Assuming that we can use the linear isotropic
elasticity model, the displacements inside the medium can be described by the
initial boundary-value problem for the Lamé system of equations:





ρ
∂2u

∂t2
−∇λ∇ · u−∇ · µ∇su = F in Ω × R+ ,

∂u

∂n
= 0 on ∂Ω × R+ ,

u(x, 0) =
∂u

∂t
(x, 0) = 0 in Ω ,

(1.23)

where ∇s = (∇ + ∇T )/2 with the superscript T being the transpose. Here,
∂/∂ν denotes the co-normal derivative defined by

∂u

∂n
= λ(∇ · u)ν + 2µ∇su ν on ∂Ω ,

where ν is the outward normal at ∂Ω. The symmetric gradient ∇su is the
strain tensor with entries (∂iuj + ∂jui)/2. If we define the elasticity tensor
C = (Cijkl)

d
i,j,k,l=1 for by

Cijkl = λδijδkl + µ(δikδjl + δilδjk) ,

the stress tensor is given by

σ(u) = C∇su .

The Neumann boundary condition, ∂u/∂n = 0 on ∂Ω, comes from the fact
that the sample is embedded in air and can move freely at the boundary.

Under some physical assumptions, the Lamé system of equations (1.23)
can be reduced to an acoustic wave equation. For doing so, we neglect the
shear effects in the medium by taking µ = 0. The acoustic approximation
says that the dominant wave type is a compressional wave. Equation (1.23)
becomes





ρ
∂2u

∂t2
−∇λ∇ · u = F in Ω × R+ ,

∂u

∂n
= 0 on ∂Ω × R+ ,

u(x, 0) =
∂u

∂t
(x, 0) = 0 in Ω .

(1.24)

Introduce the pressure

p = λ∇ · u in Ω × R+ .

Taking the divergence of (1.24) yields the acoustic wave equation
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1

λ

∂2p

∂t2
−∇ · 1

ρ
∇p = ∇ · F in Ω × R+ ,

p = 0 on ∂Ω × R+ ,

p(x, 0) =
∂p

∂t
(x, 0) = 0 in Ω .

(1.25)

Note that acoustic wave reflection in soft tissue by an interface with air can
be modeled well by a homogeneous Dirichlet boundary condition.

Through the inverse Fourier transform, time-harmonic solutions to the
elasticity and the acoustic wave equations respectively satisfy





∇ · µ∇su+∇λ∇ · u+ ω2ρu = F in Ω ,

∂u

∂n
= 0 on ∂Ω ,

and 



∇ · 1
ρ
∇p+ ω2

λ
p = −∇ · F in Ω ,

p = 0 on ∂Ω ,

where, by abuse of notation, F denotes the inverse Fourier transform of the
source term.

In elasticity imaging of biological media, the compression modulus λ is
four to six orders of magnitude higher than the shear modulus µ [262]. As
λ→ +∞, the Lamé system converges to the modified Stokes system given by





∇ · µ∇su+∇p+ ω2ρu = F in Ω ,

∇ · u = 0 in Ω ,

pν + µ
∂u

∂ν
= 0 on ∂Ω .

By reducing the elasticity system to the modified Stokes system, one removes
the compression modulus from consideration [47]. Viscosity tissue proper-
ties can be included by considering the shear modulus µ to depend on the
frequency ω. Again, Kramers-Kronig relations give a necessary connection
between the real and imaginary parts of µ as functions of ω.

Super-Resolution Biomedical Imaging

Super-resolution imaging is a collective name for a number of emerging tech-
niques that achieve resolution below the conventional resolution limit, defined
as the minimum distance that two point-source objects have to be in order to
distinguish the two sources from each other. In this book we describe recent
advances in scale separation techniques, spectroscopic approaches, multi-wave
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imaging, and nanoparticle imaging. The objective is fivefold: (i) To provide
asymptotic expansions for both internal and boundary perturbations that
are due to the presence of small anomalies; (ii) To apply those asymptotic
formulas for the purpose of identifying the material parameters and certain
geometric features of the anomalies; (iii) To design efficient inversion algo-
rithms in multi-wave modalities; (iv) to develop inversion techniques using
multi-frequency measurements; (v) to develop a mathematical and numerical
framework for nanoparticle imaging.

Applications of the anomaly detection and multi-wave approaches in med-
ical imaging are described in some detail. In particular, the use of asymp-
totic analysis to improve a multitude of emerging imaging techniques is high-
lighted. These imaging modalities include both single-wave and multi-wave
approaches. They can be divided into three groups: (i) Those using boundary
or scattering measurements such as electrical impedance tomography, ultra-
sound, and infrared tomographies; (ii) Those using internal measurements
such as magnetic resonance elastography; (iii) Those using boundary mea-
surements obtained from internal perturbations of the medium such as pho-
toacoustic tomography, impediography, and magnetoacoustic imaging.

Multi-wave imaging is based on thermo-elastic, acousto-electric, and Lorentz
force effects.

When a tissue absorbs and is heated by laser energy, the resulting nonuni-
form temperature distribution causes internal forces, which lead to thermo-
elastic deformation. This deformation is determined (in a solid body) by the
thermo-elastic wave equation subject to the appropriate boundary and initial
conditions. Thermoacoustic phenomenon consists of two processes: microwave
energy absorption and acoustic wave generation. Thermal diffusion in the
thermoacoustic process can be neglected because the microwave pulse width
is much shorter than the thermal diffusion time in biological tissues, that is,
the thermal confinement condition is satisfied. Accordingly, the acoustic wave
generated by heat and thermo-elastic expansion from the absorbed microwave
is governed by

1

c2
∂2p

∂t2
−∆p =

β

Cp
σ|E|2 δt=0 ,

where c =
√
λ/ρ is the speed of sound, Cp is the specific heat capacity, β is

the thermal expansion coefficient, and δt=0 is the Dirac mass at t = 0. The
electric field E is solution to the Helmholtz equation

∆E + ω2(ε′ +
σ

iω
)E = 0 ,

with the permittivity ε′ being known. Quantitative thermoacoustic imaging
is to determine σ from measurements of σ|E|2 in the domain Ω.

Photoacoustic imaging is a hybrid emerging modality, combining the high
contrast and spectroscopic-based specificity of optical imaging with the high
spatial resolution of ultrasound imaging. It consists in measuring outside the
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object the acoustic signals emitted by the thermo-elastic effect by use of ul-
trasonic transducers. Its objective is to produce an image that represents a
map of spatially variant electromagnetic absorption properties of the tissues,
from knowledge of the measured acoustic signals [345].

Superresolution imaging of electrical activities and properties of biological
tissues can be achieved using the acousto-electric effect [208]. The acousto-
electric effect was first presented after studying the effects of ultrasonic pres-
sure changes on conductivity on electrolytes. As an ultrasound wave dis-
tributes through an aqueous solution it produces periodic change in pressure
and temperature and therefore modifies the conductivity of the solution inside
the insonified volume determined by the ultrasound source. By applying elec-
tric current to the solution, the change in conductivity gives rise to a change
in voltage, producing the acousto-electric interaction signal. The interaction
signal is proportional to the pressure change and the amount of current low-
ing through the medium and has the same frequency as the acoustic pressure
wave. The phenomena causing the modulation of the conductivity are periodic
acoustic pressure change and change in temperature. The resulting effects are
a change in molar concentration due to the bulk compressibility and thermal
expansion effect, and a change in ion mobility due to the changes in solvent
viscosity against pressure and temperature.

The Lorentz force is the force acting on currents in a magnetic field. It
plays a key role in ultrasonically-induced Lorentz force imaging of conductivity
and magnetoacoustic tomography with magnetic induction [346]. The Lorentz
force per unit volume, F , arising from the current density J and the magnetic
field B is given by

F = J ×B .

In general, magnetoacoustic effects are small, but small effects underlie many
emerging biomedical imaging techniques [308].

The aim of this book is to review recent developments in the mathematical
and numerical modelling of anomaly detection, spectroscopic imaging, and
multi-wave biomedical imaging.

The book is divided into four parts:

• Anomaly Imaging: Scale Separation Techniques
• Multi-Wave Imaging
• Spectroscopic Imaging
• Nanoparticle Imaging

The four approaches described in this book allow one to overcome the
severe ill-posedness character of imaging reconstruction in biomedical appli-
cations and to achieve superresolution imaging. Their robustness with respect
to incomplete data, measurement, and medium noises is also investigated.

The bibliography provides a list of relevant references. It is by no means
comprehensive. However, it should provide the reader with some useful guid-
ance in searching for further details on the main ideas and approaches dis-
cussed in this book.
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The material in this book is taught as a graduate course in applied math-
ematics at ETH. Tutorial notes and Matlab codes can be downloaded at
http://www.sam.math.ethz.ch/~hammari/. We are very grateful to Gio-
vanni Alberti and Francisco Romero for preparing them. Some of the mate-
rial in this book is from our wonderful collaborations with Giovanni Alberti,
Eric Bonnetier, Elie Bretin, Yves Capdeboscq, Mathias Fink, Pierre Gara-
pon, Laure Giovangigli, Bangti Jin, Wenjia Jing, Vincent Jugnon, Eunjung
Lee, Hyundae Lee, Pierre Millien, Matias Ruiz, Jin Keun Seo, Mickael Tanter,
Faouzi Triki, Abdul Wahab, Han Wang, Eung Je Woo, and Hai Zhang. We
feel indebted to all of them.





Part I

Mathematical and Probabilistic Tools





2

Basic Mathematical Concepts

This chapter reviews some mathematical concepts essential for understanding
imaging principles. We first review commonly used special functions, function
spaces, and integral transforms: the Fourier transform and the spherical mean
Radon transform. We then collect basic facts about the Kramers-Kronig re-
lations, the Moore-Penrose generalized inverse, singular value decomposition,
and compact operators. The theory of regularization of ill-posed inverse prob-
lems is briefly discussed.

2.1 Special Functions

2.1.1 Bessel Functions

Bessel functions of the first kind of real order ν, denoted by Jν(x), are useful
for describing some imaging effects. One definition of Jν(x) is given in terms
of the series representation

Jν(x) = (
x

2
)ν

+∞∑

l=0

(−x2/4)l
l!Γ (ν + l + 1)

, (2.1)

where the gamma function Γ is defined by

Γ (z) =

∫ +∞

0

e−ttz−1 dt for ℜ(z) > 0 .

Another formula, valid for ℜ ν > − 1
2 , is

Jν(x) = [Γ (
1

2
)Γ (ν +

1

2
)]−1(

x

2
)ν
∫ 1

−1

(1− t2)ν−
1
2 eixt dt . (2.2)

Some useful identities for Bessel functions are summarized below. For further
details, we refer the reader to [331, pages 225-233].
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We have the recurrence relation

(
d

dx
+
ν

x
)Jν(x) = Jν−1(x) . (2.3)

For n ∈ Z, we have the integral representation

Jn(x) =
1

2π

∫ π

−π

eix sinφ−inφdφ , (2.4)

i.e., the functions Jn(x) are the Fourier coefficients of eix sinφ. Therefore, the
Jacobi-Anger expansion holds:

eix sinφ =
∑

n∈Z

Jn(x)e
inφ . (2.5)

Formula (2.5) can be used in two dimensions to expand a plane wave as a sum
of cylindrical waves. We have

eiξ·x =
∑

n∈Z

ein(
π
2 −θξ)Jn(|ξ||x|)einθx , (2.6)

where x = (|x|, θx) and ξ = (|ξ|, θξ) in the polar coordinates. The function
x 7→ Jn(|ξ||x|)einθx is called a cylindrical wave.
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Fig. 2.1. Plots of Bessel functions Jn(x), n = 0, . . . , 5.

For n, l ∈ Z, we have

∫ π/2

0

J2n(2x sinφ) dφ =
π

2
J2
n(x) , (2.7)

and
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∫ π

0

Jl(2x cosφ) cos((2n− l)φ) dφ = 2πJn(x)Jl−n(x) . (2.8)

Formula (2.8) is known as Neumann’s formula.
Bessel functions appear in an approximation of the Dirac function δ0 at

the origin. Let F be the Fourier transform defined for f ∈ L1(Rd) by

F [f ](ξ) = (2π)−d/2

∫

Rd

e−ix·ξf(x) dx . (2.9)

An approximation δ̃K to δ0 can be defined by

F [δ̃K ](ξ) =

{
(2π)−d/2, |ξ| < K ,

0, |ξ| ≥ K ,
(2.10)

or equivalently by

δ̃K(x) = (2π)−d/2 Jd/2(K|x|)
(K|x|)d/2 , (2.11)

where Jd/2 is the Bessel function of the first kind of order d/2.
For arguments x < ν, the Bessel functions look qualitatively like simple

power law, with the asymptotic form for 0 < x≪ ν

Jν(x) ≈
1

Γ (ν + 1)

(x
2

)ν
≈ 1√

2πν

(ex
2ν

)ν
. (2.12)

For x > ν, the Bessel functions look qualitatively like cosine waves whose
amplitude decay as x−1/2. The asymptotic form for x≫ ν is

Jν(x) ≈
√

2

πx
cos
(
x− νπ

2
− π

4

)
. (2.13)

In the transition region where x ≈ ν, the typical amplitude of the Bessel
functions is

Jν(ν) ≈
21/3

32/3Γ
(
2
3

) 1

ν1/3
≈ 0.4473

ν1/3
,

which holds asymptotically for large ν.
The Bessel function Jν solves the ODE, known as Bessel’s equation,

(
d2

dx2
+

1

x

d

dx
+ (1− ν2

x2
)

)
Jν(x) = 0 , (2.14)

or equivalently,

(
d

dx
− ν − 1

x

)(
d

dx
+
ν

x

)
Jν(x) = −Jν(x) . (2.15)

Note that adding and subtracting (2.3) and (2.15) produce the identities
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2J ′
ν(x) = Jν−1(x)− Jν+1(x) ,

2ν

x
Jν(x) = Jν−1(x) + Jν+1(x) .

Equation (2.14), for each ν, has a two-dimensional solution space. Note that
J−ν is also a solution. From the expression (2.1) it is clear that Jν and J−ν

are linearly independent provided ν is not an integer. On the other hand,
comparison of power series shows

J−n(x) = (−1)nJn(x), n ∈ N .

A calculation of the Wronskian shows that

W (Jν , J−ν)(x) = −2
sinπν

πx
.

Therefore, Jν and J−ν are linearly independent, and consequently they form
a basis of solutions to (2.14), if and only if ν is not an integer. To construct
a basis of solutions uniformly good for all ν, it is natural to set

Yν(x) =
Jν(x) cosπν − J−ν(x)

sinπν
(2.16)

when ν is not an integer, and define for integer n

Yn(x) = lim
ν→n

Yν(x) .

We have

W (Jν , Yν)(x) =
2

πx
,

for all ν.

2.1.2 Hankel Functions

Another important pair of solutions to Bessel’s equation is that of Hankel
functions

H(1)
ν (x) = Jν(x) + iYν(x), H(2)

ν (x) = Jν(x)− iYν(x) . (2.17)

The following behavior of H
(1)
ν for fixed ν and x→ 0 holds:

H(1)
ν (x) ≈ − i2

νΓ (ν)

π
x−ν . (2.18)

For n an integer, it is also known that, as x→ 0,
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Jn(x) =
xn

2n

(
1

Γ (n+ 1)
−

1
4x

2

Γ (n+ 2)
+

( 14x
2)2

2!Γ (n+ 3)
− ( 14x

2)3

3!Γ (n+ 4)
+ · · ·

)
,

(2.19)

Yn(x) = − ( 12x)
−n

π

n−1∑

l=0

(n− l − 1)!

l!
(
1

4
x2)l +

2

π
log(

1

2
x)Jn(x)

− ( 12x)
n

π

∞∑

l=0

(ψ(l + 1) + ψ(n+ l + 1))
(− 1

4x
2)l

l!(n+ l)!
, (2.20)

where ψ(1) = −γ and

ψ(n) = −γ +

n−1∑

l=1

1

l
for n ≥ 2

with γ being the Euler constant. In particular, if n = 0, we have

J0(x) = 1− 1

4
x2 +

1

64
x4 +O(x6) ,

Y0(x) =
2

π
log x+

2

π
(γ − log 2)− 1

2π
x2 log x+

( 1

2π
− 1

2π
(γ − log 2)

)
x2

+O(x4 log x) .

It is worth pointing out that the Bessel functions Jn+1/2(x), for n an
integer, are elementary functions. For ν = n + 1/2, the integrand in (2.2)
involves (1 − t2)n, so the integral can be evaluated explicitly. We have, in
particular,

J1/2(x) = (
2

πx
)1/2 sinx .

Then (2.3) gives

J−1/2(x) = (
2

πx
)1/2 cosx ,

which by (2.16) is equal to −Y1/2(x). Applying (2.15) and (2.3) repeatedly
gives

Jn+1/2(x) = (−1)n
n∏

l=1

(
d

dx
− l − 1

2

x
)
sinx√
2πx

and the same sort of formula for J−n−1/2(x), with the (−1)n removed, and
sinx replaced by cosx.

The functions

jn(x) :=

√
π

2

Jn+ 1
2
(x)

√
x

, (2.21)

and

yn(x) :=

√
π

2

Yn+ 1
2
(x)

√
x

(2.22)
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are known as the spherical Bessel functions and form a basis for the solution
space of the spherical Bessel equation

(
d2

dx2
+

2

x

d

dx
+ (1− n(n+ 1)

x2
)

)
f(x) = 0 .

Analogously to (2.17), we define h
(1)
n and h

(2)
n by

h(1)n (x) = jn(x) + iyn(x), h(2)n (x) = jn(x)− iyn(x) . (2.23)

In three dimensions, there is an analogue to (2.6). The following plane
wave expansion, also known as the Rayleigh equation, holds:

eiξ·x = 4π

+∞∑

l=0

l∑

m=−l

iljl(|ξ||x|)Ylm(θx, φx)Y lm(θξ, φξ) , (2.24)

where Ylm are the spherical harmonic functions and ξ = (|ξ|, θξ, φξ), x =
(|x|, θx, φx) in the spherical coordinates.

The closure relation,

∫ +∞

0

xJν(tx)Jν(sx) dx =
1

t
δ0(t− s) (2.25)

for ν > −1/2, holds and is equivalent to

∫ +∞

0

x2jν(tx)jν(sx) dx =
π

2t2
δ0(t− s) .

The cylindrical waves form a complete set. We have the completeness relation

δ0(r − r0)δ0(θ − θ0)

r
=
∑

m∈Z

1

2π

∫ +∞

0

tJm(tr)Jm(tr0) dt e
im(θ−θ0) , (2.26)

which is the analogue of the completeness relation for plane waves

δ0(x− x0)δ0(y − y0) = (
1

2π
)2
∫

R

∫

R

ei(ξxx+ξyy)e−i(ξxx0+ξyy0) dξxdξy

=
1

2π
F−1(1)(x− x0, y − y0) .

The connecting link between these two relations is the plane wave expansion
(2.5).

Finally, we recall that

∫ +∞

0

x2j0(tx) dx = 2π2δ0(t) , (2.27)

which can be obtained by integrating the spherical plane wave representation
(2.24).
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2.2 Function Spaces

The following functional spaces are needed for the study of mapping properties
of layer potentials.

For ease of notation we will sometimes use ∂ and ∂2 to denote the gradient
and the Hessian, respectively.

Let D ⊂ Rd be a bounded smooth domain. We define the Banach spaces
W 1,p(D), 1 ≤ p < +∞, by

W 1,p(D) =

{
u ∈ Lp(D) :

∫

D

|u|p +
∫

D

|∇u|p < +∞
}
,

where ∇u is interpreted as a distribution, and Lp(D) is defined in the usual
way, with the norm

||u||Lp(D) =

(∫

D

|u|p
)1/p

.

The space W 1,p(D) is equipped with the norm

||u||W 1,p(D) =

(∫

D

|u|p +
∫

D

|∇u|p
)1/p

.

Another Banach spaceW 1,p
0 (D) arises by taking the closure of C∞

0 (D), the set
of infinitely differentiable functions with compact support in D, in W 1,p(D).
The spaces W 1,p(D) and W 1,p

0 (D) do not coincide for bounded D. The case
p = 2 is special, since the spaces W 1,2(D) and W 1,2

0 (D) are Hilbert spaces
under the scalar product

(u, v) =

∫

D

u v +

∫

D

∇u · ∇v ,

where · stands for complex conjugation. We will also need the spaceW 1,2
loc (R

d\
D) of functions u ∈ L2

loc(R
d \D), the set of locally square summable functions

in Rd \D, such that

hu ∈W 1,2(Rd \D), ∀ h ∈ C∞
0 (Rd \D) .

We let W−1,2(D) to be the dual of W 1,2
0 (D). Further, we define W 2,2(D) as

the space of functions u ∈ W 1,2(D) such that ∂2u ∈ L2(D) and the space
W s,2(D) as the interpolation space [W 1,2(D),W 2,2(D)]s for 1 < s < 2 and
[L2(D),W 1,2(D)]s for 0 < s < 1; see, for example, the book by Bergh and
Löfström [104].

It is known that the trace operator u 7→ u|∂D is a bounded linear surjective
operator from W 1,2(D) into W 2

1/2(∂D), where f ∈ W 2
1/2(∂D) if and only if

f ∈ L2(∂D) and

∫

∂D

∫

∂D

|f(x)− f(y)|2
|x− y|d dσ(x) dσ(y) < +∞ .
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We set W 2
−1/2(∂D) = (W 2

1/2(∂D))∗ and let ( , )−1/2,1/2 denote the duality
pair between these dual spaces.

We introduce a weighted norm, ‖u‖W 1,2
w (Rd\D), in two dimensions. Let

‖u‖2
W 1,2

w (R2\D)
:=

∫

R2\D

|u(x)|2√
1 + |x|2

dx+

∫

R2\D
|∇u(x)|2dx. (2.28)

This weighted norm is introduced because the solutions of the static elasticity
equation behave like O(|x|−1) in two dimensions as |x| → ∞. For convenience,
we set

W (Rd \D) :=

{
W 1,2

w (R2 \D) for d = 2,

W 1,2(R3 \D) for d = 3.
(2.29)

In three dimensions, W (Rd \D) is the usual Sobolev space.
Finally, let {τ1, . . . , τd−1} be an orthonormal basis for the tangent plane

to ∂D at x and let

∂/∂τ =

d−1∑

p=1

(∂/∂τp) τp

denote the tangential derivative on ∂D. We say that f ∈ W 2
1 (∂D) if f ∈

L2(∂D) and ∂f/∂τ ∈ L2(∂D).

2.3 Fourier Analysis

2.3.1 Fourier Transform

The Fourier transform plays an important role in imaging and in the anal-
ysis of waves. In both cases, the notion of frequency content of a signal is
important.

For f ∈ L1(Rd), the Fourier transform F [f ] and the inverse Fourier trans-
form F−1[f ] are defined by

F [f ](ξ) = (2π)−d/2

∫

Rd

e−ix·ξf(x) dx , (2.30)

F−1[f ](ξ) = (2π)−d/2

∫

Rd

eiξ·xf(x) dx . (2.31)

We use both transforms for other classes of functions, such as for functions
in L2(Rd) and even for the tempered distributions S ′(Rd), the dual of the
Schwartz space of rapidly decreasing functions:

S(Rd) =

{
u ∈ C∞(Rd) : xβ∂αu ∈ L∞(Rd) for all α, β ≥ 0

}
,

where xβ = xβ1

1 . . . xβd

d , ∂α = ∂α1
1 . . . ∂αd

d , with ∂j = ∂/∂xj .
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We list a few properties of the Fourier transform. It is easy to verify that
F : S(Rd) → S(Rd) and

i|α|ξα∂βξ F [f ](ξ) = (−i)|β|F [∂α(xβf)](ξ) .

If fr(x) = f(rx), r > 0, we have

F [fr](ξ) = r−dF [f ](r−1ξ) .

Likewise, if fy(x) = f(x+ y) for y ∈ Rd, then

F [fy](ξ) = eiξ·yF [f ](ξ) .

We have the inversion formula: FF−1 = F−1F = I on both S(Rd) and
S ′(Rd). If f ∈ L2(Rd), then F [f ] ∈ L2(Rd), too. Plancherel’s theorem says
that F : L2(Rd) → L2(Rd) is unitary, so that F−1 is the adjoint.

In general, if f, g ∈ L2(Rd), then we have Parseval’s relation:

∫

Rd

F [f ]g dx =

∫

Rd

fF [g] dx . (2.32)

Since F−1[f ] = F [f ], this relation has its counterpart for F−1. This indeed
also gives ∫

Rd

fg dx =

∫

Rd

F [f ]F [g] dξ ,

and hence ∫

Rd

|f |2 dx =

∫

Rd

|F [f ]|2 dξ .

We now make some comments on the relation between the Fourier trans-
form and convolutions. For f ∈ S ′(Rd), g ∈ S(Rd), the convolution is defined
by

(f ⋆ g)(x) =

∫

Rd

f(x− y)g(y) dy ,

and we have

F [f ⋆ g] = (2π)d/2F [f ]F [g], F [fg] = (2π)−d/2F [f ] ⋆ F [g] .

Moreover, for a real-valued function f , we have

F [f(−x)] = F [f ] , (2.33)

and

F
[ ∫

Rd

f(y)g(x+ y) dy
]
= (2π)d/2F [f ]F [g] . (2.34)

Fourier transforms of a few special functions will be needed. For h a Gaus-
sian function,

h(x) := e−|x|2/2, x ∈ Rd ,
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we have
F [h](ξ) = e−|ξ|2/2, ξ ∈ Rd . (2.35)

For δ0 the Dirac function at the origin, i.e., δ0 ∈ S ′(Rd) and δ0(f) = f(0) for
f ∈ S(Rd), we have

F [δ0] = (2π)−d/2 . (2.36)

Another useful result is the classification of distributions supported at a
single point. If f ∈ S ′(Rd) is supported at {0}, then there exist an integer n
and real numbers aα such that

f =
∑

|α|≤n

aα∂
αδ0 .

Let Z denote the set of all integers. The Shah distribution

shahK =
∑

l∈Zd

δKl ,

where δy(f) = f(y), has the Fourier transform

F [shah2π/K ] = (2π)−d/2KdshahK .

This is Poisson’s formula. More generally, we have for f ∈ S(Rd)

∑

l∈Zd

F [f ](ξ − 2πl

K
) = (2π)−d/2Kd

∑

l∈Zd

f(Kl)e−iKξ·l . (2.37)

Physicists consider that a progressive plane wave is of the form ei(ξ·x−ωt).
Accordingly the convention for the Fourier transform in time is different than
in space (compare with (2.30)–(2.31)):

Ft[f ](ω) =
1√
2π

∫ ∞

−∞
f(t)eiωtdt , (2.38)

F−1
t [f ](t) =

1√
2π

∫ ∞

−∞
f(ω)e−iωtdω . (2.39)

The properties listed above still hold true, in particular (2.33) and (2.34):

Ft[f(−t)](ω) = Ft[f ](ω) , (2.40)

Ft

[ ∫
f(s)g)t+ s)ds

]
(ω) =

√
2πFt[f ](ω)Ft[g](ω) . (2.41)

These simple formulas have important interpretations in imaging. Identity
(2.40) expresses the fact that the time reversal operation in the time domain
(x ∈ R variable) is equivalent to the complex conjugation in the frequency
domain (ξ variable). Identity (2.41) shows that the cross correlation of two
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signals involves a product of the two Fourier transforms in the frequency
domain, one of the transform being complex conjugated.

Finally, we recall the Paley-Wiener theorem. Let f ∈ L2(R+), f ≡ 0 on
R−. Then Ft[f ] is holomorphic in C+ defined by

C+ =
{
ω : ℑω > 0

}
, (2.42)

and there exists C > 0 such that

∣∣Ft[f ](ξ + iη)
∣∣ ≤ C√

η
, η > 0 .

Moreover, Ft[f ] is L
2 in any horizontal stripe in the upper half-plane. The

converse also holds. If F is holomorphic in C+, ||F |ℑω=η||L2 ≤ C for η ≥ 0,
then F is a holomorphic Fourier transform of a function f ∈ L2(R+), F =
Ft[f ].

2.3.2 Shannon’s Sampling Theorem

We call a function (or distribution) in Rd, d ≥ 1, whose Fourier transform
vanishes outside |ξ| ≤ K band-limited with bandwidthK. Shannon’s sampling
theorem for d = 1 is the following. The reader is referred to [261, page 41] for
a proof.

Theorem 2.1 (Shannon’s Sampling Theorem) Let f ∈ L2(R) be band-
limited with bandwidth K, and let 0 < ∆x ≤ π/K. Then f is uniquely deter-
mined by the values f(l∆x), l ∈ Z. The smallest detail represented by such a
function is then of size 2π/K. We also have the explicit formula

f(x) =
∑

l∈Z

f

(
lπ

K

)
sin(Kx− lπ)

Kx− lπ
. (2.43)

The sampling interval π/K is often imposed by computation or storage
constraints. Moreover, if the support of F [f ] is not included in [−K,K], then
the interpolation formula (2.43) does not recover f . We give a filtering pro-
cedure to reduce the resulting error, known as the aliasing artifact. To ap-
ply Shannon’s sampling theorem, f is approximated by the closest function
f̃ whose Fourier transform has a support in [−K,K]. Plancherel’s theorem
gives that

||f − f̃ ||2 =

∫ +∞

−∞
|F [f ](ξ)−F [f̃ ](ξ)|2 dξ

=

∫

|ξ|>K

|F [f ](ξ)|2 dξ +
∫

|ξ|<K

|F [f ](ξ)−F [f̃ ](ξ)|2 dξ .

The distance is minimal when the second integral is zero and hence
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F [f̃ ](ξ) = F [f ](ξ)χ([−K,K])(ξ) =
√
2πF [δ̃K ](ξ)F [f ](ξ) ,

where χ([−K,K]) is the characteristic function of the interval [−K,K] and

δ̃K(x) = sin(K|x|)/(πK|x|) ;

see (2.10). This corresponds to f̃ = f ⋆ δ̃K . The filtering of f(x) by δ̃K(x)
removes any frequency larger thanK. Since F [f̃ ] has a support in [−K,K], the
sampling theorem proves that f̃ can be recovered from the samples f̃(lπ/K).

In the two-dimensional case, we use the separable extension principle. This
not only simplifies the mathematics but also leads to faster numerical algo-
rithms along the rows and columns of images. If F [f ] has a support included in
[−K1,K1]× [−K2,K2], then the following two-dimensional sampling formula
holds:

f(x, y) =
∑

l=(l1,l2)∈Z2

f

(
l1π

K1
,
l2π

K2

)
sin(K1x− l1π)

K1x− l1π

sin(K2y − l2π)

K2y − l2π
. (2.44)

If the support of F [f ] is not included in the low-frequency rectangle
[−K1,K1] × [−K2,K2], then we have to filter f with the low-pass separa-
ble filter δ̃K1

(x) δ̃K2
(y).

2.4 Kramers-Kronig Relations and Causality

Causal linear systems, with input H(t), output S(t), and transfer function
f(t) are characterized by the relation

S(t) =

∫ t

−∞
f(t− s)H(s) ds .

If we assume that f ∈ L2(R+), we can investigate the Fourier transform

F (ω) = Ft[f ](ω) =
1√
2π

∫ +∞

0

f(t)eiωt dt .

By the Paley-Wiener theorem, F (ω) is analytic for ω = ξ + iη ∈ C+ and
satisfies the integrability property

sup
η>0

∫ +∞

−∞
|F (ξ + iη)|2 dξ =

∫ +∞

−∞
|F (ξ)|2 dξ < +∞ . (2.45)

Functions analytic in the upper half plane, and satisfying (2.45) are referred to
as Hardy functions (F ∈ H2(R)). The converse also holds: all Hardy functions
may be obtained as Fourier transforms of L2-functions supported on R+.

The real and imaginary parts of Hardy functions obey the Kramers-Kronig
relations. The following integral identities hold by applying a limiting proce-
dure to the Cauchy integral representation for analytic functions.
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Theorem 2.2 (Kramers-Kronig relations) Let F (ω) ∈ H2(R). Then

ℜF (ω) = − 1

π
p.v.

∫ +∞

−∞

ℑF (ω′)

ω − ω′ dω
′ = −H[ℑF (ω)] ,

ℑF (ω) = 1

π
p.v.

∫ +∞

−∞

ℜF (ω′)

ω − ω′ dω
′ = H[ℜF (ω)] ,

(2.46)

where H, bounded operator from L2(R) → L2(R), is the Hilbert transform and
is given by

H[G(ω)] =
1

π
p.v.

∫ +∞

−∞

G(ω′)

ω − ω′ dω
′, G ∈ L2(R) . (2.47)

If the transfer function f(t) is real-valued, then the real and imaginary parts
of its Fourier transform F (ω) = Ft[f ](ω) are respectively even and odd. In-
corporating these symmetries into the Kramers-Kronig relations (2.46) gives

ℜF (ω) = 2

π
p.v.

∫ +∞

0

ω′ℑF (ω′)

(ω′)2 − ω2
dω′ ,

ℑF (ω) = −2ω

π
p.v.

∫ +∞

0

ℜF (ω′)

(ω′)2 − ω2
dω′ ,

(2.48)

from which we can deduce that F (−ω) = F (ω) for ω ∈ R. Thus, the causality
of a real-valued transfer function f(t) implies that its Fourier transform F (ω)
is analytic in C+ and that the real and imaginary parts of F (ω) are not
independent but are connected by the non-local integral relations (2.48). We
refer to (2.48) as dispersion relations. Kramers-Kronig relations express the
equivalence between causality and the existence of dispersion relations, and so
between the mathematical properties of the functions describing the physics in
the domains of time and frequency. They give necessary connections between
the real and imaginary parts of the complex permittivity and the complex
shear modulus of tissues and therefore, constitute a fundamental test of self-
consistency since any set of experimental (or reconstructed) data of the real
and imaginary parts of the complex permittivity or the complex shear modulus
must respect the Kramers-Kronig relations.

From the Kramers-Kronig relations, it is possible to deduce the value of
the zero-order moment of the real part and the value of the first-order moment
of the imaginary part of F (ω). This can be obtained by using the fact that if

g(y) = p.v.

∫ +∞

0

h(x)

y2 − x2
dx ,

where h is continuously differentiable and h(x) = O((x log x)−1), then

∫ +∞

0

h(x) dx = lim
y→+∞

y2g(y) .
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Therefore, from (2.48), it follows that





∫ +∞

0

ω′ℑF (ω′) dω′ = −π
2

lim
ω→+∞

ω2ℜF (ω) ,
∫ +∞

0

ℜF (ω′) dω′ =
π

2
lim

ω→+∞
ωℑF (ω) .

(2.49)

Similarly, other useful identities can be obtained. Taking the limit of the first
identity in (2.48) as ω → 0 yields

ℜF (0) = 2

π
p.v.

∫ +∞

0

ℑF (ω′)

ω′ dω′ . (2.50)

Since ℜF (ω′) is an even function of ω′, ℜF (ω′)−ℜF (0) = O((ω′)2) as ω′ → 0.
Using

p.v.

∫ +∞

0

1

(ω′)2 − ω2
dω′ = 0 ,

and taking the limit of the second identity in (2.48) as ω → 0, we obtain

lim
ω→0

1

ω
ℑF (ω) = − 2

π
p.v.

∫ +∞

0

(ℜF (ω′)−ℜF (0))
(ω′)2

dω′ . (2.51)

We refer to (2.49), (2.50), and (2.51) as sum rules.

2.5 Singular Value Decomposition

One of the most fruitful tools in the theory of linear inverse and imaging
problems is the singular value decomposition of a matrix and its extension
to certain classes of linear operators. It allows for both understanding the
ill-posedness of inverse and imaging problems and describing the effect of the
regularization methods.

Let A be a bounded linear operator from a separable Hilbert space H into
a separable Hilbert space K. By the singular value decomposition (SVD) we
mean a representation of A in the form

Af =
∑

l

σl (fl, f) gl ,

where (fl), (gl) are orthonormal systems in H,K, respectively, and σl are
nonnegative numbers, the singular values of A. The sum may be finite or
infinite. The adjoint of A is given by

A∗g =
∑

l

σl (gl, g) fl ,

and the operators
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A∗Af =
∑

l

σ2
l (fl, f) fl ,

AA∗g =
∑

l

σ2
l (gl, g) gl ,

are self-adjoint operators in H,K, respectively. The spectrum of A∗A,AA∗

consists of the eigenvalues σ2
l and possibly the eigenvalue 0, whose multiplicity

may be infinite.
The Moore-Penrose generalized inverse is given by

A+g =
∑

l

σ−1
l (gl, g) fl ,

where the sum is over the indices l such that σl > 0. Indeed this is the least-
squares solution to Af = g of minimum norm.

Let us now review the basic concepts of singular value decomposition of
a matrix. Let Mm,n(C) denote the set of all m-by-n matrices over C. The
set Mn,n(C) is abbreviated to Mn(C). The spectral theorem applied to the
positive semi-definite matrices AA∗ and A∗A gives the following singular value

decomposition of a matrix A ∈ Mm,n(C). Here A∗ := A
T
, where T denotes

the transpose.

Theorem 2.3 (Spectral Theorem) Let A ∈ Mm,n(C) be given, and let
q = min{m,n}. There is a matrix Σ = (Σij) ∈Mm,n(R) with Σij = 0 for all
i 6= j and Σ11 ≥ Σ22 ≥ . . . ≥ Σqq ≥ 0, and there are two unitary matrices
V ∈Mm(C) and W ∈Mn(C) such that A = V ΣW ∗. The numbers {Σii} are
the nonnegative square roots of the eigenvalues of AA∗, and hence are uniquely
determined. The columns of V are eigenvectors of AA∗ and the columns of
W are eigenvectors of A∗A (arranged in the same order as the corresponding
eigenvalues Σ2

ii).

The diagonal entries Σii, i = 1, . . . , q = min{m,n} of Σ are called the
singular values of A, and the columns of V and the columns of W are the
(respectively, left and right) singular vectors of A.

The SVD has the following desirable computational properties:

(i) The rank of A can be easily determined from its SVD. Specifically, rank(A)
equals to the number of nonzero singular values of A.

(ii) The Frobenius norm of A, ||A||F :=

√
Tr(AA

T
) with Tr being the trace,

is given by ||A||F =
√∑q

m=1Σ
2
mm.

(iii) SVD is an effective computational tool for finding lower-rank approxi-
mations to a given matrix. Specifically, let p < rank(A). Then the rank p
matrix Ap minimizing ||A − Ap||F is given by Ap = V ΣpW

∗, where the
matrix Σp is obtained from Σ after the singular values Σnn, p+1 ≤ n ≤ q,
are set to zero.
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2.6 Compact Operators

Let H be a Banach space. A bounded linear operator A on H is compact
if whenever {xj} is a bounded sequence in H, the sequence {Axj} has a
convergent subsequence. The operator A is said to be of finite rank if Range(A)
is finite-dimensional. Clearly every operator of finite rank is compact.

We recall some basic results on compact operators.

(i) The set of compact operators onH is a closed two-sided ideal in the algebra
of bounded operators on H with the norm topology.

(ii) If A is a linear bounded operator on the Banach space H and there is a
sequence {AN}N∈N of linear operators of finite rank such that ||AN−A|| →
0, then A is compact.

(iii) The operator A is compact on the Banach space H if and only if the dual
operator A∗ is compact on the dual space H∗.

We also recall the main structure theorem for compact operators. Let A be
a compact operator on the Hilbert space H (which we identify with its dual).
For each λ ∈ C, let Vλ = {x ∈ H : Ax = λx} and Vλ = {x ∈ H : A∗x = λx}.
Then

(i) The set of λ ∈ C for which Vλ 6= {0} is finite or countable, and in the
latter case its only accumulation point is zero. Moreover, dim(Vλ) < +∞
for all λ 6= 0.

(ii) If λ 6= 0, dim(Vλ) = dim(Vλ).
(iii) If λ 6= 0, the range of λI −A is closed.

Suppose λ 6= 0. Then

(i) The equation (λI −A)x = y has a solution if and only if y ⊥ Vλ.
(ii) (λI −A) is surjective if and only if it is injective.

We recall the concept of a Fredholm operator acting between Banach
spaces H and K. We say that a bounded linear operator A : H → K is
Fredholm if the subspace Range(A) is closed in K and the subspace Ker(A)
and the quotient space K/Range(A) are finite-dimensional. In this case, the
index of A is the integer defined by

index (A) = dim Ker(A)− dim(K/Range(A)) .

In the sequel, we encapsulate the main conclusion of Fredholm’s original the-
ory. If A = I+B, where B : H → H is compact, then A : H → H is Fredholm
with index zero. If A : H → K is Fredholm and B : H → K is compact, then
their sum A+B : H → K is Fredholm, and index (A+B) = index (A). This
shows that the index is stable under compact perturbations.

Finally, we recall that a compact operator A on a separable Hilbert space
H is a Hilbert-Schmidt operator if the sequence of its singular values is
square summable. An equivalent characterization is

∑
n ||Aϕn||2 < ∞ or∑

m,n |(ϕm, Aϕn)|2 <∞ for any orthonormal basis (ϕn) of H.
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2.7 Spherical Mean Radon Transform

The spherical mean Radon transform, which integrates a function over all
spheres centered at points of a given set, is useful in multi-wave tomogra-
phies. For instance, in photoacoustic imaging, under some simplifications, the
spherical mean data of an unknown function (the absorbed optical energy
density) is measured by acoustic transducers, and the imaging problem is to
invert that transform. For the spherical mean transform, uniqueness and sta-
bility reconstruction, explicit inversion formulas, incomplete data problems
are challenging issues. Most of the known inversion formulas pertain to the
spherical acquisition geometry, i.e., to the situation when centers of integra-
tion spheres (the detector positions) lie on a sphere surrounding the support
of the function to be imaged.

Let Ω be a bounded open set of Rd. The spherical mean Radon transform
R : C0(Rd) → C0(∂Ω × R+) with centers on ∂Ω is given for f ∈ C0(Rd) by

R[f ](x, s) =
1

ωd

∫

S

f(x+ sξ) dσ(ξ), (x, s) ∈ ∂Ω × R+ , (2.52)

where S denotes the unit sphere in Rd and ωd its area.
Let B be the unit ball of center 0 and radius 1 (∂B = S). If we look at R

as the map from C∞
0 (B) → C∞(S×R+), then we have the following inversion

formula for d = 3 [166]:

f(x) =
1

2π
∇ ·
∫

S

y
∂
∂s (sR[f ])(y, |x− y|)

|x− y| dσ(y) , (2.53)

while for d = 2 [165],

f(x) =
1

2π

∫

S

∫ 2

0

[
d

ds
s
d

ds
R[f ]

]
(y, s) log |s2 − |y − x|2| ds dσ(y) , (2.54)

or equivalently,

f(x) =
1

2π
p.v.

∫

S

∫ 2

−2

(t ∂
∂t (R[f ]))(y, t)

|x− y| − t
dt dσ(y)

with R[f ] being extended on negative time as an odd function.
We now connect the spherical mean Radon transform to the wave equation.

Let y ∈ R3 and let

Uy(x, t) :=
δ0(t− |x− y|)

4π|x− y| for x 6= y . (2.55)

The function Uy is the outgoing fundamental solution (also called retarded
fundamental solution) to the wave equation in three dimensions:

(∂2t −∆)Uy(x, t) = δy(x)δ0(t) in R3 × R . (2.56)
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Moreover, Uy satisfies the conditions: Uy(x, t) = ∂tUy(x, t) = 0 for x 6= y
and t < 0. The function Uy corresponds to a spherical wave generated at the
source point y and propagating at speed 1.

In the two-dimensional case, the fundamental solution is given by

Uy(x, t) :=
H(t− |x− y|)

2π
√
t2 − |x− y|2

for |x− y| 6= t , (2.57)

where H is the Heaviside step function.
Consider the wave equation in Rd, d = 2, 3,

∂2p

∂t2
(x, t)−∆p(x, t) = 0 in Rd × R+ ,

with the initial conditions

p(x, 0) = p0(x) and
∂p

∂t
(x, 0) = 0 .

Assume that the support of p0 ∈ C0(Rd) is contained in a bounded set Ω of
Rd. With the outgoing fundamental solution Uy, p can be written as

p(x, t) =

∫

Ω

∂tUy(x, t)p0(y) dy, (x, t) ∈ Rd × R+ . (2.58)

Therefore, the following Kirchhoff formulas follow from (2.58):

p(x, t) =




∂t

∫ t

0

sR[p0](x, s)√
t2 − s2

ds , d = 2 ,

∂t(tR[p0])(x, t), d = 3 .

(2.59)

When Ω is the unit disk (∂Ω = S), from (2.54) it follows that

p0(x) = R∗BR[p0](x) , (2.60)

where R∗ is the adjoint of R,

R∗[g](x) =
1

2π

∫

S

g(y, |x− y|)
|x− y| dσ(y) , (2.61)

and B is defined by

B[g](x, t) =
∫ 2

0

∂2g

∂s2
(x, s) log(|s2 − t2|) ds (2.62)

for g : S × R+ → R.
In order to extend the definition (2.52) of the spherical mean Radon trans-

form to distributions, we introduce the dual operator R∗ : S(∂Ω × R+) →
S(Rd) defined for g ∈ S(∂Ω × R+) by
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R∗[g](x) =
1

ωd

∫

∂Ω

g(y, |x− y|)
|x− y|d−1

dσ(y)

with S being the Schwartz space. Then, for any tempered distribution f ∈
S ′(Rd) (the dual of S(Rd)), we define its spherical mean Radon transform
R[f ] ∈ S ′(∂Ω × R+) as follows:

(R[f ], g)S′(∂Ω×R+),S(∂Ω×R+) = (f,R∗[g])S′(Rd),S(Rd), ∀g ∈ S(∂Ω × R+) .

The following stability result holds [293].

Lemma 2.4 Let 0 < η < 1. Suppose that for any f ∈W η,2(Rd) with compact
support, R[f ] = 0 implies that f = 0. Then there exists a positive constant C
such that

1

C
||f ||Wη,2(Rd) ≤ ||R[f ]||Wη+(d−1)/2,2(∂Ω×R+) ≤ C||f ||Wη,2(Rd) .

2.8 Regularization of Ill-Posed Problems

In this section we review some of the most commonly used methods for solving
ill-posed inverse problems. These methods are called regularization methods.
Although the emphasis in this book is not on classical regularization tech-
niques, it is quite important to understand the philosophy behind them and
how they work in practice.

2.8.1 Stability

Problems in image reconstruction are usually not well-posed in the sense of
Hadamard. This means that they suffer from one of the following deficiencies:

(i) They may not be solvable (in the strict sense) at all.
(ii) The solution, if exists, may not be unique.
(iii) The solution may not depend continuously on the data.

A classical ill-posed inverse problem is the deconvolution problem. Define
the compact operator A : L2(R) → L2(R) by

(Af)(x) :=

∫ +∞

−∞
h(x− y)f(y) dy ,

where h is a Gaussian convolution kernel,

h(x) :=
1√
2π
e−x2/2 .

The operator A is injective, which can be seen by applying the Fourier trans-
form on Af , yielding
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F [Af ] = F [h ⋆ f ] = F [h]F [f ] ,

with F [h] given by (2.35). Therefore, if Af = 0, we have F [f ] = 0, hence
f = 0. Formally, the solution to the equation Af = g is

f(x) = F−1

[F(g)

F(h)

]
(x), x ∈ R . (2.63)

However, the above formula is not well defined for general g ∈ L2(R) (or even

in S ′(R)) since 1/F [h] grows as eξ
2/2.

To explain the basic ideas of regularization, let A be a bounded linear
operator from a Hilbert space H into a Hilbert space K. Consider the problem
of solving

Af = g (2.64)

for f . Item (i) means that g may not be in the range of A, (ii) means that A
may not be injective, and (iii) means that A−1 may not be continuous.

One could do away with (i) and (ii) by using the generalized inverse A+.
But A+ does not have to be continuous. Thus, small error in g may cause
errors of arbitrary size in f . To restore continuity, we introduce the notion of
a regularization of A+. This is a family (Tγ)γ>0 of linear continuous operators
Tγ : K → H, which are defined on all of K and for which

lim
γ→0

Tγg = A+g

on the domain of A+. Obviously, ||Tγ || → +∞ as γ → 0 if A+ is unbounded.
With the help of regularization, we can solve (2.64) in the following way. Let
gǫ ∈ K be an approximation to g such that ||g − gǫ|| ≤ ǫ. Let γ(ǫ) be such
that, as ǫ→ 0,

γ(ǫ) → 0, ||Tγ(ǫ)|| ǫ→ 0 .

Then, as ǫ→ 0,

||Tγ(ǫ)gǫ −A+g|| ≤ ||Tγ(ǫ)(gǫ − g)||+ ||Tγ(ǫ)g −A+g||
≤ ||Tγ(ǫ)|| ǫ+ ||Tγ(ǫ)g −A+g||
→ 0 .

Hence Tγ(ǫ)g
ǫ is close to A+g if gǫ is close to g.

The number γ is called a regularization parameter. Determining a good
regularization parameter is a major issue in the theory of ill-posed problems.

Measurement errors of arbitrarily small L2-norm in g may cause g to be not
in Range(A) and the inversion formula (2.63) practically useless. Therefore,
instead of trying to solve (2.64) exactly, one seeks to find a nearby problem
that is uniquely solvable and that is robust in the sense that small errors in
the data do not corrupt excessively this approximate solution.

We briefly discuss three families of classical regularization methods: (i)
regularization by singular value truncation, (ii) the Tikhonov-Phillips regu-
larization and (iii) regularization by truncated iterative methods.
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2.8.2 The Truncated SVD

Let
Af =

∑

l

σl (fl, f) gl

be the SVD of A. Then

Tγg =
∑

σl≥γ

σ−1
l (gl, g) fl (2.65)

is a regularization with ||Tγ || ≤ 1/γ.
A good measure for the degree of ill-posedness of (2.64) is the rate of

decay of the singular values σl. It is clear from (2.65) that the ill-posedness is
more pronounced as the rate of decay increases. A polynomial decay is usually
considered manageable, while an exponential decay indicates that only very
poor approximations to f in (2.64) can be computed. The SVD gives us all
the information we need about an ill-posed problem.

There is a rule for choosing the truncation level, that is often referred to
as the discrepancy principle. This principle states that we cannot expect the
approximate solution fγ to yield a smaller residual error, Afγ − g, than the
noise level ǫ, since otherwise we would be fitting the solution to the noise.
This leads to the following selection criterion for γ: choose the largest γ that
satisfies ||g −∑σl≥γ(gl, g)gl|| ≤ ǫ.

2.8.3 Tikhonov-Phillips Regularization

Linear Problems

The discussion in the previous subsection demonstrates that when solving the
equation (2.64) for a compact operator A, serious problems occur when the
singular values of A tend to zero rapidly, causing the norm of the approximate
solution to go to infinity as the regularization parameter γ goes to zero. The
idea in the basic Tikhonov-Phillips regularization scheme is to control simul-
taneously the norm of the residual, Afγ −g, and the norm of the approximate
solution fγ .

To do so, we set
Tγ = (A∗A+ γI)−1A∗ .

Equivalently, fγ = Tγg can be defined by minimizing ||Af − g||2 + γ||f ||2.
Here the regularization parameter γ plays essentially the role of a Lagrange
multiplier. In terms of the SVD of A presented in Section 2.5, we have

Tγg =
∑

l

Fγ(σl)σ
−1
l (gl, g) fl , (2.66)

where Fγ(σ) = σ2/(σ2 + γ).
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The choice of the value of the regularization parameter γ based on the
noise level of the measurement g is a central issue in the literature discussing
Tikhonov-Phillips regularization. Several methods for choosing γ have been
proposed. The most common one is known as the Morozov discrepancy prin-
ciple. This principle is essentially the same as the discrepancy principle dis-
cussed in connection with the singular value truncation principle. It is rather
straightforward to implement the principle numerically.

Let ǫ be the measurement error. Let

ϕ : R+ → R+, ϕ(γ) = ||Afγ − g||

be the discrepancy related to the regularization parameter γ. The Morozov
discrepancy principle says that γ should be chosen from the condition

ϕ(γ) = ǫ , (2.67)

if possible, i.e., the regularized solution should not try to satisfy the data more
accurately than up to the noise level ǫ. Equation (2.67) has a unique solution
γ = γ(ǫ) if and only if (i) any component in the data g that is orthogonal to
Range(A) must be due to noise and (ii) the error level ǫ should not exceed
the signal level ||g||.

Nonlinear Problems

Tikhonov-Phillips regularization method is sometimes applicable also when
non-linear problems are considered. Let H and K be Hilbert spaces. Let A :
H → K be a nonlinear mapping. We want to find f ∈ H satisfying

A(f) = g + ǫ , (2.68)

where ǫ is observation noise. If A is such that large changes in f may produce
small changes in A(f), the problem of finding f a solution to (2.68) is ill-posed
and numerical methods, typically, iterative ones, may fail to find a satisfactory
estimate of f .

The nonlinear Tikhonov-Phillips regularization scheme amounts to search-
ing for f that minimizes the functional

||A(f)− g||2 + γG(f) , (2.69)

where G : H → R is a nonnegative functional. The most common penalty
term is G(f) = ||f ||2 although a lot of work has been recently devoted to the
analysis of nonquadratic-type penalization methods; see, for instance, [315].
We first restrict ourselves to this choice and suppose that A is Fréchet differ-
entiable. In this case, the most common method to search for a minimizer of
(2.69) is to use an iterative scheme based on successive linearizations of A.
The linearization of A around a given point f0 leads that the minimizer of
(2.69) (around f0) is
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f = (R∗
f0Rf0 + γI)−1R∗

f0

(
g −A(f0) +Rf0f0

)
,

where Rf0 is the Fréchet derivative of A at f0. We recall that A is Fréchet
differentiable at f0 if it allows an expansion of the form

A(f0 + h) = A(f0) +Rf0h+ o(||h||) ,

where Rf0 is a continuous linear operator.

2.8.4 Regularization by Truncated Iterative Methods

The most common iterative methods to solve (2.64) are Landweber iteration,
Kaczmarz iteration, and Krylov subspace methods. The best known of the
Krylov iterative methods when the matrix A is symmetric and positive definite
is the conjugate gradient method. In this section, we only discuss regularizing
properties of Landweber and Kaczmarz iterations. We refer to [209] and the
references therein concerning the Krylov subspace methods.

Linear Landweber Iteration

The drawback of the Thikhonov-Phillips regularization is that it requires to
invert the regularized normal operator A∗A+γI. This inversion may be costly
in practice. The linear Landweber iteration method is an iterative technique
in which no inversion is necessary. It is defined to solve the linear equation
Af = g as follows:

f0 = 0, fk+1 = fk + ηA∗(g −Afk
)
, k ≥ 0 ,

for some η > 0. By induction, since

fk+1 = (I − ηA∗A)fk + ηA∗g, k ≥ 0 ,

we verify that fk = Tγg, with γ = 1/k, k ≥ 1, and

Tγg = η

1/γ−1∑

l=0

(I − ηA∗A)lA∗g .

Let q ≤ +∞ be the number of singular values of A. Let σl be the singular
values arranged in a decreasing sequence and gl and fl be respectively the
associated left and right singular vectors. Since

η

1/γ−1∑

l=0

(I − ηA∗A)lA∗g =

q∑

l=1

1

σl
(1− (1− ησ2

l )
1/γ)(gl, g)fl ,

where fl = (f, gl), a good choice of η is thus η ≈ σ−2
1 .
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Kaczmarz Iteration

Kaczmarz’s method (also known as the algebraic reconstruction technique) is
an iterative method for solving linear systems of equations. Let H,Hj , j =
1, . . . , p, be Hilbert spaces, and let

Aj : H → Hj , j = 1, . . . , p ,

be bounded linear maps from H onto Hj with Range(Aj) = Hj . Let gj ∈ Hj

be given. We want to compute f ∈ H such that

Ajf = gj , j = 1, . . . , p . (2.70)

Kaczmarz’s method for the solution of (2.70) reads:

Algorithm 2.1 Kaczmarz’s method

1. f0 = fk ,

2. fj = fj−1 + γA∗
j (AjA

∗
j )

−1(gj −Ajfj−1), j = 1, . . . , p ,
3. fk+1 = fp , with f

0 ∈ H arbitrary.

Here γ is a regularization parameter. Under certain assumptions, fk con-
verges to a solution of (2.70) if (2.70) has a solution and to a generalized
solution if not.

2.8.5 Regularizations by Nonquadratic Constraints

L1-Regularization

Regularization methods rely on a regularization term that is adapted to the a
prior knowledge on the solution to be recovered. In some biomedical imaging
applications, the a prior knowledge is that the solution has a sparse expansion
with respect to some given basis. Sparsity means that only a few coefficients
of the solution are nonzero.

In order to promote sparsity, an L1 penalization can be added, G(f) =
||f ||L1 :=

∑
j |(ϕj , f)|, where (ϕj) is an orthonormal basis of H. When

compared to the classical (L2-) Tikhonov-Phillips regularization, the L1-
regularization puts a lesser penalty on functions f with large but few compo-
nents with respect to the basis (ϕj), and a higher penalty on sums of many
small components. The L1-minimization procedure promotes then sparsity of
the expansion of f with respect to the basis (ϕj).
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Total Variation Regularization

When the solution of the imaging problem is piecewise constant, total varia-
tion regularization can be used.

Let Ω be a bounded smooth domain. The total variation of a real-valued
function f on Ω is defined by

∣∣f
∣∣
TV(Ω)

:= sup

{∫

Ω

f(x)Φ(x) dx, Φ ∈ C1
0(Ω), sup|Φ| ≤ 1

}
.

A function f in Ω is of bounded variation on Ω if
∣∣f
∣∣
TV(Ω)

< +∞. If f ∈
C1(Ω), then

∣∣f
∣∣
TV(Ω)

= ||∇f ||L1(Ω). The total variation of the characteristic

function χ(Ω) is the length of ∂Ω.
Consider the minimization problem (2.69). The total variation regulariza-

tion is nonquadratic and given by G(f) =
∫
Ω
|∇f |. If A is Fréchet differen-

tiable, then the gradient of the discrepancy function at f0 is given by

γ∇ · ∇f0
|∇f0|

+ 2R∗
f0

(
g −A(f0)

)
,

where Rf0 is the Fréchet derivative of A at f0.
Direct computation of a solution to the minimization problem (2.69) can be

complicated as the gradient is not continuous. Nevertheless, an approximate
solution can be obtained via an iterative shrinkage-thresholding algorithm
[97].

Algorithm 2.2 Iterative shrinkage-thresholding algorithm

1. Data g; initial set: f (0) = x(0) = 0, t0 = 1;

2. x(k) = Tγ

(
f (k) − ηR∗

f(k)

(
g −A(f (k))

))
with η > 0 being the step size and

Tγ [y] = arg min
x

{
1

2
‖y − x‖2L2 + γ‖∇x‖L1

}
. (2.71)

3. f (k+1) = x(k) + tk−1
tk+1

(
x(k) − x(k−1)

)
with tk+1 =

1+
√

1+4t2
k

2
.

2.9 Optimal Control

Let H be a Banach space. In biomedical imaging, H stands either for a set of
admissible properties of a biological material or for a set of geometric shapes.
Consider a discrepancy functional J(u(h)) depending on h ∈ H via the solu-
tion u(h) to a system where h acts as a parameter, say: A(h)u(h) = g. Here,
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g represents the data. In order to minimize J we need to compute its Fréchet
derivative

∂J

∂u
(u(h))

∂u

∂h
,

which is not explicit in h. The introduction of the adjoint system

A(h)∗p(h) =
∂J

∂u
(u(h)) , (2.72)

where A(h)∗ denotes the adjoint of A(h) makes this explicit. Multiplying
(2.72) by ∂u

∂hδh we obtain

∂J

∂u
(u(h))

∂u

∂h
δh = −p(h)∂A

∂h
δhu(h) ,

and therefore, the Fréchet derivative of J is given by

−p(h)∂A
∗

∂h
u(h) .

Algorithm 2.3 Optimal control algorithm

1. Data g; initial set: h(0);
2. Compute p(h(k)) solution to (2.72);
3. h(k+1) = h(k) + ηp(h(k)) ∂A

∗

∂h
u(h(k)) with η > 0 being the step size.

2.10 Convergence of Nonlinear Landweber Iterations

We state a convergence result concerning nonlinear Landweber iterations. This
result will be useful in studying optimal control approaches for hybrid tomo-
graphies.

Let H be a Hilbert space and F : K → H be a differentiable map where
K is an closed and convex subset of H. Given y∗ ∈ H, assume that we want
to solve the equation

F (x∗) = y∗, x∗ ∈ K . (2.73)

It is natuaral to minimize

J(x) =
1

2
‖F (x)− y∗‖2 (2.74)

with x ∈ K. Assume that F is Fréchet differentiable. So is J . The derivative
of J is given by

dJ(x)h =
(
dF (x)h, F (x)− y∗

)
=
(
h, dF (x)∗(F (x)− y∗)

)
, (2.75)
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where the superscript ∗ indicates the dual map. The iteration sequence due to
the descent gradient method is given by the so-called (nonlinear) Landweber
iterations:

x(n+1) = Tx(n) − ηdF (Tx(n))∗(F (Tx(n))− y∗) . (2.76)

Here, T is the Hilbert projection of H onto K

T : H ∋ x 7→ argmin{‖x− a} : a ∈ K} (2.77)

and η is a small positive number. The presence of T in (2.76) is necessary
because x(n) might not be in K and F (x(n)) might not be well-defined. The
map T above also increases the rate of convergence of (x(n)) to x∗ due to

‖Tx(n) − x∗‖ ≤ ‖x(n) − x∗‖ n ≥ 1 . (2.78)

We have the proposition.

Proposition 2.5 Assume that the Fréchet derivative dF is Lipschitz contin-
uous and that for all x ∈ K,

‖dF (x)‖H∗ ≥ c , (2.79)

for some positive constant c. Then the sequence defined in (2.76) converges
to x∗ provided that x(0) is a ”good” initial guess for x∗ and η is sufficiently
small.

Proof. Since dF is Lipschitz continuous, we have for all x such that ‖x− x∗‖
is small

‖F (x)− F (x∗)− dF (x)(x− x∗)‖ ≤ C‖x− x∗‖2
≤ C‖x− x∗‖‖F (x)− F (x∗)‖
≤ µ‖F (x)− F (x∗)‖ (2.80)

for small constant µ. For all n ≥ 1, let Fn denote the nth error quantity
F (Tx(n))− y∗. We have

‖x(n+1) − x∗‖2 − ‖x(n) − x∗‖2 ≤ ‖x(n+1) − x∗‖2 − ‖Tx(n) − x∗‖2
= 2〈x(n+1) − Tx(n), Tx(n) − x∗〉+ ‖x(n+1) − Tx(n)‖2
= 2η〈−dF (Tx(n))∗Fn, Tx

(n) − x∗〉
+〈ηFn, µdF (Tx

(n))dF (Tx(n))∗〉
= 〈Fn, 2ηFn − 2ηdF (Tx(n))(Tx(n) − x∗)〉 − η‖Fn‖2

+〈√ηFn, (−I + ηdF (Tx(n))dF (
√
µTx(n))∗))Fn〉

≤ η(2µ− 1)‖Fn‖2 .

It then follows that

‖x(n+1) − x∗‖2 + η(1− 2µ)‖Fn‖2 ≤ ‖x(n) − x∗‖2 , (2.81)
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and therefore,
∞∑

n=1

‖FT (x(n))− y∗‖2 ≤ ‖x(0) − x∗‖2
η(1− 2µ)

. (2.82)

We now obtain the convergence of (x(n)) to x∗ using the mean value theorem
and condition (2.79)

c‖Tx(n) − x∗‖ ≤ ‖dF (x̃(n))(Tx(n) − x∗)‖ = ‖F (Tx(n))− F (x∗)‖ → 0 (2.83)

for some x̃(n) = tTx(n) + (1− t)x∗, t ∈ (0, 1). ⊓⊔

2.11 Level Set Method

Let H be a set of geometric shapes and consider the minimization over H
of a discrepancy functional J . The main idea of the level set approach is to
represent the boundary of the domain D as the zero level set of a continuous
function φ, i.e.,

D =

{
x : φ(x) < 0

}
,

to work with function φ instead of D, and to derive an evolution equation
for φ to solve the minimization problem. In fact, by allowing additional time-
dependence of φ, we can compute the geometric motion of D in time by
evolving the level set function φ. A geometric motion with normal velocity
V = V (x, t) can be realized by solving the Hamilton-Jacobi equation

∂φ

∂t
+ V |∇φ| = 0. (2.84)

Minimization within the level set framework consists of choosing a velocity V
driving the evolution towards a minimum (or at least increasing the discrep-
ancy functional we want to minimize).

Consider the geometry of the zero level set

∂D =

{
x : φ(x) = 0

}
,

under a variation of φ. Suppose that φ(x) is perturbed by a small variation
δφ(x). Let δx be the resulting variation of the point x. By taking the variation
of the equation φ(x) = 0, we find

δφ = −∇φ · δx . (2.85)

Observe that the unit outward normal at x is given by

ν(x) =
∇φ(x)
|∇φ(x)| .
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Now, if t represents time, then the function φ depends on both x and t. We
use the notation

∂D(t) =

{
x : φ(x, t) = 0

}
.

Assume that each point x ∈ ∂D(t) moves perpendicular to the curve. That
is, the variation δx satisfies

δx = V (x, t)
∇φ(x, t)
|∇φ(x, t)| .

Suppose that J is given by (2.69) (with γ = 0) and the minimization is
performed over piecewise functions f = f+χ(R

d \D)+ f−χ(D) with f± being
given constants. The minimal requirement for the variations of φ(x, t) is that
J be a decreasing function of t. The directional derivative of the function J
in the direction δf is given by

δJ(f) = J ′(f)δf = 2R∗
f

(
g −A(f)

)
δf ,

where J ′ is the Fréchet derivative of J and R∗
f is the Fréchet derivative of

A(f). Since δf is a measure on ∂D given by

δf = (f+ − f−)δx · ν(x) ,

we have

δf = (f+ − f−)
∇φ(x)
|∇φ(x)| · δx

∣∣∣∣
x∈∂D

. (2.86)

Hence,
δJ(f) = (f+ − f−)J

′(f)V ,

and therefore, in order to make δJ(f) negative, we can choose

V (x, t) = (f+ − f−)R
∗
f

(
g −A(f)

)
. (2.87)

As (2.87) is only valid for x ∈ ∂D, a velocity extension to the entire domain
should be performed. This leads to the Hamilton-Jacobi equation (2.84) for
φ(x, t) with the initial condition φ(x, 0) = φ0(x), and thus the problem of
maximizing J(f) is converted into a level set form.
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Layer Potential Techniques

The anomaly imaging algorithms described in this book rely on asymptotic
expansions of the fields when the medium contains particles of small vol-
ume. Such asymptotics will be investigated in the cases of the conductivity
equation, which models the quasi-static limit for electromagnetic waves, the
Helmholtz equations, which are used for the scalar theory of electromagnetic
waves and for the propagation of acoustic waves, and the elasticity equa-
tions. The use of Helmholtz equations in electromagnetic theory can be justi-
fied when there is no depolarization as the electromagnetic wave propagates
through the medium. The depolarization effects can be ignored only if the
wavelength is much smaller than the typical size of the inhomogeneities in the
medium.

We prepare the way in this chapter by reviewing a number of basic facts
on the layer potentials for these equations which are very useful for robust
imaging of small anomalies. The most important results in this chapter are
on integral representations for solutions to transmission scattering problems
and, on the other hand, the Helmholtz-Kirchhoff identities. The results on
the transmission scattering problems will be used to provide asymptotic ex-
pansions of the solution perturbations due to presence of small particles. As
will be shown later, the Helmholtz-Kirchhoff identities play a key role in the
analysis of resolution in wave imaging.

We begin with the conductivity equation and study the Neumann-Poincaré
operator. We then discuss the transmission scattering problem for the Helmholtz
equation. Compared to the conductivity equation, the only new difficulty in es-
tablishing integral representation formulas for the Helmholtz equation is that
the equations inside and outside the particle are not the same. We should
then consider two unknowns and solve a system of equations on the boundary
of the particle instead of just one equation. We also note that when deal-
ing with the Helmholtz equation, one should introduce a radiation condition,
known as the Sommerfeld radiation condition, to select the physical solution
to the problem. Then we derive the Helmholtz-Kirchhoff identity, which plays
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a key role in the resolution analysis. Finally, we recall useful results on layer
potential techniques for the elasticity equations.

3.1 The Laplace Equation

This section deals with the Laplace operator (or Laplacian) in Rd, denoted
by ∆. The Laplacian models the quasi-static approximation for electromag-
netic wave propagation. After deriving the fundamental solution for the Lapla-
cian, we shall introduce the single- and double-layer potentials as well as the
Neumann-Poincaré operator. We then provide the jump relations and map-
ping properties of these surface potentials. We review the spectral properties
of the Neumann-Poincaré operator. We recall a Calderón identity (also known
as Plemelj’s symmetrization principle) and apply the symmetrization principle
to the Neumann-Poincaré operator. Finally, we investigate the transmission
problem.

3.1.1 Fundamental Solution

To give a fundamental solution to the Laplacian in the general case of the
dimension d, we denote by ωd the area of the unit sphere S in Rd.

Lemma 3.1 A fundamental solution to the Laplacian is given by

Γ (x) =





1

2π
log |x| , d = 2 ,

1

(2− d)ωd
|x|2−d , d ≥ 3 .

(3.1)

It satisfies in the sense of distributions ∆Γ = δ0.

Let a ∈ Rd and q ∈ R. Let Γ (x, z) := Γ (x−z) for x 6= z be the fundamental
solution for a source point at z. The function qΓ (x, z) is called the potential
due to charges q at the source point z. The function a ·∇zΓ (x, z) is called the
dipole of moment |a| and direction a/|a| at the source point z. It is known
that using point charges one can obtain a dipole only approximately (two
large charges a small distance apart). See [295].

We next state Green’s identity.

Lemma 3.2 Assume that D is a bounded C2-domain in Rd, d ≥ 2, and let
u ∈W 1,2(D) be a harmonic function. Then for any x ∈ D,

u(x) =

∫

∂D

(
u(y)

∂Γ

∂νy
(x, y)− ∂u

∂νy
(y)Γ (x, y)

)
dσ(y) . (3.2)

Particularly useful solutions to the Laplace equation in R2 are homoge-
neous harmonic polynomials rne±inθ with (r, θ) being the polar coordinates.
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3.1.2 Layer Potentials

In this subsection we show how important the fundamental solution is to
potential theory. It gives rise to integral operators that invert the Laplacian.
We need these integral operators (also called layer potentials) in solving the
transmission problem.

Given a bounded C2-domain D in Rd, d ≥ 2, we denote respectively the
single- and double-layer potentials of a function φ ∈ L2(∂D) as SD[φ] and
DD[φ], where

SD[φ](x) :=

∫

∂D

Γ (x, y)φ(y) dσ(y) , x ∈ Rd , (3.3)

DD[φ](x) :=

∫

∂D

∂

∂νy
Γ (x, y)φ(y) dσ(y) , x ∈ Rd \ ∂D . (3.4)

We begin with recalling their basic properties. We note that for x ∈ Rd\∂D
and y ∈ ∂D, ∂Γ/∂νy(x, y) is an L∞-function in y and harmonic in x, and it
is O(|x|1−d) as |x| → +∞. Therefore we readily see that DD[φ] and SD[φ] are
well-defined and harmonic in Rd \ ∂D. Let us list their behavior at +∞.

Lemma 3.3 The following holds:

(i) DD[φ](x) = O(|x|1−d) as |x| → +∞.
(ii) SD[φ](x) = O(|x|2−d) as |x| → +∞ when d ≥ 3.
(iii) If d = 2, we have

SD[φ](x) =
1

2π

∫

∂D

φ(y) dσ(y) log |x|+O(|x|−1) as |x| → +∞ .

(iv) If
∫
∂D

φ(y) dσ = 0, then SD[φ](x) = O(|x|1−d) as |x| → +∞ for d ≥ 2.

Lemma 3.2 shows that if u ∈W 1,2(D) is harmonic, then for any x ∈ D,

u(x) = DD[u|∂D](x)− SD

[
∂u

∂ν

∣∣∣∣
∂D

]
(x) . (3.5)

To solve the Dirichlet and Neumann problems, where either u or ∂u/∂ν
on ∂D is prescribed, we need to understand well the subtle behaviors of the
functions DD[φ](x±tνx) and∇SD[φ](x±tνx) for x ∈ ∂D as t→ 0+. A detailed
discussion of the behavior near the boundary ∂D of DD[φ] and ∇SD[φ] for a
C2-domain D and a density φ ∈ L2(∂D) is given below. We shall follow [168].

Throughout this book, we use the dot for the scalar product in Rd. Assume
that D is a bounded C2-domain. Then we have the bound

∣∣∣∣
(x− y) · νx
|x− y|d

∣∣∣∣ ≤ C
1

|x− y|d−2
for x, y ∈ ∂D, x 6= y , (3.6)

which shows that there exists a positive constant C depending only on D such
that
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∫

∂D

( |(x− y) · νx|
|x− y|d +

|(x− y) · νy|
|x− y|d

)
dσ(y) ≤ C , (3.7)

and
∫

|y−x|<ǫ

( |(x− y) · νx|
|x− y|d +

|(x− y) · νy|
|x− y|d

)
dσ(y) ≤ C

∫ ǫ

0

1

rd−2
rd−2 dr

≤ Cǫ ,

(3.8)

for any x ∈ ∂D, by integration in polar coordinates.
Introduce the operator KD : L2(∂D) → L2(∂D) given by

KD[φ](x) =
1

ωd

∫

∂D

(y − x) · νy
|x− y|d φ(y) dσ(y) . (3.9)

We refer to KD as the Neumann-Poincaré operator.
The estimate (3.7) proves that this operator is bounded. In fact, for φ, ψ ∈

L2(∂D), we estimate

∣∣∣∣
∫

∂D

∫

∂D

(y − x) · νy
|x− y|d φ(y)ψ(x) dσ(y) dσ(x)

∣∣∣∣ (3.10)

via the inequality 2ab ≤ a2 + b2. Then, by (3.7), (3.10) is dominated by

C

(
||φ||2L2(∂D) + ||ψ||2L2(∂D)

)
.

Replacing φ, ψ, by tφ, (1/t)ψ, we see that (3.10) is bounded by

C

(
t2||φ||2L2(∂D) +

1

t2
||ψ||2L2(∂D)

)
;

minimizing over t ∈ (0,+∞), via elementary calculus, we see that (3.10) is
dominated by C||φ||L2(∂D)||ψ||L2(∂D), proving that KD is a bounded operator
on L2(∂D).

On the other hand, it is easily checked that the operator defined by

K∗
D[φ](x) =

1

ωd

∫

∂D

(x− y) · νx
|x− y|d φ(y) dσ(y) , (3.11)

is the L2-adjoint of KD. Furthermore, the operator K∗
D is scale invariant:

K∗
sD[φ̃](x̃) = K∗

D[φ](x), x ∈ ∂D ,

where sD denotes the dilation of D by s > 0, x̃ = sx, φ̃(ỹ) = φ(sy), y ∈ ∂D.
It is now important to ask about the compactness of these operators.

Indeed, to apply the Fredholm theory for solving the Dirichlet and Neumann
problems for the Laplace equation, we will need the following lemma.



3.1 The Laplace Equation 51

Lemma 3.4 If D is a bounded C2-domain, then the operators KD and K∗
D

are compact operators in L2(∂D).

The Neumann-Poincaré operator K∗
D is not self-adjoint on L2(∂D) unless

D is a disk or a ball. In these cases, we may simplify the expressions defining
the operators KD and K∗

D. The following results hold.

Lemma 3.5 (i) Suppose that D is a two dimensional disk with radius r0.
Then,

(x− y) · νx
|x− y|2 =

1

2r0
∀ x, y ∈ ∂D, x 6= y ,

and therefore, for any φ ∈ L2(∂D),

K∗
D[φ](x) = KD[φ](x) =

1

4πr0

∫

∂D

φ(y) dσ(y) , (3.12)

for all x ∈ ∂D.
(ii) For d ≥ 3, if D is a ball with radius r0, then, we have

(x− y) · νx
|x− y|d =

1

2r0

1

|x− y|d−2
∀ x, y ∈ ∂D, x 6= y ,

and for any φ ∈ L2(∂D) and x ∈ ∂D,

K∗
D[φ](x) = KD[φ](x) =

(2− d)

2r0
SD[φ](x) . (3.13)

In two dimensions, we also remark that if the diskD of radius r0 is centered
at the origin, then one can easily see that for each integer n

SD[einθ](x) =





− r0
2|n|

(
r

r0

)|n|
einθ if |x| = r < r0 ,

− r0
2|n|

(r0
r

)|n|
einθ if |x| = r > r0 ,

(3.14)

and hence

∂

∂r
SD[einθ](x) =





−1

2

(
r

r0

)|n|−1

einθ if |x| = r < r0 ,

1

2

(r0
r

)|n|+1

einθ if |x| = r > r0 .

(3.15)

It follows from (3.12) that

K∗
D[einθ] = 0 ∀n 6= 0 . (3.16)

We also get
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DD[einθ](x) =





1

2

(
r

r0

)|n|
einθ if |x| = r < r0 ,

−1

2

(r0
r

)|n|
einθ if |x| = r > r0 .

Another useful formula in two dimensions is the expression of KD[φ](x),
where D is an ellipse whose semi-axes are on the x1− and x2−axes and of
length a and b, respectively. Using the parametric representation X(t) =
(a cos t, b sin t), 0 ≤ t ≤ 2π, for the boundary ∂D, we find that

KD[φ](x) =
ab

2π(a2 + b2)

∫ 2π

0

φ(X(t))

1−Q cos(t+ θ)
dt , (3.17)

where x = X(θ) and Q = (a2 − b2)/(a2 + b2).
Turning now to the behavior of the double layer potential at the boundary,

we first recall that the double layer potential with constant density has a jump.

Lemma 3.6 If D is a bounded C2-domain, then DD[1](x) = 0 for x ∈ Rd \D,
DD[1](x) = 1 for x ∈ D, and KD[1](x) = 1/2 for x ∈ ∂D.

Lemma 3.6 can be extended to general densities φ ∈ L2(∂D). For con-
venience we introduce the following notation. For a function u defined on
Rd \ ∂D, we denote

u|±(x) := lim
t→0+

u(x± tνx), x ∈ ∂D ,

and
∂u

∂νx

∣∣∣∣
±
(x) := lim

t→0+
∇u(x± tνx) · νx , x ∈ ∂D ,

if the limits exist. Here νx is the outward unit normal to ∂D at x.
We relate in the next lemma the traces DD|± of the double-layer potential

to the operator KD defined by (3.9).

Lemma 3.7 If D is a bounded C2-domain, then for φ ∈ L2(∂D)

(DD[φ])
∣∣
±(x) =

(
∓1

2
I +KD

)
[φ](x) a.e. x ∈ ∂D . (3.18)

In a similar way, we can describe the behavior of the gradient of the single
layer potential at the boundary. The following lemma reveals the connection
between the traces ∂SD/∂ν|± and the operator K∗

D defined by (3.11).

Lemma 3.8 If D is a bounded C2-domain, then for φ ∈ L2(∂D)

∂

∂T
SD[φ]

∣∣∣∣
+

(x) =
∂

∂T
SD[φ]

∣∣∣∣
−
(x) a.e. x ∈ ∂D , (3.19)

where ∂/∂T is the tangential derivative and

∂

∂ν
SD[φ]

∣∣∣∣
±
(x) =

(
±1

2
I +K∗

D

)
[φ](x) a.e. x ∈ ∂D . (3.20)
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It is worth emphasizing that the signs in (3.18) and (3.20) are opposite.
We now consider the integral equations

(
1

2
I +KD

)
[φ] = f and

(
1

2
I −K∗

D

)
[ψ] = g (3.21)

for f, g ∈ L2(∂D).
By the trace formulas (3.20) and (3.18) for the single- and double-layer

potentials, it is easily seen that if φ and ψ are solutions to these equations
then DD[φ] solves the Dirichlet problem with Dirichlet data f :

{
∆U = 0 in D ,

U = f on ∂D ,

and −SD[ψ] solves the Neumann problem with Neumann data g:




∆V = 0 in D ,

∂V

∂ν
= g on ∂D ,

if g and ψ satisfy
∫
∂D

g dσ =
∫
∂D

ψ dσ = 0.
In view of Lemma 3.4, we can apply the Fredholm theory to study the

solvability of the two integral equations in (3.21).
We conclude this section by investigating the invertibility of the single

layer potential. We shall see that complications arise when d = 2.

Lemma 3.9 Let D be a bounded smooth domain in Rd. Let φ ∈ L2(∂D)
satisfy SD[φ] = 0 on ∂D.

(i) If d ≥ 3, then φ = 0.
(ii) If d = 2 and

∫
∂D

φ = 0, then φ = 0.

Lemma 3.10 Let D be a bounded C2-domain in Rd.

(i) If d ≥ 3, then SD : L2(∂D) →W 2
1 (∂D) has a bounded inverse.

(ii) If d = 2, then the operator A : L2(∂D)× R →W 2
1 (∂D)× R defined by

A(φ, a) =

(
SD[φ] + a,

∫

∂D

φ

)

has a bounded inverse.
(iii) Suppose d = 2 and let (φe, a) ∈ L2(∂D) × R denote the solution of the

system {
SD[φe] + a = 0 ,∫
∂D

φe = 1 ,
(3.22)

then SD : L2(∂D) →W 2
1 (∂D) has a bounded inverse if and only if a 6= 0.
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3.1.3 Invertibility of λI − K
∗

D

Let D be a bounded domain, and let

L2
0(∂D) :=

{
φ ∈ L2(∂D) :

∫

∂D

φ dσ = 0

}
.

Let λ 6= 0 be a real number. Of particular interest for solving the transmission
problem for the Laplacian would be the invertibility of the operator λI −K∗

D

on L2(∂D) or L2
0(∂D) for |λ| ≥ 1/2. The case |λ| = 1/2 corresponds to the

integral equations in (3.21).
It was proved by Kellogg in [219] that the eigenvalues of K∗

D on L2(∂D)
lie in (−1/2, 1/2]. The following injectivity result holds.

Lemma 3.11 Let λ be a real number and let D be a bounded C2-domain.
The operator λI − K∗

D is one to one on L2
0(∂D) if |λ| ≥ 1/2, and for λ ∈

(−∞,−1/2] ∪ (1/2,+∞), λI −K∗
D is one to one on L2(∂D).

We now turn to the surjectivity of the operator λI − K∗
D on L2(∂D) or

L2
0(∂D). Since D is a bounded C2-domain, as shown in Lemma 3.4, the opera-

tors KD and K∗
D are compact operators in L2(∂D). Therefore, the surjectivity

of λI −K∗
D holds, by applying the Fredholm alternative.

3.1.4 Symmetrization of K∗

D

Lemma 3.11 shows that the spectrum of K∗
D lies in the interval (−1/2, 1/2].

In this subsection we symmetrize the non-self-adjoint operator K∗
D and prove

that it can be realized as a self-adjoint operator onW 2
−1/2(∂D) by introducing

a new inner product.
We first state the following result.

Lemma 3.12 Let d ≥ 2. The operator SD in W 2
−1/2(∂D) is self-adjoint and

−SD ≥ 0 on L2(∂D).

By Lemma 3.12, there exists a unique square root of −SD which we denote
by

√−SD; furthermore,
√−SD is self-adjoint and

√−SD ≥ 0.
Next we look into the kernel of SD. If d ≥ 3, then it is known that SD :

W 2
−1/2(∂D) → W 2

1/2(∂D) has a bounded inverse. Suppose now that d = 2. If

φ0 ∈ Ker(SD), then the function u defined by

u(x) := SD[φ0](x), x ∈ R2

satisfies u = 0 on ∂D. Therefore, u(x) = 0 for all x ∈ D. It then follows from
(3.20) that

K∗
D[φ0] =

1

2
φ0 on ∂D . (3.23)

Let (·, ·)− 1
2 ,

1
2
denote the duality pairing between W 2

−1/2(∂D) and W 2
1/2(∂D).

If (φ0, 1)−1/2,1/2 = 0, then u(x) → 0 as |x| → ∞ , and hence u(x) = 0 for
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x ∈ R2 \ D as well. Thus φ0 = 0. The eigenfunctions of (3.23) make a one
dimensional subspace of W 2

−1/2(∂D), which means that Ker(SD) is of at most
one dimension.

Let (φe, a) ∈W 2
−1/2(∂D)×R denote the solution of the system (3.22), then

it can be shown that SD : W 2
−1/2(∂D) → W 2

1/2(∂D) has a bounded inverse if
and only if a 6= 0.

The following result is well-known. It shows that KDSD is self-adjoint on
W 2

−1/2(∂D).

Lemma 3.13 The following Calderón identity (also known as Plemelj’s sym-
metrization principle) holds:

SDK∗
D = KDSD on W 2

−1/2(∂D) . (3.24)

Consider the three-dimensional case. Since the single layer potential be-
comes a unitary operator from W 2

−1/2(∂D) onto W 2
1/2(∂D), the operator K∗

D

can be symmetrized using Calderón identity (3.24) and hence becomes self-
adjoint. It is then possible to write its spectral decomposition. Let H∗(∂D)
be the space W 2

−1/2(∂D) with the inner product

(u, v)H∗ = −(u,SD[v])− 1
2 ,

1
2
, (3.25)

which is equivalent to the original one (on W 2
−1/2(∂D)).

Theorem 3.14 For d = 3, the following results hold:

(i) The operator K∗
D is self-adjoint in the Hilbert space H∗(∂D);

(ii) Let (λj , ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunction
pair of K∗

D in H∗(∂D), then λ0 = 1/2, λj ∈ (− 1
2 ,

1
2 ) for j ≥ 1, and λj → 0

as j → ∞;
(iii) The following spectral representation formula holds: for any ψ ∈W 2

−1/2(∂D),

K∗
D[ψ] =

∞∑

j=0

λj(ϕj , ψ)H∗ ϕj .

Moreover, it is clear that the following result holds.

Lemma 3.15 Let d = 3. Let H(∂D) be the space W 2
1/2(∂D) equipped with

the following equivalent inner product

(u, v)H = ((−SD)−1[u], v)− 1
2 ,

1
2
. (3.26)

Then, SD is an isometry between H∗(∂D) and H(∂D).

Furthermore, we list other useful observations and basic results in three
dimensions.

Lemma 3.16 Let d = 3. The following results hold:
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(i) We have (− 1
2I+K∗

D)S−1
D [χ(∂D)] = 0 with χ(∂D) being the characteristic

function of ∂D.
(ii) The corresponding eigenspace to λ0 = 1

2 has dimension one and is

spanned by the function ϕ0 = cS−1
D [χ(∂D)] for some constant c such that

||ϕ0||H∗ = 1.
(iii) Moreover, H∗(∂D) = H∗

0(∂D) ⊕ {µϕ0, µ ∈ C}, where H∗
0(∂D) is the

zero mean subspace of H∗(∂D) and ϕj ∈ H∗
0(∂D) for j ≥ 1, i.e.,

(ϕj , χ(∂D))− 1
2 ,

1
2

= 0 for j ≥ 1. Here, {ϕj}j is the set of normalized
eigenfunctions of K∗

D.

In two dimensions, again based on (3.24), we show that K∗
D can be realized

as a self-adjoint operator by introducing a new inner product, slightly different
from the one introduced in the three-dimensional case.

Recall that the single-layer potential SD :W 2
−1/2(∂D) →W 2

1/2(∂D) is not,

in general, invertible nor injective. Hence, −(u,SD[v])− 1
2 ,

1
2
does not define

an inner product and the symmetrization technique described in Theorem
3.14 is no longer valid. To overcome this difficulty, a substitute of SD can be
introduced as in [80] by

S̃D[ψ] =

{ SD[ψ] if (ψ, χ(∂D))− 1
2 ,

1
2
= 0,

χ(∂D) if ψ = ϕ0,
(3.27)

where ϕ0 is the unique eigenfunction of K∗
D associated with eigenvalue 1/2

such that (ϕ0, χ(∂D))− 1
2 ,

1
2
= 1. Note that, from the jump relations of the

layer potentials, SD[ϕ0] is constant.

The operator S̃D : W 2
−1/2(∂D) → W 2

1/2(∂D) is invertible. Moreover, the

following Calderón identity holds KDS̃D = S̃DK∗
D. With this, define

(u, v)H∗ = −(u, S̃D[v])− 1
2 ,

1
2
.

Thanks to the invertibility and positivity of −S̃D, this defines an inner product
for which K∗

D is self-adjoint and H∗ is equivalent to W 2
−1/2(∂D). Then, if D

is C2, we have the following results.

Theorem 3.17 Let d = 2. Let D be a C2 bounded simply connected domain
of R2 and let S̃D be the operator defined in (3.27). Then,

(i) The operator K∗
D is compact self-adjoint in the Hilbert space H∗(∂D)

equipped with the inner product defined by

(u, v)H∗ = −(u, S̃D[v])− 1
2 ,

1
2
; (3.28)

(ii) Let (λj , ϕj), j = 0, 1, 2, . . . , be the eigenvalue and normalized eigenfunc-
tion pair of K∗

D with λ0 = 1
2 . Then, λj ∈ (− 1

2 ,
1
2 ] and λj → 0 as j → ∞;

(iii) H∗(∂D) = H∗
0(∂D) ⊕ {µϕ0, µ ∈ C}, where H∗

0(∂D) is the zero mean
subspace of H∗(∂D);
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(iv) The following representation formula holds: for any ψ ∈W 2
−1/2(∂D),

K∗
D[ψ] =

∞∑

j=0

λj(ϕj , ψ)H∗ ϕj .

Lemma 3.18 Let H(∂D) be the space W 2
1/2(∂D) equipped with the following

equivalent inner product

(u, v)H = (−S̃−1
D [u], v)− 1

2 ,
1
2
. (3.29)

Then, S̃D is an isometry between H∗(∂D) and H(∂D).

Note that S̃−1
D [χ(∂D)] = ϕ0 and (− 1

2I + K∗
D) = (− 1

2I + K∗
D)PH∗

0
, where

PH∗
0
is the orthogonal projection onto H∗

0(∂D). In particular, we have (− 1
2I+

K∗
D)S̃−1

D [χ(∂D)] = 0.
Note also that using (3.12), it follows that if D is a disk, then the spectrum

of K∗
D is {0, 1/2}. Furthermore, by using (3.13) it can be shown that the

spectrum of K∗
D in the case where D is a ball is 1/(2(2j + 1)), j = 0, 1, . . .. If

D is an ellipse of semi-axes a and b, then 1/2 and ±(1/2)((a−b)/(a+b))j , j =
1, 2, . . . are the eigenvalues of K∗

D, which can be expressed by (3.17). The
eigenvalues of K∗

D for D being an ellipsoid can be expressed explicitly in
terms of Lamé functions.

3.1.5 Neumann Function

Let Ω be a smooth bounded domain in Rd, d ≥ 2. Let N(x, z) be the Neumann
function for −∆ in Ω corresponding to a Dirac mass at z. That is, N is the
solution to




−∆xN(x, z) = δz in Ω ,

∂N

∂νx

∣∣∣
∂Ω

= − 1

|∂Ω| ,
∫

∂Ω

N(x, z) dσ(x) = 0 for z ∈ Ω .
(3.30)

Note that the Neumann function N(x, z) is defined as a function of x ∈ Ω for
each fixed z ∈ Ω.

The operator defined by N(x, z) is the solution operator for the Neumann
problem 




∆U = 0 in Ω ,

∂U

∂ν

∣∣∣∣
∂Ω

= g .
(3.31)

Namely, the function U defined by

U(x) :=

∫

∂Ω

N(x, z)g(z) dσ(z) (3.32)

is the solution to (3.31) satisfying
∫
∂Ω

U dσ = 0.
Now we discuss some properties of N as a function of x and z.
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Lemma 3.19 (Neumann Function) The Neumann function N is symmet-
ric in its arguments, that is, N(x, z) = N(z, x) for x 6= z ∈ Ω. Furthermore,
it has the form

N(x, z) =





− 1

2π
log |x− z|+R2(x, z) if d = 2 ,

1

(d− 2)ωd

1

|x− z|d−2
+Rd(x, z) if d ≥ 3 ,

(3.33)

where Rd(·, z) belongs to W
3
2 ,2(Ω) for any z ∈ Ω, d ≥ 2 and solves





∆xRd(x, z) = 0 in Ω ,

∂Rd

∂νx

∣∣
∂Ω

= − 1

|∂Ω| +
1

ωd

(x− z) · νx
|x− z|d for x ∈ ∂Ω .

Note that, because of (3.33), the formula

U(x) ≈ −SΩ [g](x) in Ω

is obtained as a first approximation of the solution to the Neumann problem
(3.31).

For D, a subset of Ω, let

ND[f ](x) :=

∫

∂D

N(x, y)f(y) dσ(y), x ∈ Ω .

The following lemma relates the fundamental solution Γ to the Neumann
function N .

Lemma 3.20 For z ∈ Ω and x ∈ ∂Ω, let Γz(x) := Γ (x, z) and Nz(x) :=
N(x, z). Then

(
−1

2
I +KΩ

)
[Nz](x) = Γz(x) modulo constants, x ∈ ∂Ω , (3.34)

or, to be more precise, for any simply connected smooth domain D compactly
contained in Ω and for any g ∈ L2

0(∂D), we have for any x ∈ ∂Ω

∫

∂D

(
−1

2
I +KΩ

)
[Nz](x)g(z) dσ(z) =

∫

∂D

Γz(x)g(z) dσ(z) , (3.35)

or equivalently,

(
−1

2
I +KΩ

)[
(ND[g])

∣∣
∂Ω

]
(x) = SD[g]

∣∣
∂Ω

(x) . (3.36)

The following simple observation is useful.

Lemma 3.21 Let f ∈ L2(∂Ω) satisfy
(
1
2I −KΩ

)
[f ] = 0. Then f is constant.
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We mention that the Neumann function for the ball BR(0) is given, for
any x, z ∈ BR(0), by

N(x, z) =
1

4π|x− z| +
1

4π| R|x|x− |x|
R z|

+
1

4πR
log

2

1− x·z
R2 + 1

R | |x|R z − R
|x|x|

− 1

2πR
for d = 3 ,

(3.37)

and by

N(x, z) = − 1

2π

(
log |x− z|+ log

∣∣∣∣
R

|x|x−
|x|
R
z

∣∣∣∣
)
+

logR

π
for d = 2 . (3.38)

3.1.6 Transmission Problems

Consider a bounded domain D ⋐ Rd with a connected smooth boundary and
conductivity 0 < k 6= 1 < +∞.

Let H be a harmonic function in Rd, and let u be the solution of the
transmission problem





∇ ·
(
1 + (k − 1)χ(D)

)
∇u = 0 in Rd ,

(u−H)(x) = O(|x|1−d) as |x| → +∞ .

(3.39)

We have the following result.

Theorem 3.22 Suppose that D is a domain compactly contained in Rd with
a connected smooth boundary and conductivity 0 < k 6= 1 < +∞. Then the
solution u of the transmission problem (3.42) is given by

u(x) = H(x) + SD[φ](x), x ∈ Rd , (3.40)

where φ ∈ L2
0(∂D) is the unique solution to the integral equation

(
λI −K∗

D

)
[φ] =

∂H

∂ν

∣∣∣∣
∂D

on ∂D , (3.41)

where λ = (k + 1)/(2(k − 1)).

Let Ω be a bounded domain in Rd with a connected smooth boundary and
conductivity equal to 1. Consider a bounded domain D ⋐ Ω with a connected
smooth boundary and conductivity 0 < k 6= 1 < +∞. Let g ∈ L2

0(∂Ω), and
let u be the solution of the Neumann problem





∇ ·
(
1 + (k − 1)χ(D)

)
∇u = 0 in Ω ,

∂u

∂ν

∣∣∣∣
∂Ω

= g ,

∫

∂Ω

u(x) dσ(x) = 0 .

(3.42)
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We state a decomposition formula of the steady-state voltage potential
u into a harmonic part and a refraction part. This decomposition formula
is unique and inherits geometric properties of the inclusion D. We refer to
[64, 214] for its proof.

Theorem 3.23 (Decomposition Formula) Suppose that D is a domain
compactly contained in Ω with a connected smooth boundary and conductivity
0 < k 6= 1 < +∞. Then the solution u of the Neumann problem (3.42) has
the representation

u(x) = H(x) + SD[φ](x), x ∈ Ω , (3.43)

where the harmonic function H is given by

H(x) = −SΩ [g](x) +DΩ [f ](x), x ∈ Ω , f := u|∂Ω ∈W 2
1/2(∂Ω) , (3.44)

and φ ∈ L2
0(∂D) satisfies the integral equation

(
k + 1

2(k − 1)
I −K∗

D

)
[φ] =

∂H

∂ν

∣∣∣∣
∂D

on ∂D . (3.45)

The decomposition (3.43) into a harmonic part and a refraction part is unique.
Moreover, ∀ n ∈ N, there exists a constant Cn = C(n,Ω, dist(D, ∂Ω)) inde-
pendent of D and the conductivity k such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω) . (3.46)

Furthermore, the following holds

H(x) + SD[φ](x) = 0, ∀ x ∈ Rd \Ω . (3.47)
Another useful expression of the harmonic part H of u is given in the

following lemma.

Lemma 3.24 We have

H(x) =





u(x)− (k − 1)

∫

D

∇yΓ (x, y) · ∇u(y) dy, x ∈ Ω ,

−(k − 1)

∫

D

∇yΓ (x, y) · ∇u(y) dy, x ∈ Rd \Ω .

(3.48)

Let g ∈ L2
0(∂Ω) and

U(y) :=

∫

∂Ω

N(x, y)g(x) dσ(x) .

Then U is the solution to the Neumann problem (3.31) and the following
representation holds.

Theorem 3.25 The solution u of (3.42) can be represented as

u(x) = U(x)−ND[φ](x), x ∈ ∂Ω , (3.49)

where φ is defined in (3.45).
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3.2 Helmholtz Equation

Consider the scalar wave equation ∂2tU−∆U = 0. We obtain a time-harmonic
solution U(x, t) = ℜ(e−iktu(x)) if the space-dependent part u satisfies the
Helmholtz equation, ∆u+ k2u = 0.

Mathematical models for acoustical and microwave soundings of biological
media involve the Helmholtz equation.

This section begins by discussing the well-known Sommerfeld radiation
condition, and by deriving a fundamental solution. We then introduce the
single- and double-layer potentials, and state Rellich’s lemma. Then, we estab-
lish an integral representation for the solution to the transmission scattering
problem. We also discuss the reciprocity property and derive the Helmholtz-
Kirchhoff identity for fundamental solutions of the Helmholtz equations.

3.2.1 Fundamental Solution

A fundamental solution Γk(x) to the Helmholtz operator ∆ + k2 in Rd is a
solution (in the sense of distributions) of

(∆+ k2)Γk = δ0 , (3.50)

where δ0 is the Dirac mass at 0. Solutions are not unique, since we can add
to a solution any plane wave (of the form eikθ·x, θ ∈ Rd : |θ| = 1) or any
combination of such plane waves. So, we need to specify the behavior of the
solutions at infinity. It is natural to look for radial solutions of the form
Γk(x) = wk(r) that is subject to the extra Sommerfeld radiation condition
or outgoing wave condition

∣∣∣∣
dwk

dr
− ikwk

∣∣∣∣ ≤ Cr−(d+1)/2 at infinity. (3.51)

If d = 3, equation (3.50) becomes

1

r2
d

dr
r2
dwk

dr
+ k2wk = 0, r > 0 ,

whose solution is

wk(r) = c1
eikr

r
+ c2

e−ikr

r
.

It is easy to check that the Sommerfeld radiation condition (3.51) leads to
c2 = 0 and then (3.50) leads to c1 = −1/(4π).

If d = 2, equation (3.50) becomes

1

r

d

dr
r
dwk

dr
+ k2wk = 0, r > 0 .

This is a Bessel equation whose solutions are not elementary functions. From
Section 2.1, we know that the Hankel functions of the first and second kinds of
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order 0, H
(1)
0 (kr) and H

(2)
0 (kr), form a basis for the solution space. At infinity

(r → +∞), only H
(1)
0 (kr) satisfies the outgoing radiation condition (3.51). At

the origin (r → 0), H
(1)
0 (kr) behaves like (2i/π) log(r). The following lemma

holds.

Lemma 3.26 (Fundamental Solution) The outgoing fundamental solu-
tion Γk(x) to the operator ∆+ k2 is given by

Γk(x) =





− i

4
H

(1)
0 (k|x|) , d = 2 ,

− e
ik|x|

4π|x| , d = 3 ,
(3.52)

for x 6= 0, where H
(1)
0 is the Hankel function of the first kind of order 0.

Note that the time-harmonic fundamental solution Γk satisfies the identity

Γk(x− y) = −
√
2πFt(Uy(x, t))(x, k) ,

where Ft is defined by (2.38) and Uy is respectively defined by (2.55) and
(2.57) for d = 3 and d = 2.

The following Graf’s addition formula for d = 2 will be useful [337].

Lemma 3.27 For |x| > |y|, we have

H
(1)
0 (k|x− y|) =

∑

n∈Z

H(1)
n (k|x|)einθxJn(k|y|)e−inθy , (3.53)

where x = (|x|, θx) and y = (|y|, θy) in polar coordinates. Here H
(1)
n is the

Hankel function of the first kind of order n and Jn is the Bessel function of
order n; see (2.2) and (2.17).

In three dimensions, the following addition formula holds for |x| > |y|:

eik|x−y|

4π|x− y| = ik

+∞∑

l=0

l∑

m=−l

h
(1)
l (k|x|)jl(k|y|)Ylm(θx, φx)Ylm(θy, φy) , (3.54)

where x = (|x|, θx, φx), y = (|y|, θy, φy) in the spherical coordinates and Ylm

is the spherical harmonic function. Here, jl and h
(1)
l are defined by (2.21) and

(2.23). Formulas (3.53) and (3.54) are particularly useful since they will allow
us to introduce the notion of scattering coefficients for the solutions to the
Helmholtz equation.

Another useful decomposition of Γk is into plane waves. The following
decomposition, known as the Weyl representation of cylindrical and spherical
waves holds:

Γk(x) = −icd
∫

Rd−1

1

β(α)
ei(β(α)|xd|+α·x̃) dα , (3.55)
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where x = (x̃, xd), x̃ = (x1, . . . , xd−1),

β(α) =

{√
k2 − |α|2, |α| < k ,

i
√
|α|2 − k2, |α| ≥ k ,

and

c2 =
1

4π
, c3 =

1

8π2
.

As will be shown later, (3.55) plays a key role in diffraction tomography. From
now on, we denote by Γk(x, y) := Γk(x− y) for x 6= y.

Particular solutions to the Helmholtz equation in Rd, d = 2, 3, are plane
waves given by eikθ·x where θ is a unit real vector, and cylindrical and spher-
ical waves defined by Γk(x, y) with y being the source point for respectively
d = 2 and 3. These particular solutions will be very useful in the subsequent
chapters.

3.2.2 Layer Potentials

For a bounded smooth domain D in Rd and k > 0 let Sk
D and Dk

D be the
single- and double-layer potentials defined by Γk, that is,

Sk
D[φ](x) =

∫

∂D

Γk(x, y)φ(y) dσ(y) , x ∈ Rd ,

Dk
D[φ](x) =

∫

∂D

∂Γk(x, y)

∂νy
φ(y) dσ(y) , x ∈ Rd \ ∂D ,

for φ ∈ L2(∂D). Because Γk − Γ , where Γ is defined by (3.1), is a smooth
function, we can easily prove from (3.20) and (3.18) that

∂(Sk
D[φ])

∂ν

∣∣∣∣
±
(x) =

(
± 1

2
I + (Kk

D)∗
)
[φ](x) a.e. x ∈ ∂D , (3.56)

(Dk
D[φ])

∣∣∣∣
±
(x) =

(
∓ 1

2
I +Kk

D

)
[φ](x) a.e. x ∈ ∂D , (3.57)

for φ ∈ L2(∂D), where Kk
D is the operator defined by

Kk
D[φ](x) =

∫

∂D

∂Γk(x, y)

∂νy
φ(y)dσ(y) , (3.58)

and (Kk
D)∗ is given by

(Kk
D)∗[φ](x) =

∫

∂D

∂Γk(x, y)

∂νx
φ(y)dσ(y) . (3.59)

Moreover, the integral operators Kk
D and (Kk

D)∗ are compact on L2(∂D). Note
that (Kk

D)∗ is the L2-adjoint of K−k
D .
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We will need the following important result from the theory of the
Helmholtz equation. It will help us to prove uniqueness of the solution to
exterior Helmholtz problems. For its proof we refer to [140, Lemma 2.11] or
[270, Lemma 9.8].

Lemma 3.28 (Rellich’s Lemma) Let R0 > 0 and BR(0) = {|x| < R}.
Let u satisfy the Helmholtz equation ∆u + k2u = 0 for |x| > R0. Assume,
furthermore, that

lim
R→+∞

∫

∂BR(0)

|u(x)|2 dσ(x) = 0 .

Then, u ≡ 0 for |x| > R0.

Note that the assertion of this lemma does not hold if k is imaginary or k = 0.
Now we can state the following uniqueness result for the Helmholtz equa-

tion.

Lemma 3.29 Suppose d = 2 or 3. Let D be a bounded C2-domain in Rd. Let
u ∈W 1,2

loc (R
d \D) satisfy





∆u+ k2u = 0 in Rd \D ,∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ = O

(
r−(d+1)/2

)
as r = |x| → +∞ uniformly in

x

|x| ,

ℑ
∫

∂D

u
∂u

∂ν
dσ = 0 .

Then, u ≡ 0 in Rd \D.

3.2.3 Transmission Problem

Introduce the piecewise constant functions

µ(x) =

{
µ0 , x ∈ Ω \D ,

µ⋆ , x ∈ D ,
(3.60)

and

ε(x) =

{
ε0 , x ∈ Ω \D ,

ε⋆ , x ∈ D ,
(3.61)

where µ0, µ⋆, ε0, and ε⋆ are positive constants.
Let f ∈W 2

1/2(∂Ω), and let u and U denote the solutions to the Helmholtz
equations 




∇ · ( 1
µ
∇u) + ω2εu = 0 in Ω ,

u = f on ∂Ω ,
(3.62)

and
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{
∆U + ω2ε0µ0U = 0 in Ω ,

U = f on ∂Ω .
(3.63)

In electromagnetics, ε0 and ε⋆ are electrical permittivities, µ0 and µ⋆ are
magnetic permeabilities, and u and U are electric potentials. In acoustics, one
replaces permittivity and permeability by compressibility and volume density
of mass, and the scalar electric potential by the scalar acoustic pressure.

We now present two decompositions of the solution of (3.62) similar to the
representation formula (3.43) for the transmission problem for the harmonic
equation. To do so, we first state the following theorem which is of importance
to us for establishing our decomposition formulas. We refer the reader to [64]
for its proof.

Theorem 3.30 Let k2⋆ := ω2µ⋆ε⋆. Suppose that k
2
0 := ω2µ0ε0 is not a Dirich-

let eigenvalue for −∆ on D. For each (F,G) ∈W 2
1 (∂D)×L2(∂D), there exists

a unique solution (f, g) ∈ L2(∂D)×L2(∂D) to the system of integral equations





Sk⋆

D [f ]− Sk0

D [g] = F

1

µ⋆

∂(Sk⋆

D [f ])

∂ν

∣∣∣∣
−
− 1

µ0

∂(Sk0

D [g])

∂ν

∣∣∣∣
+

= G
on ∂D . (3.64)

Furthermore, there exists a constant C independent of F and G such that

‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C

(
‖F‖W 2

1 (∂D) + ‖G‖L2(∂D)

)
. (3.65)

The following decomposition formula holds.

Theorem 3.31 (Decomposition Formula) Suppose that k20 is not a Dirich-
let eigenvalue for −∆ on D. Let u be the solution of (3.62) and g := ∂u

∂ν |∂Ω.
Define

H(x) := −Sk0

Ω [g](x) +Dk0

Ω [f ](x) , x ∈ Rd \ ∂Ω , (3.66)

and let (φ, ψ) ∈ L2(∂D)× L2(∂D) be the unique solution of





Sk⋆

D [φ]− Sk0

D [ψ] = H

1

µ⋆

∂(Sk⋆

D [φ])

∂ν

∣∣∣∣
−
− 1

µ0

∂(Sk0

D [ψ])

∂ν

∣∣∣∣
+

=
1

µ0

∂H

∂ν

on ∂D . (3.67)

Then u can be represented as

u(x) =

{
H(x) + Sk0

D [ψ](x) , x ∈ Ω \D ,

Sk⋆

D [φ](x) , x ∈ D .
(3.68)

Moreover, there exists C > 0 independent of H such that

‖φ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C

(
‖H‖L2(∂D) + ‖∇H‖L2(∂D)

)
. (3.69)
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The following proposition is also of importance to us. We refer again to
[64] for a proof.

Proposition 3.32 For each n ∈ N there exists Cn independent of D (but
depending on dist(D, ∂Ω)) such that

‖H‖Cn(D) ≤ Cn‖f‖W 2
1/2

(∂Ω) .

We now transform the decomposition formula (3.68) into the one using
Green’s function and the background solution U , that is, the solution of (3.63).

Suppose that k20 is not a Dirichlet eigenvalue for −∆ on D. Let Gk0
(x, y)

be the Dirichlet Green function for ∆ + k20 in Ω, i.e., for each y ∈ Ω, Gk0
is

the solution of
{
(∆+ k20)Gk0

(x, y) = δy(x) , x ∈ Ω ,

Gk0
(x, y) = 0 , x ∈ ∂Ω .

(3.70)

Then,

U(x) =

∫

∂Ω

∂Gk0
(x, y)

∂νy
f(y)dσ(y) , x ∈ Ω .

We need to introduce some more notation. For a C2-domain D ⋐ Ω and
φ ∈ L2(∂D), let

Gk0

D [φ](x) :=

∫

∂D

Gk0
(x, y)φ(y) dσ(y) , x ∈ Ω .

Our second decomposition formula is the following.

Theorem 3.33 Let ψ be the function defined in (3.67). Then

∂u

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0

D [ψ])

∂ν
(x) , x ∈ ∂Ω . (3.71)

Note that if x ∈ Rd \Ω and z ∈ Ω, then

∫

∂Ω

Γk0
(x, y)

∂Gk0
(z, y)

∂νy

∣∣∣∣
∂Ω

dσ(y) = Γk0
(x, z) . (3.72)

As a consequence of (3.72), we have
(
1

2
I + (Kk0

Ω )∗
)[

∂Gk0
(z, ·)

∂νy

∣∣∣∣
∂Ω

]
(x) =

∂Γk0
(x, z)

∂νx
, (3.73)

for all x ∈ ∂Ω and z ∈ Ω.
Finally, we will need the Neumann function Nk0 , which is defined by




∆xNk0

(x, z) + k0
2Nk0

(x, z) = δz in Ω ,

∂Nk0

∂νx

∣∣∣
∂Ω

= 0 for z ∈ Ω .
(3.74)
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Here, we assume that k20 is not a Neumann eigenvalue of −∆ in Ω. Recall
that the following useful relation between the Neumann function and the
fundamental solution Γk0

holds:

(
1

2
I −Kk0

Ω )[Nk0(·, z)](x) = Γk0(x, z), x ∈ ∂Ω, z ∈ Ω . (3.75)

3.2.4 Reciprocity

Let µ and ε be two piecewise smooth functions such that µ(x) = µ0 and
ε(x) = ε0 for |x| ≥ R0 for some positive R0. For y ∈ Rd, introduce the
fundamental solution Φk0

(x, y) to be the solution to

(∇x · 1
µ
∇x + ω2ε)Φk0 =

1

µ0
δy , (3.76)

subject to the Sommerfeld radiation condition.
An important property satisfied by the fundamental solution Φk0 is the

reciprocity property. The following holds.

Lemma 3.34 We have, for x 6= y,

Φk0(x, y) = Φk0(y, x) . (3.77)

Identity (3.77) means that the wave recorded at x when there is a time-
harmonic source at y is equal to the wave recorded at y when there is a
time-harmonic source at x.

Proof. We consider the equations satisfied by the fundamental solution with
the source at y2 and with the source at y1 (with y1 6= y2):

(∇x · 1
µ
∇x + ω2ε)Φk0

(x, y2) =
1

µ0
δy2

,

(∇x · 1
µ
∇x + ω2ε)Φk0

(x, y1) =
1

µ0
δy1

.

We multiply the first equation by Φk0
(x, y1) and subtract the second equation

multiplied by Φk0
(x, y2):

∇x · µ0

µ

[
Φk0

(x, y1)∇xΦk0
(x, y2)− Φk0

(x, y2)∇xΦk0
(x, y1)

]

= −Φk0
(x, y2)δy1

+ Φk0
(x, y1)δy2

= −Φk0
(y1, y2)δy1

+ Φk0
(y2, y1)δy2

.

We next integrate over the ball BR of center 0 and radius R which contains
both y1 and y2 and use the divergence theorem:

∫

∂BR

ν ·
[
Φk0

(x, y1)∇xΦk0
(x, y2)− Φk0

(x, y2)∇xΦk0
(x, y1)

]
dσ(x)

= −Φk0
(y1, y2) + Φk0

(y2, y1) ,
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where ν is the unit outward normal to the ball BR, which is ν = x/|x|.
If x ∈ ∂BR and R → ∞, then we have by the Sommerfeld radiation

condition:

ν · ∇xΦk0(x, y) = ik0Φk0(x, y) +O
( 1

R(d+1)/2

)
.

Therefore, as R→ ∞,

−Φk0
(y1, y2) + Φk0

(y2, y1)

= ik0

∫

∂BR

[
Φk0(x, y1)Φk0(x, y2)− Φk0(x, y2)Φk0(x, y1)

]
dσ(x)

= 0 ,

which is the desired result. ⊓⊔

3.2.5 Lippmann-Schwinger Representation Formula

The following Lippmann-Schwinger representation formula for Φk0
holds.

Lemma 3.35 For any x 6= y, we have

Φk0(x, y) = Γk0(x, y) +

∫
(
µ0

µ(z)
− 1)∇Φk0(z, x) · ∇Γk0(z, y) dz

+k20

∫
(1− ε(z)

ε0
)Φk0(z, x)Γk0(z, y) dz .

(3.78)

Proof. We multiply (3.76) by Γk0
and subtract the equation satisfied by Γk0

multiplied by 1
µ0
Φk0 :

∇z ·
[

1
µ(z)Γk0(z, y)∇zΦk0(z, x)− 1

µ0
Φk0(z, x)∇zΓk0(z, y)

]

= (
1

µ(z)
− 1

µ0
)∇zΦk0(z, x) · ∇zΓk0(z, y)

+ω2ε0
(
1− ε(z)

ε0

)
Φk0(z, x)Γk0(z, y)

+
1

µ0
(Γk0

(x, y)δx(z)− Φk0
(x, y)δy(z)) .

We integrate over BR (with R large enough so that it encloses the support of
µ−µ0 and ε− ε0) and send R to infinity to obtain thanks to the Sommerfeld
radiation condition the desired result. ⊓⊔

Lippmann-Schwinger representation formula (3.78) is used as a basis for
expanding the fundamental solution Φk0

when µ ≈ µ0 and ε ≈ ε0. If Φk0
in

the right-hand side is replaced by Γk0 , then we obtain:

Φk0
(x, y) ≈ Γk0

(x, y) +

∫
(
µ0

µ(z)
− 1)∇Γk0

(z, y) · ∇Γk0
(z, y) dz

+k20

∫
(1− ε(z)

ε0
)Γk0

(z, y)Γk0
(z, y) dz ,

(3.79)

which is the (first-order) Born approximation for Φk0
.
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3.2.6 The Helmholtz-Kirchhoff Theorem

The Helmholtz-Kirchhoff theorem plays a key role in understanding the reso-
lution limit in imaging with waves. The following holds.

Lemma 3.36 Let ∂BR be the sphere of radius R and center 0. We have

∫

∂BR

(
∂Γk0

∂ν
(x, y)Γk0

(z, y)− Γk0
(x, y)

∂Γk0

∂ν
(z, y)

)
dσ(y) = 2iℑmΓk0

(x, z) ,

(3.80)
which yields

lim
R→+∞

∫

∂BR

Γk0
(x, y)Γk0

(z, y) dσ(y) = − 1

k0
ℑΓk0

(x, z) , (3.81)

by using the radiation outgoing condition.

Identity (3.81) is valid even in inhomogeneous media. The following iden-
tity holds, which as we will see shows that the sharper the behavior of the
imaginary part of the fundamental solution Φk0

around the source is, the
higher is the resolution.

Theorem 3.37 Let Φk0 be the fundamental solution defined in (3.76). We
have

lim
R→+∞

∫

|y|=R

Φk0
(x, y)Φk0

(z, y) dσ(y) = − 1

k0
ℑΦk0

(x, z) . (3.82)

Proof. The proof is based essentially on the second Green’s identity and the
Sommerfeld radiation condition. Let us consider

(∇y · 1
µ∇y + ω2ε)Φk0

(y, x2) =
1

µ0
δx2

,

(∇y · 1
µ∇y + ω2ε)Φk0

(y, x1) =
1

µ0
δx1

.

We multiply the first equation by Φk0
(y, x1) and we subtract the second equa-

tion multiplied by Φk0
(y, x2):

∇y
µ0

µ
·
[
Φk0(y, x1)∇yΦk0(y, x2)− Φk0(y, x2)∇yΦk0(y, x1)

]

= −Φk0
(y, x2)δx1

+ Φk0
(y, x1)δx2

= −Φk0(x1, x2)δx1 + Φk0(x1, x2)δx2 ,

using the reciprocity property Φk0
(x1, x2) = Φk0

(x2, x1).
We integrate over the ball BR and we use the divergence theorem:
∫

∂BR

ν ·
[
Φk0(y, x1)∇yΦk0(y, x2)− Φk0(y, x2)∇yΦk0(y, x1)

]
dσ(y)

= −Φk0
(x1, x2) + Φk0

(x1, x2) .
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This equality can be viewed as an application of the second Green’s identity.
The Green’s function also satisfies the Sommerfeld radiation condition

lim
|y|→∞

|y|
( y
|y| · ∇y − ik0

)
Φk0(y, x1) = 0 ,

uniformly in all directions y/|y|. Using this property, we substitute ik0Φk0
(y, x2)

for ν · ∇yΦk0
(y, x2) in the surface integral over ∂BR, and −ik0Φk0

(y, x1) for
ν · ∇yΦk0

(y, x1), and we obtain the desired result. ⊓⊔

3.2.7 Scattering Amplitude and the Optical Theorem

Scattering Coefficients

We first define the scattering coefficients of a particle. Assume that k20 is not
a Dirichlet eigenvalue for −∆ on D. Then, from Theorem 3.30 we know that
the solution to



∇ · 1
µ
∇u+ ω2εu = 0 in R2 ,

(u− U) satisfies the outgoing radiation condition,
(3.83)

can be represented using the single layer potentials Sk0

D and Sk⋆

D as follows:

u(x) =

{
U(x) + Sk0

D [ψ](x), x ∈ R2 \D ,

Sk⋆

D [ϕ](x), x ∈ D ,
(3.84)

where the pair (ϕ, ψ) ∈ L2(∂D)× L2(∂D) is the unique solution to




Sk⋆

D [ϕ]− Sk0

D [ψ] = U

1

µ⋆

∂(Sk⋆

D [ϕ])

∂ν

∣∣∣∣∣
−
− 1

µ0

∂(Sk0

D [ψ])

∂ν

∣∣∣∣∣
+

=
1

µ0

∂U

∂ν

on ∂D . (3.85)

Moreover, there exists a constant C = C(k⋆, k0, D) such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C(‖U‖L2(∂D) + ‖∇U‖L2(∂D)) . (3.86)

Furthermore, the constant C can be chosen to be scale independent. There
exists δ0 such that if one denotes by (ϕδ, ψδ) the solution of (3.85) with k⋆
and k0 respectively replaced by δk⋆ and δk0, then

‖ϕδ‖L2(∂D) + ‖ψδ‖L2(∂D) ≤ C(‖U‖L2(∂D) + ‖∇U‖L2(∂D)) . (3.87)

Note that the following asymptotic formula holds as |x| → ∞, which can be
seen from (3.84) and Graf’s formula (3.53):

u(x)− U(x) = − i

4

∑

n∈Z

H(1)
n (k0|x|)einθx

∫

∂D

Jn(k0|y|)e−inθyψ(y)dσ(y) .

