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ABSTRACT

We present a high-performance framework for single- and
multilevel quasi-Monte Carlo methods applicable to a large
class of problems in uncertainty quantification. A typical ap-
plication of interest is the approximation of expectations of
quantities depending on solutions to e.g. partial differential
equations with uncertain inputs, often yielding integrals over
high-dimensional spaces. The goal of the software presented
in this paper is to allow recently developed quasi-Monte
Carlo (QMC) methods with high, dimension-independent
orders of convergence to be combined with a multilevel ap-
proach and applied to large problems in a generic way, eas-
ing distributed memory parallel implementation. The well-
known multilevel Monte Carlo method is also supported as
a particular case, and some standard choices of distribu-
tions are included. For so-called interlaced polynomial lattice
rules, a recently developed QMC method, precomputed gen-
erating vectors are required; some such vectors are provided
for common cases.

After a theoretical introduction, the implementation is
briefly explained and a user guide is given to aid in ap-
plying the framework to a concrete problem. We give two
examples: a simple model problem designed to illustrate
the mathematical concepts as well as the advantages of the
multilevel method, including a measured decrease in com-
putational work of multiple orders of magnitude for engi-
neering accuracy, and a larger problem that exploits high-
performance computing to show excellent parallel scaling.
Some concrete use cases and applications are mentioned,
including uncertainty quantification of partial differential
equation models, and the approximation of solutions of cor-
responding Bayesian inverse problems. This software frame-
work easily admits modifications; custom features like sched-
ulers and load balancers can be implemented without hassle,
and the code documentation includes relevant details.
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1. INTRODUCTION
Many problems in uncertainty quantification (UQ) for par-

tial differential equations (PDEs) are formulated as expec-
tations over uncertain input parameters. In the case of dis-
tributed inputs, these expectations are high-dimensional in-
tegrals, which often suffer from the curse of dimensionality.
In order to approximate such quantities for large problems,
both high-performance computing and state-of-the-art algo-
rithms are essential. This paper describes a generic, high-
performance implementation of recently developed methods
that can offer immense reductions of both the required com-
putational work and the time to solution.

We consider in this paper a combination of two techniques
recently developed in the field of uncertainty quantification
for PDEs: multilevel Monte Carlo (MLMC) on the one hand
and higher-order quasi-Monte Carlo (HoQMC) quadrature
in the form of interlaced polynomial lattice rules on the
other.

MLMC was developed independently by Giles [17] and
Heinrich [23], and aims to improve the convergence rate of
the error vs. the work for problems that can be approxi-
mated on different levels of accuracy. The goal throughout
the recently developed MLMC literature is to achieve a con-
vergence rate of error ∼ work−1/2, which is optimal when
using Monte Carlo (MC) sampling. In certain cases, de-
pending on the convergence rate of a corresponding single-
level method, the gains can be significant. However, the
rate in terms of the work is limited to −1/2 by the use of
Monte Carlo. MLMC has been applied to parametric inte-
gration [23], path simulation for stochastic differential equa-
tions (SDEs) [17], stochastic partial differential equations
(SPDEs) [2, 3], and various other problems [1, 15, 35, 36].

The second recent development we consider here is a quasi-
Monte Carlo (QMC) method with higher-order convergence
rate, by which we mean that the quadrature error decreases
like error ∼ N−σ with σ > 1, where N is the number of
function evaluations. In particular, we focus on so-called in-
terlaced polynomial lattice (IPL) rules, which achieve these
higher order rates with σ ≥ 2 for integrands satisfying suit-
able sparsity assumptions [6, 9, 11, 20, 37]. The combination
of a multilevel approach with quasi-Monte Carlo has been
considered for randomized rank-1 lattice rules in [19] and for
the higher-order rules considered here in [10].
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Among the advantages of the multilevel approach are its
simplicity and generality, both algorithmically and in terms
of serial implementation. However, for large problems re-
quiring parallel computing (with possibly “nested paralle-
lism”, i.e. when the solver itself is parallelized), things soon
become much more complicated. Together with the fact that
the computation of approximations to the model in question
can require different numbers of CPUs in various cases, such
as on different levels or for different realizations of the ran-
dom field (e.g. when using adaptive mesh refinement), this
can greatly complicate a parallel implementation [42, 43].

It is the goal of the library presented here to provide
a generic, parallel, high-performance framework which ab-
stracts much of the parallelization details, allowing the user
to focus on the application of the multilevel algorithm to
his or her problem. The use of C++ and MPI allows this
library to be used on the largest parallel computers in or-
der to exploit the excellent parallelization properties of MC
and QMC methods. Additionally, routines for the eval-
uation of IPL rules are provided, allowing their straight-
forward application to the computational approximation of
high-dimensional integrals, also beyond their use in the mul-
tilevel methods considered here.

This paper is structured as follows: First, we briefly re-
view the theoretical basics required for applying Monte Carlo
(MC) and Quasi-Monte Carlo (QMC) methods to the ap-
proximation of statistical moments. In the QMC part, we fo-
cus on recently developed higher-order convergent interlaced
polynomial lattice rules, and mention their advantages over
MC and other QMC methods. We then develop the single-
level algorithm and its multilevel extension in Sections 2.3
and 2.4, respectively, for both MC and QMC sampling meth-
ods, focusing on a formulation amenable to generic imple-
mentation.