(3.88)
Let (ϕm, ψm) be the solution to (3.85) with Jm(k0|x|)eimθx in the place of
U(x). We define the scattering coefficient as follows.
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Definition 3.38 The scattering coefficients Wnm, m,n ∈ Z, associated with
the permittivity and permeability distributions ε, µ and the frequency ω (or
k⋆, k0, D) are defined by

Wnm =Wnm[ε, µ, ω] :=

∫

∂D

Jn(k0|y|)e−inθyψm(y)dσ(y) . (3.89)

We derive the exponential decay of the scattering coefficients. We have the
following lemma for the size of |Wnm|.
Lemma 3.39 There is a constant C depending on (ε, µ, ω) such that

|Wnm[ε, µ, ω]| ≤ C |n|+|m|

|n||n||m||m| for all n,m ∈ Z . (3.90)

Moreover, there exists δ0 such that, for all δ ≤ δ0,

|Wnm[ε, µ, δω]| ≤ C |n|+|m|

|n||n||m||m| δ
|n|+|m| for all n,m ∈ Z , (3.91)

where the constant C depends on (ε, µ, ω) but is independent of δ.

Proof. Let U(x) = Jm(k0|x|)eimθx and (ϕm, ψm) be the solution to (3.85).
Since

Jm(t) ∼ (−1)m√
2π|m|

( et

2|m|
)|m|

(3.92)

as m→ ∞ (see (2.12)), we have

‖U‖L2(∂D) + ‖∇U‖L2(∂D) ≤
C |m|

|m||m|

for some constant C. Thus it follows from (3.86) that

‖ψm‖L2(∂D) ≤
C |m|

|m||m| (3.93)

for another constant C. So we get (3.90) from (3.89).
On the other hand, one can see from (3.87) that (3.93) still holds for some

C independent of δ as long as δ ≤ δ0 for some δ0. Note that

Wnm[ε, µ, δω] =

∫

∂D

Jn(δk0|y|)e−inθyψm,δ(y)dσ(y) , (3.94)

where (ϕm,δ, ψm,δ) is the solution to (3.85) with k⋆ and k0 respectively re-
placed by δk⋆ and δk0 and Jm(δk0|x|)eimθx in the place of U(x). So one can
use (3.92) to obtain (3.91). This completes the proof. ⊓⊔

Recall from (2.26) that the family of cylindrical waves {Jn(k0|y|)e−inθy}n
is complete. If U is given as
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U(x) =
∑

m∈Z

am(U)Jm(k0|x|)eimθx , (3.95)

where am(U) are constants, it follows from the principle of superposition that
the solution (ϕ, ψ) to (3.85) is given by

ψ =
∑

m∈Z

am(U)ψm .

Then one can see from (3.88) that the solution u to (3.83) can be represented
as

u(x)− U(x) = − i

4

∑

n∈Z

H(1)
n (k0|x|)einθx

∑

m∈Z

Wnmam(U) as |x| → ∞ .

(3.96)
In particular, if U is given by a plane wave eik0ξ·x with ξ being on the unit
circle, then

u(x)− eik0ξ·x = − i

4

∑

n∈Z

H(1)
n (k0|x|)einθx

∑

m∈Z

Wnme
im(π

2 −θξ) as |x| → ∞ ,

(3.97)
where ξ = (cos θξ, sin θξ) and x = (|x|, θx). In fact, from the Jacobi-Anger
expansion of plane waves (2.6) it follows that

eik0ξ·x =
∑

m∈Z

eim(π
2 −θξ)Jm(k0|x|)eimθx , (3.98)

and
ψ =

∑

m∈Z

eim(π
2 −θξ)ψm . (3.99)

Thus (3.97) holds. It is worth emphasizing that the expansion formula (3.96)
or (3.97) determines uniquely the scattering coefficients Wnm, for n,m ∈ Z.

Scattering Amplitude

Let D be a bounded domain in R2 with smooth boundary ∂D, and let (ε0, µ0)
be the pair of electromagnetic parameters (permittivity and permeability) of
R2 \ D and (ε⋆, µ⋆) be that of D. Then the permittivity and permeability
distributions are given by

ε = ε0χ(R
2 \D) + ε⋆χ(D) and µ = µ0χ(R

2 \D) + µ⋆χ(D) . (3.100)

Given a frequency ω, set k⋆ = ω
√
ε⋆µ⋆ and k0 = ω

√
ε0µ0. For a function U

satisfying (∆ + k20)U = 0 in R2, we consider the scattered wave u, i.e., the
solution to (3.83).

Suppose that U is given by a plane wave eik0ξ·x with ξ being on the unit
circle, then (3.97) yields
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u(x)− eik0ξ·x = − i

4

∑

n∈Z

H(1)
n (k0|x|)einθx

∑

m∈Z

Wnme
im(π

2 −θξ) as |x| → ∞ ,

(3.101)
whereWnm, given by (3.89), are the scattering coefficients, ξ = (cos θξ, sin θξ),
and x = (|x|, θx).

The far-field pattern A∞[ε, µ, ω], when the incident field is given by eik0ξ·x,
is defined to be

u(x)−eik0ξ·x = −ie−πi
4

eik0|x|
√
8πk0|x|

A∞[ε, µ, ω](θξ, θx)+o(|x|−
1
2 ) as |x| → ∞ .

(3.102)
Recall that

H
(1)
0 (t) ∼

√
2

πt
ei(t−

π
4 ) as t→ ∞ , (3.103)

where ∼ indicates that the difference between the right-hand and left-hand
side is O(t−1). If |x| is large while |y| is bounded, then we have

|x− y| = |x| − |y| cos(θx − θy) +O(
1

|x| ),

and hence

H
(1)
0 (k0|x− y|) ∼ e−

πi
4

√
2

πk0|x|
eik0(|x|−|y| cos(θx−θy)) as |x| → ∞ .

Thus, from (3.84), we get

u(x)− eik0ξ·x ∼ −ie−πi
4

eik0|x|
√
8πk0|x|

∫

∂D

e−ik0|y| cos(θx−θy)ψ(y) dσ(y) (3.104)

as |x| → ∞ and infer that the far-field pattern is given by

A∞[ε, µ, ω](θξ, θx) =

∫

∂D

e−ik0|y| cos(θx−θy)ψ(y) dσ(y) , (3.105)

where ψ is given by (3.99).
We now show that the scattering coefficients are basically the Fourier

coefficients of the far-field pattern (the scattering amplitude) which is 2π-
periodic function in two dimensions.

Let
A∞[ε, µ, ω](θξ, θx) =

∑

n∈Z

bn(θξ)e
inθx

be the Fourier series of A∞[ε, µ, ω](θξ, ·). From (3.105) it follows that

bn(θξ) =
1

2π

∫ 2π

0

∫

∂D

e−ik0|y| cos(θx−θy)ψ(y) dσ(y) e−inθx dθx

=
1

2π

∫

∂D

∫ 2π

0

e−ik0|y| cos(θx−θy)e−inθx dθx ψ(y) dσ(θy) .
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Since

1

2π

∫ 2π

0

e−ik0|y| cos(θx−θy)e−inθx dθx = Jn(k0|y|)e−in(θy+
π
2 ) ,

we deduce that

bn(θξ) =

∫

∂D

Jn(k0|y|)e−in(θy+
π
2 )ψ(y) dσ(θy) .

Using (3.99) we now arrive at the following theorem.

Theorem 3.40 Let θ and θ′ be respectively the incident and scattered direc-
tion. Then we have

A∞[ε, µ, ω](θ, θ′) =
∑

n,m∈Z

i(m−n)einθ
′

Wnm[ε, µ, ω]e−imθ , (3.106)

where the scattering coefficients Wnm are defined by (3.89).

We emphasize that the series in (3.106) is well-defined provided that k20 is
not a Dirichlet eigenvalue for −∆ on D. Moreover, it converges uniformly
in θ and θ′ thanks to (3.90). Furthermore, there exists δ0 > 0 such that
for any δ ≤ δ0 the series expansion of A∞[ε, µ, δω](θ, θ′) is well-defined and
its convergence is uniform in δ. This is the key point of our construction of
near-cloaking structures. We also note that if U is given by (3.95) then the
scattering amplitude, which we denote by A∞[ε, µ, ω](U, θ′), is given by

A∞[ε, µ, ω](U, θ′) =
∑

n∈Z

i−neinθ
′ ∑

m∈Z

Wnmam(U) . (3.107)

The conversion of the far-field to the near field is achieved via formula (3.101).

Optical Theorem

Let d = 3. The analogous quantity of the Poynting vector in scalar wave
theory is the energy flux vector [112]. For ℜ

[
u(x)e−ik0t

]
, the averaged value

of the energy flux vector, taken over an interval which is long compared to
the period of the oscillations, is given by

F (x) = −ik0 [u(x)∇u(x)− u(x)∇u(x)] .

Consider the outward flow of energy through the sphere ∂BR of radius R and
center the origin:

W =

∫

∂BR

F (x) · ν(x)dσ(x) ,

where ν(x) is the outward normal at x ∈ ∂BR.
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As the total field can be written as u = U+us, the flow can be decomposed
into three parts:

W = Wi +Ws +W ′ ,

where

Wi =− iβ

∫

∂BR

[
U(x)∇U(x)− U(x)∇U(x)

]
· ν(x) dσ(x) ,

Ws =− iβ

∫

∂BR

[us(x)∇us(x)− us(x)∇us(x)] · ν(x) dσ(x) ,

W ′ =− iβ

∫

∂BR

[
U(x)∇us(x)− us(x)∇U(x)− U(x)∇us(x) + us(x)∇U(x)

]
· ν(x) dσ(x) ,

where β is a positive constant.
In the case where U(x) = eik0ξ·x is a plane wave, we can see that Wi = 0:

Wi = −iβ
∫

∂BR

[
U(x)∇U(x)− U(x)∇U(x)

]
dσ(x) ,

= −iβ
∫

∂BR

[
e−ik0ξ·xik0ξe

ik0ξ·x + eik0ξ·xk0de
−ik0ξ·x] · ν(x) dσ(x) ,

= 2βk0ξ ·
∫

∂BR

ν(x) dσ(x) ,

= 0 .

In a non absorbing medium with non absorbing scatterers, W is equal to
zero because the electromagnetic energy would be conserved by the scattering
process. However, if there is an absorbing scatterer inside the medium, the
conservation of energy gives the rate of absorption as

Wa = −W .

Therefore, we have

Wa +Ws = −W ′ .

Here, W ′ is called the extinction rate. It is the rate at which the energy is
removed by the scatterer from the illuminating plane wave, and it is the sum
of the rate of absorption and the rate at which energy is scattered.

Denote by V the quantity V (x) = β
∣∣U(x)∇U(x)− U(x)∇U(x)

∣∣. In the
case of a plane wave illumination, V (x) is independent of x and is given by
V = 2βk0.

Definition 3.41 The scattering cross-section Qs, the absorption cross-section
Qa and the extinction cross-section are defined by

Qs =
Ws

V
, Qa =

Wa

V
, Qext =

−W ′

V
.

Note that these quantities are independent of x in the case of a plane wave
illumination.
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Theorem 3.42 (Optical theorem) Let d = 3. If U(x) = eik0ξ·x, where ξ
is a unit direction of incidence, then

Qext[ε, µ, ω](ξ) =Qs[ε, µ, ω](ξ) +Qa[ε, µ, ω](ξ) =
4π

k0
ℑ [A∞[ε, µ, ω](ξ, ξ)] ,

(3.108)

Qs[ε, µ, ω](ξ) =

∫

|x̂|=1

|A∞[ε, µ, ω](ξ, x̂)|2dσ(x̂) (3.109)

with A∞ being the scattering amplitude defined by

(u− U)(x) =
eik0|x|

|x| A∞[ε, µ, ω]

(
ξ,

x

|x|

)
+O

(
1

|x|2
)
. (3.110)

Proof. The Sommerfeld radiation condition gives, for any x ∈ ∂BR,

∇us(x) · ν(x) ∼ ik0u
s(x) . (3.111)

Hence, from (3.110) we get

us(x)∇us(x) · ν(x)− us(x)∇us(x) · ν(x) ∼ −2ik0
|x|2

∣∣∣∣A∞[ε, µ, ω]

(
ξ,

x

|x|

)∣∣∣∣
2

,

which yields (3.109). We now compute the extinction rate. We have

∇U(x) · ν(x) = ik0ξ · ν(x)eik0ξ·x . (3.112)

Therefore, using (3.111) and (3.112), it follows that

U(x)∇us(x) · ν(x)− us(x)∇U(x) · ν(x) ∼
[
ik0

eik0(|x|−ξ·x)

|x| ξ · ν + ik0
eik0(|x|−ξ·x)

|x|

]
A∞[ε, µ, ω]

(
ξ,

x

|x|

)

∼ ik0e
ik0|x|−ξ·ν(x)

|x| (ξ · ν(x) + 1)A∞[ε, µ, ω]

(
ξ,

x

|x|

)
.

For x ∈ ∂BR, we can write

U(x)∇us(x) · ν(x)− us(x)∇U(x) · ν(x) ∼ ik0e
−ik0Rν(x)·(ξ−ν(x))

R
(ξ · ν(x) + 1)A∞[ε, µ, ω]

(
ξ,

x

|x|

)
.

We now use Jones’ lemma (see, for instance, [112, Appendix XII])

1

R

∫

∂BR

G(ν(x))e−ik0ξ·ν(x)dσ(x) ∼ 2πi

k0

(
G(ξ)e−ik0R − G(−ξ)eik0R

)

as R→ ∞, to obtain
∫

∂BR

[
U(x)∇us(x)− us(x)∇U(x)

]
· ν(x) ∼ −4πA∞[ε, µ, ω](ξ, ξ) as R→ ∞ .
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Therefore,

W ′ =i4πβ
[
A∞[ε, µ, ω](ξ, ξ)−A∞[ε, µ, ω](ξ, ξ)

]
= −8πβℑ [A∞[ε, µ, ω](ξ, ξ)] .

Since

β
∣∣U(x)∇U(x)− U(x)∇U(x)

∣∣ = 2βk0 ,

we get the result. ⊓⊔

In two dimensions, the scattering cross-section Qs[ε, µ, ω] is defined by

Qs[ε, µ, ω](θ′) :=

∫ 2π

0

∣∣∣∣A∞[ε, µ, ω](θ, θ′)

∣∣∣∣
2

dθ . (3.113)

As an immediate consequence of Theorem 3.40 we obtain

Qs[ε, µ, ω](θ′) = 2π
∑

m∈Z

∣∣∣∣
∑

n∈Z

i−nWnm[ε, µ, ω]einθ
′

∣∣∣∣
2

. (3.114)

Analogously to Theorem 3.42, we can prove that

ℑA∞[ε, µ, ω](θ′, θ′) = −
√
k0
8π
Qext[ε, µ, ω](θ′), ∀ θ′ ∈ [0, 2π] . (3.115)

Therefore, for non absorbing scatterers, i.e., Qa = 0, the above optical the-
orem leads to a natural constraint on Wnm. From (3.114) and (3.115), we
obtain

ℑ
∑

n,m∈Z

im−nei(n−m)θ′

Wnm[ε, µ, ω] = −
√
πk0
2

∑

m∈Z

∣∣∣∣
∑

n∈Z

i−nWnm[ε, µ, ω]einθ
′

∣∣∣∣
2

,

(3.116)
∀ θ′ ∈ [0, 2π].

Since ω 7→ A∞[ε, µ, ω] is analytic in C+, A∞ vanishes efficiently rapidly
as ω → +∞, and A∞[ε, µ,−ω] = A∞[ε, µ, ω] for real values of ω, the real and
imaginary parts of the scattering amplitude are connected by the Kramers-
Kronig relations (2.48) and we have for ξ ∈ Rd, |ξ| = 1, d = 2, 3,

ℜA∞[ε, µ, ω](ξ, ξ) = cd p.v.

∫ +∞

0

(ω′)(d+1)/2Qext[ε, µ, ω′](ξ)

(ω′)2 − ω2
dω′ , (3.117)

and

Qext[ε, µ, ω](ξ) = − 2

π
√
ε0µ0

p.v.

∫ +∞

0

ℜA∞[ε, µ, ω′](ξ, ξ)

(ω′)2 − ω2
dω′ , (3.118)

where c3 =
√
ε0µ0/(2π

2) and c2 = −
√√

ε0µ0/(2π3). Moreover, from (2.50)
and (2.51), we obtain by respectively taking the limits of (3.117) and (3.118)
as ω → 0 the following sum rules:
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ℜA∞[ε, µ, 0](ξ, ξ) = cd p.v.

∫ +∞

0

(ω′)(d−3)/2Qext[ε, µ, ω′](ξ) dω′ , (3.119)

and

Qext[ε, µ, 0](ξ) = − 2

π
√
ε0µ0

p.v.

∫ +∞

0

ℜA∞[ε, µ, ω′](ξ, ξ)−ℜA∞[ε, µ, 0](ξ, ξ)

(ω′)2
dω′ .

(3.120)

3.3 Elasticity Equations

Let Ω be a domain in Rd, d = 2, 3. Let λ and µ be the Lamé constants for Ω
satisfying the strong convexity condition

µ > 0 and dλ+ 2µ > 0. (3.121)

The constants λ and µ are respectively referred to as the compression modulus
and the shear modulus. We also introduce the bulk modulus β := λ+2µ/d. We
refer the reader to [243, p.11] for an explanation of the physical significance
of (3.121).

In a homogeneous isotropic elastic medium, the elastostatic operator cor-
responding to the Lamé constants λ, µ is given by

Lλ,µu := µ∆u+ (λ+ µ)∇∇ · u, u : Ω → Rd . (3.122)

If Ω is bounded with a connected smooth boundary, then we define the
conormal derivative ∂u/∂n by

∂u

∂n
= λ(∇ · u)ν + µ(∇u+∇uT )ν , (3.123)

where ∇u is the matrix (∂jui)
d
i,j=1 with ui being the i-th component of u,

and ν is the outward unit normal to the boundary ∂Ω.
Note that the conormal derivative has a direct physical meaning:

∂u

∂n
= traction on ∂Ω.

The vector u is the displacement field of the elastic medium having the Lamé
coefficients λ and µ, and the symmetric gradient

∇su := (∇u+∇uT )/2 (3.124)

is the strain tensor.
In Rd, d = 2, 3, let

I := δjlej ⊗ el,

I :=
1

2
(δjlδkm + δjmδkl)ej ⊗ ek ⊗ el ⊗ em,
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with (e1, . . . , ed) being the canonical basis of Rd and ⊗ denoting the tensor
product between vectors in Rd. Here, I is the d×d identity matrix or 2-tensor
while I is the identity 4-tensor.

Define the elasticity tensor C = (Cjklm)di,j,k,l=1 for Rd by

Cjklm = λδjkδlm + µ(δjlδkm + δjmδkl), (3.125)

which can be written as
C := λI ⊗ I + 2µI.

With this notation, we have

Lλ,µu = ∇ · C∇su,

and
∂u

∂n
= (C∇su)ν = σ(u)ν,

where σ(u) is the stress tensor given by

σ(u) = C∇su.

Now, we consider the elastic wave equation

ρ∂2tU − Lλ,µU = 0,

where the positive constant ρ is the density of the medium. Then, we obtain
a time-harmonic solution U(x, t) = ℜe[e−iωtu(x)] if the space-dependent part
u satisfies the time-harmonic elasticity equation for the displacement field,

(Lλ,µ + ω2ρ)u = 0, (3.126)

with ω being the angular frequency.
The time-harmonic elasticity equation (3.126) has a special family of so-

lutions called p- and s-plane waves:

Up(x) = eiω
√

ρ/(λ+2µ)x·θθ and Us(x) = eiω
√

ρ/µx·θθ⊥ (3.127)

for θ ∈ Sd−1 := {θ ∈ Rd : |θ| = 1} the direction of the wavevector and θ⊥ is
such that |θ⊥| = 1 and θ⊥ · θ = 0. Note that Up is irrotational while Us is
solenoidal.

Taking the limit ω → 0 in (3.126) yields the static elasticity equation

Lλ,µu = 0. (3.128)

In a bounded domain Ω, the equations (3.126) and (3.128) need to be
supplemented with boundary conditions at ∂Ω. If ∂Ω is a stress-free surface,
the traction acting on ∂Ω vanishes:

∂u

∂n
= 0.
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This boundary condition is appropriate when the surface ∂Ω forms the outer
boundary on the elastic body that is surrounded by empty space.

In a homogeneous, isotropic medium, using the Helmholtz decomposition
theorem, the displacement field can be decomposed into the sum of an ir-
rotational and a solenoidal field. Assume that Ω is simply connected and
its boundary ∂Ω is connected. The Helmholtz decomposition states that for
w ∈ L2(Ω)d there exist φw ∈ W 1,2(Ω) and ψw ∈ Hcurl(Ω) ∩ Hdiv(Ω) such
that

w = ∇φw +∇× ψw. (3.129)

The Helmholtz decomposition (3.129) can be found by solving the following
weak Neumann problem in Ω [79, 148]:

∫

Ω

∇φw · ∇q dx =

∫

Ω

w · ∇q dx ∀ q ∈W 1,2(Ω). (3.130)

The function φw ∈ W 1,2(Ω) is uniquely defined up to an additive constant.
In order to uniquely define the function ψw, we impose that it satisfies the
following properties [111]:

{
∇ · ψw = 0 in Ω,

ψw · ν = (∇× ψw) · ν = 0 on ∂Ω.
(3.131)

The boundary condition (∇×ψw) · ν = 0 on ∂Ω shows that the gradient and
curl parts in (3.129) are orthogonal.

We define, respectively, the Helmholtz decomposition operators Hp and
Hs for w ∈ L2(Ω)d by

Hp [w] := ∇φw and Hs [w] := ∇× ψw, (3.132)

where φw is a solution to (3.130) and ψw satisfy ∇×ψw = w−∇φw together
with (3.131).

The following lemma holds.

Lemma 3.43 (Properties of the Helmholtz decomposition operators)
Let the Lamé parameters (λ, µ) be constants satisfying (3.121). We have the
orthogonality relations

HsHp = HpHs = 0. (3.133)

Moreover, Hs and Hp commute with Lλ,µ: For any smooth vector field w in
Ω,

Hα[Lλ,µw] = Lλ,µHα[w], α = p, s. (3.134)

Proof. We only prove (3.134). The orthogonality relations (3.133) are easy to
see. Let Hs[w] = ∇φw and let Hp[w] = ∇× ψw. Then we have

Lλ,µw = (λ+ 2µ)∇∆φw + µ∇×∆ψw,
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and therefore,

Hs[Lλ,µw] = (λ+ 2µ)∇∆φw = Lλ,µHs[w],

and
Hp[Lλ,µw] = µ∇×∆ψw = Lλ,µHp[w]

as desired. ⊓⊔
It is worth emphasizing that in the exterior (unbounded) domain Rd \ Ω

or in the free space Rd, the Helmholtz decomposition (3.129) stays valid with
W 1,2(Ω) replaced by {v ∈ L2

loc : ∇v ∈ L2}; see, for instance, [177, 163].
In the time-harmonic regime, if the medium is infinite, then the irrota-

tional and solenoidal fields solve two separate Helmholtz equations with dif-
ferent wavenumbers. As will be shown in the next section, radiation conditions
should be imposed in order to select the physical solutions. The irrotational
field is called compressional wave (p-wave) and the solenoidal field is called
shear wave (s-wave). The displacement field associated with the p-wave is in
the same direction as the wave propagates while the displacement field associ-
ated with the s-wave propagates orthogonally to the direction of propagation
of the wave. Note that, in three dimensions, the s-wave has two directions of
oscillations. Note also that if the medium is bounded, then the p- and s-waves
are coupled by the boundary conditions at the boundary of the medium.

Let the wave numbers κs and κp be given by

κs =
ω

cs
and κp =

ω

cp
, (3.135)

where cs is the wave velocity for shear waves and cp is the wave velocity for
compressive waves:

cs =

√
µ

ρ
and cp =

√
λ+ 2µ

ρ
. (3.136)

The α-wave, α = p, s, propagates with a wave number κα, through space
and the corresponding wave velocity is given by cα. Note that if λ > 0, then
cp is larger than cs provided that (3.121) holds. This means that the p-wave
arrives faster than the s-wave in the time domain.

Finally, it is worth mentioning that by antiplane elasticity equation we
mean the conductivity equation ∇ · µ∇u3 = 0, where u3 is the x3-component
of the displacement field u in three dimensions. When the elastic material
is invariant under the transformation x3 → −x3, the equations of linearized
elasticity can be reduced to the antiplane elasticity equation.

3.3.1 Radiation Condition

Let us formulate the radiation condition for the time-harmonic elastic waves
when Im ω ≥ 0 and ω 6= 0.
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Since Hs and Hp commute with Lλ,µ, as shown in Lemma 3.43, it follows
from the Helmholtz decomposition (3.129) that any smooth solution u to the
constant-coefficient equation (Lλ,µ+ω2ρ)u = 0 can be decomposed as follows:

u = up + us, (3.137)

where up and us satisfy the equations

{
(△+ κ2p)up = 0, ∇× up = 0,

(△+ κ2s)us = 0, ∇ · us = 0.
(3.138)

In fact, up and us are given by up = Hp[u] and us = Hs[u].
In order to select the physical solutions, we impose on up and us the

radiation condition for solutions of the Helmholtz equation by requiring, as
r = |x| → +∞, that

{
∂rup(x)− iκpup(x) = O(r−(d+1)/2),

∂rus(x)− iκsus(x) = O(r−(d+1)/2).
(3.139)

We say that u satisfies the Sommerfeld-Kupradze radiation condition if it can
be decomposed in the form (3.137) with up and us satisfying (3.138) and
(3.139).

We recall the following uniqueness results for the exterior problem [235].

Lemma 3.44 (Uniqueness result) Let u be a solution to (Lλ,µ+ω2ρ)u = 0
in Rd \Ω satisfying the Sommerfeld-Kupradze radiation condition (3.139). If
either u = 0 or ∂u/∂n = 0 on ∂Ω, then u is identically zero in Rd \Ω.

3.3.2 Integral Representation of Solutions to the Lamé System

Fundamental Solutions

In dimension d, the Kupradze matrix Γω = (Γω
jl)

d
j,l=1 of the fundamental

solution to the operator Lλ,µ + ω2ρ satisfies

(Lλ,µ + ω2ρ)Γω(x− y) = δy(x)I, x ∈ Rd, x 6= y, (3.140)

where δy is the Dirac mass at y and I is the d×d identity matrix. The function
Γω can be decomposed into shear and pressure components:

Γω(x) = Γω
s (x) + Γω

p (x), x ∈ Rd, x 6= 0, (3.141)

where

Γω
p (x) = − 1

µκ2s
DΓω

p (x) and Γω
s (x) =

1

µκ2s
(κ2sI +D)Γω

s (x). (3.142)
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Here, the tensor D is defined by

D = ∇⊗∇ = (∂2jl)
d
j,l=1, (3.143)

where the function Γω
α is the fundamental solution to the Helmholtz operator,

i.e.,
(∆+ κ2α)Γ

ω
α (x) = δ0(x), x ∈ Rd, x 6= 0,

subject to the Sommerfeld radiation condition:

∂rΓ
ω
α (x)− iκαΓ

ω
α (x) = O(r−(d+1)/2) as r = |x| → +∞.

Note that ∇·Γω
s = 0 and ∇×Γω

p = 0. Moreover, Γω satisfies the Sommerfeld-
Kupradze radiation condition (3.139). Here, the vector field ∇ · Γω

s and the
matrix field ∇× Γω

p are defined by

{
(∇ · Γω

s )q = ∇ · (Γω
s q),

(∇× Γω
p )q = ∇× (Γω

p q)

for all q ∈ Rd.
The function Γω

α , for α = p, s, is given by

Γω
α (x) =





− i

4
H

(1)
0 (κα|x|), d = 2,

−e
iκα|x|

4π|x| , d = 3,
(3.144)

where H
(1)
0 is the Hankel function of the first kind of order 0. We recall the

following behavior of the Hankel function near 0:

− i

4
H

(1)
0 (κα|x|) =

1

2π
log(κα|x|)+τ+

+∞∑

n=1

(bn log(κα|x|)+cn)(κα|x|)2n (3.145)

for α = p, s, where

bn =
(−1)n

2π

1

22n(n!)2
, cn = −bn

(
γ − log 2− πi

2
−

n∑

j=1

1

j

)
,

and the constant τ = (1/2π)(γ − log 2) − i/4, γ being the Euler constant.
Moreover, as t→ +∞, we have

H
(1)
0 (t) =

√
2

πt
ei(t−

π
4 )

[
1 +O

(
1

t

)]
,

d

dt
H

(1)
0 (t) =

√
2

πt
ei(t+

π
4 )

[
1 +O

(
1

t

)]
.

(3.146)
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Using (3.146), one can see that in the two-dimensional case

x̂ · ∇H(1)
0 (κα|x|)− iκαH

(1)
0 (κα|x|) = O(|x|−3/2), (3.147)

where x̂ := x/|x|. This is exactly the two-dimensional Sommerfeld radiation
condition one should impose in order to select the physical solution of the
Helmholtz equation.

In the three-dimensional case, the Kupradze matrix Γω = (Γω
jl)

3
j,l=1 is

given by

Γω
jl(x) = − δjl

4πµ|x|e
iκs|x| +

1

4πω2ρ
∂j∂l

eiκp|x| − eiκs|x|

|x| , (3.148)

where κα, α = p, s, is given by (3.135). One can easily show that Γω
jl has the

series representation:

Γω
jl(x) = − 1

4π

+∞∑

n=0

in

(n+ 2)n!

(n+ 1

cn+2
s

+
1

cn+2
p

)
ωnδjl|x|n−1 (3.149)

+
1

4πρ

+∞∑

n=0

in(n− 1)

(n+ 2)n!

( 1

cn+2
s

− 1

cn+2
p

)
ωn|x|n−3xjxl .

If ω = 0, then Γ := Γ 0 is the Kelvin matrix of the fundamental solution to
the Lamé system; i.e.,

Γjl(x) = − γ1
4π

δjl
|x| −

γ2
4π

xjxl
|x|3 , (3.150)

where

γ1 =
1

2

(
1

µ
+

1

2µ+ λ

)
and γ2 =

1

2

(
1

µ
− 1

2µ+ λ

)
. (3.151)

In the two-dimensional case, the Kupradze matrix Γω = (Γω
jl)

2
j,l=1 of the

fundamental solution to the operator Lλ,µ + ω2ρ, ω 6= 0, is given by

Γω
ij(x) = − i

4µ
δjlH

(1)
0 (κs|x|) +

i

4ω2ρ
∂j∂l

(
H

(1)
0 (κp|x|)−H

(1)
0 (κs|x|)

)
.

(3.152)
For ω = 0, we set Γ to be the Kelvin matrix of fundamental solutions to the
Lamé system; i.e.,

Γjl(x) =
γ1
2π
δjl log |x| −

γ2
2π

xjxl
|x|2 . (3.153)
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Single- and Double-Layer Potentials

Let Ω be a bounded domain in Rd, d = 2, 3, with a connected smooth bound-
ary. The single- and double-layer potentials for the operator Lλ,µ + ω2ρ are
given by

Sω
Ω [ϕ](x) =

∫

∂Ω

Γω(x− y)ϕ(y) dσ(y), x ∈ Rd, (3.154)

Dω
Ω [ϕ](x) =

∫

∂Ω

∂Γω

∂n(y)
(x− y)ϕ(y) dσ(y), x ∈ Rd \ ∂Ω, (3.155)

for ϕ ∈ L2(∂Ω)d, where ∂/∂n denotes the conormal derivative defined in
(3.123). Thus, for j = 1, . . . , d,

(Dω
Ω [ϕ](x))j =

∫

∂Ω

λ
∂Γω

jl

∂yl
(x− y)ϕ(y) · ν(y)

+ µ
(∂Γω

jl

∂yk
+
∂Γω

jk

∂yl

)
(x− y)νl(y)ϕk(y) dσ(y).

The following formulas give the jump relations satisfied by the conormal
derivative of the single-layer potential and by the double-layer potential:

∂(Sω
Ω [ϕ])

∂n

∣∣∣
±
(x) =

(
± 1

2
I + (Kω

Ω)
∗
)
[ϕ](x) a.e. x ∈ ∂Ω, (3.156)

(Dω
Ω [ϕ])

∣∣∣
±
(x) =

(
∓ 1

2
I +Kω

Ω

)
[ϕ](x) a.e. x ∈ ∂Ω, (3.157)

where Kω
Ω is the operator defined by

Kω
Ω [ϕ](x) = p.v.

∫

∂Ω

∂Γω

∂n(y)
(x− y)ϕ(y) dσ(y) (3.158)

and (Kω
Ω)

∗ is the L2-adjoint of K−ω
Ω ; that is,

(Kω
Ω)

∗[ϕ](x) = p.v.

∫

∂Ω

∂Γω

∂n(x)
(x− y)ϕ(y) dσ(y).

The operators (Kω
Ω)

∗ and Kω
Ω are called the Neumann-Poincaré operators.

By a straightforward calculation, one can see that the single- and double-
layer potentials, Sω

Ω [ϕ] and Dω
Ω [ϕ] for ϕ ∈ L2(∂Ω)d, satisfy the time-harmonic

elasticity equation in Ω and Rd \Ω together with the Sommerfeld-Kupradze
radiation condition (3.139).

Let SΩ , DΩ , (KΩ)
∗, and KΩ be the layer potentials for the operator Lλ,µ.

Analogously to (3.156) and (3.157), the following formulas give the jump
relations obeyed by DΩ [ϕ] and by ∂(SΩ [ϕ])/∂n on ∂Ω for ϕ ∈ L2(∂Ω)d:

∂(SΩ [ϕ])

∂n

∣∣∣
±
(x) =

(
± 1

2
I + (KΩ)

∗
)
[ϕ](x) a.e. x ∈ ∂Ω, (3.159)

(DΩ [ϕ])
∣∣∣
±
(x) =

(
∓ 1

2
I +KΩ

)
[ϕ](x) a.e. x ∈ ∂Ω. (3.160)
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Again, the layer potentials SΩ [ϕ], DΩ [ϕ] for ϕ ∈ L2(∂Ω)d satisfy

Lλ,µSΩ [ϕ] = Lλ,µDΩ [ϕ] = 0 in Ω ∪ (Rd \Ω).

We emphasize that the singular integral operators KΩ and Kω
Ω are not com-

pact, even on smooth domains. This causes some difficulties in solving the
elasticity system using layer potential techniques.

Let Ψ be the vector space of all linear solutions to the equation Lλ,µu = 0
satisfying ∂u/∂n = 0 on ∂Ω, or, equivalently,

Ψ =

{
ψ ∈W 1,2(Ω)d : ∂jψl + ∂lψj = 0, 1 ≤ j, l ≤ d

}
,

=

{
ψ(x) = a+Bx, a ∈ Cd, B ∈MA

d

}
,

(3.161)

where MA
d is the space of antisymmetric matrices. One has

dimΨ = d(d+ 1)/2.

Define a subspace of L2(∂Ω)d by

L2
Ψ (∂Ω) =

{
f ∈ L2(∂Ω)d :

∫

∂Ω

f · ψ dσ = 0 ∀ ψ ∈ Ψ

}
. (3.162)

In particular, since Ψ contains constant functions, we get
∫

∂Ω

f dσ = 0

for any f ∈ L2
Ψ (∂Ω).

Define

W
−1/2
Ψ (∂Ω) :=

{
ϕ ∈W 2

−1/2(∂Ω)d : (ϕ, ψ)−1/2,1/2 = 0 ∀ ψ ∈ Ψ

}
. (3.163)

Then the following result holds.

Lemma 3.45 (Mapping properties of K∗
Ω) The operator ± 1

2I+K∗
Ω is in-

vertible on W
−1/2
Ψ (∂Ω). Moreover, there exists a positive constant C such that

‖SΩ [ϕ]‖W (Rd) ≤ C‖ϕ‖W 2
−1/2

(∂Ω) (3.164)

for all ϕ ∈ W 2
−1/2(∂Ω)d. Furthermore, the null space of − 1

2I + KΩ on

W 2
−1/2(∂Ω) is Ψ .

The following invertibility results will be also needed.

Lemma 3.46 (Mapping properties of (Kω
Ω)

∗) The operator 1
2I + (Kω

Ω)
∗

is invertible on W 2
−1/2(∂Ω)d. If ω2ρ is not a Dirichlet eigenvalue for −Lλ,µ

on Ω, then − 1
2I + (Kω

Ω)
∗ is invertible on W 2

−1/2(∂Ω)d as well.
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Next, we recall Green’s formulas for the Lamé system, which can be ob-
tained by integration by parts. The first formula is

∫

∂Ω

u · ∂v
∂n

dσ =

∫

Ω

u · Lλ,µv dx+Q(u, v), (3.165)

where u ∈W 1,2(Ω)d, v ∈W 3/2,2(Ω)d, and

Q(u, v) =

∫

Ω

(
λ(∇ · u)(∇ · v) + 2µ∇su : ∇sv

)
dx. (3.166)

Here and throughout this book A : B =
∑d

j,l=1 ajlbjl for matrices A = (ajl)
and B = (bjl).

The strong convexity condition (3.121) shows that the quadratic form

u 7→ Q(u, u)

is positive definite. Note that W 1,2(Ω)d is the closure of this quadratic form
since u 7→ ∇su is elliptic of order 1.

Formula (3.165) yields Green’s second formula

∫

∂Ω

(
u · ∂v

∂n
− v · ∂u

∂n

)
dσ(x) =

∫

Ω

(
u · Lλ,µv − v · Lλ,µu

)
dx (3.167)

for u, v ∈W 3/2,2(Ω)d.
Formula (3.167) shows that if u ∈ W 3/2,2(Ω)d satisfies Lλ,µu = 0 in Ω,

then ∂u/∂n|∂Ω ∈ L2
Ψ (∂Ω).

The following formulation of Korn’s inequality will be of interest to us.

Lemma 3.47 (Korn’s inequality) Let Ω be a bounded smooth domain in
Rd. Let u ∈W 1,2(Ω)d satisfy

∫

Ω

(
u · ψ +∇u : ∇ψ

)
dx = 0 for all ψ ∈ Ψ. (3.168)

Then there is a constant C depending only on the Lipschitz character of Ω
such that ∫

Ω

(
|u|2 + |∇u|2

)
dx ≤ C

∫

D

|∇su|2 dx. (3.169)

Here, |∇u|2 = ∇u : ∇u and |∇su|2 = ∇su : ∇su.

Finally, using Green’s formulas one can prove that −SΩ is positive.

Lemma 3.48 The operator −SΩ : L2(∂Ω)d → L2(∂Ω)d is positive and self-
adjoint.
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Transmission Problem

In this subsection we consider a smooth bounded inclusion D with Lamé
parameters λ̃, µ̃ different from those λ and µ of the background medium. We
assume that the pair of Lamé parameters λ̃, µ̃ satisfy the strong convexity
condition (3.121) and is such that

(λ− λ̃)(µ− µ̃) ≥ 0, (λ− λ̃)2 + (µ− µ̃)2 6= 0. (3.170)

Let S̃ω
D denote the single-layer potential defined by (3.154) with λ, µ replaced

by λ̃, µ̃. We also denote by ∂u/∂ñ the conormal derivative associated with

λ̃, µ̃. We now have the following solvability result which can be viewed as a
compact perturbation result of the case ω = 0.

Theorem 3.49 Let D be a smooth bounded domain in Rd. Suppose that (λ−
λ̃)(µ − µ̃) ≥ 0 and 0 < λ̃, µ̃ < +∞. Suppose that ℑω ≥ 0 and ω2ρ is not a
Dirichlet eigenvalue for −Lλ,µ on D. For any given (F,G) ∈ W 1,2(∂D)d ×
L2(∂D)d, there exists a unique pair (f, g) ∈ L2(∂D)d × L2(∂D)d such that




S̃ω
D[f ]|− − Sω

D[g]|+ = F,

∂

∂ñ
S̃ω
D[f ]

∣∣∣
−
− ∂

∂n
Sω
D[g]

∣∣∣
+
= G.

A positive constant C exists such that

||f ||L2(∂D)d + ||g||L2(∂D)d ≤ C

(
||F ||W 1,2(∂D)d + ||G||L2(∂D)d

)
. (3.171)

Moreover, if ω = 0 and G ∈ L2
Ψ (∂D), then g ∈ L2

Ψ (∂D).

Consider the following transmission problem:





Lλ,µu+ ω2ρu = 0 in Ω \D,
Lλ̃,µ̃u+ ω2ρu = 0 in D,

∂u

∂n
= g on ∂Ω,

u
∣∣
+
− u
∣∣
− = 0 on ∂D,

∂u

∂n

∣∣
+
− ∂u

∂ñ

∣∣
− = 0 on ∂D,

(3.172)

whereD and Ω are smooth bounded domains in Rd withD ⊂ Ω. Note that the
p- and s-waves cannot be decoupled because of the boundary and transmission
conditions.

For problem (3.172) the following representation formula holds.
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Theorem 3.50 (Representation formula) Let ℑω ≥ 0. Suppose that ω2ρ
is not a Dirichlet eigenvalue for −Lλ,µ on D. Let u be a solution of (3.172)
and f := u|∂Ω. Define

H(x) := Dω
Ω [f ](x)− Sω

Ω [g](x), x ∈ Rd \ ∂Ω. (3.173)

Then u can be represented as

u(x) =

{
H(x) + Sω

D[ψ](x), x ∈ Ω \D,
S̃ω
D[ϕ](x), x ∈ D,

(3.174)

where the pair (ϕ, ψ) ∈ L2(∂D)d × L2(∂D)d is the unique solution of




S̃ω
D[ϕ]− Sω

D[ψ] = H|∂D,
∂

∂ñ
S̃ω
D[ϕ]− ∂

∂n
Sω
D[ψ] =

∂H

∂n

∣∣∣
∂D
.

(3.175)

Moreover, we have

H(x) + Sω
D[ψ](x) = 0, x ∈ Rd \Ω. (3.176)

3.3.3 Reciprocity Property and Helmholtz-Kirchhoff Identities

We now discuss the reciprocity property and derive the Helmholtz-Kirchhoff
identities for elastic media.

Note first that the conormal derivative tensor ∂Γω/∂n means that for all
constant vectors q, [

∂Γω

∂n

]
q :=

∂ [Γωq]

∂n
.

From now on, we set Γω(x, y) := Γω(x− y) for x 6= y.
An important property satisfied by the fundamental solution Γω is the

reciprocity property. If the medium is not homogeneous, then the following
holds:

Γω(y, x) = [Γω(x, y)]
T
, x 6= y. (3.177)

If the medium is homogeneous, then one can see from (3.148) and (3.152) that
Γω(x, y) is symmetric and

Γω(y, x) = Γω(x, y), x 6= y. (3.178)

Identity (3.177) states that the nth component of the displacement at x
due to a point source excitation at y in the mth direction is identical to the
mth component of the displacement at y due to a point source excitation at
x in the nth direction.

The following results are the building block of the resolution analysis in
elasticity imaging.
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Proposition 3.51 Let Ω be a bounded smooth domain.

(i) For all x, z ∈ Ω, we have

∫

∂Ω

[
∂Γω(x, y)

∂n(y)
Γω(y, z)− Γω(x, y)

∂Γ
ω
(y, z)

∂n(y)

]
dσ(y) = −2iℑm {Γω(x, z)}.

(3.179)
(ii)For all x, z ∈ Ω, we have

∫

∂Ω

[
∂Γω

s (x, y)

∂n(y)
Γω
p (y, z)− Γω

s (x, y)
∂Γω

p (y, z)

∂n(y)

]
dσ(y) = 0. (3.180)

(iii)For all x, z ∈ Ω and α = p, s,

∫

∂Ω

[
∂Γω

α (x, y)

∂n(y)
Γω
α (y, z)− Γω

α (x, y)
∂Γω

α (y, z)

∂n(y)

]
dσ(y) = −2iℑm {Γω

α (x, z)}.
(3.181)

In order to simplify Helmholtz-Kirchhoff identities , we derive an approx-
imation of the conormal derivative

∂Γω(x, y)/∂n(y), y ∈ ∂Ω, x ∈ Ω ,

when Ω is a ball with very large radius
If ν(y) = ŷ − x (:= (y − x)/|x− y|) and |x− y| ≫ 1, then, for α = p, s, we

have
∂Γω

α (x, y)

∂n
= iωcαΓ

ω
α (x, y) + o

(
1

|x− y|(d−1)/2

)
, (3.182)

and the following result holds.

Proposition 3.52 (Helmholtz-Kirchhoff Identities) Let Ω ⊂ Rd be a
ball with radius R. Then, for all x, z ∈ Ω, we have

lim
R→+∞

∫

∂Ω

Γω
α (x, y)Γω

α (y, z)dσ(y) = − 1

ωcα
ℑm {Γω

α (x, z)}, α = p, s, (3.183)

and

lim
R→+∞

∫

∂Ω

Γω
s (x, y)Γω

p (y, z)dσ(y) = 0. (3.184)

3.3.4 Incompressible Limit

Let D be an elastic inclusion which is a bounded domain in Rd (d = 2, 3)

with smooth boundary. Let (λ̃, µ̃) be the pair of Lamé parameters of D while
(λ, µ) is that of the background Rd \ D. Then the elasticity tensors for the

inclusion and the background can be written respectively as C̃ = (C̃jklm) and
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C = (Cjklm) where C̃jklm and Cjklm are defined according to (3.125) and the
elasticity tensor for Rd in the presence of the inclusion D is given by

χ(D)C̃+ χ(Rd \D)C . (3.185)

We assume that the strong convexity conditions (3.121) and (3.170) hold

for the pairs (λ, µ) and (λ̃, µ̃) respectively, that are in turn required to have
the representation of the displacement vectors in terms of the single layer
potential in what follows. We also denote by β̃ the bulk modulus given by
β̃ = λ̃+ 2µ̃/d.

We consider the problem of the Lamé system of the linear elasticity: For
a given function h satisfying ∇ · C∇sh = 0 in Rd,

{
∇ · (χ(D)C̃+ χ(Rd \D)C)∇su = 0 in Rd,

u(x)− h(x) = O(|x|1−d) as |x| → ∞,
(3.186)

where ∇su is the symmetric gradient (or the strain tensor). Equation (3.186)
is equivalent to the following problem:





Lλ,µu = 0 in Rd \D,
Lλ̃,µ̃u = 0 in D,

u|− = u|+ on ∂D,
∂u

∂ν̃

∣∣∣∣
−
=
∂u

∂ν

∣∣∣∣
+

on ∂D,

u(x)− h(x) = O(|x|1−d) as |x| → ∞.

(3.187)

We show that if λ̃ → ∞ and µ̃ is fixed, then (3.187) approaches to the

Stokes system. Roughly speaking, if λ̃ → ∞, then ∇ · u is approaching to 0
while λ̃∇ · u stays bounded. So (3.187) approaches to the Stokes problem.

The following result from [47] holds.

Theorem 3.53 Suppose that λ and λ̃ go to +∞ with λ̃/λ = O(1). Suppose
that ∇ · h = 0 in Rd. Let (u∞, p) be the solution to





µ∆u∞ +∇p = 0 in Rd \D,
µ̃∆u∞ +∇p = 0 in D,

u∞
∣∣
− = u∞

∣∣
+

on ∂D,

(pν + µ̃
∂u∞
∂ν

)

∣∣∣∣
−
= (pν + µ

∂u∞
∂ν

)

∣∣∣∣
+

on ∂D,

∇ · u∞ = 0 in Rd,

u∞(x)− h(x) = O(|x|1−d) as |x| → +∞,

p(x) = O(|x|−d) as |x| → +∞,

(3.188)
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where ∂u∞/∂ν|± = ∇su∞|±ν. There exists a positive constant C independent

of λ and λ̃ such that the following error estimate holds for λ and λ̃ large
enough: ∥∥∥ u− u∞

∥∥∥
W (Rd)

≤ C√
λ

∥∥∥∂h
∂ν

∥∥∥
W 2

−1/2
(∂D)

, (3.189)

where W (Rd) is defined by (2.29).

Equations (3.188) are the linearized equations of incompressible fluids or the
Stokes system. Existence and uniqueness of a solution to (3.188) can be proved
using layer potential techniques; see [47]. We refer the reader to [161, 162] for
a unique continuation and regularity results for (3.188).

A complete asymptotic expansion can be constructed. For doing so, let uj
for j ≥ 1 be defined by





µ∆uj +∇pj + µ∇pj−1 = 0 in Rd \D,
µ̃∆uj +∇pj + µ̃∇pj−1 = 0 in D,

uj
∣∣
− =

(
λ̃

λ

)j

uj
∣∣
+

on ∂D,

(
λ̃

λ

)j (
pj |+ν + µ

∂uj
∂ν

∣∣∣∣
+

)
−
(
pj |−ν + µ̃

∂uj
∂ν

∣∣∣∣
−

)
= 0 on ∂D,

∇ · uj = pj−1 in Rd,

uj(x) = O(|x|1−d) as |x| → +∞,

pj(x) = O(|x|−d) as |x| → +∞.

(3.190)

Here, p0 = p given by (3.188). Equations (3.190) are nonhomogeneous. In [47],
the following theorem is proved.

Theorem 3.54 There exists a positive constant C independent of λ and λ̃
such that the following error estimate holds for λ and λ̃ large enough and for
all integers J :

∥∥∥ u−u∞−
J∑

j=1

(
1

λj
χ(Rd \D)+

1

λ̃j
χ(D)) uj

∥∥∥
W (Rd)

≤ C
( 1

λJ+
1
2

+
1

λ̃J+
1
2

)∥∥∥∂h
∂ν

∥∥∥
W 2

−1/2
(∂D)

.

(3.191)
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Probabilistic Tools

In this chapter we introduce useful probabilistic tools for imaging in the pres-
ence of noise. In particular, we examine image characteristics with respect
to various data acquisition and processing schemes. We focus specifically on
issues related to image resolution, signal-to-noise ratio, and image artifacts.

The noise models discussed in this book are measurement and medium
(or cluttered) noises. They affect the stability and resolution of the imaging
functionals in very different ways.

Imaging involves measurement and processing of activated signals emanat-
ing from an object. Any practical measurement always contains an undesirable
component that is uncorrelated with (i.e., independent of) the desired signal.
This component is referred to as measurement noise. On the other hand,
medium noise models the uncertainty in the physical parameters of the back-
ground medium. In many practical situations, the physical parameters of the
background medium fluctuate spatially around a known background. Of great
concern in imaging is the question of how measurement and medium noises
are modeled and how the imaging process handles them-that is, whether they
are suppressed or amplified. We give in this section an introduction to proba-
bility theory that provides the basic tools for modeling imaging schemes with
waves in the presence of noise.

4.1 Random Variables

A characteristic of measurement noise is that it does not have fixed values in
repeated measurements. Such a quantity is described by a random variable.
The statistical distribution of a continuous random variable can be character-
ized by its probability density function (PDF). The PDF of a (real-valued)
random variable ξ is often denoted by pξ(x), which represents the probability
density of obtaining a specific value x for ξ in a particular measurement:

P(ξ ∈ [a, b]) =

∫ b

a

pξ(x)dx .
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Note that pξ is a nonnegative function whose total integral is equal to one.
Given the PDF it is possible to compute the expectation of a nice function
(bounded or positive) of the random variable φ(ξ), which is the weighted
average of φ with respect to the PDF pξ:

E[φ(ξ)] =

∫

R

φ(x)pξ(x)dx .

The most important expectations are the first- and second-order moments.
The mean of the random variable ξ is defined as

E[ξ] =

∫
xpξ(x) dx .

It is the first-order statistical moment. The variance is defined as

Var[ξ] = E[|ξ − E[ξ]|2] = E[ξ2]− E[ξ]2 ,

which is a second-order statistical moment. The variable σξ :=
√
Var[ξ] is

called the standard deviation, which is a measure of the average deviation
from the mean.

The PDF of measurement noise is not always known in practical situa-
tions. We often use parameters such as mean and variance to describe it. It is
then usual to assume that the noise has Gaussian PDF. This can be justified
by the maximum of entropy principle, which assumes that the PDF maxi-
mizes the entropy −

∫
pξ(x) log pξ(x) dx with the constraints

∫
pξ(x)dx = 1,∫

xpξ(x) dx = x0, and
∫
(x−x0)2pξ(x)dx = σ2. This PDF is nothing else than

the Gaussian PDF

pξ(x) =
1√
2πσ

exp
(
− (x− x0)

2

2σ2

)
, (4.1)

with mean x0 and variance σ2. Moreover, the measurement error often results
from the cumulative effect of many uncorrelated sources of uncertainty. As
a consequence, based on the central limit theorem, most measurement noise
can be treated as Gaussian noise. Recall here the central limit theorem: When
a random variable ξ is the sum of n independent and identically distributed
random variables (with finite variance), then the distribution of ξ is a Gaussian
distribution with the appropriate mean and variance in the limit n→ +∞. In
terms of PDFs, this means that, if a function h(x) is convolved with itself n
times, in the limit n → +∞, the convolution product is a Gaussian function
with a variance that is n times the variance of h(x), provided the area, mean,
and variance of h(x) are finite.

The following theorem, which is a consequence of Slutsky’s theorem, will
be useful.

Theorem 4.1 Let (ξn) and (ζn) be sequences of random variables. If ξn con-
verges in distribution to a random variable ξ and ζn converges in probability
to a non zero constant c, then ζ−1

n ξn converges in distribution to c−1ξ.
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Throughout this book, if ξ has the PDF (4.1), then we write ξ ∼ N (x0, σ
2)

with N (x0, σ
2) being the normal distribution of mean x0 and variance σ2.

4.2 Random Vectors

A d-dimensional random vector ξ is collection of d (real-valued) random vari-
ables (ξ1, . . . , ξd)

T . The distribution of a continuous random vector is charac-
terized by the PDF pξ:

P(ξ ∈ [a1, b1]× · · · × [ad, bd]) =

∫

[a1,b1]×···×[ad,bd]

pξ(x)dx, ∀aj ≤ bj .

The vector ξ = (ξ1, . . . , ξd)
T is independent if its PDF can be written as a

product of the one-dimensional PDFs of the components of the vector:

pξ(x) =

d∏

j=1

pξj (xj) for all x = (x1, . . . , xd) ∈ Rd ,

or equivalently,

E
[
φ1(ξ1) · · ·φd(ξd)

]
= E

[
φ1(ξ1)

]
· · ·E

[
φd(ξd)

]
, ∀φ1, . . . , φd ∈ Cb(R,R) .

Here, Cb(R,R) denotes the space of all bounded continuous real-valued func-
tions.

Example: a d-dimensional normalized Gaussian random vector ξ has the
Gaussian PDF

pξ(x) =
1√
(2π)d

exp(−|x|2
2

) .

This PDF can be factorized into the product of one-dimensional Gaussian
PDFs, which shows that ξ is a vector of independent random normalized
Gaussian variables (ξ1, . . . , ξd)

T .
In the general case, two formulas are of interest. The marginal formula

gives the PDF of a subvector extracted from a random vector: If

(
ξ1
ξ2

)
is a

random vector with PDF pξ1,ξ2(x1, x2), then ξ2 is a random vector with PDF

pξ2(x2) =

∫
pξ1,ξ2(x1, x2)dx1 ,

since for any test function φ we have

E[φ(ξ2)] =

∫∫
φ(x2)pξ1,ξ2(x1, x2)dx1dx2 =

∫
φ(x2)pξ2(x2)dx2 .

The conditioning formula gives the PDF of a subvector extracted from
a random vector given the observation of the complementary subvector: If
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(
ξ1
ξ2

)
is a random vector with PDF pξ1,ξ2(x1, x2), then, given ξ2 = x2, ξ1 is a

random vector with PDF

pξ1(x1|ξ2 = x2) =
pξ1,ξ2(x1, x2)

pξ2(x2)
. (4.2)

Indeed, this can be seen by taking the limit δx1 → 0 and δx2 → 0 in

P(ξ1 ∈ [x1, x1 + δx1)|ξ2 ∈ [x2, x2 + δx2))

=
P(ξ1 ∈ [x1, x1 + δx1), ξ2 ∈ [x2, x2 + δx2))

P(ξ2 ∈ [x2, x2 + δx2))
≈ pξ1,ξ2(x1, x2)δx1δx2

pξ2(x2)δx2
.

It is worth emphasizing that formula (4.2) holds if pξ2(x2) > 0, otherwise one
defines pξ1(x1|ξ2 = x2) = p0(x1), where p0 is an arbitrary PDF which plays
no role.

Of course, if the vectors ξ1 and ξ2 are independent, then pξ1(x1|ξ2 = x2) =
pξ1(x1) since the knowledge of ξ2 does not bring any information about ξ1.

As in the case of random variables, we may not always require or may not
be able to give a complete statistical description of a random vector. In such
cases, we work only with the first and second statistical moments. Let ξ =
(ξi)i=1,...,d be a random vector. The mean of ξ is the vector µ = (µj)j=1,...,d:

µj = E[ξj ] .

The covariance matrix of ξ is the matrix C = (Cjl)j,l=1,...,d:

Cjl = E
[
(ξj − E[ξj ])(ξl − E[ξl])

]
.

These statistical moments are enough to characterize the first two moments
of any linear combination of the components of ξ. Indeed, if β = (βj)j=1,...,d ∈
Rd, then the random variable Z = β · ξ =∑d

j=1 βjξj has mean:

E[Z] = β · µ =
d∑

j=1

βjE[ξj ] ,

and variance:

Var(Z) = β · Cβ =

d∑

j,l=1

Cjlβjβl .

As a byproduct of this result, we can see that the matrix C is positive semi-
definite.

If the variables are independent, then the covariance matrix is diagonal.
In particular:

Var
( d∑

j=1

ξj

)
=

d∑

j=1

Var(ξj) .

The reciprocal is false in general (i.e., the fact that the covariance matrix is
diagonal does not ensure that the vector is independent).
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4.3 Gaussian Random Vectors

A Gaussian random vector ξ = (ξ1, . . . , ξd)
T with mean µ and covariance

matrix R (we write ξ ∼ N (µ,R) with N (µ,R) being the normal distribution
of mean µ and covariance matrix R) has the PDF

p(x) =
1

(2π)d/2
√
detR

exp
(
− (x− µ) ·R−1(x− µ)

2

)
,

provided R is symmetric and positive definite. As mentioned in the case of
random variables, the Gaussian statistics is the one that is obtained from the
maximum entropy principle (given that the first- and second-order moments
of the random vector are specified) and also from the central limit theorem.
This distribution is characterized by

E[eiλ·ξ] =

∫

Rd

eiλ·xp(x)dx = exp
(
iλ · µ− λ ·Rλ

2

)
, λ ∈ Rd , (4.3)

which also shows that, if λ ∈ Rd, then the linear combination λ·ξ is a Gaussian
random variable N (λ · µ, λ ·Rλ).

The Gaussian property is robust: it is stable with respect to any linear
transform, and it is also stable with respect to conditioning. Indeed, if L
denotes the distribution and

(
ξ1
ξ2

)
is a Gaussian random vector (with ξ1 a

Rd1 -valued random vector and ξ2 a Rd2 -valued random vector):

L
((

ξ1
ξ2

))
= N

((
µ1

µ2

)
,

(
R11 R12

R21 R22

))
,

with the means µ1 ∈ Rd1 and µ2 ∈ Rd2 , the covariance matrices R11 of size
d1× d1, R12 of size d1× d2, R21 = RT

12 of size d2× d1, and R22 of size d2× d2,
then the distribution of ξ1 conditionally on ξ2 = x2 is Gaussian:

L
(
ξ1|ξ2 = x2

)
= N

(
µ1 +R12R

−1
22 (x2 − µ2), R11 −R12R

−1
22 R21

)
. (4.4)

This result is obtained from the application of the general conditioning formula
(4.2) and from the use of the block inversion formula

(
R11 R12

R21 R22

)−1

=

(
Q−1 −Q−1R12R

−1
22

−R−1
22 R21Q

−1 R−1
22 +R−1

22 R21Q
−1R12R

−1
22

)
,

where Q = R11 −R12R
−1
22 R21 is the Schur complement.

The extension to complex-valued random vectors is straightforward: a
complex-valued random vector ξ = (ξ1, . . . , ξd)

T has Gaussian statistics if
(ℜ ξ1, . . . ,ℜ ξd,ℑ ξ1, . . . ,ℑ ξd)T is a real-valued Gaussian random vector.

Let ξ = (ξ1, . . . , ξd)
T be a complex Gaussian random vector. We say

that ξ is circularly symmetric if its mean is zero and if its relation matrix
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(E[ξjξl])
d
j,l=1 is zero. Its distribution is characterized by its covariance matrix

(E[ξjξl])
d
j,l=1. For d = 1, i.e., for the case where ξ is a complex Gaussian

random variable, circular symmetry holds if and only if ℜ ξ and ℑ ξ are statis-
tically independent and identically distributed Gaussian statistics with mean
zero and equal variance.

4.4 Random Processes

Random signals measured in an imaging experiment are conveniently modeled
as random functions of time, which are known as random (or stochastic)
processes.

Remember that a random variable is a random number, in the sense that
a realization of the random variable is a real number and that the statistical
distribution of the random variable is characterized by its PDF. In the same
way, a random process (ξ(t))t∈Rd is a random function, in the sense that a
realization of the random process is a function from Rd to R, and that the dis-
tribution of (ξ(t))t∈Rd is characterized by the finite-dimensional distributions
(ξ(t1), . . . , ξ(tn)), for any n, t1, . . . , tn ∈ Rd.

As in the case of real random variables, we may not always require a
complete statistical description of a random process, or we may not be able
to obtain it even if desired. In such cases, we work with the first and second
statistical moments. The most important ones are

(i) Mean: m(t) = E[ξ(t)];
(ii) Variance: Var[ξ(t)] = E[(ξ(t)− E[ξ(t)])2];
(iii) Covariance function: R(t, t′) = E[(ξ(t)− E[ξ(t)])(ξ(t′)− E[ξ(t′)]].

4.4.1 Gaussian Random Processes

We say that a random process (ξ(t))t∈Rd is a real-valued Gaussian if any linear

combination ξλ =

n∑

i=1

λiξ(ti) has Gaussian distribution. In this case ξλ has

Gaussian distribution with PDF

pξλ(x) =
1√
2πσλ

exp
(
− (x−mλ)

2

2σ2
λ

)
, x ∈ R ,

where the mean and variance are given by

mλ =

n∑

i=1

λiE[ξ(ti)] =

n∑

i=1

λim(ti) ,

σ2
λ =

n∑

i,j=1

λiλjE[ξ(ti)ξ(tj)]−m2
λ =

n∑

i,j=1

λiλjR(ti, tj) .
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The first two moments (m(t))t∈Rd and (R(t, t′))t,t′∈Rd characterize the finite-
dimensional distribution of the process (ξ(t))t∈Rd . Indeed, the finite-dimensional
distribution of (ξ(t1), . . . , ξ(tn)) has PDF p(x1, . . . , xn) that can be obtained
by applying an inverse Fourier transform to

∫
ei

∑n
j=1 λjxjp(x1, . . . , xn)dx1 · · · dxn

= E[ei
∑n

j=1 λjξ(tj)] = E[eiξλ ] =

∫
eixpξλ(x)dx = exp

(
imλ − σ2

λ

2

)

= exp
(
i

n∑

j=1

λjm(tj)−
1

2

n∑

j,l=1

λjλlR(tj , tl)
)
,

which shows with (4.3) that (ξ(t1), . . . , ξ(tn)) has a Gaussian PDF with mean
(m(tj))j=1,...,n and covariance matrix (R(tj , tl))j,l=1,...,n. As a consequence
the distribution of a Gaussian process is characterized by the mean function
(m(t))t∈Rd and the covariance function (R(t, t))t,t′∈Rd .

It is rather easy to simulate a realization of a Gaussian process (ξ(t))t∈Rd

whose mean m(t) and covariance function R(t, t′) are given. If (t1, . . . , tn) is a
grid of points, then the following algorithm (Cholesky’s method) is a random
generator of (ξ(t1), . . . , ξ(tn)):

Algorithm 4.1 Random generator

1. Compute the mean vector Mi = E[ξ(ti)] and the covariance matrix Cij =
E[ξ(ti)ξ(tj)]− E[ξ(ti)]E[ξ(tj)].
2. Generate a random vector Z = (Z1, . . . , Zn) of n independent Gaussian random
variables with mean 0 and variance 1 (use randn inMatlab, or use the Box-Müller
algorithm).
3. Compute Y =M + C1/2Z.
Output: The vector Y has the distribution of (ξ(t1), . . . , ξ(tn)) because it has
Gaussian distribution and it has the correct mean and covariance.

Note that the computation of the square root of the matrix C is expensive
from the computational point of view, and one usually chooses the Cholesky
method to compute it.

4.4.2 Stationary Gaussian Random Processes

We say that (ξ(t))t∈Rd is a stationary stochastic process if the statistics of the
process is invariant to a shift in the origin: for any t0 ∈ Rd,

(ξ(t0 + t))t∈Rd
distribution

= (ξ(t))t∈Rd .

Let us consider a stationary Gaussian process (ξ(t))t∈Rd with mean zero
and autocovariance function C(τ) = E[ξ(t)ξ(t+ τ)]. The spectral representa-
tion of the real-valued stationary Gaussian process (ξ(t))t∈Rd is
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ξ(t) =
1

(2π)d/4

∫

Rd

eik·t
√
F [C](k)n̂kdk ,

with n̂k is a complex white noise, i.e., n̂k is complex-valued, Gaussian, n̂−k =
n̂k, E [n̂k] = 0, E [n̂kn̂k′ ] = 0, and E

[
n̂kn̂k′

]
= δ(k− k′) (the representation is

formal, one should in fact use stochastic integrals dŴk = n̂kdk). A complex
white noise is actually the Fourier transform of a real white noise: we have
n̂k = (2π)−d/2

∫
e−ik·tn(t)dt where n(t) is a real white noise, i.e., n(t) real-

valued, Gaussian, E [n(t)] = 0, and E [n(t)n(t′)] = δ(t− t′).
It is straightforward to simulate a realization of a stationary Gaussian pro-

cess (with mean zero and autocovariance c) using its spectral representation
and Fast Fourier Transforms. In dimension d = 1, if we fix a grid of points
ti = (i−1)∆t, i = 1, . . . , n, then one can simulate the vector (ξ(t1), . . . , ξ(tn))
by the following algorithm:

Algorithm 4.2 Realization of a stationary Gaussian process

1. Evaluate the covariance vector c = (C(t1), . . . , C(tn)).
2. Generate a random vector Z = (Z1, . . . , Zn) of n independent Gaussian random
variables with mean 0 and variance 1.
3. Filter with the element-wise square root of the (discrete) Fourier transform of
c:

Y = IFT
(√

DFT(c)×DFT(Z)
)
.

Output: The vector Y is a realization of (ξ(t1), . . . , ξ(tn)).

In practice one uses FFT and IFFT instead of DFT and IFT, and one
obtains a periodized version of the random vector (ξ(t1), . . . , ξ(tn)), due to
the FFT. This algorithm is much more efficient than the Cholesky’s method.

In imaging problems, a commonly used covariance function is of the form
C(τ) = exp(−|τ |2/l2). Here l is said to be the correlation length of the random
process. In this book, to model clutter (or medium noise), we use such a choice
for the covariance function.

4.4.3 Local Maxima of a Gaussian Random Field

Let Ω ⋐ R3 be a bounded domain and let (ξ(x))x∈Ω be a stationary Gaussian
random field with mean zero. The statistical distribution of the random field
is characterized by the covariance function:

C(x) = E
[
ξ(x′)ξ(x′ + x)

]
.

From now on we assume that C is smooth, so that the realizations of the
random field are smooth [5, Theorem 1.4.2]. As we will see below, the relevant
statistical information about local and global maxima of the field is in the
variance
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u20 = C(0) = E[ξ(x)2]

and in the Hessian matrix of the correlation function

Λ =
(E
[
∂xj

ξ(x)∂xl
ξ(x)

]

E
[
ξ(x)2

]
)
j,l=1,...,3

=
(
−
∂2xjxl

C(0)

C(0)

)
j,l=1,...,3

.

Let us denote byMΩ
u the number of local maxima of ξ(x) in Ω with values

larger than u:

MΩ
u = Card

{
local maxima of (ξ(x))x∈Ω with values larger than u

}
.

We have [4, Theorem 6.3.1]

E[MΩ
u ] =

|Ω|
Vc

u2

u20
exp

(
− u2

2u20

)(
1 +O

(u0
u

))
, for u≫ u0 ,

where Vc is the hotspot volume defined in terms of the determinant of the
Hessian of the correlation function as:

Vc =
4π2

(detΛ)1/2
.

4.4.4 Global Maximum of a Gaussian Random Field

Let us denote by ξΩmax the global maximum of the field over the domain Ω:

ξΩmax = max
x∈Ω

ξ(x) .

Using [4, Theorem 6.9.4] when |Ω| ≫ Vc, the statistical distribution of ξΩmax

is of the form

ξΩmax = u0

[
A
( |Ω|
Vc

)
+B

( |Ω|
Vc

)
Z0

]
,

where Z0 follows a Gumbel distribution with cumulative distribution function
P(Z0 ≤ x) = exp(−e−x),

A(V ) =
√

2 log(V ) +
log
[
2 log(V )

]
√
2 log(V )

,

B(V ) =
1√

2 log(V )
.

To leading order, the value of the global maximum is deterministic and given
by

ξΩmax ≃ u0

√
2 log

( |Ω|
Vc

)
.
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4.4.5 The local Shape of a Local Maximum

Using Eq. (4.4) one can show that, given that the random field ξ(x) has a
local extremum at x0 with peak amplitude u (with u ≫ u0), then we have
locally around x0:

ξ(x) ≃ u
[C(x− x0)

u20
+ o(1)

]
, [u≫ u0] .

To prove this, let us fix x0 ∈ R3. The random vector




ξ(x)
ξ(x0)
∇ξ(x0)




has Gaussian distribution:

N
(

0
0
0


 ,




C(0) C(x− x0) −∇C(x− x0)
T

C(x− x0) C(0) 0
−∇C(x− x0) 0 C(0)Λ



)
.

Applying Eq. (4.4), the distribution of ξ(x) given ξ(x0) = u and ∇ξ(x0) = 0
is

N
(C(x− x0)

C(0)
u,C(0)− ∇C(x− x0)

TΛ−1∇C(x− x0)

C(0)

)
.

This gives the desired result when u≫ u0 = C(0)1/2.

4.4.6 Realization of a Cluttered Medium

Let Ω be a bounded smooth domain. Let y ∈ Rd \ Ω. We consider the
Helmholtz equation:

(
∆x + k20(1 + νnoise(x))

)
Φk0(x, y) = δy in Rd ,

subject to the Sommerfeld radiation condition. Here, νnoise(x) is a random
process with mean zero. For instance, it may be a smooth, odd, and bounded
function of a stationary Gaussian process with mean zero and given covari-
ance function, multiplied by a characteristic function of a compact domain
within Ω. The composition by the smooth and bounded function ensures that
the process 1 + νnoise(x) remains bounded and bounded away from zero al-
most surely. The multiplication by the characteristic function ensures that the
fluctuations of the medium are compactly supported.

The random process νnoise(x) describes the random fluctuations of the
index of refraction in the medium. Since the coefficient of the equation is
random, the fundamental solution Φk0(x, y) is itself random. The relation
between the statistics of the fluctuations of the index of refraction and the



4.4 Random Processes 103

statistics of Φk0
(x, y) is highly nontrivial and nonlinear. In particular cluttered

noise, that is the difference between the random fundamental solution and the
background homogeneous fundamental solution, is not an additive white noise.

In order to simulate νnoise (and Φk0), we first generate on a grid of points
that covers the support of the characteristic function a realization of a sta-
tionary Gaussian random process using the method described in Section 4.4.
Then we apply the smooth and bounded function and we multiply by the
characteristic function.

Figure 4.1 shows a typical realization of a medium noise and its projection
on the finite-element mesh.

Fig. 4.1. Realization of a medium noise.





5

General Image Characteristics

Irrespectively of the methods used to acquire images, there are a number of
criteria by which the image characteristics can be evaluated and compared.
The most important of these criteria are spatial resolution and the signal-to-
noise ratio. This section covers a number of general concepts applicable to
multistatic imaging.

5.1 Spatial Resolution

There are a number of measures used to describe the spatial resolution of
an imaging modality. We focus on describing a point spread function (PSF)
concept and show how to use it to analyze resolution limitation in several
practical imaging schemes.

5.1.1 Point Spread Function

Consider an idealized object consisting of a single point. It is likely that the
image we obtain from it is a blurred point. Nevertheless, we are still able to
identify it as a point. Now, we add another point to the object. If the two
points are farther apart, we will see two blurred points. However, as the two
points are moving closer to each other, the image looks less like two points.
In fact, the two points will merge together to become a single blob when
their separation is below a certain threshold. We call this threshold value the
resolution limit of the imaging system. Formally stated, the spatial resolution
of an imaging system is the smallest separation of two point sources necessary
for them to remain resolvable in the resultant image.

In order to arrive at a more quantitative definition of the resolution, we
next introduce the point spread function concept. The relationship between
an arbitrary object function I(x) and its image Î can typically be described
by Î(x) = (I ⋆ h)(x), where the convolution kernel function h(x) is known
as the point spread function since Î(x) = h(x) for I(x) = δ0(x). In a perfect
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imaging system, the PSF h(x) would be a delta function, and in this case the
image would be a perfect representation of the object. If h(x) deviates from
a δ−function, Î(x) will be a blurred version of I(x). The amount of blurring
introduced in Î(x) by an imperfect h(x) can be quantified by the width of
h(x). The spatial resolution, Wh, is clearly related to the PSF. It is defined
as the full width of h(x) at its half maximum; alternatively the half width of
h(x) at its first zero.

If the PSF is a Gaussian function,

h(x) = e−
x2

2σ2 ,

where σ is the standard deviation of the distribution, then the resolution,
defined as the full width at the half maximum, is given by 2

√
2 log 2σ ≈ 2.35σ.

Consider now the problem of reconstructing a one-dimensional image from
its truncated Fourier series. The image reconstructed based on the truncated
Fourier series is given by

Î(x) =
1√
2π
∆k

N/2−1∑

n=−N/2

S(n∆k)ein∆k x ,

where S(n∆k) = 1√
2π

∫
R
I(x)e−in∆k x dx. The underlying PSF is given by

h(x) = ∆k
sin(πN∆k x)

sin(π∆k x)
,

with ∆k being the fundamental frequency and N the number of Fourier sam-
ples. Then the resolution (defined as the half width of h at its first zero) is
Wh = 1/(N∆k). Therefore, we cannot improve image resolution and reduce
the number of measured data points at the same time. This assertion is often
referred to as the uncertainty relation of Fourier imaging, and in practice, one
chooses N as large as signal-to-noise ratio as long as imaging time permits.

5.1.2 Rayleigh Resolution Limit

In imaging with waves, the Rayleigh resolution limit is defined as the minimum
distance that two point-source objects have to be in order to distinguish the
two sources from each other.

Using the Helmholtz-Kirchhoff identity (3.80), it can be seen that in three
dimensions the PSF is a sinc function,

h(x) = sinc(k0x) =
sin k0x

k0x
(= j0(k0x)) .

Therefore, the two point sources can be resolved if the peak intensity of the
sinc PSF from one source coincides with the first zero-crossing point of the
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PSF of the other, i.e., if the two source points are separated by (at least)
one-half the wavelength λ := 2π/k0. If the PSF is given by

h(x) =
J1(k0x)

k0x
,

J1 being the Bessel function of the first-order, then the resolution is given by
Wh ≈ 0.61λ since the first positive zero of J1 is approximately 3.83.

5.2 Signal-To-Noise Ratio

In imaging it is useful to measure the relative strength of a signal or informa-
tion versus noise level. For doing so, we define the concept of signal-to-noise
ratio.

Let Î = I + ξ be a measured quantity containing the true signal I and the
noise component ξ with zero mean and standard deviation σξ. The signal-to-

noise ratio (SNR) for Î from a single measurement is defined by

(SNR)Î =
|I|
σξ

.

We remark that the signal-to-noise ratio is sometimes defined by (|I|/σξ)2 and
that the signal-to-noise ratio in logarithmic decibel scale (dB) is 20 log(|I|/σξ).

If N measurements are taken such that În = I+ξn are obtained to produce

1

N

N∑

n=1

În = I +
1

N

N∑

n=1

ξn ,

then the signal-to-noise ratio for (1/N)
∑N

n=1 În is

|I|√
Var[ 1N

∑N
n=1 ξn]

=
√
N

|I|
σξ

=
√
N(SNR)Î ,

assuming that the noise for different measurements is uncorrelated. Thus N
signal averaging yields an improvement by a factor of

√
N in the signal-to-

noise ratio. Recall that two signals, ξ1 and ξ2, are said to be uncorrelated
if

E
[
(ξ1 − E[ξ1])(ξ2 − E[ξ2])

]
= 0 .
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Electrical Impedance Tomography

There are a variety of medical problems for which it would be useful to know
the distribution of the electrical properties inside the body. By electrical prop-
erties we mean specifically the electric conductivity and permittivity. The
electric conductivity is a measure of the ease with which a material conducts
electricity; the electric permittivity is a measure of how readily the charges
within a material separate under an imposed electric field. Both of these prop-
erties are of interest in medical applications, because different tissues have
different conductivities and permittivities.

One important medical problem for which knowledge of internal electrical
properties would be useful is the detection of breast cancer. Experimental
results show that the conductivity of the cancerous tissue is 5 to 8 times
larger than the one of normal tissue [176, 207]. In this chapter we describe
general algorithms used in electrical impedance tomography (EIT).

6.1 Mathematical Model

In this section we present the mathematical model for EIT. We use this model
to describe some reconstruction algorithms.

The electric potential or voltage u in the body Ω is governed by

∇ · κ(x, ω)∇u = 0, x ∈ Ω . (6.1)

Here the (frequency dependent) admittivity κ is given by κ(x, ω) = σ(x, ω) +
iωε(x, ω), where σ is the electric conductivity, ε is the electric permittivity,
and ω is the angular frequency of the applied current.

In practice, we apply currents to electrodes on the surface ∂Ω of the body.
These currents produce a current density on the surface whose inward pointing
normal component is denoted by g. Thus,

κ
∂u

∂ν
= g on ∂Ω . (6.2)
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The mathematical model of EIT is (6.1) and (6.2), together with the con-
servation of charge condition

∫
∂Ω

g = 0 and the condition
∫
∂Ω

u = 0, which
amounts to choosing a reference voltage. The injected currents can be approx-
imated by linear combinations of dipoles. A dipole at a point z ∈ ∂Ω is given
by −|∂Ω| ∂δz/∂T , ∂/∂T being the tangential derivative at ∂Ω. The operator

Λκ : W̃ 2
−1/2(∂Ω) → W̃ 2

1/2(∂Ω)

g 7→ u|∂Ω

is called the Neumann-to-Dirichlet boundary map. Here, W̃ 2
−1/2(∂Ω) is the

set of functions g in W 2
−1/2(∂Ω) satisfying (g, 1)−1/2,1/2 = 0 and W̃ 2

1/2(∂Ω) is

the set of functions in W 2
1/2(∂Ω) with mean-value zero.

Green’s formula yields the reciprocity property of the Neumann-to-Dirichlet
data:

(f, Λκ[g])−1/2,1/2 = (g, Λκ[f ])−1/2,1/2 , (6.3)

for f, g ∈ W̃ 2
−1/2(∂Ω).

The reconstruction problem in EIT is to obtain an approximation of κ in
Ω from the boundary measurements of u on ∂Ω. This problem is challenging
because it is not only nonlinear, but also severely ill-posed, which means that
large changes in the interior can correspond to very small changes in the
measured data.

From a theoretical point of view, all possible boundary measurements
uniquely determine κ in Ω. However, in practice we are limited to a finite
number of current-to-voltage patterns.

Before describing classical reconstruction algorithms in EIT, we explain the
fundamental shortcomings of EIT in detail by use of its discretized version.

6.2 Ill-Conditioning

For simplicity, we suppose that Ω is a square region in R2. We divide Ω
uniformly into N × N sub-squares Ωij with the center point (xi, yj), where
i, j = 0, . . . , N − 1. The goal of EIT is to determine N ×N admittivity values
under the assumption that the admittivity κ is constant on each subsquare
Ωij , say κij . Let

Σ =

{
κ : κ|Ωij

= constant for i, j = 0, . . . , N − 1

}
.

For a given κ ∈ Σ, the solution u of the direct problem (6.1) and (6.2) can
be approximated by a vector U = (u0, u1, . . . , uN2−1) such that each interior
voltage uk, k = i+ jN is determined by the weighted average (depending on
κ) of the four neighboring potentials. More precisely, a discretized form of
(6.1) is given by
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uk =
1

akk

[
akkN

ukN
+ akkS

ukS
+ akkE

ukE
+ akkW

ukW

]
,

with

akk = −
∑

l

akkl
and akkl

=
κkκkl

κk + κkl

for l = N,S,E,W .

Here kN , kS , kE , kW denote north, south, east, and west neighboring of k−th
point. The discretized equation (6.1) with the Neumann boundary condition
(6.2) can be written as a linear system AκU = G, where G is the injection
current vector associated with g. Let F denote the small-size sub-vector of U
restricted to ∂Ω, which corresponds to the boundary voltage potential on ∂Ω.
Then the inverse problem is to determine κ, or equivalently Aκ, from one or
several measurements of current-to-voltage pairs (Gm, Fm),m = 1, . . . ,M .

The fundamental shortcoming of EIT for providing high resolution images
is due to the fact that reconstructing Aκ from (Gm, Fm),m = 1, . . . ,M , is ex-
ponentially difficult as the matrix size Aκ increases. More precisely, the value
of the potential at each Ωij inside Ω can be expressed as the weighted average
of its neighboring potentials where weights are determined by the admittivity
distribution. Therefore, the measured data F is entangled in the global struc-
ture of the admittivity distribution in a highly nonlinear way and any internal
admittivity value κij has a little influence on boundary measurements if Ωij

is away from the boundary. This phenomenon causes the ill-posedness nature
of EIT. Nevertheless, as it will be shown later, a multifrequency approach can
be successfully employed to recover stably admititvity distributions and to
eliminate modeling errors.

6.2.1 Static Imaging

Static image reconstruction problem is based on iterative methods. An im-
age reconstruction algorithm iteratively updates the admittivity distribution
until it minimizes in the least-squares sense the difference between measured
data and computed boundary voltages. As part of each iteration in the min-
imization, a forward solver is used to determine the boundary voltages that
would be produced given the applied currents. This technique was first intro-
duced in EIT in the 80’s following a number of variations and improvements.
These include utilization of a priori information, various forms of regular-
ization (Tikhonov, l1, or total variation regularizations) and adaptive mesh
refinement. Even though this approach is widely adopted for static imaging
by many researchers, it requires a large amount of computation time for pro-
ducing static images even with low spatial resolution and poor accuracy.

Because of the fundamental limitations of EIT, it seems from a practical
point of view reasonable to restrict ourselves to find the deviation of the
admittivity from an assumedly known admittivity.
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6.2.2 Dynamic Imaging

The algorithms described here are based on approximations to the linearized
EIT problem.

Barber-Brown Backprojection Algorithm

The Barber-Brown Backprojection algorithm is the first fast and useful al-
gorithm in EIT although it provides images with very low resolution. It is
based on the assumption that the admittivity does not differ very much from
a constant.

For simplicity, suppose that Ω is the unit disk in R2 and κ is a small
perturbation of a constant κ = κ0 + δκ in Ω. In the simplest case we assume
κ0 = 1, so that

κ(x) = 1 + δκ(x), |δκ(x)| ≪ 1, x ∈ Ω , (6.4)

and we further assume that δκ = 0 on ∂Ω. Let u0 and u denote the po-
tentials corresponding to κ0 and κ with the same Neumann boundary data
g = −2π∂δz/∂θ at a point z ∈ ∂Ω. Writing u = u0 + δu, δu satisfies approxi-
mately the equation

−∆δu ≈ ∇δκ · ∇u0 in Ω , (6.5)

with the homogeneous boundary condition. Here, the term ∇δκ · ∇δu is ne-
glected.

Observe that

u0(x) =
x · z⊥
|x− z|2 ,

where z⊥ is the rotate of z by π/2. Next, we introduce a holomorphic function
in Ω whose real part is −u0:

Ψz(x) := s+ it := − x · z⊥
|x− z|2 + i

1− z · x
|x− z|2 .

Then we can view Ψz as a transform which maps the unit diskΩ onto the upper
half plane Ω̃ := {s + it : t > 1/2}. Hence, we can view x as a function with

respect to Ψz = s+ it defined in Ω̃. Let δ̃uz(Ψz(x)) = δu(x) and δ̃κz(Ψz(x)) =
δκ(x). Using the fact that ∇s · ∇t = 0 and |∇s| = |∇t|, it follows from (6.5)
that 




∆δ̃uz = −∂δ̃κz
∂s

in Ω̃ ,

∂δ̃uz
∂t

∣∣∣∣
t=1/2

= 0 .

Hence, if δ̃κz is independent of the t−variable, δ̃uz depends only on s and

δ̃κz. With the notation z = (cos θ, sin θ), Barber and Brown derived from this
idea the following reconstruction formula:
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δκ(x) = δ̃κz(Ψz(x)) =
1

2π

∫ 2π

0

∂

∂s
δ̃uz(s+

i

2
) dθ .

Dynamic Imaging

Suppose that currents gn, n = 1, . . . , N, are applied on ∂Ω. Application of gn

gives rise to the potential un inside Ω. In dynamic imaging, we measure the
boundary voltage potential fn = un|Ω to reconstruct the change of the admit-
tivity δκ from the relation between gn and fn. Let un0 denote the background
potential, that is, the solution to





∆un0 = 0 in Ω ,

∂un0
∂ν

= gn on ∂Ω ,
∫
∂Ω

un0 = 0 .

Set δun = un − un0 . The reconstruction algorithm is based on the following
identity

∫

Ω

δκ∇un0 · ∇um0 =

∫

∂Ω

(gnfm0 − fngm)−
∫

Ω

δκ∇δun · ∇um0 .

Since the last term in the above identity can be regarded as negligibly small,
the perturbation δκ can be computed from

∫

Ω

δκ∇un0 · ∇um0 = b[n,m] , (6.6)

where b[n,m] =
∫
∂Ω

(gnfm0 − fngm).
In order to construct δκ, we divide the domain Ω into L small subregions

as Ω = ∪L
l=1Ωl and assume that δκ is constant (= δκl) in each subregion

Ωl. With this kind of discretization, we can transform (6.6) into matrix form.
To do this, we use a single index j = 1, . . . , J with J = N2 for the index
pair (m,n) with j = N(m − 1) + n, and introduce the sensitivity matrix
M = [Mjl] ∈ RJ×L with its entries Mjl given by

Mjl =

∫

Ωl

∇un0 · ∇um0 dx (j ↔ (m,n)) ,

and a data vector X ∈ RJ with its jth entry Xj given by

Xj = b[n,m] (j ↔ (m,n)).

Upon writing the vector A = (δκl)l ∈ CL, we obtain the following linear
system

MA = X . (6.7)

The matrix M is called the sensitivity matrix. It depends on the data col-
lection. The distribution of its singular values determines the spatial image
resolution.



116 6 Electrical Impedance Tomography

6.2.3 Electrode Model

The continuum model (6.1) and (6.2) is a poor model for real experiments,
because we do not know the current density g. In practice, we know only the
currents that are sent down wires attached to discrete electrodes, which in
turn are attached to the body. One might approximate the unknown current
density as a constant over each electrode, but this model also turns out to be
inadequate. We need to account for two main effects: the discreteness of the
electrodes, and the extra conductive material (the electrodes themselves) we
have added. We should account for the electrochemical effect that takes place
at the contact between the electrode and the body. This effect is the formation
of a thin, highly resistive layer between the electrode and the body. The
impedance of this layer is characterized by a number zn, called the effective
contact impedance.

Let En denote the part of ∂Ω that corresponds to the nth electrode and
let In be the current sent to the electrode En. The electrode model consists
of (6.1), ∫

En

κ
∂u

∂ν
= In, n = 1, . . . , N ,

κ
∂u

∂ν
= 0 in the gap between the electrodes,

the constraint

u+ znκ
∂u

∂ν
= Vn on En, n = 1, . . . , N ,

where Vn, for n = 1, . . . , N , is the measured potential on the electrode En

and zn is the contact impedance assumed to be known, together with the
conditions

N∑

n=1

In = 0 (conservation of charge)

and
N∑

n=1

Vn = 0 (choice of a ground).

This model has been shown to have a unique solution and able to predict
the experimental measurements.
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Ultrasound and Microwave Tomographies

Propagation of acoustical and electromagnetic waves in biological tissue is de-
scribed by linear wave equations. Although the physical interpretation varies,
these equations largely coincide. Ultrasound and microwave tomographies can
be done in the time domain and the frequency domain. A standard inversion
technique in ultrasound and microwave imaging in the frequency domain is
the diffraction tomography.

7.1 Born Approximation

In ultrasound and microwave imaging, the object to be imaged is irradiated
by a plane wave U(x) = eiωx·θ, with the wavelength λ := 2π/ω, travelling
in the direction of the unit vector θ. The relevant equation is the Helmholtz
equation

∆u+ ω2(1 + V )u = 0 in Rd ,

subject to the Sommerfeld radiation condition on the scattered field

us := u− U

at infinity, where the object is given by the function V , which vanishes outside
the object. The total field u is measured outside the object for many directions
θ. From all these measurements, the function V has to be determined.

The scattered field u(s) satisfies the Sommerfeld radiation condition and
the Helmholtz equation

∆u(s)(x) + ω2u(s)(x) = −ω2(eiωx·θ + u(s)(x))V (x), x ∈ Rd . (7.1)

Now we consider the Born approximation for weakly scattering target. We
assume that the function V is supported in |x| < ρ and |V | ≪ 1. Then we can
neglect u(s) on the right-hand side of (7.1), obtaining

∆u(s)(x) + ω2u(s)(x) ≈ −ω2eiωx·θV (x), x ∈ Rd .
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This equation can be solved for u(s) with the help of the outgoing fundamental
solution Γω for the Helmholtz operator ∆+ ω2. We have

u(s)(x) ≈ −ω2

∫

|y|<ρ

Γω(x, y)e
iωθ·yV (y) dy, x ∈ Rd . (7.2)

Γω is the outgoing fundamental solution to the Helmholtz equation in Rd:

(∆+ ω2)Γω(x, y) = δx(y) in Rd , (7.3)

subject to the outgoing radiation condition. Here δx is the Dirac mass at x.
We have Γω(x, y) = Γω(x − y, 0) and, in dimension d = 2 or 3, Γω(x, 0) is
given by (3.52) and it has the plane wave decomposition (3.55).

7.2 Diffraction Tomography Algorithm

In the frequency domain, from measurements at a single frequency or ban-
dlimited measurements, diffraction tomography can be used to reconstruct
within the Born approximation a low-pass version of the electromagnetic tar-
get. The principal of diffraction tomography computes the Fourier transform
of the reflectivity function of the weakly scattering target from the Fourier
transform of the measured scattered data. The computation is based on the
Weyl representation (3.55) of cylindrical and spherical waves.

To present the basics of diffraction tomography, we first recall that the fun-
damental solution Γω has the plane wave decomposition (3.55). Substituting
(3.55) into the Born approximation (7.2) for the scattered field u(s) yields

u(s)(x) ≈ iω2cd

∫

Rd−1

∫

|y|<ρ

V (y)

β(α)
ei(β(α)|xd−yd|+α·(x̃−ỹ))eiωθ·y dy dα , (7.4)

where y = (ỹ, yd).
Suppose for simplicity that d = 2, θ = (0, 1) and u(s) is measured on the

line x2 = l, where l is greater than any y2-coordinate within the object. Then
(7.4) may be rewritten as

u(s)(x1, l) ≈
iω2

4π

∫ +∞

−∞
dα

∫

|y|<ρ

V (y)

β(α)
ei(β(α)(l−y2)+α(x1−y1))eiωy2 dy .

Recognizing part of the inner integral as the two-dimensional Fourier trans-
form of the reflectivity function V evaluated at (α, β(α)− ω) we find

u(s)(x1, l) ≈
iω2

2

∫ +∞

−∞

1

β(α)
ei(β(α)l+αx1)FV (α, β(α)− ω) dα ,

where
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F(V )(α, β) =
1

2π

∫
V (y)e−iαy1−iβy2dy .

Taking the one-dimensional Fourier transform F1 of u(s)(x1, l),

F1(u
(s))(α, l) =

1√
2π

∫
u(s)(y1, l)e

−iαy1dy1 ,

we obtain

F1(u
(s))(α, l) ≈ iω2

√
π

2

1√
ω2 − α2

ei
√
ω2−α2lF(V )(α,

√
ω2 − α2 − ω) ,

for |α| < ω.
This expression relates the two-dimensional Fourier transform of V to the

one-dimensional Fourier transform of the scattered field at the receiver line
x2 = l.

The factor

iω2

√
π

2

1√
ω2 − α2

ei
√
ω2−α2l

is a simple function of α for a fixed receiver line and operating frequency ω.
As α varies from −ω to ω, the coordinates (α,

√
ω2 − α2 − ω) in the Fourier

transform of V trace out a semicircular arc. The endpoints of this semicircular
arc are at the distance

√
2 ω from the origin in the Fourier domain. There-

fore, if the object is illuminated from many different θ-directions, we can fill
up a disk of diameter

√
2 ω in the Fourier domain and then approximately

reconstruct V (x) by direct Fourier inversion. The reconstructed object is a
low-pass filtered version of the original one.

7.3 Time-Reversal Techniques

From time-domain or broadband measurements, time-reversal techniques
yield direct reconstruction of V within the Born approximation. The main
idea of time-reversal is to take advantage of the reversibility of the wave equa-
tion in order to back-propagate signals to the support of V that reflected them.
In the context of inverse source problems, one measures the scattered wave
on a closed surface surrounding the support of V , and retransmits it through
the background medium in a time-reversed chronology. Then the perturbation
will travel back to the support of V .

Consider the wave equation in the free space Rd, d = 2 or 3,





∂2u

∂t2
(x, t)−∆u(x, t) =

dδ0
dt

(t)f(x), (x, t) ∈ Rd × R ,

u(x, t) = 0 and
∂u(x, t)

∂t
= 0, t < 0 ,

(7.5)
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where δ0 is the Dirac mass at 0 and the source f is real-valued, smooth and
has a smooth compact support.

Let Ω be a smooth bounded domain in Rd containing the support of f .
Let g(y, t) be defined as g(y, t) := u(y, t) for all y ∈ ∂Ω and t ∈ [0, T ], where,
in three dimensions, T is supposed to be sufficiently large such that

u(x, t) =
∂u(x, t)

∂t
= 0

for t ≥ T and x ∈ Ω. It is easy to see that g is smooth.
Our aim in this section is to reconstruct an approximation of the source f

from g on ∂Ω × [0, T ].
We introduce the time-dependent Green function

Γ (x, y, s, t) =
1

2π

∫

R

Γω(x, y) exp(−iω(t− s))dω , (7.6)

where Γω is the outgoing fundamental solution (7.3) to the Helmholtz equa-
tion (∆ + ω2) in Rd subject to the outgoing radiation condition. The time-
dependent Green function is the solution of the free space wave equation





∂2Γ

∂t2
(x, y, s, t)−∆yΓ (x, y, s, t) = −δx(y)δs(t), (y, t) ∈ Rd × R ,

Γ (x, y, s, t) =
∂Γ

∂t
(x, y, s, t) = 0, y ∈ Rd, t < s ,

where δx and δs are the Dirac masses at x and at s. Note that Uy(x, t) intro-
duced in (2.56) is nothing else than Γ (x, y, 0, t). Moreover,

g(y, t) = −
∫

Ω

∂Γ

∂t
(z, y, 0, t)f(z) dz, y ∈ ∂Ω, t ∈ [0, T ] . (7.7)

7.3.1 Ideal Time-Reversal Imaging Technique

We introduce the solution v of the following wave problem




∂2v

∂t2
(x, t)−∆xv(x, t) = 0, (x, t) ∈ Ω × [0, T ] ,

v(x, 0) =
∂v

∂t
(x, 0) = 0, x ∈ Ω ,

v(x, t) =
1

2
g(x, T − t), (x, t) ∈ ∂Ω × [0, T ] .

(7.8)

The time-reversal imaging functional I(1)
TR(x) is defined by

I(1)
TR(x) = v(x, T ), x ∈ Ω . (7.9)

In order to make I(1)
TR(x) explicit, we introduce the causal Dirichlet Green

function (also called retarded Dirichlet Green function) Gc(x, y, s, t) defined
as the solution of the following wave equation
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∂2Gc

∂t2
(x, y, s, t)−∆yG

c(x, y, s, t) = −δx(y)δs(t), (y, t) ∈ Ω × R ,

Gc(x, y, s, t) = 0,
∂Gc

∂t
(x, y, s, t) = 0, y ∈ Ω, t < s ,

Gc(x, y, s, t) = 0, (y, t) ∈ ∂Ω × R .

We also introduce the anticausal Dirichlet Green function (also called ad-
vanced Dirichlet Green function) Ga(x, y, s, t) defined as the solution of the
following wave equation





∂2Ga

∂t2
(x, y, s, t)−∆yG

a(x, y, s, t) = −δx(y)δs(t), (y, t) ∈ Ω × R ,

Ga(x, y, s, t) = 0,
∂Ga

∂t
(x, y, s, t) = 0, y ∈ Ω, t > s ,

Ga(x, y, s, t) = 0, (y, t) ∈ ∂Ω × R .

Using the time-reversibility of the wave equation, the anticausal Green func-
tion is given in terms of the causal Green function by

Ga(x, y, s, t) = Gc(x, y, s, 2s− t) = Gc(x, y, t, s) . (7.10)

Finally we introduce the symmetric Dirichlet Green function:

G(x, y, s, t) =
1

2

(
Ga(x, y, s, t)χ((−∞, s))(t) +Gc(x, y, s, t)χ((s,∞))(t)

)
,

where χ((−∞, s)) and χ((s,∞)) are the characteristic functions of the inter-
vals (−∞, s) and (s,∞), respectively. The function G contains both the causal
and anticausal Green functions and it is a solution of




∂2G

∂t2
(x, y, s, t)−∆yG(x, y, s, t) = −δx(y)δs(t), (y, t) ∈ Ω × R,

G(x, y, s, t) = 0, (y, t) ∈ ∂Ω × R .

We can then express the time-reversal imaging functional I(1)
TR as

I(1)
TR(x) = v(x, T ) =

1

2

∫ T

0

∫

∂Ω

∂Gc(x, y, s, T )

∂νy
g(y, T − s)dσ(y)ds ,

where ∂/∂νy denotes the outward normal derivative at y ∈ ∂Ω. The relation
(7.10) yields

I(1)
TR(x) =

1

2

∫ T

0

∫

∂Ω

∂Ga(x, y, T, s)

∂νy
g(y, T − s)dσ(y)ds

=

∫ T

0

∫

∂Ω

∂G(x, y, T, s)

∂νy
g(y, T − s)dσ(y)ds

=

∫ T

0

∫

∂Ω

∂G(x, y, 0, t)

∂νy
g(y, t)dσ(y)dt ,
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because G is even. Since g(x, t) = 0 for t ≥ T and for t ≤ 0,

I(1)
TR(x) =

∫

R

∫

∂Ω

∂G(x, y, 0, t)

∂νy
g(y, t)dσ(y)dt . (7.11)

In identity (7.11), the dependence of the time-reversal functional I(1)
TR on

the boundary data g is explicitly shown. Moreover, it follows from (7.7) that

I(1)
TR(x) = −

∫

Ω

f(z)

∫

R

∫

∂Ω

∂G(x, y, 0, t)

∂νy

∂Γ

∂t
(z, y, 0, t)dσ(y)dt dz . (7.12)

The reason why we have chosen to express the functional I(1)
TR in terms of the

symmetric Green function G rather than in terms of the causal Green function
Gc will be clear later.

Now we prove that I(1)
TR(x) gives a perfect image of f(x). For doing so, we

denote

Gω(x, y) =

∫

R

G(x, y, 0, t)eiωtdt .

Then from (7.6), (7.12), and Parseval’s relation (2.32), we have

I(1)
TR(x) = − i

2π

∫

Ω

f(z)

∫

R

ω

∫

∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y) dω dz .

Moreover, by integrating by parts over Ω we get

∫

∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y) = Γω(z, x)−Gω(x, z) = Γω(x, z)−Gω(x, z) ,

and recalling that Gω is real-valued because t→ G(x, y, 0, t) is real and even,
we have

ℑ
∫

∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y) = ℑ

{
Γω(x, z)

}
= −ℑ{Γω(x, z)} .

Therefore,

I(1)
TR(x) = − 1

2π

∫

Ω

f(z)

∫

R

ωℑ{Γω(x, z)} dω dz . (7.13)

Recall that
1

π

∫

R

ωℑ{Γω(x, z)} dω = −δz(x) , (7.14)

which follows from (2.27) or equivalently, from using

lim
t→0+

∂Γ

∂t
(x, z, 0, 0) = −δz(x)

and (7.6).
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Finally, from (7.13) it follows that

2I(1)
TR(x) = f(x) .

Note that the choice of the symmetric Dirichlet Green function is justified
by the fact that its Fourier transform is real-valued. The ideal time-reversal

imaging functional I(1)
TR yields a perfect image of f . However, we need to com-

pute the symmetric Dirichlet Green function G associated with the domain
Ω. In the general case, it may be difficult to find an explicit expression for G.
In the next section we introduce a modified time-reversal imaging functional
where G is replaced with the free space fundamental solution Γ and show that
the modified functional yields a good approximation of the source term f .

7.3.2 A Modified Time-Reversal Imaging Technique

In this section, we present a modified approach to the time-reversal concept
using “free boundary conditions”. For s ∈ [0, T ] we introduce the function vs
defined as the solution to the wave problem





∂2vs
∂t2

(x, t)−∆xvs(x, t) =
dδs
dt

(t)g(x, T − s)δ∂Ω(x), (x, t) ∈ Rd × R ,

vs(x, t) = 0,
∂vs
∂t

(x, t) = 0, x ∈ Rd, t < s .

Here, δ∂Ω is the surface Dirac measure on ∂Ω and g is the measured data.
We define a modified time-reversal imaging functional by

I(2)
TR(x) =

∫ T

0

vs(x, T )ds, x ∈ Ω . (7.15)

Note that

vs(x, t) = −
∫

∂Ω

∂Γ

∂t
(x, y, s, t)g(y, T − s) dσ(y) .

Consequently, the functional I(2)
TR can be expressed in terms of the free-space

fundamental solution Γ as follows:

I(2)
TR(x) = −

∫ T

0

∫

∂Ω

∂Γ

∂t
(x, y, s, T )g(y, T − s)dσ(y)ds,

= −
∫

R

∫

∂Ω

∂Γ

∂t
(x, y, 0, t)g(y, t)dσ(y)dt x ∈ Ω . (7.16)

Note that I(2)
TR is not exactly equivalent to I(1)

TR but is an approximation.
Indeed, denoting by

gω(y) =

∫
g(y, s)eiωsds



124 7 Ultrasound and Microwave Tomographies

the Fourier transform of g(s, y), we have from (7.6) and (7.7)

gω(y) = iω

∫

Ω

Γω(z, y)f(z) dz .

Parseval’s relation and (7.6) give

I(2)
TR(x) = −

∫ T

0

∫

∂Ω

∂Γ

∂t
(x, y, 0, t)g(y, t)dσ(y)dt

=
1

2π

∫

R

∫

∂Ω

iωΓω(x, y)gω(y)dσ(y)dω ,

=
1

2π

∫

Rd

f(z)

∫

R

∫

∂Ω

ω2Γω(x, y)Γω(z, y)dσ(y)dωdz .

Using the Helmholtz-Kirchhoff identity (3.82)

∫

∂Ω

Γω(x, y)Γω(z, y)dσ(y) ≈ − 1

ω
ℑ{Γω(x, z)} ,

which is valid when Ω is a sphere with a large radius in Rd, we find

2I(2)
TR(x) ≈ − 1

π

∫

Rd

f(z)

∫

R

ωℑ{Γω(x, z)} dωdz .

Using (7.14), we finally obtain that

2I(2)
TR(x) ≈ f(x) ,

which yields

I(2)
TR(x) ≈ I(1)

TR(x) .

Note that, from (7.7), the operator T : f → g can be expressed in the
form

T (f)(y, t) = g(y, t) = −
∫

Rd

∂Γ

∂t
(x, y, 0, t)f(x)dx, (y, t) ∈ ∂Ω × [0, T ] .

Then its adjoint T ∗ satisfies

T ∗(g)(x) = −
∫

R

∫

∂Ω

∂Γ

∂t
(x, y, 0, t)g(y, t)dσ(y)dt ,

which can be seen from (7.16) to be the time-reversal functional I(2)
TR.
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Time-Harmonic Reverse-Time Imaging With
Additive Noise

In this chapter we consider acoustic and microwave imaging in the presence of
measurement noise. Within the Born approximation, we analyze the stability
and the resolution properties of reverse-time imaging.

8.1 The Data Set

Let us consider the propagation of scalar waves in a three-dimensional
medium. In the presence of a localized reflector, the speed of propagation
can be modeled by

1

c2(x)
=

1

c20

(
1 + Vref(x)

)
. (8.1)

Here
- the constant c0 is the known background speed. For simplicity, we assume
that c0 = 1;
- the local variation Vref(x) of the speed of propagation induced by the reflector
at zref is of the form

Vref(x) = σrefχ(Ωref)(x− zref) , (8.2)

where σref is the reflectivity of the reflector, zref is its center, and Ωref is a
compactly supported domain with volume l3ref that models its spatial support.

Suppose that we have co-localized time-harmonic transmitter and receiver
arrays {x1, . . . , xn} of n elements, used to detect the reflector. In the presence
of a reflector, the field received by the jth receiving element xj when the
transmitter at xl emits a unitary time-harmonic wave is u(ω, xj , xl), where
u(ω, x, y) the solution to the Helmholtz equation

∆xu+
ω2

c2(x)
u = δ(x− y), (8.3)

with the Sommerfeld radiation condition imposed on u.



126 8 Time-Harmonic Reverse-Time Imaging With Additive Noise

The data set collected by the array describes the transmit-receive process
performed at this array. If we remove the incident field then it can be defined
as {

v(ω, xj , xl), j, l = 1, . . . , n
}
, (8.4)

with
v(ω, xj , xl) = u(ω, xj , xl)− Γω(xj , xl) +Wj,l. (8.5)

Here Wj,l represents the additive measurement noise. The incident field is
given in terms of the homogeneous Green’s function Γω(x, y) defined by (7.3).

8.2 The Forward Problem

A reflector is embedded at zref and is modeled by the local variation Vref(x)
of the propagation speed as in (8.1). The full Green function Φω, that is to
say, the Green function of the medium in the presence of the reflector at zref ,
is solution of

∆xΦω

(
x, y
)
+

ω2

c2(x)
Φω

(
x, y
)
= δ(x− y) . (8.6)

From Lemma 3.35, it follows that the Lippmann-Schwinger integral equation
for the full Green function Φω is

Φω(x, y) = Γω(x, y)− ω2

∫
Φω(x, z)Vref(z)Γω(z, y)dz . (8.7)

Using the Born approximation, we get

Φω(x, y) = Γω(x, y)− ω2

∫
Γω(x, z)Vref(z)Γω(z, y)dz. (8.8)

Therefore the full Green’s function can be written as the sum

Φω(x, y) = Γω(x, y) +Gref(ω, x, y). (8.9)

The term Gref is the term in the data set that corresponds to the reflector:

Gref(ω, x, y) = −ω2

∫
Γω(x, z)Vref(z)Γω(z, y)dz.

The approximation (8.9) is formally valid if the correction Gref is small com-
pared to Γω, i.e., in the regime in which σref ≪ 1, with an error that is formally
of order O(σ2

ref). We also assume that the diameter lref of the scattering re-
gion Ωref is small compared to the typical wavelength. We can then model
the reflector by a point reflector (the point interaction approximation)

Vref(x) ≈ σref l
3
refδ(x− zref), (8.10)

and we can write the correction in the form
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Gref(ω, x, y) = −ω2σref l
3
refΓω(x, zref)Γω(zref , y). (8.11)

The data set is therefore of the form

v(ω, xj , xl) = vref(ω, xj , xl) +Wjl, (8.12)

with vref the ideal data set in the absence of measurement noise

vref(ω, xj , xl) = Gref

(
ω, xj , xl

)

= −ω2σref l
3
refΓω

(
xj , zref

)
Γω

(
zref , xl

)
, (8.13)

and Wjl is the measurement noise. We assume that the random variables Wjl

are independent and identically distributed, with a circular complex Gaussian
distribution with variance σ2

mes, that is to say, ℜ(Wjl) and ℑ(Wjl) are inde-
pendent and identically distributed real-valued Gaussian random variables
with mean zero and variance σ2

mes/2.

8.3 Imaging Functionals

Define, for a smooth compactly supported V ,

[A(ω)V ]jl = −
∫

R3

Γω(xj , z)V (z)Γω(z, xl)dz . (8.14)

A(ω) is the frequency-dependent, linear operator that maps the function V
to the array data (up to the factor ω2).

In order to image the support of V , a least-squares method can be used.
The least-squares inverse problem under the Born approximation consists in
minimizing over the functions V the misfit functional JLS[V ]:

JLS[V ] :=

n∑

j,l=1

∣∣Ameas
jl (ω)− [A(ω)V ]jl

∣∣2 ,

where Ameas(ω) is the measured data matrix (8.12). The solution of the least-
squares linearized inverse problem is

VLS =
(
A∗(ω)A(ω)

)−1(A∗(ω)Ameas(ω)
)
.

Here the adjoint operator A∗(ω) is defined for n× n matrices A = (Ajl) by

[
A∗(ω)A

]
(x) = −

n∑

j,l=1

Γω(x, xj)Γω(xl, x)Ajl .

Remember that the complex conjugation in the frequency domain corresponds
to the time-reversal operation in the time domain. This shows that the adjoint
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operator corresponds to the backpropagation of the array data both from the
receiver point xj and from the source point xl to the test point x.

The least-squares imaging functional is

ILS(x) =
[(
A∗(ω)A(ω)

)−1(A∗(ω)Ameas(ω)
)]
(x) . (8.15)

Motivated by the fact that we often have A∗(ω)A(ω) ≈ I, where I is
the identity operator (in particular, this is a consequence of the Helmholtz-
Kirchhoff identity when the array completely surrounds the region of interest),
we can drop this term to get a simplified imaging functional. The Reverse-
Time migration imaging functional for the search point x is defined by

IRT(x) :=
[
A∗(ω)Ameas(ω)

]
(x)

= −
n∑

j,l=1

Γω(x, xj)Γω(xl, x)A
meas
jl (ω) . (8.16)

The Kirchhoff migration (or travel time migration) is obtained as a simplifi-
cation of the Reverse-Time migration imaging functional in which we replace
Γω(x, y) with e

iωT (x,y), where T (x, y) = |x− y| is the travel time from x to y
(since c0 = 1). Therefore the Kirchhoff migration imaging functional has the
form:

IKM(x) := −
n∑

j,l=1

e−iω(T (xj ,x)+T (xl,x))Ameas
jl (ω) .

8.4 The RT-Imaging Function

In the presence of a point reflector at zref and in the presence of additive noise
the data set is of the form (8.12). We study the effect of the measurement noise
on the time-harmonic reverse-time imaging function defined by

IRT(x) = −
n∑

j,l=1

Γω(x, xj)Γω(x, xl)v(ω, xj , xl). (8.17)

8.4.1 The Imaging Function Without Measurement Noise

In the absence of noise σmes = 0 the imaging function is given by

IRT(x) = I0(x), I0(x) = σref l
3
refn

2ω2H(x, zref), (8.18)

where

H(x, y) =
( 1
n

n∑

j=1

Γω(x, xj)Γω(y, xj)
)2
. (8.19)
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The function x → H(x, zref) is the point spread function that describes the
spatial profile of the peak obtained at the reflector location zref in the imaging
function when the reflector is point-like.

Full-Aperture Array

If the sensor array is dense (i.e. the inter-sensor distance is smaller than half a
wavelength) and completely surrounds the region of interest (for instance, it
covers the surface of the ball with center at 0 and radius L) then Helmholtz-
Kirchhoff theorem states that H(x, y) is proportional to the square of the
imaginary part of the Green’s function Γω(x, y). We find

H(x, y) = CLH̃(x− y), where H̃(x) = sinc2
(
ω|x|

)
, (8.20)

and CL = 1/(4πL)4. Therefore we have

I0(x) = σ0H̃(x− zref), (8.21)

where

σ0 =
σref l

3
refn

2ω2

(4πL)4
, H̃(x) = sinc2

(2π|x|
λ

)
, (8.22)

and λ = 2π/ω is the wavelength. This shows that the width of the point

spread function H̃(x) is of the order of λ/2, which is the Abbe diffraction
limit [112].

8.4.2 The Imaging Function With Measurement Noise

In the presence of measurement noise the imaging function is a complex Gaus-
sian random field. Its mean is the unperturbed imaging function I0 defined
by (8.18), its relation function is zero:

E
[(
IRT(x)− I0(x)

)(
IRT(x′)− I0(x′)

)]
= 0,

and its covariance functions is:

Cov
(
IRT(x), IRT(x′)

)
= E

[(
IRT(x)− I0(x)

)(
IRT(x′)− I0(x′)

)]
,

= σ2
mesn

2
( 1
n

n∑

j=1

Γω(x, xj)Γω(x′, xj)
)2

= σ2
mesn

2H(x, x′). (8.23)

If we assume that H(x, y) = CLH̃(x − y), with H̃(x) a smooth peaked
function centered at 0, as in the case of a full-aperture array discussed above,
then we can see that the messurement noise creates a speckle noise IRT − I0
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in the image, which is a stationary Gaussian random field with mean zero,
variance

σ2
noise = σ2

mesn
2CLH̃(0), (8.24)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noiseHnoise(x− x′), (8.25)

with

Hnoise(x) =
H̃(x)

H̃(0)
. (8.26)

This random field is a speckle pattern whose hotspot profiles are close to the
function Hnoise(x), which is (proportional to) the point spread function of
the imaging function. Here the hotspot profile refers to the local shape of the
speckle field around a local maximum (see Section 4.4).

The hotspot volume is defined as

Vc =
4π2

(detΛ)1/2
, Λ =

(
− ∂2xjxl

Hnoise(x) |x=0

)
j,l=1,...,3

. (8.27)

The maximum of the random field IRT(x) − I0(x) over a domain Ω whose
volume is much larger than the hotspot volume is a random quantity described
in Section 4.4, which is equal to a deterministic value to leading order in
|Ω|/Vc:

max
x∈Ω

{
IRT(x)− I0(x)

}
= σnoise

√
2 log

( |Ω|
Vc

)
. (8.28)

Full-Aperture Array

In the case in which the array completely surrounds the region of interest,
IRT(x) is a Gaussian random field with mean I0(x) given by (9.23), variance

σ2
noise = σ2

mesn
2 1

(4πL)4
, (8.29)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noiseHnoise(x− x′), Hnoise(x) = sinc2
(2π|x|

λ

)
.

(8.30)
The speckle pattern is made of hotspots with typical radius λ and typical
amplitude σnoise. The typical shape of the hotspot is given by the function
Hnoise(x), that has a slow power law decay as 1/|x|2. The signal to noise ratio
in the image is
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SNR =
I0(zref)
σnoise

=
σ0

σnoise
=

nσref l
3
refω

2

σmes(4πL)2
=

nσref l
3
ref

4σmesλ2L2
. (8.31)

Note that:
- The SNR increases with the number n of sensors, and this is because the
additive noise is independent from one sensor to the other one.
- The SNR decays with the square of the wavelength, because the scattering
efficiency (and therefore the reflected signal amplitude) at small wavelengths
is inversely proportional to the square of the wavelength.
- The SNR decays with the square of the distance from the array to the
reflector, because the reflected signal amplitude is inversely proportional to the
distance from the array to the reflector (in a three-dimensional homogeneous
medium).

In the case of the full-aperture array, the matrix Λ is proportional to the
identity and the hotspot volume is

Λ =
8π2

3λ2
I, Vc =

33/2

25/2π
λ3. (8.32)

This result shows that the SNR (8.31) should be considered with cautious. If
σnoise is of the same order as σ0, then the speckle pattern may have a local
maximum whose peak amplitude is much larger than σnoise and that could be
misinterpreted as a reflector.

When the SNR is large, the imaging function has the form of a peak
centered at the reflector location zref that emerges from the speckle pattern.
When the SNR is small, the peak centered at zref is buried into the speckle
pattern.

8.4.3 Localization Error

The localization of the reflector consists in looking after the maximum of the
imaging functional (the statistical approach proposed in [58] shows that the
location of the maximum of the Reverse-Time imaging function is the Max-
imum Likelihood Estimator of the location of the reflector). In the presence
of a reflector at zref the imaging functional has the form

IRT(x) = I0(x) + I1(x),

where I0 is the unperturbed imaging function given by (8.18) and I1 is a com-
plex Gaussian random field with mean zero, variance σ2

noise, and covariance
function σ2

noiseHnoise(x− x′).
We consider the case in which Hnoise is real-valued, which is the case for a

full-aperture array, and we denote by ℓ the width of the point spread function,
which is of the order of λ for a full-aperture array. We assume σnoise ≪ σ0, so
that a Taylor series expansion around zref , for |x−zref | . ℓ/SNR = ℓσnoise/σ0,
gives:
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IRT(x) = σ0

(
1− 1

2
(x− zref)

TΛ(x− zref) +
1

σ0
I1(zref)

+
1

σ0
∇I1(zref)T (x− zref) +O

(σ3
noise

σ3
0

))
. (8.33)

The estimator of the location of the maximum has the form:

ẑ = argmax
x

∣∣IRT(x)
∣∣2 = zref +

1

σ0
ℜ
(
Λ−1∇I1(zref)

)
+O

(
ℓ
σ2
noise

σ2
0

)
.

To leading order (in σnoise/σ0) the estimator ẑ is unbiased, i.e. its mean is the
true location zref . Moreover, using the fact that E

[
ℜ∇I1(zref)ℜ∇I1(zref)T

]
=

σ2
noiseΛ/2, the covariance matrix of the estimator ẑ is

E
[
(ẑ − zref)(ẑ − zref)

T
]
=
σ2
noise

2σ2
0

Λ−1 =
1

2SNR2Λ
−1, (8.34)

which is order ℓ2/SNR2. This means that the relative error (relative to the
radius ℓ of the point spread function) in the localization of the reflector is
of the order of 1/SNR = σnoise/σ0. Note also that, as a byproduct of this
analysis, we find that the perturbed value of the maximum of the peak is of
the form ∣∣IRT(ẑ)

∣∣2 ≃ σ2
0

(
1 +

2

σ0
ℜ
(
I1(zref)

)
+O

(σ2
noise

σ2
0

))
, (8.35)

where ℜ
(
I1(zref)

)
follows a Gaussian distribution with mean 0 and variance

σ2
noise/2.

Full-Aperture Array

If the sensor array is dense and surrounds the region of interest, then the local-
ization errors are independent along the three directions and their variances
are

E
[
(ẑj − zref,j)

2
]
=
σ2
noise

σ2
0

3λ2

16π2
=

1

SNR2

3λ2

16π2
, j = 1, . . . , 3.

This shows that the resolution is proportional to the wavelength and inversely
proportional to the signal-to-noise ratio in the image (8.31).
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Reverse-Time Imaging With Clutter Noise

9.1 The Data Set

Let us consider the propagation of scalar waves in a three-dimensional
medium. In the presence of a localized reflector and small random fluctua-
tions of the medium, the speed of propagation can be modeled by

1

c2(x)
=

1

c20

(
1 + Vclu(x) + Vref(x)

)
. (9.1)

Here
- the constant c0 is the known background speed. For simplicity, we assume
that c0 = 1;
- the random process Vclu(x) represents the cluttered medium;
- the local variation Vref(x) of the speed of propagation induced by the reflector
at zref is of the form

Vref(x) = σrefχ(Ωref)(x− zref), (9.2)

where σref is the reflectivity of the reflector, zref is its center, and Ωref is a
compactly supported domain with volume l3ref that models its spatial support.

Suppose that we have co-localized transmitter and receiver arrays {x1, . . . , xn}
of n elements, used to detect the reflector. In the presence of a reflector and
small random fluctuations of the medium, the field received by the jth receiv-
ing element xj when the pulse F (t) is emitted from xl is U(t, xj , xl), where
(t, x) → U(t, x, y) is the solution to the scalar wave equation

1

c2(x)

∂2U

∂t2
−∆xU = F (t)δ(x− y), (9.3)

or, in the Fourier domain, (ω, x) → u(ω, x, y) defined by

u(ω, x, y) = Ft[u(·, x, y)](ω) =
1√
2π

∫ ∞

−∞
U(t, x, y)eiωtdt
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is the solution to the Helmholtz equation

∆xu+
ω2

c2(x)
u = −f(ω)δ(x− y), (9.4)

with the Sommerfeld radiation condition imposed on u. Here, f is the Fourier
transform of F

f(ω) = Ft[F ](ω) =
1√
2π

∫ ∞

−∞
F (t)eiωtdt .

The data set collected by the array describes the transmit-receive pro-
cess performed at this array. If we remove the incident field, which is here
−Γω(x, xl)f(ω) when the source is at xl and emits F (t), then it can be de-
fined as {

v(ω, xj , xl), ω ∈ R, j, l = 1, . . . , n
}
, (9.5)

with
v(ω, xj , xl) = u(ω, xj , xl) + Γω(xj , xl)f(ω). (9.6)

The incident field is given in terms of the homogeneous Green’s function
Γω(x, y) defined by (7.3).

9.2 A Model for the Scattering Medium

In this section we introduce a model for the inhomogeneous medium. We
assume that the propagation speed of the medium has a homogeneous back-
ground speed value 1 and small fluctuations responsible for scattering:

1

c2clu(x)
= 1 + Vclu(x) , (9.7)

where Vclu(x) is a random process with mean zero and covariance function of
the form

E
[
Vclu(x)Vclu(x

′)
]
= σ2

clu

√
Kclu(x)Kclu(x′)Hclu

(x− x′

lclu

)
. (9.8)

Here E stands for the expectation with respect to the distribution of the ran-
domly scattering medium. σclu is the standard deviation of the fluctuations.
The function x → Kclu(x) is nonnegative valued, smooth, and compactly
supported, it characterizes the spatial support of the scatterers (and the typ-
ical amplitude of Kclu(x) is of order one). The function x → Hclu(x/lclu)
is the local correlation function. It is normalized so that Hclu(0) = 1 and∫
Hclu(x)dx = 1. Therefore lclu can be considered as the correlation length

of the random medium. We assume that the standard deviation σclu is small
(smaller than one) and that the correlation length lclu is small (smaller than
the wavelength).
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For simulation purposes, the random medium fluctuations can be seen
as Vclu(x) = σclu

√
Kclu(x)Zclu(x/lclu) where Zclu(x) is a stationary random

process with mean zero, variance one, and correlation length equal to one.
Realizations of a stationary random process can be generated by spectral
methods easily.

The clutter Green’s function Gclu, that is to say, the Green’s function of
the medium with clutter noise, is the fundamental solution of

∆xGclu

(
ω, x, y

)
+

ω2

c2clu(x)
Gclu

(
ω, x, y

)
= δ(x− y), (9.9)

with the Sommerfeld radiation condition, where cclu(x) is given by (9.7). The
Lippmann-Schwinger integral equation for the clutter Green’s function Gclu

defined by (9.9) is

Gclu(ω, x, y) = Γω(x, y)− ω2

∫
Gclu(ω, x, z)Vclu(z)Γω(z, y) dz , (9.10)

where Vclu(x) is the random process modeling the background fluctuations as
described by (9.7). We will use the Born or single-scattering approximation
for the clutter Green’s function solution of (9.10) by replacing Gclu by Γω on
the right-hand side. This approximation takes into account single-scattering
events for the interaction of the waves with the cluttered medium:

Gclu

(
ω, x, y

)
= Γω

(
x, y
)
+G1

(
ω, x, y

)
, (9.11)

where G1 is given by

G1

(
ω, x, y

)
= −ω2

∫
Γω

(
x, z
)
Vclu(z)Γω

(
z, y
)
dz, (9.12)

and the error is formally of order O(σ2
clu) where σclu is the standard deviation

of Vclu(x).

9.3 The Forward Problem

We now assume that a reflector is embedded at zref in the cluttered medium.
We model the reflector by a local variation Vref(x) of the propagation speed
as in (9.1). The full Green’s function Φω, that is to say, the Green’s function
of the medium with clutter in the presence of the reflector at zref , is solution
of

∆xΦω

(
x, y
)
+

ω2

c2(x)
Φω

(
x, y
)
= δ(x− y). (9.13)

The Lippmann-Schwinger integral equation for the full Green’s function Φω

is
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Φω(x, y) = Γω(x, y)− ω2

∫
Φω(x, z)

(
Vclu(z) + Vref(z)

)
Γω(z, y)dz.(9.14)

Using again the Born approximation, we get

Φω(x, y) = Γω(x, y)− ω2

∫
Γω(x, z)

(
Vclu(z) + Vref(z)

)
Γω(z, y)dz.(9.15)

Therefore the full Green’s function can be written as the sum

Φω(x, y) = Γω(x, y) +G1(ω, x, y) +Gref(ω, x, y). (9.16)

The term G1 is the term in the data set that will be responsible to speckle
noise in the image and it is of the form (9.12). The term Gref is the term in
the data set that corresponds to the reflector:

Gref(ω, x, y) = −ω2

∫
Γω(x, z)Vref(z)Γω(z, y)dz.

The approximation (9.16) is formally valid if the correction Gref is small com-
pared to Γω, i.e., in the regime in which σref ≪ 1, with an error that is formally
of order O(σ2

ref). We also assume that the diameter lref of the scattering re-
gion Ωref is small compared to the typical wavelength. We can then model
the reflector by a point reflector (the point interaction approximation)

Vref(x) ≈ σref l
3
refδ(x− zref), (9.17)

and we can write the correction in the form

Gref(ω, x, y) = −ω2σref l
3
refΓω(x, zref)Γω(zref , y). (9.18)

The data set (9.5) is therefore of the form

v(ω, xj , xl) = vref(ω, xj , xl) + w(ω, xj , xl), (9.19)

with vref the ideal data set in the absence of random fluctuations of the
medium

vref(ω, xj , xl) = −Gref

(
ω, xj , xl

)
f(ω)

= ω2f(ω)σref l
3
refΓω

(
xj , zref

)
Γω

(
zref , xl

)
, (9.20)

and w the noise due to the interaction of the wave with the random fluctua-
tions of the medium

w(ω, xj , xl) = −G1

(
ω, xj , xl

)
f(ω)

= ω2f(ω)

∫
Γω

(
xj , z

)
Vclu(z)Γω

(
z, xl

)
dz. (9.21)

Since lclu is small, the field w is Gaussian distributed by the Central Limit
Theorem.
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9.4 The Imaging Function

In the presence of a point reflector at zref and in the presence of clutter noise
the data set is of the form (9.19). We study the effect of the clutter noise on
the reverse-time imaging function defined by

IRT(x) =
1√
2π

n∑

j,l=1

∫
dωΓω(x, xj)Γω(x, xl)v(ω, xj , xl). (9.22)

9.4.1 The Imaging Function Without Clutter Noise

In the absence of noise σclu = 0 the imaging function is given by

IRT(x) = I0(x), I0(x) = σref l
3
refn

2H(x, zref), (9.23)

where

H(x, y) =
1√
2π

∫
dωω2f(ω)h(ω, x, y), (9.24)

h(ω, x, y) =
( 1
n

n∑

j=1

Γω(x, xj)Γω(y, xj)
)2
. (9.25)

The function x → H(x, zref) is the point spread function that describes the
spatial profile of the peak obtained at the reflector location zref in the imaging
function when the reflector is point-like.

Full-Aperture Array

If the sensor array is dense (i.e. the inter-sensor distance is smaller than half a
wavelength) and completely surrounds the region of interest (for instance, it
covers the surface of the ball with center at 0 and radius L) then Helmholtz-
Kirchhoff theorem states that h(ω, x, y) is proportional to the square of the
imaginary part of the Green’s function Γω(x, y). We find

h(ω, x, y) = CLh̃(ω, x− y), where h̃(ω, x) = sinc2
(
ω|x|

)
, (9.26)

and CL = 1/(4πL)4. Therefore, when the bandwidth B of F is smaller than its
central frequency ω0, for instance, when the source is a modulated Gaussian
with central frequency ω0 and bandwidth B ≪ ω0:

F (t) = cos(ω0t) exp
(
− B2t2

2

)
, (9.27)

and

f(ω) =
1

2B
e−

(ω−ω)2

2B2 +
1

2B
e−

(ω+ω)2

2B2 , (9.28)
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we have
H(x, zref) = CLω

2
0H̃(x− zref), (9.29)

where

H̃(x) = sinc2
(2π|x|

λ0

)
, (9.30)

and λ0 = 2π/ω0 is the central wavelength. This shows that the width of the

point spread function H̃(x) is of the order of λ0/2, which is the Abbe diffrac-

tion limit [112]. Note also that the function H̃(x) decays slowly, as 1/|x|2,
which will turn out to be problematic when addressing scattering media.

Finite-Aperture Array

If the sensor array is dense and occupies the domain Da ×{0}, with Da ⊂ R2

with diameter a, and the search region is a domain Ω around (0, 0, L), then

in the Fresnel diffraction regime λ0 ≪ a ≪ L with λ
1/2
0 L3/2 ≫ a2 ≫ λ0L we

have
h(ω, x, y) = CLh̃(ω, x− y), (9.31)

where, for x = (x
⊥
, x3),

h̃(ω, x) = e−2iωx3

(
1

|Da|

∫

Da

exp
(
− i

ωy
⊥

L
· x

⊥
− i

ω|y
⊥
|2

2L2
x3

)
dy

⊥

)2

. (9.32)

This shows that the width of the function h̃(ω, x) is of the order of λL/a in
the transverse directions (x

⊥
) and λL2/a2 in the longitudinal direction (x3),

where λ = 2π/ω is the wavelength associated to the frequency ω. These are the
classical Rayleigh resolution formulas for time-harmonic waves [112, Sections
8.5 and 8.8].

If the bandwidth B of the pulse is smaller than the central frequency ω0

and such that B ≪ ω0a
2/L2, for instance, when the source is a modulated

Gaussian (9.27) with central frequency ω0 and bandwidth B, then the range
resolution is the same one as in the time-harmonic regime and we have

H(x, zref) = CLω
2
0H̃(x− zref), (9.33)

where

H̃(x) =
1

2
exp

(
−i2ω0x3

)( 1

|Da|

∫

Da

exp
(
−i2πy⊥

λ0L
·x

⊥
−iπ|y⊥ |

2

λ0L2
x3

)
dy

⊥

)2

+cc.

(9.34)

This shows that the width of the point spread function H̃(x) is of the order
of λ0L/a in the transverse directions (x

⊥
) and λ0L

2/a2 in the longitudinal
direction (x3). Note the loss of resolution compared to the full-aperture case,
by a factor L/a in the transverse directions and (L/a)2 in the longitudinal



9.4 The Imaging Function 139

direction. Note also that the function H̃(x) decays slowly, as 1/|x
⊥
|2 in the

transverse direction and as 1/|x3| in the longitudinal direction.
If the bandwidth B of the pulse is smaller than the central frequency ω0

but such that B ≫ ω0a
2/L2, for instance, when the source is a modulated

Gaussian (9.27) with central frequency ω0 and bandwidth B, then the range
resolution is bandwidth-limited and we have

H(x, zref) = CLω
2
0H̃(x− zref), (9.35)

where

H̃(x) =
1

2
exp

(
−i2ω0x3

)
exp

(
−2B2x23

)( 1

|Da|

∫

Da

exp
(
−i2πy⊥

λ0L
·x

⊥

)
dy

⊥

)2

+cc.

(9.36)
If the array is square with sidelength a, i.e.

Da = [−a/2, a/2]2, (9.37)

then

H̃(x) = cos
(
2ω0x3

)
exp

(
− 2B2x23

)
sinc2

( πa
λ0L

x1

)
sinc2

( πa
λ0L

x2

)
. (9.38)

This shows that the width of the point spread function H̃(x) is of the order of
λ0L/a in the transverse directions (x

⊥
) and 1/(2B) in the longitudinal direc-

tion (x3). Note the loss of resolution compared to the full-aperture case, by a
factor L/a in the transverse directions and ω0/B in the longitudinal direction.

Note also that the function H̃(x) decays slowly, as 1/|x
⊥
|2 in the transverse

direction, but may decay fast in the longitudinal direction depending on the
source.

9.4.2 The Imaging Function With Clutter Noise

In the presence of clutter noise the imaging function is a real Gaussian random
field. Its mean is the unperturbed imaging function I0 defined by (9.23) and
the covariance function of the imaging function is:

Cov
(
IRT(x), IRT(x′)

)
= n4σ2

clu

∫∫
dydy′H(x, y)H(y′, x′)

×
√
Kclu(y)Kclu(y′)Hclu

(y − y′

lclu

)
. (9.39)

Using the fact that the correlation length of the medium is small, this can
be simplified as

Cov
(
IRT(x), IRT(x′)

)
= n4σ2

clul
3
clu

∫
dyH(x, y)Kclu(y)H(y, x′). (9.40)
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If we assume that the random scatterers are uniformly distributed in the
search region, i.e. Kclu ≡ 1, and that H(x, y) = CLω

2
0H̃(x− y) as in the case

of a full-aperture array or finite-aperture array discussed above, then we have

Cov
(
IRT(x), IRT(x′)

)
= n4σ2

clul
3
cluC

2
Lω

4
0H̃ ⋆ H̃(x− x′), (9.41)

where the star stands for the convolution in R3. This shows that the speckle
noise IRT −I0 in the image is a stationary Gaussian random field with mean
zero, variance

σ2
noise = n4σ2

clul
3
cluC

2
Lω

4
0H̃ ⋆ H̃(0), (9.42)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noiseHnoise(x− x′), (9.43)

with

Hnoise(x) =
H̃ ⋆ H̃(x)

H̃ ⋆ H̃(0)
. (9.44)

This random field is a speckle pattern whose hotspot profiles are close to the
function Hnoise(x), which is (proportional to) the autoconvolution of the point
spread function of the imaging function. Here the hotspot profile refers to the
local shape of the field around a local maximum (see Section 4.4).

Note also that, when the random scatterers are not uniformly distributed
in the search region, i.e. Kclu is not constant, then the slow decay (as a power

law) of the function H̃ implies that the random scatterers in a far region
can generate speckle noise everywhere in the image as shown by (9.40). As a
consequence it is very difficult to image through a scattering layer. This is a
serious drawback for reverse-time imaging.

Full-Aperture Array

In the case in which the array completely surrounds the region of interest,
IRT(x) is a Gaussian random field with mean I0(x) given by (9.23), variance

σ2
noise = n4σ2

clul
3
cluC

2
Lω

4
0

λ30
8π

, (9.45)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noisehnoise

(4π|x− x′|
λ0

)
, (9.46)

with the normalized function (hnoise(0) = 1)

hnoise(x) =
Si(x)

x
, Si(x) =

∫ x

0

sinc(y)dy . (9.47)
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The speckle pattern is made of hotspots with typical radius λ0 and typical
amplitude σnoise. The typical shape of the hotspot is given by the function
hnoise, that has a slow power law decay as 1/x. The signal to noise ratio in
the image is

SNR =
I0(zref)
σnoise

=
2
√
2πσref l

3
ref

σclul
3/2
clu λ

3/2
0

. (9.48)

Note that it is independent of the number of sensors, because the clutter noise
recorded by different receivers is correlated.

The hotspot volume is defined as

Vc =
4π2

(detΛ)1/2
, Λ =

(
− ∂2xjxl

hnoise
(4π|x|
λ0

)
|x=0

)
j,l=1,...,3

. (9.49)

Here the matrix Λ is proportional to the identity and we have

Λ =
16π2

9λ20
I, Vc =

27

16π
λ30. (9.50)

The maximum of the function IRT−I0 over a domain Ω whose volume is much
larger than the hotspot volume is a random quantity described in Section 4.4,
which is equal to the deterministic value (8.28) to leading order in |Ω|/Vc,
with the values of σnoise and Vc as given by (9.45) and (9.50). This result
shows that the SNR (9.48) should be considered with cautious. The speckle
pattern may have a local maximum whose peak amplitude is much larger than
σnoise and that can be misinterpreted as a reflector.

Finite-Aperture Array

In the case in which the sensor array is dense and occupies the square do-
main Da × {0}, with Da = [−a/2, a/2]2 ⊂ R2, the bandwidth B of the pulse
is smaller than the central frequency ω0 but such that B ≫ ω0a

2/L2, and
the search region is a domain Ω around (0, 0, L), then the field IRT(x) is a
Gaussian random field with mean I0(x) given by (9.23), variance

σ2
noise = n4σ2

clul
3
cluC

2
Lω

4
0

√
π

B

λ20L
2

9a2
, (9.51)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noise cos
(
2ω0(x3 − x′3)

)

×hnoise
(2πa(x1 − x′1)

λ0L
,
2πa(x2 − x′2)

λ0L
, 2B(x3 − x′3)

)
, (9.52)

with the normalized function (hnoise(0) = 1)

hnoise(x1, x2, x3) = 36
1− sinc(x1)

x21

1− sinc(x2)

x22
exp

(
− x23

4

)
. (9.53)



142 9 Reverse-Time Imaging With Clutter Noise

The speckle pattern is made of hotspots with typical radius λ0L/a in the
transverse direction, typical radius 1/(2B) in the longitudinal direction, and
typical amplitude σnoise. The signal to noise ratio in the image is

SNR =
I0(zref)
σnoise

=
3
√
2 4
√
πσref l

3
ref

σclul
3/2
clu λ

3/2
0

B1/2a

ω
1/2
0 L

. (9.54)

Note the SNR reduction compared to the full-aperture case, by a factor of the
order of (B/ω0)

1/2(a/L).
The hotspot volume is defined as before as Vc = 4π2(detΛ)−1/2 with

Λ =
(
− ∂2xjxl

hnoise

(2πax1
λ0L

,
2πax2
λ0L

, 2Bx3

)
|x=0

)
j,l=1,...,3

. (9.55)

Here Λ is diagonal and we have

Λjj =
2π2a2

5λ20L
2
, j = 1, 2, Λ33 = 2B2, Vc =

5λ30√
2π

L2ω0

a2B
. (9.56)

The maximum of the function over a domain Ω whose volume is much larger
than the hotspot volume is given by (8.28) as before with the values of σnoise
and Vc as given by (9.51) and (9.56).
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Optical Coherence Tomography With Clutter
Noise

10.1 The Principle of Optical Coherence Tomography

In Optical Coherence Tomography (OCT) a time-incoherent light beam is
used in a Michelson interferometer [197]. This means that a single incident
beam of incoherent light is divided by a beam splitter into two identical beams.
The first beam (the reference beam 1) propagates through a homogeneous
medium and it is reflected by a mirror whose longitudinal position can be ad-
justed (reference mirror in Figure 10.1). The second beam (the sample beam
2) is focused and backscattered by the sample to be imaged. The central posi-
tion of the reference mirror corresponds (in terms of propagation distances) to
the same plane as the focusing plane of the sample beam. The superposition
of the reference and sample beams is then measured by a photodetector which
is sensitive to the intensity.

Fig. 10.1. Optical Coherence Tomography set-up. From [164].
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We address the standard OCT technique, in which two scans are per-
formed, the depth scan and the lateral scan:
- the lateral scan addresses laterally adjacent focused beams, which can be
achieved by moving the sample or by using a rotating mirror which laterally
shifts the probing beam (lateral scan in Figure 10.1).
- the depth scan is achieved by shifting (longitudinally) the reference mirror
(depth scan in Figure 10.1).

Note that other OCT versions allow to acquire the image without scans,
in particular, Fourier-domain OCT allows to get the depth-scan information
by an inverse Fourier transform of the spectrum of the backscattered light by
using a light source with tunable frequency.

In this section, we denote the three-dimensional spatial coordinate x =
(x

⊥
, z) where x

⊥
∈ R2 stands for the lateral coordinates and z for the longi-

tudinal coordinate.
In the plane of the photodetector z = Ldet, the reference field is

u(ω, x
⊥
, Ldet;∆x⊥ , ∆z) = u1(ω, x⊥ , Ldet;∆z) + u2(ω, x⊥ , Ldet;∆x⊥), (10.1)

where u1(ω, x⊥ , Ldet;∆z) is the field reflected by the mirror when the po-
sition of the mirror is shifted by ∆z compared to the central position and
u2(ω, x⊥ , Ldet;∆x⊥) is the field backscattered by the sample when the focused
beam is laterally shifted by ∆x

⊥
.

The initial beam is a plane wave

ui(ω, x⊥ , z) = f(ω) exp
(
iωz
)
, (10.2)

that is time incoherent, in the sense that f(ω) is the Fourier transform of a
stationary real-valued random process with mean zero and covariance function
F (t), or equivalently

E
[
f(ω)

]
= 0, E

[
f(ω)f(ω′)

]
=

√
2πP (ω)δ(ω − ω′). (10.3)

Here P (ω) is the Fourier transform of F

P (ω) = Ft[F ](ω) =
1√
2π

∫ ∞

−∞
F (t)eiωtdt

it is the power spectral density of the source by Bochner’s theorem, it is a
nonnegative real-valued even function. It is concentrated around the central
frequency ω0 and has a bandwidth denoted by B (see (10.30) for an example).

We consider an inhomogeneous sample, with the speed of propagation:

1

c2(x)
= 1 + Vsam(x) . (10.4)

The goal is to image the function Vsam(x).
We first describe the reference and sample beams in Section 10.2. We

define the OCT imaging function in Section 10.3 and analyze its point spread
function in Section 10.4. Finally in Section 10.5 we study the clutter noise in
the OCT image produced by scattering.
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10.2 The Reference and Sample Beams

Considering the reference beam, the propagation distance up to the photode-
tector is Ldet when the mirror is at its central position, or Ldet + 2∆z when
the mirror is shifted by ∆z. Therefore the field u1(ω, x⊥ , Ldet;∆z) in the plane
of the photodetector is the initial field delayed by Ldet + 2∆z:

u1(ω, x⊥ , Ldet;∆z) = f(ω)g1(ω, x⊥ , Ldet;∆z), (10.5)

g1(ω, x⊥ , Ldet;∆z) = exp
(
iω(Ldet + 2∆z)

)
. (10.6)

Considering the sample beam, it is focused by a lens in the plane z = Lsam

in the sample and it is backscattered by the sample inhomogeneities that we
want to image. The propagation distance from the initial plane to the plane
of the lens is Llens. The propagation distance from the plane of the lens to
the focusing plane is Lfoc = Lsam − Llens (i.e. Lfoc is the focal length of the
lens). The propagation distance from the focusing plane to the photodetector
is Ldet−Lsam. So the overall propagation distance from the initial plane to the
photodetector, when backscattering happens in the plane z = Lsam, is equal
to Ldet. Let us derive the expression of the sample field in the photodetector
plane.

Before the lens, the field goes through a lateral scan device (a rotating
mirror) that imposes a linear delay across the beam, which has the form of a
linear phase shift in the Fourier domain. The lens imposes a quadratic delay
across the beam, which has the form of a quadratic phase modulation, and
an amplitude cut-off. As a result of these two operations, the field just after
the lens reads:

u2i(ω, x⊥ , Llens;∆x⊥) = f(ω)g2i(ω, x⊥ , Llens;∆x⊥), (10.7)

g2i(ω, x⊥ , Llens;∆x⊥) = exp
(
iωLlens −

|x
⊥
|2

r20 + r21
− iω

|x
⊥
|2r1

ω0(r20 + r21)r0

)

× exp
(
2iωx

⊥
· ∆x

⊥

ω0r0r1

)
. (10.8)

Here:
- We have chosen a Gaussian amplitude cut-off function with radius

√
r20 + r21

because it allows for an explicit calculation below. The radius r1 will be taken
large (i.e. larger than r0) below.
- The quadratic phase modulation is r1/r0 larger than the amplitude cut-off.
- The linear phase modulation is parameterized by ∆x

⊥
. As we will see below,

∆x
⊥
turns out to be the center of the focused incident beam in the focal plane,

the radius r0 is the width of the focused incident beam in the focal plane, and
the radii r0 and r1 determine the focal length Lfoc:

Lfoc =
ω0r0r1

2
. (10.9)

We consider the Fresnel approximation for the propagation from the lens
to the focal plane (which holds when the radius of the beam is larger than the
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wavelength but smaller than the propagation distance, i.e. the focal length),
so that the field is given by the Fresnel diffraction integral (this is also known
as the paraxial approximation):

u2i(ω, x⊥ , Llens + z;∆x
⊥
) = f(ω)g2i(ω, x⊥ , Llens + z;∆x

⊥
), (10.10)

g2i(ω, x⊥ , Llens + z;∆x
⊥
) =

ω

2πiz
exp

(
iωz
)

×
∫
g2i(ω, y⊥ , Llens;∆x⊥) exp

(
i
ω

2z
|x

⊥
− y

⊥
|2
)
dy

⊥
, (10.11)

that is to say,

g2i(ω, x⊥ , Llens + z;∆x
⊥
) =

ω

2πiz
exp

(
iω(Llens + z)

)

×
∫

exp
(
− |y

⊥
|2

r20 + r21

(
1 +

iωr1
ω0r0

)
+ 2iωy

⊥
· ∆x

⊥

ω0r0r1
+ i

ω

2z
|x

⊥
− y

⊥
|2
)
dy

⊥
.(10.12)

The explicit expression of the field g2i(ω, x⊥ , Llens + z;∆x
⊥
) can be obtained

by a direct calculation (involving only Gaussian integral evaluations):

g2i(ω, x⊥ , Llens + z;∆x
⊥
) =

1

1 + 2iz
ω(r20+r21)

(
1 + iωr1

ω0r0

) exp
(
iω(Llens + z)

)

× exp
(
− |x

⊥
|2

r20 + r21

1 + iωr1
ω0r0

1 + 2iz
ω(r20+r21)

(
1 + iωr1

ω0r0

)
)

× exp
(
2i
ωx

⊥
·∆x

⊥

ω0r1r0

1

1 + 2iz
ω(r20+r21)

(
1 + iωr1

ω0r0

)
)

× exp
(
− 2iω|∆x

⊥
|2z

ω2
0r

2
1r

2
0

1

1 + 2iz
ω(r20+r21)

(
1 + iωr1

ω0r0

)
)
. (10.13)

In the plane Llens + Lloc (which is equal to Lsam), this reads

g2i(ω, x⊥ , Lsam;∆x⊥) = −i ω
ω0

r1
r0

+ r0
r1

1− i ω
ω0

r0
r1

exp
(
iωLsam

)

× exp
(
− |x

⊥
|2

r20

1− iω0

ω
r0
r1

1− i ω
ω0

r0
r1

+ 2
x
⊥
·∆x

⊥

r20

ω2

ω2
0
(1 +

r20
r21
)

1− i ω
ω0

r0
r1

)

× exp
(
− |∆x

⊥
|2

r20

ω2

ω2
0
(1 +

r20
r21
)

1− i ω
ω0

r0
r1

)
, (10.14)

by (10.9). For |ω − ω0| ≪ ω0, this can be reduced to

g2i(ω, x⊥ , Lsam;∆x⊥) = −i r1
r0

(
1 + i

r0
r1

)
exp

(
iωLsam

)

× exp
(
− |x

⊥
|2

r20
+ 2

x
⊥
·∆x

⊥

r20

(
1 + i

r0
r1

)
− |∆x

⊥
|2

r20

(
1 + i

r0
r1

))
.(10.15)
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With r1 ≫ r0, this simply reads

g2i(ω, x⊥ , Lsam;∆x⊥) =
r1
ir0

exp
(
iωLsam

)
exp

(
− |x

⊥
−∆x

⊥
|2

r20

)
, (10.16)

which shows that the focused incident beam in the focusing plane z = Lsam

has a transverse Gaussian profile with width r0 and with center ∆x
⊥
, as an-

nounced above. Moreover, using again the Fresnel diffraction integral (10.13),
the focused incident beam has the following form in the vicinity of the focusing
plane:

g2i(ω, x⊥ , Lsam + z;∆x
⊥
) =

r1

ir0
(
1 + 2i

ωr20
z
) exp

(
iω(Lsam + z)

)

× exp
(
− |x

⊥
−∆x

⊥
|2

r20(1 +
2iz
ωr20

)

)
. (10.17)

We consider a weakly inhomogeneous sample, with the speed of propa-
gation (10.4), so that the Born approximation is valid for the backscattered
sample field. The backscattered sample field in the plane z = Lsam is therefore

u2(ω, x⊥ , Lsam;∆x⊥) = f(ω)g2(ω, x⊥ , Lsam;∆x⊥), (10.18)

g2(ω, x⊥ , Lsam;∆x⊥) = −ω2

∫∫
Γω

(
(x

⊥
, Lsam), (y⊥ , Lsam + z)

)

×Vsam(y⊥ , Lsam + z)g2i
(
ω, y

⊥
, Lsam + z;∆x

⊥

)
dy

⊥
dz, (10.19)

where Γω(x, y) is the homogeneous Green’s function and g2i(ω, y;∆x⊥) is the
focused incident beam, given by (10.17). Using again the Fresnel approxima-
tion, we have

Γω((x⊥ , Lsam), (y⊥ , Lsam + z)) = − 1

4πz
exp

(
iωz + iω

|x
⊥
− y

⊥
|2

2z

)
. (10.20)

Finally, the backscattered sample field in the plane z = Lsam is sent to the
photodetector plane z = Ldet by the OCT system. Therefore the backscattered
sample field u2(ω, x⊥ , Ldet;∆x⊥) in the photodetector plane is given by

u2(ω, x⊥ , Ldet;∆x⊥) = f(ω)g2(ω, x⊥ , Ldet;∆x⊥), (10.21)

g2(ω, x⊥ , Ldet;∆x⊥) = exp
(
iω(Ldet − Lsam)

)
g2(ω, x⊥ , Lsam;∆x⊥). (10.22)

10.3 The Imaging Function

The imaging function is the intensity collected at the photodetector:

I(∆x
⊥
, ∆z) =

1

T

∫ T

0

∫

R2

|u(t, x
⊥
, Ldet;∆x⊥ , ∆z)|2dx⊥dt. (10.23)
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As T → ∞, using the stationarity of the source field, the time average con-
verges to the statistical average and we have

I(∆x
⊥
, ∆z) =

∫
E
[
|u(0, x

⊥
, Ldet;∆x⊥ , ∆z)|2

]
dx

⊥
, (10.24)

which gives

I(∆x
⊥
, ∆z) =

1√
2π

∫∫
P (ω)|g1(ω, x⊥ , Ldet;∆z)+g2(ω, x⊥ , Ldet;∆x⊥)|2dx⊥dω.

(10.25)
It can be decomposed into the sum of three terms:

I(∆x
⊥
, ∆z) =

1√
2π

∫∫
P (ω)|g1(ω, x⊥ , Ldet;∆z)|2dx⊥dω

+

√
2√
π
ℜ
∫∫

P (ω)g1(ω, x⊥ , Ldet;∆z)g2(ω, x⊥ , Ldet;∆x⊥)dx⊥dω

+
1√
2π

∫∫
P (ω)|g2(ω, x⊥ , Ldet;∆x⊥)|2dx⊥dω. (10.26)

The first term is a constant background independent of∆z and∆x
⊥
. The third

term is negligible in the Born approximation. Therefore the image I(∆x
⊥
, ∆z)

is determined by the second interference term that we study in the next sec-
tion.

10.4 The Point Spread Function

Using the expressions (10.6) and (10.22) of the reference and sample fields,
the imaging function (10.26) is, up to the first constant background term,

I(∆x
⊥
, ∆z) =

√
2√
π
ℜ
∫∫∫

ω2P (ω)
1

4πz
exp

(
iω

|x
⊥
− y

⊥
|2

2z

)
Vsam(y⊥ , Lsam + z)

×e−2iω(∆z−z) r1

ir0
(
1 + 2i

ωr20
z
) exp

(
− |y

⊥
−∆x

⊥
|2

r20(1 +
2iz
ωr20

)

)
dy

⊥
dzdx

⊥
dω.(10.27)

By integrating in x
⊥
:

I(∆x
⊥
, ∆z) =

1√
2π

ℜ
∫∫∫

(iω)P (ω)e−2iω(∆z−z)Vsam(y⊥ , Lsam + z)

× r1

ir0
(
1 + 2i

ωr20
z
) exp

(
− |y

⊥
−∆x

⊥
|2

r20(1 +
2iz
ωr20

)

)
dy

⊥
dzdω.(10.28)

If P has central frequency ω0 and bandwidth B with B ≪ ω0, for instance,
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F (t) = cos(ω0t) exp
(
− B2t2

2

)
, (10.29)

P (ω) =
1

2B
exp

(
− (ω − ω0)

2

2B2

)
+

1

2B
exp

(
− (ω + ω0)

2

2B2

)
, (10.30)

and if 1/B ≪ r20/λ0, with λ0 = 2πω0, which means that the Rayleigh length
r20/λ0 of the Gaussian profile is larger than the width 1/B of the coherent
window, then

I(∆x
⊥
, ∆z) =

∫∫
H(∆x

⊥
− x

⊥
, ∆z − z;∆z)Vsam(x⊥ , Lsam + z)dx

⊥
dz,(10.31)

where the point spread function is

H(x
⊥
, z;∆z) =

ω0r1
r0

1√
1 + 4∆z2

ω2
0r

4
0

exp
(
− 2B2z2

)
exp

(
− |x

⊥
|2

r20(1 +
4∆z2

ω2
0r

4
0
)

)

× cos
[
2ω0z + arctan

( 2∆z
ω0r20

)
− 2∆z

ω0r20

|x
⊥
|2

r20(1 +
4∆z2

ω2
0r

4
0
)

]
. (10.32)

This shows that:
- the point spread function has longitudinal fringes (at the second harmonic
2ω0) that are characteristic of OCT techniques and are sometimes called fringe
bursts. In fact, these fringes can be used to extract the interference term from
the background term in the imaging function, so that only the fringe envelopes
are retained.
- the envelope of the point spread function decays fast in the transverse and
in the longitudinal directions (here, the decay is Gaussian).
- the longitudinal resolution is 1/(2B), that is proportional to the width of
the coherent window,
- the cross-range resolution is r0 when the mirror position is ∆z = 0, which
corresponds to the scanned depth z = Lsam in the sample, and deteriorates

as r20(1 + 4∆z2

ω2
0r

4
0
) when the mirror position is ∆z, which corresponds to the

scanned depth z = Lsam +∆z in the sample.
Consequently:
- Longitudinal resolution depends only on the width of the coherent window,
that is, the bandwidth of source.
- Lateral resolution is essentially determined by the waist of the focused beam,
it is all the higher as the beam is more focused, but then the sample depths
that can be scanned are reduced: if one considers that a deterioration of 50% of
the lateral resolution around the depth z = Lsam is acceptable, then this means
that the scanned depths should be within the interval [Lsam−πr20/λ0, Lsam+
πr20/λ0], which means around the depth z = Lsam with a thickness of the
order of the Rayleigh length of the focused beam. This indicates that OCT
can only scan a quite small range of depths. If one improves by a factor two the
transverse resolution, then the thickness of the sample that can be scanned is
reduced by a factor four.
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10.5 The Clutter Noise in Optical Coherence
Tomography

When there is clutter noise, that is to say, small heterogeneties in the sample,
the speed of propagation can be described as

1

c2(x)
=
[
1 + Vsam(x) + Vclu(x)

]
, (10.33)

where Vclu(x) is a random process with mean zero and covariance function
(9.8). The imaging function is then of the form

I(x) = I0(x) + I1(x), (10.34)

I0(x) =
∫

H(x
⊥
− x′

⊥
, z − z′; z)Vsam(x

′
⊥
, Lsam + z′)dx′

⊥
dz′, (10.35)

I1(x) =
∫

H(x
⊥
− x′

⊥
, z − z′; z)Vclu(x

′
⊥
, Lsam + z′)dx′

⊥
dz′, (10.36)

where I0 is the unperturbed image described in the previous section and I1 is
the speckle noise in the image. The speckle noise is a Gaussian random field
with mean zero and with covariance

Cov
(
I(x), I(x′)

)
= σ2

clul
3
clu

∫
dx′′H

(
x
⊥
− x′′

⊥
, z − z′′; z

)
Kclu(x

′′
⊥
, Lsam + z′′)

×H
(
x′
⊥
− x′′

⊥
, z′ − z′′; z′

)
,(10.37)

where we have used the fact that the correlation length of the random fluctu-
ations of the sample is small.

If, additionally, the random heterogeneities are uniformly distributed, so
that Kclu(y) ≡ 1, then

Cov
(
I(x), I(x′)

)
= σ2

clul
3
clu

∫
dx′′H

(
x
⊥
− x′′

⊥
, z − z′′; z

)

×H
(
x′
⊥
− x′′

⊥
, z′ − z′′; z′

)
, (10.38)

or equivalently (denoting the mid-point by X = (X
⊥
, Z) and the offset by

x = (x
⊥
, z))

Cov
(
I(X +

x

2
), I(X − x

2
)
)
= σ2

clul
3
clu

∫
dx′′H

(
x′′
⊥
+
x
⊥

2
, z′′ +

z

2
;Z +

z

2

)

×H
(
x′′
⊥
− x

⊥

2
, z′′ − z

2
;Z − z

2

)
.(10.39)

By computing the covariance function, we find that the random field I1 =
I − I0 is stationary (the covariance function does not depend on the mid-
point X):



10.5 The Clutter Noise in Optical Coherence Tomography 151

Cov
(
I(X +

x

2
), I(X − x

2
)
)
= σ2

clul
3
cluω

2
0r

2
1

π3/2

8B
cos
(
2ω0z

)

× exp
(
−B2z2

)
exp

(
− |x

⊥
|2

2r20

)
. (10.40)

This covariance function describes the local profile of the hotspots of the
speckle pattern generated by clutter noise. The speckle hotspots, up to the
high-frequency fringes, have longitudinal radius 1/B and transverse radius r0
throughout the search region. Note that the covariance function, and therefore
the local profile of the hotspots, is stationary throughout the scanned sample,
contrarily to the point spread function that laterally spreads out away from
the focal plane (see (10.32)).

If the random heterogeneities are not uniformly distributed, i.e. when Kclu

is not constant, then the image will be speckled only in the scattering region
because of the fast decay of the function H, as shown by (10.37). This is
an important difference compared to reverse-time imaging for instance. In
particular the fast decay in the depth z shows that OCT is capable to image
through a scattering layer, as the image beyond the scattering layer is hardly
affected. If Kclu(x⊥ , z) = exp(−(z − Lsam + Lclu)

2/∆L2
clu), which models a

scattering layer located around the depth z = Lsam − Lclu with the width
∆Lclu, then the variance of the speckle pattern generated by the scattering
layer is

Var
(
I(X)

)
= σ2

clul
3
cluω

2
0r

2
1

π3/2

8B
(
1 + 1

4B2∆L2
clu

)1/2 exp
(
− (Lclu + Z)2

∆L2
clu + 1

4B2

)
,

which clearly illustrates the decay of the speckle noise in the image away from
the region of the scattering layer.
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Anomaly Imaging





11

Small Volume Expansions

In their most general forms imaging problems are severely ill-posed and non-
linear. These are the main obstacles to find non-iterative reconstruction al-
gorithms. If, however, in advance we have additional structural information
about the profile of the material property, then we may be able to determine
specific features about the conductivity distribution with a satisfactory res-
olution. One such type of knowledge in the conductivity case could be that
the conducting body consists of a smooth background containing a number of
unknown small anomalies with a significantly different conductivity.

Over the last 10 years or so, a considerable amount of interesting work
has been dedicated to the imaging of such low volume fraction particles. The
method of asymptotic expansions provides a useful framework to accurately
and efficiently reconstruct the location and geometric features of the particles
in a stable way, even for moderately noisy data.

Using the method of matched asymptotic expansions we formally derive
the first-order perturbations due to the presence of the particles in the con-
ductivity case. These perturbations are of dipole-type. A rigorous proof of
these expansions is based on layer potential techniques. The concept of po-
larization tensor is the basic building block for the asymptotic expansion of
the boundary perturbations. It is then important from an imaging point of
view to precisely characterize the PT and derive some of its properties, such
as symmetry, positivity, and optimal bounds on its elements, for developing
efficient algorithms to reconstruct conductivity particles of small volume.

We then provide the leading-order term in this asymptotic formula of the
solution to the Helmholtz equation in the presence of small electromagnetic
particles. The leading-order term is the sum of a (polarized) magnetic dipole
and an electric point source.

It is worth emphasizing that all the problems considered in this chapter
are singularly perturbed problems. As it will be shown later, derivatives of
the solution to the perturbed problem are not, inside the particle, close to
those of the background solution. Consequently, the far-field expansions are
not uniform in the whole background domain. Nevertheless, inner expansions



156 11 Small Volume Expansions

of the solution inside the particle are provided. An example of a regularly
perturbed problem is the Born approximation. See (7.1).

The asymptotic expansions are first provided for bounded domains. We
consider a small particle inside a bounded domain. A boundary condition
(Neumann or Dirichlet) is applied and the perturbations of the (Dirichlet or
Neumann) boundary data are derived. Then the asymptotic expansions are
extended to monopole sources in the free space. The perturbations of the field
at a receiver placed away from the particle are derived. Finally, an exten-
sion of the asymptotic approach to time-domain measurements is described.
It will be shown that after truncating the high-frequency component of the
measured wave, the perturbation due to the particle is a wavefront emitted by
a dipolar source at the location of the particle. Such a formula will be useful
for designing time-reversal techniques for particle localization.

11.1 Conductivity Problem

In this section we derive an asymptotic expansion of the voltage potentials in
the presence of a diametrically small particle with conductivity different from
the background conductivity.

Let g ∈ L2
0(∂Ω). Consider the solution u of





∇ ·
(
1 + (k − 1)χ(D)

)
∇u = 0 in Ω ,

∂u

∂ν

∣∣∣∣
∂Ω

= g,

∫

∂Ω

u dσ = 0 .
(11.1)

Let U be the background solution, that is, the solution to





∆U = 0 in Ω ,

∂U

∂ν

∣∣∣∣
∂Ω

= g,

∫

∂Ω

U dσ = 0 .
(11.2)

The following asymptotic expansion expresses the fact that the conductive
particle can be modeled by a dipole.

Theorem 11.1 (Voltage Boundary Perturbations) Suppose that D =
δB + z, and let u be the solution of (11.1), where 0 < k 6= 1 < +∞. De-
note

λ := (k + 1)/(2(k − 1)) . (11.3)

The following pointwise asymptotic expansion on ∂Ω holds for d = 2, 3:

u(x) = U(x)− δd∇U(z) ·M(λ,B)∇zN(x, z) + O(δd+1) , (11.4)

where the remainder O(δd+1) is dominated by Cδd+1‖g‖L2(∂Ω) for some C
independent of x ∈ ∂Ω. Here U is the background solution, N(x, z) is the
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Neumann function, that is, the solution to (3.30), M(λ,B) = (mpq)
d
p,q=1 is

the polarization tensor given by

mpq =

∫

∂B

(λI −K∗
B)

−1[νp](ξ) ξq dσ(ξ) , (11.5)

where ν = (ν1, . . . , νd) is the outward unit normal to ∂B and ξ = (ξ1, . . . , ξd).

Since ∇zN(x, z) = −∇xN(x, z), from (3.32) and (11.4), it follows that

∫

∂Ω

(u(x)−U(x))f(x) dσ(x) = δd∇U(z) ·M(λ,B)∇V (z)+ O(δd+1) , (11.6)

where f ∈ L2
0(∂Ω) and V is the solution to





∆V = 0 in Ω ,

∂V

∂ν

∣∣∣∣
∂Ω

= f,

∫

∂Ω

V dσ = 0 .

For B a smooth bounded domain in Rd and 0 < k 6= 1 < +∞ a conduc-
tivity parameter, let v(B, k) be the solution to





∆v = 0 in Rd \B ,

∆v = 0 in B ,

v|− − v|+ = 0 on ∂B ,

k
∂v

∂ν

∣∣∣∣
−
− ∂v

∂ν

∣∣∣∣
+

= 0 on ∂B ,

v(ξ)− ξ → 0 as |ξ| → +∞ .

(11.7)

The asymptotic expansion (11.4) does not hold uniformly inΩ. For internal
perturbations of the voltage potential that are due to the presence of the
conductivity anomaly D, the following inner asymptotic expansion holds.

Theorem 11.2 We have

u(x) ≈ U(z) + δv(
x− z

δ
, k) · ∇U(z) for x near z . (11.8)

The following result connects the polarization tensor M to the corrector v.

Lemma 11.3 Let M(λ,B) = (mpq)
d
p,q=1 be defined by (11.5). Then we have

M(λ,B) = (k − 1)

∫

B

∇v(ξ, k) dξ (11.9)

with v being the solution to (11.7) and λ given by (11.3).
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The asymptotic expansion (11.4) shows that, from an imaging point of
view, the location z and the polarization tensor M of the anomaly are the
only quantities that can be determined from boundary measurements of the
voltage potential, assuming that the noise level is of order δd+1. It is then im-
portant to precisely characterize the polarization tensor and derive some of its
properties, such as symmetry, positivity, and isoperimetric inequalities satis-
fied by its elements, in order to develop efficient algorithms for reconstructing
conductivity anomalies of small volume.

Some important properties of the polarization tensor are listed in the next
theorem.

Theorem 11.4 (Properties of the polarization tensor) For 0 < k 6=
1 < +∞, let M = M(λ,B) = (mpq)

d
p,q=1 be the polarization tensor asso-

ciated with the bounded domain B in Rd and the conductivity k, where λ is
defined by (11.3). Then

(i) M is symmetric.
(ii) If k > 1, then M is positive definite, and it is negative definite if 0 < k <

1.
(iii) The following isoperimetric inequalities for the polarization tensor





1

k − 1
trace(M) ≤ (d− 1 +

1

k
)|B| ,

(k − 1) trace(M−1) ≤ d− 1 + k

|B| ,
(11.10)

hold, where trace denotes the trace of a matrix and |B| is the volume of
B.

The polarization tensorM can be explicitly computed for disks and ellipses
in the plane and balls and ellipsoids in three-dimensional space. See [66, pp.
81–89]. The formula of the polarization tensor for ellipses will be useful here.
Let B be an ellipse whose semi-axes are on the x1− and x2−axes and of length
a and b, respectively. Then, M(λ,B) takes the form

M(λ,B) = (k − 1)|B|




a+ b

a+ kb
0

0
a+ b

b+ ka


 . (11.11)

Formula (11.4) shows that from boundary measurements one can always rep-
resent and visualize an arbitrary shaped anomaly by means of an equivalent
ellipse of center z with the same polarization tensor. Further, it is impossi-
ble to extract the conductivity from the polarization tensor. The information
contained in the polarization tensor is a mixture of the conductivity and the
volume. A small anomaly with high conductivity and a larger anomaly with
lower conductivity can have the same polarization tensor.
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11.2 Helmholtz Equation

Suppose that an electromagnetic medium occupies a bounded domain Ω in Rd,
with a connected C2-boundary ∂Ω. Suppose that Ω contains a small particle
of the form D = δB + z, where z ∈ Ω and B is a C2-bounded domain in Rd

containing the origin.
Let µ0 and ε0 denote the permeability and the permittivity of the back-

ground medium Ω, and assume that µ0 and ε0 are positive constants. Let
µ⋆ and ε⋆ denote the permeability and the permittivity of D, which are also
assumed to be positive constants. Introduce the piecewise constant magnetic
permeability

µδ(x) =

{
µ0 , x ∈ Ω \D ,

µ⋆ , x ∈ D .

The piecewise constant electric permittivity, εδ(x), is defined analogously.
Let the electric field u denote the solution to the Helmholtz equation

∇ · ( 1

µδ
∇u) + ω2εδu = 0 in Ω , (11.12)

with the boundary condition u = f on ∂Ω with f ∈W 2
1
2

(∂Ω), where ω > 0 is

a given frequency.
Problem (11.12) can be written as





(∆+ ω2ε0µ0)u = 0 in Ω \D ,

(∆+ ω2ε⋆µ⋆)u = 0 in D ,

1

µ⋆

∂u

∂ν

∣∣∣∣
−
− 1

µ0

∂u

∂ν

∣∣∣∣
+

= 0 on ∂D ,

u
∣∣
− − u

∣∣
+
= 0 on ∂D ,

u = f on ∂Ω .

Assuming that

ω2ε0µ0 is not an eigenvalue for the operator −∆ in L2(Ω)

with homogeneous Dirichlet boundary conditions, (11.13)

we can prove existence and uniqueness of a solution to (11.12) at least for δ
small enough.

With the notation of Section 3.2, the following asymptotic formula holds.

Theorem 11.5 (Boundary Perturbations) Let k0 = ω
√
ε0µ0. Suppose

that (11.13) holds. Let u be the solution of (11.12) and let the function U
be the background solution as before:

{
∆U + k20U = 0 in Ω ,
U = f on ∂Ω .
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For any x ∈ ∂Ω,

∂u

∂ν
(x) =

∂U

∂ν
(x) + δd

(
∇U(z) ·M(λ,B)

∂∇zGk0
(x, z)

∂νx

+ k20(
ε⋆
ε0

− 1)|B|U(z)
∂Gk0(x, z)

∂νx

)
+O(δd+1) , (11.14)

where M(λ,B) is the polarization tensor defined in (11.5) with λ given by

λ :=
(µ0/µ⋆) + 1

2((µ0/µ⋆)− 1)
. (11.15)

Here Gk0
is the Dirichlet Green function defined by (3.70).

For internal perturbations of u that are due to the presence of the electro-
magnetic anomaly D, the following inner asymptotic expansion holds.

Theorem 11.6 We have

u(x) ≈ U(z) + δv(
x− z

δ
,
µ0

µ⋆
) · ∇U(z) for x near z , (11.16)

where v is defined by (11.7) with k = µ0/µ⋆.

Before concluding this section, we make a remark. Consider the Helmholtz
equation with the Neumann data g in the presence of the inclusion D:





∇ · 1

µδ
∇u+ ω2εδu = 0 in Ω ,

∂u

∂ν
= g on ∂Ω .

(11.17)

Let the background solution U satisfy



∆U + k20U = 0 in Ω ,

∂U

∂ν
= g on ∂Ω .

(11.18)

The following asymptotic expansion of the solution of the Neumann problem
holds. For any x ∈ ∂Ω, we have

u(x) = U(x) + δd
(
∇U(z)M(λ,B)∇zNk0(x, z)

+ k20(
ε⋆
ε0

− 1)|B|U(z)Nk0
(x, z)

)
+O(δd+1) , (11.19)

where Nk0
is the Neumann function defined by




∆xNk0

(x, z) + k0
2Nk0

(x, z) = −δz in Ω ,

∂Nk0

∂νx

∣∣∣
∂Ω

= 0 for z ∈ Ω .
(11.20)
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Moreover, the inner expansion (11.16) holds true with U being defined by
(11.18).

The following useful relation between the Neumann function and the fun-
damental solution Γk0

holds:

(−1

2
I +Kk0

Ω )[Nk0
(·, z)](x) = Γk0

(x, z), x ∈ ∂Ω, z ∈ Ω . (11.21)

11.3 Asymptotic Formulas for Monopole Sources in Free
Space

11.3.1 Conductivity Problem

Let y ∈ Rd \D and let uy(x) be the solution to the transmission problem

{
∇ · (1 + (k − 1)χ(D))∇uy(x) = δy(x), x ∈ Rd ,

uy(x)− Γ (x, y) = O(|x|1−d), |x− y| → ∞ .
(11.22)

Let Uy(x) = Γ (x, y) denote the background solution. We still assume that D
is of the form D = δB + z. For y ∈ ∂D and x away from z, we can prove
similarly to (11.4) that the following expansion of uy − Uy for x away from z
holds:

(uy − Uy)(x) = −δd∇zΓ (x, z) ·M(λ,B)∇zΓ (y, z) +O(δd+1) .

Note that, because of the symmetry of the PT, the leading-order term
in the above expansion satisfies the reciprocity property, i.e., ∇zΓ (x, z) ·
M(λ,B)∇zΓ (y, z) = ∇yΓ (y, z) ·M(λ,B)∇zΓ (x, z).

11.3.2 Helmholtz Equation

Suppose that D is illuminated by a time-harmonic wave generated at the
point source y with the operating frequency ω. In this case, the incident field
is given by

Uy(x) = Γk0(x, y) ,

and the field perturbed in the presence of the particle is the solution to the
following transmission problem:

∇·
(

1

µ0
χ(Rd \D) +

1

µ⋆
χ(D)

)
∇uy+ω2

(
ε0χ(R

d \D) + ε⋆χ(D)
)
uy =

1

µ0
δy ,

(11.23)
and is subject to the outgoing radiation condition, or equivalently
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∆uy + k20uy = δy in Rd \D ,

∆uy + k2⋆uy = 0 in D ,

uy
∣∣
+
− uy

∣∣
− = 0 on ∂D ,

1

µ0

∂uy
∂ν

∣∣∣∣
+

− 1

µ⋆

∂uy
∂ν

∣∣∣∣
−
= 0 on ∂D ,

uy satisfies the outgoing radiation condition.

(11.24)

Here, k2⋆ = ω2ε⋆µ⋆.
Let uy be the solution to (11.24) and let Uy be the solution in the absence

of the target, i.e., Uy(x) = Γk0
(x− y).

As δ → 0, the following asymptotic expansion of the perturbation of the
perturbation uy − Uy due to the presence of D = δB + z can be proved
analogously to (11.14):

uy(x)− Uy(x) = −δd
[
k20(

ε⋆
ε0

− 1)|B|Γk0
(x, z)Γk0

(y, z)

+∇zΓk0
(x, z) ·M(λ,B)∇zΓk0

(y, z)

]
+O(δd+1) ,

(11.25)

where λ is given in this case by (11.15). Note that (11.25) is a dipolar ap-
proximation. Formula (11.25) shows that, at the leading-order in terms of the
characteristic size, the effect of a small electromagnetic particle on measure-
ments is the sum of a polarized magnetic dipole and an electric point source.
Moreover, the leading-order term satisfies the reciprocity property.

11.4 Elasticity Equations

Consider an elastic medium occupying a bounded domain Ω in Rd, with a
connected smooth boundary ∂Ω. Let the constants (λ, µ) denote the back-
ground Lamé coefficients, that are the elastic parameters in the absence of
any inclusion. Suppose that the elastic inclusion D in Ω is given by

D = δB + z,

where B is a bounded smooth domain in Rd. We assume that there exists
c0 > 0 such that infx∈D dist(x, ∂Ω) > c0.

Suppose that D has the pair of Lamé constants (λ̃, µ̃) satisfying (3.121)
and (3.170). An asymptotic expansion for the displacement field in terms of
the reference Lamé constants, the location, and the shape of the inclusion
D can be derived. This expansion describes the perturbation of the solution
caused by the presence of D. It is expressed in terms of the elastic moment
tensor which is a geometric quantity associated with the inclusion. Based on
this asymptotic expansion, we will derive the algorithms to obtain accurate
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and stable reconstructions of the location and the order of magnitude of the
elastic inclusion.

The elastic moment tensor (EMT) associated with the domain B and the

Lamé parameters (λ, µ; λ̃, µ̃) is defined as follows: For p, q = 1, . . . , d, let fpq
and gpq solve





S̃B [fpq]|− − SB [gpq]|+ = xpeq|∂B ,
∂

∂ñ
S̃B [fpq]

∣∣∣∣
−
− ∂

∂n
SB [gpq]

∣∣∣∣
+

=
∂(xpeq)

∂n
|∂B ,

(11.26)

where (e1, . . . , ed) is the canonical basis of R
d. Then the EMTM := (mjlpq)

d
j,l,p,q=1

is defined by

mjlpq :=

∫

∂B

xpeq · gjl dσ. (11.27)

The following lemma holds [66].

Lemma 11.7 Suppose that 0 < λ̃, µ̃ < +∞. For j, l, p, q = 1, . . . , d,

mjlpq =

∫

∂B

[
−∂(xpeq)

∂n
+
∂(xpeq)

∂ñ

]
· vjl dσ, (11.28)

where vjl is the unique solution of the transmission problem




Lλ,µvjl = 0 in Rd \B,
Lλ̃,µ̃vjl = 0 in B,

vjl|+ − vjl|− = 0 on ∂B,

∂vjl
∂n

∣∣∣∣
+

− ∂vjl
∂ñ

∣∣∣∣
−
= 0 on ∂B,

vjl(x)− xjel = O(|x|1−d) as |x| → +∞.

(11.29)

11.4.1 Static Regime

In this subsection we consider the effect of a small elastic inclusion on the
boundary measurements in the static regime. For a given g ∈ L2

Ψ (∂D) (see
(3.162)), let uδ be the solution of





Lλ,µuδ = 0 in Ω \D,
Lλ̃,µ̃uδ = 0 in D,

uδ
∣∣
− = uδ

∣∣
+

on ∂D,

∂uδ
∂ñ

∣∣∣∣
−
=
∂uδ
∂n

∣∣∣∣
+

on ∂D,

∂uδ
∂n

∣∣∣∣
∂Ω

= g,

uδ
∣∣
∂Ω

∈ L2
Ψ (∂Ω).

(11.30)
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Let NΩ(x, z) be the Neumann function for the Lamé system on Ω, namely,
for z ∈ Ω, N(x, z) is the solution to





Lλ,µNΩ(x, z) = −δz(x)I, x ∈ Ω ,

∂NΩ

∂n
(x, z) = − 1

|∂Ω|I , x ∈ ∂Ω ,
(11.31)

subject to the orthogonality condition:
∫

∂Ω

NΩ(x, z)ψ(x) dσ(x) = 0 ∀ ψ ∈ Ψ. (11.32)

We have

(−1

2
I +KΩ)

−1 [Γ (· − z)] (x) = NΩ(x, z) , x ∈ ∂Ω, z ∈ Ω , (11.33)

modulo a function in Ψ .
The following outer expansion for the displacement field holds.

Theorem 11.8 Let uδ be the solution of (11.30) and u0 the background so-
lution. The following pointwise asymptotic expansion on ∂Ω holds:

uδ(x) = u0(x)− δd∇u0(z) : M∇zNΩ(x, z) +O(δd+1), x ∈ ∂Ω . (11.34)

Note that in (11.34) we have used the convention

(
∇u0(z) : M∇zNΩ(x, z)

)
k
=

d∑

j,l=1

(
∂j(u0)l(z)

d∑

p,q=1

mjlpq∂p(NΩ)kq(x, z)
)
,

(11.35)
for k = 1, . . . , d.

When there are multiple well-separated inclusions

Dl = δBl + zl, l = 1, . . . ,m,

where |zl−zl′ | > 2c0 for some c0 > 0, l 6= l′, then by iterating formula (11.34),
we obtain the following theorem.

Theorem 11.9 The following asymptotic expansion holds uniformly for x ∈
∂Ω:

uδ(x) = u0(x)− δd
m∑

l=1

∇u0(zl) : Ml∇zNΩ(x, zl) +O(δd+1),

where Ml is the EMT corresponding to the inclusion Bl, l = 1, . . . ,m.

Finally, the following inner asymptotic formula holds.

Theorem 11.10 We have

uδ(x) ≃ u0(z) + δ
∑

j,l

vjl(
x− z

δ
)(∂j(u0)l)(z) for x near z . (11.36)
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11.4.2 Time-Harmonic Regime

Let 0 = κ1 ≤ κ2 ≤ . . . be the eigenvalues of −Lλ,µ in Ω with the Neumann
condition on ∂Ω. Note that κ1 = 0 is of multiplicity d(d+1)/2, the eigenspace
being Ψ . For ω

√
ρ /∈ {√κj}j≥1, let u0 be the background solution associated

with (λ, µ, ρ) in Ω, i.e.,





(Lλ,µ + ω2ρ)u0 = 0 in Ω,

∂u0
∂n

= g on ∂Ω,
(11.37)

with g ∈ L2(∂Ω)d.
Suppose that the elastic inclusion D in Ω is given by D = δB+z, where B

is a bounded smooth domain in Rd. We assume that there exists c0 > 0 such
that infx∈D dist(x, ∂Ω) > c0. Suppose that D has the pair of Lamé constants

(λ̃, µ̃) satisfying (3.121) and (3.170) and denote by ρ̃ its density.
Let uδ be the solution to





(Lλ,µ + ω2ρ)uδ = 0 in Ω \D,
(Lλ̃,µ̃ + ω2ρ̃)uδ = 0 in D,

uδ
∣∣
− = uδ

∣∣
+

on ∂D,

∂uδ
∂ñ

∣∣∣∣
−
=
∂uδ
∂n

∣∣∣∣
+

on ∂D,

∂uδ
∂n

= g on ∂Ω.

(11.38)

For ω
√
ρ /∈ {√κj}j≥1, letN

ω
Ω(x, z) be the Neumann function for Lλ,µ+ω2ρ

in Ω corresponding to a Dirac mass at z. That is, for z ∈ Ω, Nω
Ω(·, z) is the

matrix-valued solution to



(Lλ,µ + ω2ρ)Nω

Ω(x, z) = −δz(x)I , x ∈ Ω ,

∂Nω
Ω

∂n
(x, z) = 0, x ∈ ∂Ω .

(11.39)

Analogously to (11.31), the following relation holds:

(
− 1

2
I +Kω

Ω

)
[Nω

Ω(·, z)](x) = Γω(x, z), x ∈ ∂Ω, z ∈ Ω . (11.40)

Then, the following result can be obtained using arguments analogous to
those in Theorem 11.8.

Theorem 11.11 Let uδ be the solution to (11.38), u0 be the background so-
lution defined by (11.37) and ω2ρ be different from the Neumann eigenvalues
of the operator −Lλ,µ on Ω. Then, for ωδ ≪ 1, the following asymptotic
expansion holds uniformly for all x ∈ ∂Ω:
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uδ(x)− u0(x) = −δd
(
∇u0(z) : M∇zN

ω
Ω(x, z) (11.41)

+ω2(ρ− ρ̃)|B|Nω
Ω(x, z)u0(z)

)
+O(δd+1).

Moreover, we have

(
1

2
I −Kω

Ω

)
[uδ − u0](x) = δd

(
∇u0(z) : M∇zΓ

ω(x− z)(11.42)

+ω2(ρ− ρ̃)|B|Γω(x− z)u0(z)
)
+O(δd+1)

uniformly with respect to x ∈ ∂Ω.

We also have an asymptotic expansion of the solutions of the Dirichlet
problem.

Let 0 ≤ τ1 ≤ τ2 ≤ . . . be the eigenvalues of −Lλ,µ in Ω with the Dirichlet
condition on ∂Ω. For ω

√
ρ /∈ {√τj}j≥1, let G

ω
Ω(x, z) be the Dirichlet function

for Lλ,µ + ω2ρ in Ω corresponding to a Dirac mass at z. That is, for z ∈ Ω,
Gω

Ω(·, z) is the matrix-valued solution to

{
(Lλ,µ + ω2ρ)Gω

Ω(x, z) = −δz(x)I, x ∈ Ω ,

Gω
Ω(x, z) = 0, x ∈ ∂Ω .

(11.43)

Then for any x ∈ ∂Ω, and z ∈ Ω we can prove in the same way as (11.40)
that (1

2
I + (Kω

Ω)
∗
)
[
∂Gω

Ω

∂n
(·, z)](x) = −∂Γ

ω

∂n
(x, z) . (11.44)

Theorem 11.12 Let ω2ρ be different from the Dirichlet eigenvalues of the
operator −Lλ,µ on Ω. Let vδ be the solution to





(Lλ,µ + ω2ρ)vδ = 0 in Ω \D,
(Lλ̃,µ̃ + ω2ρ̃)vδ = 0 in D,

vδ
∣∣
− = vδ

∣∣
+

on ∂D,

∂vδ
∂ñ

∣∣∣∣
−
=
∂vδ
∂n

∣∣∣∣
+

on ∂D,

vδ = f on ∂Ω,

(11.45)

and let v0 be the background solution defined by

{
(Lλ,µ + ω2ρ)v0 = 0 in Ω,

v0 = f on ∂Ω,
(11.46)

with f ∈ W 2
1/2(∂Ω)d. Then, for ωδ ≪ 1, the following asymptotic expansion

holds uniformly for all x ∈ ∂Ω:
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∂vδ
∂ν

(x)− ∂v0
∂ν

(x) = −δd
(
∇v0(z) : M∇z

∂Gω
Ω

∂ν
(x, z) (11.47)

+ω2(ρ− ρ̃)|B|∂G
ω
Ω

∂ν
(x, z)u0(z)

)
+O(δd+1).

Moreover,
(
1

2
I + (Kω

Ω)
∗
)
[
∂(vδ − v0)

∂ν
](x) = −δd

(
∇v0(z) : M∇z

∂Γω

∂ν
(x− z)(11.48)

+ω2(ρ− ρ̃)|B|∂Γ
ω

∂ν
(x− z)v0(z)

)
+O(δd+1)

uniformly with respect to x ∈ ∂Ω.

11.4.3 Properties of the EMT

We now provide some important properties of the EMT such as symmetry,
positive-definiteness, and bounds.

The following theorem holds [66, 68].

Theorem 11.13 (Symmetry) Let M be the EMT associated with the do-

main B, and (λ̃, µ̃) and (λ, µ) be the Lamé parameters of B and the back-
ground, respectively. Then, for p, q, j, l = 1, . . . , d,

mjlpq = mjlqp, mjlpq = mljpq, and mjlpq = mpqjl. (11.49)

The symmetry property (11.49) implies thatM is a symmetric linear trans-
formation on the space MS

d of d× d symmetric matrices.
We now recall the positive-definiteness property of the EMT. The following

holds [66, 68].

Theorem 11.14 (Positivity) Suppose that (3.170) holds. If µ̃ > µ (µ̃ < µ,
resp.), then M is positive (negative, resp.) definite on the space MS

d of d× d
symmetric matrices.

Set

P1 :=
1

d
I ⊗ I, P2 := I− P1. (11.50)

Since for any d× d symmetric matrix A

I ⊗ I(A) = (A : I) I = trace(A) I and I(A) = A,

one can immediately see that

P1P1 = P1, P2P2 = P2, P1P2 = 0,

and P2 is then the orthonormal projection from the space of d× d symmetric
matrices onto the space of symmetric matrices of trace zero.

With notation (11.50), we express the trace bounds satisfied by the EMT
in the following theorem.
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Theorem 11.15 (Bounds) Set β = λ + 2µ/d, β̃ = λ̃ + 2µ̃/d. Suppose for
simplicity that µ̃ > µ. We have

1

|B| trace(P1MP1) ≤ d(β̃ − β)
dβ + 2(d− 1)µ̃

dβ̃ + 2(d− 1)µ̃
(11.51)

1

|B| trace (P2MP2) ≤ 2 (µ̃− µ)

[
d2 + d− 2

2

− 2 (µ̃− µ)

(
d− 1

2µ̃
+

d− 1

dβ̃ + 2(d− 1)µ̃

)]
, (11.52)

|B| trace
(
P1M

−1P1

)
≤ 1

d(β̃ − β)

dβ̃ + 2(d− 1)µ

dβ + 2(d− 1)µ
, (11.53)

|B| trace
(
P2M

−1P2

)
≤ 1

2(µ̃− µ)

[
d2 + d− 2

2

+ 2

(
µ̃− µ

)(
d− 1

2µ
+

d− 1

dβ + 2(d− 1)µ

)]
, (11.54)

where for C = (Cpqjl), trace(C) :=

d∑

j,l=1

Cjljl.

Note that P1MP1 and P2MP2 are the bulk and shear parts of M. We also
note that

trace(P1) = 1 and trace(P2) = (d(d+ 1)− 2)/2.

The bounds (11.51)–(11.54) are called Hashin-Shtrikman bounds for the EMT
and are obtained in [124, 259].

It is worth mentioning that the dimension of the space of symmetric 4-
tensors in the three dimensional space is 21, and hence the equalities (11.53)
and (11.54) are satisfied on a 19 (21− 2) dimensional surface in tensor space.
However ellipsoid geometries (with unit volume) only cover a 5 dimensional
manifold within that 19 dimensional space.

EMT’s under linear transformations

We recall formulas for EMT’s under linear transformations. These formulas
were first proved in [66].

Theorem 11.16 Let B be a bounded domain in Rd and let (mjlpq(B)) denote
the EMT associated with B. Then the following holds:

translation formula Let z ∈ Rd. Then,

mjlpq(B + z) = mjlpq(B), j, l, p, q = 1, . . . , d; (11.55)
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scaling formula Let δ > 0. Then,

mjlpq(δB) = δdmjlpq(B), j, l, p, q = 1, . . . , d; (11.56)

rotation formula Let R = (Rjl) be a unitary transformation in Rd. Then,

mjlpq(R(B)) =

d∑

u,v=1

d∑

k,r=1

RpuRqvRjkRlrmkruv(B), j, l, p, q = 1, . . . , d.

(11.57)

EMTs for Ellipses and Balls

In dimension two, let M = (mjlpq) be the EMT for the ellipse B whose
semi-axes are on the x1− and x2−axes and of length a and b, respectively,
and let (λ̃, µ̃) and (λ, µ) be the Lamé parameters of B and the background,
respectively.

Then we have

m1111 = |B|(λ+ 2µ)
(µ̃− µ)(λ̃− λ+ µ̃− µ)[m2 − 2(τ − 1)m] + c

(µ̃− µ)[3µ+ (1− τ)(λ̃+ µ̃)]m2 + (µ+ λ̃+ µ̃)(µ+ τ µ̃)
,

m2222 = |B|(λ+ 2µ)
(µ̃− µ)(λ̃− λ+ µ̃− µ)[m2 + 2(τ − 1)m] + c

(µ̃− µ)[3µ+ (1− τ)(λ̃+ µ̃)]m2 + (µ+ λ̃+ µ̃)(µ+ τ µ̃)
,

m1122 = |B| (λ+ 2µ)[(µ̃− µ)(λ̃− λ+ µ̃− µ)m2 + (λ̃− λ)(µ̃+ τµ) + (µ̃− µ)2]

(µ̃− µ)[3µ+ (1− τ)(λ̃+ µ̃)]m2 + (µ+ λ̃+ µ̃)(µ+ τ µ̃)
,

m1212 = |B| µ(µ̃− µ)(τ + 1)

−(µ̃− µ)m2 + µ+ τ µ̃
,

where

c = (λ̃− λ+ µ̃− µ)(µ+ τ µ̃) + (τ − 1)(µ̃− µ)(µ+ λ̃+ µ̃),

m = (a − b)/(a + b) and τ = (λ+ 3µ)/(λ+ µ). The remaining terms are
determined by the symmetry properties (11.49). If m = 0, i.e., B is a disk,
then





m1122 = |B| (λ+ 2µ)[(λ̃− λ)(µ̃+ τµ) + (µ̃− µ)2]

(µ+ λ̃+ µ̃)(µ+ τ µ̃)
,

m1212 = |B|µ(µ̃− µ)(τ + 1)

µ+ τ µ̃
.

(11.58)

With notation (11.50), the EMT of a disk given by (11.58) can be rewritten
as
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M = 2|B| (λ+ 2µ)(λ̃+ µ̃− λ− µ)

µ+ λ̃+ µ̃
P1 + 2|B|µ(µ̃− µ)(τ + 1)

µ+ τ µ̃
P2,

or, equivalently,

M = |B|m(2)
1 (2m

(2)
2 P1 + 2P2) (11.59)

with

m
(2)
1 =

µ(µ̃− µ)(τ + 1)

µ+ τ µ̃
,

m
(2)
2 =

(λ+ 2µ)(λ̃+ µ̃− λ− µ)(µ+ τ µ̃)

µ(µ+ λ̃+ µ̃)(µ̃− µ)(τ + 1)
.

(11.60)

Analogously, for a spherical inclusion B, M can be expressed as [67]

M = |B|m(3)
1 (3m

(3)
2 P1 + 2P2), (11.61)

where

m
(3)
1 =

15µ(µ− µ̃)(β − 1)

15µ(1− β) + 2(µ− µ̃)(5β − 4)
,

m
(3)
2 =

(λ− λ̃)
(
15µλ(1− β) + 2λ(µ− µ̃)(5β − 4)

)

5(µ− µ̃)
(
3λµ(1− β)− 3µβ(λ− λ̃)− λ(µ− µ̃)(1− 2β)

)

− 2(µ− µ̃)(λ(µ− µ̃)− 5µβ(λ− λ̃))

5(µ− µ̃)
(
3λµ(1− β)− 3µβ(λ− λ̃)− λ(µ− µ̃)(1− 2β)

) ,

(11.62)

and β =
λ

2(λ+ µ)
denotes the Poisson ratio.

Note that from (11.59) and (11.61) it follows that the EMT M of a disk
or a sphere is isotropic. One can write M as

M = aI+ bI ⊗ I (11.63)

for constants a and b depending only on λ, λ̃, µ, µ̃ and the space dimension d,
which can be easily computed. In fact, using (11.50), (11.59), and (11.61), we
have

a = 2|B|m(d)
1 ,

b = |B|m(d)
1 (m

(d)
2 − 2

d
).

Incompressible Limit

Let wjl be the unique solution of the Stokes problem
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µ∆wjl +∇p = 0 in Rd \B,
µ̃∆wjl +∇p = 0 in B,

wjl|+ = wjl|− on ∂B,(
pν + µ

∂wjl

∂ν

)∣∣∣∣
+

=

(
pν + µ̃

∂wjl

∂n

)∣∣∣∣
−

on ∂B,

wjl(x)− xjel +
δjl
d

d∑

p=1

xpep = O(|x|1−d) as |m| → +∞,

p(x) = O(|x|−d) as |m| → +∞.

(11.64)

Define the tensor V = (vjlpq)
d
j,l,p,q=1 by

vjlpq := (µ̃− µ)

∫

B

∇wjl : ∇s(xpeq) dx, j, l, p, q = 1, . . . , d.

The tensor V, introduced in [47], is called the viscous moment tensor. Again
in [47], it is proved that

∥∥∥∥∥vjl −
(
wjl −

δjl
d

d∑

p=1

wpp

)∥∥∥∥∥
W (Rd)

→ 0 as λ̃, λ→ +∞, (11.65)

where vjl is defined by (11.29). Here, the limits are taken under the assumption

that λ̃/λ = O(1). Therefore, one can show from (11.65) that

V = lim
λ̃,λ→+∞

P2MP2,

where P2, defined by (11.50), is the orthonormal projection from the space of
d× d symmetric matrices onto the space of symmetric matrices of trace zero.

11.5 Asymptotic Expansions for Time-Dependent
Equations

11.5.1 Asymptotic Formulas for the Wave Equation

Consider the initial boundary value problem for the (scalar) wave equation





∂2t u−∇ ·
(
χ(Ω \D) + kχ(D)

)
∇u = 0 in ΩT ,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) for x ∈ Ω ,

∂u

∂ν
= g on ∂ΩT ,

(11.66)
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where T < +∞ is a final observation time, ΩT = Ω × (0, T ), and ∂ΩT =
∂Ω × (0, T ). The initial data u0, u1 ∈ C∞(Ω), and the Neumann boundary
data g ∈ C∞(0, T ; C∞(∂Ω)) are subject to compatibility conditions.

Define the background solution U to be the solution of the wave equation
in the absence of any anomalies. Thus U satisfies





∂2tU −∆U = 0 in ΩT ,

U(x, 0) = u0(x), ∂tU(x, 0) = u1(x) for x ∈ Ω ,

∂U

∂ν
= g on ∂ΩT .

For ρ > 0, define the operator Pρ on tempered distributions by

Pρ[ψ](x, t) =
1√
2π

∫

|ω|≤ρ

e−iωtψ̂(x, ω) dω , (11.67)

where ψ̂(x, ω) denotes the Fourier transform of ψ(x, t) in the t−variable:

ψ̂(x, ω) = Ft[ψ(x, ·)](ω) =
1√
2π

∫ ∞

−∞
ψ(x, t)eiωtdt .

Clearly, the operator Pρ truncates the high-frequency component of ψ.
The following asymptotic expansion holds as δ → 0.

Theorem 11.17 (Perturbations of weighted boundary measurements)
Let w ∈ C∞(ΩT ) satisfy (∂2t − ∆)w(x, t) = 0 in ΩT with ∂tw(x, T ) =
w(x, T ) = 0 for x ∈ Ω. Suppose that ρ≪ 1/

√
δ. Define the weighted boundary

measurements

Iw[U, T ] :=

∫

∂ΩT

Pρ[u− U ](x, t)
∂w

∂ν
(x, t) dσ(x) dt .

Then, for any fixed T > diam(Ω), the following asymptotic expansion for
Iw[U, T ] holds as δ → 0:

Iw[U, T ] ≈ δd
∫ T

0

∇Pρ[U ](z, t)M(λ,B)∇w(z, t) dt , (11.68)

where M(λ,B) is defined by (11.5).

Expansion (11.68) is a weighted expansion. Pointwise expansions similar
to those in Theorem 11.1 which is for the steady-state model can also be
obtained.

Let y ∈ R3 be such that |y − z| ≫ δ. Choose U(x, t) = Uy(x, t), where Uy

is defined by (2.55) and consider for the sake of simplicity the wave equation
in the whole three-dimensional space with appropriate initial conditions:
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∂2t u−∇ ·

(
χ(R3 \D) + kχ(D)

)
∇u = δx=yδt=0 in R3 × (0,+∞) ,

u(x, 0) = 0, ∂tu(x, 0) = 0 for x ∈ R3, x 6= y .

(11.69)
The following theorem holds.

Theorem 11.18 (Pointwise perturbations) Let u be the solution to (11.69).
Set Uy to be the background solution. Suppose that ρ≪ 1/

√
δ.

(i) The following outer expansion holds

Pρ[u− Uy](x, t) ≈ −δ3
∫

R

∇Pρ[Uz](x, t− τ) ·M(λ,B)∇Pρ[Uy](z, τ) dτ ,

(11.70)
for x away from z, where M(λ,B) is defined by (11.5) and Uy and Uz by
(2.55).

(ii) The following inner approximation holds:

Pρ[u− Uy](x, t) ≈ δv

(
x− z

δ

)
· ∇Pρ[Uy](x, t) for x near z , (11.71)

where v is given by (11.7) and Uy by (2.55).

Formula (11.70) shows that the perturbation due to the anomaly is in the
time-domain a wavefront emitted by a dipolar source located at the point z.

Taking the Fourier transform of (11.70) in the time variable yields the
expansions given in Theorem 11.5 for the perturbations resulting from the
presence of a small anomaly for solutions to the Helmholtz equation at low
frequencies (at wavelengths large compared to the size of the anomaly).

11.5.2 Asymptotic Analysis of Temperature Perturbations

Infrared thermal imaging is becoming a common screening modality in the
area of breast cancer. By carefully examining aspects of temperature and
blood vessels of the breasts in thermal images, signs of possible cancer or
pre-cancerous cell growth may be detected up to 10 years prior to being dis-
covered using any other procedure. This provides the earliest detection of
cancer possible. Because of thermal imaging’s extreme sensitivity, these tem-
perature variations and vascular changes may be among the earliest signs of
breast cancer and/or a pre-cancerous state of the breast. An abnormal in-
frared image of the breast is an important marker of high risk for developing
breast cancer.

Suppose that the background Ω is homogeneous with thermal conduc-
tivity 1 and that the anomaly D = δB + z has thermal conductivity
0 < k 6= 1 < +∞. In this section one considers the following transmission
problem for the heat equation:
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∂tu−∇ ·
(
χ(Ω \D) + kχ(D)

)
∇u = 0 in ΩT ,

u(x, 0) = u0(x) for x ∈ Ω ,

∂u

∂ν
= g on ∂ΩT ,

(11.72)

where the Neumann boundary data g and the initial data u0 are subject to
a compatibility condition. Let U be the background solution defined as the
solution of 




∂tU −∆U = 0 in ΩT ,

U(x, 0) = u0(x) for x ∈ Ω ,

∂U

∂ν
= g on ∂ΩT .

The following asymptotic expansion holds as δ → 0.

Theorem 11.19 (Perturbations of weighted boundary measurements)
Let w ∈ C∞(ΩT ) be a solution to the adjoint problem, namely, satisfy
(∂t +∆)w(x, t) = 0 in ΩT with w(x, T ) = 0 for x ∈ Ω. Define the weighted
boundary measurements

Iw[U, T ] :=

∫

∂ΩT

(u− U)(x, t)
∂w

∂ν
(x, t) dσ(x) dt .

Then, for any fixed T > 0, the following asymptotic expansion for Iw[U, T ]
holds as δ → 0:

Iw[U, T ] ≈ −δd
∫ T

0

∇U(z, t) ·M(λ,B)∇w(z, t) dt , (11.73)

where M(λ,B) is defined by (11.5).

Note that (11.73) holds for any fixed positive final time T while (11.68)
holds only for T > diam(Ω). This difference comes from the finite speed
propagation property for the wave equation compared to the infinite one for
the heat equation.

Consider now the background solution to be the Green function of the
heat equation at y:

U(x, t) := Uy(x, t) :=





e−
|x−y|2

4t

(4πt)d/2
for t > 0 ,

0 for t < 0 .

(11.74)

Let u be the solution to the following heat equation with an appropriate initial
condition:



∂tu−∇ ·

(
χ(Rd \D) + kχ(D)

)
∇u = 0 in Rd × (0,+∞) ,

u(x, 0) = Uy(x, 0) for x ∈ Rd.

(11.75)
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Proceeding as in the derivation of (11.70), one can prove that δu(x, t) := u−U
is approximated by

−(k− 1)

∫ t

0

1

(4π(t− τ))d/2

∫

∂D

e−
|x−x′|2

4(t−τ)
∂v

∂ν

∣∣∣∣
−
(
x′ − z

δ
) · ∇Uy(x

′, τ) dσ(x′) dτ ,

(11.76)
for x near z, where v is given by (11.1). Therefore, analogously to Theo-
rem 11.18, the following pointwise expansion follows from the approximation
(11.76).

Theorem 11.20 (Pointwise perturbations) Let y ∈ Rd be such that |y−
z| ≫ δ. Let u be the solution to (11.75). The following expansion holds

(u−U)(x, t) ≈ −δd
∫ t

0

∇Uz(x, t−τ)M(λ,B)∇Uy(z, τ) dτ for |x−z| ≫ O(δ) ,

(11.77)
where M(λ,B) is defined by (11.5) and Uy and Uz by (11.74).

When comparing (11.77) and (11.70), one should point out that for the
heat equation the perturbation due to the anomaly is accumulated over time.





12

Anomaly Imaging Algorithms

In this chapter we apply the accurate asymptotic formulas derived in Chapter
11 for the purpose of identifying the location and certain properties of the
inclusions.

We consider conductivity, electromagnetic, and elasticity imaging and sin-
gle out simple fundamental algorithms. Least-squares solutions to the imaging
problems can be computed. However, the computations are done iteratively
and may be difficult because of the nonlinear dependence of the data on the
location, the physical parameter, the size, and the orientation of the inclusion.
Moreover, there may be considerable non-uniqueness of the minimizer in the
case where all parameters of the inclusions are unknown.

In this chapter we construct various direct (non-iterative) reconstruction
algorithms that take advantage of the smallness of the inclusions. In par-
ticular, MUltiple Signal Classification algorithm (MUSIC), backpropagation,
Kirchhoff migration, and topological derivative are investigated. We investi-
gate their stability with respect to medium and measurement noises as well as
their resolution. We also discuss multifrequency imaging. In the presence of
(independent and identically distributed) measurement noise summing a given
imaging functional over frequencies yields an improvement in the signal-to-
noise ratio. However, if some correlation between frequency-dependent mea-
surements exists, for example because of a medium noise, then summing
an imaging functional over frequencies may not be appropriate. A single-
frequency imaging functional at the frequency which maximizes the signal-to-
noise ratio may give a better reconstruction.

The imaging techniques developed in this chapter could be seen as a regu-
larizing method in comparison with iterative approaches; they reduce the set
of admissible solutions. Their robustness and accuracy are related to the fact
that the number of unknowns is reduced and the imaging problem is sparse.
The algorithms designed for the Helmholtz equation and the time-harmonic
elasticity equations use the phase information on the measured wave in an
essential way. They can not be used to locate the target from intensity-only
measurements.
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12.1 Direct Imaging for the Conductivity Problem

In this section one applies the asymptotic formula (11.4) for the purpose of
identifying the location and certain properties of the conductivity inclusions.
Two simple fundamental algorithms that take advantage of the smallness of
the inclusions are singled out: projection-type algorithms and MUSIC-type
algorithms. These algorithms are fast, stable, and efficient.

12.1.1 Detection of a Single Inclusion: A Projection-Type
Algorithm

We briefly discuss a simple algorithm for detecting a single inclusion. The
projection-type location search algorithm makes use of constant current
sources. Let Ω be the background medium and let U be the background solu-
tion. One wants to apply a special type of current that makes ∇U constant in
the inclusion D. The injection current g = a · ν for a fixed unit vector a ∈ Rd

yields ∇U = a in Ω.
Let the conductivity inclusion D be of the form z+δB. Let w be a smooth

harmonic function in Ω. From (11.4) it follows that the weighted boundary
measurements Iw[U ] satisfies

Iw[U ] :=

∫

∂Ω

(u− U)(x)
∂w

∂ν
(x) dσ(x) ≈ −δd∇U(z) ·M(λ,B)∇w(z) , (12.1)

where λ = (k + 1)/(2(k − 1)), k being the conductivity of D.
Assume for the sake of simplicity that d = 2 and D is a disk. Set

w(x) = −(1/2π) log |x− y| for y ∈ R2 \Ω, x ∈ Ω .

Since w is harmonic in Ω, then from (11.11) and (12.1), it follows that

Iw[U ] ≈ (k − 1)|D|
π(k + 1)

(y − z) · a
|y − z|2 , y ∈ R2 \Ω . (12.2)

The first step for the reconstruction procedure is to locate the inclusion.
The location search algorithm is as follows. Take two observation lines Σ1 and
Σ2 contained in R2 \Ω given by

Σ1 := a line parallel to a ,

Σ2 := a line normal to a .

Find two points zSi ∈ Σi, i = 1, 2, so that

Iw[U ](zS1 ) = 0, Iw[U ](zS2 ) = max
y∈Σ2

|Iw[U ](y)| .

From (12.2), one can see that the intersecting point zS of the two lines
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Π1(z
S
1 ) := {y | a · (y − zS1 ) = 0} , (12.3)

Π2(z
S
2 ) := {y | (y − zS2 ) is parallel to a} (12.4)

is close to the center z of the inclusion D: |zS − z| = O(δ2).
Once one locates the inclusion, the factor |D|(k − 1)/(k + 1) can be esti-

mated. As it has been said before, this information is a mixture of the con-
ductivity and the volume. A small inclusion with high conductivity and larger
inclusion with lower conductivity can have the same polarization tensor.

An arbitrary shaped inclusion can be represented by means of an equiva-
lent ellipse (ellipsoid).

12.1.2 Detection of Multiple Inclusions: A MUSIC-Type
Algorithm

Consider P well-separated inclusions Dp = δBp+zp (these are a fixed distance
apart), with conductivities kp, p = 1, . . . , P . Suppose for the sake of simplicity
that all the domains Bp are disks. Let yl ∈ R2 \Ω for l = 1, . . . , n denote the
source points. Set

Uyl
= wyl

:= −(1/2π) log |x− yl| for x ∈ Ω, l = 1, . . . , n .

The MUSIC-type location search algorithm for detecting multiple inclusions
is as follows. For n ∈ N sufficiently large, define the response matrix A =
(All′)

n
l,l′=1 by

All′ = Iwyl
[Uyl′

] :=

∫

∂Ω

(u− Uyl′
)(x)

∂wyl

∂ν
(x) dσ(x) .

Expansion (12.1) yields

All′ ≈ −
P∑

p=1

2(kp − 1)|Dp|
kp + 1

∇Uyl′
(zp) · ∇Uyl

(zp) .

For j = 1, 2, introduce

g(j)(zS) =

(
ej · ∇Uy1

(zS), . . . , ej · ∇Uyn
(zS)

)T

, zS ∈ Ω ,

where {e1, e2} is an orthonormal basis of R2.

Lemma 12.1 (MUSIC characterization) There exists n0 > dP such that
for any n > n0 the following characterization of the location of the inclusions
in terms of the range of the matrix A holds:

g(j)(zS) ∈ Range(A) for j = 1, 2 iff zS ∈ {z1, . . . , zP } . (12.5)
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The MUSIC-type algorithm to determine the locations of the inclusions is
as follows. Let Πnoise = I −Π, where Π is the orthogonal projection onto the
range of A. Given any point zS ∈ Ω, form the vector g(j)(zS). The MUSIC
characterization (12.5) says that the point zS coincides with the location of
an inclusion if and only if Πnoise[g

(j)](zS) = 0, j = 1, 2. Thus one can form
an image of the inclusions by plotting, at each point zS , the cost function

IMU(z
S) =

1√
||Πnoise[g(1)](zS)||2 + ||Πnoise[g(2)](zS)||2

.

The resulting plot will have large peaks at the locations of the inclusions.
Once one locates the inclusions, the factors |Dp|(kp − 1)/(kp + 1), p =

1, . . . , P , can be estimated from the significant singular values of A.

12.2 Direct Imaging Algorithms for the Helmholtz
Equation

12.2.1 Direct Imaging at a Fixed Frequency

In this section, we design direct imaging functionals for small inclusions at a
fixed frequency ω. Consider the Helmholtz equation (11.12) with the Neumann
data g in the presence of the inclusion D and let U denote the background
solution.

Let w be a smooth function such that (∆ + k20)w = 0 in Ω with k20 =
ω2µ0ε0. The weighted boundary measurements Iw[U, ω] defined by

Iw[U, ω] :=

∫

∂Ω

(u− U)(x)
∂w

∂ν
(x) dσ(x) (12.6)

satisfies

Iw[U, ω] = −δd
(
∇U(z) ·M(λ,B)∇w(z) + k20(

ε⋆
ε0

− 1)|B|U(z)w(z)
)

+ o(δd) ,
(12.7)

with λ given by (11.15).
We apply the asymptotic formulas (11.14) and (12.7) for the purpose of

identifying the location and certain properties of the inclusions.
Consider P well-separated inclusions Dp = zp + δBp, p = 1, . . . , P . The

magnetic permeability and electric permittivity of Dp are denoted by µp and
εp, respectively. Suppose that all the domains Bp are disks. In this case, we
have

Iw[U, ω] ≈ −
P∑

p=1

|Dp|
(
2
µp − µ0

µ0 + µp
∇U(z) · ∇w(z) + k20(

εp
ε0

− 1)U(z)w(z)
)
.
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MUSIC-type Algorithm

Let (θ1, . . . , θn) be n unit vectors in Rd. For θ ∈ {θ1, . . . , θn}, we assume
that we are in possession of the boundary data u when the domain Ω is
illuminated with the plane wave U(x) = eik0θ·x. Taking the harmonic func-
tion w(x) = e−ik0θ

′·x for θ′ ∈ {θ1, . . . , θn} and using (11.11) shows that the
weighted boundary measurement is approximately equal to

Iw[U, ω] ≈ −
P∑

p=1

|Dp|k20
(
2
µp − µ0

µ0 + µp
θ · θ′ + εp

ε0
− 1
)
eik0(θ−θ′)·zp .

Define the response matrix A = (All′)
n
l,l′=1 ∈ Cn×n by

All′ := Iwl′
[Ul, ω] , (12.8)

where Ul(x) = eik0θl·x, wl(x) = e−ik0θl·x, l = 1, . . . , n. It is approximately
given by

All′ ≈ −
P∑

p=1

|Dp|k20
(
2
µp − µ0

µ0 + µp
θl · θl′ +

εp
ε0

− 1
)
eik0(θl−θl′ )·zp , (12.9)

for l, l′ = 1, . . . , n. Introduce the n-dimensional vector fields g(j)(zS), for zS ∈
Ω and j = 1, . . . , d+ 1, by

g(j)(zS) =
1√
n

(
ej · θ1eik0θ1·zS

, . . . , ej · θneik0θn·zS)T
, j = 1, . . . , d , (12.10)

and

g(d+1)(zS) =
1√
n

(
eik0θ1·zS

, . . . , eik0θn·zS)T
, (12.11)

where {e1, . . . , ed} is an orthonormal basis of Rd. Let g(zS) be the n×d matrix
whose columns are g(1)(zS), . . . , g(d)(zS). Then (12.9) can be written as

A ≈ −n
P∑

p=1

|Dp|k20
(
2
µp − µ0

µ0 + µp
g(zp)g(zp)

T
+ (

εp
ε0

− 1)g(d+1)(zp)g(d+1)(zp)
T)

.

Let Πnoise = I −Π, where Π is the orthogonal projection onto the range of
A as before. The MUSIC-type imaging functional is defined by

IMU(z
S , ω) :=

( d+1∑

j=1

‖Πnoise[g
(j)](zS)‖2

)−1/2

. (12.12)

This functional has large peaks only at the locations of the inclusions.
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Backpropagation-type Algorithms

Let (θ1, . . . , θn) be n unit vectors in Rd. A backpropagation-type imaging
functional at a single frequency ω is given by

IBP(z
S , ω) :=

1

n

n∑

l=1

e−2ik0θl·zS

Iwl
[Ul, ω] , (12.13)

where Ul(x) = wl(x) = eik0θl·x, l = 1, . . . , n. Suppose that (θ1, . . . , θn) are
equidistant points on the unit sphere Sd−1. For sufficiently large n, we have

1

n

n∑

l=1

eik0θl·x ≈ −4(
π

k0
)d−2 ℑm

{
Γk0

(x, 0)
}
=

{
sinc(k0|x|) for d = 3 ,

J0(k0|x|) for d = 2 ,

(12.14)
where sinc(s) = sin(s)/s is the sinc function and J0 is the Bessel function of
the first kind and of order zero.

Therefore, it follows that

IBP(z
S , ω) ≈ −

P∑

p=1

|Dp|k20
(
2
µ0 − µp

µ0 + µp
+(
εp
ε0

−1)
)
×
{
sinc(2k0|zS − zp|) for d = 3,

J0(2k0|zS − zp|) for d = 2 .

These formulas show that the resolution of the imaging functional is the stan-
dard diffraction limit. It is of the order of half the wavelength λ = 2π/k0.

Note that IBP uses only the diagonal terms of the response matrix A,
defined by (12.8). Using the whole matrix, we arrive at the Kirchhoff migration
functional:

IKM(zS , ω) =
d+1∑

j=1

g(j)(zS) ·Ag(j)(zS) , (12.15)

where g(j) are defined by (12.10) and (12.11).
Suppose for simplicity that P = 1 and let (ε⋆, µ⋆) denote the electromag-

netic parameters of the inclusion. In the case where µ⋆ = µ0, the response
matrix is

A = −n|D|k20(
ε⋆
ε0

− 1)g(d+1)(z)g(d+1)(z)
T

and we can prove that IMU is a nonlinear function of IKM [57]. In fact, we
have

IKM(zS , ω) = −n|D|k20(
ε⋆
ε0

− 1)

(
1− I−2

MU(z
S , ω)

)
.

It is worth pointing out that this transformation does not improve neither the
stability nor the resolution.

Moreover, in the presence of additive measurement noise with variance
k20σ

2
noise, the response matrix can be written as

A = −n|D|k20(
ε⋆
ε0

− 1)g(d+1)(z)g(d+1)(z)
T
+ σnoisek0W ,
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where W is a matrix of independent complex circularly symmetric Gaussian
random variables with mean zero and variance 1.

According to [57], the Signal-to-Noise Ratio (SNR) of the imaging func-
tional IKM, defined by

SNR(IKM) =
E[IKM(z, ω)]

Var(IKM(z, ω))1/2
,

is then equal to

SNR(IKM) =
nk0|D| | ε⋆ε0 − 1|

σnoise
. (12.16)

For the MUSIC algorithm, the peak of IMU is affected by measurement
noise. We have [170]

IMU(z, ω) =

{
n|D|k0| ε⋆ε0 −1|

σnoise
if n|D|k0| ε⋆ε0 − 1| ≫ σnoise,

1 if n|D|k0| ε⋆ε0 − 1| ≪ σnoise .

Suppose now that the medium is randomly heterogeneous around a con-
stant background. Let ε⋆ be the electric permittivity of the inclusion D. The
coefficient of reflection is of the form 1 + ( ε⋆ε0 − 1)χ(D)(x) + νnoise(x), where
1 stands for the constant background, ( ε⋆ε0 − 1)χ(D) stands for the localized
perturbation of the coefficient of reflection due to the inclusion, and νnoise(x)
stands for the fluctuations of the coefficient of reflection due to clutter (i.e.,
medium noise). We assume that νnoise is a random process with Gaussian
statistics and mean zero, and that it is compactly supported within Ω.

If the random process νnoise has a small amplitude, then the background
solution U , i.e., the field that would be observed without the inclusion, can
be approximated by

U(x) ≈ U (0)(x)− k20

∫

Ω

N
(0)
k0

(x, y)νnoise(y)U
(0)(y) dy ,

where U (0) and N
(0)
k0

are respectively the background solution and the Neu-
mann function in the constant background case. On the other hand, in the
weak fluctuation regime, the phase mismatch between Nk0

(x, z), the Neu-

mann function in the random background, and N
(0)
k0

(x, zS) when zS is close
to z comes from the random fluctuations of the travel time between x and z
which is approximately equal to the integral of νnoise/2 along the ray from x
to z:

Nk0(x, z) ≈ N
(0)
k0

(x, z)eik0T (x) ,

with

T (x) ≈ |x− z|
2

∫ 1

0

νnoise

(
z + (x− z)s

)
ds .

Therefore, for any smooth function w satisfying (∆ + k20)w = 0 in Ω, the
weighted boundary measurements Iw[U

(0), ω], defined by (12.6), is approxi-
mately given by
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Iw[U
(0), ω] ≈ −|D|k20(

ε⋆
ε0

− 1)e−
k2
0Var(T )

2 w(z)U (0)(z)

−k20
∫

Ω

w(y)U (0)(y)νnoise(y) dy ,
(12.17)

provided that the correlation length of the random process νnoise is small [54].
Without the medium noise,

Iw[U
(0), ω] ≈ −|D|k20(

ε⋆
ε0

− 1)w(z)U (0)(z) .

So, expansion (12.17) shows that the medium noise reduces the height of the

main peak of IKM by the damping factor e−k2
0Var(T )/2 and on the other hand

it induces random fluctuations of the associated image in the form of a speckle
field due to the second term on the right-hand side of (12.17).

Topological Derivative Based Imaging Functional

The topological derivative based imaging functional was introduced in [54].
Let D′ = zS + δ′B′, µ′ > µ0, ε

′ > ε0, B
′ be chosen a priori (usually a

disk), and let δ′ be small. If µ⋆ < µ0 and ε⋆ < ε0, then we choose µ′ < µ0 and
ε′ < ε0.

Let w be the solution of the Helmholtz equation




∆w + k20w = 0 in Ω ,

∂w

∂ν
= (−1

2
I + (K−k0

Ω )∗)(−1

2
I +Kk0

Ω )[U − umeas] on ∂Ω ,
(12.18)

where umeas is the boundary pressure in the presence of the inclusion. The
function w is obtained by backpropagating the Neumann data

(−1

2
I + (Kk0

Ω )∗)(−1

2
I +Kk0

Ω )[U − umeas]

inside the background medium (without any inclusion). Note that (Kk0

Ω )∗ =

(K−k0

Ω )∗.
The function w can be used to image the inclusion. It corresponds to

backpropagating the discrepancy between the measured and the background
solutions. However, we introduce here a functional that exploits better the
coherence between the phases of the background and perturbed fields at the
location of the inclusion. This functional turns out to be exactly the topolog-
ical derivative imaging functional introduced in [54].

For a single measurement, we set

ITD[U ](zS) = ℜe
{
∇U(zS) ·M(λ′, B′)∇w(zS)+k20(

ε′

ε0
−1)|B′|U(zS)w(zS)

}
.

(12.19)
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The functional ITD[U ](zS) gives, at every search point zS ∈ Ω, the sensi-
tivity of the misfit function

E [U ](zS) :=
1

2

∫

∂Ω

∣∣(−1

2
I +Kk0

Ω )[uzS − umeas](x)
∣∣2 dσ(x) ,

where uzS is the solution of (3.62) with the inclusion D′ = zS + δ′B′. The
location of the maximum of zS 7→ ITD[U ](zS) corresponds to the point at
which the insertion of an inclusion centered at that point maximally decreases
the misfit function. Using the Helmholtz-Kirchhoff identity (3.80) and the
relation (11.21) between the Neumann function Nk0

, defined by (11.20), and
fundamental solution Γk0 , we can show that the functional ITD attains its
maximum at zS = z; see [54]. It is also shown in [54] that the postprocessing
of the data set by applying the integral operator (− 1

2I + Kk0

Ω ) is essential in
order to obtain an efficient topological derivative based imaging functional,
both in terms of resolution and stability. By postprocessing the data, we ensure
that the topological derivative based imaging functional attains its maximum
at the true location of the inclusion.

For multiple measurements, Ul, l = 1, . . . , n, the topological derivative
based imaging functional is simply given by

ITD(z
S , ω) :=

1

n

n∑

l=1

ITD[Ul](z
S) . (12.20)

Let, for simplicity, (θ1, . . . , θn) be n uniformly distributed directions over
the unit sphere and consider Ul to be the plane wave

Ul(x) = eik0θl·x, x ∈ Ω, l = 1, . . . , n . (12.21)

Let

rk0
(zS , z) :=

∫

∂Ω

Γk0
(x, zS)Γk0

(x, z) dσ(x) , (12.22)

Rk0
(zS , z) :=

∫

∂Ω

∇zΓk0
(x, zS)∇zΓk0

(x, z)T dσ(x) . (12.23)

Note that Rk0
(zS , z) is a d×d matrix. When µ⋆ = µ0, it is proved in [54] that

ITD[U ](zS) ≈ δdk0
4(
ε′

ε0
−1)(

ε⋆
ε0

−1)|B′|ℜe
{
U(zS)rk0(z

S , z)U(z)

}
, (12.24)

where rk0 is given by (12.22). Therefore, by computing the topological deriva-
tives for the n plane waves (n sufficiently large), it follows from (12.14) to-
gether with

∫

∂Ω

Γk0
(x, z)Γk0

(x, zS) dσ(x) ∼ − 1

k0
ℑm

{
Γk0

(zS , z)
}
, d = 2, 3 , (12.25)
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where A ∼ B means A ≈ CB for some constant C independent of k0, that

1

n

n∑

l=1

ITD[Ul](z
S) ∼ k0

5−d(ℑm
{
Γk0

(zS , z)
}
)2 .

Similarly, when ε⋆ = ε0, by computing the topological derivatives for the
n plane waves, Ul, l = 1, . . . , n, given by (12.21), we obtain

1

n

n∑

l=1

ITD[Ul](z
S) ≈

δdk0
2 1

n

n∑

l=1

ℜe
{
eik0θl·(zS−z)

[
θl ·M(λ′, B′)Rk0

(zS , z)M(λ,B)θl
]}
.

Using B′ the unit disk, the polarization tensor M(λ′, B′) = CdI, where Cd is
a constant, is proportional to the identity; see (11.11).

If, additionally, we assume that M(λ,B) is approximately proportional to
the identity, which occurs in particular when B is a disk or a ball, then by
using

∫

∂Ω

∇zΓk0
(x, zS)∇zΓk0(x, z)

T dσ(x)

∼ −k0 ℑm
{
Γk0(z

S , z)
}( z − zS

|z − zS |

)(
z − zS

|z − zS |

)T

,

(12.26)

we arrive at

1

n

n∑

l=1

ITD[Ul](z
S) ∼ k0

5−d(ℑm
{
Γk0(z

S , z)
}
)2 . (12.27)

Therefore, ITD attains its maximum at z. Moreover, the resolution for the
location estimation is given by the diffraction limit. We refer the reader to
[54] for a detailed stability analysis of ITD with respect to both medium and
measurement noises as well as its resolution. In the case of measurement noise,
the SNR of ITD,

SNR(ITD) =
E[ITD(z, ω)]

Var(ITD(z, ω))1/2
,

is equal to

SNR(ITD) =

√
2π1−d/2k0

(d+1)/2|U(z)|( ε⋆ε0 − 1)|D|
σnoise

.

In the case of medium noise, let us introduce the kernel

Q(zS , z) := ℜe
{
U (0)(zS)U (0)(z)

∫

∂Ω

Γk0
(x, zS)Γk0

(x, z) dσ(x)
}
.
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We can express the topological derivative imaging functional as follows [54]:

ITD[U
(0)](zS) ≈ k0

4(
ε′

ε0
− 1)|B′|

∫

Ω

νnoise(y)Q(zS , y) dy

+k0
4(
ε′

ε0
− 1)(

ε⋆
ε0

− 1)|B′||D|Q(zS , z)e−
k0

2Var(T )
2 ,

(12.28)

provided, once again, that the correlation length of the random process νnoise
is small and the amplitude of νnoise is also small. Consequently, the topological
derivative has the form of a peak centered at the location z of the inclusion
(second term of the right-hand side of (12.28)) buried in a zero-mean Gaussian
field or speckle pattern (first term of the right-hand side of (12.28)) that we
can characterize statistically.

12.2.2 Direct Imaging at Multiple Frequencies

Let (θ1, . . . , θn) be n uniformly distributed directions over the unit sphere.
We consider plane wave illuminations at multiple frequencies, (ωj)j=1,...,m,
instead of a fixed frequency:

Ulj(x) := U(x, θl, ωj) = eikjθl·x,

where kj :=
√
ε0µ0ωj , and record the perturbations due to the inclusion. In

this case, we can construct the topological derivative imaging functional by
summing over frequencies

ITDF(z
S) :=

1

m

m∑

j=1

ITD(z
S , ωj) . (12.29)

Suppose for simplicity that µ⋆ = µ0. Then, (12.24) and (12.25) yield

ITDF(z
S) ∼

∫

k0

k0
5−d

(
ℑm

{
Γk0(z

S , z)
})2

dk0, d = 2, 3 ,

and hence, ITDF(z
S) has a peak only at z. In the case where µ⋆ 6= µ0, we can

use (12.26) to state the same behavior at z.
An alternative imaging functional when searching for an inclusion using

multiple frequencies is the Reverse-Time migration imaging functional [105]:

IRMF(z
S) :=

1

nm

n∑

l=1

m∑

j=1

U(zS , θl, ωj)

×
∫

∂Ω

(−1

2
I +Kkj

Ω )[u− U ](x, θl, ωj)Γkj
(x, zS) dσ(x) .

(12.30)

In fact, when for instance µ⋆ = µ0,
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IRMF(z
S) ∼ − 1

nm

m∑

l=1

m∑

j=1

ω3
jU(z, θl, ωj)U(zS , θl, ωj)ℑm {Γkj (z

S , z)} ,

and therefore, it is approximately proportional to

−
∫

S

∫

k0

k0
3eik0θ·(zS−z)ℑm {Γk0

(zS , z)}dk0dσ(θ)

∼
∫

k0

k0
5−d

(
ℑm {Γk0

(zS , z)}
)2

dk0 ,

where S is the unit sphere and d = 2, 3. Hence,

IRMF(z
S) ∼ ITDF(z

S).

Finally, it is possible to use a backpropagation imaging functional:

IBPF(z
S) :=

1

m

m∑

j=1

IBP(z
S , ωj) ,

or a Kirchhoff imaging functional:

IKMF(z
S) :=

1

m

m∑

j=1

IKM(zS , ωj) .

We can also use the matched field imaging functional:

IMF(z
S) :=

1

m

m∑

j=1

|IKM(zS , ωj)|2 ,

in which the phase coherence between the different frequency-dependent per-
turbations is not exploited. This makes sense when the different frequency-
dependent perturbations are incoherent.

If the measurement noises νnoise(x, ωj), j = 1, . . . ,m, are independent and
identically distributed, the multiple frequencies enhance the detection perfor-
mance via a higher “effective” SNR.

If some correlation between frequency-dependent perturbations exist, for
example because of a medium noise, then summing over frequencies an imag-
ing functional is not appropriate. A single-frequency imaging functional at the
frequency which maximizes the SNR may give a better reconstruction.

In the presence of a medium noise, a Coherent Interferometry (CINT) pro-
cedure may be appropriate. CINT consists of backpropagating the cross corre-
lations of the recorded signals over appropriate space-time or space-frequency
windows rather than the signals themselves. Here, we provide a CINT strategy
in inclusion imaging.

Following [107, 108] a CINT-like algorithm is given by
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ICINT(z
S) =

∫

S

∫

ω1

∫

ω2

∫

∂Ω

∫

∂Ω

e
− |ω1−ω2|2

2Ω2
D e

− |x1−x2|2

2X2
D

(−1

2
I +Kk1

Ω )[u− U ](x1, θ, ω1)Γk1(x1, z
S)U(zS , θ, ω1)(−

1

2
I +Kk2

Ω )[u− U ](x2, θ, ω2)

Γk2(x2, z
S)U(zS , θ, ω2)dσ(x1)dσ(x2)dω1dω2dσ(θ) ,

(12.31)
where XD and ΩD are two cut-off parameters.

The purpose of the CINT-like imaging functional ICINT is to keep in
(12.31) the pairs (x1, ω1) and (x2, ω2) for which the postprocessed data
(− 1

2I + Kk1

Ω )[u − U ](x1, ω1) and (− 1
2I + Kk2

Ω )[u − U ](x2, ω2) are coherent,
and to remove the pairs that do not bring information.

Depending on the parameters XD, ΩD, we get different trade-offs between
resolution and stability. When XD and ΩD become small, ICINT presents
better stability properties at the expense of a loss of resolution. In the limit
XD → ∞, ΩD → ∞, we get the square of the topological derivative functional
ITDF.

12.3 Direct Elasticity Imaging

In this section we present MUSIC-type location search algorithms, reverse-
time migration, and Kirchhoff imaging for the detection, localization, and
characterization of small elastic anomalies in dimension two.

12.3.1 A MUSIC-type Method in the Static Regime

For the sake of simplicity, we take Ω to be the unit disk centered at the origin
and choose N ≫ 1 equi-distributed points xi along the boundary. Let the unit
vectors θ1, . . . , θN be the corresponding observation directions. Suppose that

the measured N × 3 matrix A :=

(
(− 1

2I +KΩ)[u
(l)
δ −u

(l)
0 ](xj) · θj

)

j,l

has the

spectral decomposition

A =
3∑

l=1

σlvl ⊗ wl,

where σl are the singular values of A and vl and wl are the corresponding left
and right singular vectors. Let Π : RN → span{v1, v2, v3} be the orthogonal
projector

Π =
3∑

l=1

vl ⊗ vl.

Let a ∈ R2 \ {0}. One can prove that for a search point zS ∈ Ω, the vector
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f (j)(zS ; a) :=

(
(W (j) : M∇zSΓ (x1, z

S))·a, . . . , (W (j) : M∇zSΓ (xN , z
S))·a

)T

(12.32)
in RN lies in the space spanned by columns of A if and only if zS = z [41].
Let

g(j) = (CW (j))n, j = 1, 2, 3, on ∂Ω,

where

W (1) =

(
1 0
0 1

)
, W (2) =

(
0 1
1 0

)
, W (3) =

(
0 0
0 1

)

form a basis of the space of 2×2 symmetric matrices, and let u
(j)
δ and u

(j)
0 be

the solution of the static elastic problem (11.30) with and without inclusion,
respectively. In (12.32), M can be estimated using the following formula:

∫

∂Ω

(u
(l)
δ − u

(l)
0 )(x) · g(j)(x) dσ(x) = −δ2W (l) : MW (j) +O(δ3), j, l = 1, 2, 3 .

(12.33)
Thus one can form an image of the elastic inclusion by plotting, at each

point zS , the MUSIC-type imaging functional

IMU(z
S) =

1√∑3
j=1 ||(I −Π)[f (j)](zS ; a)||2

,

where I is the N × N identity matrix. The resulting plot will have a large
peak at the location of the inclusion.

12.3.2 A MUSIC-type Method in the Time-Harmonic Regime

In this subsection we extend the MUSIC algorithm to the time-harmonic
regime. Let D be a small elastic inclusion (with location at z and Lamé pa-

rameters λ̃ and µ̃). Let xj , j = 1, . . . , N be equi-distributed points along the
boundary of Ω for N ≫ 1. The array of N elements {x1, . . . , xN} is used to
detect the inclusion. Let θ1, . . . , θN be the corresponding unit directions of
incident fields/observation directions. The array of elements {x1, . . . , xN} is
operating both in transmission and in reception.

We choose the background displacement to be such that

u
(j)
0 (x) = Γω(x, xj)θj , x ∈ Ω. (12.34)

From (11.42), we have

(−1

2
I +Kω

Ω)[u
(j)
δ − u

(j)
0 ](x) = −δ2

(
∇zΓ

ω(x, z) : M∇z(Γ
ω(z, xj)θj)

+ω2(ρ− ρ̃)|B|Γω(x, z)Γω(z, xj)θj

)
+O(δ3).

(12.35)
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The measured data is the N ×N matrix given by

Aω :=

(
(−1

2
I +KΩ)[u

(j)
δ − u

(j)
0 ](xl) · θl

)

j,l

. (12.36)

For any point x ∈ Ω, let us introduce the N×2 matrix of the incident field
emitted by the array of N transmitters G(x, ω), which will be called the Green
matrix, and the N × 3 matrix of the corresponding independent components
of the stress tensors S(x, ω), which will be called the stress matrix:

G(x, ω) = (Γω(x, x1)θ1, . . . , Γ
ω(x, xN )θN )

T
, (12.37)

S(x, ω) = (s1(x), . . . , sN (x))
T
, (12.38)

where

sj(x) = [σ
(j)
11 (x), σ

(j)
22 (x), σ

(j)
12 (x)]

T , σ(j)(x) = C∇s(Γω(x, xj)θj).

One can see from (12.35) and (12.36) that the data matrix Aω is factorized
as follows:

Aω = −δ2H(z, ω)D(ω)HT (z, ω), (12.39)

where
H(x, ω) = [S(x, ω), G(x, ω)] (12.40)

and D(ω) is a symmetric 5× 5 matrix given by

D(ω) =

(
L[M] 0
0 ω2(ρ− ρ̃)|B|I

)
(12.41)

for some linear operator L.
Consequently, the data matrixAω is the product of three matricesHT (z, ω),

D(ω) and H(z, ω). The physical meaning of the above factorization is the fol-
lowing: the matrix HT (z, ω) is the propagation matrix from the transmitter
points toward the inclusion located at the point z, the matrix D(ω) is the
scattering matrix and H(z, ω) is the propagation matrix from the inclusion
toward the receiver points.

Recall that MUSIC is essentially based on characterizing the range of data
matrix Aω, so-called signal space, forming projections onto its null (noise)
spaces, and computing its singular value decomposition.

From the factorization (12.39) ofAω and the fact that the scattering matrix
D is nonsingular (so, it has rank 5), the standard argument from linear algebra
yields that, if N ≥ 5 and if the propagation matrix H(z, ω) has maximal rank
5 then the ranges Range(H(z, ω)) and Range(A) coincide.

The following is a MUSIC characterization of the location of the elastic
inclusion and is valid if N is sufficiently large.
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Proposition 12.2 Suppose that N ≥ 5. Let a ∈ C5 \ {0}, then

H(zS)a ∈ Range(Aω) if and only if zS = z.

In other words, any linear combination of the vector columns of the propa-
gation matrix H(zS , ω) defined by (12.40) belongs to the range of Aω (signal
space) if and only if the points zS and z coincide.

If the dimension of the signal space, s (≤ 5), is known or is estimated from

the singular value decomposition of Aω, defined by Aω = V ΣU
T
, then the

MUSIC algorithm applies. Furthermore, if vi denote the column vectors of the
matrix V then for any vector a ∈ C5 \ {0} and for any space point zS within
the search domain, a map of the estimator IMU(z

S) defined as the inverse of
the Euclidean distance from the vector H(zS , ω)a to the signal space by

IMU(z
S) =

1√∑N
j=s+1 |vj ·H(zS , ω)a|2

(12.42)

peaks (to infinity, in theory) at the center z of the inclusion. The visual aspect
of the peak of IMU at z depends upon the choice of the vector a. A common
choice which means that we are working with all the significant singular vec-
tors is a = (1, 1, . . . , 1)T . However, we emphasize the fact that a choice of the
vector a in (12.42) with dimension (number of nonzero components) much
lower than 5 still permits one to image the elastic inclusion with our MUSIC-
type algorithm. See the numerical results below. It is worth mentioning that
the estimator IMU(z

S) is obtained via the projection of the linear combination
of the vector columns of the Green matrix G(zS) onto the noise subspace of
the Aω for a signal space of dimension l if the dimension of a is l.

Let us also point out here that the function IMU(z
S) does not contain any

information about the shape and the orientation of the inclusion. Yet, if the
position of the inclusion is found (approximately at least) via observation of
the map of IMU(z

S), then one could attempt, using the decomposition (12.39),
to retrieve the EMT of the inclusion (which is of order δ2).

Finally, it is worth emphasizing that in dimension 3, the matrix D is 9× 9
and is of rank 9. For locating the inclusion, the number N then has to be
larger than 9. We also mention that the developed MUSIC algorithm applies
to the crack location problem in the time-harmonic regime.

12.3.3 Reverse-Time Migration and Kirchhoff Imaging in the
Time-Harmonic Regime

In this section we consider the time-harmonic regime. The perturbations of
the boundary measurements due to the presence of a small inclusion are given
by the asymptotic expansion (11.41).

Suppose for simplicity that a small elastic inclusion (with location at z)
has only a density contrast and let the background displacement be the field
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generated by a point source at y ∈ Ω emitting along ej . Again, from (11.41),
we have for x, y ∈ ∂Ω:

(−1

2
I +Kω

Ω)[u
(j)
δ − u

(j)
0 ](x, y) = −δ2ω2(ρ− ρ̃)|B|Γω(x, z)Γω(z, y)ej +O(δ3).

Thus, for a search point zS ∈ Ω, it follows by using (3.183) that
∫

∂Ω

Γω
α (zS , x)(−1

2
I +Kω

Ω)[u
(j)
δ − u

(j)
0 ](x, y)dσ(x)

≃ δ2

cα
ω(ρ− ρ̃)|B|(ℑmΓω

α (zS , z))Γω(z, y)ej .