The generic C++ library, named gMLQMC, is described in
Section 3, including the parallelization approach and use of
MC and QMC rules. A user guide is given in Section 3.4,
where the installation and use of the library is briefly ex-
plained. A more extensive code documentation is provided
with the software itself.

Finally, Section 4 describes two concrete example prob-
lems; the first, a simple parametric integral, is designed to
elucidate the mathematical properties required for such mul-
tilevel methods to be applicable, and how the choice of MC
or QMC method influences the resulting convergence rates,
illustrating the at times massive gains in accuracy or reduc-
tions in computational work that are possible. The second
example focuses on the high-performance aspect of the li-
brary, and relevant parallel scaling results are shown.

2. THEORY
We consider the problem of computing statistical mo-

ments of a quantity of interest (abbreviated QoI and de-
noted by φ below) depending on an uncertain input. Of
interest in applications are often solutions to ordinary or
partial differential equation (PDE) models, where the un-
certain input can take the form of a coefficient, initial value,
or even the domain on which the equation is posed. We as-
sume below that for each realization of the uncertain input,
the solution to the model in question can be approximated
on a given level, with a certain accuracy.

In order to compute statistical moments, we must approx-
imate expectations, i.e. integrals in the case of continuous

state spaces. A typical difficulty is that the uncertain inputs
or their parametrizations can be very high-dimensional, for
which case Monte Carlo-type methods are well-suited. In
Section 2.2, we briefly review Monte Carlo (MC) approxi-
mations involving random sampling, as well as quasi-Monte
Carlo (QMC) approximations that are based on determinis-
tically chosen samples and can achieve higher rates of con-
vergence.

2.1 Discretization
We refer to the uncertain input as y ∈ U , where the form

of y is given by the application at hand. Often, y is a ran-
dom variable with distribution modeling the behavior of the
input. On the other hand, y could be a vector of parame-
ters of an expansion of a random input, e.g. when consider-
ing Karhunen-Loève expansions of random input fields, see
Section 4.3.1 for an example. We do not make a distinction
in the following, referring interchangeably to y as the un-
certain input or parameter of the model. In Section 4, we
show some concrete examples of such random / parametric
inputs.

We denote the mapping from a parameter y ∈ U to the
corresponding solution by G : U → X , y 7→ G(y), where X
is a Banach space. For example, in PDE models X could be
the function space of solutions. Often, we wish to compute
a quantity of interest (QoI) depending on the parameter,
which we denote by φ : U → Y where Y is a Banach space.
In the following, we assume φ(y) = q(y), corresponding to
the computation of the expected response, and thus simply
write G instead of φ. See Section 3.4.2 for a remark on
the implementation of multiple QoIs depending on the same
parameter, and Section 4.3.2 for an example. In practice, a
common case is Y = R

d, where often d = 1.

Multilevel Discretization.
We assume now that the evaluation of the mapping G

for some parametric or uncertain input is burdened with a
certain error, referred to in the following as the discretiza-
tion error. Furthermore, we require for a multilevel for-
mulation the concept of a discretization level. Often, the
discretization level has the geometric interpretation as the
level of mesh refinement, however this need not be the case,
e.g. when considering adaptive methods with specified tol-
erance that decreases with increasing level.

For a maximal level L corresponding to the most exact
(finest) discretization, we index the levels by ℓ = 0, . . . , L.
Since we wish to obtain a very general formulation, we allow
the sample and solution spaces to be different on each level;
the relevance of this generality can be seen in the description
of the implementation in Section 3 below. On each level, we
thus assume the input parameter to be yℓ ∈ Sℓ, where the
spaces of samples Sℓ fulfill S0 ⊆ S1 ⊆ . . . ⊆ SL ⊆ U . We
further assume that a sample restriction operation mapping
samples from a fine level onto a coarser level is given by the
mapping Rℓ : Sℓ → Sℓ−1 for ℓ = 1, . . . , L. We denote the
solution space on level ℓ by Xℓ with X0 ⊆ X1 ⊆ . . . ⊆ XL ⊂
X , and require a solution prolongation mapping Pℓ : Xℓ−1 →
Xℓ for ℓ = 1, . . . , L. This prolongation mapping will allow
us to combine approximations on different levels to obtain a
result on the finest level.