We introduce the reverse-time migration imaging functional IRM,α(z
S) for

α = p or s given by

∑

j=1,2

∫

∂Ω

Γω
α (zS , y)ej ·

∫

∂Ω

Γω
α (zS , x)(−1

2
I+Kω

Ω)[u
(j)
δ −u(j)0 ](x, y)dσ(x) dσ(y).

(12.43)
IRM,α(z

S) consists in backpropagating with the α-Green function the data
set {

(−1

2
I +Kω

Ω)[u
(j)
δ − u

(j)
0 ](x, y), y ∈ ∂Ω, x ∈ ∂Ω, j = 1, 2

}

both from the source point y and the receiver point x.
Using (3.183) and the reciprocity property (3.177) we obtain that

IRM,α(z
S) ≃ − δ

2

c2α
(ρ− ρ̃)|B||ℑmΓα(z

S , z)|2.

The imaging functional IRM,α(z
S) attains then its maximum (if ρ < ρ̃) or

minimum (if ρ > ρ̃) at zS = z.
The imaging functional IRM,α(z

S) can be simplified as follows to yield the
Kirchhoff migration imaging functional IKM,α(z

S) given by

∑

j=1,2

∫

∂Ω

e−iκα|y−zS |ej ·
∫

∂Ω

e−iκα|zS−x|(−1

2
I+Kω

Ω)[u
(j)
δ −u(j)0 ](x)dσ(x) dσ(y).

(12.44)
The function IKM,α attains as well its maximum at zS = z. In this simplified
version, backpropagation is approximated by travel time migration.

12.4 Time-Domain Anomaly Imaging

12.4.1 Wave Imaging of Small Anomalies

To detect the anomaly from measurements of the wavefield u−Uy away from
the anomaly one can use a time-reversal technique in dimension three. Taking
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into account the definition of the outgoing fundamental solution (2.55) to the
wave equation, spatial reciprocity and time reversal invariance of the wave
equation, one defines the time-reversal imaging functional WTR by

WTR(x, t) =

∫

R

∫

S

[
Ux(x

′, t− s)
∂Pρ[u− Uy]

∂ν
(x′, t0 − s)

−∂Ux

∂ν
(x′, t− s)Pρ[u− Uy](x

′, t0 − s)

]
dσ(x′) ds ,

(12.45)

where

Ux(x
′, t− τ) =

δ(t− τ − |x− x′|)
4π|x− x′| .

The imaging functional WTR corresponds to propagating inside the volume
surrounded by S the time-reversed perturbation Pρ[u − Uy] and its normal
derivative on S. Theorem 11.18 shows that

Pρ[u− Uy](x, t) ≈ −δ3
∫

R

∇Pρ[Uz](x, t− τ) ·m(z, τ) dτ ,

where
m(z, τ) =M(λ,B)∇Pρ[Uy](z, τ) . (12.46)

Therefore, since

∫

R

∫

S

[
Ux(x

′, t− s)
∂Pρ[Uz]

∂ν
(x′, t0 − s− τ)

−∂Ux

∂ν
(x′, t− s)Pρ[Uz](x

′, t0 − s− τ)

]
dσ(x′) ds

= Pρ[Uz](x, t0 − τ − t)− Pρ[Uz](x, t− t0 + τ) ,

(12.47)

one obtains the approximation

WTR(x, t) ≈ −δ3
∫

R

m(z, τ) ·∇z

[
Pρ[Uz](x, t0−τ−t)−Pρ[Uz](x, t−t0+τ)

]
dτ ,

which can be interpreted as the superposition of incoming and outgoing waves,
centered on the location z of the anomaly. Since

Pρ[Uy](x, τ) =
sin ρ(τ − |x− y|)

4π(τ − |x− y|)|x− y| ,

m(z, τ) is concentrated at the travel time τ = T = |z−y|. It then follows that

WTR(x, t) ≈ −δ3m(z, T ) · ∇z

[
Pρ[Uz](x, t0 − T − t)− Pρ[Uz](x, t− t0 + T )

]
.

(12.48)
The imaging functional WTR is clearly the sum of incoming and outgoing
polarized spherical waves.
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Approximation (12.48) has an important physical interpretation. By chang-
ing the origin of time, T can be set to 0 without loss of generality. Then by
taking a Fourier transform of (12.48) over the time variable t, one obtains
that

ŴTR(x, ω) ∝ δ3m(z, T ) · ∇sinc(ω|x− z|) ,
where ω is the wavenumber. This shows that the time-reversal perturbation
WTR focuses on the location z of the anomaly with a focal spot size limited
to one-half the wavelength.

12.4.2 Thermal Imaging of Small Anomalies

In this subsection the formula (11.73) is applied (with an appropriate choice of
test functions w and background solutions U) for the purpose of identifying
the location of the anomaly D. The first algorithm makes use of constant
heat flux and, not surprisingly, it is limited in its ability to effectively locate
multiple anomalies.

Using many heat sources, one then describes an efficient method to locate
multiple anomalies and illustrate its feasibility. For the sake of simplicity only
the two-dimensional case will be considered.

Detection of a Single Anomaly

For y ∈ R2 \Ω, let

w(x, t) = wy(x, t) :=
1

4π(T − t)
e−

|x−y|2

4(T−t) . (12.49)

The function w satisfies (∂t+∆)w = 0 in ΩT and the final condition w|t=T = 0
in Ω.

Suppose that there is only one anomaly D = z + δB with thermal con-
ductivity k. For simplicity assume that B is a disk. Choose the background
solution U(x, t) to be a harmonic (time-independent) function in ΩT . One
computes

∇wy(z, t) =
y − z

8π(T − t)2
e−

|z−y|2

4(T−t) ,

M(λ,B)∇wy(z, t) =
(k − 1)|B|
k + 1

y − z

4π(T − t)2
e−

|z−y|2

4(T−t) ,

and

∫ T

0

M(λ,B)∇wy(z, t) dt =
(k − 1)|B|
k + 1

y − z

4π

∫ T

0

e−
|z−y|2

4(T−t)

(T − t)2
dt .

But
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d

dt
e−

|z−y|2

4(T−t) =
−|z − y|2

4

e−
|z−y|2

4(T−t)

(T − t)2

and therefore

∫ T

0

M(λ,B)∇wy(z, t) dt =
(k − 1)|B|
k + 1

y − z

π|z − y|2 e
− |z−y|2

4(T−t) .

Then the asymptotic expansion (11.73) yields

Iw[U, T ](y) ≈ δ2
k − 1

k + 1
|B|∇U(z) · (y − z)

π|y − z|2 e−
|y−z|2

4T . (12.50)

Now one is in a position to present the projection-type location search
algorithm for detecting a single anomaly. Prescribe the initial condition
u0(x) = a · x for some fixed unit constant vector a and choose g = a · ν
as an applied time-independent heat flux on ∂ΩT , where a is taken to be a
coordinate unit vector. Take two observation lines Σ1 and Σ2 contained in
R2 \Ω such that

Σ1 := a line parallel to a, Σ2 := a line normal to a .

Next find two points Pi ∈ Σi (i = 1, 2) so that Iw(T )(P1) = 0 and

Iw(T )(P2) =





min
x∈Σ2

Iw(T )(x) if k − 1 < 0 ,

max
x∈Σ2

Iw(T )(x) if k − 1 > 0 .

Finally, draw the corresponding lines Π1(P1) and Π2(P2) given by (12.3).
Then the intersecting point P of Π1(P1)∩Π2(P2) is close to the anomaly D:
|P − z| = O(δ |log δ|) for δ small enough.

Detection of Multiple Anomalies: A MUSIC-type Algorithm

Consider m well-separated anomalies Ds = δBs + zs, s = 1, . . . ,m, whose
heat conductivity is ks. Choose

U(x, t) = Uy′(x, t) :=
1

4πt
e−

|x−y′|2

4t for y′ ∈ R2 \Ω

or, equivalently, g to be the heat flux corresponding to a heat source placed
at the point source y′ and the initial condition u0(x) = 0 in Ω, to obtain that

Iw[U, T ] ≈ −δ2
m∑

s=1

(1− ks)

64π2
(y′ − zs)M

(s)(y − zs)

×
∫ T

0

1

t2(T − t)2
exp

(
−|y − zs|2
4(T − t)

− |y′ − zs|2
4t

)
dt ,
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where w is given by (12.49) and M (s) is the polarization tensor of Ds.
Suppose for the sake of simplicity that all the domains Bs are disks. Then

it follows from (11.11) thatM (s) = m(s)I2, wherem
(s) = 2(ks−1)|Bs|/(ks+1)

and I2 is the 2 × 2 identity matrix. Let yl ∈ R2 \ Ω for l ∈ N be the source
points. One assumes that the countable set {yl}l∈N has the property that any
analytic function which vanishes in {yl}l∈N vanishes identically.

The MUSIC-type location search algorithm for detecting multiple anoma-
lies is as follows. For n ∈ N sufficiently large, define the matrix A = [All′ ]

n
l,l′=1

by

All′ := −δ2
m∑

s=1

(1− ks)

64π2
m(s)(yl′ − zs) · (yl − zs)

×
∫ T

0

1

t2(T − t)2
exp

(
−|yl − zs|2

4(T − t)
− |yl′ − zs|2

4t

)
dt .

For z ∈ Ω, one decomposes the symmetric real matrix C defined by

C :=

[∫ T

0

1

t2(T − t)2
exp

(
−|yl − z|2
4(T − t)

− |yl′ − z|2
4t

)
dt

]

l,l′=1,...,n

as follows:

C =

p∑

l=1

vl(z)vl(z)
T (12.51)

for some p ≤ n, where vl ∈ Rn. Define the vector g
(l)
z ∈ Rn×2 for z ∈ Ω by

g(l)z =

(
(y1 − z)vl1(z), . . . , (yn − z)vln(z)

)T

, l = 1, . . . , p . (12.52)

Here vl1, . . . , vln are the components of the vector vl, l = 1, . . . , p. Let yl =
(ylx, yly) for l = 1, . . . , n, z = (zx, zy), and zs = (zsx, zsy). One also introduces

g(l)zx =

(
(y1x − zx)vl1(z), . . . , (ynx − zx)vln(z)

)T

and

g(l)zy =

(
(y1y − zy)vl1(z), . . . , (yny − zy)vln(z)

)T

.

Lemma 12.3 (MUSIC characterization of the range of the response matrix)
The following characterization of the location of the anomalies in terms of the
range of the matrix A holds:

g(l)zx and g(l)zy ∈ Range(A) ∀ l ∈ {1, . . . , p} if and only if z ∈ {z1, . . . , zm} .
(12.53)
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Note that the smallest number n which is sufficient to efficiently recover
the anomalies depends on the (unknown) number m. This is the main reason
for taking n sufficiently large. As for the electrical impedance imaging, the
MUSIC-type algorithm for the thermal imaging is as follows. ComputeΠnoise,
the projection onto the noise space, by the singular value decomposition of the
matrix A. Compute the vectors vl by (12.51). Form an image of the locations,

z1, . . . , zm, by plotting, at each point z, the quantity ‖g(l)z ·a‖/‖Πnoise(g
(l)
z ·a)‖

for l = 1, . . . , p, where g
(l)
z is given by (12.52) and a is a unit constant vector.

The resulting plot will have large peaks at the locations of zs, s = 1, . . . ,m.



Part IV

Multi-Wave Imaging





13

Photoacoustic Imaging

13.1 Introduction

In photoacoustic imaging, optical energy absorption causes thermoelastic ex-
pansion of the tissue, which leads to the propagation of a pressure wave. This
signal is measured by transducers distributed on the boundary of the object,
which in turn is used for imaging optical properties of the object. The major
contribution of photoacoustic imaging is to provide images of optical contrasts
(based on the optical absorption) with the resolution of ultrasound. In pure
optical imaging, optical scattering in soft tissues degrades spatial resolution
significantly with depth. Pure optical imaging is very sensitive to optical ab-
sorption but can only provide a spatial resolution on the order of 1 cm at cm
depths. Pure conventional ultrasound imaging, which is based on the detec-
tion of mechanical properties (acoustic impedance) in biological soft tissues,
can provide good spatial resolution because of its millimetric wavelength and
weak scattering at MHz frequencies. The significance of photoacoustic imag-
ing combines both approaches to provide images of optical contrasts (based
on the optical absorption) with the ultrasound resolution. Because the optical
absorption properties of tissue is highly related to its molecular constitu-
tion, photoacoustic images can reveal the pathological condition of the tissue
and therefore, facilitate a wide-range of diagnostic tasks. Moreover, when em-
ployed with optical contrast agents, photoacoustic imaging has the potential
to lead to high-resolution molecular imaging of deep structures, which cannot
be achieved with pure optical methods.

In photoacoustic imaging, if the medium is acoustically homogeneous and
has the same acoustic properties as the free space, then the boundary of the
object plays no role and the optical properties of the medium can be extracted
from measurements of the pressure wave by inverting a spherical or a circular
mean Radon transform.

In some settings, the free space assumption does not hold. For example,
in brain imaging, the skull plays an important acoustic role, and in small ani-
mal imaging devices, the metallic chamber may have a strong acoustic effect.
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In those cases, one has to account for boundary conditions. If a boundary
condition has to be imposed on the pressure field, then an explicit inversion
formula no longer exists. However, using a duality approach, one can still
reconstruct the optical absorption coefficient. In this chapter we investigate
quantitative photoacoustic imaging in the case of a bounded medium with
imposed boundary conditions and propose a geometric-control approach to
deal with the case of limited view measurements. In both cases, we focus on a
situation with small optical absorbers in a non-absorbing background and pro-
pose adapted algorithms to locate the absorbers and estimate their absorbed
energy.

A second challenging problem in photoacoustic imaging is to take into
account the issue of modelling the acoustic attenuation and its compensation.
In this chapter, we propose two approaches to correct the effect of acoustic
attenuation. We use a frequency power-law model for the attenuation.

A third challenging problem is to identify the locations of absorbers from
limited-view data. By using the geometric control method and testing the
measurements against an appropriate family of functions, we show that we
can access the initial condition for the photoacoustic problem.

Another interesting problem is to correct the effect of an unknown clut-
tered sound speed on photoacoustic images. When the speed of sound of the
medium is randomly fluctuating (around a known value), the acoustic waves
undergo partial coherence loss and the designed algorithms, assuming a con-
stant sound speed, may fail. In this chapter, by combining coherent interfer-
ometry (CINT) imaging with a spherical mean Radon inversion, we propose
an efficient algorithm for photoacoustic imaging in the presence of random
fluctuations of the sound speed.

The chapter is organized as follows. Section 13.2 is devoted to a mathe-
matical formulation of the photoacoustic imaging problem. In Section 13.3 we
consider the photoacoustic imaging problem in free space. We first propose
an algorithm to recover the absorbing energy density from limited-view data.
We then present two approaches to correct the effect of acoustic attenuation.
We use a power-law model for the attenuation. We test the SVD approach
proposed in [305] and provide an efficient technique based on the stationary
phase theorem. The stationary phase theorem allows us to compute (approx-
imately in terms of the attenuation coefficient) the unattenuated wave from
the attenuated one. Section 13.4 is devoted to correct the effect of imposed
boundary conditions. By testing our measurements against an appropriate
family of functions, constructed by the geometrical control method, we show
how to obtain the initial condition in the acoustic wave equation, and thus
recover quantitatively the absorbing energy density. In section 13.6, we de-
rive a quantitative photoacoustic imaging approach in the framework of small
absorbers. Finally, we describe a CINT-Radon algorithm for photoacoustic
imaging in acoustically inhomogeneous media. The algorithm consists in fil-
tering the data in the same way as for the spherical mean Radon inversion



13.2 Mathematical Formulation 203

before backpropagating their local correlations. Our results in this chapter are
from [31, 32, 36, 37, 39, 54].

13.2 Mathematical Formulation

In an acoustically homogeneous medium Ω ⊆ Rd, d = 2, 3, when an optical
laser pulse is employed, the photoacoustic effect is described by the following
wave equation:

∂2p

∂t2
(x, t)− c20∆p(x, t) = γ

∂H

∂t
(x, t), x ∈ Ω, t ∈ R ,

where c0 is the acoustic speed inΩ, γ is the dimensionless Grüneisen coefficient
in Ω, which is assumed to be homogeneous, and H is a heat source function
(absorbed energy per unit time per unit volume). The constant γ provides a
measure of the conversion efficiency of heat energy to pressure.

Let Dl, l = 1, . . . , L, be absorbing domains inside the nonabsorbing back-
ground Ω. Assuming the stress-confinement condition, the source term can be
modeled as

γH(x, t) = δ0(t)

L∑

l=1

χ(Dl)Al(x) ,

where δ0 is the Dirac distribution at 0. Under this assumption, the pressure
p satisfies

∂2p

∂t2
(x, t)− c20∆p(x, t) = 0 x ∈ Ω, t ∈ (0, T ) , (13.1)

for some final observation time T , the initial conditions

p|t=0 = p0 =
L∑

l=1

χ(Dl)Al(x) and ∂tp|t=0 = 0 , (13.2)

and either the Dirichlet or the Neumann boundary condition (if Ω is bounded)

p = 0 or
∂p

∂ν
= 0 on ∂Ω × (0, T ) . (13.3)

The Neumann boundary condition corresponds to the tissue/water interface
while the Dirichlet boundary condition accounts for a tissue/air interface.

The inverse problem in photoacoustic imaging is to determine the supports
of nonzero optical absorption, Dl ⋐ Ω, l = 1, . . . , L, and the absorbed opti-
cal energy density times the Grüneisen coefficient, A(x) =

∑L
l=1Al(x)χ(Dl),

from boundary measurements of the pressure on ∂Ω (if Ω is bounded) or
measurements on the boundary of a bounded domain if Ω = Rd. The final
observation time T is large enough that

T > diam(Ω)/c0 , (13.4)
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which says that the observation time is long enough for the wave initiated in-
side Ω to exit the domain Ω (if Ω is bounded) or the surface where the pressure
is measured. The image reconstruction problem in photoacoustic imaging can
then be interpreted as an inverse source problem.

The density A(x) is related to the optical absorption coefficient distribu-

tion µa(x) =
∑L

l=1 µl(x)χ(Dl) by the equation

A(x) = γµa(x)Φ(x), (13.5)

where Φ is the light fluence. The function Φ depends on the distribution of
scattering and absorption within Ω, as well as the light sources. Equation
(13.5) reveals that photoacoustic images are determined by the optical ab-
sorption properties of the object as well as variations in the fluence of the
illuminating optical radiation.

Let µs denote the reduced scattering coefficient in Ω. Based on the diffu-
sion approximation to the transport equation, the light fluence Φ satisfies

(
µa −

1

3
∇ · 1

µa + µs
∇
)
Φ = 0 in Ω , (13.6)

with the boundary condition

∂Φ

∂ν
+ lΦ = g on ∂Ω . (13.7)

Here, g denotes the light source and l a positive constant, 1/l being an ex-
trapolation length.

Since A is a nonlinear function of the optical absorption coefficient dis-
tribution µa, the reconstruction of µa from A is a nontrivial task and one
of considerable practical interest, since only the optical absorption properties
are intrinsic to the object.

13.3 Photoacoustic Imaging in Free Space

In this section, we first formulate the imaging problem in free space and
present a simulation for the reconstruction of the absorbing energy density
using the spherical or circular Radon transform. Then, we provide a total
variation regularization to find a satisfactory solution of the imaging problem
with limited-view data. Finally, we present algorithms for compensating the
effect of acoustic attenuation. The main idea is to express the effect of atten-
uation as a convolution operator. Attenuation correction is then achieved by
inverting this operator. Two strategies are used for such deconvolution. The
first one is based on the SVD of the operator and the second one uses its
asymptotic expansion based on the stationary phase theorem. We compare
the performances of the two approaches.
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13.3.1 Full-View Setting

We consider the wave equation (13.1) in two dimensions when c0 = 1 with
the initial conditions (13.2). Assume that the support of p0, the absorbing
energy density, is contained in the unit disk B. Our objective in this part is
to reconstruct p0 from the measurements g(y, t) = p(y, t) on S× (0, T ), where
S denotes the boundary of B.

The problem of reconstructing p0 is related to the inversion formula (2.54)
of the spherical mean Radon transform R. Formula (2.54) can be rewritten
as follows:

p0(x) = R∗BR[p0](x) , (13.8)

where the backprojection operator R∗ and the filter B are respectively de-
fined by (2.61) and (2.62). We refer to (13.8) as the filtered backprojection
formula for the inversion of the spherical mean Radon transform. Note that
the operator B is symmetric and positive.

On the other hand, define the operator W by

W[g](y, t) =
2

π

∫ t

0

g(y, s)√
t2 − s2

ds (13.9)

for g : S×R+ → R. Then, from the Kirchhoff formula (2.59) in two dimensions
and by inverting an Abel-type equation it follows that

R[p0](y, t) = W[p](y, t) , (13.10)

and therefore, the filtered backprojection formula (13.8) gives the initial data
p0 from measurements of the pressure p on S × R+.

Let Nθ denote the number of equally spaced angles on S. Suppose that
pressure signals are uniformly sampled at N time steps, and the phantom (the
initial pressure distribution p0) is sampled on a uniform Cartesian grid with
NR×NR points. Figure 13.1 gives a numerical illustration for the reconstruc-
tion of p0 using a discretization of (13.8).

Time-reversal imaging techniques can be applied in order to reconstruct
the initial data p0(x) from measurements of g(y, t) = W[p](y, t) for (y, t) ∈
S×(0, T ). Let v be defined by (7.8) and let the time-reversal imaging function

I(1)
TR(x) be given by (7.9). Since p satisfies (7.5) with f replaced by p0, we have

I(1)
TR(x) =

1

2
p0(x), x ∈ Ω .

13.3.2 Limited-View Setting

In many situations, we have only at our disposal data on Γ × (0, T ), where
Γ ⊂ S. Restricting the integration in formula (13.8) to Γ as follows:

p0(x) ≃
1

2π

∫

Γ

∫ 2

0

[
d2

dt2
R[p0](y, t)

]
log |t2 − |y − x|2| dt dσ(y) , (13.11)
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Fig. 13.1. Numerical inversion using (13.8) with N = 256, NR = 200 and Nθ = 200.
Top left: p0 ; Top right: p(y, t) with (y, t) ∈ S × (0, 2); Bottom left: R[p0](y, t) with
(y, t) ∈ S × (0, 2); Bottom right: R∗BR[p0].
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Fig. 13.2. Numerical inversion with truncated (13.8) formula with N = 128, NR =
128, and Nθ = 30. Left: p0; Right: R∗BR[p0].

is not stable enough to give a correct reconstruction of p0; see Figure 13.2.
The inverse problem becomes severely ill-posed and needs to be regular-

ized. We apply here a total variation regularization, which is well adapted to
the reconstruction of smooth solutions with front discontinuities. In order to
reconstruct p0 from g(y, t) := W[p](y, t) for y ∈ Γ and t ∈]0, 2[, we introduce
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the regularized minimization problem:

min
f
Jγ [f ] :=

1

2
‖B1/2 [R[f ]− g] ‖2L2(Γ×(0,2)) + γ‖∇f‖L1(Ω) ,

where γ is the regularization parameter. As noted in Section 2.8.5, a direct
calculation of the minimizer of Jγ is complicated, but an approximate solution
can be obtained by the following algorithm.

Algorithm 13.1 Iterative shrinkage-thresholding algorithm in non-
attenuated media.

1. Data g, initial set: f0 = x0 = 0, t0 = 1;
2. xk = Tγ [fk − ηR∗B [R[fk]− g]] with Tγ being defined by (2.71) and η > 0
being the step size;

3. fk+1 = xk + tk−1
tk+1

(xk − xk−1) with tk+1 =
1+

√
1+4t2

k
2

.

Two limited-angle experiments are presented in Figure 13.3.
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Test 2:  
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Fig. 13.3. Case of limited angle after 50 iterations, with parameters equal to η =
0.01, N = 128, NR = 128, and Nθ = 64. Left: p0; Center: R∗BR[p0]; Right: f50.

13.3.3 Compensation of the Effect of Acoustic Attenuation

Our aim in this section is to compensate for the effect of acoustic attenuation.
In an attenuating medium, the pressure pa is solution of the following wave
equation:

1

c20

∂2pa
∂t2

(x, t)−∆pa(x, t)− L(t) ⋆ pa(x, t) =
1

c20

d

dt
δ0(t)p0(x) ,
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where L is defined by

L(t) =
1√
2π

∫

R

(
K2(ω)− ω2

c20

)
e−iωtdω . (13.12)

Many causal models exist for K(ω). Here we use the power-law model, which
satisfies the Kramers-Kronig relations (2.48). Then K(ω) is the complex wave
number, defined by

K(ω) =
ω

c(ω)
+ ia|ω|ζ , (13.13)

where ω is the frequency, c(ω) is the frequency dependent phase velocity and
1 ≤ ζ ≤ 2 is the power of the attenuation coefficient. The phase velocity and
the attenuation coefficient are related to each other by causality; see [330]. A
common model, known as the thermoviscous model, is given by

K(ω) =
ω

c0
√
1− iaωc0

(13.14)

and corresponds approximately to ζ = 2 with c(ω) = c0.
Our strategy is now to:

• Estimate the solution p(y, t) of the non-attenuated wave equation

1

c20

∂2p

∂t2
(x, t)−∆p(x, t) =

1

c20

d

dt
δ0(t)p0(x) ,

from pa(y, t) for all (y, t) ∈ ∂Ω×R+ with ∂Ω being the surface where the
pressure is measured.

• Apply the inverse formula (13.8) for the spherical mean Radon transform
to reconstruct p0 from the non-attenuated data.

Relationship Between p and pa

Recall that p̂ = Ft[p] and p̂a == Ft[pa] satisfy

(
∆+ (

ω

c0
)2
)
p̂(x, ω) =

iω√
2πc20

p0(x)

and (
∆+K(ω)2

)
p̂a(x, ω) =

iω√
2πc20

p0(x) ,

which implies that

p̂(x, c0K(ω)) =
c0K(ω)

ω
p̂a(x, ω).

The issue is to estimate p from pa using the relationship pa = L[p], where L
is defined by
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L[φ](s) = 1

2π

∫

R

ω

c0K(ω)
e−iωs

∫ ∞

0

φ(t)eic0K(ω)t dt dω .

The main difficulty is that L is not well conditioned. We will compare two
approaches. The first one uses a regularized inverse of L via a singular value
decomposition, which has been recently introduced in [305]. The second one is
based on the asymptotic behavior of L as the attenuation coefficient a tends
to zero.

Figure 13.4 gives some numerical illustrations of the inversion without a
correction of the attenuation effect, where a thermoviscous attenuation model
is used with c0 = 1 and W defined by (13.9).
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Fig. 13.4. Numerical inversion of attenuated wave equation with K(ω) given by
(13.14) for c0 = 1 and a = 0.001. Here N = 256, NR = 200 and Nθ = 200. Top
left: p0; Top right: pa(y, t) with (y, t) ∈ ∂Ω×]0, 2[; Bottom left: W[pa](y, t) with
(y, t) ∈ ∂Ω×]0, 2[; Bottom right: R∗B [W[pa]] (x), x ∈ Ω.

An SVD Approach

A regularized inverse of the operator L obtained by an SVD approach can be
used [305]:

L[φ] =
∑

l

σl(ψ̃l, φ)ψl,
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where (ψ̃l) and (ψl) are two orthonormal bases of L2((0, T )) and σl are posi-
tives eigenvalues such that





L∗[φ] =
∑

l σl(ψl, φ)ψ̃l ,

L∗L[φ] =
∑

l σ
2
l (ψ̃l, φ)ψ̃l ,

LL∗[φ] =
∑

l σ
2
l (ψl, φ)ψl .

From (2.66), an approximate inverse of L is then given by

L−1
1,γ [φ] =

∑

l

σl
σ2
l + γ2

(ψl, φ)ψ̃l ,

where γ > 0 is the regularization parameter.
In Figure 13.5 we present some numerical inversions of the thermoviscous

wave equation with a = 0.0005 and a = 0.0025. We first obtain the ideal
measurements from the attenuated ones and then apply the inverse formula for
the spherical Radon transform to reconstruct p0 from the ideal data. We take
γ respectively equal to 0.01, 0.001 and 0.0001. The operator L is discretized
to obtain an NR ×NR matrix to which we apply an SVD. A regularization of
the SVD allows us to construct L−1

1,γ .
As expected, this algorithm corrects a part of the attenuation effect but is

unstable when γ tends to zero.

Fig. 13.5. Compensation of acoustic attenuation with SVD regularization:N = 256,
NR = 200 and Nθ = 200. First line: a = 0.0005; second line: a = 0.0025. Left to
right: using L−1

1,γ respectively with γ = 0.01, γ = 0.001 and γ = 0.0001.

Asymptotics of L

In physical situations, the coefficient of attenuation a is very small. We will
take into account this phenomenon and introduce an approximation of L and
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L−1 as a goes to zero:

Lj [φ] = L[φ] + o(aj+1) and L−1
2,j [φ] = L−1[φ] + o(aj+1),

where j represents an order of approximation.

Thermoviscous Model (13.14):

Let us consider the thermoviscous attenuation model (13.14) for K(ω).
The operator L can be approximated as follows

L[φ](s) ≃ 1

2π

∫ ∞

0

φ(t)

∫

R

(
1− i

ac0
2
ω
)
e−

1
2 c0aω

2teiω(t−s) dω dt .

Since
1√
2π

∫

R

e−
1
2 c0aω

2teiω(t−s)dω =
1√
c0at

e−
1
2

(s−t)2

c0at ,

and
i√
2π

∫

R

ωe−
1
2 c0aω

2teiω(t−s)dω = −∂s
(

1√
c0at

e−
1
2

(s−t)2

c0at

)
,

it follows that

L[φ] ≃
(
1 +

ac0
2
∂s

)

 1√

2π

∫ +∞

0

φ(t)
1√
c0at

e
−
1

2

(s− t)2

c0at dt


 .

We then investigate the asymptotic behavior of L̃ defined by

L̃[φ] = 1√
2π

∫ +∞

0

φ(t)
1√
c0at

e
−
1

2

(s− t)2

c0at dt . (13.15)

Since the phase in (13.15) is quadratic and a is small, by the stationary phase
theorem we can prove that

L̃[φ](s) =
j∑

l=0

(c0a)
l

2ll!
Dl[φ](s) + o(aj) , (13.16)

where the differential operators Dl satisfy Dl[φ](s) = (tlφ(t))(2l)(s). We can

also deduce the following approximation of order j of L̃−1

L̃−1
j [ψ] =

j∑

l=0

alψj,l , (13.17)

where ψj,l are defined recursively by
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ψj,0 = ψ and ψj,l = −
l∑

n=1

cn0
2nn!

Dn[ψj,l−n], for all n ≤ j .

Finally, we define

Lj =
(
1 +

ac0
2
∂s

)
L̃j and L−1

2,j = L̃−1
j

(
1 +

ac0
2
∂t

)−1

. (13.18)

We can compute

L̃−1
0 [ψ] = ψ, L̃−1

1 [ψ] = ψ − ac0
2

(tψ)′′ ,

and therefore,

L[φ] = φ+
ac0
2

(tφ′)′ + o(a) and L−1
2,1[ψ] = ψ − ac0

2
(tψ′)′ . (13.19)

We plot in Figure 13.5 some numerical reconstructions of p0 using a ther-
moviscous wave equation with a = 0.0005 and a = 0.0025. We take the value
of j respectively equal to j = 0, j = 1 and j = 8. These reconstructions are as
good as those obtained by the SVD regularization approach. Moreover, this
new algorithm has better stability properties.
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Fig. 13.6. Compensation of acoustic attenuation with formula (13.18): N = 256,
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General Case: K(ω) = ω + ia|ω|ζ with 1 ≤ ζ < 2

We now consider the attenuation modelK(ω) = ω
c0
+ia|ω|ζ with 1 ≤ ζ < 2.

We first note that this model is not causal but can be changed to a causal one.
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However, since our main purpose here is to give insights for the compensation
of the effect of attenuation on image reconstruction, we work with this quite
general model because of its simplicity. As before, the problem can be reduced
to the approximation of the operator L̃ defined by

L̃[φ](s) =
∫ ∞

0

φ(t)

∫

R

eiω(t−s)e−|ω|ζc0at dωdt .

It is also interesting to see that its adjoint L̃∗ satisfies

L̃∗[φ](s) =

∫ ∞

0

φ(t)

∫

R

eiω(s−t)e−|ω|ζc0as dωdt .

Suppose for the moment that ζ = 1, and working with the adjoint operator
L∗, we see that

L̃∗[φ](s) =
1

π

∫ ∞

0

c0as

(c0as)2 + (s− t)2
φ(t)dt .

Invoking the dominated convergence theorem, we have

lim
a→0

L̃∗[φ](s) = lim
a→0

1

π

∫ ∞

− 1
ac0

1

1 + y2
φ(s+ c0ays)dy =

1

π

∫ ∞

−∞

1

1 + y2
φ(s)dy = φ(s) .

More precisely, introducing the fractional Laplacian ∆1/2 as follows

∆1/2φ(s) =
1

π
p.v.

∫ +∞

−∞

φ(t)− φ(s)

(t− s)2
dt ,

we get

1

a

(
L̃∗[φ](s)− φ(s)

)
=

1

a

∫ ∞

−∞

1

πc0as

1

1 +
(

s−t
c0as

)2 (φ(t)− φ(s)) dt

=

∫ ∞

−∞

1

π

c0s

(c0as)2 + (s− t)2
(φ(t)− φ(s)) dt

= lim
ǫ→0

∫

R\[s−ǫ,s+ǫ]

1

π

c0s

(c0as)2 + (s− t)2
(φ(t)− φ(s)) dt

→ lim
ǫ→0

∫

R\[s−ǫ,s+ǫ]

1

π

c0s

(s− t)2
(φ(t)− φ(s)) dt

= c0s∆
1/2φ(s) ,

as a tends to zero. We therefore deduce that

L̃∗[φ](s) = φ(s)+c0as∆
1/2φ(s)+o(a) and L̃∗[φ](s) = φ(s)+c0a∆

1/2 (sφ(s))+o(a) .

Applying exactly the same argument for 1 < ζ < 2, we obtain that
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L[φ](s) = φ(s) + Cc0a∆
ζ/2(sφ(s)) + o(a) ,

where C is a constant, depending only on ζ and ∆ζ/2, defined by

∆ζ/2φ(s) =
1

π
p.v.

∫ +∞

−∞

φ(t)− φ(s)

(t− s)1+ζ
dt .

Iterative Shrinkage-Thresholding Algorithm with Correction of At-
tenuation

The previous correction of attenuation is not so efficient for a large atten-
uation coefficient a. In this case, to improve the reconstruction, we may use
again a total variation regularization. In view of (13.10), define the attenuated
spherical mean Radon transform by

Ra[p0] := W[pa]

with W being given by (13.9). Let R−1
a,k be an approximate inverse of Ra:

R−1
a,k = R∗BWL−1

2,kW−1 .

We consider the following algorithm, which generalizes Algorithm 13.3.2 to
attenuating media.

Algorithm 13.2 Iterative shrinkage-thresholding algorithm in an attenuated
medium.

1. Data g, initial set: f0 = x0 = 0, t0 = 1;

2. xj = Tγ

[
fj − ηR−1

a,k [Ra[fj ]− g]
]
with Tγ being defined by (2.71) and η > 0

being the step size;

3. fj+1 = xj +
tj−1

tj+1
(xj − xj−1) with tj+1 =

1+
√

1+4t2j

2
.

Figure 13.7 shows the efficiency of Algorithm 13.3.3.
Sources in attenuating media can be also reconstructed using a time-

reversal technique. As a first-order correction of the attenuation effect, the
adjoint of the attenuated wave operator can be used. Consider the thermovis-
cous wave model to incorporate viscosity effect in acoustic wave propagation
and introduce the free space fundamental solution of the Helmholtz equation

ω2

c20
Γ̃a,ω(x, y) + (1 + iac0ω)∆xΓ̃a,ω(x, y) = δy(x) in R2 .

The regularized time-reversal imaging function is defined by

I(ρ)
TR(x) =

∫

∂Ω

∫ T

0

∂Γ̃a,ρ

∂t
(x, y, s, T )pa(y, T − s) dσ(y) ds ,
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Fig. 13.7. Numerical results using iterative shrinkage-thresholding algorithm with
η = 0.001 and a = 0.0025. Left up: f50 with k = 0; Top right: f50 with k = 1;
Bottom left: f50 with k = 6; Bottom right: error j → ‖fj − p0‖L2(Ω) for different
values of k.

where

Γ̃a,ρ(x, y, s, t) =
1

2π

∫

|ω|≤ρ

Γ̃a,ω(x, y)e
−iω(t−s) dω

and ρ is a regularization parameter. Hence,

I(ρ)
TR(x) = − 1

2π

∫ T

0

∫

|ω|≤ρ

∫

∂Ω

iωΓ̃a,ω(x, y)pa(y, T − s) dσ(y)e−iω(T−s) dωds .

As a→ 0, we can prove that

I(ρ)
TR(x) = −

∫

∂Ω

∫ T

0

∂Γ

∂t
(x, y, T − s, T )Sρ[pa(y, ·)] dσ(y) ds+ o(a) ,

where

Sρ[φ](t) =
1√
2π

∫

|ω|≤ρ

e−iωtFt[φ](ω) dω .

Finally, observe that the function δ
(ρ)
x (z) defined by
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δ(ρ)x (z) = − 1

π

∫

|ω|≤ρ

ωℑΓω(x, z) dω ,

is an approximation of the Dirac delta function δz(x) as ρ→ +∞. This implies
that

I(ρ)
TR(x) ≈ δ(ρ)x (z) ⋆ p0(z) → p0(x) as ρ→ +∞ .

13.4 Photoacoustic Imaging of Small Absorbers with
Imposed Boundary Conditions on the Pressure

In this section, we consider the case where a boundary condition is imposed
on the pressure field. We first formulate the photoacoustic imaging problem
in a bounded domain before reviewing different approaches for reconstructing
small absorbing regions and absorbing energy density inside a bounded do-
main from boundary data. We also consider a problem of selective detection
which is to locate a targeted optical absorber among several absorbers from
boundary measurements of the induced acoustic signal.

13.4.1 Reconstruction Methods

Let Ω be a bounded smooth domain. We consider the wave equation (13.1)
in the domain Ω with the Dirichlet (resp. the Neumann) imposed boundary
conditions on ∂Ω× (0, T ). Our objective in this section is to reconstruct p0(x)

from the measurements of
∂p

∂ν
(x, t) (resp. p(x, t)) on the boundary ∂Ω×(0, T ).

In this section, we consider a problem of identifying small absorbing regions
from boundary measurements. Let Dl, l = 1, . . . , L, be absorbing domains
inside the nonabsorbing background Ω. We write

Dl = zl + δBl,

where zl is the “center” of Dl, Bl contains the origin and plays a role of a
reference domain, and δ is the common order of magnitude of the diameters
of the Dl. Throughout this section, we assume that δ is small and zl’s are
well-separated, i.e.,

|zi − zj | > C0 ∀i 6= j (13.20)

for some positive constant C0.
Spherical waves centered at some points, which we call probe waves, may

serve as solutions to adjoint problems to the wave equation for the photoacous-
tic phenomena. By integrating the boundary measurements against a spheri-
cal wave, we can estimate the duration of the wave on the absorber. Then by
choosing a few waves centered at different points and taking intersection of
durations of these waves we can estimate the location and size of the absorber
pretty accurately.



13.4 Imaging of Small Absorbers 217

To fix ideas, we only consider the Dirichlet condition for the pressure p
on ∂Ω. The Neumann boundary condition at tissue/water interface can be
treated similarly. Since p is significantly affected by the acoustic boundary
conditions at the tissue/air interface, where the pressure must vanish, we
cannot base photoacoustic imaging on pressure measurements made over a
free surface. Instead, we propose the following algorithm.

Let v satisfy
1

c20

∂2v

∂t2
−∆v = 0 in Rd × (0, T ) , (13.21)

with the final conditions

v|t=T =
∂v

∂t

∣∣∣
t=T

= 0 in Ω . (13.22)

We refer to v as a probe function or a probe wave.
Multiply both sides of (13.1) by v and integrate them over Ω × (0, T ).

After some integrations by parts, this leads by using (13.2) to the following
identity:

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)v(x, t) dσ(x) dt =

1

c20

L∑

l=1

∫

Dl

Al(x)∂tv(x, 0)dx . (13.23)

Suppose first that d = 3. For y ∈ R3 \Ω, let

vy(x, t; τ) :=
δ0

(
t+ τ − |x−y|

c0

)

4π|x− y| in Ω × (0, T ) , (13.24)

where δ is the Dirac mass at 0 and τ > dist(y,∂Ω)
c0

is a parameter. It is easy to
check that vy satisfies (13.21). It is a spherical wave emitted by a point source
at y at time −τ . Moreover, since

|x− y| ≤ diam(Ω) + dist(y, ∂Ω)

for all x ∈ Ω, vy satisfies (13.22) provided that the condition (13.4) is fulfilled.
Suppose that

Al(x) =

N∑

|j|=0

1

j!
a
(l)
j (x− zl)

j , (13.25)

which is reasonable as Dl is small. Here, j = (j1, . . . , jd), x
j = xj11 . . . xjdd , and

j! = j1! . . . jd!. Equation (13.25) corresponds to a multipolar expansion up to
order N of the optical effect of Dl.

Choosing vy as a probe function in (13.23), we obtain the new identity

1

c20

L∑

l=1

N∑

|j|=0

1

j!
a
(l)
j

∫

Dl

(x−zl)j∂tvy(x, 0; τ)dx =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt .

(13.26)
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Determination of location. Suppose for simplicity that there is only one
absorbing object (L = 1) which we denote by D(= z + δB). Identity (13.26)
shows that

τ 7→
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt (13.27)

is nonzero only on the interval [τa, τe], where τa = dist(y,D)/c0 is the first τ
for which the sphere of center y and radius τ hits D and τe is the last τ for
which such sphere hits D. This gives a simple way to detect the location (by
changing the source point y and taking intersection of spheres). The quantity∫ T

0

∫
∂Ω

∂p
∂ν (x, t)vy(x, t; τ) dσ(x) dt can be used to probe the medium as a func-

tion of τ and y. For fixed y, it is a one-dimensional function. It is related to
time-reversal in the sense that it is a convolution with a reversed wave.

Let us now compute
∫
D
(x − z)j∂tvy(x, 0; τ)dx for τ ∈ [τa, τe]. Note that,

in a distributional sense,

∂tvy(x, 0; τ) =

dδ0
dt

(
τ − |x−y|

c0

)

4π|x− y| . (13.28)

Thus we have
∫

D

(x− z)j∂tvy(x, 0; τ)dx =

∫

D

(x− z)j

4π|x− y|
dδ0
dt

(
τ − |x− y|

c0

)
dx .

Letting s = |x− y| and σ = x−y
|x−y| , we get by a change of variables

∫

D

(x−z)j∂tvy(x, 0; τ)dx =
1

4π

∫ +∞

0

s

∫

S

χ(D)(sσ+y)(sσ+y−z)j dδ0
dt

(τ− s

c0
) ds dσ ,

(13.29)
where S is the unit sphere.

Define for multi-indices j

bj(D, t; τ) =

∫

S

χ(D)(c0(τ − t)σ + y)(c0(τ − t)σ + y − z)jdσ .

Note that the function bj(D, t; τ) is dependent on the shape of D (bj is kind
of moment of order j of the domain D). If we take D to be a sphere of radius r
(its center is z), then one can compute bj(D, t; τ) explicitly using the spherical
coordinates.

Since
∫ +∞

0

s

∫

S

χ(D)(sσ+y)(sσ+y−z)j dδ0
dt

(τ− s

c0
) ds dσ = −c20

d

dt

[
(τ−t)bj(D, t; τ)

]∣∣∣∣
t=0

,

it follows from (13.29) that

∫

D

(x− z)j∂tvy(x, 0; τ)dx =
c20
4π

(bj(D, 0; τ)− τb′j(D, 0; τ)) ,
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where b′j is the derivative with respect to t. We then obtain the following
theorem from (13.26).

Theorem 13.1 For τ ∈ [τa, τe],

1

4π

N∑

|j|=0

aj
j!
(bj(D, 0; τ)− τb′j(D, 0; τ)) =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt .

(13.30)

If the Dirichlet boundary condition on p is replaced by the Neumann
boundary condition:

∂p

∂ν
= 0 on ∂Ω × (0, T ) , (13.31)

then (13.30) should be replaced by

1

4π

N∑

|j|=0

aj
j!
(bj(D, 0; τ)−τb′j(D, 0; τ)) = −

∫ T

0

∫

∂Ω

∂vy
∂ν

(x, t; τ)p(x, t) dσ(x) dt .

(13.32)

Estimation of absorbing energy. Now, we show how to use formula (13.30)
for estimating a(j) and some geometric features of D when the location z of
D has been determined by the variations of the function in (13.27). Suppose
that N = 0, i.e., A is constant on D. Then (13.30) reads

1

4π
a0(b0(D, 0; τ)− τb′0(D, 0; τ)) =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt .

Note that τ 7→ b0(D, 0; τ)− τb′0(D, 0; τ) is supported in [τa, τe]. We have

|a0|
4π

∫ τe

τa

∣∣∣∣b0(D, 0; τ)− τb′0(D, 0; τ)

∣∣∣∣ dτ

=

∫ τe

τa

∣∣∣∣
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt

∣∣∣∣ dτ . (13.33)

If we further assume that D = z+ δB for small δ and a sphere B of radius
1, then we can compute b0(D, t; τ) explicitly. In fact, one can show that

b0(D, t, τ) =




π
δ2 − (|z − y| − c0|τ − t|)2

c0|z − y||τ − t| if − δ < |z − y| − c0|τ − t| < δ ,

0 otherwise,

(13.34)
and hence we deduce c0τa = |z − y| − δ, c0τe = |z − y|+ δ, and

b0(D, 0, τ)− τb′0(D, 0, τ) =
2π(|z − y| − c0τ)

|z − y|
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for τ > 0. Therefore, easy computations show that

|a0|δ2 ≈ c0|z − y|
∫ τe

τa

∣∣∣∣
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vy(x, t; τ) dσ(x) dt

∣∣∣∣ dτ , (13.35)

which gives an approximation of |a0|δ2. Higher-order approximations can be
obtained from (13.30) as well.

Suppose now d = 2. Due to the two-dimensional nature of the Green
function, we shall rather consider a new probe wave given by

vθ(x, t; τ) = δ0

(
t+ τ − x · θ

c0

)
(13.36)

where |θ| = 1 and τ is a parameter satisfying

τ > max
x∈Ω

(
x · θ
c0

)
.

We can still use the function

τ 7→
∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vθ(x, t; τ) dσ(x) dt

to probe the medium as a function of τ . This quantity is non-zero on the
interval [τa, τe], where τa and τe are defined such that planes x · θ = c0τ for
τ = τa and τe hit D. Changing the direction θ and intersecting stripes gives
us an efficient way to reconstruct the inclusions.

By exactly the same arguments as in three dimensions, one can show that

1

c0

N∑

|j|=0

aj
j!
b′j(D, 0; τ) =

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vθ(x, t; τ) dσ(x) dt , (13.37)

where

bj(D, t; τ) :=

∫

R

χ(D)(c0(τ − t)θ + uθ⊥)(c0(τ − t)θ + uθ⊥ − z)jdu , (13.38)

where θ⊥ is the unit vector obtained from θ by counterclockwise rotation by
π/2.

Assuming N = 0 and D = z + δB, we can compute b0 explicitly. We have

b0(D, t; τ) =

{
2
√
δ2 − (c0|τ − t| − z · θ)2 if − δ < z · θ − c0|τ − t| < δ ,

0 otherwise .
(13.39)

Since c0τa = z · θ − δ, c0τ0 = z · θ and c0τb = z · θ + δ, we get

|a0|δ =
c0
4

∫ τe

τa

∣∣∣∣∣

∫ T

0

∫

∂Ω

∂p

∂ν
(x, t)vθ(x, t; τ) dσ(x) dt

∣∣∣∣∣ dτ . (13.40)
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The above formula can be used to estimate |a0|δ.
In the case when there are m inclusions, we first compute for each l the

quantity

θl,best = argmax
θ∈[0,π]

(
min
j 6=l

|(zj − zl) · θ|
)

(13.41)

and then, since along the direction θl,best, the inclusion Dl is well separated
from all the other inclusions, we can use formula (13.40) to estimate its |a0|δ.

13.4.2 Back-Propagation of the Acoustic Signals

In this section, we show the focusing properties of the back-propagated acous-
tic signals.

If we separate out the time dependence of the pressure p by expanding
p(x, t) into a set of harmonic modes, then, for a given frequency ω, the har-
monic mode p̂(x, ω) satisfies the following Helmholtz equation:

(ω2 + c20∆)p̂(x, ω) = iω(

L∑

l=1

χ(Dl)Al(x)) in Ω , (13.42)

with the boundary condition

p̂ = 0 or
∂p̂

∂ν
= 0 on ∂Ω.

Suppose that −ω2/c20 is not an eigenvalue of ∆ in Ω with the Dirichlet or
the Neumann boundary condition. The inverse problem we consider in this
section is to reconstruct A =

∑L
l=1 χ(Dl)Al from the measurements of ∂p̂/∂ν

or p̂ on ∂Ω.
Let us put k = ω

c0
for simplicity of notation and let Γk(x, y) := Γk(x− y)

be the outgoing fundamental solution of (k2+∆) in Rd given by (3.52). Then,
for y ∈ Rd \Ω, we have

iω

c20

L∑

l=1

|Dl|Al(zl)Γk(zl, y) ≈





∫

∂Ω

p̂(x, ω)
∂Γk

∂ν(x)
(x, y)dσ(x) if

∂p̂

∂ν
= 0 on ∂Ω ,

−
∫

∂Ω

∂p̂

∂ν
(x, ω)Γk(x, y) dσ(x) if p̂ = 0 on ∂Ω .

(13.43)
For R large enough, set

H(y) :=
c20
ω
×





∫

∂Ω

p̂(x, ω)
∂Γk

∂ν
(x, y)dσ(x) if

∂p̂

∂ν
= 0 on ∂Ω ,

−
∫

∂Ω

∂p̂

∂ν
(x, ω)Γk(x, y) dσ(x) if p̂ = 0 on ∂Ω ,

(13.44)

and αl = |Dl|Al(zl). Note that, for any y ∈ Rd \Ω, the function H(y) can be
computed from the boundary measurements of the acoustic signals.
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Back-propagating the data corresponds to computing

W (zS) :=

∫

∂BR

[
∂Γk

∂ν
(zS , y)H(y)− ∂H

∂ν
(y)Γk(z

S , y)

]
dσ(y), zS ∈ Ω ,

(13.45)
where H is defined in (13.44). Since from (13.43)

H(y) ≈ i
L∑

l=1

αlΓk(zl, y)

for y in a neighborhood of ∂BR, the Helmholtz-Kirchhoff identity (3.80) yields

W (zS) ≈ −
L∑

l=1

iαl

∫

∂BR

[
∂Γk

∂ν
(zS , y)Γk(zl, y)−

∂Γk

∂ν
(zl, y)Γk(z

S , y)

]
dσ(y)

= −2

L∑

l=1

αlℑΓk(z
S , zl) .

(13.46)
Since αl is real and positive by (13.5), it is now easy to find the locations zl,
l = 1, . . . , L, as the points where the functional W has its maxima. Equation
(13.46) shows that the reversed signal focuses on the locations of the absorbers
with a resolution determined by the behavior of the imaginary part of the
Green function.

13.4.3 Selective Detection

We now turn our attention to the selective detection. The purpose of selective
detection is to focus high-intensity ultrasound towards a targeted optical ab-
sorber in biological tissue. The main difficulty in focusing towards a targeted
optical absorber is that photoacoustic waves are generated by other optical
absorbers in the medium as well. In this section we propose two methods of
different nature to overcome this difficulty and localize selectively the tar-
geted absorber. The first method is based on a MUSIC type algorithm. This
method works when the absorbing coefficient of the targeted absorber is in
contrast with those of other absorbers. An alternative method of selective
detection is based on the fact that the absorbing coefficient may vary depend-
ing on the frequencies. Some absorbers are transparent at certain frequency
while they are quite absorbing at other frequencies. This phenomenon makes
a multi-frequency approach work to detect a targeted absorber. We propose
a detailed process of this multi-frequency approach.

Multiple Signal Classification Algorithm

Suppose that for some l0, Dl0 is a targeted optical absorber and its coefficient
αl0 is known. However, its location zl0 is not known. Suppose also that
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|αl0 | ≥ C, |αl0 − αl| ≥ C, ∀ l 6= l0 , (13.47)

for some positive constant C. This means that αl0 is significantly different
from the coefficients associated with all the other absorbers in the medium.
The locations and the αl’s of all the other absorbing inclusions (Dl for l 6= l0)
are not known.

To localize the absorbing object Dl0 without knowing any of the others,
we compute the following quantity for zS ∈ Ω:

Wl0(z
S) :=

1

αl0 − i4π
∫
∂BR

Γk(y, zS)H(y) dσ(y)
, (13.48)

where H is defined by (13.44).
From (3.81), it follows that in dimension three we have for large R

∫

∂BR

Γk(y, z
S)Γk(y, zl) dσ(y) ≈

1

4π

sin k|zS − zl|
k|zS − zl|

,

and hence

4π

∫

∂BR

Γk(y, z
S)H(y) dσ(y) ≈ i

L∑

l=1

αl
sin k|zS − zl|
k|zS − zl|

.

This yields

Wl0(z
S) ≈ 1

αl0 −
∑

l αl
sin k|zS−zl|
k|zS−zl|

.

Therefore, thanks to the assumption (13.20), we have

∣∣Wl0(z
S)
∣∣ ≈

∣∣ 1
∑

l 6=l0
αl

sin k|zS−zl|
k|zS−zl|

∣∣≫ 1 for zS near zl0 . (13.49)

We also have from the assumption (13.47)

∣∣Wl0(z
S)
∣∣ ≈

∣∣ 1

αl0 −
∑

l αl
sin k|zS−zl|
k|zS−zl|

∣∣ = O(1) for zS away from zl0 .

(13.50)
It then follows that zl0 can be detected as the point where the functional Wl0

has a peak. This is a MUSIC-type algorithm for locating the anomalies.
In the two-dimensional case, we compute from (3.52) and (3.81) for large

R ∫

∂BR

Γk(y, z
S)Γk(y, zl) dσ(y) ≈

1

4k
J0(k|zS − zl|),

where J0 is the Bessel function of the first kind of order zero. It then follows
that
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4k

∫

∂BR

Γk(y, z
S)H(y) dσ(y) ≈ i

L∑

l=1

αlJ0(k|zS − zl|) .

In two dimensions, define Wl0 by

Wl0(z
S) :=

1

αl0 − i4k
∫
∂BR

Γk(y, zS)H(y) dσ(y)
.

As in the three-dimensional case, the behavior of the function J0 yields

∣∣Wl0(z
S)
∣∣ ≈

∣∣ 1∑
l 6=l0

αlJ0(k|zS − zl|)
∣∣≫ 1 for zS near zl0

and

Wl0(z
S) ≈ 1

αl0 −
∑

l αlJ0(k|zS − zl|)
= O(1) for zS away from zl0 .

Therefore, exactly as in three dimensions, zl0 can be detected as the point
where the functional Wl0 has a peak. Note that one does not need the exact
value of αl0 . One can get an approximation of αl0 by looking numerically for
the maximum of the function F (zS) =

∫
∂BR

Γk(y, z
S)H̄(y)dσ(y).

Multi-Frequency Approach

An alternative method for isolating the photoacoustic signal generated by
the targeted optical absorber from those generated by the others is to make
use of two light pulses with slightly different excitation wavelengths, λ1 and
λ2, tuned to the absorption spectrum of the targeted optical absorber. If the
optical wavelengths are such that λ1 corresponds to a low value (that can be
neglected) of the absorption coefficient of the optical target and λ2 to a high
value of the absorption coefficient of the optical target, then the only difference
in photoacoustic waves generated in the medium by the two different pulses
corresponds to the photoacoustic waves generated by the light pulse selectively
absorbed by the optical target. Back-propagating this signal will focus on the
location of the optical target.

Suppose that there are two absorbers, say D1 and D2, and assume that

|D2| ≪ 1, (13.51)

dist(D1, D2) ≥ C > 0, (13.52)

which means that D2 is small and D1 and D2 are apart from each other.
Let Φ1 and Φ2 be the light fluences corresponding respectively to illumi-

nating the medium with excitation wavelengths λ1 and λ2. If we take λ2 close
to λ1, then due to the assumptions (13.51) and (13.52) we have

µ1(x, λ1)Φ1(x) ≈ µ1(x, λ2)Φ2(x) in D1 . (13.53)
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The pressures generated by the photoacoustic effect are given by




∂2p1
∂t2

(x, t)− c20∆p1(x, t) = 0, x ∈ Ω, t ∈ (0, T ) ,

p1 = 0 or
∂p1
∂ν

= 0 on ∂Ω × (0, T ) ,

p1|t=0 = µ1(x, λ1)χ(D1)Φ1 and
∂p1
∂t

∣∣∣
t=0

= 0 in Ω ,

and




∂2p2
∂t2

(x, t)− c20∆p2(x, t) = 0, x ∈ Ω, t ∈ (0, T ) ,

p2 = 0 or
∂p2
∂ν

= 0 on ∂Ω × (0, T ) ,

p2|t=0 = (µ1(x, λ2)χ(D1) + µ2(x, λ2)χ(D2))Φ2 and
∂p2
∂t

∣∣∣
t=0

= 0 in Ω .

For the sake of simplicity we work in the frequency domain. In view of
(13.42), the difference of the generated pressures p̂2 − p̂1 at an acoustic fre-
quency ω can be approximated for x ∈ Ω as follows:

(p̂2−p̂1)(x, ω) ≈
iω

c20
|D2|µ2(z, λ2)Φ2(z)×





Gk(x, z) in the case of the
Dirichlet boundary condition ,

Nk(x, z) in the case of the
Neumann boundary condition ,

where k = ω/c0, Gk and Nk are respectively the Dirichlet and Neumann
Green functions defined by (3.70) and (3.74) with k0 replaced by k. Here we
assume that −k2 is not an eigenvalue of ∆ in Ω with Dirichlet or Neumann
boundary condition.

Define, as in (13.44), H by

H(y) :=
c20
ω





∫

∂Ω

(p̂2 − p̂1)(x)
∂Γk

∂ν
(x, y)dσ(x) in the case of the Neumann

boundary condition ,

−
∫

∂Ω

∂(p̂2 − p̂1)

∂ν
(x)Γk(x, y) dσ(x) in the case of the Dirichlet

boundary condition .

Back-propagating p̂2 − p̂1 yields

2|D2|µ2(z, λ2)Φ2(z)ℑmΓk(x, z) ≈
∫

∂BR

[
∂Γk

∂ν
(y, z)H(y)−∂H

∂ν
(y)Γk(y, z)

]
dσ(y) ,

for x ∈ Ω. Here R large enough. This equation shows that the reversed
frequency-difference signal focus on the location z of the targeted optical ab-
sorber. Using the equation we can reconstruct the location z with a resolution
given by the behavior of the imaginary part of the Green function and a
signal-to-noise ratio function of the quantity |D2|µ2(z, λ2)Φ2(z).
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13.5 Imaging with Limited-View Data

In this section, we consider photoacoustic imaging from limited-view data.
Our purpose is to design efficient algorithms for reconstructing the location
z from boundary measurements of ∂p

∂ν on Γ × (0, T ), where Γ ⊂ ∂Ω. Using
as weights particular background solutions constructed by the geometrical
control method, we extend the imaging algorithms developed in the previous
section by appropriately averaging limited-view data. It can be shown that
if one can construct accurately the geometric control, then one can perform
imaging with the same resolution using limited-view as when using full-view
data.

13.5.1 Geometrical Control of the Wave Equation

Suppose that T and Γ are such that they geometrically control Ω, which
roughly means that every geometrical optic ray, starting at any point x ∈ Ω,
at time t = 0, hits Γ before time T at a nondiffractive point; see [95]. Let
β ∈ C∞

0 (Ω) be a cutoff function such that β(x) ≡ 1 in a sub-domain Ω′ of
Ω, which contains the source point z. For any function w ∈W 1,2(Ω), we can
construct by the Hilbert Uniqueness Method (HUM) of Lions [258] a unique
gw(x, t) ∈ W 1,2

0 (0, T ;L2(Γ )) in such a way that the unique weak solution
v ∈ C0(0, T ;L2(Ω)) ∩ C1(0, T ;W−1,2(Ω)) of the wave equation





∂2v
∂t2 − c20∆v = 0 in Ω × (0, T ) ,
v = 0 on ∂Ω \ Γ × (0, T ) ,
v = gw on Γ × (0, T ) ,
v(x, 0) = c20β(x)w(x), ∂tv(x, 0) = 0 in Ω ,

(13.54)

satisfies the final conditions

v|t=T =
∂v

∂t

∣∣∣
t=T

= 0 in Ω . (13.55)

Here W−1,2(Ω) is the dual of W 1,2
0 (Ω). The role of the cutoff function β is

to have the initial condition v|t=0 belong to W 1,2
0 (Ω). Note that since the

absorbers we are looking for are supposed to be away from the boundary, β
does not play any role in the imaging procedures below. Moreover, the HUM
is constructive and allows to compute the control gw.

13.5.2 Reconstruction Procedure

Assume that measurements are only made on a part of the boundary Γ ⊂ ∂Ω.
Then under the geometric controllability conditions on Γ and T , existence of
the probe v solution to (13.54)-(13.55) is guaranteed and we have

∫ T

0

∫

Γ

∂p

∂ν
(x, t)v(x, t)dσ(x)dt =

∫

Ω

p0(x)
∂v

∂t
(x, 0)dx . (13.56)
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Varying our choice of
∂v

∂t
(x, 0), we can adapt the imaging algorithms developed

in the previous section to the case of limited view data. This approach is robust
with respect to perturbations of the boundary. This is quite important in real
experiments since one does not necessarily know the non-accessible part of
the boundary with good accuracy.

Note also that in the full-view case (Γ = ∂Ω), no more boundary condi-
tions are imposed on v and consequently, there are many families of explicit
functions v satisfying (13.54)-(13.55). For example, those used in the previous
section as probe functions correspond to one of the following choices for w in
Ω:

w(x) :=
δ0

(
τ − |x−y|

c0

)

4π|x− y| in three dimensions (13.57)

or

w(x) := δ0

(
τ − 1

c0
θ · x

)
in two dimensions , (13.58)

where θ is a unit vector and τ a scalar parameter. The functions defined in
(13.57) and (13.58) are respectively families of spherical and plane waves.

13.5.3 Implementation of the HUM

A systematic and constructive method for computing the control gw such that
the solution v to (13.54) satisfies the final conditions (13.55) is given by the
HUM. Note that the HUM produces an ill-posed problem. If the initial datum
w is highly oscillating, then the HUM can not produce a stable solution gw.

The implementation of the HUM presented in Algorithm 13.5.3 allows
us to handle general geometries and meshes. It applies a conjugate gradient
algorithm as follows.

13.6 Quantitative Photoacoustic Imaging

Recall that it is the absorption coefficient, not the absorbed energy, that is a
fundamental physiological parameter. The absorbed energy density is in fact
the product of the optical absorption coefficient and the light fluence which
depends on the distribution of scattering and absorption within the domain,
as well as the light sources.

In this section, methods for reconstructing the normalized optical absorp-
tion coefficient of small absorbers from the absorbed density are proposed.
Multi-wavelength acoustic measurements are combined with diffusing light
measurements to separate the product of absorption coefficient and optical
fluence.

Suppose that Ω contains a small absorbing object D. We write

D = z + δB,
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Algorithm 13.3 The HUM.

1. Let e0, e1 ∈W
1,2
0 (Ω)× L2(Ω);

2. Solve forwards on (0, T ) the wave equation





∂2φ

∂t2
(x, t)− c

2
0∆φ(x, t) = 0 in Ω × (0, T ),

φ(x, t) = 0 on ∂Ω × (0, T ),

φ(x, 0) = e0(x),
∂φ

∂t
(x, 0) = e1(x);

(13.59)

3. Compute ∂φ
∂ν

(x, t) on Γ × (0, T ) and solve backwards the wave equation





∂2ψ

∂t2
(x, t)− c

2
0∆ψ(x, t) = 0 in Ω × (0, T ) ,

ψ(x, t) =

{
0 on ∂Ω\Γ̄ × (0, T ),
∂φ
∂ν

(x, t) on Γ × (0, T ) ,

ψ(x, T ) = 0,
∂ψ

∂t
(x, T ) = 0 ;

(13.60)

4. Set

Λ(e0, e1) =

(
∂ψ

∂t
(x, 0),−ψ(x, 0)

)
; (13.61)

5. The solution v of (13.54)-(13.55) can be identified with ψ when

Λ(e0, e1) =
(
0,−c20β(x)w(x)

)

and gw(x, t) = ψ(x, t) on Γ × (0, T ) .

where z is the “center” ofD, B is a reference domain which contains the origin,
and δ is a small parameter. The main purpose is to develop, in the context of
small-volume absorbers, efficient methods to recover µa of the absorberD from
the normalized energy density δ2A. We distinguish two cases. The first case
is the one where the reduced scattering coefficient µs inside the background
medium is known a priori. In this case we develop an asymptotic approach
to recover the normalized absorption coefficient, δ2µa, from the normalized
energy density using multiple measurements. We make use of inner expansions
of the fluence distribution Φ in terms of the size of the absorber. We also
provide an approximate formula to separately recover δ from µa. However,
this requires boundary measurements of Φ.

The second case is when the reduced scattering coefficient µs is unknown.
We use multiple optical wavelength data. We assume that the optical wave-
length dependence of the scattering and absorption coefficients are known. In
tissues, the wavelength-dependence of the scattering often approximates to
a power law. We propose a formula to extract the absorption coefficient µa

from multiple optical wavelength data. In fact, we combine multiple optical
wavelength measurements to separate the product of absorption coefficient
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and optical fluence. Note that the approximate model we use in this case for
the light transport, which is based on the diffusion approximation, allows us
to estimate |D| independently from A and therefore, the multi-wavelength
approach yields the absolute absorption coefficient.

13.6.1 Asymptotic Approach

In this section, we let d = 3 and consider a slightly more general equation
than (13.6) and provide an asymptotic expansion of its solution as the size of
the absorbing object D goes to zero. We assume that µs is constant.

Recall that the fluence Φ defined by (13.6) is the integral over time of the
fluence rate Ψ which satisfies

(
1

c
∂t + µa(x)−

1

3
∇ · 1

µa(x) + µs
∇
)
Ψ(x, t) = 0 in Ω × R , (13.62)

where c is the speed of light. Taking the Fourier transform of (13.62) yields
that the Fourier transform Φω of Ψ in t is the solution to

(
− iω

c
+ µa(x)−

1

3
∇ · 1

µa(x) + µs
∇
)
Φω(x) = 0 in Ω , (13.63)

with the boundary condition

∂Φω

∂ν
+ lΦω = g on ∂Ω . (13.64)

For simplicity, we assume that l ≤ C
√
µs for some constant C, dist(z, ∂Ω) ≥

C0 for some constant C0, µs is a constant and known a priori and drop in the
notation the dependence with respect to ω.

In what follows, we derive an asymptotic expansion of Φω(z) as δ goes to
zero, where z is the location of the absorbing object D.

Define Φ(0) by
(
− iω

c
− 1

3µs
∆

)
Φ(0)(x) = 0 in Ω ,

subject to the boundary condition

∂Φ(0)

∂ν
+ lΦ(0) = g on ∂Ω ,

where g is a bounded function on ∂Ω.
Let N be the Neumann function, that is, the solution to





(
− iω

c
− 1

3µs
∆x

)
N(x, y) = −δy in Ω,

∂N

∂ν
+ lN = 0 on ∂Ω .

(13.65)
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Note that N is symmetric:

N(x, y) = N(y, x), x, y ∈ Ω, x 6= y. (13.66)

Note also that

Φ(0)(x) = − 1

3µs

∫

∂Ω

g(y)N(x, y) dσ(y), x ∈ Ω . (13.67)

Thus, multiplying (13.63) by N , using the symmetry property (13.66) and
integrating by parts, we readily get the following representation formula of
Φ(x) for x ∈ Ω:

(Φ− Φ(0))(x) = µa

∫

D

Φ(y)N(x, y) dy

+
1

3
(

1

µa + µs
− 1

µs
)

∫

D

∇Φ(y) · ∇yN(x, y) dy .

(13.68)

We now derive an asymptotic expansion of (Φ − Φ(0))(z), where z is the
location of D, as the size δ of D goes to zero. The asymptotic expansion also
takes the smallness of µa/µs into account.

Let N̂B be the Newtonian potential of B, which is given by

N̂B(x) :=

∫

B

Γ (x− y) dy, x ∈ R3, (13.69)

and let SB be the single layer potential associated to B. We have

(Φ− Φ(0))(z) ≈ 3δ2µaµsΦ
(0)(z)N̂B(0)− δ

µa

µs
SB [ν](0) · ∇Φ(0)(z) . (13.70)

Note that the first term in (13.70) is a point source type approximation
while the second term is a dipole approximation. Formula (13.70) also shows
that if δΦ(0)(z) is of the same order as (1/µ2

s(z))∇Φ(0)(z) then we have two
contributions in the leading-order term of the perturbations in Φ that are
due to D. The first contribution is coming from the source term µa(x, ω)
and the second one from the jump conditions. If δΦ(0)(z) is much larger than
(1/µ2

s(z))∇Φ(0)(z) then we can neglect the second contribution. It is worth
emphasizing that formula (13.70) holds for any fixed ω ≥ 0 as δ goes to zero.

We now turn to the reconstruction of the absorption coefficient. Given
the light source g, it has been shown in this chapter that the location z and
α := δ2µaΦ(z) can be reconstructed from photoacoustic measurements. Here
Φ = Φω=0.

Suppose that B is the unit sphere. Since SB [ν](0) = 0, formula (13.70)
reads

(Φ− Φ(0))(z) ≈ 3δ2µaµsΦ
(0)(z)N̂B(0) ≈ 3αµsN̂B(0). (13.71)

Thus one can easily see that
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δ2µa ≈ α

3αµsN̂B(0) + Φ(0)(z)
. (13.72)

Let us see how one may separate δ from µa. Because of (13.67), it follows
from (13.68) that

− 1
3µs

∫
∂Ω

g(Φ− Φ(0)) dσ ≈ µaΦ(z)Φ
(0)(z)|D|

+
1

3

(
1

µs + µa
− 1

µs

)∫

D

∇Φ(y) · ∇Φ(0)(y)dy.

Thus we get from (13.70) that

− 1

3µs

∫

∂Ω

g(Φ− Φ(0)) dσ

≈ µaΦ(z)Φ
(0)(z)|D| − µa

3µ2
s

∇Φ(0)(z) ·
[
3δ4µaµsΦ

(0)(z)

∫

B

∇N̂B(y) dy+

+δ3
∫

B

(
I − µa

µs
∇SB [ν]

)
(y) dy∇Φ(0)(z)

]

≈ δα|B|Φ(0)(z)− µaδ
3

3µ2
s

∇Φ(0)(z) ·
[
3δµaµsΦ

(0)(z)

∫

B

∇N̂B(y) dy+

+

∫

B

(
I − µa

µs
∇SB [ν]

)
(y) dy∇Φ(0)(z)

]
.

(13.73)
One may use this approximation to separately recover δ from µa even in the
general case, where B is not necessary a unit sphere by combining (13.73) to-
gether with (13.70). However, this approach requires boundary measurements
of Φ on ∂Ω.

13.6.2 Multi-Wavelength Approach

We now deal with the problem of estimating both the absorption coefficient
µa and the reduced scattering coefficient µs from A = µaΦ where Φ satisfies
(13.63) and the boundary condition (13.64). It is known that this problem
at fixed optical wavelength λ is a severely ill-posed problem. However, if the
optical wavelength dependence of both the scattering and the absorption are
known, then the ill-posedness of the inversion can be dramatically reduced.

Let µs(x, λj) and µa(x, λj) be the reduced scattering and absorption coeffi-
cients at the optical wavelength λj for j = 1, 2, respectively. Note that µa(·, λj)
is supported in the absorbing region D which is of the form D = z + δB for
δ of small magnitude. We assume that µs(x, λ) and µa(x, λ) depend on the
wavelength in the following way:

µs(x, λ) = fs(x)gs(λ), (13.74)

and
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µa(x, λ) = fa(x)ga(λ), (13.75)

for some functions fa, fs, ga, gs. Denote

Cs :=
µs(x, λ1)

µs(x, λ2)
= constant in the x variable in Ω,

and

Ca :=
µa(x, λ1)

µa(x, λ2)
= constant in the x variable in D.

Assumptions (13.74) and (13.75) are physically acceptable [142].
Let Aj be the optical absorption density at λj , j = 1, 2. Let l′1, l

′
2 be two

positive constants. Let Φj be the solution of

(
µa(x, λj)−

1

3
∇ · 1

µs(x, λj)
∇
)
Φj(x) = 0, (13.76)

with the boundary condition

1

µs(x, λj)

∂Φj

∂ν
(x) + l′jΦj(x) = g′j(x) on ∂Ω. (13.77)

Note that the boundary condition (13.77) is slightly different from (13.64)
because µs is assumed variable possibly up to the boundary. Moreover, in order
to simplify the derivations below we have neglected µa in the denominator of
the second term of (13.76).

Multiplying (13.76) for j = 1 by Φ2 and integrating by parts over Ω, we
obtain that

0 =

∫

Ω

(
µa(x, λ1)−

1

3
∇ · 1

µs(x, λ1)
∇
)
Φ1(x)Φ2(x)dx

=

∫

Ω

µa(x, λ1)Φ1Φ2dx− 1

3

∫

∂Ω

(g′1Φ2 − l′1Φ1Φ2) dσ

+
1

3

∫

Ω

1

µs(x, λ1)
∇Φ1(x) · ∇Φ2(x)dx.

We then replace µs(x, λ1) by Csµs(x, λ2) and integrate by parts further to
obtain

1

3

∫

∂Ω

(
g′1Φ2 −

1

Cs
g′2Φ1

)
(x) dσ(x) +

1

3

∫

∂Ω

(
l′2
Cs

− l′1

)
Φ1(x)Φ2(x) dσ(x)

=

∫

D

(−µa(x, λ2)

Cs
+ µa(x, λ1))Φ1(x)Φ2(x) dx.

Since D = z + δB, the following approximation holds:
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|D|(1 + o(1))

(
− 1

CsCa
+ 1

)
A1(z)A2(z)

µa(z, λ2)
=

1

3

∫

∂Ω

(
g′1Φ2 −

1

Cs
g′2Φ1

)
dσ

+
1

3

∫

∂Ω

(
l′2
Cs

− l′1

)
Φ1Φ2 dσ.

(13.78)
Expansion (13.78) yields approximations of µa(z, λ2) and µa(z, λ1) =

Caµa(z, λ2) from A1 and A2 provided that |D| is known. To estimate |D|
one can use the following identity

∫

D

µa(x, λj)Φj(x) dx =
1

3

∫

∂Ω

(
g′j − l′jΦj

)
dσ. (13.79)

13.7 Coherent Interferometry Algorithms

In this chapter, we have been interested in reconstructing initial conditions
for the wave equation with constant sound speed in a bounded domain. We
have developed a variety of inversion approaches which can be extended to
the case of variable but known sound speed and can correct for the effect of
attenuation on image reconstructions. However, the situation of interest for
medical applications is the case where the sound speed is perturbed by an
unknown clutter noise. This means that the speed of sound of the medium is
randomly fluctuating around a known value. In this situation, waves undergo
partial coherence loss and the designed algorithms assuming a constant sound
speed may fail.

Coherent interferometry (CINT) has been considered in Chapter 9. While
classical imaging methods (time-reversal, backpropagation, Kirchhoff) back-
propagate the recorded signals directly, CINT is an array imaging method
that first computes cross-correlations of the recorded signals over appropri-
ately chosen space-frequency windows and then back-propagates the local
cross-correlations. It deals well with partial loss of coherence in cluttered en-
vironments.

Combining the CINT method for imaging in clutter together with a recon-
struction approach by spherical mean Radon inversions, we propose CINT-
Radon algorithms for photoacoustic imaging in the presence of random fluc-
tuations of the sound speed. These algorithms provide statistically stable pho-
toacoustic images. A detailed analysis of their stability and resolution from a
simple clutter noise model is provided in [37].

Consider the wave equation




∂2p

∂t2
(x, t)− c(x)2∆p(x, t) = 0,

p(x, 0) = p0(x),
∂p

∂t
(x, 0) = 0,

(13.80)

and assume that the pressure field p is measured at the surface of a domain Ω
that contains the support of p0. We restrict ourselves to the two-dimensional
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case and assume that Ω is the unit disk with center at the origin and radius
X0 = 1.

We consider that the sound speed c is not perfectly known and that it
fluctuates randomly around a known distribution. For simplicity, we consider
the model with random fluctuations around a constant that we normalize to
one:

1

c(x)2
= 1 + σcµ

( x
xc

)
, (13.81)

where µ is a zero-mean stationary random process, xc is the correlation length
of the fluctuations of c(x) and σc is their standard deviation.

Here and below the Fourier transform, denoted with a hat, is with respect
to the time variable.

Let
q = BW [p] , (13.82)

where B and W are respectively defined by (2.62) and (13.9).
When the sound speed varies as in (13.81), the phases of the measured

waves p̂(ω, y) are shifted with respect to the deterministic, unperturbed
phase because of the unknown clutter. When the data are numerically back-
propagated in the homogeneous medium with speed of propagation equal to
one, the phase terms do not compensate each other, which results in instabil-
ity and loss of resolution. To correct this effect, the idea is to back-propagate
the space and frequency correlations between the data:

ICI(x) =

∫∫

∂Ω×∂Ω, |y2−y1|≤Xd

dσ(y1)dσ(y2)

∫∫

R×R, |ω2−ω1|≤Ωd

dω1dω2

×p̂(y1, ω1)e
−iω1|x−y1|p̂(y2, ω2)e

iω2|x−y2|.
(13.83)

The cut-off parameters Ωd and Xd play a crucial role. When one writes the
CINT function in the time domain:

ICI(x) =

∫∫

∂Ω×∂Ω, |y2−y1|≤Xd

dσ(y1)dσ(y2)

×Ωd

π

∫

R

dt sinc(Ωdt) p(y1, |y1 − x|+ t)p(y2, |y2 − x| − t),

it is clear that it forms the image by computing the local correlation of the
recorded data in a time interval scaled by 1/Ωd and by superposing the back-
propagated local correlations over pairs of receivers that are not further apart
than Xd. The idea that motivates the form (13.83) of the CINT function
is that, at nearby frequencies ω1, ω2 and nearby locations y1, y2 the random
phase shifts of the data p̂(y1, ω1), p̂(y2, ω2) are similar (say, correlated) so they
cancel each other in the product p̂(y1, ω1)p̂(y2, ω2). We then say that the data
p̂(y1, ω1) and p̂(y2, ω2) are coherent. In such a case, the back-propagation of
this product in the homogeneous medium should be stable. The purpose of
the CINT imaging function is to keep in (13.83) the pairs (y1, ω1) and (y2, ω2)
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for which the data p̂(y1, ω1) and p̂(y2, ω2) are coherent and to remove the
pairs that do not bring information. It then appears intuitive that the cut-off
parametersXd, resp. Ωd, should be of the order of the spatial (resp. frequency)
correlation radius of the recorded data, and we will confirm this intuition in
the following.

The imaging function ICI is quite efficient in localizing point sources in
cluttered media but not in finding the true value of p0. Moreover, when the
support of the initial pressure p0 is extended, ICI may fail in recovering a
good photoacoustic image. We propose two things. First, in order to avoid
numerical oscillatory effects, we replace the sharp cut-offs in the integral by
Gaussian convolutions. We know that the CINT function is stable when the
cut-off function has a positive Fourier transform. Then instead of taking the
correlations between the back-propagated raw data, we pre-process them like
we do for the Radon inversion. We thus get the following CINT-Radon imaging
function:

ICIR(x) =

∫∫

∂Ω×∂Ω

dσ(y1)dσ(y2)

∫∫

R×R

dω1dω2e
− (ω2−ω1)2

2Ω2
d e

− |y1−y2|2

2X2
d

×q̂(y1, ω1)e
−iω1|x−y1|q̂(y2, ω2)e

iω2|x−y2|,
(13.84)

where q is given by (13.82).
The purpose of the CINT-Radon imaging function ICIR is to keep in

(13.84) the pairs (y1, ω1) and (y2, ω2) for which the pre-processed data
q̂(y1, ω1) and q̂(y2, ω2) are coherent and to remove the pairs that do not bring
information.

Using the exact inversion formula (2.53) for the spherical mean Radon
transform, the CINT-Radon algorithm can be generalized to the three-
dimensional case provided that the measurements are taken on a sphere ∂Ω.

13.8 Concluding Remarks

In this chapter, we have described imaging models that relate the measured
photoacoustic wavefields to the sought-after absorption distribution. We have
also provided methods that can compensate for boundary conditions, an ob-
ject’s frequency-dependent acoustic attenuation, and heterogeneous speed of
sound distribution. Image reconstructions by use of algorithms that ignore
this can contain artifacts and distortions.
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Quantitative Thermoacoustic Imaging

14.1 Introduction

The aim of this chapter is to investigate quantitative thermoacoustic imaging.
Given several data sets, we establish an analytical formula for reconstructing
the absorption coefficient from thermal energy measurements. Since the for-
mula involves derivatives of the given data up to the third order, it is unstable
in the sense that small measurement noises may cause large errors. However,
in the presence of measurement noise, the obtained formula, together with a
regularization technique, provides a good initial guess for the true absorption
coefficient. An optimal control problem can be used to solve the quantitative
thermoacoustic imaging problem.

To describe the quantitative thermoacoustic approach, we employ several
notations. Let Ω be a smooth bounded domain in Rd, d = 2 or 3. Let ∂Ω
denote the boundary of Ω and let ν be the outward normal at ∂Ω.

Let uk be the solution of
{
∆uk + (k2 + ikq)uk = 0 in Ω ,

uk = g on ∂Ω .
(14.1)

The thermoacoustic imaging problem can be formulated as the inverse
problem of reconstructing the absorption coefficient q from thermoacoustic
measurements q|uk|2 in Ω for k ∈ (k, k). The quantity q|uk|2 in Ω is the heat
energy due to the absorption distribution q. It generates an acoustic wave
propagating inside the medium. Finding the initial data in the acoustic wave
from boundary measurements yields the heat energy distribution. Our aim
in this chapter is to separate q from uk. We provide an explicit formula for
reconstructing q from the heat energy q|uk|2 in Ω. The formula can be used
as an initial guess to achieve a resolved image of the absorption distribution
in a robust way. Our results in this chapter are from [51].
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14.2 Measurements

We first describe a polarization procedure to obtain more data.

Proposition 14.1 Let g1, g2 ∈ L2(∂Ω). For j = 1, 2, and k ∈ (k, k), let ukj
be the solution of

{
∆ukj + (k2 + ikq)ukj = 0 in Ω ,

ukj = gj on ∂Ω .
(14.2)

The function Ek
2 (x) = q(x)uk2(x)u

k
1(x), x ∈ Ω can be evaluated from the knowl-

edge of the data
q|uk1 + uk2 |2 and q|iuk1 + uk2 |2 ,

which correspond to the use of respectively g = g1 + g2 and g = ig1 + g2 in
(14.1).

Proof. It is easy to see that the data Ek
2 is given by

Ek
2 =

1

2
(q|uk1+uk2 |2−q|uk1 |2−q|uk2 |2)+

i

2
(q|iuk1+uk2 |2−q|uk1 |2−q|uk2 |2) , (14.3)

which yields the desired result. ⊓⊔
Let

(gj)
d+1
j=1 = (1, x1, . . . , xd) (14.4)

and ukj be the solution of (14.1) with g replaced with gj , j = 1, . . . , d+1. Due
to Proposition 14.1, we are able to measure the following (polarized) data

Ek = (Ek
j )

d+1
j=1 = (qukju

k
1)

d+1
j=1 for all k ∈ (k, k) . (14.5)

We will also need some property of the measured data above.

Proposition 14.2 Assume that q is compactly supported in Ω and denote by
Ω′ its support. There exist N > 1 pairwise disjoint open subsets B1, B2, . . . , BN

of Ω, and N frequencies k1, . . . , kN ∈ (k, k) such that Ω′ ⊂ ∪N
j=1Bj ⊂ Ω and,

for any n = 1, . . . , N ,

(i) |ukn
1 | > 0 in Bn;

(ii)The matrix [ukn
j ,∇ukn

j ]1≤j≤d+1 is invertible for all x ∈ Bn.

Proof. Fix an arbitrary point z ∈ Ω, assume that uk1(z) = 0 for all k ∈ (k, k).
Since k 7→ uk1(z) is analytic, u

k
1(z) = 0 for all k ∈ R and in particular u01(z) =

0. However, it is easy to solve (14.1) with k = 0 and g = 1 to get u01(z) = 1.
We can conclude that for all z ∈ Ω, there is kz ∈ (k, k) such that ukz

1 (z) does
not vanish. By the continuity of ukz

1 , |ukz
1 | > 0 in Bz, a small neighborhood

of z in Ω. Since Ω is compact, we can extract B1, . . . , BN from {Bz : z ∈ Ω}
so that B1, . . . , BN cover Ω, and hence (i) holds. Item (ii) can be proved
similarly using the differentiability of the determinant. ⊓⊔
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Definition 14.3 The set (gj)
d+1
j=1 ⊂ L2(∂Ω) is a proper set of measurements

for (14.1) on an interval (k, k) if and only if the corresponding (ukj ), j =

1, . . . , d+ 1, k ∈ (k, k) satisfy the assertion of Proposition 14.2.

14.3 Exact Formula

The aim of this section is to reconstruct q when a proper set of measurements
(gj)

d+1
j=1 , as the one in (14.4) is used, and the data Ek, defined in (14.5), are

given.
RecallN, k1, . . . , kN ,B1, . . . , BN as in Proposition 14.2. Fix n ∈ {1, . . . , N}.

Let

αkl
j =

Ekl
j

Ekl
1

, 2 ≤ j ≤ d+ 1, 1 ≤ l ≤ N (14.6)

in Bn. Then it is not hard to see that

ukl
j = αkl

j u
kl
1 ,

for 2 ≤ j ≤ d+ 1 and 1 ≤ l ≤ N . We have the following lemma.

Lemma 14.4 Let βkl = ℑ(ukl
1 ∇ukl

1 ). Then

−∇ · βkl = klE
kl
1 in Bn . (14.7)

Proof. Let ϕ ∈ C∞
c (Bn,R) be an arbitrary function. Then using ϕu1 ∈

W 1,2
0 (Bn) as a test function in

−∆ukl
1 = (k2l + iklq)u

kl
1

yields
∫

Ω

ϕ|∇ukl
1 |2dx+

∫

Ω

ukl
1 ∇ukl

1 · ∇ϕdx =

∫

Ω

(k2l + iklq)|ukl
1 |2ϕdx .

Taking the imaginary part of the equation above gives

−
∫

Ω

∇ · (ℑukl
1 ∇ukl

1 )ϕdx =

∫

Ω

klq|ukl
1 |2ϕdx =

∫

Ω

klE
kl
1 ϕdx ,

and (14.7) follows. ⊓⊔
The following lemma plays an important role in the derivation of an exact

inversion formula for q.

Lemma 14.5 For all 2 ≤ j ≤ d+ 1 and 1 ≤ l ≤ N ,

∇αkl
j ·
(
∇ log

q

Ekl
1

− 2iqβkl

Ekl
1

)
= ∆αkl

j (14.8)

in Bn.
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Proof. Let us fix j ∈ {2, . . . , d + 1}. Since ukl
j is a solution of the Helmholtz

equation under consideration,

(k2l + iklq)α
kl
j u

kl
1 = −∆

(
αkl
j u

kl
1

)

= −αkl
j ∆u1 − u1∆α

kl
j − 2∇ukl

1 · ∇αkl
j

= (k2l + ikq)αkl
j u

kl
1 − ukl

1 ∆α
kl
j − 2∇ukl

1 · ∇αkl
j .

Therefore,

−Ekl
1 ∆α

kl
j = 2qukl

1 ∇ukl
1 · ∇αkl

j

= 2q
(
ℜukl

1 ∇ukl
1 + iℑukl

1 ∇ukl
1

)
· ∇αkl

j

= q
(
∇|ukl

1 |2 + 2iℑukl
1 ∇ukl

1

)
· ∇αkl

j .

We have proved that

−Ekl
1 ∆α

kl
j = q

(
∇|ukl

1 |2 + 2iβkl

)
· ∇αkl

j ,

or equivalently,

q∇|ukl
1 |2 · ∇αkl

j = −Ekl
1 ∆α

kl
j − 2iqβkl · ∇αkl

j . (14.9)

On the other hand, differentiating the equation Ekl
1 = q|ukl

1 |2 gives

∇Ekl
1 = q∇|ukl

1 |2 + Ekl
1 ∇ log q .

This, together with (14.9), implies

(∇Ekl
1 − Ekl

1 ∇ log q) · ∇αkl
j = −Ekl

1 ∆α
kl
j − 2iqβkl · ∇αkl

j ,

and (14.8), therefore, holds. ⊓⊔

We claim that the set
{∇αkl

j }2≤j≤d+1

is linearly independent for all x ∈ Ω, where αkl
j was defined in (14.6). We only

prove this when d = 2. The proof when d is larger than 2 can be done in the
same manner. In fact, the linear independence of {∇αkl

2 ,∇αkl
3 } comes from

the following calculation:
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det

[
∇αkl

2

∇αkl
3

]
=

1

(ukl
1 )4

det

[
ukl
1 ∇ukl

2 − ukl
2 ∇ukl

1

ukl
1 ∇ukl

3 − ukl
3 ∇ukl

1

]

=
1

(ukl
1 )4

(
det

[
ukl
1 ∇ukl

2

ukl
1 ∇ukl

3 − ukl
3 ∇ukl

1

]

−ukl
2 det

[
∇ukl

1

ukl
1 ∇ukl

3 − ukl
3 ∇ukl

1

])

=
1

(ukl
1 )3

(
ukl
1 det

[
∇ukl

2

∇ukl
3

]
+ ukl

3 det

[
∇ukl

1

∇ukl
2

]

−ukl
2 det

[
∇ukl

1

∇ukl
3

])

=
1

(ukl
1 )3

det



ukl
1 ∇ukl

1

ukl
2 ∇ukl

2

ukl
3 ∇ukl

3


 6= 0 .

Here, part (ii) in Proposition 14.2 has been used. Since the d× d matrix

Akl = [∇αkl
j+1]1≤j≤d (14.10)

is invertible in Bn, we can solve system (14.8) to get

∇ log
q

Ekl
1

− 2iqβkl

Ekl
1

= akl , (14.11)

where akl is the vector (Akl
∗
Akl)−1[Akl

∗
(∇ ·Akl)].

We are now ready to evaluate q. We first split the real and the imaginary
parts of (14.11) to get

∇ log
q

Ekl
1

=
∇q
q

−∇ logEkl
1 = ℜ(akl) (14.12)

and

βkl = −E
kl
1 ℑ(akl)

2q
. (14.13)

Then, differentiating (14.13), we have

∇ · βkl =
Ekl

1 ℑ(akl) · ∇q
2q2

− ∇ · (Ekl
1 ℑ(akl))

2q
.

This, together with (14.7) and (14.12), implies

q = −E
kl
1 (ℜ(akl) +∇ logEkl

1 ) · ℑ(akl)−∇ · (Ekl
1 ℑ(akl))

2klE
kl
1

= −E
kl
1 ℜ(akl) · ℑ(akl) +∇Ekl

1 · ℑ(akl)

2klE
kl
1

+
E1∇ · ℑ(akl) +∇Ekl

1 · ℑ(a)
2klE

kl
1

= −ℜ(akl) · ℑ(akl)−∇ · ℑ(akl)

2kl
.
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The results above are summarized in the following theorem.

Theorem 14.6 Let Ak be defined as

Ak = [∇αk
j+1]

d
j=1 ,

where

αk
j =

Ek
j

Ek
1

and the data (Ej)
d+1
j=1 is given by the proper set of measurements {1, x1, . . . , xd}.

We have

q(x) =
−ℜ(ak) · ℑ(ak) +∇ · ℑ(ak)

2k
, (14.14)

where
ak = ((Ak)∗Ak)−1[(Ak)∗∇ ·Ak] . (14.15)

Remark 14.7 In practice, the vector ak in (14.15) can be found as the least
square solution of

min

∫

Ω

∣∣∣Ak∗Akak −Ak∗∇ ·Ak
∣∣∣
2

dx

and q is given by

q =
1

k − k

∫ k

k

−ℜ(ak) · ℑ(ak) +∇ · ℑ(ak)
2k

dk . (14.16)

Remark 14.8 Formula (14.16) is unstable in the sense that if there are some
noises occurring when we measure the data Ek

j , 1 ≤ j ≤ d + 1, then q, given
by (14.16), might be far away from the actual q since the right-hand side of
(14.16) depends on the derivatives of the noise (up to the third order).

14.4 Optimal Control Approach

Due to Remark 14.8, we need to correct the errors caused from noises in
measurements to obtain the actual q. To do so, we minimize

J [q] =
1

2

∫ k

k

∫

Ω

∣∣q|uk|2 − Ek
∣∣2 dxdk (14.17)

with the initial guess qI given by (14.16). Here, uk is the solution of (14.1)
when g = 1.
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14.4.1 The Differentiability of the Data Map and Its Inverse

Let 0 < q < q. Let

L∞
+ (Ω) =

{
p ∈ L∞(Ω) : q < p < q in Ω

}
.

Then, L∞
+ (Ω) is an open set in L∞(Ω).

Fix k ∈ (k, k). We define the solution and the data map as

uk : L∞
+ (Ω) → W 1,2(Ω)

q 7→ uk[q]
(14.18)

and
F k : L∞

+ (Ω) → L2(Ω)
q 7→ F k[q] = q|uk[q]|2 , (14.19)

where uk[q] is the solution of

{
∆uk + (k2 + ikq)uk = 0 in Ω ,

uk = 1 on ∂Ω .
(14.20)

The map F k is well-defined because of regularity results guaranteeing uk ∈
C1(Ω).

The main purpose of this subsection is to study the derivative operator of
F k.

Lemma 14.9 For any k > 0, the map uk, defined in (14.18), is Fréchet
differentiable in L∞

+ (Ω). Its derivative at the function q is given by

duk[q](ρ) = vk(ρ), ∀ρ ∈ Bq , (14.21)

where Bq ⊂ L∞
+ (Ω) is an open neighborhood of 0 (that depends on q) in

L∞(Ω) and vk(ρ) is the solution of

{
∆vk + (k2 + ikq)vk = −ikρuk[q] in Ω ,

vk = 0 on ∂Ω .
(14.22)

In addition,

(i) F k is also Fréchet differentiable and

dF k[q](ρ) = ρ|uk[q]|2 + 2qℜ(uk[q]vk(ρ)), ∀q ∈ L∞
+ (Ω), ρ ∈ Bq . (14.23)

(ii) The dual of dF k, dF k∗, is given by

(ρ, dF k∗[q](h)) = ℜ
∫

Ω

(
q|uk[q]|2h+ ikuk[q]pk(h)

)
ρdx , (14.24)
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where pk(h) is the solution of

{
∆pk + (k2 + ikq)pk = 2quk[q]h in Ω ,

pk = 0 on ∂Ω .
(14.25)

(iii) There exists c > 0 such that for all ρ ∈ L2(Ω)

∫ k

k

‖dF k[q](ρ)‖L2(Ω)dk ≥ c‖ρ‖L2(Ω) . (14.26)

Proof. It is sufficient to show that

lim
‖ρ‖L∞(Ω)→0

h(ρ) = 0 , (14.27)

where

h(ρ) =
‖uk[q + ρ]− uk[q]− vk(ρ)‖L2(Ω)

‖ρ‖L∞(Ω)
.

In fact, since uk[q + ρ]− uk[q]− vk(ρ) solves the problem

{
(∆+ k2 + ikq)(uk[q + ρ]− uk[q]− vk(ρ)) = −ikρ(uk[q + ρ]− uk[q]) in Ω ,

uk[q + ρ]− uk[q]− vk(ρ) = 0 on ∂Ω ,

we can obtain

‖uk[q + ρ]− uk[q]− vk(ρ)‖L2(Ω) ≤
‖ρ‖L∞(Ω)‖(uk[q + ρ]− uk[q])‖L2(Ω)

inf q
.

(14.28)
On the other hand, since uk[q + ρ]− uk[q] satisfies

{
∆(uk[q + ρ]− uk[q]) + (k2 + ik(q + ρ))(uk[q + ρ]− uk[q]) = −ikρuk[q] in Ω ,

uk[q + ρ]− uk[q] = 0 on ∂Ω ,

we have

‖uk[q + ρ]− uk[q]‖L2(Ω) ≤
‖ρ‖L∞(Ω)‖uk[q]‖L2(Ω)

inf(q + ρ)
. (14.29)

Combining (14.28) and (14.29) yields (14.27). Using the chain rule in differen-
tiation, we readily get (14.23). Formula (14.24) can be obtained by integration
by parts.

We next prove the last part of the lemma. Since dF k[q] takes the form
|uk[q]|2(I + compact), it is sufficient to prove that

∩k∈(k,k)KerdF k[q] = {0}
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and then apply the Fredholm alternative. Assume there exists ρ ∈ L2(Ω)\{0}
such that

dF k[q](ρ) = 0

for all k ∈ (k, k). By analyticity, it follows that dF 0[q](ρ) = 0. This is not a
true fact because v0(ρ) = 0 and u0[q] = 1. ⊓⊔

Using regularity theory, we see that uk[q] belongs to L∞(Ω). Hence, dF k[q]
can be extended so that its domain is L2(Ω). By abuse of notation, we denote
the extended operator still by dF k[q].

14.4.2 Landweber’s Iteration

Lemma 14.10 The map J defined in (14.17) is Fréchet differentiable in q.
Moreover, for all q ∈ L∞

+ (Ω),

dJ [q](ρ) =

∫ k

k

∫

Ω

ρ
(
|uk[q]|2(q|uk|2 − Ek) + ℜikpkuk[q]

)
dxdk , (14.30)

where pk is the solution of (14.25) with h = (q|uk|2 − Ek).

Now we can apply the gradient descent method to minimize J and arrive
at the iteration

q(n+1) = Tq(n) − ηdJ [Tq(n)] , (14.31)

where η > 0 is the step size,

Tf = max{q,min{q, f}} . (14.32)

Here, dJ [Tq(n)] is computed using (14.30). Moreover, the presence of T in
(14.31) improves the rate of convergence because Tq(n) is closer to the true
coefficient q∗ than q(n) and is necessary because J [q(n)] might not be well-
defined. Using (14.24) we can show that this optimal control problem is noth-
ing else than the Landweber scheme:

q(n+1) = Tq(n) − η

∫ ω

ω

[
dF ∗[Tq(n)]

(
F k(Tq(n))− Ek

)]
dk .

Using (14.26) it follows that there exists η > 0 sufficiently small such that
the Landweber scheme or equivalently the optimal control approach converges
to q∗.





15

Ultrasonically-Induced Lorentz Force Electrical
Impedance Tomography

15.1 Introduction

In ultrasonically-induced Lorentz force method (experimental apparatus pre-
sented in Figure 15.1) an ultrasound pulse propagates through the medium
to be imaged in the presence of a static magnetic field. The ultrasonic wave
induces Lorentz’ force on ions in the medium, causing the negatively and pos-
itively charged ions to separate. This separation of charges acts as a source of
electrical current and potential. Measurements of the induced current give in-
formation on the conductivity in the medium. A 1 Tesla magnetic field and a 1
MPa ultrasonic pulse induce current at the nanoampere scale. Stronger mag-
netic fields and ultrasonic beams can be used to enhance the signal-to-noise
ratio.

This chapter provides a rigorous mathematical and numerical framework
for ultrasonically-induced Lorentz force electrical impedance tomography. Ul-
trasonic vibration of a tissue in the presence of a static magnetic field induces
an electrical current by the Lorentz force. This current can be detected by
electrodes placed around the tissue; it is proportional to the velocity of the ul-
trasonic pulse, but depends nonlinearly on the conductivity distribution. The
imaging problem is to reconstruct the conductivity distribution from mea-
surements of the induced current. To solve this nonlinear inverse problem,
we first make use of a virtual potential to relate explicitly the current mea-
surements to the conductivity distribution and the velocity of the ultrasonic
pulse. Then, by applying a Wiener filter to the measured data, we reduce the
problem to imaging the conductivity from an internal electric current density.
We first introduce an optimal control method for solving such a problem. A
direct reconstruction scheme involving a partial differential equation is then
proposed based on viscosity-type regularization to a transport equation satis-
fied by the current density field. We prove that solving such an equation yields
the true conductivity distribution as the regularization parameter approaches
zero. We also test both schemes numerically in the presence of measurement
noise, quantify their stability and resolution, and compare their performance.
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The chapter is organized as follows. We start by describing a model for the
electrical conductivity in electrolytic media. From this model we derive the
current density induced by an ultrasonic pulse in the presence of a static mag-
netic field. We then find an expression of the measured current. The inverse
problem is to image the conductivity distribution from such measurements
corresponding to different pulse sources and directions. A virtual potential
used with simple integrations by parts can relate the measured current to the
conductivity distribution and the velocity of the ultrasonic pulse. A Wiener
deconvolution filter can then reduce the problem to imaging the conductivity
from the internal electric current density. The internal electric current density
corresponds to that which would be induced by a constant voltage difference
between one electrode and another with zero potential. We introduce two re-
construction schemes for solving the imaging problem from the internal data.
The first is an optimal control method; we also propose an alternative to this
scheme via the use of a transport equation satisfied by the internal current
density. The second algorithm is direct and can be viewed as a PDE-based
reconstruction scheme. We prove that solving such a PDE yields to the true
conductivity distribution as the regularization parameter tends to zero. In
doing so, we prove the existence of the characteristic lines for the transport
equation under some conditions on the conductivity distribution. We finally
test numerically the two proposed schemes in the presence of measurement
noise, and also quantify their stability and resolution. Our results in this chap-
ter are from [60].

absorber

sample with electrodes

magnet(300 mT)

transducer (500 kHz)

oil tank

degassed water

Fig. 15.1. Example of the imaging device. The transducer is emitting ultrasound
in a sample placed in a constant magnetic field. An induced electrical current is
collected by two electrodes.
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15.2 Electric Measurements From Acousto-Magnetic
Coupling

Let a physical object to be imaged occupy a three-dimensional domain Ω
with a smooth boundary ∂Ω. Assume that this body is placed in a constant
magnetic field B in the direction e3 where {e1, e2, e3} denotes the standard
orthonormal basis of R3. We are interested in recovering the electrical con-
ductivity of this body σ ∈ L∞(Ω) with the known lower and upper bounds:

0 < σ ≤ σ ≤ σ <∞ .

An acoustic transducer sends a short acoustic pulse from y ∈ R3 in the di-
rection ξ ∈ S, with S being the unit sphere, such that ξ · e3 = 0. This pulse
generates the velocity field v(x, t)ξ with v(x, t) taking the following form:

v(x, t) = w
(
z − ct

)
A
(
z, |r|

)
, (15.1)

where

z = (x− y) · ξ and r = x− y − zξ ∈ Υξ := {ζ ∈ R3 : ζ · ξ = 0} . (15.2)

Here, w ∈ C∞
c

(
R
)
, supported in (−η, 0), is the ultrasonic pulse profile; A ∈

C∞(R × R+
)
, supported in R+ × [0, R], is the cylindrical profile distribution

of the wave corresponding to the focus of the acoustic transducer; and R is
the maximal radius of the acoustic beam.

15.2.1 Electrical Conductivity in Electrolytes

We describe here the electrical behavior of the medium as an electrolytic tissue
composed of ions capable of motion in an aqueous tissue. We consider k types
of ions in the medium with charges of qi, i ∈ {1, . . . , k}. The corresponding
volumetric density ni is assumed to be constant. Neutrality in the medium is
described as

∑

i

qini = 0 . (15.3)

Kohlrausch’s law [86] defines the conductivity of such a medium as a linear
combination of the ionic concentrations

σ = e+
∑

i

µiqini, (15.4)

where e+ is the elementary charge, and the coefficients µi denote the ionic
mobility of each ion i.
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15.2.2 Ion Deviation by Lorentz Force

We embed the medium in a constant magnetic field with direction e3, Be3, and
perturb it mechanically using the short, focused, ultrasonic pulses v defined
in (15.1). The motion of the charged particle i inside the medium is deviated
by the Lorentz force

Fi = qivBξ × e3 . (15.5)

This force accelerates the ion in the orthogonal direction

τ(ξ) = ξ × e3 . (15.6)

Then, almost immediately, the ion reaches a constant speed given by

vτ,i = µiBv

at the first order. Finally, the ion i has a total velocity

vi = vξ + µiBvτ .

The current density generated by the displacement of charges can be described
as follows:

jS =
∑

i

niqivi =

(∑

i

niqi

)
vξ +

(∑

i

niµiqi

)
Bvτ .

Using the neutrality condition (15.3) and the definition of σ in (15.4), we get
the following simple formula for jS :

jS =
1

e+
Bσvτ . (15.7)

This electrolytic description of the tissue characterizes the interaction be-
tween the ultrasonic pulse and the magnetic field through a small deviation of
the charged particles embedded in the tissue. This deviation generates a cur-
rent density jS orthogonal to ξ and to B, locally supported inside the domain.
At a fixed time t, jS is supported in the support of x 7→ v(x, t). This current
is proportional to σ, and is the source of the current that we measure on the
electrodes placed at ∂Ω. In the next section, a formal link is substantiated
between jS and the measured current I.

15.2.3 Internal Electrical Potential

Because the characteristic time of the acoustic propagation is very long com-
pared with the electromagnetic wave propagation characteristic time, we can
adopt the electrostatic frame. Consequently, the total current j in Ω at a fixed
time t can be formulated as

j(x, t) = jS(x, t) + σ(x)∇xu(x, t) , (15.8)
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where u is the electrical potential. It satisfies

∇x · (jS(x, t) + σ(x)∇xu(x, t)) = ∇ · j(x, t) = 0 . (15.9)

Figure 15.2 shows the configuration under consideration. Let Γ1 and Γ2 be
portions of the boundary ∂Ω where two planar electrodes are placed. Denote
Γ0 = ∂Ω \ (Γ1 ∪ Γ2).

e1

e2

B

Electrode Γ1

Ultrasonic pulse

σ(x)

ξ

Electrode Γ2

Γ0

Fig. 15.2. Imaging system configuration. An ultrasonic wave propagates in a
medium of electrical conductivity σ comprised between electrodes Γ1 and Γ2.

As we measure the current between the two electrodes Γ1 and Γ2, the
electrical potential is the same on both electrodes, and can be fixed to zero
without loss of generality. Further, it is assumed that no current can leave
from Γ0. The potential u(·, t) can then be defined as the unique solution in
W 1,2(Ω) of the elliptic system





−∇x · (σ(x)∇xu(x, t)) = ∇x · jS(x, t) in Ω ,

u(x, t) = 0 on Γ1 ∪ Γ2 ,

∂u

∂ν
(x, t) = 0 on Γ0 .

(15.10)

Note that the source term jS depends on the time t > 0, the longitudinal
axis ξ ∈ S and the profile of the acoustic pulse. The electrical potential u also
depends on these variables.
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The measurable intensity I is the current flow through the electrodes.
Integrating (15.10) by parts gives

∫

Γ1

σ
∂u

∂ν
+

∫

Γ2

σ
∂u

∂ν
= 0 ,

which is the expression of current flow conservation. We define the intensity
I by

I(t) =

∫

Γ2

σ(x)
∂u

∂ν
(x, t) ds(x) . (15.11)

15.2.4 Virtual Potential

In order to link I to σ, we introduce a virtual potential U ∈W 1,2(Ω) defined
as the unique solution of





−∇ · (σ∇U) = 0 in Ω ,

U = 0 on Γ1 ,

U = 1 on Γ2 ,

∂U

∂ν
= 0 on Γ0 .

(15.12)

Then we multiply (15.10) by U and integrate by parts. Assuming that the
support of v does not intersect the electrodes Γ1 and Γ2, we obtain

−
∫

Ω

σ∇u · ∇U +

∫

Γ2

σ
∂u

∂ν
=

∫

Ω

jS · ∇U .

From the property of U in (15.12) and the definition of I in (15.11), the above
identity becomes

I =

∫

Ω

jS · ∇U .

The above identity links the measured intensity I to an internal information
of σ using the expression of jS in (15.7):

I =
B

e+

∫

Ω

v(x, t)σ(x)∇U(x)dx · τ .

According to (15.1), v depends on y, ξ, and t, so does I. We define the mea-
surement function as

M(y, ξ, z) =

∫

Ω

v(x, z/c)σ(x)∇U(x)dx · τ(ξ) (15.13)

for any y ∈ R3, ξ ∈ S and z > 0. We assume the knowledge of this function in
a certain subset of R3×S×R+ denoted by Y ×S× (0, zmax). We will discuss
later the assumptions we have to impose on this subset in order to make the
reconstruction accurate and stable.
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15.3 Construction of the Virtual Current

For simplicity, let us restrict ourselves to the two dimensional case where both
the conductivity σ and the virtual potential U do not change in e3-direction.
For convenience, the same notations will be used as in the three dimensional
case.

In order to obtain the information of σ contained in M , we need to sep-
arate the contribution of the displacement term v from this measurement
function. Using the cylindrical symmetry of this integration we write for any
z ∈ (0, zmax),

M(y, ξ, z) =

∫

R

∫

Υξ

w(z − z′)(σ∇U)(y + z′ξ + r)A(z′, |r|)drdz′ · τ(ξ)

=

∫

R

w(z − z′)

∫

Υξ

(σ∇U)(y + z′ξ + r)A(z′, |r|)drdz′ · τ(ξ)

= (W ⋆ Φy,ξ) (z) · τ(ξ) ,
(15.14)

where Υξ is defined by (15.2), τ(ξ) by (15.6), W (z) = w(−z), ⋆ denotes the
convolution product, and

Φy,ξ(z) =

∫

Υξ

σ(y + zξ + r)A(z, |r|)∇U(y + zξ + r)dr .

As will be shown in section 15.6, through a one dimensional deconvolution
problem that can be stably solved using, for instance, a Wiener-type filtering
method, we get access to the function Φy,ξ · τ(ξ). Now the question is about
the reconstruction of σ from Φy,ξ · τ(ξ). We can notice that Φy,ξ is a weighted
Radon transform applied to the virtual current field σ∇U . The weight A(z, |r|)
is critical for the choice of the method that we can use. Closer this weight is
to a Dirac mass function, better is the stability of the reconstruction. In this
case, if the field σ∇U does not have too large variations, we can recover a
first-order approximation, as discussed in the rest of this section.

In order to make the reconstruction accurate and stable, we make two
assumptions on the set of parameters Y ×S × (0, zmax). For any x ∈ Ω, we
define

Sx =

{
ξ ∈ S : ξ =

x− y

|x− y| for some y ∈ Y

}
.

The first assumption is

(H1) ∀x ∈ Ω, ∃ ξ1, ξ2 ∈ Sx s.t. |ξ1 × ξ2| 6= 0 ,

and the second one reads

(H2) ∀x ∈ Ω, ∀ξ ∈ Sx, ∃ unique y ∈ Y s.t. ξ =
x− y

|x− y| .
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From the assumption (H2), we can define a distance map |x − y| as a
function of x and ξ. We will denote dY (x, ξ) = |x−y|. By a change of variables,
we rename our data function as

ψ(x, ξ) = Φy,ξ

(
dY (x, ξ)

)
· τ(ξ)

=

∫

Υξ

(σ∇U)(x+ r)A
(
dY (x, ξ), |r|

)
dr · τ(ξ) . (15.15)

Now if we denote by

γ(x, ξ) =

∫

Υξ

A
(
dY (x, ξ), |r|

)
dr τ(ξ) , (15.16)

then we expect that

ψ(x, ξ) ≈ (σ∇U)(x) · γ(x, ξ),

provided the supp(A) is small enough and σ∇U does not vary too much. The
following lemma makes this statement precise.

Lemma 15.1 Consider a fixed direction ξ ∈ S and consider the domain
covered by the pulses of direction ξ defined by Ωξ = {x ∈ Ω : ξ ∈ Sx}.
Suppose that the virtual current σ∇U has bounded variations, then

‖ψ(·, ξ)− σ∇U · γ(·, ξ)‖L1(Ωξ)
≤ cR

∣∣σ∇U
∣∣
TV (Ω)

,

where R is the maximum radius of the cylindrical support of the envelope A
and c > 0 depends on the shape of A. Here,

∣∣ ∣∣
TV (Ω)

denotes the total variation

semi-norm.

Proof. For a.e. x ∈ Ωξ, we have

|ψ(x, ξ)− (σ∇U)(x) · γ(x, ξ)| ≤∫

Υξ

|(σ∇U)(x+ r)− (σ∇U)(x)|A
(
dY (x, ξ), |r|

)
dr ,

and so

‖ψ(·, ξ)− σ∇U · γ(·, ξ)‖L1(Ωξ)

≤
∫

Υξ

∫

Ωξ

|(σ∇U)(x+ r)− (σ∇U)(x)|A
(
dY (x, ξ), |r|

)
dxdr

≤
∣∣σ∇U

∣∣
TV (Ω)

∫

Υξ

|r| sup
0<z<zmax

A(z, |r|)dr

≤ 2πR
∣∣σ∇U

∣∣
TV (Ω)

∫

R+

sup
0<z<zmax

A(z, ρ)dρ ,

which completes the proof. ⊓⊔
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Note that in the most interesting cases, σ∇U has bounded variations. For
example, if σ has a piecewise W 1,∞ smoothness on smooth inclusions, then
σ∇U has bounded variations. This also holds true for σ in some subclasses of
functions of bounded variations. In the following, we make the assumption,
as in Lemma 15.1, that σ∇U has bounded variations.

In conclusion, our data approximates the quantity (σ∇U)(x) · γ(x, ξ) for
any x ∈ Ω, ξ ∈ Sx where the vector γ(x, ξ) is supposed to be known. To get
the current (σ∇U)(x), we simply consider data from two linearly independent
directions. Using assumption (H1), for a fixed x ∈ Ω, there exist ξ1, ξ2 ∈ Sx

such that det(ξ1, ξ2) 6= 0. We construct the 2× 2 invertible matrix

Γ (x, ξ1, ξ2) =

[
γ(x, ξ1)

⊥

γ(x, ξ2)
⊥

]
,

and the data column vector

Ψ(x, ξ1, ξ2) =

[
ψ(x, ξ1)
ψ(x, ξ2)

]
.

We approximate the current σ∇U(x) by the vector field

V (x, ξ1, ξ2) = Γ (x, ξ1, ξ2)
−1Ψ(x, ξ1, ξ2) .

Indeed, for any open set Ω̃ ⊂ Ωξ1 ∩Ωξ2 , the following estimate holds:

‖V (·, ξ1, ξ2)− σ∇U‖L1(Ω̃)

≤ sup
x∈Ω̃

∥∥Γ (x, ξ1, ξ2)−1
∥∥
L(R2)

(
2∑

i=1

‖ψ(·, ξi)− σ∇U · γ(·, ξi)‖L1(Ωξi
)

)1/2

≤ cR
∣∣σ∇U

∣∣
TV (Ω)

.

It is worth mentioning that if more directions are available, then we can
use them to enhance the stability of the reconstruction. The linear system
becomes over-determined and we can get the optimal approximation by using
a least-squares method.

15.4 Recovering the Conductivity by Optimal Control

In this section we assume that, according to the previous one, we are in the
situation where we know a good approximation of the virtual current D :=
σ∇U in the sense of L1(Ω). The objective here is to provide efficient methods
for separating σ from D.

For a < b, let us denote by L∞
a,b(Ω) := {f ∈ L∞(Ω) : a < f < b} and

define the operator F : L∞
σ,σ(Ω) −→W 1,2(Ω) by
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F [σ] = U :





∇ · (σ∇U) = 0 in Ω ,

U = 0 on Γ1 ,

U = 1 on Γ2 ,

∂U

∂ν
= 0 on Γ0 .

(15.17)

The following lemma holds.

Lemma 15.2 Let dF be the Fréchet derivative of F . For any σ ∈ L∞
σ,σ(Ω)

and h ∈ L∞(Ω) such that σ + h ∈ L∞
σ,σ(Ω) we have

dF [σ](h) = v :





∇ · (σ∇v) = −∇ · (h∇F [σ]) in Ω ,

v = 0 on Γ1 ∪ Γ2 ,

∂v

∂ν
= 0 on Γ0 .

(15.18)

Proof. Let us denote by w = F [σ+h]−F [σ]− v. This function is in W 1,2(Ω)
and satisfies the equation

∇ · (σ∇w) = −∇ · (h∇(F [σ + h]−F [σ]))

with the same boundary conditions as v. We have the elliptic global control:

‖∇w‖L2(Ω) ≤
1

σ
‖h‖L∞(Ω) ‖∇(F [σ + h]−F [σ])‖L2(Ω) .

Since
∇ · (σ∇(F [σ + h]−F [σ])) = −∇ · (h∇F [σ + h]) ,

we can also control F [σ + h]−F [σ] with

‖∇(F [σ + h]−F [σ])‖L2(Ω) ≤
1√
σ
‖h‖L∞(Ω) ‖∇F [σ + h]‖L2(Ω) .

Then, there is a positive constant C depending only on Ω such that

‖∇F [σ + h]‖L2(Ω) ≤ C

√
σ

σ
.

Finally, we obtain

‖∇w‖L2(Ω) ≤ C

√
σ

σ2
‖h‖2L∞(Ω) ,

and the proof is complete. ⊓⊔
We look for the minimizer of the functional

J [σ] =
1

2

∫

Ω

|σ∇F [σ]−D|2 . (15.19)

In order to do so, we compute its gradient. The following lemma holds.
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Lemma 15.3 For any σ ∈ L∞
σ,σ(Ω) and h ∈ L∞(Ω) such that σ + h ∈

L∞
σ,σ(Ω),

dJ [σ](h) = −
∫

Ω

h

(
(σ∇F [σ]−D −∇p) · ∇F [σ]

)
,

where p is defined as the solution to the adjoint problem:





∇ · (σ∇p) = ∇ · (σ2∇F [σ]− σD) in Ω ,

p = 0 on Γ1 ∪ Γ2 ,

∂p

∂ν
= 0 on Γ0 .

(15.20)

Proof. As F is Fréchet differentiable, so is J . For σ ∈ L∞
σ,σ(Ω) and h ∈ L∞(Ω)

such that σ + h ∈ L∞
σ,σ(Ω), we have

dJ [σ](h) =

∫

Ω

(σ∇F [σ]−D) · (h∇F [σ] + σ∇dF [σ](h)) .

Now, multiplying (15.20) by dF [σ](h), we get

∫

Ω

σ∇p · ∇dF [σ](h) =

∫

Ω

(σ2∇F [σ]− σD) · ∇dF [σ](h) .

On the other hand, multiplying (15.18) by p we arrive at

∫

Ω

σ∇p · ∇dF [σ](h) = −
∫

Ω

h∇F [σ] · ∇p ,

and therefore,

dJ [σ](h) =

∫

Ω

h(σ∇F [σ]−D −∇p) · ∇F [σ] ,

which completes the proof. ⊓⊔

Lemma 15.3 allows us to implement a numerical gradient descent method
in order to find σ. A regularization term can also be added to J [σ] in order
to avoid instability. As we are seeking discontinuous σ with smooth variations
out of the discontinuity set, a good choice would be the minimization of the
regularized functional:

Jε[σ] =
1

2

∫

Ω

|σ∇F [σ]−D|2 + ε
∣∣σ
∣∣
TV (Ω)

, (15.21)

where ε > 0 is the regularization parameter.
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15.5 The Orthogonal Field Method

In this section, we present an alternative direct method to optimal control for
reconstructing the conductivity σ from the internal data σ∇U . It is based on
solving a transport equation. The following approach may be extended to the
three dimensional case. However, several proofs would need to be revisited.

Given a vector field D = σ∇U which is parallel to ∇U everywhere, we may
construct the vectorial field F = (σ∇U)⊥ = (D2,−D1) which is everywhere
orthogonal to D. The flow of F may define the level sets of U . Assuming that
the variations of the conductivity σ are far enough from Γ0, we can assume
that U(x) = x2 on this boundary part. Then U is a solution of the following
transport equation:

{
F · ∇U = 0 in Ω ,

U = x2 on ∂Ω .
(15.22)

In the case where (15.22) is well posed and can be solved, we can reconstruct
the virtual potential U . The conductivity σ is deduced from U and D by the
following identity

1

σ
=
D · ∇U
|D|2 . (15.23)

Despite to its very simple form, this first-order equation is really tricky. Ex-
istence and uniqueness are both difficult challenges in the general case. Our
main difficulty here is due to the fact that F is discontinuous. As the function
U that we are looking for is a natural solution of this equation, we are only
concerned here with the uniqueness of a solution to (15.22).

15.5.1 Uniqueness Result for the Transport Equation

The uniqueness of a solution to (15.22) is directly linked to the existence of
outgoing characteristic lines defined by the dynamic system [114]:

{
X ′(t) = F (X(t)), t ≥ 0 ,

X(0) = x, x ∈ Ω ,
(15.24)

which usually needs the continuity of F . As σ is in general not continuous,
F is not continuous, which makes the classical existence results useless. Nev-
ertheless, under some assumptions on σ, we can insure the existence of the
characteristic lines.

Definition 15.4 For any k ∈ N, α ∈ (0, 1), for any simple closed curve C of
class C1,α such that Ω \ C is a union of connected domains Ωi, i = 1, 2, . . . , n,

we define Ck,α
C
(
Ω
)
to be the class of functions f : Ω −→ R satisfying

f |Ωi
∈ Ck,α

(
Ωi

)
∀i = 1, . . . , n .
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Definition 15.5 A conductivity σ is said to be admissible if there exists a
constant α ∈ (0, 1) and a curve C of class C1,α such that σ ∈ C0,α

C
(
Ω
)
∩L∞

σ,σ(Ω)
and

inf
Ω\C

σ∇F [σ] · e2 > 0 .

If σ is admissible and belongs to C0,α
C
(
Ω
)
, then the solution U of (15.12)

belongs to C1,α
C
(
Ω
)
and the field F = (σ∇U)⊥ satisfies

F ∈ C0,α
C
(
Ω
)

and inf
Ω\C

F · e1 > 0 .

Moreover, as F is orthogonal to σ∇U , we can describe the jump of F at
the curve C. Defining the normal and tangential unit vectors ν and τ and also
the local sides (+) and (-) with respect to ν, we can write F on both sides as

F+ = σ+ ∂U
+

∂ν
τ + σ+ ∂U

+

∂τ
ν ,

F− = σ− ∂U
−

∂ν
τ + σ− ∂U

−

∂τ
ν ,

with the transmission conditions, σ+∂U+/∂ν = σ−∂U−/∂ν and ∂U+/∂τ =
∂U−/∂τ . Finally, we characterize the discontinuity of F by

[F ] = [σ]
∂U

∂τ
ν,

where [ ] denotes the jump across C.
With all of these properties for the field F , we can prove the existence of

the characteristic lines for (15.24).

Theorem 15.6 (Local existence of characteristics) Assume that F ∈ C0,α
C
(
Ω
)

with C of class C1,α for α ∈ (0, 1). Assume that the discontinuity of F on C
satisfies

F+ = fτ + σ+gν ,

F− = fτ + σ−gν ,

with f, g, σ+, σ− ∈ C0,α(C) where σ+, σ− are positive and g is locally signed.
Then, for any x0 ∈ Ω, there exists T > 0 and X ∈ C1

(
[0, T [, Ω

)
such that

t 7→ F (X(t)) is measurable and

X(t) = x0 +

∫ t

0

F (X(s))ds, ∀t ∈ [0, T [ .

Proof. If x0 /∈ C, then F is continuous in a neighborhood of x0 and the
Cauchy-Peano theorem can be applied.

If x0 ∈ C, then we choose a disk B ⊂ Ω centered at x0. The oriented line
C separates B in two simply connected open domains called B+ and B−. For
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ease of explanation, we may assume that C ∩ B is straight line (since we can
flatten the curve using a proper C0,α-diffeomorphism).

Assume that g(x0) > 0. Up to rescaling B, we can assume that g(x) > 0
for all x ∈ C ∩ B. We extend F |B+ to a continuous field F̃ ∈ C0(B) by even
reflection. The Cauchy-Peano theorem insures the existence of T > 0 and
X ∈ C1

(
[0, T [, Ω

)
such that X(0) = x0 and X ′(t) = F̃ (X(t)) for all t ∈ [0, T [.

As g(x0) > 0, we have X ′(0) · ν(x0) > 0 and X(t) ∈ B+ in a neighborhood of
0. Thus, for a small enough t, X ′(t) = F (X(t)). If g(x0) < 0, then we apply
the same argument by interchanging B− and B+.

Suppose now that g(x0) = 0. The field F is now tangent to the disconti-
nuity line. If f(x0) = 0, then X(t) = x0 is a solution. We assume here that
f(x0) > 0. As g is assumed to be locally signed, we can suppose that g ≥ 0 in
a small sub-curve of C satisfying (x− x0) · τ(x0) > 0. Again, we extend F |B+

to a continuous field F̃ ∈ C0(B) by even reflection and use the Cauchy-Peano
theorem to show that there exists T > 0 and X ∈ C1

(
[0, T [, Ω

)
such that

X(0) = x0 and X ′(t) = F̃ (X(t)) for all t ∈ [0, T [. In order to complete the
proof, we should show that X(t) belongs to B+ for t small enough. If not,
there exists a sequence tn ց 0 such that X(tn) ∈ B−. By the mean value the-
orem, there exists t̃n ∈ (0, tn) such that F (X(t̃n)) ·ν(x0) = X ′(t̃n) ·ν(x0) < 0.
Thus, X(t) belongs to B+ and X ′(t) = F (X(t)) for t small enough.

Note that the local monotony of g is satisfied in many cases. For instance
if C is analytic and σ is piecewise constant, then ∇U is analytic on C and
hence, g is locally signed. ⊓⊔

It is worth mentioning that existence of a solution for the Cauchy problem
(15.24) has been proved in [114] provided that F · ν > 0 on C. Here, we have
made a weaker assumption. In fact, we only need that F · ν is locally signed.

Corollary 15.7 (Existence of outgoing characteristics) Consider F ∈ C0,α
C (Ω)

satisfying the same conditions as in Theorem 15.6 and the condition

inf
Ω\C

F · e1 ≥ c ,

where c is a positive constant. Then for any x0 ∈ Ω there exists 0 < T < Tmax

where Tmax =
1

c
diam(Ω) and X ∈ C0

(
[0, T [, Ω

)
satisfying

X(t) = x0 +

∫ t

0

F (X(s))ds, ∀t ∈ [0, T [ ,

lim
t→T

X(t) ∈ ∂Ω .

This result means that from any point x0 ∈ Ω, the characteristic line reaches
∂Ω in a finite time.

Proof. Let x0 ∈ Ω and X ∈ C0
(
[0, T [, Ω

)
a maximal solution of (15.24). Using

F · e1 ≥ c we have that X ′(t) · e1 ≥ c and so X(t) · e1 ≥ x0 · e1 + ct and as
X(t) ∈ Ω for all t ∈ [0, T [, it is necessary that T < Tmax. As F ∈ C0,α

C (Ω), F is
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bounded,X is Lipschitz, and the limit ofX(t) when t goes to T exists in Ω and
is called X(T ). Let us show that X(T ) ∈ ∂Ω. Suppose that X(T ) ∈ Ω, then
applying Theorem 15.6 at X(T ), we can continuously extend X on [T, T + ε[
for some positive ε which contradicts the fact that X is a maximal solution.
⊓⊔

Corollary 15.8 [Uniqueness for the transport problem] Consider F ∈ C0,α
C (Ω)

satisfying the same conditions as in Corollary 15.7 and consider u ∈ C0
(
Ω
)
∩

C1
C
(
Ω
)
. If u is a solution of the system

{
F · ∇u = 0 in Ω ,

u = 0 on ∂Ω ,
(15.25)

then u = 0 in Ω.

Proof. Consider x0 ∈ Ω and a characteristic X ∈ C0
(
[0, T [, Ω

)
satisfying

X(t) = x0 +

∫ t

0

F (X(s))ds, ∀t ∈ [0, T [ ,

lim
t→T

X(t) ∈ ∂Ω .

We define f ∈ C0
(
[0, T ],R

)
by f(t) = u(X(t)). We show that f is constant.

Let us define I = X−1(C) then f is differentiable in [0, T ] \ I and f ′(t) =
∇u(X(t)) · F (X(t)) = 0. Let us take t ∈ I. If t is not isolated in I, using
the fact that ∂τu

+ and ∂τu
− are locally signed, F (X(t)) is parallel to C and

for an ε > 0, X(s) ∈ B+ (or B−) for s ∈ [t, t + ε[. Then, f(s) = u(x(s))
is differentiable on [t, t + ε[ with f ′(s) = ∇u+(X(s)) · F (X(s)). This proves
that f is right differentiable at t and (f ′)+(t) = 0. By the same argument,
f is left differentiable at t and (f ′)−(t) = 0 and so f is differentiable at t
with f ′(t) = 0. Finally, except for a zero measure set of isolated points, f is
differentiable on [0, T ] and f ′ = 0 almost everywhere. This is not enough to
conclude because there exists continuous increasing functions whose derivative
is zero almost everywhere. Since for all t, s ∈ [0, T ],

|f(t)− f(s)| ≤ sup
x∈Ω

|∇u||X(t)−X(s)| ≤ sup
x∈Ω

|∇u| sup
x∈Ω

|F ||t− s|,

f is Lipschitz and thus absolutely continuous which implies, since f ′ = 0
a.e., that f is constant on [0, T ]. We finally have u(x0) = f(0) = f(T ) =
u(X(T )) = 0. ⊓⊔

Hence we conclude that if σ is admissible, then U is the unique solution
to (15.22) and we can recover σ by (15.23).

Remark 15.9 The characteristic method can be used to solve the transport
problem. However, it suffers from poor numerical stability which is exponen-
tially growing with the distance to the boundary. To avoid this delicate numer-
ical issue, we propose a regularized approach for solving (15.22). Our approach
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consists in forming from (15.22) a second-order PDE and adding to this PDE
a small elliptic term of order two.

15.5.2 The Viscosity-Type Regularization

In this subsection we introduce a viscosity approximation to (15.22). Let η >
0. We regularize the transport equation (15.22) by considering the well-posed
elliptic problem

{
∇ ·
[(
ηI + FFT

)
∇Uη

]
= 0 in Ω ,

Uη = x2 on ∂Ω ,
(15.26)

where I is the identity matrix. The main question is to understand the behav-
ior of Uη when η → 0. Or more precisely, whether Uη converges to the solution
U of the transport equation (15.22) for a certain topology. The following result
holds.

Theorem 15.10 The sequence (Uη − U)η>0 converges strongly to zero in

W 1,2
0 (Ω).

Proof. We first prove that the sequence (Uη−U)η>0 converges weakly to zero

in W 1,2
0 (Ω) when η goes to zero. For any η > 0, Ũη := Uη − U is in W 1,2

0 (Ω)
and satisfies

∇ ·
[(
ηI + FFT

)
∇Ũη

]
= −η△U in Ω . (15.27)

Multiplying this equation by Ũη and integrating by parts over Ω, we obtain

η

∫

Ω

|∇Ũη|2 +
∫

Ω

|F · ∇Ũη|2 = −η
∫

Ω

∇U · ∇Ũη , (15.28)

and so,

∥∥∥Ũη

∥∥∥
2

W 1,2
0 (Ω)

≤
∫

Ω

|∇U · ∇Ũη| ≤ ‖U‖W 1,2(Ω)

∥∥∥Ũη

∥∥∥
W 1,2

0 (Ω)
.

Then
∥∥∥Ũη

∥∥∥
W 1,2

0 (Ω)
≤ ‖U‖W 1,2(Ω). The sequence (Ũη)η>0 is bounded in

W 1,2
0 (Ω) and so by Banach-Alaoglu’s theorem, we can extract a subsequence

which converges weakly to U∗ in W 1,2
0 (Ω). Multiplying (15.27) by U∗ and

integrating by parts, we get

∫

Ω

(
F · ∇Ũη

)
(F · ∇U∗) = −η

∫

Ω

∇U · ∇U∗ − η

∫

Ω

∇Ũη · ∇U∗ .

Taking the limit when η goes to zero,
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‖F · ∇U∗‖L2(Ω) = 0 .

So U∗ is a solution of the transport equation (15.25), and by Corollary 15.8,
U∗ = 0 in Ω. Since the limit U∗ is independent of the subsequence, the
convergence holds for Ũη.

Now, we are ready to prove the strong convergence. From (15.28) we get
that

∫

Ω

|∇Ũη|2 ≤ −
∫

Ω

∇U · ∇Ũη ,

and as Ũη ⇀ 0 in W 1,2
0 (Ω), the term in the right-hand side goes to zero when

η goes to zero. Hence,
∥∥∥Ũη

∥∥∥
W 1,2

0 (Ω)
→ 0. ⊓⊔

Finally, using Theorem 15.10 we define the approximate resistivity by

1

ση
=
D · ∇Uη

|D|2 ,

which strongly converges to
1

σ ∗
in L2(Ω), where σ∗ is the true conductivity.

15.6 Numerical Illustrations

In this section we first discuss the deconvolution step. Then we test both the
optimal control and the orthogonal field reconstruction schemes.

15.6.1 Deconvolution

In this subsection, we consider the problem of recovering Φy,ξ from the mea-
surements M(y, ξ, ·) in the presence of noise. From (15.14), it is easy to see
that this can be done by deconvolution. However, deconvolution is a numeri-
cally very unstable process. In order to render stability we use a Wiener-type
filter. We assume that the signal M(y, ξ, ·) is perturbed by a random white
noise:

M̃(y, ξ, z) =M(y, ξ, z) + µ(z), (15.29)

where µ is a white Gaussian noise with variance ν2 such that

E[µ(z)µ(z′)] = ν2δ0(z − z′)

and
E[F(µ)(k)F(µ)(k′)] = ν2δ0(k − k′) ,

where

F [µ](k) =
1√
2π

∫
µ(z)e−ikzdz .
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Equation (15.29) can be written as

M̃y,ξ(z) = (W ⋆ Ψy,ξ) (z) + µ(z) ,

where Ψy,ξ(z) = Φy,ξ(z) · τ(ξ). Denote by S(Ψy,ξ) =
∫
R
|F(Ψy,ξ)(k)|2dk the

spectral density of Ψy,ξ, where F is the Fourier transform. We introduce a
Wiener deconvolution filter in the frequency domain:

L̂(k) =
F(W )(k)

|F(W )|2(k) + ν2

S(Ψy,ξ)

.

The quotient ν2/S(Ψy,ξ) is the signal-to-noise ratio. So, in order to use the
filter, we need to have an a priori estimate of the signal-to-noise ratio. We
then recover Ψy,ξ up to a small error by

Ψ̃y,ξ = F−1
(
F(M̃)L̂

)
.
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Fig. 15.3. L2 norm of the relative error
‖Ψy,ξ−Ψ̃y,ξ‖2

‖Σ‖2
with respect to the signal-to-

noise ratio.
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15.6.2 Conductivity Reconstructions

In the numerical simulations, we choose Ω = (0, 2)× (0, 1). Figure 15.4 shows
the true conductivity map in the medium. The simulations are done using
a PDE solver. The data is simulated numerically on a fine mesh. For the
orthogonal field method, in order to solve (15.26), we use a coarse mesh.
Then we reconstruct an initial image of the conductivity. Based on the initial
image, an adaptive mesh refinement for solving (15.26) yields a conductivity
image of a better quality.
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Fig. 15.4. Conductivity map to be reconstructed.

Optimal Control Algorithm

The minimization procedure gives a decent qualitative reconstruction. The
main interfaces are easy to see, yet this method, due to its regularizing effect,
fails to show details in weaker contrasts zones. Figures 15.5, 15.6, and 15.7
show the reconstruction obtained with different measurement noise levels.

Orthogonal Field Method

To find the solution of problem (15.26), we fix η = 10−3, and solve the equation
on a uniform mesh on Ω. We reconstruct an approximation of σ, and adapt
the mesh to this first reconstruction. We do this procedure a couple of times in
order to get refined mesh near the conductivity jumps. We can see that besides
being computationally lighter than the minimization method, the orthogonal
field method allows a quantitative reconstruction of σ and shows details even
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Fig. 15.5. Reconstructed image without measurement noise.
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Fig. 15.6. Reconstructed image with 2% measurement noise (each measurement is
perturbed by an additive Gaussian random variable with mean zero and standard
deviation equal to 2% of the maximal absolute value of the unperturbed measure-
ments).
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Fig. 15.7. Reconstructed image with 20% measurement noise.

in the low contrast zones. It is relatively stable with respect to measurement
noise. Figures 15.8, 15.9, and 15.10 show the reconstruction with different
measurement noise levels.
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Fig. 15.8. Reconstructed image without measurement noise.
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Fig. 15.9. Reconstructed image with 2% measurement noise.
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Fig. 15.10. Reconstructed image with 20% measurement noise.

15.7 Concluding Remarks

In this chapter we have provided the mathematical basis of ultrasonically-
induced Lorentz force electrical impedance tomography. We have designed
two efficient algorithms and tested them numerically. The resolution of the
reconstructed images is fixed by the ultrasound wavelength and the width of
the ultrasonic beam. The orthogonal field method performs much better than
the optimization scheme in terms of both computational time and accuracy.



16

Magnetoacoustic Tomography With Magnetic
Induction

16.1 Introduction

Electrical conductivity varies widely among soft tissue types and pathological
states and its measurement can provide information about the physiological
and pathological conditions of tissue.

Acousto-magnetic tomographic techniques have the potential to detect
small conductivity inhomogeneities, enabling them to diagnose pathologies
such as cancer by detecting tumorous tissues when other conductivity imaging
techniques fail to do so.

In magnetoacoustic imaging with magnetic induction, magnetic fields are
used to induce currents in the tissue. Ultrasound is generated by placing the
tissue in a dynamic and static magnetic field. The dynamic field induces eddy
currents and the static field leads to generation of acoustic vibration from
Lorentz force on the induced currents. The divergence of the Lorentz force
acts as acoustic source of propagating ultrasound waves that can be sensed
by ultrasonic transducers placed around the tissue. The imaging problem is
to obtain the conductivity distribution of the tissue from the acoustic source
map.

In this chapter we provide a mathematical analysis and a numerical frame-
work for magnetoacoustic tomography with magnetic induction. The imaging
problem is to reconstruct the conductivity distribution of biological tissue from
measurements of the Lorentz force induced tissue vibration. We begin with
reconstructing from the acoustic measurements the divergence of the Lorentz
force, which is acting as the source term in the acoustic wave equation. Then
we recover the electric current density from the divergence of the Lorentz force.
To solve the nonlinear inverse conductivity problem, we introduce an optimal
control method for reconstructing the conductivity from the electric current
density. We prove its convergence and stability. We also present a point fixed
approach and prove its convergence to the true solution. A direct reconstruc-
tion scheme involving a partial differential equation is then proposed based on
viscosity-type regularization to a transport equation satisfied by the electric
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current density field. We show that solving such an equation yields the true
conductivity distribution as the regularization parameter approaches zero.

The chapter is organized as follows. We start by describing the forward
problem. Then we reconstruct from the acoustic measurements the divergence
of the Lorentz force, which is acting as the source term in the acoustic wave
equation. We recover the electric current density from the divergence of the
Lorentz force, which reduces the problem to imaging the conductivity from the
internal electric current density. We introduce three reconstruction schemes
for solving the conductivity imaging problem from the internal electric cur-
rent density. The first is an optimal control method. One of the contributions
of this chapter is the proof of convergence and stability of the optimal con-
trol approach provided that two magnetic excitations leading to nonparallel
current densities are employed. Then we present a point fixed approach and
prove that it converges to the true conductivity image. Finally, we propose
an alternative to these iterative schemes via the use of a transport equation
satisfied by the internal electric current density. Our third algorithm is direct
and can be viewed as a PDE-based reconstruction scheme. We test numeri-
cally the three proposed schemes in the presence of measurement noise, and
also quantify their stability and resolution.

The feasibility of imaging of Lorentz-force-induced motion in conductive
samples was shown in [96]. The magnetoacoustic tomography with magnetic
induction investigated here was experimentally tested in [263, 264], and was
reported to produce conductivity images of quality comparable to that of
ultrasound images taken under similar conditions. Our results in this chapter
are from [35].

16.2 Forward Problem Description

16.2.1 Time Scales Involved

The forward problem in magnetoacoustic tomography with magnetic induc-
tion (MAT-MI) is multiscale in nature. The different phenomena involved in
the experiment evolve on very different time scales. Precisely, there are three
typical times that appear in the mathematical model for MAT-MI.

• The first one is the time needed for an electromagnetic wave to propagate
in the medium and is denoted by τem. Typically, if the medium has a
diameter of 1cm, we have τem ∼ 10−11s.

• The second characteristic time, denoted by τpulse is the time width of the
magnetic pulse sent into the medium. Since the time-varying magnetic field
is generated by discharging a capacitor, τpulse is in fact the time needed
to discharge the capacitor such that τpulse ∼ 1µs [346].

• The third characteristic time, τsound, is the time consumed by the acoustic
wave to propagate through the medium. The speed of sound is about
1.5 · 103m.s−1 so τsound ∼ 6µs for a medium of 1cm diameter.
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16.2.2 Electromagnetic Model

Let (ei)i=1,2,3 be an orthonormal basis of R3. Let Ω be a three-dimensional
bounded C1 convex domain. The medium is assumed to be non magnetic, and
its conductivity is given by σ (the question of the regularity of σ will arise
later). Assume that the medium Ω is placed in a uniform, static magnetic
field B0 = B0e3.

Magnetoquasistatic Regime

At time t = 0 a second time varying magnetic field is applied in the medium.
The time varying magnetic field has the form B1(x, t) = B1(x)w(t)e3. B1 is
assumed to be a known smooth function and w is the shape of the stimulating
pulse. The typical width of the pulse is about 1µs so we are in presence of
a slowly varying magnetic-field. This regime can be described by the mag-
netoquasistatic equations, where the propagation of the electrical currents
is considered as instantaneous, but, the induction effects are not neglected.
These governing equations in Ω × R+ are

∇ ·B = 0 , (16.1)

∇× E = −∂B
∂t

, (16.2)

and
∇ · J = 0, (16.3)

where B is the total magnetic field in the medium and E is the total electric
field in the medium. Ohm’s law is valid and is expressed as

J = σE in Ω × R+ , (16.4)

where σ is the electrical conductivity of the medium. From now on, we assume
that σ ∈ L∞

σ,σ(Ω), where

L∞
σ,σ(Ω) := {f ∈ L∞(Ω′) : σ < f < σ in Ω′, f ≡ σ0 in Ω \Ω′}

with σ0, σ, and σ being three given positive constants, 0 < σ < σ, and Ω′ ⋐ Ω.
We use the Coulomb gauge (∇ ·A = 0) to express the potential represen-

tation of the fields B and E. The magnetic field B is written as

B = ∇×A, (16.5)

and the electric field E is then of the form

E = −∇Ṽ − ∂A

∂t
in Ω × R+ , (16.6)

where Ṽ is the electric potential. Writing A as follows:
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A(x, t) = A0(x) +A1(x)w(t) ,

where A0 and A1 are assumed to be smooth. In view of (16.3) and (16.6), we

look for Ṽ (x, t) of the form Ṽ (x, t) = V (x)w′(t) with V satisfying

∇ · σ∇V = −∇ · σA1 in Ω × R+ .

The boundary condition on V can be set as a Neumann boundary condition.
Since the medium Ω is usually embedded in a non-conductive medium (air),
no currents leave the medium, i.e., J · ν = 0 on ∂Ω, where ν is the outward
normal at ∂Ω. To make sure that the boundary-value problem satisfied by V
is well posed, we add the condition

∫
Ω
V = 0. We have the following boundary

value problem for V :




∇ · σ∇V =−∇ · σA1 in Ω ,

σ
∂V

∂ν
=− σA1 · ν on ∂Ω ,

∫

Ω

V =0 .

(16.7)

16.2.3 Acoustic Problem

Elasticity Formulation

The eddy currents induced in the medium, combined with the magnetic field,
create a Lorentz force based stress in the medium. The Lorentz force F is
determined as

F = J ×B in Ω × R+ . (16.8)

Since the duration and the amplitude of the stimulation are both small, we
assume that we can use the linear elasticity model. The displacements inside
the medium can be described by the initial boundary-value problem for the
Lamé system of equations





ρ∂2t u−∇λ∇ · u−∇ · µ∇su = J ×B in Ω × R+ ,

∂u

∂n
= 0 on ∂Ω × R+ ,

u(x, 0) =
∂u

∂t
(x, 0) = 0 in Ω ,

(16.9)

where λ and µ are the Lamé coefficients, ρ is the density of the medium at
rest, and ∇s is the symmetric gradient defined by (3.124). Here, ∂/∂n denotes
the co-normal derivative defined by

∂u

∂n
= λ(∇ · u)ν + 2µ∇su ν on ∂Ω ,

where ν is the outward normal at ∂Ω. The functions λ, µ, and ρ are assumed
to be positive, smooth functions on Ω.

The Neumann boundary condition, ∂u/∂n = 0 on ∂Ω, comes from the
fact that the sample is embedded in air and can move freely at the boundary.
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Acoustic Wave Equation

Under some physical assumptions, the Lamé system of equations (16.9) can
be reduced to an acoustic wave equation. For doing so, we neglect the shear
effects in the medium by taking µ = 0. The acoustic approximation says that
the dominant wave type is a compressional wave. Equation (16.9) becomes





ρ∂2t u−∇λ∇ · u = J ×B in Ω × R+ ,

∂u

∂n
= 0 on ∂Ω × R+ ,

u(x, 0) =
∂u

∂t
(x, 0) = 0 in Ω .

(16.10)

Introduce the pressure

p = λ∇ · u in Ω × R+ .

Taking the divergence of (16.10) yields the acoustic wave equation





1

λ

∂2p

∂t2
−∇ · 1

ρ
∇p = ∇ · 1

ρ
(J ×B) in Ω × R+ ,

p = 0 on ∂Ω × R+ ,

p(x, 0) =
∂p

∂t
(x, 0) = 0 in Ω .

(16.11)

We assume that the duration τpulse of the electrical pulse sent into the
medium is short enough so that p is the solution to





1

λ

∂2p

∂t2
(x, t)−∇ · 1

ρ
∇p(x, t) = −f(x)δ0 in Ω × R+ ,

p = 0 on ∂Ω × R+ ,

p(x, 0) =
∂p

∂t
(x, 0) = 0 in Ω ,

(16.12)

where

f(x) = −
∫ τpulse

0

∇ · (1
ρ
J(x, t)×B(x, t))dt . (16.13)

Recall that acoustic wave reflection in soft tissue by an interface with air
can be modeled well by a homogeneous Dirichlet boundary condition.

Let

g(x, t) =
∂p

∂ν
(x, t), ∀(x, t) ∈ ∂Ω × R+ .

In the next section, we aim at reconstructing the source term f from the
data g.
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16.3 Reconstruction of the Acoustic Source

In this subsection, we assume that λ = λ0 + δλ and ρ = ρ0 + δρ, where the
functions δλ and δρ are such that ||δλ||L∞(Ω) ≪ λ0 and ||δρ||L∞(Ω) ≪ ρ0.

We assume that λ, λ0, ρ, and ρ0 are known and denote by c0 =
√

λ0

ρ0
the

background acoustic speed. Based on the Born approximation, we image the
source term f . Let k0 = ω/c0. Let Γk0

be the outgoing fundamental solution
to ∆ + k20 and let Gk0 be the Dirichlet Green function for ∆ + k20 in Ω, i.e.,
for each y ∈ Ω, Gk0(x, y) is the solution to (3.70).

Let p̂ denote the Fourier transform of the pressure p and ĝ the Fourier
transform of g. The function p̂ is the solution to the Helmholtz equation:





ω2

λ(x)
p̂(x, ω) +∇ · 1

ρ(x)
∇p̂(x, ω) = f(x), x ∈ Ω ,

p̂(x, ω) = 0, x ∈ ∂Ω .

Note that f is a real-valued function.
The Lippmann-Schwinger representation formula (3.78) shows that

p̂(x, ω) =

∫

Ω

(
ρ0
ρ(y)

− 1)∇p̂(y, ω) · ∇Gk0
(x, y) dy

−ω2

∫

Ω

(
ρ0
λ(y)

− ρ0
λ0

)p̂(y, ω)Gk0
(x, y) dy + ρ0

∫

Ω

f(y)Gk0
(x, y) dy .

Using the Born approximation (3.79), we obtain

p̂(x, ω) ≈ − 1

ρ0

∫

Ω

δρ(y)∇p̂0(y, ω) · ∇Gk0
(x, y) dy +

ω2

c20

∫

Ω

δλ(y)

λ0
p̂0(y, ω)Gk0

(x, y) dy

+ρ0

∫

Ω

f(y)Gk0
(x, y) dy

for x ∈ Ω, where

p̂0(x, ω) := ρ0

∫

Ω

f(y)Gk0(x, y) dy, x ∈ Ω .

Therefore, from identity (3.73), it follows that

(
1

2
I + (Kk0

Ω )∗)[ĝ](x, ω) ≈ − 1

ρ0

∫

Ω

δρ(y)∇p̂0(y, ω) · ∇
∂Γk0(x, y)

∂ν(x)
dy

+k20

∫

Ω

δλ(y)

λ0
p̂0(y, ω)

∂Γk0(x, y)

∂ν(x)
dy + ρ0

∫

Ω

f(y)
∂Γk0(x, y)

∂ν(x)
dy

for x ∈ ∂Ω.
Introduce
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I(z, ω) :=

∫

∂Ω

[
Γk0

(x, z)(
1

2
I+(Kk0

Ω )∗)[ĝ](x, ω)−Γk0
(x, z)(

1

2
I + (Kk0

Ω )∗)[ĝ](x, ω)

]
dσ(x)

for z ∈ Ω.
Recall that f is real-valued and write f ≈ f (0) + δf . In view of the

Helmholtz-Kirchhoff identity (3.80), given I(z, ω) we solve the deconvolution
problem

2iρ0

∫

Ω

ℑΓk0
(z, y)f (0)(y) dy = I(z, ω) , z ∈ Ω, (16.14)

in order to reconstruct f (0) with a resolution limit determined by the diffrac-
tion limit. Once f (0) is determined, we solve the second deconvolution problem
(16.15)

2iρ0

∫

Ω

ℑΓk0(z, y)δf(y) dy = δI(z, ω), z ∈ Ω , (16.15)

to find the correction δf . Here,

δI(z, ω) :=

∫

∂Ω

[
Γk0

(x, z)δĝ(x, ω) − Γk0
(x, z)δĝ(x, ω)

]
dσ(x)

with

δĝ(x, ω) =
1

ρ0

∫

Ω

δρ(y)∇p̂(0)(y, ω)·∇∂Γk0
(x, y)

∂ν(x)
dy+k20

∫

Ω

δλ(y)

λ0
p̂(0)(y, ω)

∂Γk0
(x, y)

∂ν(x)
dy ,

and

p̂(0)(x, ω) := ρ0

∫

Ω

f (0)(y)Gk0
(x, y) dy, x ∈ Ω .

Since by Fourier transform, ĝ is known for all ω ∈ R+, I(z, ω) can be computed
for all ω ∈ R+. Then recall identity (7.14)

2

π

∫

R+

kℑΓk(x, z) dk = −δz(x) ,

where δz is the Dirac mass at z, it follows that

f (0)(z) = − 1

iπρ0c20

∫

R+

ωI(z, ω) dω and δf(z) = − 1

iπρ0c20

∫

R+

ωδI(z, ω) dω .

16.4 Reconstruction of the Conductivity

We assume that we have reconstructed the pressure source f given by (16.13).
We also assume that the sample Ω is thin and hence can be assimilated to
a two dimensional domain. Further, we suppose that Ω ⊂ vect (e1, e2). Here,
vect (e1, e2) denotes the vector space spanned by e1 and e2. Recall that the
magnetic fields B0 and B1 are parallel to e3. We write J(x, t) = J(x)w′(t). In
order to recover the conductivity distribution, we start by reconstructing the
vector field J(x) in Ω.
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16.4.1 Reconstruction of the Electric Current Density

Helmholtz Decomposition

We need the following two classical results.

Lemma 16.1 If σ ∈ L∞
σ,σ(Ω) then the solution V of (16.7) belongs to

W 1,2(Ω) and hence, the electric current density J belongs to L2(Ω).

The following Helmholtz decomposition in two dimensions holds [327].

Lemma 16.2 If f is a vector field in L2(Ω), then there exist two scalar func-
tions v, φ ∈W 1,2(Ω) such that

f = ∇v + curlϕ. (16.16)

The differential operator curl of a scalar function is defined by curlϕ =
(−∂2ϕ, ∂1ϕ). Furthermore, if ∇· f ∈ L2(Ω), then the potential v is a solution
to 



∆v = ∇ · f in Ω ,

∂v

∂ν
= f · ν on ∂Ω .

(16.17)

Let the curl of a vector function f be defined by curlf = −∂2f1 + ∂1f2. We
apply the Helmholtz decomposition (16.16) to the vector field J ∈ L2(Ω) and
get the following proposition.

Proposition 16.3 There exists a function ϕ ∈W 1,2
0 (Ω) such that

J = curlϕ, (16.18)

and ϕ is the unique solution of
{
−∆ϕ = curlJ in Ω ,

ϕ = 0 on ∂Ω .
(16.19)

Recall (16.3) together with the fact that no current leaves the medium

J · ν = 0 on ∂Ω .

Since v is a solution to (16.7), v has to be constant. So, in order to reconstruct
J one only needs to reconstruct ϕ.

Recovery of J

Under the assumption |B1| ≪ |B0| in Ω×R+ and |δρ| ≪ ρ0 in Ω, the pressure
source term f defined by (16.13) can be approximated as follows:

f(x) ≈ − 1

ρ0
∇ · (J(x)×B0)(w(τpulse)− w(0)) ,
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where we have used that J(x, t) = J(x)w′(t).
Since B0 is constant we get

∇ · (J(x)×B0) = (∇× J) ·B0 = |B0|curlJ .

Now, since B0 is known, we can compute ϕ as the unique solution of



∆ϕ =

ρ0f

|B0|(w(τpulse)− w(0))
in Ω ,

ϕ = 0 on ∂Ω ,

(16.20)

and then, by Proposition 16.3, compute J by J = curlϕ.
Note that since the problem is reduced to the two dimensional case, J is

then contained in the plane B⊥
0 with ⊥ denoting the orthogonal.

16.4.2 Recovery of the Conductivity from Internal Electric
Current Density

In this subsection we denote by σ∗ the true conductivity of the medium, and
we assume that σ∗ ∈ L∞

σ,σ(Ω) with 0 < σ < σ, i.e., it is bounded from below
and above by positive known constants and is equal to some given positive
constant σ0 in a neighborhood of ∂Ω.

Optimal Control Algorithm

Recall that A1 is defined by ∇ · A1 = 0, B1(x)e3 = ∇ × A1(x). Define the
following operator F :

L∞
σ,σ(Ω) −→W 1,2(Ω)

σ 7−→ F [σ] := U

with 



∇ · σ∇U =−∇ · σA1 in Ω ,

σ
∂U

∂ν
=− σA1 · ν on ∂Ω ,

∫

Ω

U =0 .

(16.21)

The following lemma holds.

Lemma 16.4 The operator F is Fréchet differentiable. For any σ ∈ L∞
σ,σ(Ω)

and h such that σ + h ∈ L∞
σ,σ(Ω), we have

dF [σ](h) := q s.t.





∇ · σ∇q =−∇ · hA1 −∇ · h∇F [σ] in Ω ,

σ
∂q

∂ν
=0 on ∂Ω ,

∫

Ω

q =0 .

(16.22)
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Proof. Denote by r the function F [σ + h]−F [σ]− q. The function r belongs
to W 1,2(Ω) and satisfies the following equation in Ω:

∇ · σ∇r = ∇ · h∇ (F [σ]−F [σ + h]) ,

together with the boundary condition

∂r

∂ν
= 0 on ∂Ω ,

and the zero mean condition
∫
Ω
r = 0. We have the following estimate:

‖∇r‖L2(Ω) ≤
1

a
‖h‖L∞(Ω)‖∇ (F [σ]−F [σ + h]) ‖L2(Ω) .

Since F [σ]−F [σ + h] satisfies

∇ · (σ∇ (F [σ]−F [σ + h])) = −∇ · (h∇F [σ + h]) +∇ · (hA1)

with the boundary condition

∂

∂ν
(F [σ + h]−F [σ]) = 0,

and the zero mean condition
∫
Ω
(F [σ + h]−F [σ]) = 0. We can also estimate

the L2-norm of ∇ (F [σ + h]−F [σ]) as follows:

‖∇ (F [σ + h]−F [σ]) ‖L2(Ω) ≤
1

a
‖h‖L∞(Ω)

(
‖∇F [σ + h]‖L2(Ω) + ‖A1‖L2(Ω)

)
.

Therefore, we can bound the W 1,2-norm of F [σ + h] independently of σ and
h for ||h||L∞ small enough. There exists a constant C, depending only on Ω,
a, b, and A1, such that

‖∇F [σ + h]‖L2(Ω) ≤ C .

Hence, we get

‖∇ (F [σ + h]−F [σ]) ‖L2(Ω) ≤
1

a
‖h‖L∞(Ω)

(
C + ‖A1‖L2(Ω)

)
,

and therefore,
‖∇r‖L2(Ω) ≤ C̃‖h‖2L∞(Ω) ,

which shows the Fréchet differentiability of F . ⊓⊔

Now, we introduce the misfit functional:

L∞
σ,σ −→ R

σ 7−→ J [σ] =
1

2

∫

Ω

|σ (∇F [σ] +A1)− J |2 .
(16.23)
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Lemma 16.5 The misfit functional J is Fréchet-differentiable. For any σ ∈
L∞
σ,σ(Ω), we have

dJ [σ] = (σ∇F [σ] + σA1 − J) · (∇F [σ] +A1) +∇s · (A1 +∇F [σ]) ,

where s is defined as the solution to the adjoint problem:





∇ · σ∇s =∇ ·
(
σ2∇F [σ] + σ2A1 − σJ

)
in Ω ,

σ
∂s

∂ν
=0 on ∂Ω ,

∫

Ω

s =0 .

(16.24)

Proof. Since F is Fréchet-differentiable, so is J . For any σ ∈ L∞
σ,σ(Ω) and h

such that σ + h ∈ L∞
σ,σ(Ω), we have

dJ [σ](h) =

∫

Ω

(σ∇F [σ] + σA1 − J) · (h∇(F [σ] +A1) + σ∇(dF [σ](h))) .

Multiplying (16.24) by dF [σ](h) we get

∫

Ω

σ (σ∇F [σ] + σA1 − J) · ∇dF [σ](h) =

∫

Ω

σ∇s · ∇dF [σ](h) .

On the other hand, multiplying (16.22) by s we obtain

∫

Ω

σ∇s · ∇dF [σ](h) =

∫

Ω

h∇s · (A1 +∇F [σ]) .

So we have

dJ [σ](h) =

∫

Ω

h

[
(σ∇F [σ] + σA1 − J) · (∇F [σ] +A1)+∇s · (A1 +∇F [σ])

]
,

and the proof is complete. ⊓⊔

Lemma 16.5 allows us to apply the gradient descent method in order to
minimize the discrepancy functional J . Let σ(0) be an initial guess in L∞

σ,σ(Ω).
We compute the iterates

σ(n+1) = T [σ(n)]− ηdJ [T [σ(n)]] , ∀n ∈ N, (16.25)

where η > 0 is the step size and T [f ] = min{max{f, σ}, σ}.
In what follows, we prove the convergence of (16.25) with two excitations.

Let J (1) and J (2) correspond to two different excitations A
(1)
1 and A

(2)
1 . As-

sume that J (1) × J (2) 6= 0 in Ω. Let G(i) : σ 7→ σ∇
(
F (i)[σ] +A

(i)
1

)
− Ji,

where F (i) is defined by (16.22) with A1 = A
(i)
1 for i = 1, 2. The optimal
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control algorithm (16.25) with two excitations is equivalent to the following
Landweber scheme given by

σ(n+1) = T [σ(n)]− ηdG∗[G[T [σ(n)]]], ∀n ∈ N, (16.26)

where G[σ] = (G(1)[σ],G(2)[σ])T .
We now prove the convergence and stability of (16.26) provided that two

magnetic excitations leading to nonparallel current densities are employed.

Proposition 16.6 Let J (1) and J (2) correspond to two different excitations.
Assume that J (1) × J (2) 6= 0 in Ω. Then there exists η > 0 such that if
||σ(0) − σ∗||W 1,2

0 (Ω) ≤ η, then ||σ(n) − σ∗||W 1,2
0 (Ω) → 0 as n→ +∞.

Proof. It suffices to prove that there exists a positive constant C such that

||dG[σ](h)||W 1,2(Ω) ≥ C||h||W 1,2
0 (Ω) (16.27)

for all h ∈W 1,2
0 (Ω) such that σ + h ∈ L∞

σ,σ(Ω). We have

dG(i)[σ](h) = hJ (i) + σ∇dF (i)[σ](h).

Therefore,
∇ · dG(i)[σ](h) = 0, dG(i)[σ](h) · ν = 0 ,

and

∇× (
1

σ
dG(i)[σ](h)) = h∇× (

1

σ
J (i)) + σ∇h× J (i) .

Since ∇× ( 1σJ
(i))× e3 = 0 and J (1) × J (2) 6= 0, it follows that

||h||W 1,2
0 (Ω) ≤ C

2∑

i=1

||dG(i)[σ](h)||W 1,2
0 (Ω) ,

which completes the proof. ⊓⊔

Let F [σ] = (F (1)[σ],F (2)[σ])T . Note that analogously to (16.27) there exists
a positive constant C such that

||dF [σ](h)||W 1,2
0 (Ω) ≥ C||h||W 1,2

0 (Ω)

for all h ∈W 1,2
0 (Ω) such that σ+ h ∈ L∞

σ,σ(Ω), provided that J (1) × J (2) 6= 0
in Ω.

Fixed Point Algorithm

In this subsection, we denote by σ∗ the true conductivity inside the domain
Ω. We also make the following assumptions:
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• ∃c > 0, such that |B1| > c in Ω;
• σ ∈ C0,α(Ω), α ∈ (0, 1);
• σ∗ = σ0 in an open neighborhood of ∂Ω.

From the unique continuation principle, the following lemma holds.

Lemma 16.7 The set {x ∈ Ω, J(x) = 0} is nowhere dense.

The interior data is J = σ∗ [∇F [σ∗] +A1]. One can only hope to recover σ∗
at the points where J 6= 0. Even then, we can expect any type of reconstruction
to be numerically unstable in sets where J is very small. Assume that J is
continuous and let ε > 0 and x0 be such that |J(x0)| > 2ε. We define Ωε

to be a neighborhood of x0 such that for any x ∈ Ωε, |J(x)| > ε. One can
assume that Ωε is a C1 domain without loosing generality. Now, introduce the
operator Fε as follows:

L∞
σ,σ(Ωε) −→W 1,2(Ωε)

σ 7−→Fε[σ] := Vε ,

where Vε satisfies the following equation:





∇ · σ∇Vε =−∇ · (σA1) in Ωε ,

σ
∂Vε
∂ν

=− σA1 · ν + J · ν on ∂Ωε ,
∫

Ωε

Vε =0 ,

(16.28)

where ν denotes the outward normal to ∂Ωε. Note that
∫
∂Ωε

J · ν = 0 since
∇ · J = 0 in Ωε.

We also define the nonlinear operator Gε by

L∞
σ,σ(Ωε) −→L∞(Ωε)

σ 7−→Gε[σ] := σ
(σ∇Vε[σ] + σA1) · J

|J |2
.

(16.29)

Lemma 16.8 The restriction of σ∗ on Ωε is a fixed point for the operator
Gε.

Proof. For the existence it suffices to prove that Fε [σ∗|Ωε
] = F [σ∗]

∣∣
Ωε

. Denote

by V∗ = F [σ∗]. We can see that V∗ satisfies

∇ · σ∗∇V∗ = −∇ · (σA1) in Ωε .

Taking the normal derivative along the boundary of Ωε, we get

σ
∂V∗
∂ν

= −σA1 · ν + J · ν on ∂Ωε .
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From the well posedness of (16.28), it follows that

V∗
∣∣
Ωε

= Fε[σ∗
∣∣
Ωε

] + c, c ∈ R .

So, we arrive at

Gε

[
σ∗
∣∣
Ωε

]
= σ∗

∣∣
Ωε
.

We need the following lemma. We refer to [327] for its proof.

Lemma 16.9 Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. For
each g ∈ W−1,2(Ω) there exists at least one v ∈ L2(Ω) with ∇ · v = g in the
sense of the distributions and

‖v‖L2(Ω) ≤ C‖g‖W−1,2(Ω)

with the constant C depending only on Ω.

The following result holds.

Lemma 16.10 If ‖A1‖L2(Ωε) is small enough, then the operator Gε is a con-
traction.

Proof. Take σ1 and σ2 in L∞
σ,σ(Ω). We have

|Gε[σ1](x)− Gε[σ2](x)| =
1

|J(x)|2
×
∣∣(σ2

1(x)∇Vε[σ1](x)− σ2
2(x)∇Vε[σ2](x) +

(
σ2
1(x)− σ2

2(x)
)
A1(x)

)
· J(x)

∣∣ ,

which gives, using the Cauchy–Schwarz inequality:

|Gε[σ1](x)− Gε[σ2](x)| ≤
1

ε

×
∣∣(σ2

1(x)∇Vε[σ1](x)− σ2
2(x)∇Vε[σ2](x) +

(
σ2
1(x)− σ2

2(x)
)
A1(x)

)∣∣ .

The right-hand side can be rewritten using the fact that |σi(x)| ≤ b for i = 1, 2,
and hence,

|Gε[σ1](x)− Gε[σ2](x)| ≤
b

ε
× [|σ1(x)∇Vε[σ1](x)− σ2(x)∇Vε[σ2](x)|+ |(σ1(x)− σ2(x))A1(x)|] .

(16.30)

Now, consider the function v = σ1∇Vε[σ1]− σ2∇Vε[σ2]. We get

∇ · v = −∇ · [(σ1 − σ2)A1] in ∂Ωε ,

along with the boundary condition v ·ν = 0 on ∂Ωε. Using Lemma 16.9, there
exists a constant C depending only on Ωε such that
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‖v‖L2(Ωε) ≤ C‖∇ · [(σ1 − σ2)A1] ‖W 1,2(Ωε) ,

which shows that

‖v‖L2(Ωε) ≤ C‖ (σ1 − σ2)A1 ‖L2(Ωε) .

Using the Cauchy–Schwarz inequality:

‖v‖L2(Ωε) ≤ C‖σ1 − σ2‖L2(Ωε)‖A1 ‖L2(Ωε) . (16.31)

Putting together (16.30) with (16.31), we arrive at

‖Gε[σ1]− Gε[σ2]‖L2(Ωε)
≤ (C + 1)

b

ε
‖A1‖L2(Ωε)‖σ1 − σ2‖L2(Ωε) .

The proof is then complete. ⊓⊔

The following proposition shows the convergence of the fixed point recon-
struction algorithm.

Proposition 16.11 Let σ(n) ∈
(
L2(Ωε)

)N
be the sequence defined by

σ(0) = 1 ,

σ(n+1) = max
(
min

(
Gε[σ

(n)], σ
)
, σ
)
, ∀n ∈ N .

(16.32)

If ‖A1‖L2(Ωε) is small enough, then the sequence is well defined and σ(n)

converges to σ∗
∣∣
Ωε

in L2(Ωε).

Proof. Let (X, d) =
(
L∞
σ,σ(Ωε), ‖ · ‖L2(Ωε)

)
. Then, (X, d) is a complete, non

empty metric space. Let Tε be the map defined by

L∞
σ,σ(Ωε) −→L∞

σ,σ(Ωε)

σ 7−→Tε[σ] := max (min (Gε[σ], b) , a) .

Using Lemma 16.10, we get that Tε is a contraction, provided that ‖A1‖L2(Ωε)

is small enough. We already have the existence of a fixed point given by Lemma
16.8, and therefore, Banach’s fixed point theorem gives the convergence of the
sequence for the L2 norm over Ωε, and the uniqueness of the fixed point. ⊓⊔

Orthogonal Field Method

In this section we present a non-iterative method to reconstruct the elec-
trical conductivity from the electric current density. We assume that σ∗ ∈
C0,α(Ω), α ∈ (0, 1]. The fields J = (J1, J2) and A1 are assumed to be known
in Ω. Our goal is to reconstruct V∗ the solution of (16.7) in W 1,2(Ω). Then,

computing |∇V∗+A1|
|J| for |J | nonzero will give us 1

σ∗
. Recall that J = curlw
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where w is defined by equation (16.20). We say that the data f on the right
hand side of (16.20) is admissible if f > 0 or f < 0 in Ω and if the critical
points of w are isolated.

Introduce F = (−J2, J1)T the rotation of J by π
2 . It is worth noticing that

the true electrical potential V∗ is a solution of




F · ∇V∗ = −F ·A1 in Ω ,

∂V∗
∂ν

= −A1 · ν on ∂Ω ,
∫

Ω

V∗ = 0 .

(16.33)

Equation (16.33) has a unique solution in W 1,2(Ω), and this solution is the
true potential V∗.

As in Chapter 15, by using the method of characteristics, we can prove
that the following uniqueness result holds.

Proposition 16.12 If U ∈W 1,2(Ω) is a solution of




F · ∇U = 0 in Ω ,

∂U

∂ν
= 0 on ∂Ω ,

∫

Ω

U = 0 ,

(16.34)

then U = 0 in Ω.

In order to solve numerically (16.33), we use the method of viscosity regu-
larization introduced in Subsection 15.5.2. The field A1 is known and we can
solve uniquely the following problem:





∇ ·
[(
ηI + FFT

)
∇Uη

]
= −∇ · FFTA1 in Ω ,

∂Uη

∂ν
= −A1 · ν on ∂Ω ,

∫

Ω

Uη = 0 ,

(16.35)

for some small η > 0. Here, I denotes the 2× 2 identity matrix.

Proposition 16.13 Let σ∗ be the true conductivity. Let V∗ be the solution to
(16.21) with σ = σ∗. The solution Uη of (16.35) converges strongly to V∗ in
W 1,2(Ω) when η goes to zero.

Proof. We can easily see that Ũη = Uη − V∗ is the solution to




∇ ·
[(
ηI + FFT

)
∇Ũη

]
= −η∆V∗ in Ω ,

∂Ũη

∂ν
= 0 on ∂Ω ,

∫

Ω

Ũη = 0 .

(16.36)
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Multiplying (16.36) by Ũη and integrating by parts over Ω, we find that

η

∫

Ω

|∇Ũη|2 +
∫

Ω

|F · ∇Ũη|2 = η

∫

Ω

∇Ũη · ∇V∗ + η

∫

∂Ω

ŨηA1 · ν , (16.37)

since
∂Ũη

∂ν
= 0 and

∂V∗
∂ν

= −A1 · ν. Therefore, we have

‖Ũη‖2W 1,2(Ω) ≤ ‖Ũη‖W 1,2(Ω)‖V∗‖W 1,2(Ω) + C‖Ũη‖W 1,2(Ω) ,

where C depends only on Ω and A1. This shows that the sequence (Ũη)η>0

is bounded in W 1,2(Ω). Using Banach-Alaoglu’s theorem we can extract a
subsequence which converges weakly to some u∗ in W 1,2(Ω). We multiply
(16.36) by u∗ and integrate by parts over Ω to obtain

∫

Ω

(
F · ∇Ũη

)(
F · ∇u∗

)
= η

[∫

Ω

∇V∗ · ∇u∗ −
∫

Ω

∇Ũη · ∇u∗ +
∫

∂Ω

u∗A1 · ν
]
.

Taking the limit when η goes to zero yields

‖F · ∇u∗‖L2(Ω) = 0 .

Using Proposition 16.12, we have

u∗ = 0 in Ω ,

since u∗ is a solution to (16.34).
Actually, we can see that there is no need for an extraction, since 0 is

the only accumulation point for Ũη with respect to the weak topology. If we

consider a subsequence Ũ (φ(η)), it is still bounded in W 1,2(Ω) and therefore,
using the same argument as above, zero is an accumulation point of this
subsequence. For the strong convergence, we use (16.37) to get

∫

Ω

|∇Ũη|2 ≤
∫

Ω

∇Ũη · ∇V∗ +
∫

∂Ω

ŨηA1 · ν . (16.38)

Since Ũη ⇀ 0, the right-hand side of (16.38) goes to zero when η goes to zero.
Hence,

‖Ũη‖W 1,2(Ω) −→ 0 as η → 0 ,

and the proof is complete. ⊓⊔

Now, we take Uη to be the solution of (16.35) and define the approximated
resistivity (inverse of the conductivity) by

1

ση
=

|∇Uη +A1|
|J | . (16.39)

Since
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1

σ∗
=

|∇V∗ +A1|
|J | ,

Proposition 16.13 shows that
1

ση
is a good approximation for

1

σ∗
in the L2-

sense.

Proposition 16.14 Let σ∗ be the true conductivity and let ση be defined by
(16.39). We have

∥∥∥∥
1

ση
− 1

σ∗

∥∥∥∥
L2(Ω)

−→ 0 as η → 0 .

16.5 Numerical Illustrations

We set Ω =

{
(x, y) ∈ R2,

(x
2

)2
+ y2 < 1

}
. We take a conductivity σ ∈

C0,α(Ω) as represented on Figure 16.1. The potential A1 is chosen as

A1(x) = 10−2
(y
2
+ 1;−x

2
+ 1
)
,

so that B1 is constant in space.

16.5.1 Optimal Control

We use the algorithm presented in section 16.4.2. We set a step size equal
to 8 · 10−7 and σ(0) = 3 as an initial guess. After 50 iterations, we get the
reconstruction shown in Figure 16.2. The general shape of the conductivity
as well as the conductivity contrast are quite well recovered. However, the
convergence is quite slow. It is worth mentioning that using two nonparallel
electric current densities does not improve significantly the quality of the
reconstruction.

Fig. 16.1. Conductivity to be reconstructed.
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Fig. 16.2. Conductivity reconstructed by the optimal control method after 50
iterations.

16.5.2 Fixed Point Method

We use the algorithm described in section 16.4.2, but slightly modified. The
operator G defined by

G[σ] := σ
(σ∇V [σ] + σA1) · J

|J |2

is replaced by

G̃[σ] := (∇V [σ] +A1) · J
|∇V [σ] +A1|2

,

which is analytically the same but numerically is more stable. Since the term
|∇V [σ] +A1|2 can be small, we smooth out the reconstructed conductivity
σ(n) at each step by convolving it with a Gaussian kernel. This makes the
algorithm less unstable. The result after 9 iterations is shown in Figure 16.3.
The convergence is faster than the gradient descent, but the algorithm still
fails at recovering the exact values of the true conductivity.

16.5.3 Orthogonal Field Method

We set η = 5 · 10−4 and perform the computation described in section 16.4.2.
The result we get is shown in Figure 16.4. It is a scaled version of the true
conductivity σ∗, which means that the contrast is recovered. So assuming we
know the conductivity in a small region of Ω (or near the boundary ∂Ω) we
can re-scale the result, as shown in Figure 16.5. When η goes to zero, the
solution of (16.35) converges to the true potential V∗ up to a scaling factor
which goes to infinity. When η is large, the scaling factor goes to one but
the solution Uη becomes a ”smoothed out” version of V∗. This method allows
an accurate reconstruction of the conductivity by solving only one partial
differential equation. It covers the contrast accurately, provided we have a
little bit of a prior information on σ∗.

Finally, we study the numerical stability with respect to measurement
noise of the orthogonal field method. We compute the relative error defined
by
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Fig. 16.3. Conductivity reconstructed by the fixed point method.

e :=
‖ση − σ∗‖L2

‖σ∗‖L2

,

averaged over 150 different realizations of measurement noise on J . The re-
sults are shown in Figure 16.6. We show the results of a reconstruction with
noise level of 2% (resp. 10%) in Figure 16.7 (resp. Figure 16.8). Clearly, the
orthogonal method is quite robust with respect to measurement noise.

16.6 Concluding Remarks

In this chapter we have presented a mathematical and numerical framework
for conductivity imaging using magnetoacoustic tomography with magnetic
induction. We have developed three different algorithms for conductivity imag-
ing from boundary measurements of the Lorentz force induced tissue vibra-
tion. We have proved convergence and stability properties of the three algo-
rithms and compared their performance. The orthogonal field method per-
forms much better than the optimization scheme and the fixed-point method
in terms of both computational time and accuracy. Indeed, it is robust with
respect to measurement noise.



Fig. 16.4. Conductivity recovered by the orthogonal field method before scaling.

Fig. 16.5. Conductivity recovered by the orthogonal field method after scaling.



Fig. 16.6. Relative error with respect to measurement noise.

Fig. 16.7. Reconstruction with the orthogonal field method with measurement
noise level of 2%.



Fig. 16.8. Reconstruction with the orthogonal field method with measurement
noise level of 10%.





17

Impediography

17.1 Introduction

In this chapter we introduce a mathematical and numerical framework for im-
pediography. Impediography is an emerging hybrid approach for conductivity
imaging. It keeps the most important merits of electrical impedance tomogra-
phy (real time imaging, low cost, portability). Its core idea is to couple electric
measurements to localized elastic perturbations. A body is electrically probed:
one or several currents are imposed on the surface and the induced potentials
are measured on the boundary. At the same time, a circular region of a few
millimeters in the interior of the body is mechanically excited by ultrasonic
waves. The measurements are made as the focus of the ultrasounds scans the
entire domain. Several sets of measurements can be obtained by varying ampli-
tudes of the ultrasound waves and the applied currents. The focused acoustic
waves are used to generate localized electrical conductivity perturbations that
allow a drastic improvement in the conditioning of the inverse conductivity
problem. This is based the acousto-electric effect in order to achieve super-
resolution conductivity imaging. The intrinsic resolution of impediography
depends on the size of the focal spot of the acoustic perturbation, and thus it
may provide high resolution images. The acousto-electric effect describes the
phenomenon of conductivity modulation by ultrasound. For an electric and
acoustic media, using the acousto-electric effect, the temporal change δσ(x, t)
in electrical conductivity σ(x) due to an ultrasound pressure wave p(x, t) can
be written as

δσ(x, t) = Kσ(x)p(x, t) , (17.1)

where K is an interaction constant. The ultrasound pressure as a spatial and
temporal function can be expressed as

p(x, t) = p0b(x)a(t) , (17.2)

where p0 is the amplitude of ultrasound pressure, b is the beam pattern,
and a(t) describes the ultrasound waveform. In the focal zone, the ultrasonic
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strength varies slowly along the beam axis. The acousto-electric effect is a
volume integration. If the waveform a(t) is an oscillatory bipolar pulse, the
integration and therefore the acousto-electric effect will be very small. In order
to enhance the acousto-electric effect, it is therefore desirable to use unipolar
ultrasonic pulse. Ultrasonic waves can be focused in very small regions deep
inside the tissues. The support of the focal spot is better represented by an
ellipsoid, but locus the most intense area can, in a first approximation, be
represented by a sphere. The experiment is successful if for each focal point,
a difference in the boundary voltage potential can be measured between the
potential corresponding to the unperturbed medium and the potential corre-
sponding to the perturbed one.

In this chapter, we first introduce a mathematical formulation for impe-
diography. Then we describe a substitution algorithm based on a non-linear
PDE, denominated the 0–Laplacian and an optimal control approach for solv-
ing the inverse problem in impediography. This uses internal electrical energy
densities that are quantities estimated from boundary voltage measurements.
Finally, we discuss stability and resolution properties of the reconstructed
conductivity distributions from impediographic measurements and compare
between the proposed approaches in terms of accuracy of the reconstructed
electrical conductivity and their ability to deal with limited perturbation data.
Our results in this chapter are from [28, 49].

17.2 Mathematical Model

Similar to the formulation of the electrical impedance tomography in Chapter
6, the forward problem for impediography is based on the solution of Maxwell’s
equations. A low-frequency current is used to probe the domain. For a two-
dimensional domain Ω with a boundary ∂Ω, the voltage potential induced by
a current g ∈ L2

0(∂Ω), in the absence of ultrasonic perturbations is given by





∇ · (σ(x)∇u) = 0 in Ω ,

σ
∂u

∂ν
= g on ∂Ω ,

(17.3)

with the convention that
∫
∂Ω

u = 0. One supposes that the conductivity σ of
the region close to the boundary of the domain is known, so that ultrasonic
probing is limited to interior points. One denotes the region (open set) by Ω′.

To model the effect of the pressure wave, we assume that within each disk
of (small) area, the conductivity is constant per area unit. When an acoustic
wave is focused at x ∈ Ω, the perturbed electrical conductivity σ+ δσ within
the disk-shaped zone D deformed by the ultrasound wave satisfies

∀ x ∈ Ω, (σ + δσ)(x) = σ(x)η(x) ,

where η(x) is a known function and
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∀x ∈ Ω, η(x) > 1,
η(x)− 1

η(x) + 1
≥ C , (17.4)

for some positive constant C.
In order to solve the impediographic imaging problem we need to introduce

the notion of proper set of measurements for (17.3).
Let gj ∈ L2

0(∂Ω), j = 1, 2 and let u(j) be the voltage potential induced by
gj , in the absence of ultrasonic perturbations, that is,





∇ ·
(
σ(x)∇u(j)

)
= 0 in Ω ,

σ
∂u(j)

∂ν
= gj on ∂Ω ,

(17.5)

with the convention that
∫
∂Ω

u(j) = 0. Let

Ejl[σ](z) := σ(z)∇u(j)(z)∇u(l)(z), j, l = 1, 2 ,

and
E [σ] := (Ejl[σ])j,l=1,2 .

Definition 17.1 The pair of currents (g1, g2) is a proper set of measurements
if

(i) |∇u(j)| > 0 in Ω1;

(ii)The matrix E [σ] is invertible (or equivalently, | det E [σ]| > 0) for all x ∈
Ω1.

We now give an evidence of the possibility of constructing proper sets of
measurements [222].

Lemma 17.2 Let f be a smooth function on ∂Ω such that there exist P and Q
on ∂Ω such that f |Γ1

and f |Γ2
are one-to-one, where Γ1 and Γ2 are two parts

of ∂Ω, connecting P and Q. We have, for all positive and smooth function σ,
∇v 6= 0 in Ω where v is the solution of

{
∇ · σ∇v = 0 in Ω ,

v = f on ∂Ω .
(17.6)

Proof. Fix x0 ∈ Ω. Let X ∈ Γ1 and Y ∈ Γ2 be such that

f(X) = f(Y ) = v(x0).

Note that such a pair is unique due to the one-to-one property of f on Γ1 and
Γ2. Since v is continuous and v does not attain local extreme value in Ω, the
level set {x : v(x) = x0} is a curve connecting X and Y . This curve divides Ω
into two subdomains Ω±. On Ω+, v > v(x0) and on Ω−, v < v(x0). We now
can employ Hopf’s lemma to see that ∇v(x) 6= 0. ⊓⊔
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Employing Lemma 17.2, we simply take any gj = ∂vj/∂ν, j = 1, 2, with
f1 and f2 satisfying: for all α ∈ R, there exist P and Q in ∂Ω such that the
function f1 − αf2 is one-to-one on each of two curves along ∂Ω connecting P
and Q. For example, if ∂Ω does not contain any line segment, then we can
choose f1 = x1 +M and f2 = x2 +M for a sufficiently large number M .

Let the pair of currents (g1, g2) be a proper set of measurements and let
u(j), j = 1, 2, be the induced voltage potentials in the absence of ultrasonic

perturbations. Let u
(j)
δ be the voltage potential induced by the current gj ,

in the presence of ultrasonic perturbations localized in a disk-shaped domain
D := z + δB of volume |D| = O(δ2). The voltage potential uδ is a solution to





∇ ·
(
σδ(x)∇u(j)δ (x)

)
= 0 in Ω ,

σ
∂u

(j)
δ

∂ν
= gj on ∂Ω ,

(17.7)

with the notation

σδ(x) = σ(x)

[
1 + χ(D)(x) (η(x)− 1)

]
.

As the zone deformed by the ultrasound wave is small, one can view it
as a small volume perturbation of the background conductivity σ, and seek

an asymptotic expansion of the boundary values of u
(j)
δ − u(j), j = 1, 2. The

method of small-volume expansions shows that comparing u
(j)
δ and u(j) on ∂Ω

provides information about the conductivity. Indeed, analogously to (11.6),
one can prove that, for j, l = 1, 2,

∫

∂Ω

(u
(j)
δ − uj))gl dσ =

∫

D

σ(x)
2 (η(x)− 1)

η(x) + 1
∇u(j) · ∇u(l) dx+ o(|D|)

= σ(z)∇u(j)(z) · ∇u(l)(z)
∫

D

2 (η(x)− 1)

η(x) + 1
dx+ o(|D|) .

Note that because of assumption (17.4), it follows that

∫

D

(η(x)− 1)

η(x) + 1
dx ≥ C|D| .

Therefore, one has

Ejl[σ](z) =
(∫

D

2 (η(x)− 1)

η(x) + 1
dx

)−1 ∫

∂Ω

(u
(j)
δ − u(j))gl dσ + o(1) . (17.8)

Note that ∫

D

2 (η(x)− 1)

η(x) + 1
dx ≈

2 δσ(z)
σ(z)

2 + δσ(z)
σ(z)

|D| ,
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which is nothing else than the polarization tensor (11.5) associated with the
disk D of conductivity δσ(z) + σ(z) inside a background of constant conduc-
tivity σ(z).

By scanning the interior of the body with ultrasound waves, given applied
currents gj , one then obtains data from which one can (approximately) com-
pute (Ejl[σ])j,l=1,2 in an interior subregion of Ω. The new inverse problem is
now to reconstruct σ knowing the data matrix E [σ].

17.3 Substitution Algorithm

Let (g1, g2) be a proper set of measurements. The use of the electrical energy
densities Ejj , j = 1, 2, leads one to transform (17.5), having two unknowns σ
and u(j) with highly nonlinear dependency on σ, into the following nonlinear
PDE (the 0–Laplacian)





∇x ·
(

Ejj∣∣∇u(j)
∣∣2∇u

(j)

)
= 0 in Ω ,

Ejj∣∣∇u(j)
∣∣2
∂u(j)

∂ν
= gj on ∂Ω .

(17.9)

It is worth emphasizing that Ejj is a known function, constructed from the
measured data (17.8). Consequently, all the parameters entering in equation
(17.9) are known. Thus, the ill-posed inverse problem in electrical impedance
tomography is converted into a less complicated direct problem (17.9).

The substitution algorithm is based on an approximation of a linearized
version of problem (17.9).

Suppose that σ is a small perturbation of conductivity profile σ0: σ =

σ0 + δσ. Let u
(j)
0 and u(j) = u

(j)
0 + δu(j) denote the potentials corresponding

to σ0 and σ with the same Neumann boundary data gj . It is easily seen that

δu(j) satisfies ∇ ·
(
σ∇δu(j)

)
= −∇ · (δσ∇u(j)0 ) in Ω with the homogeneous

Dirichlet boundary condition. Moreover, from

Ejj = (σ0+δσ)|∇(u
(j)
0 +δu(j))|2 ≈ σ0|∇u(j)0 |2+δσ|∇u(j)0 |2+2σ0∇u(j)0 ·∇δu(j) ,

after neglecting the terms δσ∇u(j)0 · ∇δu(j) and δσ|∇δu(j)|2, it follows that

δσ ≈ Ejj∣∣∣∇u(j)0

∣∣∣
2 − σ0 − 2σ0

∇δu(j) · ∇u(j)0∣∣∣∇u(j)0

∣∣∣
2 .

The substitution algorithm is as follows.
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Algorithm 17.1 Substitution algorithm.

1. Start from an initial guess for the conductivity σ;
2. Solve the corresponding Dirichlet conductivity problem

{
∇ · (σ∇u0) = 0 in Ω ,

u0 = ψ on ∂Ω .

The data ψ is the Dirichlet data measured as a response to the current g = g1 in
absence of elastic deformation;
3. Define the discrepancy between the data and the guessed solution by

ǫ0 :=
E11

|∇u0|2
− σ . (17.10)

4. Introduce the corrector, δu, computed as the solution to

{
∇ · (σ∇δu) = −∇ · (ε0∇u0) in Ω ,

δu = 0 on ∂Ω ;

5. Update the conductivity

σ :=
E11 − 2σ∇δu · ∇u0

|∇u0|2
;

6. Iteratively update the conductivity, alternating directions of currents (i.e., with
g = g2 and E11 replaced with E22 in (17.10)).

17.4 Optimal Control Algorithm

Let (g1, g2) be a proper set of measurements. Let σ and σ̃ be two C1-
conductivities with σ(x0) = σ̃(x0) for some x0 ∈ Ω. Then, the following
stability estimate holds [92]:

‖ log σ − log σ̃‖W 1,∞(Ω) ≤ C‖E [σ]− E [σ̃]‖W 1,∞(Ω) . (17.11)

We will prove later that σ 7→ E [σ] is Fréchet differentiable. A direct conse-
quence of (17.11) is

Ker(dE [σ])|W 1,∞
0 (Ω) = {0} , (17.12)

provided that σ > c0 > 0 for some constant c0. In fact, for all h ∈ W 1,∞
0 (Ω),

we have

‖dE [σ](h)‖W 1,∞
0 (Ω) = lim

t→0

‖E [σ + th]− E [σ]‖W 1,∞
0 (Ω)

|t|

≥ 1

C
lim
t→0

‖ log(σ + th)− log σ‖W 1,∞
0 (Ω)

|t|

=
1

Cσ
‖h‖W 1,∞

0 (Ω) .
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Let A be the following admissible set of conductivities:

A = {σ ∈W 1,2(Ω) : c0 < σ < C0, |∇σ| < C1} , (17.13)

which is an open subset of W 1,∞(Ω).

Lemma 17.3 For j, l = 1, 2, the map σ 7→ Ejl[σ] is Fréchet differentiable.

Moreover, for h ∈W 1,2
0 (Ω) such that σ + h ∈ A, we have

dEjl[σ]h = h∇u(j) · ∇u(l) + σ
[
∇u(j) · ∇v(l) +∇u(l) · ∇v(j)

]
, (17.14)

where v(j) is the solution of





∇ · σ∇v(j) = −∇ · h∇u(j) in Ω ,

σ
∂v(j)

∂ν
= 0 on ∂Ω ,

∫

∂Ω

v(j) = 0 .

(17.15)

Introduce the minimization problem

min
σ∈A

J [σ] :=
1

2

2∑

j,l=1

∫

Ω

∣∣∣Ejl[σ]− E(m)
jl

∣∣∣
2

dx , (17.16)

where E(m)
jl are obtained from measurements. The Fréchet derivative of the

discrepancy functional J [σ] is given by

dJ [σ] =
2∑

j,l=1

dEjl[σ]∗(Ejl[σ]− Ejl(m))

=
1

2

2∑

j,l=1

(Ejl[σ]− Ejl(m))∇u(j) · ∇u(l) +
2∑

j,l=1

∇u(j) · ∇p(j,l) ,
(17.17)

where p(j,l) is the solution of the adjoint problem





∇ · σ∇p(j,l) = −∇ · (Ejl[σ]− E(m)
jl )σ∇u(l) in Ω ,

σ ∂p(j,l)

∂ν = 0 on ∂Ω ,∫

∂Ω

p(j,l) = 0 .

(17.18)

The following results hold.

Lemma 17.4 Let σ ∈ A. The following assertions hold:

1. The map h 7→ ∇v(j) from W 1,2
0 (Ω) into L2(Ω) is compact.
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2. The map dEjl takes the form I + compact, up to a multiplication by a
continuous function.

Proof. Let h ∈W 1,2
0 (Ω). The function v(j) satisfies

−σ∆v(j) = ∇σ · ∇v(j) +∇ · h∇u(j) ,
= ∇σ · ∇v(j) + h∆u(j) +∇h · ∇u(j) ,

= ∇σ · ∇v(j) − h
∇σ · ∇u(j)

σ
+∇h · ∇u(j) ,

which is in L2(Ω). As a result, v(j) ∈W 2,2(Ω) and its W 2,2-norm is bounded
by ‖h‖W 1,2

0 (Ω). The first part of this lemma is proved by using the compact

embeddings
W 2,2(Ω) →֒W 1,2(Ω) →֒ L2(Ω) . (17.19)

From (17.14), it follows that E [σ]−1dE [σ] = I + compact operator, and conse-
quently, the second item holds. ⊓⊔

Applying (17.12) and Lemma 17.4, we can deduce from the Fredholm
alternative that

‖dE [σ]‖L(W 1,2
0 (Ω),L2(Ω)) ≥ C . (17.20)

Proposition 2.5 yields the following convergence result of the Landweber
iteration scheme.

Theorem 17.5 Assume that σ(0) is a good initial guess for σ∗. As n→ +∞,
the sequence

σ(n+1) = Tσ(n) − ηdE∗[Tσ(n)](E [σ(n)]− E(m)) (17.21)

converges to σ∗, where T is the Hilbert projection of W 1,2(Ω) onto A, σ∗ is

the true conductivity distribution, η is the step size, and E(m) = (E(m)
jl )j,l=1,2.

17.5 Concluding Remarks

In this chapter, we have presented a mathematical and numerical framework
for impediography. This approach relies on the acousto-electric effect. It gen-
erates high sensitivity and high resolution maps of the internal electrical con-
ductivity distribution. Evidence of resolution enhancement and a stability
analysis have been given in [49]. In the case of incomplete data, that is, if the
matrix E is only known on a subset of the domain, one can follow the optimal
control approach, which allows better flexibility than the substitution scheme.
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Microwave Imaging by Elastic Deformation

18.1 Introduction

Let a ∈ C1(Ω) and q ∈ C0(Ω) be two scalar real-valued functions in two
dimensions. We also assume that a and q are such that 0 < c0 < a, q < C0.
For smooth (real-valued) function ϕ, let u [k, ϕ] ∈W 1,2(Ω) be such that

{
∇ · (a∇u [k, ϕ]) + k2qu [k, ϕ] = 0 in Ω ,

u[k, ϕ] = ϕ on ∂Ω .
(18.1)

Here k is the angular frequency and a and q are the electromagnetic param-
eters. In the transverse magnetic case, Maxwell’s equations can be reduced
to (18.1) with u being the electric field, q the electric permittivity and a the
inverse of the magnetic permeability. The well-posedness of problem (18.1)
requires that k2 must not be an eigenvalue of the problem

{
−∇ · (a∇u) = k2qu in Ω,

u = 0 on ∂Ω.
(18.2)

It is well known that this problem admits a countable number of eigenvalues
with no accumulation point and that each eigenvalue has a finite multiplicity.
We will assume that k does not correspond to any eigenvalue of (18.2).

The aim of this chapter is to generalize impediography to the electromag-
netic case. A frequency k and a source field pattern ϕ being fixed, we measure
the field u [k, ϕ], solution of (18.1), on ∂Ω.

Assume now that ultrasonic waves are focalized around a point z ∈ Ω,
creating a local change in the physical parameters of the medium. Suppose
that this deformation affects a and q linearly with respect to the amplitude of
the ultrasonic signal. Such an assumption is reasonable if the amplitude is not
too large. Thus, when the electric potential is measured while the ultrasonic
perturbation is enforced, the equation for the electric field is

{
∇ · (aδ∇uδ) + k2qδuδ = 0 in Ω ,
uδ = ϕ on ∂Ω ,



302 18 Microwave Imaging by Elastic Deformation

with {
aδ = a+ (a1α− a)χ(D) ,
qδ = q + (q1α− q)χ(D) ,

where α is the amplitude of the ultrasonic perturbation, a1 and q1 are unknown
functions, and D is a small zone where the perturbation is focalized.

As in the previous chapter, the signature of the perturbations on boundary
measurements can be measured by the change of energy on the boundary,
namely
∫

∂Ω

∂

∂ν
(uδ[k, ϕ]− u [k, ϕ])ϕdσ

=M
(αa1(z)
a(z)

, D
)
(αa1(z)− a(z))∇u [k, ϕ] (z) · ∇u[k, ϕ](z)

+k2|D|(αq1(z)− q(z))(u [k, ϕ] (z))2 + o
(
|D|
)
, (18.3)

where z is the center of D and M is the polarization tensor associated with D
and the contrast αa1(z)/a(z). It is given by (11.5). Assuming the perturbed
region D to be a disk, the polarization tensor is given by

M
(αa1(z)
a(z)

, D
)
= |D| 2a(z)

αa1(z) + a(z)
I .

Therefore, for a localized perturbation focused at a point z, we read the fol-
lowing data (rescaled by the volume |D|)

Dz(α) = 2a|∇u [k, ϕ] (z)|2
αa1(z)

a(z) − 1

αa1(z)
a(z) + 1

+ k2q(z)(u [k, ϕ] (z))2(α
q1(z)

q(z)
− 1) .

(18.4)
The parameters (a1/a)(z) and (q1/q)(z) are unknown, but the amplitude α

is known. By linear algebra, one can prove from (18.4) that if |∇u [k, ϕ] (z)| ≫
|D| and |u [k, ϕ] (z)| ≫ |D| and the data Dz is known for 4 distinct values of
α, chosen independently of a and q, then, one can recover the electromagnetic
energies

E [k, ϕ] (z) := a(z)|∇u [k, ϕ] (z)|2 ,
and

e [k, ϕ] (z) := q(z)(u [k, ϕ] (z))2 .

At this point, one can respectively substitute a and q by E [k, ϕ] /|∇u [k, ϕ] |2
and e [k, ϕ] /|u [k, ϕ] |2 to arrive at the nonlinear partial differential equation




∇ ·
(

E [k, ϕ]

|∇u [k, ϕ] |2∇u [k, ϕ]
)
+ k2

e [k, ϕ]

(u [k, ϕ])2
u [k, ϕ] = 0 in Ω ,

u = ϕ on ∂Ω .
(18.5)

Based on the nonlinear direct formulation (18.5), an iterative scheme similar
to the one introduced in Section 17.3 can be derived. However, an optimal
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control approach is more efficient for reconstructing the parameters than the
nonlinear based direct formulation (18.5), specially when the data is available
only on a subset of the background medium Ω. Our results in this chapter are
from [42].

18.2 Exact Reconstruction Formulas

In this section, we first construct a proper set of measurements for the
Helmholtz equation

∇ · a∇u+ k2qu = 0 , (18.6)

where k belongs to a fixed and known interval (k, k). For all g ∈ W 2
1/2(∂Ω),

let u[k, g] be the solution of (18.6) with u[k, g]|∂Ω = g. Note that u[k, g] is
uniquely determined when k is such that k2 is not an eigenvalue of

{
−∇ · a∇u = k2qu in Ω ,

u = 0 on ∂Ω .

Denote by K the domain of the map u[·, g]. It is obvious that for all a and q,
K is an open set of C containing 0. We have the definition.

Definition 18.1 A set of 3 smooth functions (gj)
3
j=1 is called a proper set

of measurements for (18.6) if there exists N ≥ 1, k1, . . . , kN ∈ (k, k) and
B1, . . . , BN ⊂ Ω such that

1. ∪N
j=1Bj = Ω;

2. for all z ∈ Bj, j = 1, . . . , N, l = 1, 2, 3,

|u[kj , gl](z)| > 0 ;

3. for all z ∈ Bj, j = 1, . . . , N,

∣∣∣det (∇u [kj , gl] (z))3l=2

∣∣∣ > 0 ,

where det denotes the determinant;
4. for all z ∈ Bj, j = 1, . . . , N,

∣∣det(u[kj , gl](z),∇u[kj , gl](z))3l=1

∣∣ > 0 .

The following lemma is useful in the construction of a simple proper set
of measurements for (18.6).

Lemma 18.2 Let g ∈ C1(∂Ω). The map

K ∋ k 7→ u[k, g] ∈ C1(Ω)

is analytic.
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Proof. Fix k ∈ K. Let k′ ∈ C be close to k. We have that u[k′, g] is well-
defined. The difference u[k′, g]− u[k, g] is the solution of

{
∇ · a∇U + (k′)2qU = [k2 − (k′)2]qu[k, g] inΩ ,

U = 0 on ∂Ω .
(18.7)

As a result,

‖u[k′, g]− u[k, g]‖C1(Ω) ≤ O(|(k′)2 − (k)2|) ≤ O(|k′ − k|) . (18.8)

Here, we have used the fact that a is a smooth and strictly positive function
for the C1 estimate above. On the other hand, letting vk be the solution of

{
∇ · a∇vk + k2qvk = −2kquk inΩ ,
u[k′, g]− u[k, g] = 0 on ∂Ω ,

(18.9)

we can see that ∥∥∥∥∥
uk

′ − uk

k′ − k
− vk

∥∥∥∥∥
C1(Ω)

≤ O(|k′ − k|) .

The proof is complete. ⊓⊔
We are now at the position to find a proper set of measurements for (18.6)

[9].

Proposition 18.3 A proper set of measurements for (17.5) is also a proper
set of measurements for (18.6).

Proof. Fix an arbitrary point z ∈ Ω and j ∈ {1, . . . , 3}. Assume that
u[k, gj ](z) = 0 for all k ∈ (k, k). It follows from Lemma 18.2 that k 7→ u[k, gj ]
is analytic with respect to k. Hence, u[k, gj ](z) = 0 for all k ∈ U and in
particular u[0, gj ](z) = 0. However, u[0, gj ](x) 6= 0. We can conclude that for
all z ∈ Ω, there is kz ∈ (k, k) such that u[kz, g1](z) does not vanish. By the
continuity of u[kz, gj ], |u[kz, gj ]| > 0 in Bz, a small neighborhood of z in Ω.
Since Ω is compact, we can extract B1, . . . , BN from {Bz : z ∈ Ω} so that
B1, . . . , BN cover Ω. Refining {B1, . . . , BN}, we have the first part of Defini-
tion 18.1. The proof for other parts of Definition 18.1 can be done similarly
using Lemma 18.2 and the differentiability of the determinant. ⊓⊔

We now assume that (ϕj)
3
j=1 is a proper set of measurements for

∇ · a∇u+ k2qu = 0

on an interval (k, k) and the matrix-valued functions ek and Ek, given by

Ek
ij(z) = a(z)∇u [k, ϕi] · ∇u [k, ϕj ] , (18.10)

and
ekij(z) = q(z)u [k, ϕi] · u [k, ϕj ] , (18.11)

are known for all k ∈ (k, k). Our aim is to find a and q in D.
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Theorem 18.4 Note that using (18.3) and (18.4) the ’polarized’ data Eij

and eij for i 6= j is available without additional measurements, thanks to the
bilinear structure of the asymptotic formula (18.3). In fact, we have

∫

∂Ω

∂

∂ν
(uδ[k, ϕ]− u [k, ϕ])ψdσ

=M
(αa1(z)
a(z)

, D
)
(αa1(z)− a(z))∇u [k, ϕ] (z) · ∇u[k, ψ](z)

+k2|D|(αq1(z)− q(z))u [k, ϕ] (z)u[k, ψ](z) + o
(
|D|
)
.

Let

P k
ij =

ekij
trace(ek)

= UiUj , k ∈ (k, k) , (18.12)

where

Ui =
u[k, ϕi]√∑3

m=1 |u[k, ϕm]|2
, i = 1, 2, 3 .

We claim that P k(z) is well-defined except at a finite number of k for each
z ∈ Ω. In fact, if there exists an infinite sequence {kn} ⊂ (k, k) such that
trace(ekn)(z) = 0 for all n. Then, by Lemma 18.2, trace(e0)(z) = 0, which con-
tradicts to our choice of boundary conditions. By the smoothness of u[k, ϕj ],
assume that P k and hence ∇P k is well-defined except at a finite number of k
in a small neighborhood of z. We also assume that

∇P k(z) 6= 0 (18.13)

because it implies the determinant in item 4 of Definition 18.1 vanishes.
Fix k such that P k and ∇P k is well-defined. Differentiating formula

(18.12), we obtain

1

2

∣∣∇P k
∣∣2
2
= |∇U |22 |U |22 +

∣∣∣∣∣
N∑

i=1

Ui∇Ui

∣∣∣∣∣

2

= |∇U |22 , (18.14)

since
∑N

i=1 U
2
i = 1. We compute that

(
N∑

n=1

u [k, ϕn]
2

)2

|∇U |22 =

(
N∑

n=1

u [k, ϕn]
2

)
N∑

p=1

|∇u [kp, ϕp]|2

−
N∑

p=1

N∑

n=1

∇u [k, ϕn] · ∇u [k, ϕp]u [k, ϕn]u [kp, ϕp] ,

which, together with (18.14), gives

a

q

∣∣∇P k
∣∣2
2
=

1

trace(ek)

(
trace(Ek)− trace(P kEk)

)
.
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We now have the knowledge of
a

q
thanks to (18.13). In practice, we can eval-

uate
a

q
by the following proposition.

Proposition 18.5 Let P k as in (18.12). For all z ∈ Ω,

a

q
=

2

k − k

∫ k

k

trace(Ek − P kEk)

|∇P k|2trace(ek) dk . (18.15)

Moreover, the following Proposition gives an explicit formula to determine
q up to a multiplicative constant.

Proposition 18.6 Suppose that trace(ek) ∈ W 1,∞(Ω) for all k ∈ (k, k). We
have

∂xl
q

q
=

1

k − k

∫ k

k

(
∂xl

trace(ek)

trace(ek)
− 2λkl

)
dk, l = 1, 2 , (18.16)

where λk1 and λk2 satisfy

λk1
2
+ λk2

2
=
q

a

trace(P kEk)

trace(ek)
, (18.17)

and are determined by the linear system

Mk

(
λk1
λk2

)
= Bk (18.18)

with

Mk =

( ∣∣∂x1U
k
∣∣2 ∂x1U

k · ∂x2U
k

∂x1U
k · ∂x2U

k
∣∣∂x2U

k
∣∣2

)
and Bk =

q

a trace(ek)

(
EkUk · ∂x1U

k

EkUk · ∂x2
Uk

)
.

(18.19)

Remark 18.7 As in the proof of Proposition 18.5, the integral in (18.16)
is well-defined because trace(ek) does not vanish except at a finite number of
frequencies k. Since M0 is invertible, so is Mk by a similar argument.

Remark 18.8 Finally, we shall note that the exact reconstruction formulas
given in Propositions 18.5 and 18.6 are not valid when a and/or q are complex.

Proof of Proposition 18.6. Without loss of generality, assume that trace(ek) 6=
0 for all z ∈ Ω by Remark 18.7. Differentiating the formula for trace(ek), we
obtain

∂xl
trace(ek)

trace(ek)
=
∂xl

q

q
+ 2λkl , l = 1, 2 ,
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where,

λkl =
1

∑N
i=1 u [ki, ϕi]

2

N∑

n=1

u [k, ϕn] ∂xl
u [k, ϕn] =

nl

n0
Uk · Ũk

l ,

with the notations

nk
0 :=

√√√√
N∑

n=1

(u [k, ϕn])
2
,

nkl :=

√√√√
N∑

n=1

(∂xl
u [k, ϕn])

2
, for l = 1, 2,

(Ũk
l )j :=

∂xl
u[k, ϕj ]

nk
l

, for l = 1, 2 .

Differentiating Uk, we find

∂xl
Uk =

nk
l

nk
0

(
I − P k

)
Ũk
l . (18.20)

Write the matrix Ek in the form

Ek = trace(Ek)

2∑

l=1

(nk
l )

2

(nk
1)

2
+ (nk

2)
2PŨk

l
,

where PŨk
l
is the orthogonal projection onto the vector Ũk

l . We compute that

EkUk = trace(Ek)

2∑

l=1

(nk
l )

2

(nk1)
2
+ (nk

2)
2 (Ũ

k
l · Uk)Ũk

l = a
2∑

l=1

nk
l n

k
0λ

k
l Ũ

k
l .

(18.21)
Testing (18.21) against Uk, we obtain

EkUk · Uk = a

2∑

l=1

nk
l n

k
0λ

k
l Ũ

k
l · u = a

2∑

l=1

(nk
0)

2
(λkl )

2
,

which is (18.17). Alternatively, testing (18.21) against ∂xl′
Uk gives, using

(18.20),
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EkUk · ∂xl′
Uk = a

2∑

l=1

nk
l n

k
l′λ

k
l Ũ

k
l ·
(
I − P k

)
Ũk
l′

= a

2∑

l=1

nk
l n

k
l′λ

k
l

(
I − P k

)
Ũk
l ·
(
I − P k

)
Ũk
l′

= a

2∑

l=1

(nk
0)

2
λkl ∂xl

Uk · ∂xl′
Uk

=
a

q
trace(ek)

2∑

l=1

λkl ∂xl
Uk · ∂xl′

Uk ,

which is the desired 2× 2 system given by (18.18). Note that since |Uk|22 = 1,
we have ∂xl

Uk · Uk = 0. Therefore, if Uk has only two components, ∂x1
Uk

and ∂x2
Uk are necessarily colinear, and system (18.18) is degenerate.

However, it is never a zero matrix. Indeed,

|∇Uk|22 =
1

2
|∇P k|22 6= 0,

thanks to (18.15).

18.3 The Forward Problem and the Differentiabillity of
the Data at a Fixed Frequency

The forward problem is formulated as follows. Given a and q, at a fixed k, we
are able to solve {

∇ · a∇u+ k2qu = 0 in Ω ,
u = ϕi on ∂Ω ,

(18.22)

to get ui(a, q) for i = 1, 2, 3. The data maps are given by

Ei = a|∇ui(a, q)|2, ei = q|ui(a, q)|2, i = 1, 2, 3 . (18.23)

The main purpose of this section is to study the differentiability of the
maps Ei and ei in (18.23). Assume that a and q belong to

A = {γ ∈W 1,2(Ω) : c0 < γ < C0, |∇γ| < C1} (18.24)

and
Q = {γ ∈ L2(Ω) : c0 < γ < C0} , (18.25)

where c0, C0 and C1 are given positive numbers. Note that A stands for an
admissible set for the true a and Q does for the true q. They are open in
W 1,∞(Ω) and L∞(Ω), respectively. The following lemma holds.
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Lemma 18.9 Let f ∈ W−1,2(Ω), g ∈ W 2
1/2(∂Ω), a be in A and q belong to

Q. Assume that f and g are real-valued and k2 is not a Dirichlet eigenvalue
of −∇·a∇

q and u is the unique solution of

{
∇ · a∇u+ k2qu = f in Ω ,

u = g on ∂Ω .
(18.26)

Then there exists C, only depending on k, a, q, such that

‖u‖W 1,2(Ω) ≤ C(‖f‖W−1,2(Ω) + ‖g‖W 2
1/2

(∂Ω)) . (18.27)

Proof. Assume for a moment that g = 0. We claim that

‖u‖L2(Ω) ≤ C‖f‖W−1,2(Ω) . (18.28)

If this is not true, for all n ≥ 1, there exists fn ∈W−1,2(Ω) such that

‖un‖L2(Ω) ≥ n‖fn‖W−1,2(Ω) , (18.29)

where un solves {
∇ · a∇un + k2qun = fn in Ω ,

un = 0 on ∂Ω .
(18.30)

Define
vn =

un
‖un‖L2(Ω)

. (18.31)

We have that vn solves
{
∇ · a∇vn + k2qvn = fn

‖un‖L2(Ω)
in Ω ,

un = 0 on ∂Ω .
(18.32)

Therefore,
∫

Ω

a|∇vn|2dx =

∫

Ω

k2q(vn)
2dx−

∫

Ω

fnvn
‖un‖L2(Ω)

dx , (18.33)

which gives the boundedness of (vn). From (18.32) and the assumption that
k2 is not a Dirichlet eigenvalue of −∇·a∇

q , it is not hard to verify that (vn)

has a subsequence weakly converging in W 1,2(Ω) to 0. This contradicts to
(18.31), which implies ‖vn‖L2(Ω) = 1 for all n. Taking u as the test function
for (18.26) and using (18.28), we obtain (18.27).

In the case when g 6= 0, let v be the solution of
{
∇ · a∇v + k2qv = 0 in Ω ,

v = g on ∂Ω .
(18.34)

and then apply the result when g = 0 for w = u− v. ⊓⊔
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Remark 18.10 In the particular case when f = 0 and g is smooth enough.
Then u ∈W 2,2(Ω)∩C1(Ω) and there exists C, only depending on k, a, q, such
that

‖u‖W 2,2(Ω) + ‖u‖C1(Ω) ≤ C‖g‖ . (18.35)

Proof. The Helmholtz equation in (18.26) can be rewritten as

−∆u =
∇a∇u+ k2qu

a
, (18.36)

whose right hand side is in L2(Ω). By regularity, u is in W 2,2(Ω)∩C1(Ω). Its
C1 and W 2,2 norms are bounded by its norm in W 1,2(Ω) and hence by ‖g‖
because a ∈ A and q ∈ Q. ⊓⊔

We next study the differentiability of the forward problem.

Proposition 18.11 For i = 1, 2, 3, the map ui that sends (a, q) ∈ A × Q to
the solution of (18.22) is Fréchet differentiable. Its derivative dui(a, q)(ha, hq)
is given by the solution of

{
∇ · a∇vi + k2qvi = −∇ · ha∇ui(a, q)− k2hqui(a, q) in Ω ,

vi = 0 on ∂Ω ,
(18.37)

for all (ha, hq) ∈W 1,∞
0 (Ω)× L∞(Ω). As a result, Ei and ei are also Fréchet

differentiable and

dEi(a, q)(ha, hq) = ha|∇ui(a, q)|2 + 2a∇ui(a, q) · ∇vi (18.38)

and
dei(a, q)(ha, hq) = hq(ui(a, q))

2 + 2qui(a, q)vi . (18.39)

These maps can be continuously extended into W 1,2
0 (Ω)×L2(Ω) by the same

formulas (18.38) and (18.39).

Proof. The proof is similar to that of Lemma 18.2. ⊓⊔

Lemma 18.12 Let a ∈ A and q ∈ Q. The followings are true.

1. The maps dui(a, q)(ha, hq) 7→ ∇vi and dui(a, q)(ha, hq) 7→ vi, i =
1, 2, 3, defined in (18.37), can be continuously extended to compact maps
W 1,2

0 (Ω)2 × L2(Ω) → L2(Ω)3 and W 1,2
0 (Ω)2 × L2(Ω) → L2(Ω) respec-

tively.
2. The maps dE(a, q) and de(a, q) takes the form I + compact multiplied by

a continuous function.

Proof. Assume that (ha, hq) is in W 1,2
0 (Ω) × L2(Ω). For i ∈ {1, 2, 3}, the

function vi ∈W 1,0
0 (Ω) is the solution of
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−a∆vi = ∇a∇vi + k2qvi +∇ · ha∇ui(a, q) + k2hqui(a, q)

= ∇a∇vi + k2qvi + ha∆ui(a, q) +∇ha∇ui(a, q) + k2hqui(a, q) ,

= ∇a∇vi + k2qvi − ha
∇a∇u+ k2qu

a
+∇ha∇ui(a, q) + k2hqui(a, q) ,

which is in L2(Ω). As a result, vi ∈ W 2,2(Ω) and its W 2,2-norm is bounded
by ‖(ha, hq)‖W 1,2

0 (Ω)×L2(Ω). The first part of this lemma is proved by (17.19).

Consequently, the second one is true. ⊓⊔

18.4 Optimal Control Algorithm

In this section, we discuss how the scalar coefficients a∗ and q∗ can be recovered
in practice from multiple-frequency measurements

Ek
i ∗ = a∗|∇uki (a∗, q∗)|2, eki ∗ = q∗(u

k
i (a∗, q∗))

2 , (18.40)

i = 1, 2, 3. Here, we add the superscript k to indicate that the data are
measured at the frequency k.

It is natural to think of a minimization approach, namely,

minimize J [a, q] :=
1

2

3∑

i=1

∫ k

k

∫

Ω

∣∣(Ek
i (a, q)− Ek

i ∗)
2 + (eki (a, q)− eki ∗)

2
∣∣2 dxdk ,

(18.41)
where the data maps are defined in (18.23) with

(ϕ1, ϕ2, ϕ3) = (1, x1, x2)

being a proper set of measurements. Here, the admissible sets for a and q are
respectively A in (18.24) and Q in (18.25).

Our resolution method contains therefore two parts. First, we compute
aI and qI following Propositions 18.5 and 18.6. Note that aI/qI is given by
(18.15) and ∇ log qI is the solution of




∆v =

1

k − k

∫ k

k

∇ ·
(
∂x1

trace(ek)

trace(ek)
− 2λk1 ,

∂x2
trace(ek)

trace(ek)
− 2λk2

)
dk in Ω ,

v = log q0 on ∂Ω ,
(18.42)

because of (18.16) where q0 = q∗|∂Ω is known. We perform a gradient descent
on J to improve this initial guess. Note that J is Fréchet differentiable and
its derivative can be evaluated as follows: for all ha, hq ∈W 1,2

0 (Ω)× L2(Ω)
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dJ [a, q](ha, hq) =
1

2

3∑

i=1

∫ k

k

∫

Ω

(
haδ

k
i |∇uki |2 + hqǫ

k
i (u

k
i )

2
)
dxdk

+2
3∑

i=1

∫ k

k

∫

Ω

(
aδki ∇uki∇vki + qǫki u

k
i v

k
i

)
dxdk

=

3∑

i=1

∫ k

k

∫

Ω

(
haδ

k
i |∇uki |2 + hqǫ

k
i (u

k
i )

2
)
dxdk

+2

3∑

i=1

∫ k

k

∫

Ω

(
ha∇uki∇pki − k2hqu

k
i p

k
i

)
dxdk ,(18.43)

where
δki = a|∇uki |2 − Ek

i ∗, and ǫki = q(uki )
2 − eki ∗ (18.44)

and pki is the solution of

{
∇ · (a∇pki ) + k2i qp

k
i = −∇ · (δki a∇uki ) + 2ǫki qu

k
i in Ω ,

pki = 0 on ∂Ω .
(18.45)

It follows from (18.43) and the Riesz representation theorem that

(dEk
i (a, q)(δ

k
i , ǫ

k
i ), de

k
i (a, q)(δ

k
i , ǫ

k
i ))

∗ = (δki |∇uki |2+∇uki∇pki , ǫki (uki )2−k2uki pki ) .
(18.46)

Note that the differentiability of J on A×Q holds for any positive constants
c0, C0, and C1 such that c0 < C0.

Theorem 18.13 Assume that a∗ and q∗ are in A and Q respectively and
assume that we have the initial guess aI , qI with aI = a(0) and qI = q(0) on
∂Ω in hand. If ||aI − a∗||W 1,2 and ||qI − q∗||L2 are small enough, then the
sequence

(a(n+1), q(n+1)) = T (a(n), q(n))

−
3∑

i=1

∫ k

k

(dEk
i (T (a

(n), q(n)))∗(δki , ǫ
k
i ), de

k
i (T (a

(n), q(n))∗(δki , ǫ
k
i ))

converges to (a∗, q∗) in L2(D)2. Here, T is the Hilbert projection of W 1,2(Ω)×
L2(Ω) onto A×Q.

Proof. We first prove that

⋂

k∈(k,k)

(dEk(a, q), dek(a, q))|L2(Ω)×L2(Ω) = {0} . (18.47)

In fact, let (ha, hq) ∈ L2(Ω)× L2(Ω) such that
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(dEk(a, q)(ha, hq), de
k(a, q)(ha, hq)) = 0

for all k ∈ (k, k). Applying Lemma 18.2, we have

dE0(a, q)(ha, hq) = 0, and de0(a, q)(ha, hq) = 0 . (18.48)

Applying (17.12), we see that ha = 0 in Ω. Thus v0i = 0 and hq = 0. It follows
from Lemma 18.12 and Fredholm alternative with the note that dek(a, q) and
dEk(a, q) takes the form (uk)2(I + compact) and |∇uk|2(I + compact) that

‖(dEk(a, q), dek(a, q))‖L(W 1,2
0 (Ω)×L2(Ω),L2(Ω)×L2(Ω)) ≥ C (18.49)

for some positive constant C. The theorem follows from Proposition 2.5. ⊓⊔





19

Ultrasound-Modulated Optical Tomography

19.1 Introduction

The aim of this chapter is to develop an efficient reconstruction algorithm
for ultrasound-modulated diffuse optical tomography. In diffuse optical imag-
ing, the resolution is in general low. By mechanically perturbing the medium,
we show that it is possible to achieve a significant resolution enhancement.
When a spherical acoustic wave is propagating inside the medium, the optical
parameter of the medium is perturbed. Using cross-correlations of the bound-
ary measurements of the intensity of the light propagating in the perturbed
medium and in the unperturbed one, we provide two iterative algorithms
for reconstructing the optical absorption coefficient. Using a spherical Radon
transform inversion, we first establish an equation that the optical absorption
satisfies. This equation together with the diffusion model constitutes a non-
linear system. Then, solving iteratively such a nonlinear coupled system, we
obtain the true absorption parameter. We prove the convergence of the pro-
posed algorithms and present numerical results to illustrate their resolution
and stability performances.

Let Ω be a smooth bounded domain of Rd, for d = 2, 3, satisfying the
interior ball condition. Let ν denote the unit normal outward vector on ∂Ω and
let ∂/∂ν denote the normal derivative at ∂Ω. When a laser beam is applied at
a point x0 on ∂Ω, the energy density ϕ∗ is governed by the diffusion equation

{
−∆ϕ∗ + q∗ϕ∗ = 0 in Ω ,

l ∂ϕ∗

∂ν + ϕ∗ = g on ∂Ω ,
(19.1)

where q∗ is the (spatially-varying) optical absorption coefficient and g ≥ 0 is
a smooth approximation of the Dirac function at x0. Note that in the Robin
type boundary condition in (19.1), l is the extrapolation length. Throughout
this chapter we will assume for simplicity that l = 1.

Using boundary measurements of the normal derivative of the solution
to the diffusion equation (19.1) corresponding to many g, it is possible to
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determine the optical coefficient q∗. Direct reconstruction methods can be
designed in the linearized case under the Born assumption and for particular
experimental geometries. Nevertheless, the resolution of the reconstruction is
usually low due to the inherent severely ill-posed character of diffuse optical
imaging.

Based on the use of mechanical perturbations of the medium, the optical
coefficient can be reconstructed with high resolution. The idea behind the
method is to perturb the medium by a propagating acoustic wave while taking
the boundary measurements of the normal derivative of the energy density
corresponding to g. Let y ∈ Ω \D. Consider a displacement field uy generated
at the source point y such that its support is a thin spherical shell growing at
a constant speed c. Denote q∗(x+uy(x, t)) by qu(x, y, t), x ∈ Ω, t > 0, and the
corresponding energy density by ϕu(x, y, t). The presence of the propagating
acoustic wave generated at the source point y changes the medium and yields
the perturbed diffusion equation

{
−∆ϕu + quϕu = 0 in Ω ,

∂νϕu + ϕu = g on ∂Ω .
(19.2)

Then, in order to reconstruct q∗, we cross-correlate the boundary values of the
intensity of the light propagating in the medium changed by the propagation
of the acoustic wave and those corresponding to the unperturbed one. We
compute the quantity ∫

∂Ω

g(
∂ϕ∗
∂ν

− ∂ϕu

∂ν
) dσ . (19.3)

Assume that y moves along a circle or a sphere. Then the use of a Helmholtz
decomposition yields (19.18) for q∗ where the source term is obtained from the
data given by (19.3) by using a circular or a spherical Radon transform inver-
sion. Hence the functions q∗ and ϕ∗ satisfy the coupled system of equations
(19.1) and (19.18). This nonlinear coupling suggests two iterative approaches
for reconstructing q∗. The first approach is a fixed point scheme and the second
one is an optimal control algorithm. We prove the convergence of the iterative
fixed point scheme to the true image of q∗ using the contraction fixed point
theorem and illustrate it numerically. Using Proposition 2.5, the convergence
of the optimal control algorithm is also shown. Moreover, the high resolution
and the good stability properties of the reconstructed images are shown under
different conditions.

The chapter is organized as follows. In Section 19.2, we introduce some
preliminary results. In Section 19.3, we present our reconstruction algorithms
and provide proofs of their convergence. In Section 19.4 we illustrate the
performance of the proposed algorithm in terms of resolution and stability.
Throughout the chapter, C is an universal constant depending only on known
quantities and functions. Our results in this chapter are from [29, 30, 56, 74].
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19.2 Preliminaries

19.2.1 Acoustic Wave

In this section we first see how the displacement field u can be created by a
short spherical acoustic wave and what its typical form is.

The acoustic wave equations are obtained by linearizing the fluid dynamics
equations for small disturbances around a fluid at rest. The state of a fluid is
characterized by macroscopic quantities such as the density, the fluid velocity,
the pressure, and the temperature.

We consider the three-dimensional case. We denote by p0 and ρ0 the un-
perturbed pressure and density, with the unperturbed velocity equal to 0, and
we consider small perturbations of the pressure and velocity, denoted by p and
v. Doing so, we obtain the acoustic wave equations





1

K0

∂p

∂t
+∇ · v = 0 ,

ρ0
∂v

∂t
+∇p = 0 .

We assume initial conditions of the form

v(x, t = 0) = 0, p(x, t = 0) = p0(x) =
1

η
f0

( |x|2
η2

)
, (19.4)

where f0 is a smooth function compactly supported in [0, 1] and η is the radius
of the support of the initial condition (that will be taken small at the end of
the analysis). The solution of the acoustic wave equations has the form

p(x, t) =
∂

∂t

[ t
4π

∫

∂B

p0(x0 + cts)dσ(s)
]
,

v(x, t) = − 1

ρ0
∇
[ t
4π

∫

∂B

p0(x0 + cts)dσ(s)
]
,

where B is the ball centered at 0 and with radius 1 and c is the speed of sound
defined by c =

√
K0/ρ0. We have

∫

∂B

p0(x0 + cts)dσ(s) =
2π

η

∫ 2

0

f0

( (|x| − ct)2

η2
+

2ct|x|
η2

r
)
dr .

As soon as ct > η, this can be rewritten as follows:

∫

∂B

p0(x0 + cts)dσ(s) =
πη

ct|x|F0

( (|x| − ct)2

η2

)
,

where

F0(r) =

∫ ∞

r

f0(r
′)dr′ .
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Note that F0 is a smooth function compactly supported in [0, 1]. Therefore,
we find that the velocity field is given by

v(x, t) =
1

4ρ0c

x

|x|
[2
η

|x| − ct

|x| f0

( (|x| − ct)2

η2

)
+

η

|x|2F0

( (|x| − ct)2

η2

)]
.

When ct≫ η, this becomes

v(x, t) ≈ 1

2ηρ0c

x

|x|
|x| − ct

|x| f0

( (|x| − ct)2

η2

)
,

up to a term of relative order η2/(ct)2.
Remember that v(x, t) is the fluid velocity at position x. If a particle is at

x at time 0, then its position P (x, t) at time t satisfies

∂P (x, t)

∂t
= v
(
P (x, t), t

)
, P (x, 0) = x .

Using the assumption that the amplitude of the displacement is small we can
linearize around the original position and obtain that the position satisfies

∂P (x, t)

∂t
= v(x, t) or P (x, t) = x+

∫ t

0

v(x, t′)dt′ ,

and it is therefore given by

P (x, t) = x+
η

4ρ0c2
x

|x|F0

( (|x| − ct)2

η2

)
.

The displacement field x → x+ u(x, t) is the inverse function of the position
x→ P (x, t). Using again the small displacement assumption which allows us
to linearize around the initial position, we find

u(x, t) = − η

4ρ0c2
x

|x|F0

( (|x| − ct)2

η2

)
.

In the previous analysis the initial condition p0 was chosen to be centered
at 0. If p0 is nonnegative-valued, y ∈ Ω is the center, then the displacement
field is given by

uy(x, t) = − η

|x− y|w
( |x− y| − ct

η

)
x− y

|x− y|

and defined for x ∈ Ω\{y} and t≫ η/c. The support of the displacement field
can be seen as a thin spherical shell growing at the constant speed c. This can
be approximated up to a term of order η/(ct) by

uy(x, t) = − η

ct
w

( |x− y| − ct

η

)
x− y

|x− y| . (19.5)
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In this formulation, w is the shape function and is such that w ∈ C∞(R,R+)
and supp(w) ⊂ [−1, 1]. Here, η is a positive parameter representing the thick-
ness of the wavefront. Note that, in order to have a wavefront with nonzero
thickness, initial conditions of the form (19.4) are required.

Although the derivations in this section are in three-dimensions, we will
use for the sake of simplicity the same form of the displacement field in the
numerical experiments carried out in two dimensions.

19.2.2 Regularity Results

In this section, we recall two consequences of well-known regularity results
[242, 254]. These results will be used for proving the convergence of the fixed
point scheme and the optimal control approach.

Proposition 19.1 Suppose that Ω is smooth. If p ∈ L∞(Ω), then any weak
and bounded solution ϕ of the equation

−∆ϕ+ pϕ = 0, with ‖ϕ‖L∞(Ω) ≤M , (19.6)

is in C1(Ω) and

‖ϕ‖C1(Ω
′
) ≤ c1(M, ‖p‖L∞(Ω), dist(Ω

′, ∂Ω))

for all Ω′ ⋐ Ω.

The following proposition is from [182, 253].

Proposition 19.2 Let D be a bounded smooth domain and λ < Λ,M be
positive constants. If ϕ ∈ L∞(D) is such that

0 < λ ≤ ϕ ≤ Λ in D

and if f ∈ L∞(D) is such that ‖f‖L∞(D) ≤M , then the solution q of

{
∇ · (ϕ2∇q) = f in D ,

q = 0 on ∂D
(19.7)

is in C1(D) with
‖q‖C1(D) ≤ c2(λ,Λ,M) . (19.8)

Remark 19.3 Assume that the constant c2 in (19.8) is optimal; i.e., c2 is
the infimum of all of its possible values. Then,

c2(λ,Λ, δM) ≤ δc2(λ,Λ ,M) (19.9)

for all 0 < δ < 1. This can be seen by multiplying both sides of (19.7) by δ.
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We next recall the weak comparison principle and the strong maximum
principle for Laplace equations with the Robin boundary condition [286].

Proposition 19.4 (weak comparison principle) Let p be a nonnegative
measurable function and assume that ϕ ∈W 1,2(Ω) satisfies

{
−∆ϕ+ pϕ ≥ 0 in Ω ,
∂νϕ+ ϕ ≥ 0 on ∂Ω .

(19.10)

We have ϕ ≥ 0 a.e. in Ω.

Proof. Using ϕ− = max{0,−ϕ} ≥ 0 as a real-valued test function in the
variational formulation of (19.10) gives

0 ≤
∫

Ω

∇ϕ · ∇ϕ−dx−
∫

∂B

∂ϕ

∂ν
ϕ−dσ +

∫

Ω

pϕϕ−dx

≤
∫

Ω

∇ϕ · ∇ϕ−dx+

∫

∂B

ϕϕ−dσ +

∫

Ω

pϕϕ−dx

= −
∫

Ω

|∇ϕ−|2dx−
∫

∂B

|ϕ−|2dσ −
∫

Ω

p|ϕ−|2dx .

It follows that ϕ− = 0. Note that ϕ− is admissible to be a test function
because it belongs to W 1,2(Ω) (see [184]). ⊓⊔

We need the following lemma to prove this strong maximum principle
[300].

Lemma 19.5 (Hopf lemma) Let ϕ ∈ C1
(
Ω
)
∩ C2 (Ω) satisfy

−∆ϕ+ cϕ ≥ 0

on Ω where c is a nonnegative constant. If there exists x0 ∈ ∂Ω such that
ϕ(x0) ≤ 0 and ϕ(x) > ϕ(x0) for all x ∈ Ω, then

∂νϕ(x0) < 0.

Proposition 19.6 (strong maximum principle) Let g 6≡ 0 be a nonneg-
ative smooth function defined on ∂Ω. Let D ⋐ Ω be smooth. For all c > 0,
the solution ϕc of {

−∆ϕc + cϕc = 0 in Ω ,
∂νϕc + ϕc = g on ∂Ω

(19.11)

is bounded and positive in D.

Proof. Since g is nonnegative, so is ϕc because of Proposition 19.4. On the
other hand, applying Proposition 19.4 again for ‖g‖L∞(∂Ω) − ϕ, we can see
that ϕ ≤ ‖g‖L∞(∂Ω). The boundedness of ϕc in Ω, and hence D, has been
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verified. In order to use the Hopf lemma, we show that ϕc ∈ C2(Ω). In fact,
for all x0 ∈ Ω, let D1 and D2 satisfying

D1 ⋐ D2 ⋐ Ω

be two open neighbourhoods of x0. The boundedness of ϕc in the previous
paragraph and Proposition 19.1 imply that ϕc belongs to C1(D2). On the
other hand, [184, Theorem 8.8] helps us to see that ϕc ∈ W 2,2(D2). Hence,
∂xiϕc, i = 1, . . . , d, is in W 1,2(D2). It also satisfies the equation

−∆∂xiϕc + c∂xiϕc = 0 .

Hence, ∂xi
ϕc belongs to C1(D1) by Proposition 19.1. In other words, ϕc ∈

C2(D1).
We claim that ϕc > 0 not only in D but also in Ω. Assume that ϕc(x0) = 0

for some x0 ∈ Ω. Since g is not identically zero, neither is ϕc. Thus, we can
find a point x1 ∈ Ω such that ϕc(x1) > 0. Without loss of generality, we
can suppose that B(x1, r) ⊂ Ω with r = |x1 − x0| and ϕc(x) > 0 for all
x ∈ B(x1, r). Since ϕc ∈ C2(Ω), ϕc belongs to C1(B(x1, r))∩C2(B(x1, r)). We
can apply the Hopf lemma for ϕc in B(x1, r) to get

∇ϕc(x0) · (x1 − x0) < 0 .

This is a contradiction because ϕc attains its minimum value at x0 and
∇ϕc(x0) = 0. ⊓⊔

19.3 Reconstruction Algorithms

In order to achieve a resolution enhancement ultrasound-modulated optical
tomography can be used. Its basic principles are as follows. We generate a
spherical acoustic wave inside the medium. The propagation of the acoustic
wave changes the absorption parameter of the medium. During the propaga-
tion of the wave we measure the light intensity on ∂Ω. The aim is now to
reconstruct the optical absorption coefficient from such set of measurements
with a better resolution and stability than using pure optical tomography.

In the previous section, we have shown that the displacement function u at
x caused by a short diverging spherical acoustic wave generated at y ∈ Rd \D
is of the form

u(x) = uy(x, t) = − η

ct
w

( |x− y| − ct

η

)
x− y

|x− y| , x ∈ Ω , (19.12)

where the constant c is the acoustic wave speed, w ∈ C∞(R,R+) (called the
shape function) is with support contained in [−1, 1], η is a positive parameter
representing the thickness of the wavefront, i.e., the thickness of the support
of the displacement field u, and t is understood as the time parameter.
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Now, from (19.1) and (19.2), it follows that

‖ϕu − ϕ∗‖W 1,2(Ω) ≤ c‖qu − q∗‖L2(Ω) ,

for some positive constant c.
Multiplying (19.2) by ϕ∗, integrating by parts, and using (19.1), we obtain

the cross-correlation formula
∫

∂Ω

g(
∂ϕ∗
∂ν

− ∂ϕu

∂ν
) dσ . (19.13)

The main idea for recovering q∗ is to notice that

∫

∂Ω

g(
∂ϕ∗
∂ν

− ∂ϕu

∂ν
) dσ ≈ −

∫

Ω

ϕ2
∗∇q∗ · u dx , (19.14)

which follows from a Taylor expansion of q∗ and a Born approximation for
ϕu.

Since ∂ϕ∗/∂ν and ∂ϕu/∂ν can be measured on ∂Ω, it is possible to eval-
uate the quantity ∫

∂Ω

g(
∂ϕ∗
∂ν

− ∂ϕu

∂ν
) dσ

for all y, t. This quantity is nothing other than the cross-correlations between
the boundary measurements in the perturbed and unperturbed media.

Next, from (19.14) we establish an equation for q∗. Using Helmholtz de-
composition, we write

ϕ2
∗∇q∗ = −∇ψ +∇× Ψ . (19.15)

Here, in order to insure the uniqueness of ψ and Ψ we assume that Ω is simply
connected, Ψ is such that ∇ · Ψ = 0, and we supply the boundary conditions

∂ψ

∂ν
= −ϕ2

∗
∂q∗
∂ν

and Ψ × ν = 0 on ∂Ω.
Since u takes the radial form (19.12), integration by parts yields

∫

Ω

∇× Ψ · u dx = 0 ,

and so (19.14) can be rewritten as

∫

∂Ω

g(
∂ϕ∗
∂ν

− ∂ϕu

∂ν
) dσ ≈

∫

Ω

∇ψ · u dx .

Hence, ψ can be constructed and considered as the given data by employing
the spherical mean Radon transform.

Let
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Nu(y, r) :=

∫

∂Ω

g(x)
(∂ϕ∗
∂ν

(x)− ∂ϕu

∂ν
(x, y, r/c)

)
dσ(x) , (19.16)

where uy is given by (19.12).
For f ∈ C0(Rd) and E ⊂ Rd, recall that the spherical mean Radon trans-

form of f over E, R[f ], is defined by (2.52).
The following lemma holds.

Lemma 19.7 Fix y ∈ Ω \ D and let r0 > 0. Suppose that q∗(x) = q0 for
x ∈ B(y, r0), where B is the ball of center y and radius r0. Suppose also that
q∗ ∈ C1,β(Ω) and η is small enough. Then, for all r > r0 and η ≪ r, we have

R[ψ](y, r) ≈ − 1

η2||w||L1 |S|

∫ r

r0

Nu(y, ρ)

ρd−2
dρ , (19.17)

where |S| is the surface of the unit sphere S.

Having in hand ψ from the cross-correlations between boundary measure-
ments using the filtered backprojection formula (13.8), we take the divergence
of (19.15) to arrive at

−∇ · (ϕ2
∗∇q∗) = ∆ψ . (19.18)

Assume that q∗ is bounded from below and above by two known positive con-
stants q and q, respectively. Since ϕ∗ solves problem (19.6) with q∗ replacing

p and Λ, which will be defined later in Lemma 14.9, replacing M , its C1(D)
norm is bounded. The analysis allows us to recover q∗ in D by solving the
system of equations for the two unknowns ϕ and q:

{
−∆ϕ+ qϕ = 0 in Ω ,
∂νϕ+ ϕ = g on ∂Ω ,

(19.19)

and {
−∇ · (ϕ2∇q) = ∆ψ in D ,

q = q0 on ∂D .
(19.20)

19.3.1 Fixed Point Algorithm

The system of equations (19.19)–(19.20) suggests Algorithm 19.1.

Remark 19.8 Consider the Born assumption

q∗ = q0(1 + δs∗) , (19.24)

where δ is a small constant and s∗ is a smooth function supported in D ⋐ Ω,
with known bound on its C2(D) norm. We have

−∆ψ = δq0∇ · (ϕ2
∗∇s∗) , (19.25)

and therefore,
‖∆ψ‖L∞(Ω) = O(δ) as δ ≪ 1 .
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Algorithm 19.1 Fixed point algorithm

1. Define the initial guess q(0) = q0.

2. For n ≥ 1, solve

{
−∆ϕ(n) + Tq(n−1)ϕ(n) = 0 in Ω ,

∂νϕ
(n) + ϕ

(n) = g on ∂Ω ,
(19.21)

where
Tp := min{max{p, q}, q} . (19.22)

3. Find q(n) by solving

{
−∇ · ((ϕ(n))2∇q(n)) = ∆ψ in D ,

q(n) = q0 on ∂D .
(19.23)

and defining q(n) = q0 in Ω \D.
4. For ‖∆ψ‖L∞(Ω) small enough, the convergent function of {q(n)} is the true
optical absorption coefficient q∗.

Remark 19.9 The convergence of {q(n)}, mentioned in Step 4, will be shown
below by the Banach fixed point theorem. This also implies the well-posedness
of the system constituted by (19.19) and (19.20).

Remark 19.10 Problem (19.21) is uniquely solvable because we are able to
avoid the case that (ϕ(n))2 approaches 0 or ∞ somewhere inside D.

Remark 19.11 We modify q(n−1) by Tq(n−1) in (19.21) because of the obvi-
ous inequality

|Tp− q∗| ≤ |p− q∗|,
which makes the proof of the algorithm easier and may increase the rate of
convergence.

In order to prove the convergence of {q(n)}, we define the open set of
L∞(Ω)

Q = {p ∈ L∞(Ω) : q < p < q} , (19.26)

and the map

F1 : Q → W 1,2(Ω)
q 7→ F1[q] = ϕ,where ϕ is the solution of (19.19) .

(19.27)

We have the following result.

Lemma 19.12 For all q ∈ Q, F1[q] is in L∞(Ω). There exists a positive
constant Λ(q, q) such that

∣∣F1[q](x)
∣∣ ≤ Λ, ∀x ∈ Ω. (19.28)
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Moreover, for any D ⋐ Ω, there exists a positive constant λ(D, q, q) such that

λ ≤ F1[q](x), ∀x ∈ D . (19.29)

Proof. Let ϕq and ϕq be the solutions of (19.11) with c replaced by q and q,
respectively. It follows by Proposition 19.4 that

ϕq ≤ ϕ ≤ ϕq in Ω .

On the other hand, we can apply Proposition 19.6 to see that

ϕq > 0 in D .

The lemma is proved by letting λ = infD ϕq and Λ = supΩ ϕq. ⊓⊔

Lemma 19.13 The map F1 is Fréchet differentiable. Its derivative at q is
given by

dF1[q](h) = φ , (19.30)

for h ∈ L∞(Ω), where φ solves

{
−∆φ+ qφ = −hϕ in Ω ,
∂νφ+ φ = 0 on ∂Ω

(19.31)

with ϕ = F1[q]. Moreover, dF1[q] can be continuously extended to the whole
L2(Ω) by the same formula in (19.31) with

‖dF1[q]‖L(L2(Ω),W 1,2(Ω)) ≤ CΛ , (19.32)

where Λ is defined in Lemma 19.12.

Proof. Let ϕ′ be the solution of (19.19) with q + h replacing q, assuming
‖h‖L∞(Ω) ≪ 1 so that q + h ∈ Q a.e. in Ω. Note that ϕ′ − ϕ solves

{
−∆(ϕ′ − ϕ) + (q + h)(ϕ′ − ϕ) = −hϕ in Ω ,

∂ν(ϕ
′ − ϕ) + (ϕ′ − ϕ) = 0 on ∂Ω .

Using ϕ′ − ϕ as a test function in the variational formulation of the problem
above gives

‖ϕ′ − ϕ‖W 1,2(Ω) ≤ C‖h‖L∞(Ω)‖ϕ‖L2(Ω) . (19.33)

On the other hand, since ϕ′ − ϕ− φ solves

{
−∆(ϕ′ − ϕ− φ) + q(ϕ′ − ϕ− φ) = −h(ϕ′ − ϕ) in Ω ,
∂ν(ϕ

′ − ϕ− φ) + (ϕ′ − ϕ− φ) = 0 on ∂Ω ,

we can apply the argument above to obtain
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‖ϕ′ − ϕ− φ‖W 1,2(Ω) ≤ C‖h‖L∞(Ω)‖ϕ′ − ϕ‖L2(Ω) . (19.34)

Combining (19.33) and (19.34) shows that

‖ϕ′ − ϕ− φ‖W 1,2(Ω) ≤ C‖h‖2L∞(Ω)‖ϕ‖L2(Ω) ,

which implies

lim
‖h‖L∞(Ω)→0

‖ϕ′ − ϕ− φ‖W 1,2(Ω)

‖h‖L∞(Ω)
= 0 .

The first part of the lemma follows.
Because of Lemma 19.12 and Proposition 19.4, which shows that ϕ ∈

L∞(Ω), problem (19.31) is uniquely solvable for all h ∈ L2(Ω), and therefore
the extension dF1[q] : L

2(Ω) → W 1,2(Ω) is well-defined. Its continuity and
(19.32) can be deduced, using φ as a test function in the variational formula-
tion of (19.31) and applying Lemma 19.12:

‖φ‖W 1,2(Ω) ≤ C‖h‖L2(Ω)‖ϕ‖L∞(Ω).

The proof is then complete. ⊓⊔

Note that the differentiability of F1 on Q holds for any positive constants
q and q such that q < q.

We next introduce another open set of L∞(Ω):

P =

{
ρ ∈ L∞(Ω) :

λ

2
< ρ < 2Λ in D

}
. (19.35)

Let

F2 : P → W 1,2(Ω)

ϕ 7→ F2[ϕ] = q, where q is the solution of (19.20) in D and q = q0 in Ω \D .

The following lemma can be proved in the same manner as Lemma 19.13.

Lemma 19.14 The map F2 is Fréchet differentiable. Its derivative at ϕ is
given by

dF2[ϕ](h) = Q, (19.36)

for h ∈ L∞(Ω), where Q solves
{
−∇ · (ϕ2∇Q) = ∇ · (2ϕh∇q) in D ,

Q = 0 on ∂D
(19.37)

with q = F2[ϕ] being the solution of (19.20) and Q = 0 in Ω \D. Moreover,
dF2[ϕ] can be extended continuously to L2(Ω) and

‖dF2[ϕ]‖L(L2(Ω),W 1,2(Ω)) ≤
2Λ

λ2
c2(λ,Λ,M) , (19.38)

where M is an upper bound of ‖∇ · (ϕ∇q)‖L∞(D).
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Proof. Since evaluating the derivative of F2 at ϕ is similar to doing so in
Lemma 19.13, we only verify the well-definedness of the extension of dF2[ϕ]
and (19.38). Since ϕ ∈ P , we can apply Proposition 19.2 to see that the
solution q of (19.20) is in C1(D) and

‖q − q0‖C1(D) ≤ c2(λ,Λ,M) .

As a consequence, since q = q0 on Ω \D, we deduce that

‖∇q‖L∞(Ω) ≤ c2(λ,Λ, δM) . (19.39)

Thus, (19.37) is uniquely solvable if h ∈ L2(Ω). This shows how to extend
dF2[ϕ] to L

2(Ω).
In order to prove (19.38), we use Q as a test function in the variational

formulation of (19.37) and employ (19.39) to get

λ2
∫

D

|∇Q|2dx ≤
∫

D

ϕ2|∇Q|2dx

≤ 2Λ‖∇q‖L∞(D)

∫

D

|h||∇Q|dx

≤ 2Λc2(λ,Λ,M)‖h‖L2(D)‖∇Q‖L2(D) .

Therefore,

‖Q‖W 1,2
0 (D) ≤

2Λ

λ2
c2(λ,Λ,M) ,

and the proof is complete. ⊓⊔

Our main result in this section is the following.

Theorem 19.15 Assume that q, q, and M are given. If ‖∆ψ‖L∞(Ω) is suffi-

ciently small, then the iteration sequence in the algorithm converges in L2(Ω)
to q∗, the unique solution of (19.19) and (19.20).

Proof. Introduce the map

F [q] = F2 ◦ F1[q]

defined on Q given by (19.26). Thanks to (19.28) and (19.29), the range of F1

is contained in the domain of F2. This shows how the definition above makes
sense. Considering F as the map P → L2(Ω), using the standard chain rule
in differentiation and the fact that W 1,2(Ω) ⊂ L2(Ω), we have

dF [q] : L∞(Ω) → L2(Ω)

given by
dF [q](h) = dF2[F1[q]](dF1[q](h)) (19.40)

is the Fréchet derivative of F . Moreover, by Lemmas 19.13 and 19.14, dF [q]
can be extended continuously to L2(Ω) with
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‖dF [q]‖L(L2(Ω),L2(Ω)) ≤ ‖dF1[q]‖L(L2(Ω),W 1,2(Ω))‖dF2[q]‖L(L2(Ω),W 1,2(Ω))

≤ C‖∆ψ‖L∞(Ω) .

Recall from the algorithm that q(0) = q0 is the initial guess for the true
coefficient q∗ and for n ≥ 1, define

q(n) = F [Tq(n−1)] n ≥ 1,

where Tp = min{max {p, q}, q}. Note that for all m,n ≥ 1,

‖F [Tq(n)]− F [Tq(m)]‖L2(Ω) =

∥∥∥∥
∫ 1

0

dF [(1− t)Tq(n) + tT q(m)](q(m) − q(n))dt

∥∥∥∥
L2(Ω)

≤ C‖∆ψ‖L∞(Ω)‖q(m) − q(n)‖L2(Ω) .

Thus, if ‖∆ψ‖L∞(Ω) is small enough, then

F ◦ T : L2(Ω) → L2(Ω)

is a contraction map. Let q∗ denote the fixed point of F ◦ T and hence the
convergent point of q(n). Since q∗, the true absorption coefficient, is a fixed
point of F and is in the interval [q, q], it is the fixed point of F ◦T . Therefore,
q∗ = q∗ and the proof is complete. ⊓⊔

19.3.2 Optimal Control Algorithm

Let

K := {q − q0 ∈W 1,4
0 (Ω) : q ≤ q ≤ q and ‖∇q‖L4(Ω) ≤ θ}, (19.41)

where θ will be determined later in (19.44). It is obvious that K is closed and
convex in W 1,2

0 (Ω).
Now, let the map F : K →W−1,2(Ω). For all q ∈ K, let

F [q](v) =

∫

Ω

F1[q]
2∇q · ∇v for all v ∈W 1,2

0 (Ω) . (19.42)

We call F the internal data map.

Theorem 19.16 The map F is Fréchet differentiable in K and

dF [q](h, v) =

∫

Ω

(2F1[q]dF1[q](h)∇q + F1[q]
2∇h) · ∇v dx (19.43)

for all q ∈ K, h ∈W 1,4
0 (Ω) ∩ L∞(Ω) and v ∈W 1,2

0 (Ω). Assume further

0 < θ <
CΩλ

2

Λ2
, (19.44)
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where CΩ is the norm of the embedding map ofW 1,2(Ω) into L4(Ω), multiplied
with the constant in (19.32). Then, dF [q] is well-defined onW 1,2

0 (Ω) and there
exists a positive constant C such that for all h ∈W 1,2

0 (Ω),

‖dF [q](h)‖W−1,2(Ω) ≥ C‖h‖W 1,2
0 (Ω). (19.45)

Here, dF [q](h) : v ∈W 1,2
0 (Ω) 7→ dF [q](h, v).

Proof. The Fréchet differentiability of F and the expression (19.43) of dF can
be deduced from Lemma 19.13 and the standard rules in differentiation. We
only prove (19.45). In fact, for all h ∈W 1,2

0 (Ω),

dF [q](h, h) =
(
F1[q]

2|∇h|2 + 2F1[q]dF1[q](h)∇q∇h
)
dx

≥
∫

Ω

(
F1[q]

2|∇h|2
)
dx−

∫

Ω

|2F1[q]dF1[q](h)∇q∇h|dx

≥ λ2
(
‖h‖W 1,2

0 (Ω) −
Λ

λ2
‖dF1[q](h)‖L4(Ω)‖∇q‖L4(Ω)‖∇h‖L2(Ω)

)
.

It follows from the continuous embedding of W 1,2(Ω) into L4(Ω) and (19.32)
that

dF [q](h, h) ≥ λ2
(
1− CΩΛ

2θ

λ2

)
‖h‖W 1,2

0 (Ω).

Therefore, the bilinear form dF [q] : (h, v) ∈W 1,2
0 (Ω)×W 1,2

0 (Ω) 7→ dF [q](h, v)
is coercive, which shows that inequality (19.45) holds true with C = λ2(1 −
CΩΛ2θ

λ2 ). ⊓⊔

We now make use of Theorem 19.16 in order to prove a local Landweber
condition which guarantees the convergence of the reconstruction algorithm.

Let q and q′ be in K. We can find t ∈ [0, 1] such that

‖F [q]−F [q′]‖W−1,2(Ω) = ‖dF [tq+(1−t)q′](q−q′)‖W−1,2(Ω) ≥ C‖q−q′‖W 1,2
0 (Ω)

(19.46)
by (19.45). Hence, if ‖q−q′‖W 1,2

0 (Ω) is small enough, then F satisfies the local

Landweber condition:

‖F [q]− F [q′]− dF [q](q − q′)‖W−1,2(Ω) ≤ η‖F [q]− F [q′]‖W−1,2(Ω) (19.47)

for some η < 1
2 .

Consider ∆ψ as an element of W−1,2(Ω) and rewrite

∇ · F1[q]
2∇q = ∆ψ ,

in the sense of distributions, as

F [q] = ∆ψ . (19.48)
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Recalling that K is closed and convex in W 1,2
0 (Ω), we can employ the

classical Hilbert projection theorem to define the projection T from W 1,2
0 (Ω)

onto K.
The optimal control algorithm is to minimize the discrepancy between F [q]

and ∆ψ:

min
q∈K

J [q] :=
1

2
‖F [q]−∆ψ‖2W−1,2(Ω) . (19.49)

It reads as follows.

Algorithm 19.2 Optimal control algorithm

1. Define the initial guess q(0) = q0.

2. For n ≥ 1,

q
(n+1) = Tq

(n) − ηdF [Tq(n)]∗(F [Tq(n)]−∆ψ) , (19.50)

where η is the step size and T is defined by (19.22).
3. For ||q0−q∗||W1,2

0 (Ω)
small enough, the convergent function of {q(n)} is the true

optical absorption coefficient q∗.

The following convergence result for Algorithm 19.2 follows from Proposi-
tion 2.5.

Theorem 19.17 Suppose that the true optical distribution q∗ belongs to K
and µ is sufficiently small. Let q(n) be defined by (19.50) with q(0) being the
initial. Then the sequence q(n) converges in W 1,2

0 (Ω) to q∗ as n→ ∞.

19.4 Numerical Illustrations

As a test case, we consider Ω = (−1, 1)2 and q0 = 1. We set

q∗(x) = 1 + (qi − 1)χ(Ωi)(x),

with Ωi ⋐ Ω and qi > 1 a constant. We take the dimensionless shape function
w in (19.12) as follows:

w(α) = e1/(α
2−1), α ∈ [−1, 1].

We generate the cross-correlation between boundary measurements Nu given
by (19.16), with u = uy for sampling points y (such that q∗(y) = q0) on
the unit circle and sampling radii r ∈ (0, 2). Then, using Lemma 19.7 and
adopting the same numerical approach as in Chapter 13, we generate the
data Ψ by inverting the spherical mean Radon transform. In the case where
the number of sampling points y is small, the total variation regularization
method developed in Chapter 13 can be used. Problems (19.21) and (19.23)
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are solved iteratively using a finite element code. We use a structured mesh
with 104 vertices and P1 finite elements.

In order to measure the quality of the reconstruction, we introduce two
indicators of the errors made in the image. Let m = min(qmes) and M =
max(qmes). We compute the support of qmes − q0 by

Ωi,mes =

{
qmes − 1 >

M −m

2

}

and define a position error by

Epos =
|Ωi△Ωi,mes|

2|Ωi|

with Ωi being the correct support of q∗ − q0. Here, |Ωi△Ωi,mes| denotes the
symmetric difference between Ωi and Ωi,mes. The second quantity we have to
recover is qi, the correct value of q∗ in the inclusion. For doing so, let us define
an estimation of qi by

qi,mes =
1

|Ωi,mes|

∫

Ωi,mes

qmes

and introduce the relative error for this estimation as follows:

Eval =
|qi,mes − qi|
|qi − 1| .

Finally, we introduce the relative L2-error,

‖ϕ(n) − ϕ∗‖L2(Ω)/‖ϕ∗‖L2(Ω),

where n is the number of iterations and ϕ∗ is the true energy density.
As illustrated in Figure 19.1, if |qi−1||Ωi| ≪ |Ω|, then one iteration could

be enough to obtain a quite resolved image (i.e., with high resolution) since
the relative L2-error ‖ϕ(1)−ϕ∗‖L2(Ω)/‖ϕ∗‖L2(Ω) is very small (of order 10−10

in the example in Figure 19.1).
In Figure 19.2 we consider the same example as in Figure 19.1. We plot the

behaviors of Eval and Epos as functions of η. It can be seen that the smaller
η is, the better the reconstruction. However, there is a saturation effect for
very small η due to the finite element discretization.

Next, we show in Figure 19.3 that a few iterations are necessary to re-
construct a resolved image if |qi − 1||Ωi|/|Ω| is not too small. In Figure 19.3,
the reconstructed images after one, two, and three iterations are given. In
Figure 19.4 it can be seen that while the support of the inclusion is quite well
reconstructed at the first iteration (it is in fact the support of the data Ψ), a
few iterations are needed in order to find a good approximation of the value
of the optical absorption parameter.
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Fig. 19.1. Reconstruction after one iteration with η = 0.02, qi = 1.01, Ωi =
(−0.25, 0.25)2, and the measurements Nu are for 50 sources on the unit circle and
for r ∈ (0, 2).

Fig. 19.2. Reconstruction errors Eval and Epos as functions of η.

Finally, we illustrate the stability of the proposed algorithm. For doing so,
we add to the measurements a discrete Gaussian white noise with standard
deviation ranging from 0 to 10% of the L∞-norm of Nu and compute the
root mean square errors of the optical absorption parameter, E(E2

val)
1/2, and

the position, E(E2
pos)

1/2, as functions of the noise level. Here E stands for
the expectation. In Figure 19.5, we compute 100 realizations of the measure-
ment noise and apply the fixed point algorithm for estimating both the shape
and the optical absorption of the inclusion. Figure 19.5 gives, for η = 0.02,
E(E2

val)
1/2 and E(E2

pos)
1/2, as functions of the noise level. It shows the ro-
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Fig. 19.3. Reconstruction after (from left to right) one, two, and three iterations
with η = 0.02, qi = 3 and Ωi = (−0.25, 0.25)2, and the measurements Nu are for 50
sources on the unit circle and for r ∈ (0, 2).

Fig. 19.4. Left: Reconstruction errors Eval and Epos as functions of the number of
iterations. Right: Relative L2-error on ϕ(n), where n is the number of iterations.

bustness of the proposed approach. It also shows that finding the value of
the optical absorption parameter is more stable than locating the inclusion.
This seems to be due to the diffusion character of the problem satisfied by the
optical absorption distribution.

19.4.1 Concluding Remarks

In this chapter we have presented efficient algorithms for ultrasound-modulated
optical diffuse tomography. The modulation of light is due to the propagation
of spherical acoustic waves. It leads to a coupled system of equations. Solving
iteratively such a system yields a resolved image for the optical absorption
coefficient under the assumption that ‖∆ψ‖L∞ is small enough. The proposed
fixed point algorithm has good stability properties. Its performance depends
on the boundary data. In order to obtain optimal images in the sense of res-
olution and stability, the boundary data has to be chosen in such a way that
the interior of the domain is illuminated. In the case when ‖∆ψ‖L∞ is not
small, an optimal control approach has been designed and its convergence
proved provided that the initial guess is close enough to the true solution.



Fig. 19.5. Root mean square errors of the position and the value of qmeas for a
noise level from 0% to 10%.



20

Mechanical Vibration-Assisted Conductivity
Imaging

20.1 Introduction

This chapter aims at mathematically modeling a multi-physics conductivity
imaging system incorporating mechanical vibrations simultaneously applied to
an imaging object together with current injections. We perturb the internal
conductivity distribution by applying time-harmonic mechanical vibrations
on the boundary. This enhances the effects of any conductivity discontinuity
on the induced internal current density distribution. Unlike other conductiv-
ity contrast enhancing frameworks, it does not require a prior knowledge of
a reference data. In this chapter, we provide a mathematical framework for
this emerging imaging modality. As an application of the vibration-assisted
impedance imaging framework, we investigate a conductivity anomaly detec-
tion problem and provide an efficient location search algorithm. We show both
theoretically and numerically that the applied mechanical vibration increases
the data sensitivity to the conductivity contrast and enhances the quality of
anomaly detection results.

In this chapter, we first describe the mathematical framework of the
vibration-difference method in EIT. Emphasizing the sensitivity improvement
by the conductivity modulation through a mechanical vibration, we adopt this
approach to anomaly detection. We carry out the derivations of the vibration-
difference method for anomaly detection and show its performance and fea-
sibility through numerical experiments. Our results in this chapter are from
[72].

20.2 Mathematical Modeling

In this section, we provide a mathematical model for a mechanical vibration
assisted conductivity imaging and its theoretical ground. We set Ω to be a
bounded domain with a boundary ∂Ω of class C2 in R3. We assume that the
electrical conductivity σ of Ω is of class C2(Ω). Moreover, there exist σ and
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σ such that 0 < σ < σ < σ <∞. Furthermore, we suppose that σ is constant
on a neighborhood of the boundary ∂Ω.

As seen in Chapter 6, when we inject a current q ∈ C1,α(∂Ω) for some
0 < α < 1 with its mean-value of zero,

∫
∂Ω

q = 0, the resulting electrical
potential v is governed by the following conductivity equation:





∇ · (σ∇v) = 0 in Ω ,
σ ∂v

∂ν = q on ∂Ω ,∫

∂Ω

v = 0 ,
(20.1)

where σ∂v/∂ν = ν · (σ∇) with ν being the outward unit normal vector at ∂Ω.
To perturb the conductivity distribution σ, we attach a mechanical vi-

brator on the boundary ∂Ω and apply a time-harmonic vibration. We assume
that Ω is composed of a linearly elastic, isotropic, and incompressible material
of density equal to 1. We let µ be the shear modulus of Ω. We assume that
µ belongs to C0,α(Ω) and there exist µ and µ such that 0 < µ < µ < µ <∞.
If ω is the operating angular frequency, the resulting time-harmonic elastic
displacement is denoted as u(x, t) = ℜ{eiωtu(x)} for x ∈ Ω and t ∈ R+, where
u satisfies the Stokes system




ω2u+∇ · (µ(∇u+∇uT )) +∇p = 0 in Ω ,

∇ · u = 0 in Ω ,
u = g on ∂Ω .

(20.2)

Here, g ∈ C1,α(∂Ω) is such that the compatibility condition
∫
∂Ω

g · ν = 0
holds.

In what follows, we assume that −ω2 is not a Dirichlet eigenvalue of the
Stokes system on Ω. We also recall that the analytical continuation principle
holds true for the Stokes system. In fact, it can be proved that if u is zero
in a ball inside Ω, then u is identically zero everywhere in Ω provided that
µ ∈ C0,1(Ω). Moreover, from [183], u ∈ C1,α(Ω) and there exists a positive
constant C depending only on µ, ω, and Ω such that

||u||C1,α(Ω) ≤ C||g||C1,α(∂Ω) .

The displacement u causes the perturbation of the conductivity distribution,
σ⋄, which can be described as, for a time t ∈ R+,

σ⋄(x+ u(x, t), t) = σ(x), ∀x ∈ Ω . (20.3)

It induces u·∇σ, which can be captured by various electrical impedance imag-
ing techniques. To show this, we let Ω⋄ = {x+ u(x, t) | x ∈ Ω, for a time t ∈
R+}. We can rewrite the relation (20.3) as

σ⋄ = σ ◦ (I + u)
−1
, σ = σ⋄ ◦ (I + u) , x ∈ Ω′, t ∈ R+ , (20.4)

where I + u is a map such that, for a time t ∈ R+,
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I + u(·, t) : x 7→ (x+ u(x, t), t)

and Ω′ ⋐ (Ω ∩Ω⋄) is any smooth simply connected domain.
Assuming that µ ∈ C0,α(Ω), ‖u‖L∞(Ω) ≪ 1 and σ ∈ C2(Ω), the perturbed

conductivity can be approximated as

σ⋄(x, t) ≈ σ((I − u(·, t))(x)) = σ(x)− u(x, t) · ∇σ(x) +O(|u|2)
≈ σ(x)− u(x, t) · ∇σ(x), x ∈ Ω′, t ∈ R+ , (20.5)

since σ is assumed to be constant on a neighborhood of the boundary ∂Ω. Let
v⋄ denote the electrical potential of (20.1) with the conductivity distribution
σ⋄ in place of σ. The potential v⋄ varies with the time-change of σ⋄:

∇ · ((σ(x)− u(x, t) · ∇σ(x))∇v⋄(x, t)) ≈ 0 for x ∈ Ω, t ∈ R+ . (20.6)

Denoting v1(x, t) := v⋄(x, t)− v(x), we have

∇ · (σ(x)∇v1(x, t)) = ∇ · (u(x, t) · ∇σ(x) ∇v(x)) +∇ ·
(
u(x, t) · ∇σ(x) ∇v1(x, t)

)

≈ ∇ · (u(x, t) · ∇σ(x) ∇v(x)) . (20.7)

In the last approximation, we dropped ∇·
(
u(x, t) · ∇σ(x)∇v1(x, t)

)
since both

u and v1 are small.
From (20.1), by virtue of the approximation (20.7), it follows that v1(x, t)

satisfies
{∇ · (σ(x)∇v1(x, t)) = ℜ{eiωt∇ · (u(x) · ∇σ(x) ∇v(x))} for (x, t) ∈ Ω × R+ ,

σ
∂v1

∂ν = 0 on ∂Ω × R+ .
(20.8)

Therefore, we can express v1 as

v1(x, t) = ℜ{eiωtv1(x)} ,
where v1 is the solution to the following conductivity equation:

{∇ · (σ∇v1) = ∇ · ((u · ∇σ)∇v) in Ω ,

σ ∂v1
∂ν = 0 on ∂Ω .

(20.9)

Finally, we arrive at

v⋄(x, t) ≈ v(x) + ℜ{eiωtv1(x)}, x ∈ Ω, t ∈ R+ , (20.10)

where v1 is the solution to (20.9). Note that the measured data over time yields
the knowledge of v1, which is (approximately) the difference between v and v⋄

measured without and with the mechanical vibration, respectively. Equation
(20.9) clearly shows that v1 carries information of u·∇σ. The major advantage
of the proposed method is then to extract the additional information of u ·∇σ
from the boundary current-voltage relation.

In the following sections, we will deal with the anomaly imaging problem.
Based on the approximation (20.10), we will provide a reconstruction method.
We will extend the approximation (20.10) to piecewise constant conductivity
distributions.
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20.3 Vibration-Assisted Anomaly Identification

As seen in Chapter 6, the static EIT imaging has a fundamental drawback due
to the technical difficulties in handling forward modeling errors including the
boundary geometry, electrode positions, and other systematic artifacts. Hence,
in the anomaly identification problem using EIT, a reference current-voltage
data (Neumann-to-Dirichlet data) is required to cancel out these common
errors by a data subtraction method. Since we can repeat the measurements
without and with the mechanical vibration, we can extract the effects of the
vibration by taking the difference between two sets of the measured data. In
this section, we consider a piecewise constant conductivity distribution and
present an anomaly location search and parameter estimation algorithm based
on the vibration-difference approach.

Let D = z∗ + δB be an anomaly compactly embedded in Ω, where z∗ is
a gravitational center of D, B is a C2-bounded domain containing the origin
and δ is a small positive parameter representing the order of magnitude of
the anomaly size. We suppose that σ is locally homogeneous and σ changes
abruptly across the boundary of the anomaly D.

We also suppose that the shear modulus µ is piecewise constant such as

µ =

{
µ− in Ω\D ,
µ+ in D .

Then the displacement field u satisfies




ω2u+ µ−∆u+∇p = 0 in Ω\D ,
ω2u+ µ+∆u+∇p = 0 in D ,

∇ · u = 0 in Ω ,
u|− − u|+ = 0 on ∂D ,(

µ−
∂u
∂ν + pν

) ∣∣∣
−
−
(
µ+

∂u
∂ν + pν

) ∣∣∣
+
= 0 on ∂D ,

u = g on ∂Ω ,

(20.11)

where ± denotes the limit from outside and inside of D, respectively.
Let τ1, τ2 be the tangent vectors at ∂D such that {τ1, τ2, ν} is an orthonor-

mal basis of R3. Our first goal is to provide a representation of v1 in the case
of piecewise constant conductivity distributions. This can be achieved using
layer potential techniques. Integration by parts yield, for x ∈ Ω \D,

v1(x) = σ+

∫

∂D

u · ν
[(

1− σ+
σ−

)
∂v

∂ν

∣∣∣∣
+

∂N

∂ν

∣∣∣∣
+

+

(
1− σ−

σ+

) 2∑

j=1

∂v

∂τj

∂N

∂τj

]
ds ,

(20.12)
where N is the Neumann function given by





∇ · (σ∇N) = −δy in Ω ,
σ ∂N

∂ν = − 1
|∂Ω| on ∂Ω ,∫

∂Ω
N = 0
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with |∂Ω| being the measure of ∂Ω.
Now, let w ∈W 1,2(Ω) satisfy ∇ · (σ∇w) = 0 and let h be defined by

h = σ+

[(
1− σ+

σ−

)
∂v

∂ν

∣∣∣∣
+

∂w

∂ν

∣∣∣∣
+

+

(
1− σ−

σ+

) 2∑

j=1

∂v

∂τj

∂w

∂τj

]
on ∂D . (20.13)

Note that since the restrictions to D of the solutions to the conductivity
equation ∇ · (σ∇w) = 0 in Ω are in C1,α(D), then h ∈ L2(∂D). In order to
emphasize the dependence of v1 on u, we denote it by vu1 = v1.

The next proposition follows from (20.12) by integration by parts. It gives
the relation between measurable boundary data and interior information of
anomaly D.

Proposition 20.1 For w ∈W 1,2(Ω) satisfying ∇ · (σ∇w) = 0, we have
∫

∂Ω

vu1 σ
∂w

∂ν
ds =

∫

∂D

u · ν h ds , (20.14)

where h ∈ L2(∂D) is defined by (20.13).

In what follows, we set

η(u) :=

∫

∂Ω

vu1 σ
∂w

∂ν
ds. (20.15)

The imaging problem is then to locate the anomaly D and to reconstruct its
size, its conductivity, and its shear modulus from η(u).

20.3.1 Location Search Method and Asymptotic Expansion

In order to have further analysis regarding η(u) in (20.15), we write the inner
expansion of the solution u of (20.11) as follows

u(x) = u0(x) + δv∗

(
x− z∗
δ

)
+O(δ2), (20.16)

where u0 is the background displacement field (in the absence of any anomaly)



ω2u0 + µ−△u0 +∇p0 = 0 in Ω,

∇ · u0 = 0 in Ω,
u0 = g on ∂Ω,

(20.17)

and v∗ is the solution of




µ−△v∗ +∇q = 0 in R3\D,
µ+△v∗ +∇q = 0 in D,

∇ · v∗ = 0 in R3,
v∗|− − v∗|+ = 0 on ∂D,(

µ−
∂v∗
∂ν + qν

) ∣∣∣
−
−
(
µ+

∂v∗

∂ν + qν
) ∣∣∣

+
= (µ− − µ+)(∇u0 +∇uT0 )ν on ∂D,

v∗(x) → 0 as |x| → +∞,
q(x) → 0 as |x| → +∞.

(20.18)
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For explicit representations of u0 and v∗, let us introduce the fundamental
tensor solution Γ = (Γjk)

3
j,k=1 and F = (F1, F2, F3) corresponding to the

equation (
∆+

ω2

µ−

)
Γjk(x) + ∂kFj(x) = δjkδ(x) in R3

and ∇ · Γ = 0 in R3, where

Γjk(x) = −δjk
4π

eiω|x|/√µ−

|x| − µ−
4πω2

∂j∂k
eiω|x|/√µ− − 1

|x| (20.19)

Fj(x) =
1

4π

xj
|x|3 .

Here, δjk is the Kronecker delta. DefineBR = {y : |y| ≤ R, R sufficiently large}
such that Ω ⊂ BR. If g(x) = Γ (x − ȳ)q with direction of the wave q for a
point source ȳ ∈ ∂BR, then we have p0(x) = F(x− ȳ) · q and

u0(x) =
1
µ−
Γ (x− ȳ) q,

v∗
(
x−z∗

δ

)
= S0

B

(
− µ−+µ+

2(µ−−µ+)I +
(
K0

B

)∗)−1 [
∂u0

∂ν (z∗)
] (

x−z∗
δ

)
,

where S0
B is a single layer potential for the Stokes system, K0

B is the Neumann-
Poincaré operator associated with the fundamental tensor solution Γ and
(K0

B)
∗ is the L2-adjoint operator of K0

B with superscript 0 standing for the
static case ω = 0.

Noting that u is depending on q and the point source ȳ, we can denote u
by uq,ȳ.

Define J : Ω → R by

J(zS) :=
3∑

j=1

∫

∂BR

kT Γ (zS − ȳ) qj η(uqj ,ȳ) ds(ȳ) (20.20)

for three orthonormal vectors qj (j = 1, 2, 3), zS ∈ Ω and a constant unit
vector k. Here, zS is considered as a searching point in Ω.

The following lemma follows from the Helmholtz-Kirchhoff identity for the
fundamental tensor solution Γ .

Lemma 20.2 The functional J(zS) can be estimated by

J(zS) = kT ℑ(Γ (zS−z∗))
( 1

µ−

∫

∂D

h ν ds
)

+O(δ3(ω2+1+R−1)) . (20.21)

Proof. Using (20.16) and the above representations, the functional η(u) can
be written as

η(u) =

∫

∂D

u(x) · ν h(x) ds(x) =
∫

∂D

u0(x) · ν h(x) ds(x) +O

(
δ3(ω2 + 1)

R2

)
.
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Then we can write J(zS) as

J(zS) =

3∑

j=1

∫

∂BR

kTΓ (zS − y)qj η(uqj ,y) ds(y)

=

3∑

j=1

∫

∂BR

kTΓ (zS − y)qj

∫

∂D

uqj ,y · ν h ds ds(y)

=
1

µ−

∫

∂D

kT
[∫

∂BR

Γ (zS − y)Γ (z∗ − y) ds(y)

]
ν h(x) ds(x) +O(δ3(ω2 + 1)).

From the Sommerfeld radiation condition satisfied by Γ , we have
∫

∂BR

Γ (zS − y)Γ (z∗ − y) ds(y)

=

∫

∂BR

(
∂

∂ν
Γ (zS − y)Γ (z∗ − y)− Γ (zS − y)

∂

∂ν
Γ (z∗ − y)

)
ds(y) +O

(
1

R

)
.

Since |zS |, |z∗| < R, the property of fundamental solution and Green’s identity
imply

∫

∂BR

(
∂

∂ν
Γ (zS − y)Γ (z∗ − y)− Γ (zS − y)

∂

∂ν
Γ (z∗ − y)

)
ds(y) = 2iℑΓ (zS−z∗).

Hence we have

J(zS) =
1

µ−
kTℑΓ (zS − z∗)

∫

∂D

h ν ds+O
(
δ3R−1

)
+O(δ3(ω2 + 1)) ,

which completes the proof. ⊓⊔

Since ℑΓ (zS−z∗) has a sinc function as a component, J has its maximum
at zS = z∗. In J , the fundamental tensor of the Stokes problem, Γ , can be
replaced by a simple exponential function. Using that the following proposition
proposes an approximation of J(zS) which is more practical for finding the
maximum and hence locating the anomaly.

Proposition 20.3 Define J̃ by

J̃(zS) :=

∫

∂BR

eiω|zS−y|/√µ−η(uq,y) ds(y) . (20.22)

Then the point zS ∈ Ω satisfying zS = argmaxz∈Ω J̃(z) is the center position
of D.

Proof. From the definition of Γ in (20.19), we have

−4πΓjk(x) = δjk
eiω|x|/√µ−

|x| +
µ−
ω2

∂j∂k
eiω|x|/√µ− − 1

|x| = δjk
eiω|x|/√µ−

|x| +O(|x|−3) .
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If |zS − y| → ∞, then the following approximation holds

Γ (zS − y) ≈ − 1

4π

eiω|zS−y|/√µ−

|zS − y| I

with I the identity matrix. Here, the phase terms of J and J̃ are the same for
the identity matrix I. In fact, the phase term of J̃ is

∫

∂D

∫

∂BR

eiω|zS−y|/√µ−eiω|z∗−y|/√µ−ds(y)ds(x)

≈
∫

∂D

∫

∂Ω

e
iω

(
|y|− zS ·y

|y|

)
/
√
µ−e−iω(|y|− z∗·y

|y| )/
√
µ−ds(y)ds(x)

=

∫

∂D

∫

∂BR

e
iω

(
(z∗−zS)·y

|y|

)
/
√
µ−

ds(y)ds(x) =

∫

∂D

∫

∂B1

eiω(z∗−zS)·ŷ/√µ−ds(ŷ)ds(x)

≈
∫

∂D

√
µ−
ω

sin
(

ω|z∗−zS |√
µ−

)

|z∗ − zS | ds(x) ,

in which the first approximation holds because |y|, |y− zS |, |y− z∗| ≫ 1 imply
that the angles between them are close to 0. Therefore, it has its maximum
at |z∗ − zS | = 0. ⊓⊔

Proposition 20.3 shows that the conductivity anomaly can be detected
with a resolution of the order of half the elastic wavelength.

20.3.2 Size Estimation and Reconstruction of the Material
Parameters

In the previous subsection, a formula to find the center position z∗ of D has
been derived. Here, we present a method to estimate the size δ, the conduc-
tivity σ+, and the shear modulus µ+ of the anomaly D. For computational
simplicity, we assume that D is a sphere and that the background conductiv-
ity, σ−, and shear modulus, µ−, are known.

Using a broadband frequency range for elastic vibrations, we can acquire
time-domain data corresponding to g(x, t) = Γ̌ (x − y, t)q for y ∈ ∂Ω. Here,
Γ̌ is the inverse Fourier transform taken in ω variable of the fundamental
solution Γ to the Stokes system. Take w = v in (20.15) and rewrite η as a
function of time t. It follows that

η(t) =

∫

∂D

u(x, t) · ν(x)h(x) ds(x) , (20.23)

where h = σ+

[(
1− σ+

σ−

)(
∂v
∂ν

∣∣
+

)2
+ (1 − σ−

σ+
)
∑2

j=1

(
∂v
∂τj

)2 ]
. Define tay and

tby by
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tay := the first t such that η(t) 6= 0
= the first t such that a sphere of center y and growing radius hits ∂D, say za
= |za − y|/√µ−

tby := the last t such that η(t) 6= 0
= the last t such that a sphere of center y and growing radius hits ∂D, say zb
= |zb − y|/√µ− .

Then the radius, δ, of D can be estimated by

2δ ≈ √
µ+

(
tby − tay

)
. (20.24)

If we know the size of D, then we can extract µ+ information. If not, we can
minimize over µ+ and σ+ the following discrepancy functional:

∫ t
yb

tya

∣∣∣∣η(t)− Γ̌ (x− z∗, t)q ·
∫

∂D

ν h ds

∣∣∣∣
2

.

To compute v we use relation (20.24) and the fact that D = z∗ + δB with B
being the unit sphere centered at the origin.

20.4 Numerical Illustrations

First, we will present numerical simulation results showing voltage differences
when the mechanical vibration is applied. Then, we will show a numerical
evidence of the position finding formula proposed in Subsection 20.3.1.

20.4.1 Simulations of the Voltage Difference Map

We present two results of numerical simulations to show the voltage difference
map of v1 before and after the applied mechanical vibration. We consider a
cubic container as shown in Figure 20.1. The sensing (measuring) electrodes
are placed at the bottom of the container and the sinusoidal mechanical vi-
bration is applied through the top surface, which is also the current driving
electrode. In the second numerical test, the mechanical vibration is applied
through the lateral surface. Two anomalies, a small spherical anomaly and a
large cylindrical anomaly, are placed in the container with different material
properties shown in Table 20.1.

Background Anomalies

Shear modulus 0.266 2.99

Table 20.1. Shear modulus values used in numerical simulations.

Figures 20.2 presents the measured voltage difference v1 at the bottom
surface. It clearly shows the perturbation of the conductivity distribution
inside Ω caused by the mechanical vibration.
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Fig. 20.1. Model for numerical simulations.

Fig. 20.2. Maps of the voltage difference v1 on the bottom surface subject to two
different mechanical vibrations.

20.4.2 Anomaly Location

In Subsection 20.3.1, formula (20.21) and Proposition 20.3 suggest seeking the

maximizer of J or J̃ to locate the center position of anomaly. To verify Proposi-
tion 20.3, we consider a cylindrical domain Ω centered at (0,0,1.5) with radius
7.5 cm and height 3 cm. Let the anomaly D be a sphere with radius 0.25 cm,
centered at z∗ = (3.75, 0, 1.5). As shown in Subsection 20.3.1, the displace-
ment u depends on q and the point source y. Here, q is set to (1, 0, 0), (0, 1, 0)
and (0, 0, 1) and the point source yk is chosen for k = 1, . . . , 1940, which are
uniformly distributed on BR, a sphere centered at (0,0,1.5) with radius 37.5

cm so that Ω ⊂ BR. Figure 20.3 shows the computed discrete version of J̃(zS)
for each zS = (x, y, 1.5) as follows:

J̃(zS) :=

∫

∂BR

eiω|zS−y|/√µ−η(uq,y) ds(y) ≈
1940∑

k=1

eiω|zS−yk|/√µ−η(uq,yk
) ,

where µ− = 1 and ω = 200× π.
Figure 20.3 shows that the formula proposed in Proposition 20.3 finds the

center position of anomaly D under an ideal circumstance such that no noise
is added and all mathematical assumptions are satisfied. An analysis of the
statistical stability with respect to measurement and medium noises of the
localization algorithm can be performed.
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Fig. 20.3. J̃(zS) when zS = (x, y, 1.5): The maximum point is the center position
of D which is (3.75, 0, 1.5): (a) ℜJ(zS), (b) ℑJ(zS), and (c) |J(zS)|.

20.5 Concluding Remarks

In this chapter, we have investigated a multi-physics electrical impedance
imaging approach using mechanical vibrations simultaneously applied to an
imaging object together with current injections. We have provided the math-
ematical framework for the proposed approach and presented a few numerical
simulation results to illustrate its resolution and stability.

It is worth mentioning that the proposed approach can also be used to
measure the elasticity of an internal object with known electrical conductiv-
ity values. Using the electrical conductivity image, one can reconstruct the
displacement field at the scale of the changes of the conductivity and then,
recover the shear modulus using our approach in the next chapter. This ap-
proach will be applied for optical coherence tomography in Chapter 22.





21

Viscoelastic Modulus Reconstruction

21.1 Introduction

Elastography aims at providing a quantitative visualization of the mechanical
properties of human tissues by using the relation between the wave propa-
gation velocity and the mechanical properties of the tissues. During the last
three decades, elastography led to significant improvements in the quantita-
tive evaluation of tissue stiffness. The two major elastographic techniques are
based on ultrasound and on magnetic resonance imaging. GE Healthcare has
recently commercialized magnetic resonance elastography (MRE). Its main
use is to assess mechanical changes in liver tissue. The mechanical properties
of tissue include the shear modulus, shear viscosity, and compression modu-
lus. Quantification of the tissue shear modulus in vivo can provide evidence
of the manifestation of tissue diseases.

This chapter focuses on the image reconstruction methods for tissue vis-
coelasticity imaging. It presents an iterative reconstruction approach to pro-
vide high-resolution images of shear modulus and viscosity using the internal
measurements of displacement field. To simplify the underlying inverse prob-
lem, the reconstruction of both the shear modulus and shear viscosity are
considered under the assumption of isotropic elastic moduli.

We consider the inverse problem of recovering the distribution of the
shear modulus (µ) and shear viscosity (η) from the internal measurement
of the time-harmonic mechanical displacement field u produced by the ap-
plication of an external time harmonic excitation at frequency ω/2π in the
range 50 ∼ 200Hz through the surface of the subject. Modeling soft tissue as
being linearly viscoelastic and nearly incompressible, the displacement is of
the form ℜ(u(x)eiωt) where the complex-valued field u satisfies the elasticity
equation

∇ ·
(
(µ+ iωη)(∇u+∇uT )

)
+∇((λ+ iωηλ)∇ · u) + ρω2u = 0 , (21.1)

where ρ denotes the density of the medium,∇uT is the transpose of the matrix
∇u, λ is the compression modulus and ηλ is the compression viscosity.
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The most widely used reconstruction method is the algebraic inversion
method [262]: For any non-zero constant vector a,

µ+ iωη = − ρω2(a · u)
∇ · ∇(a · u) , (21.2)

which requires the strong assumptions of ∇(µ+ iωη) ≈ 0 (local homogeneity)
and (λ+ iωηλ)∇ · u ≈ 0 (negligible pressure).

The algebraic formula (21.2) ignores reflection effects of the propagating
wave due to abrupt changes of µ + iωη, so that the method cannot measure
any change of µ+ iωη in the direction of a.

To deal with these fundamental drawbacks in the algebraic inversion
method, we consider the full elasticity model and introduce a method based
on the minimization of a misfit functional involving the discrepancy between
the measured and fitted data. The minimization approach does not require
any derivative of u. The Fréchet derivatives of the functional with respect to
µ and η are then computed by introducing an adjoint problem. This Fréchet
derivatives based-iterative scheme requires a well-matched initial guess, be-
cause the minimization problem is highly nonlinear and may have multiple
local minima. We find a well-matched initial guess that captures the edges of
the image of the shear viscoelasticity. The numerical results presented herein
demonstrate the viability and efficiency of the proposed minimization method.
Our results in this chapter are from [47, 38, 77].

21.2 Reconstruction Methods

21.2.1 Viscoelasticity Model

Let an elastic body occupy the smooth domain Ω ⊂ Rd, d = 2, 3 with bound-
ary ∂Ω. To evaluate the viscoelastic tissue properties, we create an internal
time-harmonic displacement in the tissue by applying a time-harmonic excita-
tion through the surface of the object. Under the assumptions of mechanical
isotropy and incompressibility in the tissue, the induced time-harmonic dis-
placement at angular frequency ω, denoted by u, is then governed by the full
elasticity equation

2∇ · ((µ+ iωη)∇su) +∇((λ+ iωηλ)∇ · u) + ρω2u = 0 in Ω , (21.3)

where ∇su = 1
2 (∇u+∇uT ) is the strain tensor with ∇uT denoting the trans-

pose of the matrix ∇u; ρ is the density of the medium; the complex quantity
µ+ iωη is the shear modulus, with µ indicating the storage modulus and η in-
dicating the loss modulus reflecting the attenuation of a viscoelastic medium;
λ and ηλ are the compression modulus and compression viscosity, respectively.
We assume that these heterogeneous parameters satisfy:

µ > 0, η > 0, ηλ > 0, dλ+ 2µ > 0 .
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For a fixed ǫ > 0, denote Ω′ := {x ∈ Ω | dist(x, ∂Ω) > ǫ} and E := Ω\Ω′.
Throughout this paper, we assume that µ and η are contained in the following
set

S̃ := {(µ0, η0) + (φ1, φ2) | (φ1, φ2) ∈ S}
where positive constants µ0 and η0 are respectively known shear modulus and
shear viscosity in E . And S is given by

S :=
{
(φ1, φ2) ∈W 2,2

0 (Ω)×W 2,2
0 (Ω) : c1 < φ1 + µ0 < c2, c1 < φ2 + η0 < c2,

‖φj‖W 2,2(Ω) ≤ c3, supp φj ⊂ Ω′ for j = 1, 2
}
,

with c1, c2, c3 being positive constants. Hence, S̃ can be viewed as S̃ =
(µ0, η0) + S.

Fig. 21.1. Illustration of the domain and boundary portions.

To impose boundary conditions, let us take ΓD and ΓN such that ΓD ∪ ΓN =
∂Ω and ΓD ∩ ΓN = ∅. Typically, we use an acoustic speaker system to gen-
erate harmonic vibration. If the acoustic speaker is placed on the portion ΓD

of the boundary ∂Ω, then the boundary conditions for u can be expressed
approximately by

u = g on ΓD ,

2(µ+ iωη)∇su ν + (λ+ iωηλ)(∇ · u)ν = 0 on ΓN ,

where ν is the outward unit normal vector to the boundary.
It is known that soft tissues are nearly incompressible and the compression

modulus λ fulfills λ ≈ ∞. Therefore, the displacement field u satisfies∇·u ≈ 0.
It is shown in Theorem 3.53 that the term (λ + iωηλ)∇ · u in (21.3) is not
negligible because ∇ · u and λ could balance each other out. Let us impose
the incompressibility condition ∇·u = 0. This introduce the internal pressure
p = λ∇ · u which can be understood as a limit of λ∇ · u as λ goes to infinity
and ∇ · u goes to zero. Then, the time harmonic displacement u satisfies
(approximately) the following quasi-incompressible viscoelasticity model:
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2∇ · ((µ+ iωη)∇su) +∇p+ ρω2u = 0 in Ω ,
∇ · u = 0 in Ω ,
u = g on ΓD ,
2(µ+ iωη)∇su ν + pν = 0 on ΓN .

(21.4)

Note that if ΓD = ∂Ω (ΓN = ∅), then g should satisfy the compatibility
condition

∫
∂Ω

g · ν ds = 0. It is worth noticing that p can be regarded as a
Lagrange multiplier to enforce the incompressibility condition.

Let u(m) denote the displacement data that is measured in Ω. Then, the
inverse problem is to reconstruct the distribution of µ and η from the measured
data u(m).

21.2.2 Optimal Control Algorithm

Define the misfit (or discrepancy) functional J [µ, η] in terms of µ and η by
the L2-norm in Ω of the difference between the numerical solution u[µ, η]
of the forward problem (21.4) and the measured displacement data u(m) =
u(m)[µ∗, η∗]:

J [µ, η] =
1

2

∫

Ω

|u[µ, η]− u(m)|2dx . (21.5)

where µ∗ and η∗ are true distributions of shear elasticity and viscosity, re-
spectively. The reconstruction of the unknowns µ and η can be obtained by
minimizing the misfit functional J [µ, η] with respect to µ and η.

In order to construct a minimizing sequence of J [µ, η], we need to compute
the Fréchet derivatives of J [µ, η] with respect to µ and η. Assume that δµ and

δη are small perturbations of µ and η, respectively, by regarding
δµ+iωδη
µ+iωη ≈ 0.

For notational simplicity, we denote u0 := u[µ, η], p0 := the pressure corre-
sponding to u0 and p0 + p1 := the pressure corresponding to u[µ+ δµ, η+ δη].
Denoting the perturbation of displacement field by

δu := u[µ+ δµ, η + δη]− u0 , (21.6)

it follows from (21.4) that

2∇ · ((µ+ iωη)∇sδu) +∇p1 + ρω2δu = −2∇ · ((δµ + iωδη)∇su0)

− 2∇ · ((δµ + iωδη)∇sδu) in Ω . (21.7)

Let u1 be the solution of the following problem





2∇ · ((µ+ iωη)∇su1) +∇p1 + ρω2u1 =

−2∇ · ((δµ + iωδη)∇su0) in Ω,

∇ · u1 = 0 in Ω ,

u1 = 0 on ΓD ,

2(µ+ iωη)∇su1ν + p1ν = 0 on ΓN .

(21.8)
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Now we are ready to state two main theorems in this section which give
the Fréchet derivatives of J [µ, η] with respect to µ and η. Denote A : B =∑

i,j AijBij for two matrices A = (Aij) and B = (Bij).

Theorem 21.1 For (δµ+ µ, δη + η) ∈ S̃, if u1 is defined by (21.8), then we
have

ℜ
∫

Ω

u1(u0 − u(m)) dx = ℜ
∫

Ω

2(δµ + iωδη)∇su0 : ∇sv̄ dx . (21.9)

Furthermore, the Fréchet derivatives of J [µ, η] with respect to µ and η are
given by

∂

∂µ
J [µ, η] = ℜ [2∇su0 : ∇sv̄] ,

∂

∂η
J [µ, η] = ℜ [2(iω∇su0) : ∇sv̄] , (21.10)

where v is the W 1,2 solution of the following adjoint problem:




2∇ · ((µ− iωη)∇sv) +∇q + ρω2v = (u0 − u(m)) in Ω ,
∇ · v = 0 in Ω ,
v = 0 on ΓD ,
2(µ− iωη)∇sv ν + qν = 0 on ΓN .

(21.11)

The next theorem shows the differentiability of J [µ, η].

Theorem 21.2 The misfit functional J [µ, η] is Fréchet differentiable for

(µ, η) ∈ S̃. More precisely, if u1 ∈ W 1,2(Ω) is the weak solution to (21.8),
as the perturbations δµ, δη → 0, we have the following formula:
∣∣∣∣J [µ+ δµ, η + δη]− J [µ, η]−ℜ

∫

Ω

u1(u0 − u(m))dx

∣∣∣∣
= O

(
(||δµ||W 2,2(Ω) + ||δη||W 2,2(Ω))

2
)
.

To prove the Fréchet differentiability Theorem 21.2 and the main Theorem
21.1, we need the following preliminary results.

Firstly, we state an interior estimate for the solution of (21.4) whose proof
basically follows from [183] by observing 2∇ · ∇sw = ∆w for w satisfying
∇ · w = 0.

Lemma 21.3 For F ∈ L2(Ω) and (µ, η) ∈ S̃, let w ∈ W 1,2(Ω) be a weak
solution of the following problem:





2∇ · (µ+ iωη)∇sw +∇p+ ρω2w = F in Ω ,
∇ · w = 0 in Ω ,
w = 0 on ∂Ω .

Then, w ∈W 2,2(Ω) and

||w||W 2,2(Ω) ≤ C||F ||L2(Ω) , (21.12)

where C is positive constant independent of F .
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The following estimate for δu holds.

Proposition 21.1. The perturbation of displacement field δu ∈W 1,2(Ω) sat-
isfies the following estimate:

||δu||W 2,2(Ω) ≤ C(||δµ||W 2,2(Ω) + ||δη||W 2,2(Ω))||u0||W 2,2(Ω) ,

where C is positive constant independent of δµ and δη.

Proof. From (21.7), δu satisfies

2∇ · ((µ+ δµ + iω(δη + η))∇sδu) +∇p1 + ρω2δu

= −2∇ · ((δµ + iωδη)∇su0) in Ω . (21.13)

Applying the interior estimate (21.12) to (21.13) and using Hölder’s inequality
and Sobolev embedding theorem, we arrive at

||δu||W 2,2(Ω) ≤ C||∇ · ((δµ + iωδη)∇su0) ||L2(Ω)

≤ C
(
||δµ + iωδη||L∞(Ω)||u0||W 2,2 + ||∇(δµ + iωδη)||L4(Ω)||∇u0||L4(Ω)

)

≤ C
(
||δµ||W 2,2(Ω) + ||δη||W 2,2(Ω)

)
||u0||W 2,2(Ω) .

This completes the proof. ⊓⊔
Now we are ready to prove Theorem 21.2.

Proof. [Proof of Theorem 21.2] From the definition of J [µ, η] in (21.5), we
have

J [µ+ δµ, η + δη] = J [µ, η] + ℜ
∫

Ω

u1(u0 − u(m))dx+ Υ ,

where Υ is

Υ = ℜ
∫

Ω

(δu− u1) · (u0 − u(m))dx+
1

2

∫

Ω

|δu|2dx . (21.14)

Using the adjoint problem (21.11), (21.14) can be expressed as

Υ =
1

2

∫

Ω

|δu|2dx+ ℜ
∫

Ω

(δu− u1) · (2∇ · (µ− iωη)∇sv +∇q + ρω2v)dx .

Using ∇·δu = ∇·(u0+δu)−∇·u0 = 0 and homogeneous boundary conditions
for u1 and δu, we have

Υ =
1

2

∫

Ω

|δu|2dx−ℜ
∫

Ω

(2∇ · (δµ + iωδη)∇sδu) · v̄dx . (21.15)

Applying Hölder’s inequality, Υ is estimated by

|Υ | ≤ 1

2
||δu||2L2(Ω) + (||δµ||L∞(Ω) + ||ωδη||L∞(Ω))||∇δu||L2(Ω)||∇v̄||L2(Ω) ,

≤ C||∇δu||L2(Ω)

(
1

2
||∇δu||L2(Ω) + (||δµ||L∞(Ω) + ||ωδη||L∞(Ω))||∇v̄||L2(Ω)

)
.
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Now we apply Proposition 21.1 to get

|Υ | ≤ C
(
||δµ||W 2,2(Ω) + ||δη||W 2,2(Ω)

)2 (||u0||W 2,2(Ω) + ||v̄||W 2,2(Ω)

)
.

The proof is then completed. ⊓⊔
Now, it remains to identify the Fréchet derivatives of J [µ, η]. According

to Theorem 21.2, the Fréchet derivatives ∂
∂µJ [µ, η] and

∂
∂ηJ [µ, η] can be com-

puted by expressing ℜ
∫
Ω
u1(u0 − u(m))dx in terms of δµ and δη. These are

explained in the proof of Theorem 21.1.

Proof. [Proof of Theorem 21.1]
We use the adjoint solution v in (21.11) to get

∫

Ω

u1 · (u0 − u(m))dx =

∫

Ω

u1 · (2∇ · ((µ− iωη)∇sv) +∇q + ρω2v)dx .

(21.16)
Using the vector identity ∇ · (qu1) = ∇q · u1 and divergence free conditions (
0 = ∇ · δu = ∇ · u1 = ∇ · v), the identity (21.16) can be rewritten as

∫

Ω

u1 · (u0 − u(m))dx = −
∫

Ω

2(µ+ iωη)∇su1 : ∇sv̄dx+

∫

Ω

ρω2u1 · v̄dx .

Since u1 satisfies the equation (21.8), we have

∫

Ω

u1 · (u0 − u(m))dx =

∫

Ω

[2∇ · ((µ+ iωη)∇su1) + ρω2u1] · v̄dx ,

=

∫

Ω

[−2∇ · ((δµ + iωδη)∇su0) +∇p1] · v̄dx ,

=

∫

Ω

2(δµ + iωδη)∇su0 : ∇sv̄dx .

This proves the formula (21.9). The formula (21.10) can be obtained directly
from Theorem 21.2 and the formula (21.9). This completes the proof. ⊓⊔

Based on Theorem 21.1, the shear modulus and viscosity can be recon-
structed by the following gradient descent iterative scheme.

21.2.3 Initial Guess

Numerous simulations show that the reconstruction from an adjoint-based op-
timization method may converge to some local minimum that is very different
from the true solution when the initial guess is far from the true solution. We
observed that different initial guesses produce different reconstructions, and
thus a good initial guess is necessary for accurate reconstruction using the
iterative method (21.17).
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Algorithm 21.1 Gradient descent scheme.

1. Let n = 0. Start with an initial guess of shear modulus µ(0) and shear viscosity
η(0).
2. For n = 0, 1, . . ., compute u

(n)
0 by solving the forward problem (21.4) with µ

and η replaced by µ(n) and η(n), respectively. Compute v(n) by solving the adjoint
problem (21.11) with µ, η, u0 replaced by µ(n), η(n), u

(n)
0 , respectively.

3. For n = 0, 1, . . ., compute the Fréchet derivatives ∂J
∂µ

[µ(n), η(n)] and
∂J
∂η

[µ(n), η(n)].
4. Update µ and η as follows:

{
µ(n+1) = µ(n) − δ ∂J

∂µ
[µ(n), η(n)] ,

η(n+1) = η(n) − δ ∂J
∂η

[µ(n), η(n)] ,
(21.17)

where δ is the step size.
5. Repeat Steps 2, 3, and 4 until ||µ(n+1) − µ(n)|| ≤ ǫ and ||η(n+1) − η(n)|| ≤ ǫ for
a given ǫ > 0.

We examine the optimization method using the initial guess obtained by
the direct inversion method (21.2). Numerical simulations with this initial
guess showed that serious reconstruction errors occur near the interfaces of
different materials in the same domain; the direct inversion method cannot
probe those interfaces. We found empirically that it is important to find an
initial guess capturing the interfaces of different materials for the effective use
of the optimization method.

To develop a method of finding such a good initial guess, we adopt the
hybrid one-step method [248] which considers the following simplified model
ignoring the pressure term:

2∇ · (µ+ iωη)∇su⋄ + ρω2u⋄ = 0 in Ω , (21.18)

where u⋄ is regarded as a good approximation of u[µ, η]. To probe the discon-
tinuity of (µ+ iωη)∇su⋄, we apply the Helmholtz decomposition

(µ+ iωη)∇su⋄ = ∇f +∇×W with ∇ ·W = 0 , (21.19)

where f and W are vector and matrix, respectively. The curl of matrix is
defined in column-wise sense: ∇ ×W = ∇ × (W1,W2,W3) = (∇ ×W1,∇ ×
W2,∇×W3), where Wj is the j-th column of matrix W for j = 1, 2, 3. Taking
dot product of (21.19) with ∇su⋄ gives the following formula

µ+ iωη =
∇f : ∇sū⋄

|∇su⋄|2 +
∇×W : ∇sū⋄

|∇su⋄|2 . (21.20)

By taking the divergence to the equation (21.19), we have

∆f = −1

2
ρω2u⋄ in Ω . (21.21)
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By taking the curl operation to the equation (21.19), we have

∆W = ∇× ((µ+ iωη)∇su⋄) in Ω . (21.22)

Our proposed method for determining the initial guess is based on a modi-
fication of the hybrid one-step method. Using (21.21), an approximation of the
vector potential f corresponding to the measurement u(m) can be computed
by {

∆f̃ = − 1
2ρω

2u(m) in Ω ,

∇f̃ ν = (µ0 + iωη0)∇su(m) ν on ∂Ω .
(21.23)

On the other hand, W can not be computed directly from u(m) since (21.22)

contains unknown terms µ and η. Regarding µ+ iωη in (21.22) as ∇f̃ :∇sū(m)

|∇su(m)|2
(see (21.20)), we can compute a rough approximation of W by solving

{
∆W1 = ∇× (∇f̃ :∇sū(m)

|∇su(m)|2 ∇su(m)) in Ω ,

W1 = 0 on ∂Ω .
(21.24)

Similarly, approximating µ + iωη by direct inversion formula (21.2), we can
compute W by solving

{
∆W2 = ∇× (− ρω2(a·u(m))

∇·∇(a·u(m))
∇su(m)) in Ω ,

W2 = 0 on ∂Ω ,
(21.25)

where a is any nonzero vector.
Now, we use the formula (21.20) to get the initial guess of shear modulus

by substituting f = f̃ , W = (W1 +W2)/2 and u⋄ = u(m):

µ(0) + iωη(0) =
∇f̃ : ∇sū(m)

|∇su(m)|2 +
∇× (W1 +W2) : ∇sū(m)

2|∇su(m)|2 . (21.26)

In formula (21.26), the first term provides information in the wave propagation
direction while the second term gives the information in the tangent direction
of the wave propagation as shown in [248]. Note that if this initial guess is
not satisfactory for the adjoint-based optimization problem, one can update
the initial guess formula to obtain more accurate one by replacing (µ + iωη)
in (21.22) by (21.26).

Numerical experiments demonstrate the possibility of probing the discon-
tinuity of the shear modulus effectively. We emphasize that the initial guess
plays an important role in Newton’s iterative reconstruction algorithm based
on the adjoint approach. By observing the adjoint problem (21.11), the load
term u0−u(m) is related to the measured data and the initial guess in the first
iteration step. If the initial guess ensure that ||u0 − u(m)|| is small in certain
norm, the iteration scheme will converge and give good results. Otherwise, the
initial guess makes ||u0 − u(m)|| far from 0 in certain norm, and the iteration
scheme may not converge. This will be discussed in section 21.3.
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21.2.4 Local Reconstruction

In MRE, the time-harmonic displacement, u(m), in the tissue is measured via
phase-contrast-based MR imaging. Hence, the signal-to-noise ratio (SNR) of
the data is related to that of the MR phase images, which varies from one re-
gion to another. For example, the SNR of data u(m) is very low in MR-defected
regions, including the lungs, outer layers of bones, and some gas-filled organs.
When the domain, Ω, contains such defected regions, the reconstructed image
qualities may be seriously degraded by locally low SNR data in the defected
regions. As a result, it would be desirable to exclude defected regions from Ω
to prevent errors spreading in the image reconstruction.

Fig. 21.2. Illustration of the localization of the small anomaly in certain subdomain.

The proposed method is capable of a local reconstruction by restricting
to a local domain of the interest. To be precise, let Ωloc be a subdomain of
Ω in which u(m) has high SNR. Then, we consider the localized minimization
problem

Jloc[µ, η] =
1

2

∫

Ωloc

|uloc[µ, η]− u(m)|2dx (21.27)

with uloc[µ, η] being the solution of




2∇ · ((µ+ iωη)∇su) +∇p+ ρω2u = 0 in Ωloc ,
∇ · u = 0 in Ωloc ,
u = u(m) on ∂Ωloc .

(21.28)

As before, we need to compute the corresponding adjoint problem to get
Fréchet derivative:
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2∇ · ((µ− iωη)∇sv) +∇q + ρω2v = uloc − u(m) in Ωloc ,
∇ · v = 0 in Ωloc ,
v = 0 on ∂Ωloc .

(21.29)

There is no difference between the local reconstruction in Ωloc and the global
reconstruction withΩ, except the boundary conditions. As in (21.17), the local
reconstruction can be done by solving (21.28) and (21.29) with the initial guess
(21.26). Local reconstruction requires that neither the boundary conditions
need to be used on the whole domain, Ω, nor that the exact shape of Ω
needs to be known. Numerical simulations verify the effectiveness of this local
reconstruction, and further discussion will be shown in section 21.3.

21.3 Numerical Illustrations

In this section, we perform several numerical experiments in dimension two to
illustrate the effectiveness of the shear viscoelasticity reconstruction algorithm
proposed in the previous section.

To implement the reconstruction algorithm (21.17) proposed in section
21.2, we use the algorithm (21.20) in section 21.2.3 to initialize the iteration
scheme. For numerical experiments, we set the two dimensional domain as
Ω = [0, 0.1]×[0, 0.1] m2 with a boundary denoted by ∂Ω = ΓD∪ΓN ; see Figure
21.3 (a). We use a finite element method and discretize the rectangular domain
Ω into 300 × 300 triangular elements with linear interpolation functions to
solve the forward problem (21.4) as well as the adjoint problem (21.11) at each
iteration step in the algorithm (21.17). Fixed iteration step size δ = 5 × 106

is used in the iterative reconstruction algorithm (21.17).
We set three different types of shear viscoelasticity distribution which are

shown in the first column of Figures 21.4, 21.5, and 21.6 along with the true
distribution of shear modulus and shear viscosity. For each model, the first
row shows elasticity while the second row shows viscosity. Our numerical ex-
periments are based on these three models. We generate two dimensional
displacements u(m) = (u1, u2)

T by solving the problem (21.4) with frequency
ω
2π=70Hz and area density ρ = 1kg ·m−2. We apply the vibration to ΓD, and
the other three sides boundaries are set to be traction free:

{
u = (0.003, 0.003) on ΓD ,
2(µ+ iωη)∇su ν + pν = 0 on ΓN .

(21.30)

For example, Model 1 has the displacement fields shown in Figure 21.3 where
(b) and (c) are real parts of u1 and u2, and (d) and (e) are imaginary parts
of u1 and u2, respectively.

The next step is to implement our algorithm making use of these displace-
ment fields with certain initial guesses of the distribution of viscoelasticity.
We generate the initial guess by the direct inversion method (21.2) shown
in the third column of Figures 21.4, 21.5 and 21.6 and the hybrid one-step
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Fig. 21.3. Model 1 and the displacement fields. (a) Model 1; (b) and (c) are real
parts of u1 and u2; (d) and (e) are imaginary parts of them, respectively.

method (21.20) shown in the fifth column of Figures 21.4, 21.5 and 21.6. From
the generated initial guess, we can see that the reconstruction by the hybrid
one-step method is much better than that of the direct inversion method in
catching the inhomogeneous property of the medium. We have already ex-
plained the underlying mathematical reason for this phenomenon. We use the
initial guesses from these two methods to initialize our proposed method, and
the corresponding numerical results for each model are shown in the fourth
column and last column of Figures 21.4, 21.5 and 21.6, respectively. For com-
parison, we also show the reconstruction with a homogeneous initial guess in
each second column of Figures 21.4, 21.5 and 21.6.

The reconstruction results (see Figures 21.4, 21.5 and 21.6) show that
the proposed method can reconstruct the viscoelasticity distribution with
high accuracy (see (f) column) using a well-matched initial guess (see (e)
column). Otherwise, poor initial guesses (for example, the homogeneous ini-
tial guess and (c)), leads to unsatisfactory reconstructed images (see (b) and
(d) columns).

We also numerically evaluate the local reconstruction method proposed
in section 21.2.4. We consider the rectangular domain, Ω, which is equally
divided into four parts: top-left, top-right, bottom-left and bottom-right. It is
assumed that the top-right part is contaminated by noise or defected data. For
numerical simplicity, we add 3% white noise to the measured data in the top-
right part. The reconstruction results in both the whole domain and the local
domains are shown in Figure 21.7 where (a) is the true distribution of shear
viscoelasticity, (b) the initial guess with hybrid method, (c) the reconstruction
in whole domain using proposed method, (d) the local reconstruction.

21.4 Concluding Remarks

In this chapter, we have proposed a reconstruction algorithm for shear elas-
ticity and shear viscosity in a viscoelastic tissue. The optimization-based ap-
proach involves introducing an adjoint problem to avoid taking any derivative
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Fig. 21.4. Case 1: Simulation results for µ (first row) and ηµ (second row) image
reconstruction. (a) True images; (c) direct inversion method; (e) hybrid one-step
method; (b), (d) and (f) are reconstructed images by the adjoint-based optimization
method (21.17) with initial guess of the constant µ0+iωηµ0 , (c) and (e), respectively.

Fig. 21.5. Case 2: Simulation results for µ (first row) and ηµ (second row) image
reconstruction. (a) True images; (c) direct inversion method; (e) hybrid one-step
method; (b), (d) and (f) are reconstructed images by the adjoint-based optimization
method (21.17) with initial guess of the constant µ0+iωηµ0 , (c) and (e), respectively.

of the measured time-harmonic internal data. The proposed initial guess for-
mula is particularly suitable for imaging viscoelastic anomalies. The stability
estimates in [78] yield convergence of the proposed optimal control algorithm.



Fig. 21.6. Case 3: Simulation results for µ (first row) and ηµ (second row) image
reconstruction. (a) True images; (c) direct inversion method; (e) hybrid one-step
method; (b), (d) and (f) are reconstructed images by the adjoint-based optimization
method (21.17) with initial guess of the constant µ0+iωηµ0 , (c) and (e), respectively.

Fig. 21.7. Simulation results for local reconstruction. First row: images of µ. Second
row: images of ηµ. (a) true image; (b) initial guess; (c) adjoint-based optimization
method; (d) local reconstruction.
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Full-Field Optical Coherence Elastography

22.1 Introduction

In this chapter, we provide a mathematical analysis of and a numerical frame-
work for full-field optical coherence elastography, which has unique features
including micron-scale resolution, real-time processing, and non-invasive imag-
ing. We develop an algorithm for transforming volumetric optical images be-
fore and after the mechanical solicitation of a sample with sub-cellular resolu-
tion into quantitative shear modulus distributions. This has the potential to
improve sensitivities and specificities in the biological and clinical applications
of optical coherence tomography.

As seen in Chapter 10, optical coherence tomography (OCT) is a non-
invasive and a non-ionizing imaging technique that produces high-resolution
images of biological tissues. It performs optical slicing in the sample, to allow
three-dimensional reconstructions of internal structures. Conventional optical
coherence time-domain and frequency-domain tomographies require trans-
verse scanning of the illumination spot in one or two directions to obtain
cross-sectional or en face images, respectively.

Full-field OCT allows OCT to be performed without transverse scanning;
the tomographic images are obtained by combining interferometric images
acquired in parallel using an image sensor. Both the transverse and the axial
resolutions are of the order of 1µm; see [154, 155].

In [279], elastographic contrast has been combined with full-field OCT
with the aim of creating a virtual palpation map at the micrometer scale.
The idea is to register a volumetric optical image before and after mechan-
ical solicitation of the sample. Based on the assumption that the density of
the optical scatterers is advected by the deformation, the displacement map
can be first estimated. Then, using a quasi-incompressible model for the tis-
sue elasticity, the shear modulus distribution can be reconstructed from the
estimated displacement map.

The OCT elastography is able to perform displacement measurements
with sub-cellular resolution. It enables a more precise characterization of tis-
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sues than that achieved using ultrasound or magnetic resonance elastography;
therefore, it provides a more accurate assessment of microscale variations of
elastic properties. A map of mechanical properties added as a supplemen-
tary contrast mechanism to morphological images could aid diagnosis. The
technique costs less than other elastography techniques.

The mapping of mechanical properties was first introduced to OCT imag-
ing by Schmitt [316], who measured displacements as small as a few microm-
eters in heterogeneous gelatin phantoms containing scattering particles in ad-
dition to living skin. Various subsequent applications have employed OCT
methods in elastography; these include dynamic and full-field optical coher-
ence elastography (see [252, 303, 306]).

In all of the aforementioned techniques, transforming the OCT images
before and after the application of a load into quantitative maps of the shear
modulus is a challenging problem.

In this chapter we present a mathematical and numerical framework for
the OCT-elastography experiment described in [279]. Using the set of images
before and after mechanical solicitation we design a method to reconstruct
the shear modulus distribution inside the sample.

To mathematically formulate the problem, let Ω0 ⊂ Rd, d = 2, 3, and let
ε0 be the known piecewise smooth optical image of the medium, and µ be its
shear modulus. In this chapter we consider heterogeneous (unknown) shear
modulus distributions. The medium is solicited mechanically. Since compres-
sion modulus of biological media is four order of magnitude larger than the
shear modulus, it can be shown that the displacement map u obeys the lin-
earized equations of incompressible fluids or the Stokes system. As seen in
Chapter 21, the model problem is then the following Stokes system in a het-
eregeneous medium which reads:





∇ ·
(
µ(∇u+∇uT )

)
+∇p = 0 in Ω0 ,

∇ · u = 0 in Ω0 ,

u = f on ∂Ω0 ,

(22.1)

where superposed T denotes the transpose and the real-valued vector f satis-
fies the compatibility condition

∫
∂Ω0

f ·ν = 0 with ν being the outward normal
at ∂Ω0.

Throughout this chapter, we assume that µ ∈ C0,1(Ω0) and f ∈ C2(∂Ω0)
d.

From [132, 183, 249], (22.1) has a unique solution u ∈ C1(Ω0)
d . Moreover,

there exists a positive constant C depending only on µ and Ω0 such that

||u||C1(Ω0)d
≤ C||f ||C2(∂Ω0)d .

Using a second OCT scan, one has access to the optical image of the
deformed medium εu(x̃), ∀ x̃ ∈ Ωu, where Ωu is defined by

Ωu = {x+ u(x), x ∈ Ω0} .
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The new optical image is linked to the original one by

ε(x) = εu (x+ u(x)) , ∀ x ∈ Ω0 . (22.2)

The goal is to reconstruct the shear modulus map µ on Ω0 from the functions

ε and εu. We first prove that, in two dimensions, if the direction of
∇ε
|∇ε| is

not constant in a neighborhood of x, then the displacement field u at x can
be approximately reconstructed. In three dimensions, one shall assume that

the vectors
∇ε(y)
|∇ε(y)| are not coplanar for y a neighborhood of x. Hence, the

reconstructed value of u(x) serves as an initial guess for the minimization
of the discrepancy between computed and measured changes in the optical
image. Then, we compute an element of the subgradient [139] of the discrep-
ancy functional. Finally, we implement a minimization scheme to retrieve the
shear modulus map from the reconstructed displacements. Note that recon-
structing the displacement field from ε− εu is a registration problem and its
linearization is an optical flow problem; see [194]. It is also worth mentioning
that the approach developed in this chapter applies to other speckle imaging
modalities.

The chapter is organized as follows. Section 22.2 is devoted to some mathe-
matical preliminaries. In Section 22.3 we consider piecewise smooth ε functions
and first derive a leading-order Taylor expansion of εu as ||u||C1 goes to zero.
Then we provide an initial guess by linearization. Finally, we prove the Fréchet
differentiability of the discrepancy functional between the measured and the
computed advected images. The displacement field inside the sample can be
obtained as the minimizer of such functional. Section 22.4 is devoted to the
reconstruction of the shear modulus from the displacement measurements. In
Section 22.5 we present some numerical results to highlight the viability and
the performance of the proposed algorithm. The chapter ends with a short
discussion. Our results in this chapter are from [40].

22.2 Preliminaries

Let Ω be a bounded smooth domain in Rd, d = 2, 3. We start by defining a
class of piecewise smooth functions.

Definition 22.1 For any k ∈ N, α ∈ (0, 1), for any curve S of class C1,α

for some 0 < α < 1 such that Ω \ S is a union of connected domains

Ωi, i = 1, 2, . . . , n, we define Ck,α
S

(
Ω
)
to be the class of functions f : Ω −→ R

satisfying

f |Ωi
∈ Ck,α

S

(
Ωi

)
∀ i = 1, . . . , n . (22.3)
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Definition 22.2 We define BV(Ω) as the subspace of L1(Ω) of all the func-
tions f whose weak derivative Df is a finite Radon measure. In other terms,
f satisfies

∫

Ω

f∇ · F ≤ C sup
x∈Ω

|F |, ∀ F ∈ C1
0(Ω)d

for some positive constant C with C1
0(Ω) being the set of compactly supported

C1 functions.
The derivative of a function f ∈ BV(Ω) can be decomposed as

Df = ∇fHd + [f ]νsHd−1
S +Dcf,

where Hd is the Lebesgue measure on Ω, Hd−1
S is the surface Hausdorff mea-

sure on a rectifiable surface S, νS is a normal vector defined a.e. on S,
∇f ∈ L1(Ω) is the smooth derivative of f , [f ] ∈ L1(S,Hd−1

S ) is the jump
of f across S and Dcf is a vector measure supported on a set of Hausdorff
dimension less than (d− 1), which means that its (d− 1)-Hausdorff-measure
is zero; see [15, 22].

Definition 22.3 We define SBV(Ω) as the subspace of BV(Ω) of all the
functions f satisfying Dcf = 0.

Definition 22.4 For any 1 ≤ p ≤ +∞, we define

SBVp(Ω) =
{
f ∈ SBV(Ω) ∩ Lp(Ω), ∇f ∈ Lp(Ω)d

}
. (22.4)

Let W 1,p(Ω) = {f ∈ Lp(Ω), ∇f ∈ Lp(Ω)d} for p ≥ 1. Roughly speak-
ing, a function u ∈ SBV p(Ω) is a function of class W 1,p admitting surface

discontinuities. Note also that Ck,α
S

(
Ω
)
⊂ SBVp(Ω); see [22].

From now on, we assume that the optical image in the medium ε belongs to
Ck,α
S

(
Ω
)
, which is a simple but good model for a discontinuous medium. Some

of the following propositions are true for more general maps ε ∈ SBV(Ω). In
these propositions we only assume that ε is in SBV(Ω).

22.3 Displacement Field Measurements

In this section we consider the problem of reconstructing the displacement u
from the optical images before and after applying a load on the sample. As-
suming that ε is piecewise smooth, we derive a leading-order Taylor expansion
of εu as ||u||C1 goes to zero. Then we provide an initial guess by linearization.
Finally, we prove the Fréchet differentiability of the discrepancy functional I
between the measured and the computed advected images provided that ε is
smooth. If ε has jumps, then I has a nonempty subgradient. Therefore, in
both cases, the displacement field u inside the sample can be obtained as the
minimizer of such functional.
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22.3.1 First-Order Approximation

Let Ω ⋐ (Ω0 ∩Ωu) be a smooth simply connected domain. On Ω, as in 20.4,
we have

εu = ε ◦ (I + u)
−1

ε = εu ◦ (I + u) ,

where I is the d× d identity matrix.

Proposition 22.5 Let ε ∈ BV(Ω) and let u ∈ C1(Ω)d be such that ‖u‖C1(Ω)d <

1. Then, for any ψ ∈ C1
0(Ω), we have

∣∣∣∣
∫

Ω

(ε− εu)ψ −
∫

Ω

ψu ·Dε
∣∣∣∣ ≤ C‖u‖C0(Ω)d‖u‖C1(Ω)d‖ψ‖C1

0(Ω)

∣∣ε
∣∣
TV(Ω)

,

(22.5)
where the constant C is independent of ψ and

∣∣ ∣∣
TV(Ω)

denotes the total varia-

tion semi-norm. Estimate (22.5) yields that
εu − ε+ u ·Dε

‖u‖C0(Ω)d
weakly converges

to 0 in C1
0(Ω) when ‖u‖C1(Ω)d goes to 0.

Proof. For each t ∈ [0, 1], define φt by φ−1
t (x) = x + tu(x). Let η > 0 be a

small parameter, and ε(η) be a smooth function such that ‖ε−ε(η)‖L1(Ω) → 0,

and
∣∣ε(η)

∣∣
TV(Ω)

→
∣∣ε
∣∣
TV(Ω)

as η → 0. Analogously, we define ε
(η)
u to be the

smooth approximation of εu given by

ε(η)u (x) = ε(η) ◦ φ1(x) .

From

ε(η)u (x)− ε(η)(x) =
(
ε(η) ◦ φ1

)
(x)−

(
ε(η) ◦ φ0

)
(x), ∀ x ∈ Ω ,

we have

ε(η)u (x)− ε(η)(x) =

∫ 1

0

∇ε(η)(φt(x)) · ∂tφt(x)dt, ∀ x ∈ Ω .

Therefore, for ψ ∈ C∞
0 (Ω) with C∞

0 (Ω) being the set of compactly supported
C∞ functions,

∫

Ω

[
ε(η)u (x)− ε(η)(x) +∇ε(η)(x) · u(x)

]
ψ(x)dx =

∫

Ω

[∫ 1

0

∇ε(η)(φt(x)) · ∂tφt(x)dt
]
ψ(x)dx+

∫

Ω

∇ε(η)(x)·u(x)ψ(x)dx, ∀ x ∈ Ω .

(22.6)

By a change of variables in the first integral and using the fact that
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∂tφt(x) = −∂xφt(x)∂tφ−1
t (y)|y=φt(x),

we get, ∀x ∈ Ω,

∫ 1

0

[∫

Ω

∇ε(η)(φt(x)) · ∂tφt(x)ψ(x)dx
]
dt =

−
∫ 1

0

∫

Ω

∇ε(η)(y) ·
[
∂xφt(φ

−1
t (y))∂tφ

−1
t (y)

]
| det ∂xφ−1

t (y)|ψ
(
φ−1
t (y)

)
dydt .

Here, det denotes the determinant of a matrix. Since

∀ (y, t) ∈ Ω × [0, 1], ∂tφ
−1
t (y) = u(y),

∂yφ
−1
t (y) = I + t∇u(y),

and
∂xφt(φ

−1
t (y))∂yφ

−1
t (y) = I ,

we can write

∫ 1

0

∫

Ω

[
∇ε(η)(φt(x)) · ∂tφt(x)ψ(x)dx

]
dt =

−
∫ 1

0

∫

Ω

∇ε(η)(y) ·
[
(I + t∇u(y))−1

u(y)
]
| det I + t∇u(y)|ψ

(
φ−1
t (y)

)
dydt ,

and hence

∫

Ω

[
ε(η)u (x)− ε(η)(x) +∇ε(η)(x) · u(x)

]
ψ(x)dx =

∫ 1

0

∫

Ω

∇ε(η)(x) · u(x)
[
ψ(x)− ψ

(
φ−1
t (x)

) ]
dxdt

+

∫ 1

0

∫

Ω

∇ε(η)(x)·
([

(I + t∇u(x))−1 | det I + t∇u(x)| − I
]
u(x)

)
ψ
(
φ−1
t (x)

)
dxdt .

(22.7)

The first term in the right-hand side of (22.7) can be estimated as follows:

∣∣∣∣
∫ 1

0

∫

Ω

∇ε(η)(x) · u(x)
[
ψ(x)− ψ

(
φ−1
t (x)

) ]
dxdt

∣∣∣∣ ≤ ‖u‖2C0(Ω)d
‖∇ε(η)‖L1(Ω)d‖∇ψ‖C0(Ω)d .

Let trace denote the trace of a matrix. Using the fact that

(I + t∇u)−1
=
∑

i=0

(−1)i (t∇u)i ,

which follows from ||u||C1(Ω)d < 1, and
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det (I + t∇u) =





1− trace t∇u+ det t∇u if d = 2 ,

1 + trace t∇u− 1

2

[
(trace t∇u)2 − trace (t∇u)2

]
+ det t∇u if d = 3 ,

we get

∫ 1

0

∫

Ω

∇ε(η)(x)·u(x)
[
(I + t∇u(x))−1 | det I + t∇u(x)| − I

]
ψ
(
φ−1
t (x)

)
dxdt

≤ ‖u‖C0(Ω)d‖u‖C1(Ω)d‖∇ε(η)‖L1(Ω)d‖ψ‖C0(Ω) ,

which is the desired estimate for the second term in the right-hand side of
(22.7).

Now, we can deduce the final result by density when η → 0. Since u ∈
C1(Ω)d and ψ ∈ C1

0(Ω), we can write

∫

Ω

ψu · ∇ε(η) = −
∫

Ω

∇ · (ψu)ε(η).

Since ‖ε(η) − ε‖L1(Ω) → 0, we have

∫

Ω

∇ · (ψu)ε(η) →
∫

Ω

∇ · (ψu)ε .

As
∣∣ε(η)

∣∣
TV(Ω)

→
∣∣ε
∣∣
TV(Ω)

, we arrive at (22.5) and the proof of the proposition

is complete. ⊓⊔

22.3.2 Local Recovery Via Linearization

Assuming that ε ∈ SBV2(Ω), where SBV2(Ω) is defined by (22.4) for p = 2,
we can write

Dε = ∇εHd + [ε]SνSHd−1
S ,

where νS is the outward normal at the oriented surface S of discontinuity of
ε.

The data consists of ε and εu on Ω. In order to reconstruct u, we can use
the first order approximation of ε− εu,

ε− εu ≈ u ·Dε,

given by Proposition 22.5. These data can be decomposed into two parts:

u ·Dε(·) = u · ∇εHd + [ε]Su · νSHd−1
S = dregHd + dsingHd−1

S .

Let w be a mollifier supported on [−1, 1]. For any δ > 0, we define

wδ =
1

δd
w
( ·
δ

)
,
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and introduce

uδ(x) =

∫

Ω

u(y)wδ(|x− y|)dy.

Since u is smooth, for any x ∈ Ω, uδ(x) is a good approximation of u on the
ball with center x and radius δ.

We want to find an approximate value for uδ from the optical measure-
ments and use it as an initial guess in an optimization procedure. For doing
so, we introduce the functional Jx : Rd −→ R given by

u 7−→ Jx(u) =

∫

Ω

|∇ε(y) · u− dreg(y)|2wδ(|x− y|)dy

+

∫

Ω

|[ε]Su · νS − dsing(y)|2wδ(|x− y|)dy

and look for minimizers of Jx in Rd. The gradient of Jx can be explicitly
computed as follows:

∇Jx(u) = 2

∫

Ω

(∇ε(y) · u− dreg(y))∇ε(y)wδ(|x− y|)dy

+ 2

∫

Ω

([ε]S(y)u · ν(y)− dsing(y)) [ε]S(y)ν(y)wδ(|x− y|)dy .

In the case where ε has no jumps, Jx is a quadratic functional and we have

∇Jx(u) = 0 (22.8)

if and only if
(∫

Ω

wδ(|x− y|)∇ε(y)∇εT (y)dy
)
u =

∫

x+δB

dreg(y)wδ(|x− y|)∇ε(y)dy ,
(22.9)

where B is the ball with center 0 and radius 1.

If the matrix

∫

Ω

wδ(|x− y|)∇ε(y)∇εT (y) is invertible, then the minimizer

is given by

u =

(∫

Ω

wδ(|x− y|)∇ε(y)∇εT (y)dy
)−1 ∫

x+δB

dregwδ(|x− y|)∇ε(y)dy .
(22.10)

The following proposition gives a sufficient condition for the invertibilty of the

matrix

∫

Ω

wδ(|x− y|)∇ε(y)∇εT (y).

Proposition 22.6 Suppose that ε is smooth enough and d = 2. Assume x+
δB ⊂ Ω. Then, if all vectors ∇ε in {y : wδ(|y − x|) 6= 0} are not collinear,
the matrix ∫

Ω

wδ(|x− y|)∇ε(y)∇εT (y)dy

is invertible.
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Proof. Writing

∀ y ∈ x+ δB, ∇ε(y) = u(y)e1 + v(y)e2,

where {e1, e2} is the canonical basis of R2, it follows that

∇ε∇εT (y) = u2(y)e1e
T
1 +v

2(y)e2e
T
2 +u(y)v(y)

(
e1e

T
2 + e2e

T
1

)
, ∀ y ∈ x+δB .

Computing the convolution with respect to wδ, we get

∫

Ω

wδ(|y − y|)∇ε(y)∇εT (y)dy =

(∫

Ω

u2(y)wδ(|y − x|)dy
)
e1e

T
1

+

(∫

Ω

v2(y)wδ(|y − x|)dy
)
e2e

T
2 +

(∫

Ω

u(y)v(y)wT
δ (|y − x|)dy

)(
e1e

T
2 + e2e

T
1

)
.

This matrix is not invertible if and only if

(∫

Ω

u2(y)wδ(|y − x|)dy
)(∫

Ω

v2(y)wδ(|y − x|)dy
)

=

(∫

Ω

u(y)v(y)wδ(|y − x|)dy
)2

,

which is exactly the equality case in weighted Cauchy–Schwarz inequality. So,
if there exist two points y1, y2 ∈ {y : wδ(|y − x|) 6= 0} such that

∇ε(y1)×∇ε(y2) 6= 0 ,

then u is not proportional to v, and the matrix is invertible. ⊓⊔

Remark 22.7 Assuming that ∇ε(y) 6= 0 for y ∈ x + δB ⊂ Ω, Proposition

22.6 gives that the direction of
∇ε
|∇ε| in not constant in x + δB ⊂ Ω if and

only if ∫

x+δB

∇ε(y)∇εT (y)dy is invertible.

Hence, under the above condition on ε in the neighborhood x + δB, the dis-
placement field u at x can be approximately reconstructed.

Remark 22.8 By exactly the same arguments as those in two dimensions,
one can prove that in the three-dimensional case, if all vectors ∇ε in {y : wδ(|y−
x|) 6= 0} are not coplanar, then the matrix

∫

Ω

wδ(|x− y|)∇ε(y)∇εT (y)dy

is invertible.
On the other hand, in the case where ε is piecewise smooth, one can first

detect the surface of jumps of ε using, for example, an edge detection algorithm
[121, 278] and then apply the proposed local algorithm in order to have a good
approximation of u in the domains where ε is smooth.
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22.3.3 Minimization of the Discrepancy Functional

Let ε ∈ Ck,α
S

(
Ω
)
, where S is the surface of discontinuity. For the sake of

simplicity we assume that Ω\S is the union of two connected domains Ω1∪Ω2.
Therefore, ε can be written as

ε = ε1χΩ1 + ε2χΩ2 (22.11)

with εi ∈ C1(Ωi) for i = 1, 2.
Denote u∗ the applied (true) displacement on Ω (as defined in (22.1)) and

ε̃ the measured deformed optical image given by

ε̃ = ε ◦ (I + u∗)−1
.

Recall that a non-differentiable functional u 7→ I(u) has a nonempty subgra-
dient if there exists ξ such that

I(u+ h)− I(u) ≥ (ξ, h) , (22.12)

holds for ||h|| small enough, which means that ξ ∈ ∂I with ∂I being the
subgradient of I. In order to minimize I, it is sufficient to find one ξ ∈ ∂I; see
[139].

The following result holds.

Proposition 22.9 Let ε verify (22.11), u∗ ∈ C1(Ω)d be the solution of (22.1),

and ε̃ = ε ◦ (I + u∗)−1
. Suppose that Ω2 ⋐ Ω. Then, the functional I defined

by
I : C1(Ω)d −→ R,

u 7−→ I(u) =

∫

Ω

|ε̃ ◦ (I + u)− ε|2 dx
(22.13)

has a nonempty subgradient. Let ξ in the dual of C1(Ω)d be given by

ξ : h 7→ 2

∫

Ω

[ε̃(x+ u)− ε(x)]h(x) ·Dε̃ ◦ (I + u)(x) dx . (22.14)

For ||h||C1(Ω)d small enough, (22.12) holds with ( , ) being the duality product

between C1(Ω)d and its dual.

Remark 22.10 It is worth emphasizing that if ε has no jump, then I is
Fréchet differentiable and ξ is its Fréchet derivative.

Remark 22.11 Under the assumptions of Proposition 22.9, if u∗ is small
enough (in C1-norm), then ε̃ = ε ◦ (I + u∗)−1

can be written as

ε̃ = ε̃1 + ε̃2χΩ̃2
(22.15)

with ε̃1 ∈ C1(Ω) and ε̃2 ∈ C1
0(Ω). In what follows, we shall define Ω̃i =

(I + u∗) (Ωi) and f̃i = εi ◦ (I + u∗)−1
. To do so, we extend f̃1 into a function
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ε̃1 defined on the whole domain such that ε̃1 ∈ C1(Ω) and ε̃1
∣∣
Ω̃1

= f̃1. Then,

we set ε̃2 = f̃2 − ε̃1 on Ω̃2. Finally, we extend ε̃2 into a compactly supported
C1-function on the whole domain Ω.

We first prove the following lemma.

Lemma 22.12 Let u, h ∈ C1(Ω)d and let ε̃ be as in (22.15). Then, for ‖u−
u∗‖C1(Ω)d and ‖h‖C1(Ω)d small enough, we have

∫

Ω

[ε̃(x+ u+ h)− ε̃(x+ u)]
2
dx =

∫

Ω

ε̃22(x+u)|h·ν|δ∂Ω̃2
(x+u) dx+o(‖h‖C1(Ω)d) ,

(22.16)

where δ∂Ω̃2
is the Dirac distribution on ∂Ω̃2 and ε̃2 is defined in Remark 22.11.

Proof. We start by decomposing ε̃ as follows:

∫

Ω

[ε̃(x+ u+ h)− ε̃(x+ u)]
2
dx =

∫

Ω

[(
ε̃1(x+u+h)−ε̃1(x+u)

)
+
(
ε̃2(x+u+h)χΩ̃2

(x+u+h)−ε̃2(x+u)χΩ̃2
(x+u)

)]2
dx .

Now, by developing the square, the first term can be estimated by

∣∣∣∣
∫

Ω

(
ε̃1(x+ u+ h)− ε̃1(x+ u)

)2
dx

∣∣∣∣ ≤ ‖ε̃1‖2C1(Ω)‖h‖2C1(Ω)d .

Next, we write

ε̃2(x+u+h)χΩ̃2
(x+u+h)−ε̃2(x+u)χΩ̃2

(x+u) = [ε̃2(x+ u+ h)− ε̃2(x+ u)]χΩ̃2
(x+u+h)

+
[
χΩ̃2

(x+ u+ h)− χΩ̃2
(x+ u)

]
ε̃2(x+ u) .

Since (ε̃1(x+ u+ h)− ε̃1(x+ u)) ε̃2(x+ u) ∈ C1
0(Ω), Proposition 22.5 yields

∣∣∣∣
∫

Ω

[
ε̃1(x+ u+ h)− ε̃1(x+ u)

] [
χΩ̃2

(x+ u+ h)− χΩ̃2
(x+ u)

]
ε̃2(x+ u) dx

∣∣∣∣

≤ C

(∫

Ω

[h · ∇ε̃1(x+ u)]
2
dx

)1/2([∫

Ω

[h · νε̃2(x+ u)]
2
δ∂Ω̃2

(x+ u) dx

]
+ o(‖h‖C1(Ω)d)

)1/2

≤ C‖h‖2C1(Ω)d .

We now need to handle the last term
∫

Ω

( [
χΩ̃2

(x+ u+ h)− χΩ̃2
(x+ u)

]
ε̃2(x+ u)

)2
dx

=

∫

Ω

∣∣∣χΩ̃2
(x+ u+ h)− χΩ̃2

(x+ u)
∣∣∣ ε̃2(x+ u)2 dx .
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Using Proposition 22.5, we obtain that
∫

Ω

( ∣∣∣χΩ̃2
(x+ u+ h)− χΩ̃2

(x+ u)
∣∣∣ ε̃2(x+u)

)2
dx =

∫

Ω

ε̃22(x+u)|h·ν|δ∂Ω̃2
(x+u) dx+o(‖h‖C1(Ω)d) ,

which completes the proof of the lemma. ⊓⊔
We are now ready to prove Proposition 22.9.
Proof of Proposition 22.9. If u ∈ C1(Ω)2 and h ∈ C1(Ω)2, then we have

I(u+h)−I(u) =
∫

Ω

[ε̃(x+ u+ h) + ε̃(x+ u)− 2ε(x)] [ε̃(x+ u+ h)− ε̃(x+ u)] dx ,

and hence,

I(u+ h)− I(u) =

∫

Ω

[ε̃(x+ u+ h)− ε̃(x+ u)]
2
dx

+ 2

∫

Ω

[ε̃(x+ u)− ε(x)] [ε̃(x+ u+ h)− ε̃(x+ u)] dx .

For any η > 0, let g(η) be a smooth, compactly supported function such that

‖g(η)−[ε̃ ◦ (I + u)− ε] ‖L2(Ω) < η and
∣∣∣∣g(η)

∣∣
TV(Ω)

−
∣∣ε̃◦(I+u)−ε

∣∣
TV(Ω)

∣∣ < η ;

see [22].
Now, we write

∫

Ω

[ε̃(x+ u)− ε(x)] [ε̃(x+ u+ h)− ε̃(x+ u)] dx

=

∫

Ω

gη(x) [ε̃(x+ u+ h)− ε̃(x+ u)] dx

+

∫

Ω

[ε̃(x+ u)− ε(x)− gη(x)] [ε̃(x+ u+ h)− ε̃(x+ u)] dx .

Let τh be the translation operator. Then, τh satisfies, for any h ∈ C1(Ω)d,

‖τh[f ]− f‖Lp ≤ C(f)‖h‖C1(Ω)d , ∀ f ∈ SBVp(Ω). (22.17)

Using the Cauchy–Schwarz inequality, we get
∣∣∣∣
∫

Ω

[ε̃(x+ u)− ε(x)− gη(x)] [ε̃(x+ u+ h)− ε̃(x+ u)] dx

∣∣∣∣ ≤ Cη‖h‖C1(Ω)d ,

(22.18)
where C is a constant depending on ε̃, u, and Ω.

We know that for a certain function ρ such that ρ(s) → 0 when s→ 0,
∣∣∣∣
∫

Ω

gη(x) [ε̃(x+ u+ h)− ε̃(x+ u)] dx−
∫

Ω

gη(x)h(x) ·D (ε̃ ◦ (I + u)) dx

∣∣∣∣
≤ ‖h‖C1(Ω)dρ(‖h‖C1(Ω)d) .

(22.19)
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Now, we have the following estimate:
∣∣∣∣
∫

Ω

gη(x)h(x)·D (ε̃ ◦ (I + u)) dx−
∫

Ω

[ε̃(x+u)−ε(x)]h(x)·D (ε̃ ◦ (I + u)) dx

∣∣∣∣ ≤ C ′η‖h‖C1(Ω)d .

(22.20)

Indeed, since ε̃ ∈ Ck,α
S

(
Ω
)
⊂ SBV(Ω), ε̃ ◦ (I + u) ∈ SBV(Ω) and we can

write the following decomposition of D (ε̃ ◦ (I + u)) into a continuous part
and a jump part on a rectifiable surface S,

D (ε̃ ◦ (I + u)) = ∇ (ε̃ ◦ (I + u))Hd + [ε̃ ◦ (I + u)]νSHd−1
S ,

we have that
∣∣∣∣
∫

Ω

[
gη(x)− [ε̃(x+ u)− ε(x)]

]
h(x) · ∇ (ε̃ ◦ (I + u)) (x) dx

∣∣∣∣ ≤ C1η‖h‖C1(Ω)d .

For the jump part, since S is a rectifiable surface and the function fη =
gη − [ε̃ ◦ (I + u) − ε] is piecewise continuous, it is possible to define a trace
fη|S on the surface S satisfying

‖fη|S‖L1(S) ≤ C2‖fη‖L1(Ω)

for some positive constant C2 depending only on S and Ω. Then we get
∣∣∣∣
∫

S

fηh(x) · [ε̃ ◦ (I + u)]νSHd−1
S

∣∣∣∣ ≤ C3η‖h‖C1(Ω)d

for some positive constant C3 independent of η and h.
Now, the last term

∫
Ω
[ε̃(x+ u+ h)− ε̃(x+ u)]

2
can be handled using

Lemma 22.12. Doing so, we obtain
∫

Ω

[ε̃(x+ u+ h)− ε̃(x+ u)]
2
=

∫

Ω

ε̃22(x+u)|h · ν|δ∂Ω̃2
(x+u)+ o(‖h‖C1(Ω)d) .

(22.21)
Combining (22.18), (22.19), (22.20), and (22.21), we get that for every η > 0,

∣∣∣∣I(u+h)−I(u)−2

∫

Ω

[ε̃(x+u)−ε(x)]h(x)·Dε̃◦(I+u)(x) dx−
∫

Ω

ε̃22(x+u)|h·ν|δ∂Ω̃2
(x+u) dx

∣∣∣∣

≤ C4‖h‖C1(Ω)d

(
ρ(‖h‖C1(Ω)d) + η

)

for some positive constant C4 independent of h and η.
Finally, it follows that

I(u+ h)− I(u) = (ξ, h) +

∫

Ω

ε̃22(x+ u)|h · ν|δ∂Ω̃2
(x+ u) dx+ o(‖h‖C1(Ω)d) ,

where ξ is defined by (22.14). Hence, either

∫

Ω

ε̃22(x+ u)|h · ν|δ∂Ω̃2
(x+ u) dx

is of order of ‖h‖C1(Ω)d and we get
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I(u+ h)− I(u) ≥ (ξ, h)

for ‖h‖C1(Ω)d small enough or

∫

Ω

ε̃22(x+u)|h ·ν|δ∂Ω̃2
(x+u) dx = o(‖h‖C1(Ω)d)

and in this case, I is Fréchet differentiable and ξ is its Fréchet derivative. The
proof of Proposition 22.9 is then complete. �

Remark 22.13 The minimization of the functional I gives a reconstruction
of u∗ on a subdomain Ω ⊂ Ω0. In practical conditions, since u∗ is small, Ω
is almost the whole domain Ω0. The values of u∗ on the boundary are known
and, since u∗ is of class C1, it is possible to deduce the values of u∗ on Ω0 \Ω
by interpolation.

22.4 Reconstruction of the Shear Modulus

The problem is now to recover the function µ the reconstructed internal data
u. For doing so, we use the method described in Chapter 21. We introduce
the operator F

u = F [µ] =





∇ ·
(
µ(∇u+∇uT )

)
+∇p = 0 in Ω0 ,

∇ · u = 0 in Ω0 ,

u = f on ∂Ω0 ,

and minimize the function K given by

C0,1(Ω0) −→ R

µ 7−→ K[µ] =

∫

Ω

|F [µ]− u|2 dx .

According to Theorem 21.1, K is Fréchet differentiable and its gradient can
be explicitly computed. Let v be the solution of





∇ ·
(
µ(∇v +∇vT )

)
+∇q = (F [µ]− u) in Ω0 ,

∇ · v = 0 in Ω0 ,

v = 0 on ∂Ω0 .

Then,

∇K(µ)[h] =

∫

Ω0

h(∇v +∇vT ) : (∇u+∇uT ) dx .

The gradient descent method described in Algorithm 21.2.2 can be applied in
order to reconstruct µ from u.
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22.5 Numerical Illustrations

We take Ω = [0, 1]2 and discretize it on a 300× 300 grid, and use Algorithm
4.2 to generate a random Gaussian process to model the optical image ε of
the medium as shown in Figure 22.1. Given a shear modulus µ map on Ω
(see Figure 22.5 (left)), we solve (22.1) on Ω via a finite element method
and compute the displacement field u. We then compute the displaced optical
image εu by using a spline interpolation approach and proceed to recover the
shear modulus from the data ε and εu on the grid by the method described
in this chapter.

Using (22.10), we first compute the initial guess uδ for the displacement
field as the least-square solution to minimization of Jx. Figure 22.2 shows the
kernel wδ used to compute uδ. As one can see, δ needs to be large enough so the
matrix wδ ⋆

(
∇ε∇εT

)
is invertible at each point x, which is basically saying

that δ must be bigger than the correlation length of ε. Figure 22.3 shows
the conditioning of the matrix wδ ⋆

(
∇ε∇εT

)
. Figure 22.4 shows the true

displacement u∗, the result of the first order approximation (i.e., the initial
guess) uδ and then the result of the optimization process using a gradient
descent method to minimize the discrepancy functional I.

Once the displacement inside the domain is reconstructed, we can recover
the shear modulus µ, as shown in Figure 22.5. We reconstruct µ by minimizing
the functional K and using a gradient descent-type method. Note that gradient
of K is computed with the adjoint state method, described previously. As it
can be seen in Figure 22.5, the reconstruction is very accurate but not so
perfect on the boundaries of Ω, which is due to the poor estimation of u on
∂Ω.
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Fig. 22.1. Optical image ε of the medium.
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Fig. 22.2. Averaging kernel wδ.
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Fig. 22.3. Conditioning of the matrix wδ ⋆∇ε∇εT .

22.6 Concluding Remarks

In this chapter, we developed an efficient algorithm which gives access not only
to stiffness quantitative information of biological tissues but also opens the
way to other contrasts such as mechanical anisotropy. In the heart, the muscle
fibers have anisotropic mechanical properties. It would be very interesting to
detect a change in fiber orientation using OCT elastographic tomography.
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Fig. 22.4. Displacement field and its reconstruction.
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23

Effective Electrical Tissue Properties

23.1 Introduction

This chapter aims at analytically exhibiting the fundamental mechanisms un-
derlying the fact that effective biological tissue electrical properties and their
frequency dependence reflect the tissue composition and physiology. For do-
ing so, a homogenization theory is derived to describe the effective admittiv-
ity of cell suspensions. A formula is reported for dilute cases that gives the
frequency-dependent effective admittivity with respect to the membrane po-
larization. Different microstructures are shown to be distinguishable via spec-
troscopic measurements of the overall admittivity using the spectral properties
of the membrane polarization. The Debye relaxation times associated with the
membrane polarization tensor are shown to be able to give the microscopic
structure of the medium. A natural measure of the admittivity anisotropy is
introduced and its dependence on the frequency of applied current is derived.
A Maxwell-Wagner-Fricke formula is given for concentric circular cells.

The electric behavior of biological tissue under the influence of an electric
field at frequency ω can be characterized by its frequency-dependent effective
admittivity kef := σef (ω) + iωεef (ω), where σef and εef are respectively its
effective conductivity and permittivity. Electrical impedance spectroscopy as-
sesses the frequency dependence of the effective admittivity by measuring it
across a range of frequencies from a few Hz to hundreds of MHz. Effective
admittivity of biological tissues and its frequency dependence vary with tis-
sue composition, membrane characteristics, intra-and extra-cellular fluids and
other factors. Hence, the admittance spectroscopy provides information about
the microscopic structure of the medium and physiological and pathological
conditions of the tissue.

In this chapter, we consider a periodic suspension of identical cells of arbi-
trary shape. We apply at the boundary of the medium an electric field of fre-
quency ω. The medium outside the cells has an admittivity of k0 := σ0+ iωε0.
Each cell is composed of an isotropic homogeneous core of admittivity k0 and
a thin membrane of constant thickness δ and admittivity km := σm + iωεm.
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The thickness δ is considered to be very small relative to the typical cell size
and the membrane is considered very resistive, i.e., σm ≪ σ0. In this con-
text, the potential in the medium passes an effective discontinuity over the
cell boundary; the jump is proportional to its normal derivative with a coef-
ficient of the effective thickness, given by δk0 /km. The normal derivative of
the potential is continuous across the cell boundaries.

We use homogenization techniques with asymptotic expansions to derive
a homogenized problem and to define an effective admittivity of the medium.
We prove a rigorous convergence of the original problem to the homogenized
problem via two-scale convergence. For dilute cell suspensions, we use layer
potential techniques to expand the effective admittivity in terms of cell volume
fraction. Through the effective thickness, δ k0/km, the first-order term in this
expansion can be expressed in terms of a membrane polarization tensor, M ,
that depends on the operating frequency ω. We retrieve the Maxwell-Wagner-
Fricke formula for concentric circular-shaped cells. This explicit formula has
been generalized in many directions: in three dimension for concentric spher-
ical cells; to include higher power terms of the volume fraction for concentric
circular and spherical cells; and to include various shapes such as concentric,
confocal ellipses and ellipsoids; see [83, 84, 172, 173, 174, 265, 317, 318, 320].

The imaginary part ofM is positive for δ small enough. Its two eigenvalues
are maximal for frequencies 1/τi, i = 1, 2, of order of a few MHz with phys-
ically plausible parameters values. This dispersion phenomenon well known
by the biologists is referred to as the β-dispersion. The associated charac-
teristic times τi correspond to Debye relaxation times. Given this, we show
that different microscopic organizations of the medium can be distinguished
via τi, i = 1, 2, alone. The relaxation times τi are computed numerically for
different configurations: one circular or elliptic cell, two or three cells in close
proximity. The obtained results illustrate the viability of imaging cell suspen-
sions using the spectral properties of the membrane polarization. The Debye
relaxation times are shown to be able to give the microscopic structure of the
medium.

The chapter is organized as follows. Section 23.2 introduces the problem
settings and state our main results. Section 23.3 is devoted to the analysis of
the problem. We prove existence and uniqueness results and establish useful
a priori estimates. In section 23.4 we consider a periodic cell suspension and
derive spectral properties of the overall conductivity. In section 23.5 we con-
sider the problem of determining the effective property of a suspension of cells
when the volume fraction goes to zero. In section 23.6 we provide numerical
examples that support our findings. A few concluding remarks are given in
the last section. For simplicity, we only treat the two-dimensional case. Our
results in this chapter are from [48].
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23.2 Problem Settings and Main Results

The aim of this section is to introduce the problem settings and state the
main results of this chapter.

23.2.1 Periodic Domain

We consider the probe domain Ω to be a bounded open set of R2 of class C2.
The domain contains a periodic array of cells whose size is controlled by ǫ.
Let C be a C2,η domain being contained in the unit square Y = [0, 1]2, see
Figure 23.1. Here, 0 < η < 1 and C represents a reference cell. We divide the
domain Ω periodically in each direction in identical squares (Yǫ,n)n of size ǫ,
where

Yǫ,n = ǫn+ ǫY .

Here, n ∈ Nǫ :=
{
n ∈ Z2 : Yǫ,n ∩Ω 6= ∅

}
.

We consider that a cell Cǫ,n lives in each small square Yǫ,n. As shown in

Figure 23.4, all cells are identical, up to a translation and scaling of size ǫ, to
the reference cell C:

∀n ∈ Nǫ, Cǫ,n = ǫn+ ǫ C .

So are their boundaries (Γǫ,n)n∈Nǫ
to the boundary Γ of C:

∀n ∈ Nǫ, Γǫ,n = ǫn+ ǫ Γ .

Let us also assume that all the cells are strictly contained in Ω, that is
for every n ∈ Nǫ, the boundary Γǫ,n of the cell Cǫ,n does not intersect the
boundary ∂Ω:

∂Ω ∩ (
⋃

n∈Nǫ

Γǫ,n) = ∅.

23.2.2 Electrical Model of the Cell

In this section we consider the reference cell C immersed in a domain D. We
apply a sinusoidal electrical current g ∈ L2

0(∂D) with angular frequency ω at
the boundary of D.

The medium outside the cell, D \ C, is a homogeneous isotropic medium
with admittivity k0 := σ0 + iωε0. The cell C is composed of an isotropic
homogeneous core of admittivity k0 and a thin membrane of constant thickness
δ with admittivity km := σm + iωεm. We make the following assumptions :

σ0 > 0, σm > 0, ε0 > 0, εm ≥ 0 .

If we apply a sinusoidal current ℜ(g(x)eiωt) on the boundary ∂D in the
low frequency range 10 MHz, the resulting potential has the form ℜ(ǔ(x)eiωt)
where the complex-valued time-harmonic field ǔ satisfies
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∇ · (k0 + (km − k0)χ(Γ
δ))∇ǔ) = 0 in D ,

k0
∂ǔ

∂ν
= g on ∂D ,

with Γ δ := {x ∈ C : dist(x, Γ ) < δ} and χ(Γ δ) is the characteristic function
of the set Γ δ.

The membrane thickness δ is considered to be very small compared to the
typical size ρ of the cell, i.e., δ/ρ≪ 1. According to the transmission condition,

the normal component of the current density k0
∂ǔ

∂ν
can be approximately

regarded as continuous across the thin membrane Γ .

We set β :=
δ

km
. Since the membrane is very resistive, i.e., σm/σ0 ≪ 1,

the potential ǔ in D undergoes a jump across the cell membrane Γ , which can

be approximated at first order by βk0
∂ǔ

∂ν
.

More precisely, we approximate ǔ by u defined as the solution of the fol-
lowing equations [296, 297]:





∇ · k0∇u = 0 in D \ C ,

∇ · k0∇u = 0 in C ,

k0
∂u

∂ν

∣∣∣
+
= k0

∂u

∂ν

∣∣∣
−

on Γ ,

u|+ − u|− − βk0
∂u

∂ν
= 0 on Γ ,

k0
∂u

∂ν

∣∣∣
∂D

= g,

∫

∂D

g(x)ds(x) = 0,

∫

D\C
u(x)dx = 0 .

(23.1)

Equation (23.1) is the starting point of our analysis.

For any open setB in R2, we denote W̃ 1,2(B) the Sobolev spaceW 1,2(B)/C,
which can be represented as

W̃ 1,2(B) =

{
u ∈W 1,2(B) :

∫

B

u(x)dx = 0

}
.

Let D+ = D \ C and D− = C. The following result holds.

Lemma 23.1 There exists a unique solution u := (u+, u−) in W̃ 1,2(D+) ×
W 1,2(D−) to (23.1).

Proof. To prove the well-posedness of (23.1) we introduce the following Hilbert

space: V := W̃ 1,2(D+)×W 1,2(D−) equipped with the following natural norm
for our problem:
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Fig. 23.1. Schematic illustration of a unit period Y .

‖u‖V = ‖∇u+‖L2(D+) + ‖∇u−‖L2(D−) + ‖u+ − u−‖L2(Γ ), ∀u ∈ V .

We write the variational formulation of (23.1) as follows:

Findu ∈ V such that for all v := (v+, v−) ∈ V :





∫

D+

k0∇u+(x) · ∇v−(x) dx+

∫

D−

k0∇u+(x) · ∇v−(x) dx

+
1

βk0

∫

Γ

(u+ − u−)(v+ − v−) dσ(x) =
1

k0

∫

∂D

gv dσ(x) .

Since ℜ(k0) = σ0 > 0 and ℜ( 1

βk0
) =

σmσ0 + εmε0
δ|k0|

> 0, we can apply Lax-

Milgram theory to obtain existence and uniqueness of a solution to problem
(23.1). ⊓⊔

We conclude this subsection with a few numerical simulations to illustrate
the typical profile of the potential u. We consider an elliptic domain D in
which lives an elliptic cell. We choose to virtually apply at the boundary of
D an electrical current g = ei30r.

We use for the different parameters the following realistic values:
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• the typical size of eukaryotes cells: ρ ≃ 10− 100 µm;
• the ratio between the membrane thickness and the size of the cell: δ/ρ =

0.7 · 10−3;
• the conductivity of the medium and the cell: σ0 = 0.5 S.m−1;
• the membrane conductivity: σm = 10−8 S.m−1;
• the permittivity of the medium and the cell: ε0 = 90× 8.85 · 10−12 F.m−1;
• the membrane permittivity: εm = 3.5× 8.85 · 10−12 F.m−1;
• the frequency: ω = 106 Hz.

Note that the assumptions of our model δ ≪ ρ and σm ≪ σ0 are verified.
The real and imaginary parts of u outside and inside the cell are repre-

sented in Figure 23.2.

0

0.1

0.2

0

0.1

0.2

0.3

Fig. 23.2. Real and imaginary parts of the potential u outside and inside the cell.

We can observe that the potential jumps across the cell membrane. We
plot the outside and inside gradient vector fields; see Figure 23.3.

23.2.3 Governing Equation

We denote by Ω+
ǫ the medium outside the cells and Ω−

ǫ the medium inside
the cells:

Ω+
ǫ = Ω ∩ (

⋃

n∈Nǫ

Yǫ,n \ Cǫ,n), Ω−
ǫ =

⋃

n∈Nǫ

Cǫ,n .

Set Γǫ :=
⋃

n∈Nǫ

Γǫ,n. By definition, the boundaries ∂Ω+
ǫ and ∂Ω−

ǫ of respec-

tively Ω+
ǫ and Ω−

ǫ satisfy:

∂Ω+
ǫ = ∂Ω ∪ Γǫ, ∂Ω−

ǫ = Γǫ .

We apply a sinusoidal current g(x) sin(ωt) at x ∈ ∂Ω, where g ∈ L2
0(∂Ω).

The induced time-harmonic potential uǫ in Ω satisfies:
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Fig. 23.3. Gradient vector fields of the real and imaginary parts of u.





∇ · k0∇u+ǫ = 0 in Ω+
ǫ ,

∇ · k0∇u−ǫ = 0 in Ω−
ǫ ,

k0
∂u+ǫ
∂ν

= k0
∂u−ǫ
∂ν

on Γǫ ,

u+ǫ − u−ǫ − ǫ βk0
∂u+ǫ
∂ν

= 0 on Γǫ ,

k0
∂u+ǫ
∂ν

∣∣∣
∂Ω

= g,

∫

∂Ω

g(x)ds(x) = 0,

∫

Ω+
ǫ

u+ǫ (x)dx = 0 ,

(23.2)

where uǫ =




u+ǫ in Ω+

ǫ ,

u−ǫ in Ω−
ǫ .

Note that the previously introduced constant β, i.e., the ratio between the
thickness of the membrane of C and its admittivity, becomes ǫβ. Because the
cells (Cǫ,n)n∈Nǫ

are in squares of size ǫ, the thickness of their membranes is

given by ǫδ and consequently, a factor ǫ appears.

23.2.4 Main Results

We set Y + := Y \C and Y − := C and assume that dist(Y −, ∂Y ) = O(1). We
introduce some function spaces, which will be very useful in the following:
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∂Ω
Γǫ (ǫδ, km)

Ω−
ǫ (k0)

Ω+
ǫ (k0)

Fig. 23.4. Schematic illustration of the periodic medium Ω.

• C∞
♯ (D) is the space of functions, which are Y - periodic and in C∞(D);

• L2
♯ (D) is the completion of C∞

♯ (D) in the L2-norm;

• W 1,2
♯ (D) is the completion of C∞

♯ (D) in the W 1,2-norm,

• W̃ 1,2
♯ =

{
u ∈W 1,2

♯ (D) :
∫
D
u = 0

}
;

• L2(Ω,W 1,2
♯ (D)) is the space of square integrable functions on Ω with

values in the space W 1,2
♯ (D);

• D(Ω) is the space of infinitely smooth functions with compact support in
Ω;

• D(Ω,C∞
♯ (D)) is the space of infinitely smooth functions with compact

support in Ω and with values in the space C∞
♯ ,

where D is Y, Y +, Y − or Γ .
We write the solution uǫ as

∀x ∈ Ω uǫ(x) = u0(x) + ǫu1(x,
x

ǫ
) + o(ǫ) (23.3)

with

y 7−→ u1(x, y)Y -periodic and u1(x, y) =

{
u+1 (x, y) inΩ × Y + ,

u−1 (x, y) inΩ × Y − .

Recall the definition of two-scale convergence and a few results of this
theory [17, 284].

Definition 23.2 A sequence of functions uǫ in L2(Ω) is said to two-scale
converge to a limit u0 belonging to L2(Ω × Y ) if, for any function ψ in
L2(Ω,C♯(Y )), we have
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lim
ǫ→0

∫

Ω

uǫ(x)ψ(x,
x

ǫ
)dx =

∫

Ω

∫

Y

u0(x, y)ψ(x, y)dxdy .

This notion of two-scale convergence makes sense because of the next com-
pactness theorem.

Theorem 23.3 From each bounded sequence uǫ in L2(Ω), we can extract a
subsequence, and there exists a limit u0 ∈ L2(Ω×Y ) such that this subsequence
two-scale converges to u0.

The following result holds.

Theorem 23.4 (i) The solution uε to (23.2) two-scale converges to u0 and
∇uǫ(x) two-scale converges to ∇u0(x)+χ(Y +)(y)∇yu

+
1 (x, y)+χ(Y

−)(y)∇yu
−
1 (x, y),

where χ(Y ±) are the characteristic functions of Y ±.

(ii) The function u0 in (23.3) is the solution in W̃ 1,2(Ω) to the following
homogenized problem:

{∇ ·K∗ ∇u0(x) = 0 inΩ ,

ν ·K∗∇u0 = g on ∂Ω ,
(23.4)

where K∗, the effective admittivity of the medium, is given by

∀(i, j) ∈ {1, 2}2, K∗
ij = k0

(
δij +

∫

Y

(χ(Y +)∇w+
i + χ(Y −)∇w−

i ) · ej
)
,

(23.5)
and the function (wi)i=1,2 are the solutions of the following cell problems:





∇ · k0∇(w+
i (y) + yi) = 0 in Y + ,

∇ · k0∇(w−
i (y) + yi) = 0 in Y − ,

k0
∂

∂ν
(w+

i (y) + yi) = k0
∂

∂ν
(w−

i (y) + yi) on Γ ,

w+
i − w−

i − βk0
∂

∂ν
(w+

i (y) + yi) = 0 on Γ ,

y 7−→ wi(y) Y -periodic.

(23.6)

(iii) Moreover, u1 can be written as

∀(x, y) ∈ Ω × Y, u1(x, y) =

2∑

i=1

∂u0
∂xi

(x)wi(y) . (23.7)

We define the integral operator LΓ : C2,η(Γ ) → C1,η(Γ ), with 0 < η < 1
by

LΓ [ϕ](x) =
1

2π

∫

Γ

∂2 log |x− y|
∂ν(x)∂ν(y)

ϕ(y)ds(y), x ∈ Γ . (23.8)
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LΓ is the normal derivative of the double layer potential on Γ = ∂Y −.
Since LΓ is positive, one can prove that the operator I+αLΓ : C2,η(Γ ) →

C1,η(Γ ) is a bounded operator and has a bounded inverse provided that ℜα >
0 [141, 283].

As the fraction f of the volume occupied by the cells goes to zero, we
derive an expansion of the effective admittivity for arbitrary shaped cells in
terms of the volume fraction. We refer to the suspension, as periodic dilute.
The following theorem holds.

Theorem 23.5 The effective admittivity of a periodic dilute suspension ad-
mits the following asymptotic expansion:

K∗ = k0

(
I + fM

(
I − f

2
M

)−1
)

+ o(f2) , (23.9)

where ρ =
√

|Y −|, f = ρ2,

M =

(
Mij = βk0

∫

ρ−1Γ

νjψ
∗
i (y)ds(y)

)

(i,j)∈{1,2}2

, (23.10)

and ψ∗
i is defined by

ψ∗
i = −

(
I + βk0Lρ−1Γ

)−1
[νi] . (23.11)

Note that ρ−1Γ is the rescaled membrane and therefore, M is independent of
ρ.

23.3 Analysis of the Problem

For a fixed ǫ, recall that W̃ 1,2(Ω+
ε ) denotes the Sobolev space W̃ 1,2(Ω+

ε ),
which can be represented as

W̃ 1,2(Ω+
ε ) =

{
u ∈W 1,2(Ω+

ε ) :

∫

Ω+
ε

u(x)dx = 0

}
. (23.12)

The natural functional space for (23.2) is

Wε :=
{
u = u+χ(Ω+

ǫ ) + u−χ(Ω−
ǫ ), u+ ∈ W̃ 1,2(Ω+

ε ), u− ∈W 1,2(Ω−
ε )
}
,

(23.13)
where χ(ω±

ǫ ) are the characteristic functions of the sets Ω±
ε . We can verify

that

‖u‖Wε =
(
‖∇u+‖2

L2(Ω+
ε )

+ ‖∇u−‖2
L2(Ω−

ε )
+ ǫ‖u+ − u−‖2L2(Γε)

) 1
2

(23.14)

defines a norm onWε. In fact, as it will be seen in Proposition 23.7, this norm
is equivalent to the standard norm on Wε which is

‖u‖
W̃ 1,2(Ω+

ε )×W 1,2(Ω−
ε )

=
(
‖∇u+‖2

L2(Ω+
ε )

+ ‖∇u−‖2
L2(Ω−

ε )
+ ‖u−‖2

L2(Ω−
ε )

) 1
2

.

(23.15)
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23.3.1 Existence and Uniqueness of a Solution

Problem (23.2) should be understood through its weak formulation as follows:
For a fixed ǫ > 0, find uε ∈Wε such that
∫

Ω+
ε

k0∇u+ε (x) · ∇v+(x)dx+
∫

Ω−
ε

k0∇u−ε (x) · ∇v−(x)ds(x)

+
1

ǫβ

∫

Γε

(u+ε − u−ε )(x)(v
+ − v−)(x)ds(x)

=

∫

∂Ω

g(x)v+(x)ds(x) ,

(23.16)

for any function v ∈Wε.
Define the sesquilinear form aǫ(·, ·) on Wǫ ×Wǫ by

aǫ(u, v) :=

∫

Ω+
ε

k0∇u+ · ∇v+dx+

∫

Ω−
ε

k0∇u− · ∇v−dx

+
1

ǫβ

∫

Γε

(u+ − u−)(v+ − v−)ds .
(23.17)

Associate the following antilinear form on Wǫ to the boundary data g:

ℓ(u) :=

∫

∂Ω

gu+ds. (23.18)

The forms aǫ and ℓ are bounded. Moreover, aǫ is coercive in the following
sense

ℜ k−1
0 aǫ(u, u) =

(∫

Ω+
ε

|∇u+|2dx+

∫

Ω−
ε

|∇u−|2dx
)
+

1

ǫβ′

∫

Γε

|u+ − u−|2ds

≥ C‖u‖2Wε
,

(23.19)
where β′ := δ(σ0σm + ω2ε0εm)/(σ2

m + ω2ε2m). Consequently, due to the Lax–
Milgram theorem we have existence and uniqueness for (23.2) for each fixed
ǫ. Note that C can be chosen independent of ǫ.

Proposition 23.6 Let g ∈ W 2
−1/2(∂Ω). There exists a unique uǫ ∈ Wε so

that
aǫ(uǫ, ϕ) = ℓ(ϕ), ∀ϕ ∈Wε. (23.20)

To end this subsection we remark that the two norms onWǫ are equivalent.

Proposition 23.7 The norm ‖ · ‖Wε is equivalent with the standard norm on

W̃ 1,2(Ω+
ε )×W 1,2(Ω−

ε ). Moreover, we can find two positive constants C1 < C2,
independent of ǫ, so that

C1‖u‖Wε
≤ ‖u‖

W̃ 1,2×W 1,2 ≤ C2‖u‖Wε
, (23.21)

for any u ∈ W̃ 1,2(Ω+
ε )×W 1,2(Ω−

ε ).
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Similar equivalence relation was established by Monsurrò [276], whose
method can be adapted easily to the current case. For the sake of complete-
ness, we present the details in Section 23.7.3.

23.3.2 Energy Estimate

For any sequence of ǫ → 0, by solving (23.2) we obtain the sequence uε =
u+ε χ(Ω

+
ǫ ) + u−ε χ(Ω

−
ǫ ). We obtain some a priori estimates for uε.

We first recall that the extension theorem (Theorem 23.26) yields a

Poincaré–Wirtinger inequality in W̃ 1,2(Ω+
ǫ ) with a constant independent of

ǫ. Indeed, Corollary 23.28 shows that for all v+ ∈ W̃ 1,2(Ω+
ǫ ), there exists a

constant C, independent of ǫ, such that

‖v+‖L2(Ω+
ǫ ) ≤ C‖∇v+‖L2(Ω+

ǫ ) .

Similarly, we can find a constant, independent of ǫ, by applying the trace
theorem in W 1,2(Ω+

ǫ ). Using Corollary 23.29, the following result holds.

Proposition 23.8 Let g ∈W 2
− 1

2

(∂Ω). Let Ω = Ω+
ε ∪Γε∪Ω−

ε . Then there ex-

ist constants C’s, independent of ǫ, such that the solution uε to (23.2) satisfies
the following estimates:

‖∇u+ε ‖L2(Ω+
ε ) + ‖∇u−ε ‖L2(Ω−

ε ) ≤ C|k0|−1‖g‖W 2
−1/2

(∂Ω) , (23.22)

‖u+ε − u−ε ‖L2(Γε) ≤ C|k0|−1
√
ǫβ′‖g‖W 2

−1/2
(∂Ω) . (23.23)

Proof. By taking ϕ = uε in (23.20), and taking the real part of resultant
equality, we get

‖∇u+ε ‖2L2(Ω+
ε )

+ ‖∇u−ε ‖2L2(Ω−
ε )

+ (ǫβ′)−1‖u+ε − u−ε ‖2L2(Γε)
= ℜk−1

0 (g, u+ε ) .

(23.24)

Here (g, u+ε ) =

∫

∂Ω

gu+ε ds is the pairing onW 2
−1/2(∂Ω)×W 2

1/2(∂Ω), for which

we have the estimate

|(g, u+ε )| ≤ ‖g‖W 2
−1/2

(∂Ω)‖u+ε ‖W 2
1/2

(∂Ω) ≤ C1‖g‖W 2
−1/2

(∂Ω)‖u+ε ‖W 1,2(Ω+
ε ) .

thanks to the Cauchy–Schwarz inequality and Corollary 23.29. C1 is here a
constant which does not depend on ǫ.

Applying Proposition 23.7 yields

|(g, u+ε )| ≤ C2‖g‖W 2
−1/2

(∂Ω)‖uε‖Wǫ
,

with a constant C2 independent of ǫ.
Using this in (23.24) along with the coercivity of a we get
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‖uε‖Wǫ
≤ C3|k0|−1‖g‖W 2

−1/2
(∂Ω) ,

where C3 is still independent of ǫ.
It follows also that

|(g, u+ε )| ≤ C2C3|k0|−1‖g‖W 2
−1/2

(∂Ω) .

Substituting this estimate into the right-hand side of (23.24), we get the
desired estimates. ⊓⊔

Next, we apply the extension theorem (Theorem 23.26) to obtain a
bounded sequence in W 1,2(Ω) for which we can extract a converging sub-
sequence.

Proposition 23.9 Suppose that the same conditions of the previous proposi-
tion hold. Let P ǫ : W 1,2(Ω+

ε ) → W 1,2(Ω) be the extension operator of Theo-
rem 23.26. Then we have

‖P ǫu+ε ‖W 1,2(Ω) ≤ C|k0|−1‖g‖W 2
−1/2

(∂Ω) , (23.25)

and

‖P ǫu+ε − uε‖L2(Ω) ≤ Cǫ|k0|−1(1 +
√
β′)‖g‖W 2

−1/2
(∂Ω) . (23.26)

Proof. The first inequality is a direct result of (23.52), (23.54) and (23.22).
For the second inequality, we have

‖P ǫu+ε − uε‖L2(Ω) = ‖P ǫu+ε − u−ε ‖L2(Ω−
ε )

≤ C
√
ǫ‖P ǫu+ε − u−ε ‖L2(Γε) + Cǫ‖∇(P ǫu+ε − u−ε )‖L2(Ω−

ε ) .

Here, we have used estimate (23.59). Now, ‖P ǫu+ε − u−ε ‖L2(Γε) = ‖u+ε −
u−ε ‖L2(Γε) is bounded in (23.23). The second term is bounded from above
by

Cǫ‖∇P ǫu+ε ‖L2(Ω−
ε ) + Cǫ‖∇u−ε ‖L2(Ω−

ε ) ≤ Cǫ(‖∇u+ε ‖L2(Ω+
ε ) + ‖∇u−ε ‖L2(Ω−

ε )) ,

where we have used again (23.52). This gives the desired estimates. ⊓⊔
Remark 23.10 As a consequence of the previous proposition, we get a se-
quence in W 1,2(Ω), namely P ǫu+ε , which is a good estimate of uε in L2(Ω)
and from which we can extract a subsequence weakly converging in W 1,2(Ω)
and strongly in L2(Ω).

23.4 Homogenization

We follow [20, 21] to derive a homogenized problem for the model with two-
scale asymptotic expansions and to prove a rigorous two-scale convergence.
In [276], the homogenization of an analogue problem is developed and proved
with another method.



394 23 Effective Electrical Tissue Properties

23.4.1 Two-Scale Asymptotic Expansions

We assume that the solution uǫ admits the following two-scale asymptotic
expansion

∀x ∈ Ω uǫ(x) = u0(x) + ǫu1(x,
x

ǫ
) + o(ǫ) ,

with

y 7−→ u1(x, y)Y -periodic and u1(x, y) =

{
u+1 (x, y) inΩ × Y + ,

u−1 (x, y) inΩ × Y − .

We choose a test function ϕǫ of the same form as uǫ:

∀x ∈ Ω, ϕǫ(x) = ϕ0(x) + ǫϕ1(x,
x

ǫ
)

with ϕ0 smooth in Ω, ϕ1(x, .) Y -periodic,

ϕ1(x, y) =

{
ϕ+
1 (x, y) inΩ × Y + ,

ϕ−
1 (x, y) inΩ × Y − ,

and ϕ±
1 smooth in Ω × Y ±.

In order to prove items (ii) and (iii) in Theorem 23.4, we perform an
asymptotic expansion of the variational formulation (23.20). We thus inject
these Ansätze in the variational formulation and only consider the order 0 of
the different integrals.

At order 0,

∇uǫ(x) = ∇u0(x) +∇yu1(x,
x

ǫ
) + o(ǫ).

Thanks to Lemma 23.11, we then have for the two first integrals:

∫

Ω+
ǫ

k0

(
∇u0(x) +∇yu

+
1 (x,

x

ǫ
)
)
·
(
∇ϕ0(x) +∇yϕ

+
1 (x,

x

ǫ
)
)
dx

=

∫

Ω

∫

Y +

k0
(
∇u0(x) +∇yu

+
1 (x, y)

)
·
(
∇ϕ0(x) +∇yϕ

+
1 (x, y)

)
dxdy + o(ǫ)

and
∫

Ω−
ǫ

k0

(
∇u0(x) +∇yu

−
1 (x,

x

ǫ
)
)
·
(
∇ϕ0(x) +∇yϕ

−
1 (x,

x

ǫ
)
)
dx

=

∫

Ω

∫

Y −

k0
(
∇u0(x) +∇yu

−
1 (x, y)

)
·
(
∇ϕ0(x) +∇yϕ

−
1 (x, y)

)
dxdy + o(ǫ) .
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We write the third integral in (23.17) as the sum, over all squares Yǫ,n, of
integrals on the boundaries Γǫ,n. We have

1

βǫ

∫

Γǫ

(
u+ǫ (x,

x

ǫ
)− u−ǫ (x,

x

ǫ
)
)(

ϕ+
ǫ (x,

x

ǫ
)− ϕ−

ǫ (x,
x

ǫ
)
)
ds(x)

=
1

βǫ

∑

n∈Nǫ

∫

Γǫ,n

(
u+ǫ (x,

x

ǫ
)− u−ǫ (x,

x

ǫ
)
)(

ϕ+
ǫ (x,

x

ǫ
)− ϕ−

ǫ (x,
x

ǫ
)
)
ds(x) .

Let x0,n be the center of Yǫ,n for each n ∈ Nǫ. We perform Taylor expan-
sions with respect to the variable x around x0,n for all functions (ui)i∈{1,2}
and (ϕi)i∈{1,2} on Yǫ,n. After the change of variables ǫ(y − y0,n) = x − x0,n,

we obtain that

uǫ(x) = u0(x0,n) + ǫu1(x, y) + ǫ(y − y0,n) · ∇u0(x0,n) + o(ǫ) ,

ϕǫ(x) = ϕ0(x0,n) + ǫϕ1(x, y) + ǫ(y − y0,n) · ∇ϕ0(x0,n) + o(ǫ) .

Consequently, the third integral in the variational formulation (23.20) be-
comes

ǫ2

β

∑

n∈Nǫ

∫

Γn

(
u+1 (x0,n, y)− u−1 (x0,n, y)

) (
ϕ+
1 (x0,n, y)− ϕ−

1 (x0,n, y)
)
ds(y) .

Finally, Lemma 23.11 gives us that

1

ǫβ

∫

Γǫ

(
u+ǫ − u−ǫ

) (
ϕ+
ǫ − ϕ−

ǫ

)
ds

=
1

β

∫

Ω

∫

Γ

(
u+1 (x, y)− u−1 (x, y)

) (
ϕ+
1 (x, y)− ϕ−

1 (x, y)
)
dxds(y) + o(ǫ) .

Moreover, we can easily see that
∫

∂Ω

gϕ+
ǫ ds =

∫

∂Ω

gϕ0ds+ o(ǫ) .

The order 0 of the variational formula is thus given by
∫

Ω

∫

Y +

k0
(
∇u0(x) +∇yu

+
1 (x, y)

)
·
(
∇ϕ0(x) +∇yϕ

+
1 (x, y)

)
dxdy

+

∫

Ω

∫

Y −

k0
(
∇u0(x) +∇yu

−
1 (x, y)

)
·
(
∇ϕ0(x) +∇yϕ

−
1 (x, y)

)
dxdy

+
1

β

∫

Ω

∫

Γ

(
u+1 (x, y)− u−1 (x, y)

) (
ϕ+
1 (x, y)− ϕ−

1 (x, y)
)
dxds(y)

−
∫

∂Ω

g(x)ϕ0(x)ds(x) = 0 .



396 23 Effective Electrical Tissue Properties

By taking ϕ0 = 0, it follows that

∫

Ω

∫

Y +

k0
(
∇u0(x) +∇yu

+
1 (x, y)

)
· ∇yϕ

+
1 (x, y)dxdy

+

∫

Ω

∫

Y −

k0
(
∇u0(x) +∇yu

−
1 (x, y)

)
· ∇yϕ

−
1 (x, y)dxdy

+
1

β

∫

Ω

∫

Γ

(
u+1 (x, y)− u−1 (x, y)

) (
ϕ+
1 (x, y)− ϕ−

1 (x, y)
)
dxds(y) = 0 ,

which is exactly the variational formulation of the cell problem (23.6) and
definition (23.7) of u1.

By taking ϕ1 = 0, we recover the variational formulation of the homoge-
nized problem (23.4):

∫

Ω

∫

Y +

k0
(
∇u0(x) +∇yu

+
1 (x, y)

)
· ∇ϕ0(x)dxdy

+

∫

Ω

∫

Y −

k0
(
∇u0(x) +∇yu

−
1 (x, y)

)
· ∇ϕ0(x)dxdy

−
∫

∂Ω

g(x)ϕ0(x)ds(x) = 0 .

The following lemma was used in the preceding proof. It follows from [20,
Lemma 3.1].

Lemma 23.11 Let f be a smooth function. We have

(i) ǫ2
∑

n∈Nǫ

∫

Γǫ,n

f(x0,n, y)ds(y) =

∫

Ω

∫

Γ

f(x, y)dxds(y) + o(ǫ) ;

(ii)

∫

Ω+
ǫ

f(x,
x

ǫ
) dx =

∫

Ω

∫

Y +

f(x, y) dxdy + o(ǫ)

and

∫

Ω−
ǫ

f(x,
x

ǫ
) dx =

∫

Ω

∫

Y −

f(x, y) dxdy + o(ǫ) .

We prove that the following lemmas hold.

Lemma 23.12 The homogenized problem admits a unique solution in W̃ 1,2(Ω).

Proof. The effective admittivity can be rewritten as

K∗
ij = k0

∫

Y +

(∇w+
i + ei) · (∇w+

j + ej)dx+ k0

∫

Y −

(∇w−
i + ei) · (∇w−

j + ej)dx

+
1

β

∫

Γ

(w+
i − w−

i )(w
+
j − w−

j )ds, i, j = 1, 2.
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Therefore, it follows that, for ξ = (ξ1, ξ2) ∈ R2,

K∗ξ · ξ = k0

∫

Y +

|∇w+ + ξ|2dx+ k0

∫

Y −

|∇w− + ξ|2dx+ 1

β

∫

Γ

|w+ −w−|2ds ,

where w =
∑

i ξiwi. Since ℜβ ≥ 0,

K∗ξ · ξ ≥ k0

∫

Y +

|∇w+ + ξ|2dx+ k0

∫

Y −

|∇w− + ξ|2dx .

Consequently, it follows from [18] that there exist two positive constants C1

and C2 such that
C1|ξ|2 ≤ ℜK∗ξ · ξ ≤ C2|ξ|2.

Standard elliptic theory yields existence and uniqueness of a solution to the
homogenized problem in W̃ 1,2(Ω). ⊓⊔

Lemma 23.13 The cell problem (23.6) admits a unique solution in W̃ 1,2
♯ (Y +)×

W 1,2
♯ (Y −).

Proof. Let us introduce the Hilbert space

W♯ :=
{
v := v+χ(Y +) + v−χ(Y −), (v+, v−) ∈ W̃ 1,2(Y +)×W 1,2(Y −)

}
,

equipped with the norm

‖v‖2W♯
= ‖∇v+‖2L2(Y +) + ‖∇v−‖2L2(Y −) + ‖v+ − v−‖2L2(Γ ) .

We consider the following problem:





Findwi ∈W♯ such that for allϕ ∈W♯

∫

Y +

k0∇w+
i (y) · ∇ϕ+(y)dy +

∫

Y −

k0∇w−
i (y) · ∇ϕ−(y)dy

+
1

β

∫

Γ

(
w+

i − w−
i

)
(y)
(
ϕ+ − ϕ−

)
(y)ds(y) =

−
∫

Y +

k0∇yi · ∇ϕ+(y)dy −
∫

Y −

k0∇yi · ∇ϕ−(y)dy .

(23.27)

Lax–Milgram theorem gives us existence and uniqueness of a solution.
Moreover, one can show that this ensures the existence of a unique solution
in W̃ 1,2

♯ (Y +)×W 1,2
♯ (Y −) for the cell problem (23.6). ⊓⊔

We present in the following numerical examples (Figures 23.5–23.8) the
real and imaginary parts of the solutions w1 and w2 of the cell problems.
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Fig. 23.5. Real and imaginary parts of the cell problem solution w1.

−0.1

0

0.1

−4

−2

0

2

4

·10−3

Fig. 23.6. Real and imaginary parts of the cell problem solution w2.

Fig. 23.7. Gradient vector field of the real and imaginary parts of w1.
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Fig. 23.8. Gradient vector field of the real and imaginary parts of w2.

23.4.2 Convergence

We present in this section a rigorous proof of the convergence of the original
problem to the homogenized one. We use for this purpose the two-scale con-
vergence technique and hence need first of all some bounds on uǫ to ensure
the convergence.

A Priori Estimates

Theorem 23.14 The function u+ǫ is uniformly bounded with respect to ǫ in
W 1,2(Ω+

ǫ ), i.e., there exists a constant C, independent of ǫ, such that

‖u+ǫ ‖W 1,2(Ω+
ǫ ) ≤ C .

Proof. Combining (23.22) and Poincaré - Wirtinger inequality, we obtain im-
mediately the wanted result. ⊓⊔

The proof of the following result follows the one of Lemma 2.8 in [276].

Lemma 23.15 There exists a constant C, which does not depend on ǫ, such
that for all v ∈Wε:

‖v−‖L2(Ω−
ǫ ) ≤ C‖v‖Wε .

Proof. We write the norm ‖v−‖L2(Ω−
ǫ ) as a sum over all the cells.

‖v−‖2
L2(Ω−

ǫ )
=
∑

n∈Nǫ

‖v−‖2
L2(Y −

ǫ,n)
=
∑

n∈Nǫ

∫

Y −
ǫ,n

|v−(x)|2dx .

We perform the change of variable y =
x

ǫ
and get
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‖v−‖2
L2(Ω−

ǫ )
= ǫ2

∑

n∈Nǫ

∫

Y −
n

|v−ǫ (y)|2dy , (23.28)

where v−ǫ (y) := v−(ǫy) for all y ∈ Y − and Y −
n = n+ Y − with n ∈ Nǫ.

Let W denote the following Hilbert space:

W :=
{
v := v+χ(Y +) + v−χ(Y −), (v+, v−) ∈ W̃ 1,2(Y +)×W 1,2(Y −)

}
,

equipped with the norm:

‖v‖2W = ‖∇v+‖2L2(Y +) + ‖∇v−‖2L2(Y −) + ‖v+ − v−‖2L2(Γ ) .

We first prove that there exists a constant C1, independent of ǫ, such that
for every v ∈W :

‖v−‖L2(Y −) ≤ C1‖v‖W . (23.29)

We proceed by contradiction. Suppose that for any n ∈ N∗, there exists
vn ∈W such that

‖v−n ‖L2(Y −) = 1 and ‖vn‖W ≤ 1

n
.

Since ‖v−n ‖L2(Y −) = 1 and ‖∇v−n ‖L2(Y −) ≤ ‖vn‖W ≤ 1

n
, v−n is bounded

in W 1,2(Y −). Therefore it converges weakly in W 1,2(Y −). By weak compact-
ness, we can extract a subsequence, still denoted v−n , such that v−n converges
strongly in L2(Y −). We denote by l its limit.

Besides, ∇v−n converges strongly to 0 in L2(Y −). We thus have ∇l = 0
and l constant in Y −.

By applying in Y + the trace theorem and Poincaré–Wirtinger inequality
to v+n , one also gets that

‖v−n ‖L2(Γ ) ≤ ‖v+n−v−n ‖L2(Γ )+‖v+n ‖L2(Γ ) ≤ ‖v+n−v−n ‖L2(Γ )+C‖v+n ‖W 1,2(Y +) ≤
C ′

n
.

Consequently, v−n converges strongly to 0 in L2(Γ ) and l = 0 on Γ .
We have then l = 0 in Y −, which leads to a contradiction. This proves

(23.29).
We can now find an upper bound to (23.28):

‖v−‖2
L2(Ω−

ǫ )
≤ ǫ2C1

∑

n∈Nǫ

∫

Y +
n

|∇v+ǫ (y)|2dy+
∫

Y −
n

|∇v−ǫ (y)|2dy+
∫

Γn

|v+ǫ (y)−v−ǫ (y)|2ds(y) .

After the change of variable x = ǫy, one gets

‖v−‖2
L2(Ω−

ǫ )
≤ ǫ C1

(
‖∇v+‖2

L2(Ω+
ǫ )

+ ‖∇v−‖2
L2(Ω−

ǫ )
+ ǫ‖v+ − v−‖2L2(Γǫ)

)
.
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Since ǫ < 1, there exists a constant C2, which does not depend on ǫ such
that for every v ∈Wε,

‖v−‖L2(Ω−
ǫ ) ≤ C2‖v‖Wε ,

which completes the proof. ⊓⊔

Theorem 23.16 u−ǫ is uniformly bounded in ǫ in W 1,2(Ω−
ǫ ), i.e., there exists

a constant C independent of ǫ, such that

‖u−ǫ ‖W 1,2(Ω−
ǫ ) ≤ C .

Proof. By definition of the norm on Wε , ‖∇u−ǫ ‖2L2(Ω−
ǫ )

≤ ‖uǫ‖2Wε
.

We thus have with the result of Lemma 23.15:

‖u−ǫ ‖2W 1,2(Ω−
ǫ )

≤ C1‖uǫ‖2Wε
(23.30)

with a constant C1 which does not depend on ǫ.
Furthermore, using the result of Theorem 23.14, there exists a constant

C2 independent of ǫ such that

|a(uǫ, uǫ)| ≤ C2 .

We use the coercivity of a and get a uniform bound in ǫ of uǫ in Wε. This

bound and (23.30) complete the proof. ⊓⊔

Two-Scale Convergence

We first extend two-scale convergence to sequences defined on periodic sur-
faces.

Proposition 23.17 For any sequence uǫ in L2(Γǫ) such that

ǫ

∫

Γǫ

|uǫ|2dx ≤ C , (23.31)

there exists a subsequence, still denoted uǫ, and a limit function u0 ∈ L2(Ω,L2(Γ ))
such that uǫ two-scale converges to u0 in the sense

lim
ǫ→0

ǫ

∫

Γǫ

uǫ(x)ψ(x,
x

ǫ
)ds(x) =

∫

Ω

∫

Γ

u0(x, y)ψ(x, y)dxds(y) ,

for any function ψ ∈ L2(Ω,C♯(Y )).

Remark 23.18 If uǫ and ∇uǫ are bounded in L2(Ω), one can prove by using
for example [19, Lemma 2.4.9] that uǫ verifies the uniform bound (23.31). The
two-scale limit on the surface is then the trace on Γ of the two-scale limit of
uǫ in Ω.
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In order to prove item (i) in Theorem 23.4, we need the following results.

Lemma 23.19 Let the functions (uǫ)ǫ be the sequence of solutions of (23.2).
There exist functions u(x) ∈ W 1,2(Ω), v+(x, y) ∈ L2(Ω,W 1,2

♯ (Y +)) and

v−(x, y) ∈ L2(Ω,W 1,2
♯ (Y −)) such that, up to a subsequence,




uǫ

χ(Ω+
ǫ )(

x

ǫ
)∇u+ǫ

χ(Ω−
ǫ )(

x

ǫ
)∇u−ǫ




two-scale converge to




u(x)

χ(ΩY +)(y)
(
∇u(x) +∇yv

+(x, y)
)

χ(ΩY −)(y)
(
∇u(x) +∇yv

−(x, y)
)



.

Proof. We denote by ·̃ the extension by zero of functions on Ω+
ǫ and Ω−

ǫ in
the respective domains Ω−

ǫ and Ω+
ǫ .

From the previous estimates, ũ±ǫ and ∇̃u±ǫ are bounded sequences in
L2(Ω). Up to a subsequence, they two-scale converge to τ±(x, y) and ξ±(x, y).

Since ũ±ǫ and ∇̃u±ǫ vanish in Ω∓
ǫ , so do τ± and ξ±.

Consider ϕ ∈ D(Ω,C∞
♯ (Y ))2 such that ϕ = 0 for y ∈ Y −. By integrating

by parts, it follows that

ǫ

∫

Ω+
ǫ

∇u+ǫ (x) ·ϕ(x,
x

ǫ
)dx = −

∫

Ω+
ǫ

u+ǫ (x)
(
∇y · ϕ(x,

x

ǫ
) + ǫ∇x · ϕ(x, x

ǫ
)
)
dx .

We take the limit of this equality as ǫ→ 0:

0 = −
∫

Ω

∫

Y +

τ+(x, y)∇y · ϕ(x, y)dxdy .

Therefore, τ+ does not depend on y in Y +, i.e., there exists a function
u+ ∈ L2(Ω) such that τ+(x, y) = χ(Y +)(y)u+(x) for all (x, y) ∈ Ω × Y .

Take now ϕ ∈ D(Ω,C∞
♯ (Y ))2 such that ϕ = 0 for y ∈ Y − and ∇y ·ϕ = 0.

Similarly, we have

∫

Ω+
ǫ

∇u+ǫ (x) · ϕ(x,
x

ǫ
)dx = −

∫

Ω+
ǫ

u+ǫ (x)∇x · ϕ(x, x
ǫ
)dx ,

and thus
∫

Ω

∫

Y +

ξ+(x, y) · ϕ(x, y)dxdy = −
∫

Ω

∫

Y +

u+(x)∇x · ϕ(x, y)dxdy . (23.32)

For ϕ independent of y, this implies that u+ ∈ W 1,2(Ω). Furthermore, if
we integrate by parts the right-hand side of (23.32), we get

∫

Ω

∫

Y +

ξ+(x, y) · ϕ(x, y)dxdy =

∫

Ω

∫

Y +

∇u+(x) · ϕ(x, y)dxdy ,
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for all ϕ ∈ D(Ω,C∞
♯ (Y +))2 such that ∇y · ϕ = 0 and ϕ(x, y) · ν(y) = 0 for y

on Γ .
Since the orthogonal of the divergence-free functions are exactly the gra-

dients, there exists a function v+ ∈ L2(Ω,W 1,2
♯ (Y +)) such that

ξ+(x, y) = χ(Y +)(y)
(
∇u+(x) +∇yv

+(x, y)
)
,

for all (x, y) ∈ Ω × Y .
Likewise, there exist functions u− ∈W 1,2(Ω) and v− ∈ L2(Ω,W 1,2

♯ (Y −))
such that

τ−(x, y) = χ(Y −)(y)u−(x), and ξ−(x, y) = χ(Y −)(y)
(
∇u−(x) +∇yv

−(x, y)
)
,

for all (x, y) ∈ Ω × Y .
Furthermore, thanks to Remark 23.18, we have also

ǫ

∫

Γǫ

u±ǫ (x)ϕ(x,
x

ǫ
)dx −−−→

ǫ→0

∫

Ω

∫

Γ

u±(x, y)ϕ(x, y)dxdy ,

for all ϕ ∈ L2(Ω,C∞
♯ (Γ )).

Recall that uǫ is a solution to the following variational form:
∫

Ω+
ǫ

k0∇u+ǫ (x) · ∇ϕ+
ǫ (x)dx+

∫

Ω−
ǫ

k0∇u−ǫ (x) · ∇ϕ−
ǫ (x)dx

+
1

ǫβ

∫

Γǫ

(
u+ǫ − u−ǫ

) (
ϕ+
ǫ − ϕ−

ǫ

)
ds− k0

∫

∂Ω

gϕ+
ǫ ds = 0 ,

for all (ϕ+
ǫ , ϕ

−
ǫ ) ∈ (W 1,2(Ω+

ǫ ),W 1,2(Ω−
ǫ )).

We multiply this equality by ǫ2 and take the limit when ǫ goes to 0. The
first two terms disappear and we obtain, for all (ϕ+, ϕ−) ∈ D(Ω,C∞

♯ (Y +))×
D(Ω,C∞

♯ (Y −)):

1

β

∫

Ω

∫

Γ

(u+(x)− u−(x))(ϕ+(x, y)− ϕ−(x, y))dxdy = 0 .

Thus u+(x) = u−(x) for all x ∈ Ω, and uǫ two-scale converges to u =
u+ = u− ∈W 1,2(Ω). This completes the proof. ⊓⊔

Now, we are ready to prove Theorem 23.4. For this, we need to show that
u = u0, that v

+ − u+1 is constant, and that v− − u−1 is constant, where u±1 is
defined in (23.7). The uniqueness of a solution for the homogenized problem
and the cell problems will then allow us to conclude the convergence, not only
up to a subsequence.

Proof of Theorem 23.4. We first want to retrieve the expression of u1 as a test
function of the derivatives of u0 and the cell problem solutions wi.
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We choose in the variational formulation (23.16) a function ϕǫ of the form

ϕǫ(x) = ǫϕ1(x,
x

ǫ
),

where ϕ1 ∈ D(Ω,C∞
♯ (Y +))×D(Ω,C∞

♯ (Y −)).

Lemma 23.19 shows the two-scale convergence of the following three terms:
∫

Ω+
ǫ

k0∇u+ǫ (x) · ∇ϕ+
ǫ (x)dx −−→

ǫ→0

∫

Ω

∫

Y +

k0
(
∇u(x) +∇yv

+(x, y)
)
· ∇yϕ

+

1
(x, y)dxdy

∫

Ω−
ǫ

k0∇u−ǫ (x) · ∇ϕ−

ǫ (x)dx −−→
ǫ→0

∫

Ω

∫

Y −

k0
(
∇u(x) +∇yv

−(x, y)
)
· ∇yϕ

−

1
(x, y)dxdy

∫

∂Ω

g(x)ϕ+
ǫ (x)ds(x) −−→

ǫ→0
0 .

We can not take directly the limit as ǫ→ 0 in the last term:

1

ǫβ

∫

Γǫ

(u+ǫ (x)− u−ǫ (x))(ϕ
+
ǫ (x)− φ−ǫ (x))ds(x)

=
1

β

∫

Γǫ

(u+ǫ (x)− u−ǫ (x))
(
ϕ+
1 (x,

x

ǫ
)− ϕ−

1 (x,
x

ǫ
)
)
ds(x) .

Lemma 23.32 ensures the existence of a function θ ∈ (D(Ω,W 1,2
♯ (Y +))×

D(Ω,W 1,2
♯ (Y −)))2 such that for all ψ ∈ W̃ 1,2

♯ (Y +)×W 1,2
♯ (Y −):

∫

Y +

∇ψ+(y) · θ+(x, y)dy +
∫

Y −

∇ψ−(y) · θ−(x, y)dy

+

∫

Γ

(
ψ+(y)− ψ−(y)

) (
ϕ+
1 (x, y)− ϕ−

1 (x, y)
)
ds(y) = 0 .

(23.33)

We make the change of variables y =
x

ǫ
, sum over all (Yǫ,n)n∈Nǫ

, and

choose ψ = uǫ to get
∫

Γǫ

(u+ǫ (x)− u−ǫ (x))
(
ϕ+
1 (x,

x

ǫ
)− ϕ−

1 (x,
x

ǫ
)
)
ds(x) =

−
∫

Ω+
ǫ

∇u+ǫ (x,
x

ǫ
) · θ+(x, x

ǫ
)dx−

∫

Ω−
ǫ

∇u−ǫ (x,
x

ǫ
) · θ−(x, x

ǫ
)dx .

We can now take the limit as ǫ goes to 0:

lim
ǫ→0

∫

Γǫ

(u+ǫ (x)− u−ǫ (x))
(
ϕ+
1 (x,

x

ǫ
)− ϕ−

1 (x,
x

ǫ
)
)
ds(x) =

−
∫

Y +

(
∇u(x) +∇yv

+(x, y)
)
· θ+(x, y)dxdy −

∫

Y −

(
∇u(x) +∇yv

−(x, y)
)
· θ−(x, y)dxdy .
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Finally, the variational formula (23.33) gives us

lim
ǫ→0

∫

Γǫ

(u+ǫ (x)− u−ǫ (x))
(
ϕ+
1 (x,

x

ǫ
)− ϕ−

1 (x,
x

ǫ
)
)
ds(x) =

∫

Ω

∫

Γ

(
v+(y)− v−(y)

) (
ϕ+
1 (x, y)− ϕ−

1 (x, y)
)
ds(y) .

For ϕǫ(x) = ǫϕ1(x,
x

ǫ
), with ϕ1 ∈ D(Ω,C∞

♯ (Y +)) × D(Ω,C∞
♯ (Y −)), the

two-scale limit of the variational formula is∫

Ω

∫

Y +

k0
(
∇u(x) +∇yv

+(x, y)
)
· ∇yϕ

+
1 (x, y)dxdy

+

∫

Ω

∫

Y −

k0
(
∇u(x) +∇yv

−(x, y)
)
· ∇yϕ

−
1 (x, y)dxdy

+
1

β

∫

Ω

∫

Γ

(
v+(y)− v−(y)

) (
ϕ+
1 (x, y)− ϕ−

1 (x, y)
)
ds(y) = 0 .

By density, this formula holds true for ϕ1 ∈ L2(Ω,W 1,2
♯ (Y +))×L2(Ω,W 1,2

♯ (Y −)).

One can recognize the formula verified by u±1 as the definition of the cell prob-
lems. Hence, separation of variables and uniqueness of the solutions of the cell
problems in W give

v−(x, y) = u−1 =
∑

i=1,2

∂u0
∂xi

(x)w−
i (y)

and, up to a constant:

v+(x, y) = u+1 =
∑

i=1,2

∂u0
∂xi

(x)w+
i (y) .

We now choose in the variational formula verified by uǫ a test function
ϕǫ(x) = ϕ(x), with ϕ ∈ C∞(Ω).

The limit of (23.16) as ǫ goes to 0 is then given by
∫

Ω

∫

Y +

k0
(
∇u(x) +∇yv

+(x, y)
)
· ∇ϕ(x)dxdy

+

∫

Ω

∫

Y −

k0
(
∇u(x) +∇yv

−(x, y)
)
· ∇ϕ(x)dxdy

+

∫

∂Ω

g(x)φ(x)ds(x) = 0.

By density, this formula hold true for ϕ ∈ W̃ 1,2(Ω), which leads exactly to
the variational formula of the homogenized problem (23.4). Since the solution

of this problem is unique in W̃ 1,2(Ω), uǫ converges to u0, not only up to
a subsequence. Likewise, ∇uǫ two-scale converges to ∇u0 + χ(Y +)∇yu

+
1 +

χ(Y −)∇yu
−
1 . ⊓⊔
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23.5 Effective Admittivity for a Dilute Suspension

In general, the effective admittivity given by formula (23.5) can not be com-
puted exactly except for a few configurations. In this section, we consider the
problem of determining the effective property of a suspension of cells when
the volume fraction |Y −| goes to zero. In other words, the cells have much
less volume than the medium surrounding them. This kind of suspension is
called dilute. Many approximations for the effective properties of composites
are based on the solution for dilute suspension.

23.5.1 Computation of the Effective Admittivity

We investigate the periodic double-layer potential used in calculating effective
permittivity of a suspension of cells. We introduce the periodic Green function
G♯, for the Laplace equation in Y , given by

∀x ∈ Y, G♯(x) =
∑

n∈Z2\{0}

ei2πn·x

4π2|n|2 .

Using the Poisson summation formula

∑

n∈Z2

ei2πn·x =
∑

n∈Z2

δ0(x+ n) ,

where δ0 is the Dirac mass at 0, it follows that G♯ satisfies

∆G♯ = −
∑

n∈Z2

δ0(x+ n) + 1 . (23.34)

The constant 1 is the surface of Y . An integration by parts shows that it
should be there¡

The following lemma from [69, 66] plays an essential role in deriving the
effective properties of a suspension in the dilute limit.

Lemma 23.20 The periodic Green function G♯ admits the following decom-
position:

∀x ∈ Y, G♯(x) =
1

2π
log |x|+R2(x) , (23.35)

where R2 is a smooth function with the following Taylor expansion at 0:

R2(x) = R2(0)−
1

4
(x21 + x22) +O(|x|4) . (23.36)

Let L2
0(Γ ) :=

{
ϕ ∈ L2(Γ ) :

∫

Γ

ϕ(x)ds(x) = 0

}
.

We define the periodic double-layer potential D̃Γ of the density function
ϕ ∈ L2

0(Γ ):
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D̃Γ [ϕ](x) =

∫

Γ

∂

∂νy
G♯(x− y)ϕ(y)ds(y) .

The double-layer potential has the following properties [66].

Lemma 23.21 Let ϕ ∈ L2
0(Γ ). D̃Γ [ϕ] verifies:

(i) ∆D̃Γ [ϕ] = 0 inY + ,

∆D̃Γ [ϕ] = 0 inY − ,

(ii)
∂

∂ν
D̃Γ [ϕ]

∣∣∣
+
=

∂

∂ν
D̃Γ [ϕ]

∣∣∣
−

onΓ ,

(iii) D̃Γ [ϕ]
∣∣∣
±
=

(
∓1

2
I + K̃Γ

)
[ϕ] onΓ ,

where K̃Γ : L2
0(Γ ) 7→ L2

0(Γ ) is the periodic Neumann-Poincaré operator de-
fined by

∀x ∈ Γ, K̃Γ [ϕ](x) =

∫

Γ

∂

∂νy
G♯(x− y)ϕ(y)ds(y) .

The following integral representation formula holds.

Theorem 23.22 Let wi be the unique solution in W of (23.6) for i = 1, 2.
wi admits the following integral representation in Y :

wi = −βk0 D̃Γ

(
I + βk0L̃Γ

)−1

[νi] , (23.37)

where L̃Γ =
∂D̃Γ

∂ν
and ν = (νi)i=1,2 is the outward unit normal to Γ .

Proof. Let ϕ := −βk0
(
I + βk0L̃Γ

)−1

[νi]. ϕ verifies :

∫

Γ

ϕ(y)ds(y) = −βk0
∫

Γ

∂

∂ν
(D̃Γ [ϕ](y) + yi)ds(y) = 0 .

The first equality comes from the definition of ϕ and the second from an inte-
gration by parts and the fact that D̃Γ [ϕ] and I are harmonic. Consequently,
ϕ ∈ L2

0(Γ ).

We now introduce Vi := D̃Γ [ϕ]. Vi is solution to the following problem:





∇ · k0∇Vi = 0 in Y + ,

∇ · k0∇Vi = 0 in Y − ,

k0
∂Vi
∂ν

∣∣∣
+
= k0

∂Vi
∂ν

∣∣∣
−

on Γ ,

Vi|+ − Vi|− = ϕ on Γ ,

y 7−→ Vi(y) Y -periodic.
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We use the definitions of ϕ and Vi and recognize that the last problem is
exactly problem (23.6). The uniqueness of the solution in W gives us the
wanted result. ⊓⊔

From Theorem 23.4, the effective admittivity of the medium K∗ is given
by

∀(i, j) ∈ {1, 2}2, K∗
ij = k0

(
δij +

∫

Y

∇wi · ej
)
.

After an integration by parts, we get

∀(i, j) ∈ {1, 2}2, K∗
ij = k0

(
δij +

∫

∂Y

wi(y)νj(y) ds(y)−
∫

Γ

(
w+

i − w−
i

)
νj(y) ds(y)

)
.

Because of the Y -periodicity of wi, we have:

∫

∂Y

wi(y)νj ds(y) = 0.

Finally, the integral representation (23.37) gives us that

∀(i, j) ∈ {1, 2}2, K∗
ij = k0

(
δij − (βk0)

∫

Γ

(
I + βk0L̃Γ

)−1

[νi]νj ds(y)

)
.

We consider that we are in the context of a dilute suspension, i.e., the size
of the cell is small compared to the square:

∣∣Y −∣∣≪ |Y | = 1. We perform the

change of variable: z = ρ−1y with ρ = |Y −| 12 and obtain that

∀(i, j) ∈ {1, 2}2, K∗
ij = k0

(
δij − ρ2(βk0)

∫

ρ−1Γ

(
I + ρβk0L̃Γ

)−1

[νi](ρz)νj(z) ds(z)

)
,

where ν is the outward unit normal to Γ . Note that, in the same way as before,
β becomes ρβ when we rescale the cell.

Let us introduce ϕi = −
(
I + ρβk0L̃Γ

)−1

[νi] and ψi(z) = ϕi(ρz) for all

z ∈ ρ−1Γ . From (23.35), we get, for any z ∈ ρ−1Γ , after changes of variable
in the integrals:

L̃Γ [ϕi](ρz) =
∂

∂ν
D̃Γ [ϕi](ρz) = ρ−1 ∂

∂ν
Dρ−1Γ [ψi](z)+

∂

∂ν(z)

∫

ρ−1Γ

∂

∂ν(y)
R2(ρz−ρy)ϕ(ρy)ds(y) .

Besides, the expansion (23.36) gives us that the estimate

∇yR2(ρ(z − y)) · ν(y) = −ρ
2
(z − y) · ν(y) +O(ρ3) ,

holds uniformly in z, y ∈ ρ−1Γ .
We thus get the following expansion:

L̃Γ [ϕi](ρz) = ρ−1Lρ−1Γ [ψi](z)−
ρ

2

∑

j=1,2

νj

∫

ρ−1Γ

νjψi(y)ds(y) +O(ρ4) .
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Using ψ∗
i defined by (23.11) we get on ρ−1Γ :

ψi = ψ∗
i + βk0

ρ2

2

∑

j=1,2

ψ∗
j

∫

ρ−1Γ

νj(y)ψi(y)ds(y) +O(ρ4) . (23.38)

By iterating the formula (23.38), we obtain on ρ−1Γ that

ψi = ψ∗
i + βk0

ρ2

2

∑

j=1,2

ψ∗
j

∫

ρ−1Γ

νj(y)ψ
∗
i (y)ds(y) +O(ρ4) .

Therefore, one can easily see that Theorem 23.5 holds.

23.5.2 Case of Concentric Circular-Shaped Cells: the
Maxwell-Wagner-Fricke Formula

We consider in this section that the cells are disks of radius r0. ρ
−1Γ becomes

a circle of radius r0.
For all f ∈ L2((0, 2π)), we introduce the Fourier coefficients:

∀m ∈ Z, f̂(m) =
1

2π

∫ 2π

0

f(θ)e−imθdθ ,

and have then for all θ ∈ (0, 2π):

f(θ) =

∞∑

m=−∞
f̂(m)eimθ .

For f ∈ C2,η(ρ−1Γ ) such that
∫
ρ−1Γ

f = 0, we obtain after a few compu-
tations,

∀θ ∈ (0, 2π), (I+βk0Lρ−1Γ )
−1[f ](θ) =

∑

m∈Z\{0}

(
1 + βk0

|m|
2r0

)−1

f̂(m) eimθ .

For p = 1, 2, ψ∗
p = −(I + βk0Lρ−1Γ )

−1[νp] then have the following expres-
sion:

∀θ ∈ (0, 2π), ψ∗
p = −

(
1 +

βk0
2r0

)−1

νp .

Consequently, we get for (p, q) ∈ {1, 2}2 :

Mpq = −δpq
βk0πr0

1 +
βk0
2r0

,

and hence,
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ℑMpq = δpq
πr0δω(εmσ0 − ε0σm)

(σm + σ0
δ

2r0
)2 + ω2(εm + ε0

δ

2r0
)2
. (23.39)

Formula (23.39) is the two-dimensional version of the Maxwell-Wagner-
Fricke formula, which gives the effective admittivity of a dilute suspension of
spherical cells covered by a thin membrane.

An explicit formula for the case of elliptic cells can be derived by using the
spectrum of the integral operator Lρ−1Γ , which can be identified by standard
Fourier methods [220].

23.5.3 Debye Relaxation Times

From (23.39), it follows that the imaginary part of the membrane polarization
attains its maximum with respect to the frequency at

1

τ
=
σm + σ0

δ

2r0

εm + ε0
δ

2r0

.

This dispersion phenomenon due to the membrane polarization is well known
and referred to as the β-dispersion. The associated characteristic time τ cor-
responds to a Debye relaxation time.

For arbitrary-shaped cells, we define the first and second Debye relaxation
times, τi, i = 1, 2, by

1

τi
:= argmax

ω
|λi(ω)|, (23.40)

where λ1 ≤ λ2 are the eigenvalues of the imaginary part of the membrane
polarization tensor M(ω). Note that if the cell is of circular shape, λ1 = λ2.

As it will be shown later, the Debye relaxation times can be used for
identifying the microstructure.

23.5.4 Properties of the Membrane Polarization Tensor and the
Debye Relaxation Times

In this subsection, we derive important properties of the membrane polariza-
tion tensor and the Debye relaxation times defined respectively by (23.10) and
(23.40). In particular, we prove that the Debye relaxation times are invariant
with respect to translation, scaling, and rotation of the cell.

First, since the kernel of Lρ−1Γ is invariant with respect to translation, it
follows that M(C, βk0) is invariant with respect to translation of the cell C.

Next, from the scaling properties of the kernel of Lρ−1Γ we have

M(sC, βk0) = s2M(C,
βk0
s

)
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for any scaling parameter s > 0.
Finally, we have

M(RC, βk0) = RM(C, βk0)RT for any rotation R ,

where T denotes the transpose.
Therefore, the Debye relaxation times are translation and rotation invari-

ant. Moreover, for scaling, we have

τi(hC, βk0) = τi(C,
βk0
h

), i = 1, 2, h > 0.

Since β is proportional to the thickness of the cell membrane, β/h is nothing
else than the real rescaled coefficient β for the cell C. The Debye relaxation
times (τi) are therefore invariant by scaling.

Since Lρ−1Γ is self-adjoint, it follows that M is symmetric. Finally, we
show positivity of the imaginary part of the matrix M for δ small enough.

We consider that the cell contour Γ can be parametrized by polar coordi-
nates. We have, up to O(δ3),

M + βρ−1|Γ | I = −β2

∫

ρ−1Γ

νLρ−1Γ [ν] ds , (23.41)

where again we have assumed that σ0 = 1 and ε0 = 0.
Recall that

β =
δσm

σ2
m + ω2ε2m

− i
δωεm

σ2
m + ω2ε2m

.

Hence, the positivity of Lρ−1Γ yields

ℑM ≥ δωεm
2ρ(σ2

m + ω2ε2m)
|Γ |I

for δ small enough, where I is the identity matrix.
Finally, by using (23.41) one can see that the eigenvalues of ℑM have one

maximum each with respect to the frequency. Let li, i = 1, 2, l1 ≥ l2, be the
eigenvalues of

∫
ρ−1Γ

νLρ−1Γ [ν]ds. We have

λi =
δωεm

ρ(σ2
m + ω2ε2m)

|Γ | − 2δ2ωεmσm
(σ2

m + ω2ε2m)2
li, i = 1, 2 . (23.42)

Therefore, τi is the inverse of the positive root of the following polynomial in
ω:

−ε4m|Γ |ω4 + 6δε2mσmliρω
2 + σ4

m|Γ | .
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23.5.5 Anisotropy Measure

Anisotropic electrical properties can be found in biological tissues such as
muscles and nerves. In this subsection, based on formula (23.9), we introduce
a natural measure of the conductivity anisotropy and derive its dependence on
the frequency of applied current. Assessment of electrical anisotropy of muscle
may have useful clinical application. Because neuromuscular diseases produce
substantial pathological changes, the anisotropic pattern of the muscle is likely
to be highly disturbed [135, 178]. Neuromuscular diseases could lead to a
reduction in anisotropy for a range of frequencies as the muscle fibers are
replaced by isotropic tissue.

Let λ1 ≤ λ2 be the eigenvalues of the imaginary part of the membrane
polarization tensor M(ω). The function

ω 7→ λ1(ω)

λ2(ω)

can be used as a measure of the anisotropy of the conductivity of a dilute
suspension. Assume ε0 = 0. As frequency ω increases, the factor βk0 decreases.
Therefore, for large ω, using the expansions in (23.42) we obtain that

λ1(ω)

λ2(ω)
= 1 + (l1 − l2)

2δσmρ

(σ2
m + ω2ε2m)|Γ | +O(δ2) , (23.43)

where l1 ≤ l2 are the eigenvalues of
∫
ρ−1Γ

nLρ−1Γ [n]ds.

Formula (23.43) shows that as the frequency increases, the conductivity
anisotropy decreases. The anisotropic information can not be captured for

ω ≫ 1

εm
((l1 − l2)

2δσmρ

|Γ | − σ2
m)1/2 .

23.6 Numerical Simulations

We present in this section some numerical simulations to illustrate the fact
that the Debye relaxation times are characteristics of the microstructure of
the tissue.

We take realistic values for our parameters, which are the same as those
used in Subsection 23.2.2 and let the frequency ω ∈ [104, 109] Hz.

We first want to retrieve the invariant properties of the Debye relaxation
times. We consider (Figure 23.9) an elliptic cell (in green) that we translate (to
obtain the red one), rotate (to obtain the purple one) and scale (to obtain the
dark blue one). We compute the membrane polarization tensor, its imaginary
part, and the associated eigenvalues which are plotted as a function of the
frequency (Figure 23.10). The frequency is here represented on a logarithmic
scale. One can see that for the two eigenvalues the maximum of the curves
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occurs at the same frequency, and hence that the Debye relaxation times are
identical for the four elliptic cells. Note that the red and green curves are even
superposed; this comes from the fact that M is invariant by translation.

Next, we are interested in the effect of the shape of the cell on the Debye
relaxation times. We consider for this purpose, (Figure 23.11) a circular cell (in
green), an elliptic cell (in red) and a very elongated elliptic cell (in blue). We
compute similarly as in the preceding case, the polarization tensors associated
to the three cells, take their imaginary part and plot the two eigenvalues of
these imaginary parts with respect to the frequency. As shown in Figure 23.12,
the maxima occur at different frequencies for the first and second eigenvalues.
Hence, we can distinguish with the Debye relaxation times between these three
shapes.

Finally, we study groups of one (in green), two (in blue) and three cells
(in red) in the unit period (Figure 23.13) and the corresponding polarization
tensors for the homogenized media. The associated relaxation times are dif-
ferent in the three configurations (Figure 23.14) and hence can be used to
differentiate tissues with different cell density or organization.

These simulations prove that the Debye relaxation times are characteristics
of the shape and organization of the cells. For a given tissue, the idea is to
obtain by spectroscopy the frequency dependence spectrum of its effective
admittivity. One then has access to the membrane polarization tensor and the
spectra of the eigenvalues of its imaginary part. One compares the associated
Debye relaxation times to the known ones of healthy and cancerous tissues at
different levels. Then one would be able to know using statistical tools with
which probability the imaged tissue is cancerous and at which level.

Fig. 23.9. An ellipse translated, rotated and scaled.
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Fig. 23.10. Frequency dependence of the eigenvalues of ℑM for the 4 ellipses in
Figure 23.9.
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Fig. 23.11. A circle, an ellipse and a very elongated ellipse.
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Fig. 23.12. Frequency dependence of the eigenvalues of ℑM for the 3 different cell
shapes in Figure 23.11.

23.7 Technical Results

23.7.1 Extension Lemmas

Consider two open sets U, V ⊂ R2 with the relation U ⊂ V , and two Sobolev
spaces W 1,p(U) and W 1,p(V ), p ∈ [1,∞]. What we call an extension operator
is a bounded linear map P :W 1,p(U) →W 1,p(V ), such that Pu = u a.e. on U
for all u ∈W 1,p(U). In this section, we introduce several extension operators
of this kind that are needed in this chapter. They extend functions that are
defined on Y −,R2

+ and Ω+
ε , respectively.

Throughout this section, the notation MA(f) for a measurable set A ⊂ R2

with positive volume and a function f ∈ L1(A) denotes the mean value of f
in A, that is

MA(f) =
1

|A|

∫

A

f(x)dx . (23.44)

We start with an extension operator inside the unit cube Y . Since Y −

has smooth boundary, there exists an extension operator S : W 1,p(Y +) →
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Fig. 23.13. Groups of one, two and three cells.

W 1,p(Y ) such that for all f ∈W 1,p(Y +) and p ∈ [1,∞),

‖Sf‖Lp(Y ) ≤ C‖f‖Lp(Y +), ‖Sf‖W 1,p(Y ) ≤ C‖f‖W 1,p(Y +) , (23.45)

where C only depends on p and Y −. Such an S is given in [160, Section
5.4], where the second estimate above is given; the first estimate easily follows
from their construction as well. Cioranescu and Saint Paulin [138] constructed
another extension operator which refines the second estimate above. For the
reader’s convenience, we state and prove their result in the following. Similar
results can be found in [204] as well.

Theorem 23.23 Let Y, Y + and Y − be as defined in Section 23.2; in particu-
lar, ∂Y − is smooth. Then there exists an extension operator P :W 1,p(Y +) →
W 1,p(Y ) satisfying that for any f ∈W 1,p(Y +) and p ∈ [1,∞),

‖∇Pf‖Lp(Y ) ≤ C‖∇f‖Lp(Y +), ‖Pf‖Lp(Y ) ≤ C‖f‖Lp(Y +) , (23.46)

where C only depends on the dimension and the set Y −.

Proof. Recall the mean operator M in (23.44) and the extension operator S
in (23.45). Given f , we define Pf by

Pf = MY +(f) + S(f −MY +(f)). (23.47)

Then by setting ψ = f −MY +(f), we have that

‖∇Pf‖Lp(Y ) = ‖∇Sψ‖Lp(Y ) ≤ C‖ψ‖W 1,p(Y +) ≤ C‖∇ψ‖Lp(Y +) = C‖∇f‖Lp(Y +) .
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Fig. 23.14. Frequency dependence of the eigenvalues of ℑM in the 3 different cases.

In the second inequality above, we used the Poincaré–Wirtinger inequality for
ψ and the fact that ψ is mean-zero on Y +. The L2 bound of Pf follows from
the observation

‖MY +(f)‖Lp(Y ) ≤
( |Y |
|Y +|

) 1
p

‖f‖Lp(Y +)

and the Lp estimate of Sf in (23.45). This completes the proof. ⊓⊔
Applying the extension operator on each translated cube in R+

2 , we get
the following.

Corollary 23.24 Recall the definition of Yn, Y
+
n and Y −

n in section 23.2.
Abuse notations and define

(Pu)|Yn
= P (u|Y +

n
), n ∈ Z2, u ∈W 1,p

loc (R
+
2 ) . (23.48)
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Then P is an extension operator from W 1,p
loc (R

+
2 ) to W 1,p

loc (R
2). Further, with

the same positive constant C in (23.46) and for any n ∈ Z2, we have

‖∇Pu‖Lp(Yn) ≤ C‖∇u‖Lp(Y −
n ), ‖Pu‖Lp(Yn) ≤ C‖u‖Lp(Y −

n ) . (23.49)

Corollary 23.25 For each ǫ > 0, define P ǫ as follows: for any u ∈W 1,p
loc (ǫR

+
2 ),

P ǫu is defined on ǫYn by

P ǫu(x) = ǫP ũ(
x

ǫ
) , (23.50)

where ũ(x) = ǫ−1u(ǫx) and P is as in (23.49). Then P ǫ is an extension
operator from W 1,p

loc (ǫR
+
2 ) to W

1,p
loc (ǫR

2) which satisfies that for any n ∈ Z2,

‖∇P ǫu‖Lp(ǫYn) ≤ C‖∇u‖Lp(ǫY −
n ), ‖P ǫu‖Lp(ǫYn) ≤ C‖u‖Lp(ǫY −

n ) , (23.51)

where the constant C does not depend on ǫ.

Finally, we define the extension operator from W 1,p(Ω+
ε ) to W 1,p(Ω).

Theorem 23.26 Let Ω±
ε be defined as in Section 23.2. Define the linear op-

erator P ǫ as follows: for u ∈W 1,p(Ω+
ε ), let P ǫu be given by (23.50) in Ω\Ω+

ε ,
and let P ǫu = u in Ω+

ε . Then P ǫ is an extension operator from W 1,p(Ω+
ε ) to

W 1,p(Ω) and it satisfies

‖∇P ǫu‖Lp(Ω) ≤ C‖∇u‖Lp(Ω+
ε ), ‖P ǫu‖Lp(Ω) ≤ C‖u‖Lp(Ω+

ε ) , (23.52)

where the constants C’s do not depend on ǫ.

Proof. Since P ǫ satisfies the estimates (23.51) uniformly in ∪nǫYn, we have
the following:

‖∇P ǫu‖pLp(Ω) = ‖∇u‖pLp(Kǫ)
+
∑

n

‖∇P ǫu‖pLp(ǫYn)

≤ C‖∇u‖p
Lp(Ω+

ε )
.

This completes the proof of the first estimate in (23.52). The second estimate
follows in the same manner, completing the proof. ⊓⊔

23.7.2 Poincaré–Wirtinger Inequality

Our next goal is to derive a Poincaré–Wirtinger inequality for functions in
W 1,2(Ω+

ε ) with a constant independent of ǫ. The following fact of the fluctu-
ation of a function is useful.

Lemma 23.27 Let X ⊂ R2 be an open bounded domain with positive volume
and f ∈ L1(X). Assume that X1 ⊂ X is a subset with positive volume, then
we have

‖f −MX1(f)‖L2(X1) ≤ ‖f −MX(f)‖L2(X) . (23.53)
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Proof. To simplify notations, let f1 be the restriction of f on X1, m1 =
MX1

(f1) and θ1 = |X1|/|X|. Similarly, let f2 be the restriction of f on X2 =
X \X1, m2 = MX2

(f2). Let m = MX(f). Then we have that

f −m =

{
f1 −m1 + (1− θ)(m1 −m2), x ∈ X1 ,

f2 −m2 + θ(m2 −m1), x ∈ X2 .

Then basic computation plus the observation that fi −mi integrates to zero
on Xi for i = 1, 2 yield the following:

‖f −m‖2L2(X) = ‖f1−m1‖2L2(X1)
+ ‖f2−m2‖2L2(X2)

+(1− θ)θ|X|(m2−m1)
2 .

Since the items on the right-hand side are all non-negative, we obtain (23.53).
⊓⊔
Corollary 23.28 Assume the same conditions as in Theorem 23.26. Then
for any u ∈W 1,2(Ω+

ε ), we have that

‖u‖L2(Ω+
ε ) ≤ C‖∇u‖L2(Ω+

ε ) , (23.54)

where the constant C does not depend on ǫ.

Proof. Thanks to Theorem 23.26, we extend u to P ǫu which is in W 1,2(Ω).
Use (23.53) and the fact that MΩ+

ε
(u) = 0 to get

‖u‖L2(Ω+
ε ) ≤ ‖P ǫu−MΩ(P

ǫu)‖L2(Ω) .

Now apply the standard Poincaré–Wirtinger inequality for functions inW 1,2(Ω),
and then use (23.52). We get

‖P ǫu−MΩ(P
ǫu)‖L2(Ω) ≤ C‖∇P ǫu‖L2(Ω) ≤ C‖∇u‖L2(Ω+

ε ) .

The constant C depends on Ω and the parameters stated in Theorem 23.26
but not on ǫ. The proof is now complete. ⊓⊔

Another corollary of the extension lemma is that we have the following
uniform estimate when taking the trace of u ∈Wε on the fixed boundary ∂Ω.

Corollary 23.29 Assume the same conditions as in Theorem 23.26. Then
there exists a constant C depending on Ω and the parameters as stated in
Theorem 23.26 but independent of ǫ such that

‖u‖W 2
1/2

(∂Ω) ≤ C‖∇u‖L2(Ω+
ε ) , (23.55)

for any u ∈W 1,2(Ω+
ε ).

Proof. Thanks to Theorem 23.26 we extend u to P ǫu which is in W 1,2(Ω).
The trace inequality on Ω shows

‖P ǫu‖W 2
1/2

(∂Ω) ≤ C(Ω)‖P ǫu‖W 1,2(Ω) . (23.56)

The desired estimate then follows from (23.52) and (23.54). ⊓⊔
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23.7.3 Equivalence of the Two Norms on Wε

In this section, we prove Proposition 23.7 which establishes the equivalence
between the two norms on Wε. We essentially follow [276].

The first inequality of the proposition is proved by the following lemma
together with the Poincaré–Wirtinger inequality (23.54):

Lemma 23.30 There exists a constant C independent of ǫ, such that

‖v±‖2L2(Γε)
≤ C(ǫ−1‖v±‖2

L2(Ω±
ε )

+ ǫ‖∇v±‖2
L2(Ω±

ε )
) (23.57)

for any v+ ∈W 1,2(Ω+
ε ) and v− ∈W 1,2(Ω−

ε ).

Proof. Let us consider the case of v+ ∈W 1,2(Ω+
ε ). Denote by vi the restriction

of v+ on ǫΓi. We have the trace inequality

‖vi‖2L2(Γi)
≤ C(‖vi‖2L2(Y +

i )
+ ‖∇vi‖2L2(Y +

i )
) . (23.58)

Note that this constant depends on Y − but is uniform in i.
Consequently, we have

‖v+‖2L2(Γε)
=

N(ǫ)∑

i=1

∫

ǫΓi

|vi(x)|2ds(x) ≤ Cǫ

N(ǫ)∑

i=1

∫

Γi

|vi(y)|2ds(y) .

Apply (23.58) and change the variable back to get

‖v+‖2L2(Γε)
≤ Cǫ

N(ǫ)∑

i=1

∫

Y +
i

|vi(y)|2 + |∇yv(y)|2dy

≤ Cǫ−1

N(ǫ)∑

i=1

∫

ǫY +
i

|vi(x)|2 + ǫ2|∇v(x)|2dx .

This completes the proof of (23.57). ⊓⊔

The other inequality in (23.21) is implied by the following lemma:

Lemma 23.31 There exists a constant C > 0 independent of ǫ such that

‖v‖L2(Ω−
ε ) ≤ C

(√
ǫ‖v‖L2(Γε) + ǫ‖∇v‖L2(Ω−

ε )

)
(23.59)

for all v ∈W 1,2(Ω−
ε ).

Proof. We have that

‖v‖2L2(Y −) ≤ C
(
‖v‖2L2(Γ0)

+ ‖∇v‖2L2(Y −)

)
, (23.60)
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for any v ∈ W 1,2(Y −) where C only depends on Y − and the dimension.
Indeed, suppose otherwise, we could find a sequence {vn} ⊂ W 1,2(Y −) such
that ‖vn‖L2(Y −) ≡ 1 but

‖vn‖L2(Γ0) + ‖∇vn‖L2(Y −) −→ 0, as n→ ∞ .

Then since ‖vn‖W 1,2 is uniformly bounded, there exists a subsequence, still
denoted as {vn}, and a function v ∈W 1,2(Y −) such that

vn ⇀ v weakly in W 1,2(Y −), ∇vn ⇀ ∇v weakly in L2(Y −) .

Consequently, ‖∇v‖L2 ≤ lim inf ‖∇vn‖L2 = 0, which implies that v = C
for some constant. Moreover, since the embedding W 1,2(Y −) →֒ L2(Γ0) is
compact, the convergence vn → v holds strongly in L2(Γ0) and ‖v‖L2(Γ ) ≤
lim ‖vn‖L2(Γ0) = 0. Consequently v ≡ 0. On the other hand, vn → v holds
strongly in L2(Y −) and hence ‖v‖L2(Y −) = lim ‖vn‖L2(Y −) = 1. This contra-
dicts with the fact that v ≡ 0.

Proof (Proof of Proposition 23.7). To prove the first inequality, we apply
Lemma 23.30 to get

ǫ‖u+ − u−‖2L2(Γε)
≤ 2(ǫ‖u+‖2L2(Γε)

+ ǫ‖u−‖2L2(Γε)
)

≤ C(‖u+‖2
L2(Ω+

ε )
+ ‖u−‖2

L2(Ω−
ε )

+ ǫ2‖∇u+‖2
L2(Ω+

ε )
+ ǫ2‖∇u+‖2

L2(Ω+
ε )
) .

Only the first term in (23.54) does not show in ‖ · ‖W 1,2×W 1,2 , but it is con-
trolled by ‖∇u+‖L2(Ω+

ε ) uniformly in ǫ thanks to (23.54).

For the second inequality, we only need to control ‖u−‖L2(Ω−
ε ). We apply

Lemma 23.31 and the triangle inequality:

‖u−‖2
L2(Ω−

ε )
≤ C

(
ǫ‖u+‖2L2(Γε)

+ ǫ‖u+ − u−‖2L2(Γε)
+ ǫ2‖∇u−‖2

L2(Ω−
ε )

)
.

Only the first term does not appear in ‖ · ‖Wε , but using Lemma 23.30 and
(23.54) we can bound it by

ǫ‖u+‖2L2(Γε)
≤ C(‖u+‖2

L2(Ω+
ε )

+ ǫ2‖∇u+‖2
L2(Ω+

ε )
) ≤ C‖∇u+‖2

L2(Ω+
ε )
.

This completes the proof. ⊓⊔

23.7.4 Existence Result

Lemma 23.32 Let ϕ1 be a function in D(Ω,C∞
♯ (Y +)) × D(Ω,C∞

♯ (Y −)).

There exists at least one function θ in (D(Ω,W 1,2
♯ (Y +))×D(Ω,W 1,2

♯ (Y −)))2

solution of the following problem:
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−∇y · θ+(x, y) = 0 in Y + ,

−∇y · θ−(x, y) = 0 in Y − ,

θ+(x, y) · n = θ−(x, y) · n on Γ ,

θ+(x, y) · n = ϕ+
1 (x, y)− ϕ−

1 (x, y) onΓ ,

y 7−→ θ(x, y)Y − periodic.

(23.61)

Proof. We look for a solution under the form θ = ∇yη. We hence introduce
the following variational problem:





Find η ∈ W̃ 1,2
♯ (Y +)× W̃ 1,2

♯ (Y −) such that∫

Y +

∇η+(y) · ψ+(y)dy +

∫

Y −

∇η−(y) · ψ−(y)dy

=
1

βk0

∫

Γ

(ϕ+
1 − ϕ−

1 )(ψ
+ − ψ−)(y)ds(y) ,

for allψ ∈ W̃ 1,2
♯ (Y +)× W̃ 1,2

♯ (Y −) ,

for a fixed x ∈ Ω. Lax-Milgram theorem gives us existence and uniqueness of
such an η. Since ϕ1 ∈ D(Ω,C∞

♯ (Y +))×D(Ω,C∞
♯ (Y −)), there exists at least

one function θ ∈ (D(Ω,W 1,2
♯ (Y +)) × D(Ω,W 1,2

♯ (Y −))2 solution of (23.61).
Note that we do not have uniqueness of such a solution. ⊓⊔

23.8 Concluding Remarks

In this chapter, we have explained how the dependence of the effective elec-
trical admittivity measures the complexity of the cellular organization of the
tissue. We have derived formulas for the effective admittivity of suspensions
of cells and characterized their dependence with respect to the frequency in
terms of membrane polarization tensors. We have presented numerical results
to illustrate the use of the Debye relaxation times in classifying microstruc-
tures.



24

Plasmonic Nanoparticle Imaging

24.1 Introduction

Plasmon resonant nanoparticles have unique capabilities of enhancing the
brightness of light and confining strong electromagnetic fields [313]. A thriving
interest for optical studies of plasmon resonant nanoparticles is due to their
recently proposed use as labels in molecular biology [202]. New types of cancer
diagnostic nanoparticles are constantly being developed. Nanoparticles are
also being used in thermotherapy as nanometric heat-generators that can be
activated remotely by external electromagnetic fields [90].

This chapter is devoted to the mathematical modeling of plasmonic
nanoparticles. Its aim is twofold: (i) to mathematically define the notion of
plasmonic resonance and to analyze the shift and broadening of the plasmon
resonance with changes in size and shape of the nanoparticles and (ii) to study
the scattering and absorption enhancements by plasmon resonant nanoparti-
cles and express them in terms of the polarization tensor of the nanoparticle.
Optimal bounds on the enhancement factors are also derived. For simplicity,
the Helmholtz equation is used to model electromagnetic wave propagation.

According to the quasi-static approximation for small particles, the sur-
face plasmon resonance peak occurs when the particle’s polarizability is maxi-
mized. Plasmon resonances in nanoparticles can be treated at the quasi-static
limit as an eigenvalue problem for the Neumann-Poincaré integral operator,
which leads to direct calculation of resonance values of permittivity and opti-
mal design of nanoparticles that resonate at specified frequencies. At this limit,
they are size-independent. However, as the particle size increases, they are de-
termined from scattering and absorption blow up and become size-dependent.
This was experimentally observed, for instance, in [181, 294, 314].

In this chapter, we first prove that, as the particle size increases and crosses
its critical value for dipolar approximation, the plasmonic resonances become
size-dependent. The resonance condition is determined from absorption and
scattering blow up and depends on the shape, size and electromagnetic param-
eters of both the nanoparticle and the surrounding material. Then, we pre-



424 24 Plasmonic Nanoparticle Imaging

cisely quantify the scattering absorption enhancements in plasmonic nanopar-
ticles. We derive new bounds on the enhancement factors given the volume
and electromagnetic parameters of the nanoparticles. At the quasi-static limit,
we prove that the averages over the orientation of scattering and extinction
cross-sections of a randomly oriented nanoparticle are given in terms of the
imaginary part of the polarization tensor. Moreover, we show that the polar-
ization tensor blows up at plasmonic resonances and derive bounds for the
absorption and scattering cross-sections. We also prove the blow-up of the
first-order scattering coefficients at plasmonic resonances.

The chapter is organized as follows. In Section 24.2 we introduce a layer
potential formulation for plasmonic resonances and derive asymptotic formu-
las for the plasmonic resonances and the near- and far-fields in terms of the
size. In Section 24.3 we consider the case of multiple plasmonic nanoparti-
cles. Section 24.4 is devoted to the study of the scattering and absorption
enhancements. We also clarify the connection between the blow up of the
scattering frequencies and the plasmonic resonances. As shown in Subsection
3.2.7, the scattering coefficients are simply the Fourier coefficients of the scat-
tering amplitude. In Section 24.5 we investigate the behavior of the scattering
coefficients at the plasmonic resonances. Section 24.6 is devoted to the deriva-
tion of asymptotic expansions with respect to the frequency of some boundary
integral operators associated with the Helmholtz equation and a single parti-
cle. These results are generalized to the case of multiple particles in Section
24.7. In Section 24.8 we prove useful sum rules for the polarization tensor.
The results of this chapter are from [45, 73, 75].

24.2 Layer Potential Formulation for Plasmonic
Resonances

24.2.1 Problem Formulation and Some Basic Results

We consider the scattering problem of a time-harmonic wave incident on a
plasmonic nanoparticle. For simplicity, we use the Helmholtz equation instead
of the full Maxwell equations. The homogeneous medium is characterized by
electric permittivity εm and magnetic permeability µm, while the particle
occupying a bounded and simply connected domain D ⋐ R3 of class C1,α for
some 0 < α < 1 is characterized by electric permittivity εc and magnetic
permeability µc, both of which may depend on the frequency. Assume that
ℜεc < 0,ℑεc > 0,ℜµc < 0,ℑµc > 0 and define

km = ω
√
εmµm, kc = ω

√
εcµc ,

and
εD = εmχ(R

3\D̄) + εcχ(D̄), µD = εmχ(R
3\D̄) + εcχ(D) ,

where χ denotes the characteristic function. Let ui(x) = eikmd·x be the in-
cident wave. Here, ω is the frequency and d is the unit incidence direction.
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Throughout this paper, we assume that εm and µm are real and strictly pos-
itive and that ℜkc < 0 and ℑkc > 0.

Using dimensionless quantities, we assume that the following set of condi-
tions holds.

Condition 24.1 We assume that the numbers εm, µm, εc, µc are dimension-
less and are of order one. We also assume that the particle has size of order
one and ω is dimensionless and is of order o(1).

It is worth emphasizing that in the original dimensional variables ω refers to
the ratio between the size of the particle and the wavelength. Moreover, the
operating frequency varies in a small range and hence, the material parameters
εc and µc can be assumed independent of the frequency.

The scattering problem can be modeled by the following Helmholtz equa-
tion





∇ · 1

µD
∇u+ ω2εDu = 0 in R3\∂D ,

u+ − u− = 0 on ∂D ,

1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D ,

us := u− ui satisfies the Sommerfeld radiation condition.

(24.1)

Here, ∂/∂ν denotes the normal derivative and the Sommerfeld radiation con-
dition can be expressed in three dimensions as follows:

∣∣∣∣
∂u

∂|x| − ikmu

∣∣∣∣ ≤ C|x|−2

as |x| → +∞ for some constant C independent of x.
The model problem (24.1) is referred to as the transverse magnetic case.

Note that all the results of this paper hold true in the transverse electric case
where εD and µD are interchanged.

Let

F1(x) = −ui(x) = −eikmd·x,

F2(x) = − 1

µm

∂ui

∂ν
(x) = − i

µm
kme

ikmd·xd · ν(x)

with ν(x) being the outward normal at x ∈ ∂D. Let Γk(x, y) be the Green
function for the Helmholtz operator∆+k2 satisfying the Sommerfeld radiation
condition. By using the following single-layer potential and Neumann-Poincaré
integral operator

Sk
D[ψ](x) =

∫

∂D

Γk(x, y)ψ(y)dσ(y), x ∈ R3 ,

(Kk
D)∗[ψ](x) =

∫

∂D

∂Γk(x, y)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂D ,
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we can represent the solution u in the following form

u(x) =

{
ui + Skm

D [ψ], x ∈ R3\D̄ ,

Skc

D [φ], x ∈ D ,
(24.2)

where ψ, φ ∈W 2
−1/2(∂D) satisfy the following system of integral equations on

∂D [50]:

{
Skm

D [ψ]− Skc

D [φ] = F1 ,
1

µm

(
1
2I + (Kkm

D )∗
)
[ψ] + 1

µc

(
1
2I − (Kkc

D )∗
)
[φ] = F2 ,

(24.3)

where I denotes the identity operator. In the sequel, we set S0
D = SD.

We are interested in the scattering in the quasi-static regime, i.e., for
ω ≪ 1. Note that for ω small enough, Skc

D is invertible [50]. We have φ =

(Skc

D )−1
(
Skm

D [ψ]− F1

)
, whereas the following equation holds for ψ

AD(ω)[ψ] = f , (24.4)

where

AD(ω) =
1

µm

(1
2
I + (Kkm

D )∗
)
+

1

µc

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1Skm

D , (24.5)

f = F2 +
1

µc

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1[F1] . (24.6)

It is clear that

AD(0) = AD,0 =
1

µm

(1
2
I+K∗

D

)
+

1

µc

(1
2
I−K∗

D

)
=
( 1

2µm
+

1

2µc

)
I−
( 1

µc
− 1

µm

)
K∗

D ,

(24.7)
where the notation K∗

D = (K0
D)∗ is used for simplicity.

We are interested in finding AD(ω)−1. We refer to Subsection 3.1.4 for
some basic facts about the Neumann-Poincaré operator K∗

D.
Let H∗ be defined by (3.25). From (24.7), it is easy to see that

AD,0[ψ] =

∞∑

j=0

τj(ψ,ϕj)H∗ϕj , (24.8)

where

τj =
1

2µm
+

1

2µc
−
( 1

µc
− 1

µm

)
λj . (24.9)

We now derive the asymptotic expansion of the operator A(ω) as ω → 0.
Using the asymptotic expansions in terms of k of the operators Sk

D, (Sk
D)−1

and (Kk
D)∗ proved in Section 24.6, we can obtain the following result.
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Lemma 24.2 Let H∗ be defined by (3.25). As ω → 0, the operator AD(ω) :
H∗(∂D) → H∗(∂D) admits the asymptotic expansion

AD(ω) = AD,0 + ω2AD,2 +O(ω3) ,

where

AD,2 = (εm − εc)KD,2 +
εmµm − εcµc

µc
(
1

2
I −K∗

D)S−1
D SD,2 . (24.10)

Proof. Recall that

AD(ω) =
1

µm

(1
2
I + (Kkm

D )∗
)
+

1

µc

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1Skm

D . (24.11)

By a straightforward calculation, it follows that

(Skc

D )−1Skm

D = I + ω
(√
εcµcBD,1SD +

√
εmµmS−1

D SD,1

)
+

ω2
(
εcµcBD,2SD +

√
εcµcεmµmBD,1SD,1 + εmµmS−1

D SD,2

)
+O(ω3) ,

= I + ω
(√
εmµm −√

εcµc

)
S−1
D SD,1 +

ω2
(
(εmµm − εcµc)S−1

D SD,2 +
√
εcµc(

√
εcµc −

√
εmµm)S−1

D SD,1S−1
D SD,1

)

+O(ω3) ,

where BD,1 and BD,2 are defined by (24.58). Using the facts that

(1
2
I −K∗

D

)
S−1
D SD,1 = 0

and
1

2
I − (Kk

D)∗ =
(1
2
I −K∗

D

)
− k2KD,2 +O(k3) ,

the lemma immediately follows. ⊓⊔
We regardAD(ω) as a perturbation to the operatorAD,0 for small ω. Using

standard perturbation theory [304], we can derive the perturbed eigenvalues
and their associated eigenfunctions. For simplicity, we consider the case when
λj is a simple eigenvalue of the operator K∗

D.
We let

Rjl =
(
AD,2[ϕj ], ϕl

)
H∗ , (24.12)

where AD,2 is defined by (24.10).
As ω goes to zero, the perturbed eigenvalue and eigenfunction have the

following form:

τj(ω) = τj + ω2τj,2 +O(ω3), (24.13)

ϕj(ω) = ϕj + ω2ϕj,2 +O(ω3) , (24.14)

where

τj,2 = Rjj , (24.15)

ϕj,2 =
∑

l 6=j

Rjl(
1

µm
− 1

µc

)
(λj − λl)

ϕl . (24.16)
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24.2.2 First-Order Correction to Plasmonic Resonances and Field
Behavior at the Plasmonic Resonances

We first introduce different notions of plasmonic resonance as follows.

Definition 24.1. (i) We say that ω is a plasmonic resonance if

|τj(ω)| ≪ 1 and is locally minimal for some j .

(ii)We say that ω is a quasi-static plasmonic resonance if |τj | ≪ 1 and is
locally minimized for some j. Here, τj is defined by (24.9).

(iii)We say that ω is a first-order corrected quasi-static plasmonic resonance if
|τj +ω2τj,2| ≪ 1 and is locally minimized for some j. Here, the correction
term τj,2 is defined by (24.15).

Note that quasi-static resonances are size independent and is therefore a
zero-order approximation of the plasmonic resonance in terms of the particle
size while the first-order corrected quasi-static plasmonic resonance depends
on the size of the nanoparticle (or equivalently on ω in view of the non-
dimensionalization adopted herein).

We are interested in solving the equation AD(ω)[φ] = f when ω is close to
the resonance frequencies, i.e., when τj(ω) is very small for some j’s. In this
case, the major part of the solution would be the contributions of the excited
resonance modes ϕj(ω). We introduce the following definition.

Definition 24.2. We call J ⊂ N index set of resonance if τj’s are close to
zero when j ∈ J and are bounded from below when j ∈ Jc. More precisely, we
choose a threshold number ε0 > 0 independent of ω such that

|τj | ≥ ε0 > 0 for j ∈ Jc .

Remark 24.3 Note that for j = 0, we have τ0 = 1/µm, which is of size one
by our assumption. As a result, throughout this paper, we always exclude 0
from the index set of resonance J .

From now on, we shall use J as our index set of resonances. For simplicity,
we assume throughout that the following conditions hold.

Condition 24.4 Each eigenvalue λj for j ∈ J is a simple eigenvalue of the
operator K∗

D.

Condition 24.5 Let

λ =
µm + µc

2(µm − µc)
. (24.17)

We assume that λ 6= 0 or equivalently, µc 6= −µm.
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Condition 24.5 implies that the set J is finite.
We define the projection PJ(ω) such that

PJ(ω)[ϕj(ω)] =

{
ϕj(ω), j ∈ J ,
0, j ∈ Jc .

In fact, we have

PJ(ω) =
∑

j∈J

Pj(ω) =
∑

j∈J

1

2πi

∫

γj

(ξ −AD(ω))−1dξ , (24.18)

where γj is a Jordan curve in the complex plane enclosing only the eigenvalue
τj(ω) among all the eigenvalues.

To obtain an explicit representation of PJ(ω), we consider the adjoint oper-
ator AD(ω)∗. By a similar perturbation argument, we can obtain its perturbed
eigenvalue and eigenfunction, which have the following form

τ̃j(ω) = τj(ω), (24.19)

ϕ̃j(ω) = ϕj + ω2ϕ̃j,2 +O(ω2) . (24.20)

Using the eigenfunctions ϕ̃j(ω), we can show that

PJ(ω)[x] =
∑

j∈J

(
x, ϕ̃j(ω)

)
H∗ϕj(ω) . (24.21)

Throughout this paper, for two Banach spacesX and Y , by L(X,Y ) we denote
the set of bounded linear operators from X into Y .

We are now ready to solve the equation AD(ω)[ψ] = f . First, it is clear
that

ψ = AD(ω)−1[f ] =
∑

j∈J

(
f, ϕ̃j(ω)

)
H∗

τj(ω)
+AD(ω)−1[PJc(ω)[f ]] . (24.22)

The following lemma holds.

Lemma 24.6 The norm ‖AD(ω)−1PJc(ω)‖L(H∗(∂D),H∗(∂D)) is uniformly bounded
in ω.

Proof. Consider the operator

AD(ω)|Jc : PJc(ω)H∗(∂D) → PJc(ω)H∗(∂D) .

For ω small enough, we can show that dist(σ(AD(ω)|Jc), 0) ≥ ε0
2 , where

σ(AD(ω)|Jc) is the discrete spectrum of AD(ω)|Jc . Then, it follows that

‖AD(ω)−1(PJc(ω)f)‖ = ‖
(
AD(ω)|PJc

)−1
(PJc(ω)f)‖ .

1

ε0
exp(

C1

ε20
)‖PJc(ω)f‖ ,
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where the notation A . B means that A ≤ CB for some constant C.
On the other hand,

PJ(ω)f =
∑

j∈J

(
f, ϕ̃j(ω)

)
H∗ϕj(ω) =

∑

j∈J

(
f, ϕj +O(ω)

)
H∗

(
ϕj +O(ω)

)

=
∑

j∈J

(
f, ϕj

)
H∗ϕj(ω) +O(ω) .

Thus,
‖PJc(ω)‖ = ‖(I − PJ(ω))‖ . (1 +O(ω)) ,

from which the desired result follows immediately. ⊓⊔

Second, we have the following asymptotic expansion of f given by (24.6)
with respect to ω.

Lemma 24.7 Let

f1 = −i√εmµme
ikmd·z

(
1

µm
[d · ν(x)] + 1

µc

(1
2
I −K∗

D

)
S−1
D [d · (x− z)]

)

and let z be the center of the domain D. In the space H∗(∂D), as ω goes to
zero, we have

f = ωf1 +O(ω2) ,

in the sense that, for ω small enough,

‖f − ωf1‖H∗ ≤ Cω2

for some constant C independent of ω.

Proof. A direct calculation yields

f = F2 +
1

µc

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1[F1]

= −ω i

µm

√
εmµme

ikmd·z[d · ν(x)] +O(ω2) +

1

µc

((1
2
I −K∗

D

)(
(SD)−1 + ωBD,1

)
+O(ω2)

)
[−eikmd·z(χ(∂D) + iω

√
εmµm[d · (x− z)]

)
+O(ω2)]

= −e
ikmd·z

µc

(1
2
I −K∗

D

)
S−1
D [χ(∂D)]− ωeikmd·z

µc

(1
2
I −K∗

D

)
BD,1[χ(∂D)]−

ωi
√
εmµme

ikmd·z
(

1

µm
[d · ν(x)] + 1

µc

(1
2
I −K∗

D

)
S−1
D [d · (x− z)]

)
+O(ω2)

= −ωi√εmµme
ikmd·z

(
1

µm
[d · ν(x)] + 1

µc

(1
2
I −K∗

D

)
S−1
D [d · (x− z)]

)

+O(ω2) ,
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where we have made use of the facts that

(1
2
I −K∗

D

)
S−1
D [χ(∂D)] = 0

and
BD,1[χ(∂D)] = cS−1

D [χ(∂D)]

for some constant c; see again Section 24.6. ⊓⊔

Finally, we are ready to state our main result in this section.

Theorem 24.8 Under Conditions 24.1–24.5 the scattered field us = u − ui

due to a single plasmonic nanoparticle has the following representation in the
quasi-static regime:

us = Skm

D [ψ] ,

where

ψ =
∑

j∈J

ω
(
f1, ϕ̃j(ω)

)
H∗ϕj(ω)

τj(ω)
+O(ω),

=
∑

j∈J

ikme
ikmd·z(d · ν(x), ϕj

)
H∗ϕj +O(ω2)

λ− λj +O(ω2)
+O(ω)

with λ being given by (24.17).

Proof. We have

ψ =
∑

j∈J

(
f, ϕ̃j(ω)

)
H∗ϕj(ω)

τj(ω)
+AD(ω)−1(PJc(ω)f),

=
∑

j∈J

ω
(
f1, ϕj

)
H∗ϕj +O(ω2)

1
2µm

+ 1
2µc

−
(

1
µc

− 1
µm

)
λj +O(ω2)

+O(ω) .

We now compute
(
f1, ϕj

)
H∗ with f1 given in Lemma 24.7. We only need

to show that
((1

2
I −K∗

D

)
S−1
D [d · (x− z)]

)
, ϕj

)

H∗

= (d · ν(x), ϕj)H∗ . (24.23)

Indeed, we have
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(
(
1

2
I −K∗

D)S−1
D [d · (x− z)], ϕj

)
H∗

= −
(
S−1
D [d · (x− z)],

(1
2
I −KD

)
SD[ϕj ]

)
− 1

2 ,
1
2

= −
(
S−1
D [d · (x− z)],SD

(1
2
I −K∗

D

)
[ϕj ]

)
− 1

2 ,
1
2

= −
(
d · (x− z),

(1
2
I −K∗

D

)
[ϕj ]

)
− 1

2 ,
1
2

= −
(
d · (x− z),−∂SD[ϕj ]

∂ν

∣∣∣
−

)
− 1

2 ,
1
2

=

∫

∂D

∂[d · (x− z)]

∂ν
SD[ϕj ]dσ

−
∫

D

(
∆[d · (x− z)]SD[ϕj ]−∆SD[ϕj ][d · (x− z)]

)
dx

= −
(
d · ν(x), ϕj

)
H∗

,

where we have used the fact that SD[ϕj ] is harmonic in D. This proves the
desired identity and the rest of the theorem follows immediately. ⊓⊔

Corollary 24.9 Assume the same conditions as in Theorem 24.8. Under the
additional condition that

min
j∈J

|τj(ω)| ≫ ω3, (24.24)

we have

ψ =
∑

j∈J

ikme
ikmd·z(d · ν(x), ϕj

)
H∗ϕj +O(ω2)

λ− λj + ω2
(

1
µc

− 1
µm

)−1
τj,2

+O(ω) .

More generally, under the additional condition that

min
j∈J

τj(ω) ≫ ωm+1 ,

for some integer m > 2, we have

ψ =
∑

j∈J

ikme
ikmd·z(d · ν(x), ϕj

)
H∗ϕj +O(ω2)

λ− λj + ω2
(

1
µc

− 1
µm

)−1
τj,2 + · · ·+ ωm

(
1
µc

− 1
µm

)−1
τj,m

+O(ω) .

Rescaling back to original dimensional variables, we suppose that the mag-
netic permeability µc of the nanoparticle is changing with respect to the op-
erating angular frequency ω while that of the surrounding medium, µm, is
independent of ω. Then we can write

µc(ω) = µ′(ω) + iµ′′(ω) . (24.25)

Because of causality, the real and imaginary parts of µc obey the following
Kramer–Kronig relations:
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µ′′(ω) = − 1

π
p.v.

∫ +∞

−∞

1

ω − s
µ′(s)ds,

µ′(ω) =
1

π
p.v.

∫ +∞

−∞

1

ω − s
µ′′(s)ds ,

(24.26)

where p.v. stands for the principle value.
The magnetic permeability µc(ω) can be described by the Drude model;

see, for instance, [313]. We have

µc(ω) = µ0(1− F
ω2

ω2 − ω2
0 + iτ−1ω

) , (24.27)

where τ > 0 is the nanoparticle’s bulk electron relaxation rate (τ−1 is the
damping coefficient), F is a filling factor, and ω0 is a localized plasmon reso-
nant frequency. When

(1− F )(ω2 − ω2
0)

2 − Fω2
0(ω

2 − ω2
0) + τ−2ω2 < 0,

the real part of µc(ω) is negative.
We suppose that D = z + δB. The quasi-static plasmonic resonance is

defined by ω such that

ℜ µm + µc(ω)

2(µm − µc(ω))
= λj

for some j, where λj is an eigenvalue of the Neumann-Poincaré operator K∗
D(=

K∗
B). It is clear that such definition is independent of the nanoparticle’s size.

In view of (24.13), the shifted plasmonic resonance is defined by

argmin

∣∣∣∣
1

2µm
+

1

2µc(ω)
−
( 1

µc(ω)
− 1

µm

)
λj + ω2δ2τj,2

∣∣∣∣ ,

where τj,2 is given by (24.15) with D replaced by B.

24.3 Multiple Plasmonic Nanoparticles

24.3.1 Layer Potential Formulation in the Multi-Particle Case

We consider the scattering of an incident time harmonic wave ui by multi-
ple weakly coupled plasmonic nanoparticles in three dimensions. For ease of
exposition, we consider the case of L particles with an identical shape. We
assume that the following condition holds.

Condition 24.10 All the identical particles have size of order δ which is a
small parameter and the distances between neighboring ones are of order one.
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We write Dl = zl + δD̃, l = 1, 2, . . . , L, where D̃ has size one and is centered
at the origin. Moreover, we denote D0 = δD̃ as our reference nanoparticle.
Denote by

D =

L⋃

l=1

Dl, εD = εmχ(R
3\D̄) + εcχ(D̄), µD = µmχ(R

3\D̄) + µcχ(D) .

The scattering problem can be modeled by the following Helmholtz equa-
tion:





∇ · 1

µD
∇u+ ω2εDu = 0 in R3\∂D ,

u+ − u− = 0 on ∂D ,

1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D ,

us := u− ui satisfies the Sommerfeld radiation condition.

(24.28)

Let

ui(x) = eikmd·x ,

Fl,1(x) = −ui(x)
∣∣
∂Dl

= −eikmd·x∣∣
∂Dl

,

Fl,2(x) = −∂u
i

∂ν
(x)

∣∣∣∣
∂Dl

= −ikmeikmd·xd · ν(x)
∣∣
∂Dl

,

and define the operator Kk
Dp,Dl

by

Kk
Dp,Dl

[ψ](x) =

∫

∂Dp

∂Γk(x, y)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂Dl .

Analogously, we define

Sk
Dp,Dl

[ψ](x) =

∫

∂Dp

Γk(x, y)ψ(y)dσ(y), x ∈ ∂Dl .

The solution u of (24.28) can be represented as follows:

u(x) =





ui +

L∑

l=1

Skm

Dl
[ψl], x ∈ R3\D̄ ,

L∑

l=1

Skc

Dl
[φl], x ∈ D ,

where φl, ψl ∈W 2
−1/2(∂Dl) satisfy the following system of integral equations
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Skm

Dl
[ψl]− Skc

Dl
[φl] +

∑

p 6=l

Skm

Dp,Dl
[ψp] = Fl,1 ,

1

µm

(1
2
I + (Kkm

Dl
)∗
)
[ψl] +

1

µc

(1
2
I − (Kkc

Dl
)∗
)
[φl]

+
1

µm

∑

p 6=l

Kkm

Dp,Dl
[ψp] = Fl,2 ,

and 



Fl,1 = −ui on ∂Dl ,

Fl,2 = − 1

µm

∂ui

∂ν
on ∂Dl .

24.3.2 First-Order Correction to Plasmonic Resonances and Field
Behavior at Plasmonic Resonances in the Multi-Particle Case

We consider the scattering in the quasi-static regime, i.e., when the incident
wavelength is much greater than one. With proper dimensionless analysis, we
can assume that ω ≪ 1. As a consequence, Skc

D is invertible. Note that

φl = (Skc

Dl
)−1
(
Skm

Dl
[ψl] +

∑

p 6=l

Skm

Dp,Dl
[ψp]− Fl,1

)
.

We obtain the following equation for ψl’s,

AD(w)[ψ] = f ,

where

AD(w) =




AD1
(ω)

AD2
(ω)

. . .

ADL
(ω)


+




0 A1,2(ω) · · · A1,L(ω)
A2,1(ω) 0 · · · A2,L(ω)

... · · · 0
...

AL,1(ω) · · · AL,L−1(ω) 0


 ,

ψ =




ψ1

ψ2

...
ψL


 , f =




f1
f2
...
fL


 ,

and

Al,p(ω) =
1

µc

(1
2
I − (Kkc

Dl
)∗
)
(Skc

Dl
)−1Skm

Dp,Dl
+

1

µm
Kkm

Dp,Dl
,

fl = Fl,2 +
1

µc

(1
2
I − (Kkc

Dl
)∗
)
(Skc

Dl
)−1[Fl,1] .

The following asymptotic expansions hold.
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Lemma 24.11 (i) Regarded as operators from H∗(∂Dp) into H∗(∂Dl), we
have

ADj
(ω) = ADj ,0 +O(δ2ω2) ,

(ii) Regarded as operators from H∗(∂Dl) into H∗(∂Dj), we have

Al,p(ω) =
1

µc

(1
2
I−K∗

Dl

)
S−1
Dl

(
Sp,l,0,1+Sp,l,0,2

)
+

1

µm
Kp,l,0,0+O(δ2ω2)+O(δ4) .

Moreover,

(1
2
I −K∗

Dl

)
◦ S−1

Dl
◦ Sp,l,0,1 = O(δ2),

(1
2
I −K∗

Dl

)
◦ S−1

Dl
◦ Sp,l,0,2 = O(δ3),

Kp,l,0,0 = O(δ2) .

Proof. The proof of (i) follows from Lemmas 24.2 and 24.37. We now prove
(ii). Recall that

1

2
I − (Kkc

Dl
)∗ =

1

2
I −K∗

Dl
+O(δ2ω2) ,

(Skc

Dl
)−1 = S−1

Dl
− kcS−1

Dl
SDl,1S−1

Dl
+O(δ2ω2) ,

Skm

Dp,Dl
= Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2 + kmSp,l,1 + k2mSp,l,2,0 +O(δ4) +O(ω2δ2)

Kkm

Dp,Dl
= Kp,l,0,0 +O(ω2δ2) .

Using the identity
(1
2
I −K∗

Dl

)
S−1
Dl

[χ(Dl)] = 0 ,

we can derive that

Al,p(ω) =
1

µc

(1
2
I −K∗

Dl

)
(Skc

Dl
)−1Skm

Dp,Dl
+

1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
I −K∗

Dl

)
S−1
Dl

Skm

Dp,Dl
+

1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
I −K∗

Dl

)
S−1
Dl

(
Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2 + kmSp,l,1 + k2mSp,l,2,0 +O(δ4)

)

+
1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
I −K∗

Dl

)
S−1
Dl

(
Sp,l,0,1 + Sp,l,0,2

)
+

1

µm
Kp,l,0,0 +O(δ2ω2) +O(δ4) .

The rest of the lemma follows from Lemmas 24.37 and 24.40. ⊓⊔
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Denote by H∗(∂D) = H∗(∂D1)× . . .×H∗(∂DL), which is equipped with
the inner product

(ψ, φ)H∗ =

L∑

l=1

(ψl, φl)H∗(∂Dl) .

With the help of Lemma 24.11, the following result is obvious.

Lemma 24.12 Regarded as an operator from H∗(∂D) into H∗(∂D), we have

A(ω) = AD,0 +AD,1 +O(ω2δ2) +O(δ4) ,

where

AD,0 =




AD1,0

AD2,0

. . .
ADL,0


 , AD,1 =




0 AD,1,12 AD,1,13 . . .
AD,1,21 0 AD,1,23 . . .

. . .
AD,1,L1 . . . AD,1,LL−1 0




with

ADl,0 =
( 1

2µm
+

1

2µc

)
I − (

1

µc
− 1

µm
)K∗

Dl
,

AD,1,pq =
1

µc

(1
2
I −K∗

Dp

)
S−1
Dp

(
Sq,p,0,1 + Sq,p,0,2

)
+

1

µm
Kq,p,0,0 .

It is evident that

AD,0[ψ] =

∞∑

j=0

L∑

l=1

τj(ψ, ϕj,l)H∗ϕj,l , (24.29)

where

τj =
1

2µm
+

1

2µc
−
( 1

µc
− 1

µm

)
λj , (24.30)

ϕj,l = ϕjel (24.31)

with el being the standard basis of RL.
We take A(ω) as a perturbation to the operator AD,0 for small ω and

small δ. Using a standard perturbation argument, we can derive the perturbed
eigenvalues and eigenfunctions. For simplicity, we assume that the following
conditions hold.

Condition 24.13 Each eigenvalue λj, j ∈ J , of the operator K∗
D1

is simple.
Moreover, we have ω2 ≪ δ.

In what follows, we only use the first order perturbation theory and derive
the leading order term, i.e., the perturbation due to the term AD,1. For each
l, we define an L× L matrix Rl by letting
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Rl,pq =
(
AD,1[ϕl,p], ϕl,q

)
H∗ ,

=
(
AD,1[ϕlep], ϕleq

)
H∗
,

=
(
AD,1,pq[ϕl], ϕl

)
H∗ .

Lemma 24.14 The matrix Rl = (Rl,pq)p,q=1,...,L has the following explicit
expression:

Rl,pp = 0,

Rl,pq =
3

4πµc
(λj −

1

2
)

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(zp − zq)
α+β

|zp − zq|5
xαyβϕl(x)ϕl(y)dσ(x)dσ(y)

+
( 1

4πµc
− 1

4πµm

)
(λj −

1

2
)

∫

∂D0

∫

∂D0

x · y
|zp − zq|3

ϕl(x)ϕl(y)dσ(x)dσ(y)

= O(δ3), p 6= q .

Proof. It is clear that Rl,pp = 0. For p 6= q, we have

Rl,pq = RI
l,pq +RII

l,pq +RIII
l,pq ,

where

RI
l,pq =

1

µc

((1
2
I −K∗

Dp

)
S−1
Dp

Sq,p,0,1[ϕl], ϕl

)
H∗(∂Dl)

,

RII
l,pq =

1

µc

((1
2
I −K∗

Dp

)
S−1
Dp

Sq,p,0,2[ϕl], ϕl

)
H∗(∂Dl)

,

RIII
l,pq =

1

µm

(
Kq,p,0,0[ϕl], ϕl

)
H∗(∂Dl)

.

We first consider RI
l,pq. By the following identity

(1
2
I −K∗

Dp

)
SDl

[ϕl] = SDl

(1
2
I −KDp

)
[ϕl] = (λj −

1

2
)ϕl ,

we obtain

RI
l,pq = − 1

µc

((1
2
I −K∗

Dp

)
S−1
Dp

Sq,p,0,1[ϕl],SDl
[ϕl]
)
L2(∂Dl)

,

=
1

µc
(λj −

1

2
)
(
Sq,p,0,1[ϕl],SDl

[ϕl]
)
L2(∂Dl)

.

Using the explicit representation of Sq,p,0,1 and the fact that (χ(∂Dj), φl)L2(∂Dj) =
0 for j 6= 0, we further conclude that

RI
l,pq = 0 .

Similarly, we have
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RII
l,pq =

1

µc
(λj −

1

2
)
(
Sq,p,0,2[ϕl],SDl

[ϕl]
)
L2(∂Dl)

,

=
1

µc
(λj −

1

2
)

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(3(zp − zq)
α+β

4π|zp − zq|5
xαyβ +

δαβx
αyβ

4π|zp − zq|3
)
ϕl(x)ϕl(y)dσ(x)dσ(y)

=
3

4πµc
(λj −

1

2
)

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(zp − zq)
α+β

|zp − zq|5
xαyβϕl(x)ϕl(y)dσ(x)dσ(y)

+
1

4πµc
(λj −

1

2
)
∑

|α|=1

∫

∂D0

∫

∂D0

1

|zp − zq|3
xαyαϕl(x)ϕl(y)dσ(x)dσ(y) .

Finally, note that

Kq,p,0,0[ϕl] =
1

4π|zp − zq|3
a · ν(x) = 1

4π|zp − zq|3
3∑

m=1

amνm(x) ,

where am =
(
(y − zq)m, ϕl

)
L2(∂Dq)

, and a = (a1, a2, a3)
T .

By identity (24.23), we have

RIII
l,pq = − 1

µm

(
Kq,p,0,0[ϕl], ϕl

)
H∗(∂Dl)

= − 1

4π|zp − zq|3µm

(
a · ν(x), ϕl

)
H∗(∂Dl)

= − 1

4π|zp − zq|3µm

((1
2
I −K∗

Dp

)
S−1
Dp

(a · (x− zp)), ϕl

)

H∗(∂Dl)

= − 1

4π|zp − zq|3µm
(λj −

1

2
)
(
a · (x− zp), ϕl

)
L2(∂Dp)

= − 1

4π|zp − zq|3µm
(λj −

1

2
)

∫

∂D0

∫

∂D0

x · yϕl(x)ϕl(y)dσ(x)dσ(y) .

This completes the proof of the lemma.

We now have an explicit formula for the matrix Rl. It is clear that Rl

is symmetric, but not self-adjoint. For ease of presentation, we assume the
following condition.

Condition 24.15 Rl has L-distinct eigenvalues.

We remark that Condition 24.15 is not essential for our analysis. Without
this condition, the perturbation argument is still applicable, but the results
may be quite complicated. We refer to [215] for a complete description of the
perturbation theory.

Let τj,l and Xj,l = (Xj,l,1, · · · , Xj,l,L)
T , l = 1, 2, . . . , L, be the eigenvalues

and normalized eigenvectors of the matrix Rj . Here, T denotes the transpose.
We remark that each Xj,l may be complex valued and may not be orthogonal
to other eigenvectors.



440 24 Plasmonic Nanoparticle Imaging

Under perturbation, each τj is splitted into the following L eigenvalues of
A(ω),

τj,l(ω) = τj + τj,l +O(δ4) +O(ω2δ2) . (24.32)

The associated perturbed eigenfunctions have the following form

ϕj,l(ω) =

L∑

p=1

Xj,l,pepϕj +O(δ4) +O(ω2δ2) . (24.33)

We are interested in solving the equation AD(ω)[ψ] = f when ω is close to
the resonance frequencies, i.e., when τj(ω) are very small for some j’s. In this
case, the major part of the solution would be based on the excited resonance
modes ϕj,l(ω). For this purpose, we introduce the index set of resonance J as
we did in the previous section for a single particle case.

We define

PJ(ω)ϕj,m(ω) =

{
ϕj,m(ω), j ∈ J ,
0, j ∈ Jc .

In fact,

PJ(ω) =
∑

j∈J

Pj(ω) =
∑

j∈J

1

2πi

∫

γj

(ξ −AD(ω))−1dξ , (24.34)

where γj is a Jordan curve in the complex plane enclosing only the eigenvalues
τj,l(ω) for l = 1, 2, . . . , L among all the eigenvalues.

To obtain an explicit representation of PJ(ω), we consider the adjoint
operator AD(ω)∗. By a similar perturbation argument, we can obtain its per-
turbed eigenvalue and eigenfunctions. Note that the adjoint matrix R̄T

j = R̄j

has eigenvalues τj,l and corresponding eigenfunctions Xj,l. Then the eigenval-
ues and eigenfunctions of AD(ω)∗ have the following form

τ̃j,l(ω) = τj + τj,l +O(δ4) +O(ω2δ2) ,

ϕ̃j,l(ω) = ϕ̃j,l +O(δ4) +O(ω2δ2) ,

where

ϕ̃j,l =

L∑

p=1

X̃j,l,pepϕj

with X̃j,l,p being a multiple of Xj,l,p.
We normalize ϕ̃j,l in a way such that the following holds

(ϕj,p, ϕ̃j,q)H∗(∂D) = δpq ,

which is also equivalent to the following condition

Xj,p
T
X̃j,q = δpq .

Then, we can show that the following result holds.
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Lemma 24.16 In the space H∗(∂D), as ω goes to zero, we have

f = ωf0 +O(ω2δ
3
2 ) ,

where f0 = (f0,1, . . . , f0,L)
T with

f0,l = −i√εmµme
ikmd·zl

(
1

µm
d · ν(x) + 1

µc

(1
2
I −K∗

Dl

)
S−1
Dl

[d · (x− z)]

)
= O(δ

3
2 ) .

Proof. We first show that

‖u‖H∗(∂D0) = δ
3
2+m‖u‖H∗(∂D̃), ‖u‖H(∂D0) = δ

1
2+m‖u‖H(∂D̃)

for any homogeneous function u such that u(δx) = δmu(x). Indeed, we have

η(u)(x) = δmu(x). Since ‖η(u)‖H∗(∂D̃) = δ−
3
2 ‖u‖H∗(∂D0) (see Section 24.7),

we obtain

‖u‖H∗(∂D0) = δ
3
2 ‖η(u)‖H∗(∂D̃) = δ

3
2+m‖u‖H∗(∂D̃) ,

which proves our first claim. The second claim follows in a similar way. Using
this result, by a similar argument as in the proof of Lemma 24.7 we arrive at
the desired asymptotic result. ⊓⊔

Denote by Z = (Z1, . . . , ZL), where Zj = ikme
ikmd·zj . We are ready to

present our main result in this section.

Theorem 24.17 Under Conditions 24.1, 24.4, 24.5, 24.10, and 24.15, the
scattered field by L plasmonic particles in the quasi-static regime has the fol-
lowing representation

us = Skm

D [ψ] ,

where

ψ =
∑

j∈J

L∑

l=1

(
f, ϕ̃j,l(ω)

)
H∗ϕj,l(ω)

τj,l(ω)
+AD(ω)−1(PJc(ω)f)

=
∑

j∈J

L∑

l=1

(d · ν(x), ϕj)H∗(∂D0)ZX̃j,l ϕj,l +O(ω2δ
3
2 )

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(ωδ
3
2 ) .

Proof. The proof is similar to that of Theorem 24.8. ⊓⊔

As a consequence, the following result holds.

Corollary 24.18 With the same notation as in Theorem 24.17 and under
the additional condition that

min
j∈J

|τj,l(ω)| ≫ ωqδp ,
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for some integer p and q, and

τj,l(ω) = τj,l,p,q + o(ωqδp) ,

we have

ψ =
∑

j∈J

L∑

l=1

(d · ν(x), ϕj)H∗(∂D0)ZX̃j,l ϕj,l +O(ω2δ
3
2 )

τj,l,p,q
+O(ωδ

3
2 ) .

24.4 Scattering and Absorption Enhancements

In this section we analyze the scattering and absorption enhancements. We
prove that, at the quasi-static limit, the averages over the orientation of scat-
tering and extinction cross-sections (see Definition 3.41) of a randomly ori-
ented nanoparticle are given by (24.37) and (24.38), where M given by (11.5)
is the polarization tensor associated with the nanoparticleD and the magnetic
contrast µc(ω)/µm, i.e., with λ be defined by (24.17). In view of (24.42), the
polarization tensorM blows up at the plasmonic resonances, which yields scat-
tering and absorption enhancements. A bound on the extinction cross-section
is derived in (24.44). As shown in (24.47) and (24.49), it can be sharpened for
nanoparticles of elliptical or ellipsoidal shapes.

24.4.1 The Quasi-Static Limit

We start by recalling the small volume expansion in the far-field. The following
asymptotic expansion holds.

Proposition 24.19 Assume that D = δB+z. As δ goes to zero the scattered
field us can be written as follows:

us(x) = −k2m
(
εc
εm

− 1

)
|D|Γkm

(x, z)ui(z)−∇zΓkm
(x, z) ·M(λ,D)∇ui(z)

+O

(
δ4

dist(λ, σ(K∗
D))

)

(24.35)
for x away from D. Here, dist(λ, σ(K∗

D)) denotes minj |λ− λj | with λj being
the eigenvalues of K∗

D.

Assume for simplicity that εc = εm. Let the scattering amplitude A∞
be defined by (3.110). We explicitly compute A∞. Take ui(x) = eikmd·x and
assume again for simplicity that z = 0. Equation (24.35) yields, for |x| ≫ 1

ω ,

us(x) =
eikm|x|

4π|x| ikm
(
ikm

x

|x| −
x

|x|2
)
·M(λ,D)d+O(

δ4

dist(λ, σ(K∗
D))

) .
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Since we are in the far-field region, we can write that, up to an error of order
δ4/dist(λ, σ(K∗

D)),

us(x) = −k2m
eikm|x|

4π|x|

(
x

|x| ·M(λ,D)d

)
+O

(
1

|x|2
)
. (24.36)

In the next proposition we write the extinction and scattering cross-sections,
Qext

m and Qs
m, in terms of the polarization tensor.

Proposition 24.20 The leading-order term (as δ goes to zero) of the average
over the orientation of the extinction cross-section of a randomly oriented
nanoparticle is given by

Qext
m = −4πkm

3
ℑ [traceM(λ,D)] , (24.37)

where trace denotes the trace of a matrix. The leading-order term of the
average over the orientation scattering cross-section of a randomly oriented
nanoparticle is given by

Qs
m =

k4m
9π

|traceM(λ,D)|2 . (24.38)

Proof. Remark from (24.36) that the scattering amplitude A∞ in the case of
a plane wave illumination is given by

A∞

(
x

|x| , d
)

= −k
2
m

4π

x

|x| ·M(λ,D)d. (24.39)

Using Theorem 3.42, we can see that for a given orientation

Qext = −4πkmℑ [d ·M(λ,D)d] .

Therefore, if we integrate Qext over all illuminations we find that

Qext
m =− kmℑ

[∫

S

d ·M(λ,D)d dσ(d)

]
.

Since ℑM(λ,D) is symmetric, it can be written as ℑM(λ,D) = P tN(λ)P ,
where P is unitary andN is diagonal and real. Then, by the change of variables
d = P tx and using spherical coordinates, it follows that

Qext
m = −km

[∫

S

x ·N(λ)xdσ(x)

]
,

and therefore,

Qext
m = −4πkm

3
[traceN(λ)] = −4πkm

3
ℑ [traceM(λ,D)] . (24.40)
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Now, we compute the averaged scattering cross-section. Let ℜM(λ,D) =

P̃ tÑ(λ)P̃ where P̃ is unitary and Ñ is diagonal and real. We have

Qs
m =

k4m
16π2

∫∫

S×S

|x ·M(λ,D)d|2 dσ(x) dσ(d) ,

=
k4m
16π2

[ ∫∫

S×S

∣∣∣x̃ ·N(λ)d̃
∣∣∣
2

dσ(x̃)dσ(d̃) +

∫∫

S×S

∣∣∣x̃ · Ñ(λ)d̃
∣∣∣
2

dσ(x̃) dσ(d̃)

]
.

Then a straightforward computation in spherical coordinates gives

Qs
m =

k4m
9π

|traceM(λ,D)|2 ,

which completes the proof. ⊓⊔
From Theorem 3.42, we obtain that the averaged absorption cross-section

is given by

Qa
m = −4πkm

3
ℑ [traceM(λ,D)]− k4m

9π
|traceM(λ,D)|2 .

Therefore, under the condition (24.24), Qa
m blows up at plasmonic resonances.

24.4.2 An Upper Bound for the Averaged Extinction
Cross-Section

The goal of this section is to derive an upper bound for the modulus of the
averaged extinction cross-section Qext

m of a randomly oriented nanoparticle.
Recall that the entriesMlm(λ,D) of the polarization tensorM(λ,D) are given
by

Mlm(λ,D) :=

∫

∂D

xl(λI −K∗
D)−1[νm](x) dσ(x) . (24.41)

For a C1,α domain D in Rd, K∗
D is compact and self-adjoint in H∗ (defined in

Lemma 3.14 for d = 3 and in Lemma 3.17 for d = 2). Thus, we can write

(λI −K∗
D)−1[ψ] =

∞∑

j=0

(ψ, ϕj)H∗ ⊗ ϕj

λ− λj
,

with (λj , ϕj) being the eigenvalues and eigenvectors of K∗
D in H∗ (see Lemma

3.14). Hence, the entries of the polarization tensor M can be decomposed as

Mlm(λ,D) =

∞∑

j=1

α
(j)
lm

λ− λj
, (24.42)

where α
(j)
lm := (νm, ϕj)H∗(ϕj , xl)− 1

2 ,
1
2
. Note that (νm, χ(∂D))− 1

2 ,
1
2
= 0. So,

considering the fact that λ0 = 1/2, we have (νm, ϕ0)H∗ = 0 and so, α
(0)
lm = 0.

The following lemmas are useful for us.
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Lemma 24.21 We have

α
(j)
l,l ≥ 0, j ≥ 1 .

Proof. For d = 3, we have

(ϕj , xl)− 1
2 ,

1
2
=
((1

2
− λj

)−1(1
2
I −K∗

D

)
[ϕj ], xl

)
− 1

2 ,
1
2

=
−1

1/2− λj

(∂SD[ϕj ]

∂ν

∣∣∣
−
, xl

)
− 1

2 ,
1
2

=

∫

∂D

∂xl
∂ν

SD[ϕj ]dσ −
∫

D

(
∆xlSD[ϕj ]− xl∆SD[ϕj ]

)
dx

=
(νl, ϕj)H∗

1/2− λj
,

where we used the fact that SD[ϕj ] is harmonic in D. Since |λj | < 1/2 for
j ≥ 1, we obtain the result. ⊓⊔

Lemma 24.22 Let

Mlm(λ,D) =

∞∑

j=1

α
(j)
l,m

λ− λj

be the (l,m)-entry of the polarization tensor M associated with a C1,α domain
D ⋐ Rd. Let δlm denote the Kronecker symbol. Then, the following properties
hold:

(i)

∞∑

j=1

α
(j)
l,m = δlm|D| ;

(ii)

∞∑

j=1

λi

d∑

l=1

α
(j)
l,l =

(d− 2)

2
|D| ;

(iii)

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l =

(d− 4)

4
|D|+

d∑

l=1

∫

D

|∇SD[νl]|2dx .

Proof. The proof can be found in Section 24.8. ⊓⊔

Let λ = λ′ + iλ′′. We have
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∣∣ℑ(trace(M(λ,D)))
∣∣ =

∞∑

j=1

|λ′′|∑d
l=1 α

(j)
l,l

(λ′ − λj)2 + λ′′2
. (24.43)

For d = 2 the spectrum σ(K∗
D)\{1/2} is symmetric. For d = 3 this is no

longer true. Nevertheless, for our purposes, we can assume that σ(K∗
D)\{1/2}

is symmetric by defining α
(j)
l,l = 0 if λj is not in the original spectrum.

Without loss of generality we assume for ease of notation that Conditions
24.4 and 24.5 hold. Then we define the bijection ρ : N+ → N+ such that
λρ(j) = −λj and we can write

∣∣ℑ(trace(M(λ,D)))
∣∣ = 1

2




∞∑

j=1

|λ′′|βj
(λ′ − λj)2 + λ′′2

+

∞∑

j=1

|λ′′|β(ρ(j))

(λ′ + λj)2 + λ′′2




=
|λ′′|
2

∞∑

j=1

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))(

(λ′ − λj)2 + λ′′2
)(
(λ′ + λj)2 + λ′′2

) ,

where βj =

d∑

l=1

α
(j)
l,l .

From Lemma 24.21 it follows that

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))(

(λ′ − λj)2 + λ′′2
)(
(λ′ + λj)2 + λ′′2

) ≥ 0 .

Moreover,

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))(

(λ′ − λj)2 + λ′′2
)(
(λ′ + λj)2 + λ′′2

) ≤

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))

λ′′2(4λ′2 + λ′′2)

+O(
λ′′2

4λ′2 + λ′′2
) .

Hence,

∣∣ℑ(trace(M(λ,D)))
∣∣ ≤ |λ′′|

2

∞∑

j=1

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′(λjβ(j) + λρ(j)β

(ρ(j)))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
) .

Using Lemma 24.22 we obtain the following result.

Theorem 24.23 Let M(λ,D) be the polarization tensor associated with a
C1,α domain D ⋐ Rd with λ = λ′ + iλ′′ such that |λ′′| ≪ 1 and |λ′| < 1/2.
Then,



24.4 Scattering and Absorption Enhancements 447

∣∣ℑ(trace(M(λ,D)))
∣∣ ≤ d|λ′′||D|

λ′′2 + 4λ′2

+
1

|λ′′|(λ′′2 + 4λ′2)

(
dλ′2|D|+ (d− 4)

4
|D|+

d∑

l=1

∫

D

|∇SD[νl]|2dx+ 2λ′
(d− 2)

2
|D|
)

+O(
λ′′2

4λ′2 + λ′′2
) .

The bound in the above theorem depends not only on the volume of the
particle but also on its geometry. Nevertheless, we remark that, since |λj | < 1

2 ,

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l <

d|D|
4

.

Hence, we can find a geometry independent, but not optimal, bound.

Corollary 24.24 We have

∣∣ℑ(trace(M(λ,D)))
∣∣ ≤ 1

|λ′′|(λ′′2 + 4λ′2)

(
d|D|

(
λ′2 +

1

4

)
+ 2λ′

(d− 2)

2
|D|
)
+

d|λ′′||D|
λ′′2 + 4λ′2

+O(
λ′′2

4λ′2 + λ′′2
) .

(24.44)

Bound for ellipses

If D is an ellipse whose semi-axes are on the x1- and x2- axes and of length a
and b, respectively, then its polarization tensor takes the form (11.11),

M(λ,D) =




|D|
λ− 1

2
a−b
a+b

0

0
|D|

λ+ 1
2
a−b
a+b


 . (24.45)

On the other hand, in H∗(∂D),

σ(K∗
D)\{1/2} =

{
±1

2

(
a− b

a+ b

)j

, j = 1, 2, . . .

}
.

Then, from (24.42), we also have

M(λ,D) =




∞∑

j=1

α
(j)
1,1

λ− 1
2

(
a−b
a+b

)j
∞∑

j=1

α
(j)
1,2

λ− 1
2

(
a−b
a+b

)j

∞∑

j=1

α
(j)
1,2

λ− 1
2

(
a−b
a+b

)j
∞∑

j=1

α
(j)
2,2

λ− 1
2

(
a−b
a+b

)j



.



448 24 Plasmonic Nanoparticle Imaging

Let λ1 =
1

2

a− b

a+ b
and V(λj) = {i ∈ N such that K∗

D[ϕi] = λjϕi}. It is clear

now that
∑

i∈V(λ1)

α
(i)
1,1 =

∑

i∈V(−λ1)

α
(i)
2,2 = |D|,

∑

i∈V(λj)

α
(i)
1,1 =

∑

i∈V(−λj)

α
(i)
2,2 = 0 (24.46)

for j ≥ 2 and ∑

i∈V(λj)

α
(i)
1,2 = 0

for j ≥ 1.
In view of (24.46), we have

β(j)

(λ′ − λj)2 + λ′′2
+

β(ρ(j))

(λ′ + λj)2 + λ′′2
≤ 4λ′2β(j) + λ′′2(β(j) + β(j))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
) .

Hence,

|ℑ(Tr(M(λ,D)))| ≤ |λ′′|
2

∞∑

j=1

4λ′2β(j) + λ′′2(β(j) + β(j))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
) .

Note that for for any ellipse D̃ of semi-axes of length a and b, ℑ(trace(M(λ, D̃))) =
ℑ(trace(M(λ,D))). Then using Lemma 24.22 we obtain the following result.

Corollary 24.25 For any ellipse D̃ of semi-axes of length a and b, we have

|ℑ(trace(M(λ, D̃)))| ≤ |D̃|4λ′2
|λ′′|(λ′′2 + 4λ′2)

+
2|λ′′||D̃|
λ′′2 + 4λ′2

+O(
λ′′2

4λ′2 + λ′′2
) .

(24.47)

Figure 24.1 shows (24.47) and the average extinction of two ellipses of semi-
axis a and b, where the ratio a/b = 2 and a/b = 4, respectively.

We can see from (24.43), Lemma 24.21 and the first sum rule in Lemma
24.22 that for an arbitrary shape B, |ℑ(trace(M(λ,B)))| is a convex combi-

nation of |λ′′|
(λ′−λj)2+λ′′2 for λj ∈ σ(K∗

B)\{1/2}. Since ellipses put all the weight
of this convex combination in ±λ1 = ± 1

2
a−b
a+b , we have for any ellipse D̃ and

any shape B such that |B| = |D̃|,

|ℑ(trace(M(λ∗, B)))| ≤ |ℑ(trace(M(λ∗, D̃)))|

with

λ∗ = ±1

2

a− b

a+ b
+ iλ′′ .

Thus, bound (24.47) applies for any arbitrary shape B in dimension two.
This implies that, for a given material and a given desired resonance frequency
ω∗, the optimal shape for the extinction resonance (in the quasi-static limit)
is an ellipse of semi-axis a and b such that λ′(ω∗) = ± 1

2
a−b
a+b .
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Fig. 24.1. Optimal bound for ellipses.

Bound for ellipsoids

Let D be an ellipsoid given by

x21
p21

+
x22
p22

+
x23
p23

= 1. (24.48)

The following holds [50].

Lemma 24.26 Let D be the ellipsoid defined by (24.48). Then, for x ∈ D,

SD[νl](x) = slxl, l = 1, 2, 3 ,

where

sl = −p1p2p3
2

∫ ∞

0

1

(p2l + s)
√
(p21 + s)(p22 + s)(p23 + s)

ds .
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Then we have

3∑

l=1

∫

D

|∇SD[νl]|2dx = (s21 + s22 + s23)|D| .

For a rotated ellipsoid D̃ = RD with R being a rotation matrix, from
Theorem 11.4, we have M(λ, D̃) = RM(λ,D)RT and so trace(M(λ, D̃)) =

trace(M(λ,D)). Therefore, for any ellipsoid D̃ of semi-axes of length p1, p2
and p3 the following result holds.

Corollary 24.27 For any ellipsoid D̃ of semi-axes of length p1, p2 and p3,
we have

ℑ(trace(M(λ, D̃))) ≤ |D̃|
(
3λ′2 + λ′ − 1

4 + (s21 + s22 + s23)
)

|λ′′|(λ′′2 + 4λ′2)
+

3|λ′′||D̃|
λ′′2 + 4λ′2

+O(
λ′′2

4λ′2 + λ′′2
) ,

(24.49)
where for j = 1, 2, 3,

sj = −p1p2p3
2

∫ ∞

0

1

(p2j + s)
√
(p21 + s)(p22 + s)(p23 + s)

ds .

24.5 Link with the Scattering Coefficients

Our aim in this section is to exhibit the mechanism underlying plasmonic res-
onances in terms of the scattering coefficients corresponding to the nanopar-
ticle. The concept of scattering coefficients was first introduced in Subsection
3.2.7. The scattering coefficients are simply the Fourier coefficients of the scat-
tering amplitude A∞. In Theorem 24.31 we provide an asymptotic expansion
of the scattering amplitude in terms of the scattering coefficients of order ±1.
Our formula shows that, under physical conditions, the scattering coefficients
of orders ±1 are the only scattering coefficients inducing the scattering cross-
section enhancement. For simplicity we only consider here the two-dimensional
case.

24.5.1 Scattering coefficients of plasmonic nanoparticles

We fiesr recall the notion of scattering coefficients. From Graf’s addition for-
mula [50] and (24.2) the following asymptotic formula holds as |x| → ∞

us(x) = (u− ui)(x) = − i

4

∑

n∈Z

H(1)
n (km|x|)einθx

∫

∂D

Jn(km|y|)e−inθyψ(y)dσ(y) ,

where x = (|x|, θx) in polar coordinates, H
(1)
n is the Hankel function of the

first kind and order n, Jn is the Bessel function of order n and ψ is the solution



24.5 Link with the Scattering Coefficients 451

to (24.4).
For ui(x) = eikmd·x we have

ui(x) =
∑

m∈Z

am(ui)Jm(km|x|)eimθx ,

where am(ui) = eim(π
2 −θd). By the superposition principle, we get

ψ =
∑

m∈Z

am(ui)ψm ,

where ψm is solution to (24.4) replacing f by

f (m) := F
(m)
2 +

1

µc

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1[F
(m)
1 ]

with

F
(m)
1 (x) = −Jm(km|x|)eimθx ,

F
(m)
2 (x) = − 1

µm

∂Jm(km|x|)eimθx

∂ν
.

We have

us(x) = (u− ui)(x) = − i

4

∑

n∈Z

H(1)
n (km|x|)einθx

∑

m∈Z

Wnme
im(π

2 −θd) ,

where

Wnm =

∫

∂D

Jn(km|y|)e−inθyψm(y)dσ(y) . (24.50)

The coefficients Wnm were called the scattering coefficients.

Lemma 24.28 In the space H∗(∂D), as ω goes to zero, we have

f (0) = O(ω2) ,

f (±1) = ωf
(±1)
1 +O(ω2) ,

f (m) = O(ωm), |m| > 1 ,

where

f
(±1)
1 = ∓

√
εmµm

2

( 1

µm
ei±θν +

1

µc
(
1

2
I −K∗

D)S̃−1
D [|x|ei±θx ]

)
.

Proof. Recall that J0(x) = 1 +O(x2). By virtue of the fact that

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1[χ(∂D)] = O(ω2),

we arrive at the estimate for f (0). Moreover,
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J±1(x) = ±x
2
+O(x3)

together with the fact that

(1
2
I − (Kkc

D )∗
)
(Skc

D )−1 = (
1

2
I −K∗

D)S̃−1
D +O(ω2 logω)

gives the expansion of f (±1) in terms of ω.
Finally, Jm(x) = O(xm) immediately yields the desired estimate for f (m).

⊓⊔

It is easy to see that

ψm =
∑

j∈J

(
f (m), ϕ̃j(ω)

)
H∗ϕj(ω)

τj(ω)
+AD(ω)−1(PJc(ω)f) . (24.51)

Hence, from the definition of the scattering coefficients,

Wnm =
∑

j∈J

(
f (m), ϕ̃j(ω)

)
H∗

(
ϕj(ω), Jn(km|x|)e−inθx

)
− 1

2 ,
1
2

τj(ω)
+

∫

∂D

Jn(km|y|)e−inθyO(ω)dσ(y) .

(24.52)
Since

Jm(x) ∼ (−1)m√
2π|m|

( ex

2|m|
)|m|

as m→ ∞, we have

|f (m)| ≤ C |m|

|m||m| .

Using the Cauchy–Schwarz inequality and Lemma 24.28, we obtain the fol-
lowing result.

Proposition 24.29 For |n|, |m| > 0, we have

|Wnm| ≤ O(ω|n|+|m|)

minj∈J |τj(ω)|
C |n|+|m|

|n||n||m||m|

for a positive constant C independent of ω.

24.5.2 The Leading-Order Term in the Expansion of the
Scattering Amplitude

In the following, we analyze the first-order scattering coefficients.
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Lemma 24.30 Assume that Conditions 1 and 2 hold. Then,

ψ0 =
∑

j∈J

O(ω2)

τj(ω)
+O(ω) ,

ψ±1 =
∑

j∈J

±ω
√
εmµm

2

(
1

µm
− 1

µc

)
(e±iθν , ϕj)H∗ϕj +O(ω3 logω)

τj(ω)
+O(ω) .

Proof. The expression of ψ0 follows from (24.51) and Lemma 24.28. Chang-

ing SD by S̃D in Theorem 24.8 gives
(
(
1

2
I − K∗

D)S̃−1
D [|x|eiθx ], ϕj

)
H∗

=

−(eiθν , ϕj)H∗ . Using now Lemma 24.28 in (24.51) yields the expression of
ψ±1. ⊓⊔

Recall that in two dimensions,

τj(ω) =
1

2µm
+

1

2µc
−
( 1

µc
− 1

µm

)
λj +O(ω2 logω) ,

where λj is an eigenvalue of K∗
D and λ0 = 1/2. Recall also that for 0 ∈ J we

need τj → 0 and so µm → ∞, which is a limiting case that we can ignore. In
practice, PJ(ω)[ϕ0(ω)] = 0. We also have (ϕj , χ(∂D))− 1

2 ,
1
2
= 0 for j 6= 0.

It follows then from the above lemmas and the expression of the scattering
coefficients that

W00 =
∑

j∈J

O(ω4 logω)

τj(ω)
+O(ω) ,

W0±1 =
∑

j∈J

O(ω3 logω)

τj(ω)
+O(ω) ,

W±10 =
∑

j∈J

O(ω3)

τj(ω)
+O(ω2) .

Note that W±1±1 has a special structure. Indeed, from Lemma 24.30 and
equation (24.52), we have

W±1±1 =
∑

j∈J

±± ω
√
εmµm

2

(
1

µm
− 1

µc

)(
ϕj , J1(km|x|)e∓iθx

)
− 1

2 ,
1
2

(
e±iθν , ϕj

)
H∗ +O(ω4 logω)

τj(ω)
+O(ω2) ,

=
∑

j∈J

±± ω2 εmµm

4

(
1

µm
− 1

µc

)(
ϕj , |x|e∓iθx

)
− 1

2 ,
1
2

(
e±iθν , ϕj

)
H∗ +O(ω4 logω)

τj(ω)
+O(ω2) ,

=
k2m
4


∑

j∈J

±±
(
ϕj , |x|e∓iθx

)
− 1

2 ,
1
2

(
e±iθν , ϕj

)
H∗ +O(ω2 logω)

λ− λj +O(ω2 logω)
+O(1)


 ,
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where λ is defined by (24.17). Now, assume that minj∈J |τj(ω)| ≫ ω2 logω.
Then,

W±1±1 =
k2m
4


∑

j∈J

±±
(
ϕj , |x|e∓iθx

)
− 1

2 ,
1
2

(
e±iθν , ϕj

)
H∗

λ− λj
+O(1)


 . (24.53)

Define the contracted polarization tensors by

N±,±(λ,D) :=

∫

∂D

|x|e±iθx(λI −K∗
D)−1[e±iθν ](x) dσ(x) .

It is clear that

N+,+(λ,D) = M11(λ,D)−M22(λ,D) + i2M1,2(λ,D) ,

N+,−(λ,D) = M11(λ,D) +M22(λ,D) ,

N−,+(λ,D) = M11(λ,D) +M22(λ,D) ,

N−,−(λ,D) = M11(λ,D)−M22(λ,D)− i2M12(λ,D) ,

whereMlm(λ,D) is the (l,m)-entry of the polarization tensor given by (11.5).
Finally, considering the above we can state the following result.

Theorem 24.31 Let A∞ be the scattering amplitude for the incoming plane
wave ui(x) = eikmd·x. Assume Conditions 1 and 2 and

min
j∈J

|τj(ω)| ≫ ω2
∣∣ logω

∣∣ .

Then, A∞ admits the following asymptotic expansion

A∞

(
x

|x| , d
)

=
x

|x|
T
W1d+O(ω2) ,

where

W1 =

(
W−11 +W1−1 − 2W1,1 i

(
W1−1 −W−11

)

i
(
W1−1 −W−11

)
−W−11 −W1−1 − 2W11

)
.

Here, Wnm are the scattering coefficients defined by (24.50).

Proof. From (24.39), we have

A∞

(
x

|x| , d
)

= −k2m
x

|x|
T
M(λ,D)d .

Since K∗
D is compact and self-adjoint in H∗, we have

N±,±(λ,D) =

∞∑

j=1

(
ϕj , |x|e±iθx

)
− 1

2 ,
1
2

(
e±iθν , ϕj

)
H∗

λ− λj

=
∑

j∈J

(
ϕj , |x|e±iθx

)
− 1

2 ,
1
2

(
e±iθν , ϕj

)
H∗

λ− λj
+O(1) .
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We have then from (24.53) that

−k
2
m

4
N+,+(λ,D) = W−11 +O(ω2) ,

−k
2
m

4
N+,−(λ,D) = −W11 +O(ω2) ,

−k
2
m

4
N−,+(λ,D) = −W11 +O(ω2) ,

−k
2
m

4
N−,−(λ,D) = W1−1 +O(ω2) .

In view of

M11 =
1

4
(N+,+ +N−,− + 2N+,−) ,

M22 =
1

4
(−N+,+ −N−,− + 2N+,−) ,

M12 =
−i
4

(N+,+ −N−,−) ,

we get the result. ⊓⊔

24.6 Asymptotic Expansion of the Integral Operators:
Single Particle

In this section, we derive asymptotic expansions with respect to k of some
boundary integral operators defined on the boundary of a bounded and simply
connected smooth domain D in dimension three whose size is of order one.

We first consider the single layer potential

Sk
D[ψ](x) =

∫

∂D

Γk(x, y)ψ(y)dσ(y), x ∈ ∂D ,

where

Γk(x, y) = − eik|x−y|

4π|x− y|
is the Green function of Helmholtz equation in R3, subject to the Sommerfeld
radiation condition. Note that

Γk(x, y) = −
∞∑

j=0

(ik|x− y|)j
j!4π|x− y| = − 1

4π|x− y| −
ik

4π

∞∑

j=1

(ik|x− y|)j−1

j!
.

We get

Sk
D = SD +

∞∑

j=1

kjSD,j , (24.54)
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where

SD,j [ψ](x) = − i

4π

∫

∂D

(i|x− y|)j−1

j!
ψ(y)dσ(y) .

In particular, we have

SD,1[ψ](x) = − i

4π

∫

∂D

ψ(y)dσ(y) , (24.55)

SD,2[ψ](x) = − 1

4π

∫

∂D

|x− y|ψ(y)dσ(y) . (24.56)

Lemma 24.32 ‖SD,j‖L((H∗(∂D),H(∂D)) is uniformly bounded with respect to
j. Moreover, the series in (24.54) is convergent in L(H∗(∂D),H(∂D)).

Proof. It is clear that

‖SD,j‖L(L2(∂D),W 1,2(∂D)) ≤ C ,

where C is independent of j. On the other hand, a similar estimate also holds
for the operator S∗

D,j . It follows that

‖SD,j‖L(W−1,2(∂D),L2(∂D)) ≤ C .

Thus, we can conclude that ‖SD,j‖L(W 2
−1/2

(∂D),W 2
1/2

(∂D)) is uniformly bounded

by using interpolation theory. By the equivalence of norms in the W 2
−1/2(∂D)

and W 2
1/2(∂D), the lemma follows immediately. ⊓⊔

Note that SD is invertible in dimension three, so is Sk
D for small k. By

formally writing

(Sk
D)−1 = S−1

D + kBD,1 + k2BD,2 + . . . , (24.57)

and using the identity (Sk
D)−1Sk

D = I, we can derive that

BD,1 = −S−1
D SD,1S−1

D , BD,2 = −S−1
D SD,2S−1

D + S−1
D SD,1S−1

D SD,1S−1
D .
(24.58)

We can also derive other lower-order terms BD,j .

Lemma 24.33 The series in (24.57) converges in L(H(∂D),H∗(∂D)) for
sufficiently small k.

Proof. Using the identity

(Sk
D)−1 = (I + S−1

D

∞∑

j=1

kjSD,j)
−1S−1

D ,

the proof follows immediately. ⊓⊔
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We now consider the expansion for the boundary integral operator (Kk
D)∗.

We have
(Kk

D)∗ = K∗
D + kKD,1 + k2KD,2 + . . . , (24.59)

where

KD,j [ψ](x) = − i

4π

∫

∂D

∂(i|x− y|)j−1

j!∂ν(x)
ψ(y)dσ(y) = − i

j(j − 1)

4πj!

∫

∂D

|x−y|j−3(x−y)·ν(x)ψ(y)dσ(y) .

In particular, we have

KD,1 = 0, KD,2[ψ](x) =
1

4π

∫

∂D

(x− y) · ν(x)
|x− y| ψ(y)dσ(y) . (24.60)

Lemma 24.34 The norm ‖KD,j‖L(H∗(∂D),H∗(∂D)) is uniformly bounded for
j ≥ 1. Moreover, the series in (24.59) is convergent in L(H∗(∂D),H∗(∂D)).

24.7 Asymptotic Expansion of the Integral Operators:
Multiple Particles

In this section, we consider the three-dimensional case. We assume that the
particles have size of order δ which is a small number and the distance between
them is of order one. We write Dj = zj+δD̃, j = 1, 2, . . . ,M , where D̃ has size
one and is centered at the origin. Our goal is to derive estimates for various
boundary integral operators considered in the paper that are defined on small
particles in terms of their size. For this purpose, we denote by D0 = δD̃. For
each function f defined on ∂D0, we define a corresponding function on D̃ by

η(f)(x̃) = f(δx̃) .

We first state some useful results.

Lemma 24.35 The following scaling properties hold:

(i) ‖η(f)‖L2(∂D̃) = δ−1‖f‖L2(∂D0) ;

(ii) ‖η(f)‖H(∂D̃) = δ−
1
2 ‖f‖H(∂D0) ;

(iii) ‖η(f)‖H∗(∂D̃) = δ−
3
2 ‖f‖H∗(∂D0) .

Proof. The proof of (i) is straightforward and we only need to prove (ii) and
(iii). To prove (iii), we have

‖f‖2H∗(∂D0)
=

∫

∂D0

∫

∂D0

f(x)f(y)

4π|x− y|dσ(x)dσ(y)

= δ3
∫

∂D̃

∫

∂D̃

η(f)(x̃)η(f)(ỹ)

4π|x̃− ỹ| dσ(x̃)dσ(x̃)

= δ3‖η(f)‖2H∗(∂D̃)
,
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whence (iii) follows. To prove (ii), recall that

‖f‖H(∂D0) = ‖S−1
D0
f‖H∗(∂D0) .

Let u = S−1
D0

[f ]. Then f = SD0
[u]. We can show that

η(f) = δSD̃(η(u)) .

As a result, we have

‖η(f)‖H(∂D̃) = δ‖SD̃(η(u))‖H(∂D̃) = δ‖η(u)‖H∗(∂D̃) = δ−
1
2 ‖u‖H∗(∂D0) = δ−

1
2 ‖f‖H(∂D0) ,

which proves (ii). ⊓⊔
Lemma 24.36 Let X and Y be bounded and simply connected smooth do-
mains in R3. Assume 0 ∈ X,Y and X = δX̃, Y = δỸ . Let R and R̃ be two
boundary integral operators from D′(∂Y ) to D′(∂X) and D′(∂Ỹ ) to D′(∂X̃),
respectively. Here, D′ denotes the Schwartz space. Assume that both opera-
tors have the same Schwartz kernel R with the following homogeneous scaling
property

R(δx, δy) = δmR(x, y) .

Then,

‖R‖L(H∗(∂Y ),H∗(∂X)) = δ2+m‖R̃‖L(H∗(∂Ỹ ),H∗(∂X̃)) ,

‖R‖L(H∗(∂Y ),H(∂X)) = δ1+m‖R̃‖L(H∗(∂Ỹ ),H(∂X̃)) .

Proof. Lemma 24.35 together with the following identity

R = δ2+mη−1 ◦ R̃ ◦ η ,

yields the desired result. ⊓⊔
We first consider the operators Sk

Dj
and (Kk

Dj
)∗. The following asymptotic

expansions hold.

Lemma 24.37 (i) Regarded as operators from H∗(∂Dj) into H(∂Dj), we
have

Sk
Dj

= SDj + kSDj ,1 + k2SDj ,2 +O(k3δ3) ,

where SDj
= O(1) and SDj ,m = O(δm);

(ii) Regarded as operators from H(∂Dj) into H∗(∂Dj), we have

(Sk
Dj

)−1 = S−1
Dj

+ kBDj ,1 + k2BDj ,2 +O(k3δ3) ,

where S−1
Dj

= O(1) and BDj ,m = O(δm);

(iii) Regarded as operators from H∗(∂Dj) into H∗(∂Dj), we have

(Kk
Dj

)∗ = K∗
Dj

+ k2O(δ2) ,

where K∗
Dj

= O(1).
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Proof. The proof immediately follows from Lemmas 24.36, 24.32, and 24.34.
⊓⊔

We now consider the operator Sk
Dj ,Dl

. By definition,

Sk
Dj ,Dl

[ψ](x) =

∫

∂Dj

Γk(x, y)ψ(y)dσ(y), x ∈ ∂Dl .

Using the expansion

Γk(x, y) =
∞∑

m=0

kmQm(x, y) ,

where

Qm(x, y) = − i
m|x− y|m−1

4π
,

we can derive that
Sk
Dj ,Dl

=
∑

m≥0

kmSj,l,m ,

where

Sj,l,m[ψ](x) =

∫

∂Dj

Qm(x, y)ψ(y)dσ(y) .

We can further write
Sj,l,m =

∑

n≥0

Sj,l,m,n,

where Sj,l,m,n is defined by

Sj,l,m,n[ψ](x) =

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂|α|+|β|

∂xα∂yβ
Qm(zl, zj)(x−zl)α(y−zj)βψ(y) dσ(y) .

In particular, we have

Sj,l,0,0[ψ](x) = − 1

4π|zj − zl|
(ψ, χ(∂Dj))W 2

−1/2
(∂Dj),W 2

1/2
(∂Dj)χ(Dl) ,

Sj,l,0,1[ψ](x) =
∑

|α|=1

(zl − zj)
α

4π|zl − zj |3
(
(x− zl)

α(ψ, χ(∂Dl))W 2
−1/2

(∂Dj),W 2
1/2

(∂Dj) +
(
(y − zj)

α, ψ
)
χ(Dl)

)
,

Sj,l,0,2[ψ](x) =
∑

|α|+|β|=2

1

α!β!

∂2Q0(zl, zj)

∂xα∂yβ
(x− zl)

α(y − zj)
βψ(y)dσ(y) ,

Sj,l,1[ψ](x) = − i

4π
(ψ, χ(∂Dj))W 2

−1/2
(∂Dj),W 2

1/2
(∂Dj)χ(Dl) ,

Sj,l,2,0[ψ](x) =
1

4π
|zl − zj |(ψ, χ(∂Dj))W 2

−1/2
(∂Dj),W 2

1/2
(∂Dj)χ(Dl) .

The following estimate holds.
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Lemma 24.38 We have ‖Sj,l,m,n‖L(H∗(∂D),H(∂D)) . O(δn+1).

Proof. After a translation of coordinates, the stated estimate immediately
follows from Lemma 24.36. ⊓⊔

Similarly, for the operator Kkm

Dj ,Dl
defined in the following way

Kk
Dj ,Dl

[ψ](x) =

∫

∂Dj

∂Γk(x, y)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂Dl ,

we have
Kk

Dj ,Dl
=
∑

m≥0

km
∑

n≥0

Kj,l,m,n ,

where

Kj,l,m,n[ψ](x) =

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x−zl)β(y−zj)α(x−y)·ν(x)ψ(y)dσ(y)

with

Km(x, y) = − i
m(m− 1)|x− y|m−3

4πm!
.

In particular, we have

Kj,l,0,0[ψ](x) =
1

4π|zl − zj |3
[
(x− zl) · ν(x)

(
ψ, χ(∂Dj)

)
W 2

−1/2
(∂Dj),W 2

1/2
(∂Dj)

−
(
ψ, (y − zj) · ν(x)

)
W 2

−1/2
(∂Dj),W 2

1/2
(∂Dj)

+(zl − zj) · ν(x)
(
ψ, χ(∂Dj)

)
W 2

−1/2
(∂Dj),W 2

1/2
(∂Dj)

]
, (24.61)

Kj,l,1,m[ψ] = 0 for all m. (24.62)

Lemma 24.39 We have ‖Kj,l,m,n‖L(H∗(∂Dj),H∗(∂Dl)) . O(δn+2).

Proof. Note that

Kj,l,m,n[ψ](x) =

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x− zl)

β(y − zj)
α(x− zl) · ν(x)ψ(y)dσ(y) ,

−
∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x− zl)

β(y − zj)
α(y − zj) · ν(x)ψ(y)dσ(y) ,

+

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x− zl)

β(y − zj)
α(zl − zj) · ν(x)ψ(y)dσ(y) .

After a translation of coordinates, we can apply Lemma 24.36 to each one of
the three terms above to conclude that Kj,l,m,n = O(δn+3) + O(δn+2). This
completes the proof of the lemma. ⊓⊔
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To summarize, we have proven the following results.

Lemma 24.40 (i) Regarded as an operator from H∗(∂Dj) into H(∂Dl) we
have,

Sk
Dj ,Dl

= Sj,l,0,0+Sj,l,0,1+Sj,l,0,2+ kSj,l,1+ k
2Sj,l,2,0+O(δ4)+O(k2δ2) .

Moreover,
Sj,l,m,n = O(δn+1).

(ii) Regarded as an operator from H∗(∂Dj) into H∗(∂Dl), we have

Kk
Dj ,Dl

= Kj,l,0,0 +O(k2δ2).

Moreover,
Kj,l,0,0 = O(δ2).

24.8 Sum Rules for the Polarization Tensor

Let f be a holomorphic function defined in an open set U ⊂ C containing the

spectrum, σ(K∗
D), of K∗

D. Then, we can write f(z) =

∞∑

j=0

ajz
j for every z ∈ U .

Definition 24.3. Let

f(K∗
D) :=

∞∑

j=0

aj(K∗
D)j ,

where (K∗
D)j := K∗

D ◦ K∗
D ◦ .. ◦ K∗

D︸ ︷︷ ︸
j times

.

Lemma 24.41 We have

f(K∗
D) =

∞∑

j=1

f(λj)(·, ϕj)H∗ϕj .

Proof. We have

f(K∗
D) =

∞∑

i=0

ai(K∗
D)i =

∞∑

i=0

ai

∞∑

j=1

λij(·, ϕj)H∗ϕj

=

∞∑

j=1

( ∞∑

i=0

aiλ
i
j

)
(·, ϕj)H∗ϕj

=

∞∑

j=1

f(λj)(·, ϕj)H∗ϕj ,

which yields the desired result. ⊓⊔
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From Lemma 24.41, we can deduce that

∫

∂D

xlf(K∗
D)[νm](x) dσ(x) =

∞∑

j=1

f(λj)α
(j)
l,m . (24.63)

Equation (24.63) yields the summation rules for the entries of the polarization
tensor.

In order to prove that

∞∑

j=1

α
(j)
l,m = δlm|D|, we take f(λ) = 1 in (24.63) to

get
∞∑

j=1

α
(j)
l,m =

∫

∂D

xlνm(x) dσ(x) = δlm|D|.

Next, we prove that

∞∑

j=1

λj

d∑

l=1

α
(j)
l,l =

(d− 2)

2
|D| .

Taking f(λ) = λ in (24.63), we obtain

∞∑

j=1

λj

d∑

l=1

α
(j)
l,l =

d∑

l=1

∫

∂D

xlK∗
D[νl](x) dσ(x) ,

∫

∂D

xlK∗
D[νl](x) dσ(x) =

∫

∂D

xl

(
1

2
νl(x) +

∂SD[νl]

∂ν

∣∣∣
−
(x)

)
dσ(x) ,

=
|D|
2

+

∫

∂D

xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) . (24.64)

Integrating by parts we arrive at
∫

∂D

xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) =

∫

D

el(x) · ∇SD[νl](x)dx+

∫

D

xl∆SD[νl](x)dx ,

where (e1, . . . , ed) is an orthonormal basis of Rd. Since the single-layer poten-
tial is harmonic on D,
∫

∂D

xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) =

∫

D

el(x) ·
(∫

∂D

∇xΓ (x, x
′)νl(x

′)dσ(x′)

)
dx .

Summing on l and using ∇xΓ (x, x
′) = −∇x′Γ (x, x′), we get

d∑

l=1

∫

∂D

xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) =−

∫

D

(∫

∂D

ν(x′) · ∇x′Γ (x, x′)dσ(x′)

)
dx ,

=−
∫

D

DD[1](x)dx,

=− |D|, (24.65)
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where DD is the double-layer potential. Hence, summing equation (24.64) for
l = 1, . . . , d, we get the result.

Finally, we show that

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l =

d− 4

4
|D|+

d∑

l=1

∫

D

|∇SD[νl]|2dx .

Taking f(λ) = λ2 in (24.63) yields

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l =

d∑

l=1

∫

∂D

xl(K∗
D)2[νl](x) dσ(x)

=

d∑

l=1

∫

∂D

KD[yl](x)K∗
D[νl](x) dσ(x)

=

d∑

l=1

∫

∂D

KD[yl]
νl
2
dσ +

d∑

l=1

∫

∂D

KD[yl]
∂SD[νl]

∂ν
|−dσ

=
(d− 2)

4
|D| −

d∑

l=1

∫

∂D

yl
2

∂SD[νl]

∂ν

∣∣∣
−
dσ

︸ ︷︷ ︸
I1

+

d∑

l=1

∫

∂D

DD[yl]
∣∣∣
−

∂SD[νl]

∂ν

∣∣∣
−
dσ

︸ ︷︷ ︸
I2

.

From (24.65) it follows that

I1 = −|D|
2
.

Since xl is harmonic, we have xl = DD[yl](x)|− −SD[νl](x) on ∂D, and thus,

I2 =
d∑

l=1

∫

∂D

(xl + SD[νl](x))
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) ,

= −|D|+
d∑

l=1

∫

∂D

SD[νl]
∂SD[νl]

∂ν

∣∣∣
−
dσ ,

= −|D|+
d∑

l=1

∫

D

|∇SD[νl]|2dx .

Replacing I1 and I2 by their expressions gives the desired result.

24.9 Concluding Remarks

In this chapter, based on perturbation arguments, we studied the scattering
by plasmonic nanoparticles when the frequency is close to a resonant fre-
quency. We have derived the shift and broadening of the plasmon resonance
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with changes in size. We have also consider the case of multiple nanoparticles
under the weak interaction assumption. The localization algorithms developed
in Chapter 12 can be extended to the problem of imaging plasmonic nanopar-
ticles. We have precisely quantified the scattering and absorption cross-section
enhancements and gave optimal bounds on the enhancement factors. We have
also linked the plasmonic resonances to the scattering coefficients and showed
that the leading-order term of the scattering amplitude can be expressed in
terms of the ±-one order of the scattering coefficients.



25

Nonlinear Harmonic Holography

25.1 Introduction

In this chapter, the detection of a small reflector in a randomly heterogeneous
medium using second-harmonic generation is investigated. The medium is
illuminated by a time-harmonic plane wave at frequency ω. It is assumed that
the reflector has a non-zero second-order nonlinear susceptibility, and thus
emits a wave at frequency 2ω in addition to the fundamental frequency linear
scattering. It is shown how the fundamental frequency signal and the second-
harmonic signal propagate in the medium. A statistical study of the images
obtained by migration the boundary data is performed. It is proved that the
second-harmonic image is more stable with respect to medium noise than the
one obtained with the fundamental signal. Moreover, the signal-to-noise ratio
for the second-harmonic image does not depend either on the second-order
susceptibility tensor or on the volume of the particle.

Second-harmonic microscopy is a promising imaging technique based on a
phenomenon called second-harmonic generation (SHG) or frequency-doubling.
SHG requires an intense laser beam passing through a material with nonva-
nishing second-order polarizability [187]. A second electromagnetic field is
emitted at exactly twice the frequency of the incoming field. Roughly speak-
ing,

E2ω ∼ Eωχ
(2)Eω , (25.1)

where χ(2) is the second-order polarization tensor. A condition for an object
to have nonvanishing second-order polarizability tensor is to have a noncen-
trosymmetric structure. Thus SHG occurs in nanoparticles [348, 198]. This
makes SHG a very good contrast mechanism for microscopy, and has been
used in biomedical imaging. SHG signals have a very low intensity because
the coefficients in χ(2) have a typical size of picometer/V . This is the reason
why a high intensity laser beam is required in order to produce a second-
harmonic field that is large enough to be detected by the microscope.
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The coherent nature of the SHG signal allows us to use nonlinear hologra-
phy for measuring the complex two-dimensional (amplitude and phase) SHG
signal [190, 301]. On the other hand, since only the nanoparticle produces the
second-harmonic signal, SHG microscopy allows a precise localization of the
nanoparticle, clear of any scattering from the surrounding medium, contrary
to the fundamental frequency image, where the signal measured is produced
by both the reflector and the medium.

In this chapter, we study the case of a nanoparticle with non vanishing
second-order polarizability tensor χ(2) embedded in a randomly heterogeneous
medium illuminated by an incoming electromagnetic field at a fixed frequency
ω. We give asymptotic formulas for the electromagnetic field diffracted by the
nanoparticle, at the fundamental frequency and at the second-harmonic fre-
quency. Then we use a backpropagation algorithm in order to recover the
position of the nanoparticle from boundary measurements of the fields. We
study the images obtained by backpropagation both in terms of resolution and
stability. In particular, we elucidate that the second-harmonic field provides
a more stable image than that from fundamental frequency imaging, with
respect to medium noise, and that the signal-to-noise ratio for the second-
harmonic image does not depend either on χ(2) or on the volume of the par-
ticle.

The chapter is organized as follows. In Section 25.2 we formulate the prob-
lem of SHG. In Section 25.3, asymptotic expansions in terms of the size of
the small reflector (the nanoparticle) of the scattered field at the fundamen-
tal frequency and the second-harmonic generated field are derived. In Section
25.4, we introduce backpropagation imaging functions for localizing the point
reflector using the scattered field at the fundamental frequency as well as the
second-harmonic field. In Section 25.5, we perform a stability and resolution
analysis of the backpropagation imaging functions. We show that the medium
noise affects the stability and resolution of the imaging functions in different
ways. We prove that using the second-harmonic field renders enhanced stabil-
ity for the reconstructed image. This finding is delineated by a few numerical
examples in Section 25.6. The chapter ends with a short discussion. The main
results of this chapter are from [55].

25.2 Problem Formulation

Consider a small electric reflector Ωr with a nonvanishing second-order sus-
ceptibility tensor embedded in a randomly heterogeneous medium in R2. We
assume that the randomly heterogeneous medium has random fluctuations
described by a bounded random process µ with mean zero. Furthermore, we
assume that µ is compactly supported in R2 and let Ωµ := supp(µ). We also
assume that the refractive index of the background homogeneous medium
R2 \Ωµ is 1. The medium is illuminated by a plane wave at frequency ω > 0,
intensity UI > 0, and direction θ ∈ S:
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U0(x) = UIe
iωθ·x , (25.2)

with S being the unit circle. We assume that the incoming plane wave is
polarized in the transverse magnetic mode. The small reflector Ωr is in Ωµ

and has a refractive index given by

[σr − 1]χ(Ωr)(x) , (25.3)

where σr is the refractive index contrast of the reflector, Ωr is compactly
supported in Ωµ with volume |Ωr|, and χ(Ωr) is the characteristic function
of Ωr. The squared refractive index n(x) in the whole space then has the
following form:

1

n(x)
= 1 + µ(x) + [σr − 1]χ(Ωr)(x) . (25.4)

The scattered field us generated by the plane wave satisfies the Helmholtz
equation





∇ · (([σr − 1]χ(Ωr) + µ+ 1)∇(us + U0)) + ω2(us + U0) = 0 in R2 ,

lim
|x|→∞

√
|x|( ∂us

∂|x| − iωus) = 0 .

(25.5)
The point reflector also scatters a second field v at frequency 2ω. The field

v satisfies, up to O(||µ||2L∞(Ωµ)
), the following Helmholtz equation [187]:





(
∆+

(2ω)2

[σr − 1]χ(Ωr) + 1
(1− µ

[σr − 1]χ(Ωr) + 1
)

)
v =

∑

k,l=1,2

χ
(2)
kl ∂xk

U∂xl
Uχ(Ωr) in R2 ,

lim
|x|→∞

√
|x|
(
∂v

∂|x| − 2iωv

)
= 0 ,

(25.6)
where χ(2) is the electric polarization of the reflector, and can be written as

χ(2)(x) = (χ
(2)
ij )i,j=1,2χ(Ωr)(x) and U = us + U0 is the total field.

Let us consider Ω to be a domain large enough so that Ωµ = supp(µ) ⋐ Ω
and measure the fields us and v on its boundary ∂Ω. The goal of the imag-
ing problem is to locate the reflector from the far-field measurements of the
scattered field us at the fundamental frequency and/or the second-harmonic
generated field v. It will be shown in this chapter that, in the presence of
medium noise, the use of the second-harmonic field yields a better stability
properties for imaging the small reflector than the use of the scattered field
at the fundamental frequency.

25.3 Small-Volume Expansions

In this section, we establish small-volume expansions for the solutions of prob-
lems (25.5) and (25.6) similar to those derived in Chapter 11 . We assume that
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the reflector is of the form Ωr = zr + δB, where its characteristic size δ is
small, zr is its location, and B is a smooth domain. We derive asymptotic
expansions of us and v as δ goes to zero.

25.3.1 Fundamental Frequency Problem

Let U (µ) = u
(µ)
s +U0 be the total field that would be observed in the absence

of any reflector. The scattered field u
(µ)
s satisfies





∇ ·
(
(1 + µ)∇(u(µ)s + U0)

)
+ ω2(u(µ)s + U0) = 0 in R2 ,

lim
|x|→∞

√
|x|(∂u

(µ)
s

∂|x| − iωu(µ)s ) = 0 .
(25.7)

Therefore,

∇ · (1 + µ)∇u(µ)s + ω2u(µ)s = −∇ · µ∇U0 in R2 .

Since Ωµ ⋐ Ω, the estimate

||u(µ)s ||W 1,2(Ω) ≤ C||µ||L∞ (25.8)

holds for some positive constant C independent of µ. We refer to Section 25.7
for a proof of (25.8). Actually, one can prove that

u(µ)s (x) = −
∫

Ωµ

µ(y)∇U0(y) · ∇G(0)
ω (x, y)dy +O(||µ||2L∞), x ∈ Ω .

Moreover, writing

∇ ·
(
(1 + µ)∇(u(µ)s + U0)

)
= −ω2(u(µ)s + U0) ,

it follows by using Meyers’ theorem [273] that there exists η > 0 such that for
all 0 ≤ η′ ≤ η,

||∇u(µ)s ||L2+η′ (Ω′) ≤ ||∇(u
(µ)
s + U0)||L2+η′ (Ω) + ||∇U0||L2+η′ (Ω)

≤ C||u(µ)s + U0||L2+η′ (Ω) + ||∇U0||L2+η′ (Ω)

≤ C||u(µ)s ||L2+η′ (Ω) + C ′

for some positive constants C and C ′, where Ω′ ⋐ Ω. From the continuous
embedding of W 1,2(Ω) into L2+η′

(Ω) and (25.8) we obtain

||u(µ)s ||L2+η′ (Ω) ≤ C ′′

for some constant C ′′ independent of µ. Therefore,
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||∇u(µ)s ||L2+η′ (Ω′) ≤ C (25.9)

for some constant C independent of µ.
Now, we turn to the derivation of an asymptotic expansion of us as δ goes

to zero. On one hand, by subtracting (25.5) from (25.7), we get

∇ ·
(
([σr − 1]χ(Ωr) + µ+ 1)∇(us − u(µ)s )

)
+ ω2(us − u(µ)s )

= −∇ · [σr − 1]χ(Ωr)∇U0 −∇ · [σr − 1]χ(Ωr)∇u(µ)s in R2 .
(25.10)

On the other hand, we have

||[σr − 1]χ(Ωr)∇u(µ)s ||L2(Ω) ≤ C|Ωr|
1+

η
2

2+
η
2 ||∇u(µ)s ||

L2+
η
2 (Ω)

≤ C|Ωr|
1+

η
2

2+
η
2 ||∇u(µ)s ||

1
4+η

L2(Ω)||∇u
(µ)
s ||

1
4+η

L2+η(Ω) ,

and hence, by (25.8) and (25.9), we arrive at

||[σr − 1]χ(Ωr)∇u(µ)s ||L2(Ω) ≤ C|Ωr|
1+

η
2

2+
η
2 ||µ||

2
4+η

L∞ .

Therefore, we can neglect in (25.10) the term ∇ · [σr − 1]χ(Ωr)∇u(µ)s as
||µ||L∞ → 0.

Let w(µ) be defined by

∇ · (1 + µ+ [σr − 1]χ(Ωr))∇w(µ) + ω2w(µ) = ∇ · [σr − 1]χ(Ωr)∇(x− zr) in R2 ,

subject to the Sommerfeld radiation condition

lim
|x|→∞

√
|x|(∂w

(µ)

∂|x| − iωw(µ)) = 0 .

Using the Taylor expansion

U0(x) = U0(zr) + (x− zr) · ∇U0(zr) +O(|x− zr|2) ,

one can derive the inner expansion

(us − u(µ)s )(x) = w(µ)(x) · ∇U0(zr) +O(δ2) (25.11)

for x near zr. The following estimate holds. We refer the reader to Section
25.8 for its proof.

Proposition 25.1. There exists a positive constant C independent of δ such
that

||us − u(µ)s − w(µ)(x) · ∇U0(zr)||W 1,2(Ω) ≤ Cδ2 .
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Let G
(µ)
ω be the outgoing Green function in the random medium, that is,

the solution to

(∇ · (1 + µ)∇+ ω2)G(µ)
ω (., z) = −δz in R2 , (25.12)

subject to the Sommerfeld radiation condition

lim
|x|→∞

√
|x|(∂G

(µ)
ω

∂|x| − iωG(µ)
ω ) = 0 .

An important property satisfied by G
(µ)
ω is the reciprocity property (see Sub-

section 3.2.4):
G(µ)

ω (x, z) = G(µ)
ω (z, x), x 6= z . (25.13)

Let us denote by G
(0)
ω the outgoing background Green function, that is,

the solution to
(∆+ ω2)G(0)

ω (., z) = −δz in R2 , (25.14)

subject to the Sommerfeld radiation condition. Note that G
(0)
ω = −Γω where

Γω is defined by (3.52) with k replaced by ω.
The Lippmann-Schwinger representation formula

(G
(µ)
ω −G

(0)
ω )(x, zr) =

∫

Ωµ

µ(y)∇G(µ)
ω (y, zr) · ∇G(0)

ω (x, y) dy

=

∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy

+

∫

Ωµ

µ(y)∇(G(µ)
ω −G(0)

ω )(y, zr) · ∇G(0)
ω (x, y) dy

holds for x ∈ ∂Ω. Since Ωµ ⋐ Ω, we have

∣∣∣∣(G(µ)
ω −G(0)

ω )(x, zr)−
∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy

∣∣∣∣

≤ ||µ||L∞ ||∇G(0)
ω (x, ·)||L∞(Ωµ)||∇(G(µ)

ω −G(0)
ω )(·, zr)||L2(Ωµ) .

Similarly to (25.8), one can prove that

||∇(G(µ)
ω −G(0)

ω )(·, zr)||L2(Ωµ) ≤ C||µ||L∞ , (25.15)

and hence there exists a positive constant C independent of µ such that

∣∣∣∣(G(µ)
ω −G(0)

ω )(x, zr)−
∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy

∣∣∣∣ ≤ C||µ||2L∞

(25.16)
uniformly in x ∈ ∂Ω.

Since
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||∇∇G(0)
ω (x, ·)||L∞(Ωµ) ≤ C (25.17)

uniformly in x ∈ ∂Ω, the estimate

∣∣∣∣∇(G(µ)
ω −G(0)

ω )(x, zr)−∇
∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy

∣∣∣∣ ≤ C||µ||2L∞ ,

(25.18)
holds in exactly the same way as in (25.16). Therefore, the following Born
approximation holds.

Proposition 25.2. We have

G(µ)
ω (x, zr) = G(0)

ω (x, zr)−
∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy +O(||µ||2L∞) ,

∇G(µ)
ω (x, zr) = ∇G(0)

ω (x, zr)−∇
∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy +O(||µ||2L∞)

uniformly in x ∈ ∂Ω.

We now turn to an approximation formula for w(µ) as ||µ||L∞ → 0. By
integrating by parts we get

w(µ)(x) = (1− σr)

∫

Ωr

∇(w(µ)(y)− (y − zr)) · ∇G(µ)
ω (x, y) dy, x ∈ R2 .

Using (25.17) we have, for x away from Ωr,

w(µ)(x) = (1−σr)[
∫

Ωr

∇(w(µ)(y)−(y−zr)) dy]·[∇G(µ)
ω (x, zr)+O(δ)] . (25.19)

Let w̃ be the solution to
{
∇ · (1 + [σr − 1]χ(B))∇w̃ = 0 in R2 ,

w̃(x̃)− x̃→ 0 as |ξ| → +∞ .
(25.20)

The following result holds. We refer the reader to Section 25.9 for its proof.

Proposition 25.3. We have

w(µ)(y)− (y − zr) = δw̃(ỹ) +O(δ[||µ||L∞ + (δω)2]) , (25.21)

with the scaled variable

ỹ =
y − zr
δ

.

From (25.21), it follows that

∫

Ωr

∇(w(µ)(y)− (y − zr)) dy = δ2
∫

B

∇w̃(x̃) dx̃+O(δ3[||µ||L∞ + (δω)2]) .

(25.22)
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Define the polarization tensor associated to σr and B by

M(σr, B) := (σr − 1)

∫

B

∇w̃(x̃) dx̃ , (25.23)

where w̃ is the solution to (25.20). Definition (25.23) is equivalent to (11.5)
with λ = (σr + 1)/(2(σr − 1)). Recall from Theorem 11.4 that the matrix
M(σr, B) is symmetric definite (positive if σr > 1 and negative if σr < 1).
Moreover, if B is a disk, then M(σr, B) takes the form:

M(σr, B) =
2(σr − 1)

σr + 1
|B|I .

To obtain an asymptotic expansion of us(x) − u
(µ)
s (x) in terms of the

characteristic size δ of the scatterer, we take the far-field expansion of (25.11).
Plugging formula (25.22) into (25.19), we obtain the following small-volume
asymptotic expansion.

Proposition 25.4. We have

us(x) = u(µ)s (x)−δ2M(σr, B)∇U0(zr)·∇G(µ)
ω (x, zr)+O(δ3[1+||µ||L∞+(δω)2]) ,

(25.24)
uniformly in x ∈ ∂Ω.

Finally, using (25.18) we arrive at the following result.

Theorem 25.1 We have as δ goes to zero

(us − u
(µ)
s )(x) = −δ2M(σr, B)∇U0(zr) ·

[
∇G(0)

ω (x, zr) +∇
∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y) dy

]

+O(δ3[1 + ||µ||L∞ + (δω)2] + δ2||µ||2L∞) ,
(25.25)

uniformly in x ∈ ∂Ω.

Theorem 25.1 shows that the asymptotic expansion (25.25) is uniform with
respect to ω and µ, provided that ω ≤ C/δ and ||µ||L∞ ≤ C ′√δ for two
positive constants C and C ′.

25.3.2 Second-Harmonic Problem

We apply similar arguments to derive a small-volume expansion for the second-
harmonic field at frequency 2ω.

Introduce G
(σr,µ)
2ω (., z) the outgoing solution of

(
∆+

(2ω)2

[σr − 1]χ(Ωr) + 1
(1− µ

[σr − 1]χ(Ωr) + 1
)

)
G

(σr,µ)
2ω (., z) = −δz in R2 .

Let G
(0)
2ω be the outgoing solution to (25.14) with ω replaced by 2ω.
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Similarly to (25.25), an asymptotic expansion for G
(σr,µ)
2ω in terms of δ can

be derived. We have

(G
(σr,µ)
2ω −G

(µ)
2ω )(x, z) = O(δ2)

for x 6= z and x, z away from zr. Here G
(µ)
2ω is the solution to (25.12) with ω

replaced by 2ω. Moreover, the Born approximation

(G
(σr,µ)
2ω −G

(0)
2ω )(x, z) = −(2ω)2

∫

Ωµ

µ(y)G
(0)
2ω (y, z)G

(0)
2ω (x, y)dy +O(δ2 + ||µ||2L∞)

yields for x 6= z and x, z away from zr. From the integral representation
formula

v(x) = −
∫

Ωr

∑

k,l=1,2

χ
(2)
kl ∂xk

U(y)∂xl
U(y)G

(σr,µ)
2ω (x, y)dy ,

it follows that

v(x) = −δ2|B|


∑

k,l

χ
(2)
kl ∂xk

U(zr)∂xl
U(zr)


G

(σr,µ)
2ω (x, zr) +O(δ3) , (25.26)

where |B| denotes the volume of B, and hence, keeping only the terms of
first-order in µ and in second-order in δ,

v(x) = −δ2|B|


∑

k,l

χ
(2)
kl ∂xk

U(zr)∂xl
U(zr)




[
G

(0)
2ω (x, zr)− 4ω2

∫

Ω

µ(y)G
(0)
2ω (x, y)G

(0)
2ω (y, zr)dy +O(||µ||2L∞)

]
+O(δ3) .

(25.27)

We denote by (S)θ the source term, which depends on the angle θ of the
incoming plane wave,

(S)θ =


∑

k,l

χ
(2)
kl ∂xk

U(zr)∂xl
U(zr)


 . (25.28)

Now, since

U(x) = UIe
iωθ·x +

∫

Ω

µ(y)∇G(0)
ω (x, y) · ∇U0(y)dy +O(||µ||2L∞ + δ) , (25.29)

which follows by using the Born approximation and the inner expansion
(25.11), we can give an expression for the partial derivatives of U . We have
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∂xk
U(x) = iωθkUIe

iωθ·x−iωθ·
∫

Ω

∇(µ(y)eiωθ·y)∂xk
G(0)

ω (x, y)dy+O(||µ||2L∞+δ) .

(25.30)
We can rewrite the source term as


∑

k,l

χ
(2)
k,l∂xk

U(zr)∂xl
U(zr)


 = −ω2

∑

k,l

χ
(2)
kl

[
U2
I θkθle

iωθ·zr

−θkθ·
∫

Ω

∇(µ(y)eiωθ·y)∂xl
G(0)

ω (zr, y)dy−θlθ·
∫

Ω

∇(µ(y)eiωθ·y)∂xk
G(0)

ω (zr, y)dy

+ θ ·
∫

Ω

∇(µ(y)eiωθ·y)∂xl
G(0)

ω (zr, y)dyθ ·
∫

Ω

∇(µ(y)eiωθ·y)∂xk
G(0)

ω (zr, y)dy

]

+O(||µ||2L∞ + δ) . (25.31)

Assume that µ ∈ C0,α for 0 < α < 1/2 (see Section 25.5.1). From

∫

Ω

∇(µ(y)eiωθ·y)∂xl
G(0)

ω (zr, y)dy =

∫

Ω

∇(µ(y)eiωθ·y − µ(zr)e
iωθ·zr )∂xl

G(0)
ω (zr, y)dy

= −
∫

Ω

∇∂xl
G(0)

ω (zr, y)(µ(y)e
iωθ·y − µ(zr)e

iωθ·zr )dy ,

one can show that there exists a positive constant C independent of µ such
that
∣∣∣∣θ·
∫

Ω

∇(µ(y)eiωθ·y)∂xl
G(0)

ω (zr, y)dyθ·
∫

Ω

∇(µ(y)eiωθ·y)∂xk
G(0)

ω (zr, y)dy

∣∣∣∣ ≤ C||µ||2C0,α .

So, if we split (S)θ into a deterministic part and a random part,

(S)θ = (S)θdet + (S)θrand +O(||µ||2C0,α + δ) ,

we get

(S)θdet = −ω2U2
I e

i2ωθ·zr
∑

k,l

χ
(2)
k,l θkθl (25.32)

and

(S)θrand = ω2
∑

k,l

χ
(2)
k,l

[
θkθ ·

∫

Ω

∇(µ(y)eiωθ·y)∂xl
G(0)

ω (zr, y)dy

+θlθ ·
∫

Ω

∇(µ(y)eiωθ·y)∂xk
G(0)

ω (zr, y)dy

]
.

(25.33)

Finally, we obtain the following result.

Theorem 25.2 Assume that µ ∈ C0,α for 0 < α < 1/2. The following asymp-
totics for v:
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v(x) = −δ2|B|
(
(S)θdet

[
G

(0)
2ω (x, zr)− 4ω2

∫

Ω

µ(y)G
(0)
2ω (x, y)G

(0)
2ω (y, zr)dy

]

+ (S)θrandG
(0)
2ω (x, zr)

)
+O(δ3 + δ2||µ||2C0,α) (25.34)

holds uniformly in x ∈ ∂Ω.

25.4 Imaging Functional

In this section, we use two imaging functionals introduced in Chapter 12 for
locating small reflectors. For the sake of simplicity, we assume that B and Ω
are disks centered at 0 with radius 1 and R, respectively.

25.4.1 The Fundamental Frequency Case

We assume that we are in possession of the following data: {(us−u(µ)s )(x), x ∈
∂Ω}. We introduce the reverse-time imaging functional

∀zS ∈ Ω, I(zS) =

∫

∂Ω×S

1

iω
e−iωθ·zS

θT∇G(0)
ω (x, zS)(us−u(µ)s )(x)dσ(x)dσ(θ) ,

(25.35)
where T denotes the transpose. Introduce the matrix

Rω(z1, z2) =

∫

∂Ω

∇G(0)
ω (x, z1)∇G(0)

ω (x, z2)
T dσ(x), z1, z2 ∈ Ω′ ⋐ Ω .

(25.36)
Using (25.25), we have the following expansion for I(zS), zS ∈ Ω′:

I(zS) = −2πδ2(σr − 1)

σr + 1
UI

∫

S

e−iωθ·(zS−zr)θT
[
Rω(z

S , zr)

+

∫

∂Ω

∇G(0)
ω (x, zS) · ∇

∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y)dydσ(x)

]
θdσ(θ)

+O(δ3 + δ2||µ||2L∞) . (25.37)

Note that
∫

∂Ω

∇G(0)
ω (x, zS) · ∇

∫

Ωµ

µ(y)∇G(0)
ω (y, zr) · ∇G(0)

ω (x, y)dydσ(x)

=

∫

Ωµ

µ(y)

∫

∂Ω

∇G(0)
ω (x, zS)

T

∇∇G(0)
ω (y, zr)∇G(0)

ω (x, y)dσ(x)dy .

Remark 25.3 Here, the fact that not only do we backpropagate the boundary
data, but we also average it over all the possible illumination angles in S, has
two motivations. As will be shown later in Section 25.5, the first reason is to
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increase the resolution and make the peak at the reflector’s location isotropic. If
we do not sum over equidistributed illumination angles over S, we get more an
”8-shaped” spot, as shown in Figure 25.7. The second reason is that an average
over multiple measurements increases the stability of the imaging functional
with respect to measurement noise.

25.4.2 Second-Harmonic Backpropagation

If we write a similar imaging functional for the second-harmonic field v, as-
suming that we are in possession of the boundary data {v(x), x ∈ ∂Ω}, we
get

∀zS ∈ Ω, Jθ(z
S) =

∫

∂Ω×S

v(x)G
(0)
2ω (x, z

S)e−2iωθ·zS

dσ(x)dσ(θ) . (25.38)

As before, using (25.34) we can expand J in terms of δ and µ. Considering
first-order terms in δ and µ we get

J(zS) = −πδ2
∫

S

e−2iωθ·zS

[
(S)θdet

(∫

∂Ω

G
(0)
2ω (x, z

S)G
(0)
2ω (x, zr)dσ(x)

− 4ω2

∫

∂Ω

G
(0)
2ω (x, z

S)

∫

Ω

µ(y)G
(0)
2ω (y, x)G

(0)
2ω (y, zr)dydσ(x)

)

+ (S)θrand

∫

∂Ω

G
(0)
2ω (x, z

S)G
(0)
2ω (x, zr)dσ(x)

]
dσ(θ) +O(δ3 + δ2||µ||2C0,α) .

(25.39)

Now, if we define Q2ω as

Q2ω(x, z) =

∫

∂Ω

G
(0)
2ω (y, x)G

(0)
2ω (y, z)dσ(y) . (25.40)

We have

J(zS) = −πδ2
∫

S

e−2iωθ·zS

[
(S)θdet

(
Q2ω(zr, z

S)− 4ω2

∫

Ωµ

µ(y)G
(0)
2ω (y, zr)Q2ω(y, z

S)dy

)

+ (S)θrandQ2ω(zr, z
S)

]
dσ(θ) +O(δ3 + δ2||µ||2C0,α) . (25.41)

25.5 Statistical Analysis

In this section, we perform a resolution and stability analysis of both func-
tionals. Since the image we get is a superposition of a deterministic image
and of a random field created by the medium noise, we can compute the ex-
pectation and the covariance functions of those fields in order to estimate the
signal-to-noise ratio. For the reader’s convenience we give our main results in
the following proposition.
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Proposition 25.5. Let lµ and σµ be respectively the correlation length and the
standard deviation of the process µ. Assume that lµ is of order the wavelength
2π/ω. Let (SNR)I and (SNR)J be defined by

(SNR)I =
E[I(zr)]

(V ar[I(zr)])1/2
(25.42)

and

(SNR)J =
E[J(zr)]

(V ar[J(zr)])
1
2

. (25.43)

We have

(SNR)I ≈
√
2π3/2ωδ2UI

σµlµ
√
ω diam Ωµ

|σr − 1|
σr + 1

(25.44)

and

(SNR)J ≥
lαµ

(∫
S

(∑
k,l χ

(2)
k,l θkθl

)
dθ
)

√
Cσµ min(ω−α, 1)maxk,l

∣∣∣χ(2)
k,l

∣∣∣
√
(ωdiam Ωµ)

3+2α
+ 1

. (25.45)

Here, diam denotes the diameter and α is the upper bound for Holder-
regularity of the random process µ.

25.5.1 Assumptions on the Random Process µ

Let z(x), x ∈ R2 be a stationary random process with Gaussian statistics,
zero mean, and a covariance function given by R(|x− y|) satisfying R(0) = 1,

|R(0) − R(s)| ≤ s2α

l2αµ
and R is decreasing. Then, z is a C0,α′

process for

any α′ < α ([4, Theorem 8.3.2]). Let µ > 0 and F be a smooth odd bounded
function, with derivative bounded by one. For example F = arctan is a suitable
choice. Take

µ(x) = µF [z(x)] .

Then µ is a bounded stationary process with zero mean. It is bounded by
||F ||L∞µ. Its standard deviation is

σµ = µ
( ∫

F 2(s)
1√
2π
e−s2/2 ds

)1/2
.

Its trajectories belong to C0,α′

for any α′ < α. We want to compute the
expectation of its norm. Introduce

p(h) = max
‖x−y‖≤

√
2h

E|z(x)− z(y)| . (25.46)

One can also write p(u) =
√
2
√
R(0)−R(

√
2u). According to [4], for all

h, t ∈ Ωµ, almost surely,
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|z(t+ h)− z(t)| ≤ 16
√
2[log(B)]1/2p(

|h|
lµ

) + 32
√
2

∫ |h|
lµ

0

(− log u)
1/2

dp(u) ,

(25.47)
where B is a positive random variable with E[Bn] ≤ (4

√
2)n ([4, Formula

3.3.23]). We have that

p(|h|) ≤
√
2
1+α |h|α

lαµ
. (25.48)

By integration by parts we find that

∫ |h|
lµ

0

(− log u)
1/2

dp(u) =
[
(− log u)1/2p(u)

] |h|
lµ

0
+
1

2

∫ |h|
lµ

0

(− log u)−1/2u−1p(u)du .

(25.49)
For any ε > 0, since sε

√− log s ≤ 1√
ε
e1/2 on [0, 1], we have, as |h| goes to 0,

that
[
(− log u)1/2p(u)

] |h|
lµ

0
≤ e

1
2

√
2
1+α

√
ε

|h|α−ε

lαµ
. (25.50)

Similarly, when |h| < 1
2e , for every 0 < u < |h|,

(− log u)−1/2s−1p(u) ≤
√
2
1+αuα−1

lαµ
.

So we get, when |h| goes to 0, for every ε > 0,

∫ |h|
lµ

0

(− log u)
1/2

dp(u) ≤ e
1
2

√
2
1+α

√
ε

|h|α−ε

lαµ
+

√
2
1+α

α

|h|α
lαµ

. (25.51)

Therefore, when |h| goes to zero, we have for any ε > 0:

|z(t+ h)− z(t)| ≤ 32
√
2
α
log(B)1/2

|h|α
lαµ

+ 64e
1
2

√
2
α 1

lαµ

[
1√
ε
|h|α−ε +

1

2
|h|α

]
.

(25.52)
Since F ′ ≤ 1, composing by F yields, for any x, y ∈ R2,

|µ(x)− µ(y)| ≤ µ|z(x)− z(y)|. (25.53)

We get the following estimate on ‖µ‖C0,α′ , for any α′ ∈ (0, α), almost surely

sup
x,y∈Ωµ

|x−y|≤h

|µ(x)− µ(y)|
|x− y|α′ ≤ 32

√
2
α
log(B)1/2µ

hα−α′

lαµ
+64e

1
2

√
2
α
µ
1

lαµ

[
1√

α− α′ +
1

2
hα−α′

]

(25.54)

‖µ‖C0,α′ ≤ 64
√
2
α e

1
2

[
log(B)1/2 + 1

]
√
α− α′

µ

lαµ
, (25.55)

which gives, since E[logB] ≤ E[B]− 1 ≤ 4
√
2− 1

E[‖µ‖2C0,α′ ] ≤ 64224+α e

α− α′
µ

l2αµ
. (25.56)
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25.5.2 Standard Backpropagation

Expectation

We use (25.37) and the fact that E(µ)(x) = 0, ∀x ∈ Ω, to find that

E[I(zS)] = −2πδ2
σr − 1

σr + 1
UI

∫

S

e−iωθ·(zS−zr)θTRω(z
S , zr)θdθ . (25.57)

We now use the Helmholtz-Kirchhoff identity (3.80). Since

lim
R→∞

∫

|x|=R

∇G(0)
ω (x, y)∇G(0)

ω (z, y)
T

dy =
1

ω
∇z∇xℑ

[
G(0)

ω (x, z)
]

(25.58)

and

ℑ
[
G(0)

ω (x, z)
]
=

1

4
J0(ω|x− z|) , (25.59)

we can compute an approximation of Rω:

1

ω
∇z∇xℑ

[
G(0)

ω (x, z)
]
=

1

4

[
ωJ0(ω|x− z|)

(
(x− z)

|x− z|
(x− z)T

|x− z|

)

− 2J1(ω|x− z|)
|x− z|

(
(x− z)

|x− z|
(x− z)T

|x− z|

)

+
J1(ω|x− z|)

|x− z| I

]
, (25.60)

where I is the 2 × 2 identity matrix. We can see that Rω decreases as |zr −
zS |− 1

2 . The imaging functional has a peak at location zS = zr. Evaluating Rω

at zS = zr we get

Rω(zr, zr) =
ω

8
I . (25.61)

So we get the expectation of I at point zr:

E[I(zr)] ≈ −π
2(σr − 1)

2(σr + 1)
ωδ2UI . (25.62)

Covariance

Let

Cov
(
I(zS), I(zS

′

)
)
= E

[ (
I(zS)− E[I(zS)]

)
(I(zS′)− E[I(zS′)])

]
. (25.63)

Define

R̃ω(z
S , zr, y) =

∫

∂Ω

∇G(0)
ω (x, zS)

(
∇∇G(0)

ω (x, y)∇G(0)
ω (y, zr)

)T
dσ(x) .

(25.64)
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Using (25.37) and (25.62), we get

I(zS)− E[I(zS)] =

∫

∂Ω×S

1

iω
e−iωθ·zS

θT∇G(0)
ω (x, zS)Tu(µ)s (x)dxdθ

− 2πδ2
σr − 1

σr + 1
UI

∫

S

e−iωθ·(zS−zr)

[ ∫

Ω

µ(y)θT R̃ω(z
S , zr, y)θdy

]
dθ . (25.65)

The computations are a bit tedious. For brevity, we write the quantity above
as

I(zS)− E[I(zS)] = AI(z
S) +BI(z

S) , (25.66)

with

AI(z
S) =

∫

∂Ω×S

1

iω
e−iωθ·zS

θT∇G(0)
ω (x, zS)u(µ)s (x)dxdθ (25.67)

and

BI(z
S) = −2πδ2

σr − 1

σr + 1
UI

∫

S

e−iωθ·(zS−zr)

[ ∫

Ω

µ(y)θT R̃ω(z
S , zr, y)θdy

]
dθ .

(25.68)
We now compute each term of the product in (25.63) separately.

Main speckle term:

We need to estimate the typical size of AI . From (25.8), keeping only terms
of first-order in µ yields

AI(z
S) = −

∫

∂Ω×S

1

iω
e−iωθ·zS

θT∇G(0)
ω (x, zS)

∫

Ω

µ(y)∇G(0)
ω (x, y)·∇U0(y)dydxdθ+o(|µ|) ,

(25.69)
so we have

AI(z
S) = −UI

∫

Ω×S

e−iωθ·(zS−y)µ(y)θTRω(z
S , y)θdydθ , (25.70)

and hence

AI(z
S)AI(zS

′) = U2
I

∫

S

e−iωθ·(zS−zS′
)

[ ∫ ∫

Ω×Ω

eiωθ·(y−y′)µ(y)µ(y′)θTRω(z
S , y)Rω(zS

′ , y′)θdydy′
]
dθ . (25.71)

We assume that the medium noise is localized and stationary on its support
Ωµ. We also assume that the correlation length lµ is smaller than the wave-
length. We denote by σµ the standard deviation of the process µ. We can then
write
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E

[
AI(z

S)AI(zS
′)

]
= U2

I σ
2
µl

2
µ

∫

S

eiωθ·(zS−zS′
)

∫

Ωµ

θTRω(z
S , y)Rω(zS

′ , y)θdydθ .

(25.72)
We introduce

Pω(z
S , y, zS

′

) :=

∫

S

eiωθ·(zS−zS′
)θTRω(z

S , y)Rω(zS
′ , y)θdθ , (25.73)

where Rω is defined by (25.36). Therefore, we have

E

[
AI(z

S)AI(zS
′)

]
= U2

I σ
2
µl

2
µ

∫

Ωµ

Pω(z
S , y, zS

′

)dy . (25.74)

Hence, AI is a complex field with Gaussian statistics of mean zero and covari-
ance given by (25.74). It is a speckle field and is not localized.

We compute its typical size at point zS = zS
′

= zr, in order to get signal-
to-noise estimates. Using (25.60) and (25.59), we get for |x− z| ≫ 1,

lim
R→∞

∫

|x|=R

∇G(0)
ω (x, y)∇G(0)

ω (z, y)
T

dy =
ω

4
J0(ω|x−z|)

(
(x− z)

|x− z|
(x− z)T

|x− z|

)
,

and

ℑ
[
G(0)

ω (x, z)
]
=

1

4
J0(ω|x− z|) .

Since we have, for |x− z| ≫ 1,

J0(ω|x− z|) ∼
√
2 cos(ω|x− z| − π

4 )√
πω|x− z|

, (25.75)

we obtain that

Rω(x, z) ≈
√
ω cos(ω|x− z| − π/4)

2
√
2π

|x−z|−1/2

(
(x− z)

|x− z|
(x− z)T

|x− z|

)
for |x−z| ≫ 1 .

(25.76)
Now we can write

E

[
AI(zr)AI(zr)

]
≈ U2

I σ
2
µl

2
µ

∫

Ωµ

( √
ω

2
√
2π

)2
1

2
|y−zr|−1

∫

S

θT
(
(y − zr)

|y − zr|
(y − zr)

T

|y − zr|

)
θdθdy .

(25.77)
If we compute the term

∫

S

θT
(
(y − zr)

|y − zr|
(y − zr)

T

|y − zr|

)
θdθ =

∫ 2π

0

[(
(y − zr)1
|y − zr|

)2

cos2 θ+

(
(y − zr)2
|y − zr|

)2

sin2 θ

]
dθ ,

(25.78)
then, after linearization and integration, we get

∫

S

θT
(
(y − zr)

|y − zr|
(y − zr)

T

|y − zr|

)
θdθ = π . (25.79)
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So we have

E

[
AI(zr)AI(zr)

]
≈ πU2

I σ
2
µl

2
µ

∫

Ωµ

( √
ω

4
√
π

)2

|y − zr|−1dy , (25.80)

and therefore

E

[
AI(zr)AI(zr)

]
≈ π

ω

8
U2
I σ

2
µl

2
µdiam Ωµ . (25.81)

Secondary speckle term:

We have

BI(z
S)BI(zS

′) =

(
2πδ2

σr − 1

σr + 1
UI

)2 ∫

S

e−iωθ·(zS−zS′
)

[ ∫

Ω

µ(y)µ(y′)θT R̃ω(z
S , zr, y)R̃ω(zS

′ , zr, y′)θdydy
′
]
dθ . (25.82)

So we get the expectation

E

[
BI(z

S)BI(zS
′)

]
=

(
2πδ2

σr − 1

σr + 1
UI

)2

σ2
µl

2
µ

∫

S

e−iωθ·(zS−zS′
)θT
[ ∫

Ωµ

R̃ω(z
S , zr, y)R̃ω(zS

′ , zr, y)dy

]
θdθ . (25.83)

This term also creates a speckle field on the image. As before, we compute
the typical size of this term at zr. We first get an estimate on R̃ω:

|
(
R̃ω(z

S , zr, y)
)
i,j

| ≤ |∂jG(0)
ω (y, zr)||

∑

k=1,2

∫

∂Ω

∂yi
G

(0)
ω (x, zS)∂yi

∂yk
G(0)

ω (x, y)dσ(x)| .

(25.84)
From the Helmholtz-Kirchoff identity

∫

∂Ω

G
(0)
ω (x, y)G(0)

ω (x, z)dσ(x) ∼ 1

4ω
J0(ω|y − z|) as R→ ∞ , (25.85)

it follows that
∫

∂Ω

∂yi
G

(0)
ω (x, zS)∂yi

∂yk
G(0)

ω (x, y)dσ(x) =
1

4ω
(∂i∂i∂kf) (z

S − y) , (25.86)

where f is defined by f(x) = J0(ω|x|). We have

∂i∂j∂kf(x) = ω

(
3 (ai,j,k(x)− bi,j,k(x))

|x|2 [J ′
0(ω|x|)− ω|x|J ′′

0 (ω|x|)] + ai,j,k(x)ω
2J

(3)
0 (ω|x|)

)
,

(25.87)
where ai,j,k and bi,j,k are rational fractions in the coefficients of x bounded
by 1. Now, recall the power series of J0:
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J0(z) =
∑

k

(−1)k
(
1
4z

2
)k

(k!)2
. (25.88)

We can write

J ′
0(ω|x|)− ω|x|J ′′

0 (ω|x|) = −ω
3

4
|x|3 + o(|x|3) . (25.89)

Hence, since J
(3)
0 (x) ∼ 3

4x when x → 0, we can prove the following estimate
for x around 0:

1

4ω
(∂i∂j∂kf)(x) ∼

3bi,j,k(x)

16
ω3|x| . (25.90)

In order to get the decay of R̃ω for large arguments we use the following

formulas: J ′
0 = −J1, J ′′

0 = 1
xJ1 − J0, and J

(3)
0 = J1 − 1

x2 J1 +
1
xJ0. We get

1

4ω
|∂i∂j∂kf(x)| ≤ ω2(ω|x|)−1/2 as x→ ∞ . (25.91)

We also have the following estimate:

|∇G(0)
ω (y, zr)| ≤

(
2

π

)1/2

max

(
1

|y − zr|
,

ω√
ω|y − zr|

)
. (25.92)

We can now write the estimate on R̃ωi,j :

|R̃Ω(z
S , zr, y)i,j | ≤ ω2

(
2

π

)1/2

min

(
ω|y − zr|,

1√
ω|y − zS |

)
max

(
1

ω|y − zr|
,

1√
ω|y − zr|

)
.

(25.93)
We can now go back to estimating the term BI . We split the domain of
integration Ωµ = B(zr, ω

−1) ∪Ωµ\B(zr, ω
−1) to get

∣∣∣∣E
[
BI(zr)BI(zr)

]∣∣∣∣ ≤
(
2πδ2

σr − 1

σr + 1
UI

)2

σ2
µl

2
µ

4πω4 2

π

[ ∫

Ωµ\B(zr,ω−1)

1

|y − zr|2
dy +

∫

B(zr,ω−1)

ω2dy

]
. (25.94)

Hence,

∣∣∣∣E
[
BI(zr)BI(zr)

]∣∣∣∣ ≤ 8

(
2πδ2

σr − 1

σr + 1
UI

)2

ω4σ2
µl

2
µ log(ω diam Ωµ) . (25.95)

Double products:

The double products AIBI and BIAI have a typical amplitude that is the
geometric mean of the typical amplitudes of AI and BI . So they are always
smaller than one of the main terms |AI |2 or |BI |2.
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Signal-to-Noise Ratio Estimates

We can now give an estimate of the signal-to-noise ratio (SNR)I defined by
(25.42). Using (25.62), (25.81), and (25.95) we get

(SNR)I ≈
π2(σr−1)
2(σr+1) ωδ

2UI

σµlµ

(
π ω

8 diam Ωµ + 8
(
2πδ2 σr−1

σr+1UI

)2
ω4 log(ω diam Ωµ)

)1/2
.

(25.96)
Since δ ≪ 2π

ω we have that δω ≪ 1, so we can estimate (SNR)I as follows:

(SNR)I ≈
√
2π3/2 σr−1

σr+1ωδ
2UI

σµlµ
√
ω diam Ωµ

. (25.97)

The perturbation in the image I comes from different phenomena. The first
one and most important one is the fact that we image not only the field
scattered by the reflector, but also the field scattered by the medium’s random
inhomogeneities. This is why the signal-to-noise ratio depends on the volume
and the contrast of the particle we are trying to locate. It has to stand out
from the background. The other terms in the estimate (25.96) of (SNR)I are
due to the phase perturbation of the field scattered by the particle when it
reaches the boundary of Ω, which can be seen as a travel time fluctuation of
the scattered wave by the reflector. Both terms are much smaller than the first
one. (SNR)I depends on the ratio ω/lµ. If the medium noise has a shorter
correlation length, then the perturbation induced in the phase of the fields
will more likely self-average.

25.5.3 Second-Harmonic Backpropagation

Expectation

We have

E[J(zS)] = −πδ2
∫

S

e−2iωθ·zS

[
(S)θdet

∫

∂Ω

G
(0)
2ω (x, z

S)G
(0)
2ω (x, zr)dx

+ E[(S)θrand]

∫

∂Ω

G
(0)
2ω (x, z

S)G
(0)
2ω (x, zr)dx

]
dθ . (25.98)

Since E[(S)θrand] = 0 we obtain by using (25.32) that

E[J(zS)] = πδ2ω2U2
I

∫

S


∑

k,l

χ
(2)
k,l θkθl


 e2iωθ·(zr−zS)dθ

∫

∂Ω

G
(0)
2ω (x, z

S)G
(0)
2ω (x, zr)dx .

(25.99)

If we define Q̃2ω as
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Q̃2ω(x, y) =

∫

S


∑

k,l

χ
(2)
k,l θkθl


 e2iωθ·(x−y)dθ , (25.100)

then it follows that

E[J(zS)] = δ2ω2U2
I Q̃2ω(zr, z

S)Q2ω(zr, z
S) , (25.101)

where Q2ω is given by (25.40). To get the typical size of this term we first use
the Helmholtz-Kirchhoff identity (3.80):

Q2ω(zr, z
S) ∼ 1

2ω
ℑ
(
G

(0)
2ω (zr, z

S)
)
. (25.102)

Therefore, we obtain that

E[J(zr)] =
π

8
δ2ωU2

I

∫

S


∑

k,l

χ
(2)
k,l θkθl


 dθ . (25.103)

Covariance

We have

J(zS)−E[J ](zS) = πδ2
∫

S

e−2iωθ·zS
[
(S)θdet4ω

2

∫

Ω

G
(0)
2ω (s, zr)µ(s)Q2ω(s, z

S)ds

− (S)θrandQ2ω(zr, z
S)
]
dθ . (25.104)

Denote

AJ(z
S) = 4πδ2ω2

∫

S

e−2iωθ·zS

(S)θdet

∫

Ω

G
(0)
2ω (s, zr)µ(s)Q2ω(s, z

S)dsdθ

(25.105)
and

BJ(z
S) = πδ2

∫

S

e−2iωθ·zS

(S)θrandQ2ω(zr, z
S)dθ . (25.106)

Then we can write the covariance function

Cov
(
J(zS), J(zS

′

)
)
= E

[ (
J(zS)− E[J(zS)]

)
(J(zS′)− E[J(zS′)])

]

(25.107)
in the form

Cov
(
J(zS), J(zS

′

)
)
= E

[
A(zS)A(zS′)+B(zS)BJ(zS

′)+AJ(z
S)BJ(zS

′)+AJ(zS)BJ(z
S′

)

]
.

(25.108)
We will now compute the first two terms separately and then deal with the
double products.
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The speckle term AJAJ :

From

AJ(z
S)AJ(zS

′) = 16π2δ4ω4

∫

S

e−2iωθ·(zS−zS′
)|(S)θdet|2

∫ ∫

Ω×Ω

G
(0)
2ω (s, zr)G

(0)
2ω (s

′, zr)µ(s)µ(s′)Q2ω(s, z
S)Q2ω(s′, zS

′)dsds′dθ ,

(25.109)

it follows by using (25.32) that

AJ(z
S)AJ(zS

′) = 16π2δ4ω8U4
I

∫

S

e−2iωθ·(zS−zS′
)|
∑

k,l

χ
(2)
k,l θkθl|2dθ

∫ ∫

Ω×Ω

G
(0)
2ω (s, zr)G

(0)
2ω (s

′, zr)µ(s)µ(s′)Q2ω(s, z
S)Q2ω(s′, zS

′)dsds′ .

(25.110)

If we write Cµ(s, s
′) = E[µ(s)µ(s′)], then we find that

E[AJ(z
S)AJ(zS

′)] = 16π2δ4ω8U4
I

∫

S

e−2iωθ·(zS−zS′
)|
∑

k,l

χ
(2)
k,l θkθl|2dθ

∫ ∫

Ω×Ω

G
(0)
2ω (s, zr)G

(0)
2ω (s

′, zr)Cµ(s, s
′)Q2ω(s, z

S)Q2ω(s′, zS
′)dsds′ ,

(25.111)

since µ is real.
As previously, we assume that the medium noise is localized and stationary

on its support (which is Ωµ). We denote by σµ the standard deviation of the
process µ and by lµ its correlation length. We can then write

E[AJ(z
S)AJ(zS

′)] = 16π2δ4ω8U4
I σ

2
µl

2
µ

∫

S

e−2iωθ·(zS−zS′
)|
∑

k,l

χ
(2)
k,l θkθl|2dθ

∫

Ωµ

|G(0)
2ω (s, zr)|2Q2ω(s, z

S)Q2ω(s, zS
′)ds . (25.112)

The term E[AJ(z
S)AJ(zS

′)] shows the generation of a non localized speckle
image, creating random secondary peaks. We will later estimate the size of
those peaks in order to find the signal-to-noise ratio. We compute the typical
size of this term. We get, using (25.102),

E[AJ(z
S)AJ(zS

′)] ≈ 4π2U4
I δ

4ω6σ2
µl

2
µ∫

S

|
∑

k,l

χ
(2)
k,l θkθl|2dθ

∫

Ωµ

|G(0)
2ω (s, zr)|2ℑG

(0)
2ω (s, z

S)ℑG(0)
2ω (s, z

S′

)ds . (25.113)
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Then we use the facts that

|G(0)
2ω (x, y)| ≈

1

4
√
π2ω

|x− y|−1/2

and

ℑG(0)
2ω (x, y) =

1

4
J0(2ω|x− y|) ≈ cos (2ω|x− y| − π/4)

4
√
πω

|x− y|−1/2

if |x−y| ≫ 1. Then, as previously, we write Ωµ = Ωµ\B(zr, ω
−1)∪B(zr, ω

−1).
Using (25.113), we arrive at

E[AJ(zr)AJ(zr)] ≈ 4π2U4
I δ

4ω6σ2
µl

2
µ

∫

S

|
∑

k,l

χ
(2)
k,l θkθl|2dθ

(
1

512π2ω2

∫

Ωµ\B(zr,ω−1)

cos2 (2ω|s− zr| − π/4)

|s− zr|2
ds+

1

16

∫

B(zr,ω−1)

|G(0)
2ω (s, zr)|2J0(2ω|s−zr|)2ds

)
,

(25.114)

which yields

E[AJ(zr)AJ(zr)] ≈
π

128
U4
I δ

4ω4σ2
µl

2
µ log(ω diam Ωµ)

∫

S

|
∑

k,l

χ
(2)
k,l θkθl|2dθ .

(25.115)

The localized term BJBJ :

We have

BJ(z
S)BJ(zS

′) = π2δ4Q2ω(zr, z
S)Q2ω(zr, zS

′)

∫

S

e−2iωθ·(zS−zS′
)|(S)θrand|2dθ .

(25.116)
Using (25.33) we have that (S)θrand can be rewritten as

(S)θrand = −ω2U2
I

∫

Ω

(
µ(y)eiωθ·y − µ(zr)e

iωθ·zr)

[∑

k,l

χ
(2)
k,l

(
θkθ · ∇∂xl

G(0)
ω (zr, y) + θlθ · ∇∂xk

G(0)
ω (zr, y)

)]
dy . (25.117)

We need to get an estimate on Sθ
rand’s variance. As in Section 25.2 we have

the following estimate for any 0 < α′ < 1/2:

1

4
|y−zr|α

′ ∣∣∂xk
∂xl

H1
0 (ω|y − zr|)

∣∣ ≤ 1

2
min

(
1,

√
2

π
ω3/2|y − zr|α

′−1/2

)
max

(
1, |y − zr|α

′−2
)
.

(25.118)
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We get, for any α′ < min(α, 12 ),

|Sθ
rand| ≤ ω2U2

I ‖µ‖C0,α′ max
k,l

∣∣∣χ(2)
k,l

∣∣∣ω2−2α′

[
8
√
2π

3/2 + α′ (ωdiam Ωµ)
3/2+α′

+
π

α′

]

(25.119)
and

∣∣∣E[BJ(z
S)BJ(zS

′)]
∣∣∣ ≤ 128π3

(3/2 + α′)2
ω4−2α′

δ4U4
I max

k,l

∣∣∣χ(2)
k,l

∣∣∣
2

E
[
‖µ‖2C0,α′

]

[
(ωdiam Ωµ)

3+2α′

+
1

α′

]
Q2ω(zr, z

S)Q2ω(zr, zS
′) . (25.120)

Note that Q2ω(zr, z
S), defined in (25.40), behaves like 1

8ωJ0(2ω|zr − zS |),
which decreases like |zr − zS |−1/2 as |zr − zS | becomes large. The term BJ

is localized around zr. It may shift, lower or blur the main peak but it will
not contribute to the speckle field on the image. We still need to estimate its
typical size at zr in order to get the signal-to-noise ratio at zr. Using (25.102)
and (25.56), we get

E[BJ(zr)BJ(zr)] ≤
217+απ3

(3/2 + α′)2
e

α− α′ω
2−2α′

δ4U4
I max

k,l

∣∣∣χ(2)
k,l

∣∣∣
2
[
(ωdiam Ωµ)

3+2α′

+
1

α′

]
σ2
µ

l2αµ
.

(25.121)
We can write (ωdiam Ωµ)

3+2α′ ≤ (ωdiam Ωµ)
3+2α + 1. We can take α′ = α

2 .

Let C = 218+1/2π3e
(3/2)2 . We get that

E[BJ(zr)BJ(zr)] ≤ Cω2 min
(
ω−2α, 1

)
δ4U4

I max
k,l

∣∣∣χ(2)
k,l

∣∣∣
2 σ2

µ

l2αµ

[
(ωdiam Ωµ)

3+2α
+1

]
.

(25.122)

Remark 25.4 We note that even though the term BJ is localized, meaning
it would not create too much of a speckle far away from the reflector, it is still
the dominant term of the speckle field around the reflector’s location.

The double products AJBJ and AJBJ :

This third term has the size of the geometric mean of the first two terms AJ

and BJ . So we only need to concentrate on the first two terms. Also this term
is still localized because of Q(zr, z

S) that decreases as |zr − zS |−1/2.

Signal-to-Noise Ratio

As before, we define the signal-to-noise ratio (SNR)J by (25.43). Using
(25.103), (25.115) and (25.122),
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E[J(zr)]

(V ar(J(zr))
1
2

≥
lαµ

(∫
S

(∑
k,l χ

(2)
k,l θkθl

)
dθ
)

√
Cσµ min(ω−α, 1)maxk,l

∣∣∣χ(2)
k,l

∣∣∣
√
(ωdiam Ωµ)

3+2α
+ 1

.

(25.123)
The difference here with the standard backpropagation is that the (SNR)
does not depend on neither the dielectric contrast of the particle, the nonlinear
susceptibility or even the particle’s volume. All the background noise created
by the propagation of the illuminating wave in the medium is filtered because
the small inhomogeneities only scatter waves at frequency ω. The nanoparticle
is the only source at frequency 2ω so it does not need to stand out from the
background. The perturbations seen on the image J are due to travel time
fluctuations of the wave scattered by the nanoparticle (for the speckle field)
and to the perturbations of the source field at the localization of the reflector
(for the localized perturbation). The second-harmonic image is more resolved
than the fundamental frequency image.

25.5.4 Stability with Respect to Measurement Noise

We now compute the signal-to-noise ratio in the presence of measurement
noise without any medium noise (µ = 0). The signals us and v are corrupted
by an additive noise ν(x) on ∂Ω. In real situations it is of course impossible
to achieve measurements for an infinity of plane wave illuminations. So in
this subsection we assume that the functional J is calculated as an average
over n different illuminations, uniformly distributed in S. We consider, for
each j ∈ [0, n], an independent and identically distributed random process
ν(j)(x), x ∈ ∂Ω, representing the measurement noise. If we assume that the
surface of Ω is covered with sensors half a wavelength apart and that the
additive noise has variance σ and is independent from one sensor to another
one, we can model the additive noise process by a Gaussian white noise with
covariance function:

E(ν(x)ν(x′)) = σ2
νδ(x− x′),

where σν = σ2 λ
2 .

Standard Backpropagation

We write, for each j ∈ [0, n], u
(j)
s as

u(j)s (x) = −2πδ2
σr − 1

σr + 1
UIe

iωθ(j)·zr∇G(0)
ω (x, zr) · (iωθ(j)) + o(δ2) + ν(j)(x) ,

(25.124)
where ν(j) is the measurement noise associated with the j-th illumination. We
can write I as

I(zS) =
1

n

n∑

j=1

∫

∂Ω

1

iω
e−iωθ(j)·zS

(θ(j))T∇G(0)
ω (x, zS)us(x)dx . (25.125)
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Further,

I(zS) = −2πδ2
σr − 1

σr + 1
UI

1

n

n∑

j=1

eiωθ(j)·(zr−zS)(θ(j))TRω(zr, z
S)θ(j)

+
1

n

n∑

j=1

∫

∂Ω

1

iω
e−iωθ(j)·zS

(θ(j))T∇G(0)
ω (x, zS)ν(j)(x)dx . (25.126)

We get that

E[I(zS)] = −2πδ2
σr − 1

σr + 1
UI

1

n

n∑

j=1

eiωθ(j)·(zr−zS)(θ(j))TRω(zr, z
S)θ(j) ,

(25.127)
so that, using (25.60) and (25.59),

E[I(zr)] ∼ −π(σr − 1)

4(σr + 1)
ωδ2UI . (25.128)

We compute the covariance

Cov(I(zS), I(zS
′

)) = E

[
1

n2




n∑

j=1

1

iω
e−iωθ(j)·zS

∫

∂Ω

ν(j)(x)(θ(j))T∇G(0)
ω (x, zS)dx




(
n∑

l=1

−1

iω
eiωθ(l)·zS′

∫

∂Ω

ν(l)(x′)(θ(l))T∇G(0)
ω (x′, zS

′

)dx′
)]

(25.129)

and obtain that

Cov(I(zS), I(zS
′

)) = σ2λ

2

1

ω2n2

n∑

j=1

e−iωθ(j)·(zS−zS′
)(θ(j))TRω(z

S , zS
′

)θ(j) .

(25.130)
The signal-to-noise ratio is given by

(SNR)I =
E[I(zr)]

(V ar(I(zr))
1
2

. (25.131)

If we compute

V ar(I(zr)) ∼ σ2 π

8ω2n
, (25.132)

then (SNR)I can be expressed as

(SNR)I =

√
πnδ2ω2[σr − 1]UI

[σr + 1]σ
. (25.133)

The backpropagation functional is very stable with respect to measurement
noise. Of course, the number of measurements increases the stability because
the measurement noise is averaged out. We will see in the following that the
second-harmonic imaging is also pretty stable with respect to measurement
noise.
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Second-Harmonic Backpropagation

We write, for each j ∈ [0, n], vj as

v(j)(x) = −δ2(2ω)2

∑

k,l

χ
(2)
k,l∂xk

U (j)(zr)∂xl
U (j)(zr)


G

(0)
2ω (x, zr) + ν(j)(x) ,

(25.134)
where νj is the measurement noise at the j-th measurement. Without any
medium noise the source term (S) can be written as

(S)θ
(j)

=
∑

k,l

χ
(2)
k,l∂xk

U (j)(zr)∂xl
U (j)(zr) = −ω2U2

I e
2iωθ(j)·zr

∑

k,l

χ
(2)
k,l θ

(j)
k θ

(j)
l .

(25.135)
So we can write J as

J(zS) =
1

n

n∑

j=1

∫

∂Ω

v(j)(x)G
(0)
2ω (x, z

S)e−2iωθ(j)·zS

dx , (25.136)

or equivalently

J(zS) = −δ2(2ω)2 1
n

n∑

j=1

(S)θ
(j)

∫

∂Ω

G
(0)
2ω (x, zr)G

(0)
2ω (x, z

S)e−2iωθ(j)·zS

dx

+
1

n

n∑

j=1

∫

∂Ω

ν(j)(x)G
(0)
2ω (x, z

S)e−2iωθ(j)·zS

dx . (25.137)

We get that

E[J(zS)] = −δ2(2ω)2 1
n

n∑

j=1

(S)θ
(j)

e−2iωθ(j)·zS

Q2ω(zr, z
S) , (25.138)

so that, using (25.102),

E[J(zr)] ∼ δ2U2
I

ω3

2n

∑

k,l,j

χ
(2)
k,l θ

(j)
k θ

(j)
l . (25.139)

We can compute the covariance

Cov(J(zS), J(zS
′

)) = E

[
1

n2




n∑

j=1

e−2iωθ(j)·zS

∫

∂Ω

ν(j)(x)G
(0)
2ω (x, z

S)dx




(
n∑

l=1

e2iωθ(l)·zS′
∫

∂Ω

ν(l)(x)G
(0)
2ω (x

′, zS
′

)dx′
)]

, (25.140)
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which yields

Cov(J(zS), J(zS
′

)) = σ2λ

2
Q2ω(z

S′

, zS)
1

n2

n∑

j=1

e−2iωθ(j)·(zS−zS′
) . (25.141)

Now we have

V ar(J(zr))
1/2 ∼ σ

2ω

√
π

2n
. (25.142)

The signal-to-noise ratio,

(SNR)J =
E[J(zr)]

(V ar(J(zr))
1
2

, (25.143)

is given by

(SNR)J =
2δ2ω2UI

(∑
j

∑
k,l χ

(2)
k,l θ

(j)
k θ

(j)
l

)

πσ
√
n

. (25.144)

Even though it appears that the (SNR) is proportional to 1√
n
, the term

∑
j θ

(j)
k θ

(j)
l is actually much bigger. In fact, if we pick θ(j) = 2jπ

n , we get that

∑

k,l

χ
(2)
k,l

∑

j

θ
(j)
k θ

(j)
l =

n∑

j=1

(
χ
(2)
1,1 cos

2 2jπ

n
+ χ

(2)
2,2 sin

2 2jπ

n
+ 2χ

(2)
1,2 sin

2jπ

n
cos

2jπ

n

)
,

(25.145)
and hence ∑

k,l

χ
(2)
k,l

∑

j

θ
(j)
k θ

(j)
l ∼ n

2
max[χ

(2)
1,1, χ

(2)
2,2] . (25.146)

Therefore, we can conclude that

(SNR)J =
δ2ω2U2

I

√
nmax[χ

(2)
1,1, χ

(2)
2,2]

πσν
. (25.147)

The signal-to-noise ratio is very similar to the one seen in the classic back-
propagation case. So the sensitivity with respect to relative measurement noise
should be similar. It is noteworthy that in reality, due to very small size of the
(SHG) signal (χ(2) has a typical size of 10−12 m/V ), the measurement noise
levels will be higher for the second-harmonic signal.

25.6 Numerical Results

25.6.1 The Direct Problem

We consider the medium to be the square [−1, 1]2. The medium has an average
propagation speed of 1, with random fluctuations with Gaussian statistics (see
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Figure 25.2). To simulate µ we use the algorithm described in Section 4.4.2
which generates random Gaussian fields with Gaussian covariance function
and take a standard deviation equal to 0.02 and a correlation length equal to
0.25. We consider a small reflector in the medium Ωr = zr + δB(0, 1) with
zr = (−0.2, 0.5) and δ = 0.004/π, represented in Figure 25.1. The contrast of
the reflector is σr = 2. We fix the frequency to be ω = 8. We get the boundary
data us when the medium is illuminated by the plane wave UI(x) = eiωθ·x.
The correlation length of the medium noise was picked so that it has a similar
size as the wavelength of the illuminating plane wave. We get the boundary
data by using an integral representation for the field us,θ. We also compute
the boundary data for the second-harmonic field v. We compute the imaging
functions I and J , respectively, defined in (25.35) and (25.38), averaged over
two different lightning settings. (see Figures 25.7 and 25.8, for instance).

Medium with the reflector

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Fig. 25.1. Medium with the reflec-
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Fig. 25.6. Second-harmonic field v.

25.6.2 The Imaging Functionals and the Effects of the Number of
Plane Wave Illuminations

We compute the imaging functionals I and J , respectively, defined in (25.35)
and (25.38), averaged over four different illuminations settings. We fix the
noise level (σµ = 0, 02), the volume of the particle (vr = 10−2), and the con-
trast σr = 2. In Figures 25.7 and 25.8 the image is obtained after backprop-
agating the boundary data from one illumination (θ = 0). On the following
graphs, we average over several illumination angles:

• 4 uniformly distributed angles for Figures 25.9 and 25.10.
• 8 uniformly distributed angles for Figures 25.11 and 25.12.
• 32 uniformly distributed angles for Figures 25.13 and 25.14.

As predicted, the shape of the spot on the fundamental frequency imaging
is very dependent on the illumination angles, whereas with second-harmonic
imaging we get an acceptable image with only one illumination. In applica-
tions, averaging over different illumination is useful because it increases the
stability with respect to measurement noise. It is noteworthy that, as ex-
pected, the resolution of the second-harmonic image is twice higher than the
regular imaging one.

25.6.3 Statistical analysis

Stability with respect to medium noise

Here we show numerically that the second-harmonic imaging is more stable
with respect to medium noise. In Figure 25.15, we plot the standard deviation
of the error |zest − zr|, where zest is the estimated location of the reflector.
For each level of medium noise we compute the error over 120 realizations of
the medium, using the same parameters as above. The functional imaging J
is clearly more robust than earlier.
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Fig. 25.7. I with 1 illumination.
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Fig. 25.8. J with 1 illumination.
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Fig. 25.10. J with 4 illuminations.
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Fig. 25.12. J with 8 illuminations.

Effect of the Volume of the Particle

We show numerically that the quality of the second-harmonic image does
not depend on the volume of the particle. We fix the medium noise level
(σµ = 0.02) and plot the standard deviation of the error with respect to
the volume of the particle (Figure 25.16). We can see that if the particle is
too small, the fundamental backpropagation algorithm cannot differentiate
the reflector from the medium and the main peak gets buried in the speckle
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Fig. 25.14. J with 32 illuminations.
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Fig. 25.15. Standard deviation of the localization error with respect to the medium
noise level for standard backpropagation (top) and second-harmonic image (bottom).

field. The volume of the particle does not have much influence on the second-
harmonic image quality.

Stability with Respect to Measurement Noise

We compute the imaging functionals with a set of data obtained without
any medium noise and perturbed with a Gaussian white noise for each of 8
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Fig. 25.16. Standard deviation of the localization error with respect to the reflec-
tor’s volume (log scale) for standard backpropagation (top) and second-harmonic
image (bottom).

different illuminations. For each noise level, we average the results over 100
images. Figure 25.17 shows that both functionals have similar behaviors.

As mentioned before, in applications, the weakness of the SHG signal will
induce a much higher relative measurement noise than in the fundamental
data. Since the model we use for measurement noise has a zero expectation,
averaging measurements over different illuminations can improve the stability
significantly, as shown in Figure 25.18, where the images have been obtained
with 16 illuminations instead of 8.

25.7 Proof of Estimate (25.8)

Let R be large enough so that Ωµ ⋐ BR, where BR is the ball of radius R
and center 0. Let SR = ∂BR be the sphere of radius R, and introduce the
Dirichlet-to-Neumann operator T on SR:

T : W 2
1/2(SR) −→W 2

−1/2(SR)

u 7−→ T [u] .
(25.148)

According to [283], T is continuous and satisfies
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−ℜ(T [u], u) ≥ 1

2R
‖u‖2L2(SR), ∀u ∈W 2

1/2(SR) , (25.149)

and
ℑ(T [u], u) > 0 if u 6= 0 . (25.150)

Here, ( , ) denotes the duality pair between W 2
1/2(SR) and W 2

−1/2(SR). Now
introduce the continuous bilinear form a:

W 1,2(BR)×W 1,2(BR) −→ C

(u, v) 7−→ a(u, v) =

∫

BR

(1 + µ)∇u · ∇v − ω2

∫

BR

uv − (T [u], v) ,

(25.151)
as well as the continuous bilinear form b:

W 1,2(BR) −→ C

v 7−→ b(v) =

∫

BR

µ∇U0 · ∇v .
(25.152)

Problem (25.5) has the following variational formulation: Find u ∈W 1,2(BR)
such that
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Fig. 25.18. Standard deviation of the localization error with respect to measure-
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a(u, v) = b(v) ∀v ∈W 1,2(BR) . (25.153)

With (25.149) one can show that

ℜa(u, u) ≥ C1‖∇u‖2L2(BR) − C2‖u‖2L2(BR) , (25.154)

so that a is weakly coercive with respect to the pair
(
W 1,2(BR), L

2(BR)
)
.

Since the embedding of W 1,2(BR) into L2(BR) is compact, we can apply
Fredholm’s alternative to problem (25.153). Hence, we deduce existence of a
solution from uniqueness of a solution, which easily follows by using identity
(25.150).

Now we want to prove that if u is the solution of (25.153), then

‖u‖W 1,2(BR) ≤ ‖µ‖∞ . (25.155)

We proceed by contradiction. Assume that ∀n ∈ N, there exists µn ∈ L∞(BR)
compactly supported and un ∈W 1,2(BR) solution of (25.153) such that

‖un‖W 1,2(BR) ≥ nC‖µn‖∞. (25.156)
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Consider the sequence

vn =
un

‖un‖W 1,2(BR)
. (25.157)

(vn)n∈N is bounded in W 1,2(BR) so there exists a subsequence still denoted
by vn and v∗ ∈ W 1,2(BR) such that vn ⇀ v∗ in W 1,2(BR) and vn → v∗ in
L2(BR). Now since un is a solution of (25.153), we have
∫

BR

(1+µn)∇vn·∇vn−ω2

∫

BR

vnvn−(T vn, vn) =
∫

BR

µn∇U0·∇vn . (25.158)

Using (25.156) we obtain that
∫

BR

(1 + µn)|∇vn|2 − ω2

∫

BR

|vn|2 − (T vn, vn) −→ 0 (n→ ∞) . (25.159)

Since
∫
BR

µn|∇vn|2 −→ 0, we get that ã(vn, vn) −→ 0, where

ã(u, v) =

∫

BR

∇u · ∇v − ω2

∫

BR

uv − (T u, v) . (25.160)

We want to prove that vn converges strongly in W 1,2(BR) to v∗ and that
v∗ = 0. This will contradict the fact that ∀n, ‖vn‖W 1,2(BR) = 1.

Now we decompose ã = ãc + ãw into a coercive part,

ãc(u, v) =

∫

BR

∇u · ∇v − (T u, v) (25.161)

and a weakly continuous part,

ãw(u, v) = −ω2

∫

BR

uv . (25.162)

So ã(vn − v∗, vn − v∗) = ãc(vn − v∗, vn − v∗) + ãw(vn − v∗, vn − v∗). We write
ãc(vn − v∗, vn − v∗) = ãc(vn − v∗) − ãc(vn − v∗, v∗). Now, since vn ⇀ v in
W 1,2(BR) and ãc is strongly continuous on W 1,2(BR)

2, we have that ãc(vn −
v∗, v∗) −→ 0, and ãc(vn − v∗, vn) = ãc(vn, vn) − ãc(v

∗, vn) −→ −ãc(v∗, v∗),
which is

ãc(vn − v∗, vn − v∗) −→ −ãc(v∗, v∗). (25.163)

The coercivity of ãc gives
ãc(v

∗, v∗) = 0 (25.164)

By a computation similar to the one just above, we also find that

ã(vn − v∗, vn − v∗) −→ −ã(v∗, v∗) . (25.165)

Since ãw(vn − v∗, vn − v∗) −→ 0, we get that

ã(v∗, v∗) = 0. (25.166)

So v∗ =0 and, since ã satisfies (25.154), we get that ‖∇vn‖2L2(BR) −→ 0 as
n→ ∞. We have

vn −→ v = 0 in W 1,2(BR) . (25.167)
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25.8 Proof of Proposition 25.1

Denote V = us − u
(µ)
s − w(µ) · ∇U0(zr). V is a solution on R2 of

∇·(1+µ+[σr−1]1Ωr
)∇V+ω2V = −∇·[σr−1]1Ωr

∇ [U0 −∇(x− zr) · ∇U0(zr)]
(25.168)

subject to the Sommerfeld radiation condition. Now, define V0 as the solution
on R2 of

∇· (1+µ+[σr −1]1Ωr
)∇V0 = −∇· [σr −1]1Ωr

∇ [U0 −∇(x− zr) · ∇U0(zr)] .
(25.169)

with the condition V0(x) −→ 0 (x→ ∞).

From [28, Lemma A.1], there exist three positive constants C, C̃ and κ
independent of µ and δ such that

‖∇V0‖L2(BR) ≤ Cδ‖∇ [U0 −∇(x− zr) · ∇U0(zr)] ‖L∞(Ωr) (25.170)

and

‖V0‖L2(BR) ≤ C̃δ1+κ‖∇ [U0 −∇(x− zr) · ∇U0(zr)] ‖L∞(Ωr) . (25.171)

If we write W = V − V0, we have that W solves

∇ · (1 + µ+ [σr − 1]1Ωr
)∇W + ω2W = −ω2V0, (25.172)

with the boundary condition ∂W
∂ν −Tω(W ) = Tω(V )−T0(V0) on ∂BR, where Tω

is the Dirichlet-to-Neumann map on SR defined in (25.148) associated with the
frequency ω. The condition can be rewritten as ∂W

∂ν −Tω(W ) = (Tω − T0) (V0).
So, based on the well posedness of (25.172), there exist a constant C ′ inde-
pendent of µ and δ such that

‖W‖W 1,2(BR) ≤ C ′ (‖V0‖L2(BR) + ‖ [Tω − T0] (V0)‖L2(∂B)

)
. (25.173)

Now, we can write that, for some constant still denoted C independent of µ
and δ,

‖V ‖W 1,2(BR) ≤ C
(
‖V0‖W 1,2(BR) + ‖V0‖L2(BR)

)
. (25.174)

Since δ < 1, using (25.170) and (25.171) we get

‖V ‖W 1,2(BR) ≤ Cδ2 . (25.175)

25.9 Proof of Proposition 25.3

Denote φ: y −→ ỹ = φ(y) = y−zr
δ . If we define ∀ỹ ∈ B(0, 1): w̃(µ)(ỹ) =

1
δw

(µ)(φ−1(ỹ)), we want to prove the following:
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‖w̃(µ)(ỹ)− ỹ − w̃(ỹ)‖W 1,2(B(0,1)) ≤ C
(
‖µ‖∞ + δω2

)
. (25.176)

Now, it is easy to see that w̃(µ) satisfies the following equation:

∇ · (1 + [σr − 1]1B + µ̃)∇w̃(µ) + ω2δw̃(µ) = ∇ · ([σr − 1]1B∇ỹ) , (25.177)

where µ̃ = µ ◦ φ−1, equipped with the Sommerfeld radiation condition. Using
equation (25.20) we get that

∇ · (1 + [σr − 1]1B + µ̃)∇
(
w̃(µ) − ỹ − w̃

)
= −∇ ·

(
µ̃∇w̃(µ)

)
− ω2δw̃(µ) .

(25.178)
Now, using Meyer’s theorem [273], we get the following estimate:

‖∇
(
w̃(µ)(ỹ)− ỹ − w̃(ỹ)

)
‖L2(B) ≤ C

(
‖µ̃∇w̃(µ)‖L2(B) + ωδ2‖w̃(µ)‖L2(B)

)
.

(25.179)

We need to estimate ‖w̃(µ)‖W 1,2(B(0,1)). Introduce w̃
(µ)
0 as the solution of

∇ · (1 + [σr − 1]1B + µ̃)∇w̃(µ)
0 = ∇ · ([σr − 1]1B∇ỹ) . (25.180)

with the condition w̃
(µ)
0 (ỹ) −→ 0 as ỹ → ∞. Meyers theorem gives

‖w̃(µ)
0 ‖W 1,2(B(0,1)) ≤ C‖[σr − 1]∇ỹ‖L2(B(0,1)) . (25.181)

We can see that w̃(µ) − w̃
(µ)
0 is a solution of

∇ · (1 + [σr − 1]1B + µ̃)∇
(
w̃(µ) − w̃

(µ)
0

)
+ ω2δ

(
w̃(µ) − w̃

(µ)
0

)
= −ω2δw̃

(µ)
0 .

(25.182)
We get that

‖w̃(µ) − w̃
(µ)
0 ‖W 1,2(B(0,1)) ≤ Cω2δ‖w̃(µ)

0 ‖L2(B(0,1)) .

So, using (25.181) we obtain

‖w̃(µ)‖W 1,2(B(0,1)) ≤ C
(
1 + ω2δ

)
. (25.183)

Since ‖µ̃∇w̃(µ)‖L2(B(0,1)) ≤ ‖µ̃‖L∞(B(0,1))‖w̃(µ)‖W 1,2(B(0,1)) and ‖µ̃‖L∞(B(0,1)) ≤
‖µ‖∞, using (25.179) and (25.181) we get

‖∇
(
w̃(µ)(ỹ)− ỹ − w̃(ỹ)

)
‖L2(B(0,1)) ≤ C

(
‖µ‖∞ + δω2(1 + ‖µ‖∞ + δω2)

)
,

which is exactly, as ‖µ‖∞ → 0 and δ → 0, for y ∈ Ωr

∇
(
w(µ)(y)− (y − zr)

)
= δ∇w̃(y − zr

δ
) +O

(
δ‖µ‖∞ + (δω)2

)
. (25.184)
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25.10 Concluding Remarks

We have studied how second-harmonic imaging can be used to locate a small
reflector in a noisy medium, gave asymptotic formulas for the second-harmonic
field, and investigated statistically the behavior of the classic and second-
harmonic backpropagation functionals. We have proved that the backprop-
agation algorithm is more stable with respect to medium noise. Our results
can also be extended to the case of multiple scatterers as long as they are
well-separated.
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Math., 17 (1893), 30–31.

189. M. Hanke, A. Neubauer, and O. Scherzer, A convergence analysis of the
Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995),
21–37.

190. C.L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, Three-dimensional harmonic
holographic microcopy using nanoparticles as probes for cell imaging, Optics
Express, 17 (2009), 2880–2891.

191. M.V. de Hoop, L. Qiu, and O. Scherzer, Local analysis of inverse prob-
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283. J.C. Nédélec, Acoustic and Electromagnetic Equations. Integral Represen-

tations for Harmonic Problems, Applied Mathematical Sciences, Vol. 144,
Springer-Verlag, New-York, 2001.

284. G. Nguestseng, A general convergence result for a functional related to the
theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608–623.

285. L.V. Nguyen, A family of inversion formulas in thermoacoustic tomography,
Inverse Problems and Imaging, 3 (2009), 649–675.

286. H.L. Nguyen and K. Schmitt, On positive solutions of quasilinear elliptic equa-
tions, Differ. Integral Equat., 22 (2009), 829–842.

287. H. Nguyen and M. Vogelius, A representation formula for the voltage pertur-
bations caused by diametrically small conductivity inhomogeneities. Proof of
uniform validity, Ann. I. H. Poincaré-AN, 26 (2009), 2283–2315.
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Neumann-Poincaré operator, 50, 85,

340, 407, 423, 425
Neumann-to-Dirichlet boundary map,

112
normal distribution, 95, 97

optical coherence tomography, 143, 361



Index 525

optical Theorem, 443
optical theorem, 76, 77
optimal bounds, 448
optimal control algorithm, 41, 242, 245,

248, 255, 278, 300, 311, 328
orthogonal field method, 258, 283
outer expansion, 164

Paley-Wiener theorem, 27, 28
Parseval’s formula, 25
periodic Green function, 406
photoacoustic model, 204
Plancherel theorem, 25
plane wave, 61, 79
plasmonic nanoparticle, 424
plasmonic resonance, 2, 423, 424, 428,

431
plasmonic resonnace, 435
point spread function, 105
Poisson’s formula, 26
Poisson’s summation formula, 406
polarization tensor, 155, 157, 160, 447,

472
proper set of measurements, 238, 239,

295, 303, 304

quantitative photoacoustic imaging, 227
quantitative thermoacoustic imaging,

237
quasi-static approximation, 423
quasi-static limit, 47
quasi-static plasmonic resonance, 433

radiation condition, 61, 81
random process, 98
random variable, 93
Rayleigh resolution limit, 106
reciprocity, 67, 69, 89, 161, 162
reciprocity property, 470
regular perturbation, 156
Rellich’s lemma, 64
representation formula, 88
resolution limit, 69
reverse-time imaging, 475
reverse-time migration, 187, 192

scattering amplitude, 73, 442, 443, 454
scattering coefficient, 6, 62
scattering coefficients, 424, 450–452
scattering cross-section, 75, 77, 442, 443
scattering medium, 134
second-harmonic generation, 2, 465

Shannon’s sampling theorem, 27
signal-to-noise ratio, 107, 183
sinc kernel, 182
single-layer potential, 85
singular perturbation, 155
singular value decomposition, 30, 209
Sobolev spaces, 23
Sommerfeld radiation condition, 61, 83,

470
Sommerfeld-Kupradze radiation

condition, 82
source point, 48
spatial resolution, 105
speckle field, 184, 187, 481
spectroscopic measurements, 381
spherical acoustic wave, 317
spherical mean Radon transform, 33,

205, 208, 323, 330
stationary phase theorem, 211
statistical moment, 94, 96
Stokes system, 91, 92, 170
strain tensor, 9, 78
substitution algorithm, 294, 297
sum rules, 30, 77, 424, 448, 461
symmetrization principle, 48, 55

thermo-elastic effect, 11
thermoviscous law, 208, 209
Tikhonov-Phillips regularization, 37
time-dependent Green function, 120
time-reversal, 119, 127, 156, 193, 205,

214
topological derivative, 177, 184
total variation, 206, 214, 254, 330
transmission problem, 88
two-scale convergence, 388, 394, 401

ultrasonically-induced Lorentz force
imaging, 247

ultrasound imaging, 117, 187
ultrasound-modulated diffuse optical

tomography, 315
uncertainty relation, 106

viscoelasticity, 348
viscosity algorithm, 248, 262
viscous moment tensor, 171

wave equation, 34, 61, 205
Weyl’s representation, 62, 118
Wiener deconvolution filter, 248, 264