For each level ℓ = 0, . . . , L, we now assume that the model
can be discretized to yield an approximation G ≈ Gℓ : Sℓ →
Xℓ ⊂ X . The idea is to fix the maximal level L based on



some given error tolerance, and write the approximation GL

as a telescopic sum, where for the moment we assume Rℓ =
id (the identity) for all ℓ,

GL(y) = P̃0G0(y) +

L∑

ℓ=1

P̃ℓ(Gℓ(y)− PℓGℓ−1(y)), (1)

with P̃ℓ = PL ◦ . . . ◦ Pℓ+1 for ℓ < L and P̃L = id. Denoting
the mathematical expectation over the uncertain inputs y

by E, we obtain by linearity of the expectation and indepen-
dence of Pℓ on the samples (for ℓ = 0, . . . , L) the multilevel
formulation

E[GL] = P̃0E[G0] +
L∑

ℓ=1

P̃ℓE[Gℓ − PℓGℓ−1]. (2)

Discretization Error.
The formulation (2) above involves the approximation of

the solution on various levels, resulting in discretization er-
rors. In the following, we denote by δℓ an upper bound on
the discretization error on level ℓ, i.e. assume there exist
constants β,C > 0 independent of ℓ such that for all y ∈ Sℓ

holds that

‖Gℓ(y)−G(y)‖X ≤ Cδℓ, δℓ = 2−βℓ. (3)

Work Model.
Since the goal of multilevel methods is to obtain a better

convergence rate of the error vs. work, we need a model
for the work per sample on each level ℓ = 0, . . . , L. In the
following, we assume a model often encountered in settings
involving geometric refinement of e.g. FEM meshes, namely
that the work on level ℓ is given for γ > 0 by

wℓ = O(2γℓ). (4)

2.2 Sampling Methods
In this section we briefly review some basics of Monte

Carlo and quasi-Monte Carlo methods for approximating
integrals, which we will apply to the approximation of ex-
pectations. We refer to standard literature [11, 28, 29] for
details to allow more focus on the description of the ensuing
implementation.

To allow a unified treatment of MC and QMC, we consider
the problem of integrating a function f : [0, 1]s → R with
respect to the Lebesgue measure, i.e. we assume a uniformly
distributed input parameter y ∼ U([0, 1]s). If the input un-
der consideration is a random variable distributed according
to some other distribution, an integral over [0, 1]s can be ob-
tained by transforming with the inverse of the corresponding
multivariate cumulative distribution function. We make this
assumption only for brevity of exposition – the implementa-
tion supports arbitrary distributions in the MC case, so long
as a function to sample from the distribution is provided.

2.2.1 Monte Carlo

We denote by {y(i) : i = 1, . . . ,M} a collection of M
i.i.d. realizations of a random variable y ∼ U(U), U = [0, 1]s.
The Monte Carlo quadrature rule based on such a collection
of M samples applied to the function f is then given by

QM [f ] :=
1

M

M∑

i=1

f(y(i)). (5)

SinceQM [f ] is simply a sum ofM evaluations of f at random
points, it too is a random variable – computing (5) multiple
times will yield different values. However, it can easily be
shown that the estimator (5) is unbiased, i.e. its expectation
is equal to the exact value E[f ].

In the context of the Monte Carlo method, we consider
the L2(U) error, sometimes called the root-mean-square er-
ror (RMSE) which is given for a random variable X by

RMSE(X) =
√

Var(X). For the estimator (5) applied to a

function f ∈ L2(U), we haveRMSE(QM [f ]) =
√

Var[f ]M−1.

2.2.2 Quasi-Monte Carlo

In contrast to Monte Carlo methods, quasi-Monte Carlo
(QMC) methods are not based on random sampling but on
deterministically chosen quadrature points. Like MC rules,
QMC rules are equal-weight rules of the form (5), where

now the points y(i) ∈ [0, 1]s are deterministically chosen,

and PM = {y(1), . . . ,y(M)} denotes a point set containing
M points. In the following, we denote QMC quadrature
with point set PM applied to the function f by QPM

[f ].
Various choices for the point set PM exist, and we refer

to [11, 28, 29] for an overview. We consider in this pa-
per so-called interlaced polynomial lattice rules [9, 12, 20]
which allow convergence rates of higher order for certain
integrands, thereby enabling high convergence rates in the
multilevel methods. As opposed to MC rules, QMC rules are
deterministic. Thus, the notion of RMSE error is replaced
by the (deterministic) integration error

err(QPM
[f ]) = |QPM

[f ]− E[f ]| , (6)

where the absolute value is to be replaced by a suitable norm
if the function f is not real-valued.

Sampling Error.
We assume in the following for both the Monte Carlo and

quasi-Monte Carlo case that the error (either RMSE or QMC
error (6)) is bounded for Cf , σ > 0 by

err(QPM
[f ]) ≤ CfM

−σ, (7)

where σ depends on the integrand and on the choice of the
point set, and Cf may depend on f . For Monte Carlo, we
have σ = 1/2 for square-integrable integrand functions f .

Polynomial Lattice Rules.
Before considering interlaced polynomial lattice rules, we

briefly introduce some necessary notation for general poly-
nomial lattice rules. Denote by Zb[x] the polynomials over
the ring Zb = ({0, 1, . . . , b− 1},+b, ·b), where +b and ·b de-
note addition and multiplication of integers modulo a prime
b. Let Gb,m = {p ∈ Zb[x] : p 6= 0, deg(p) < m} denote the
set of nonzero polynomials of degree less thanm, and assume
given an irreducible polynomial P (x) with deg(P ) = m. For
a dimension s ∈ N, a generating vector is a vector q ∈ Gs

b,m,
q = (q1(x), . . . , qs(x)) that will define N = bm quadrature
points in [0, 1)s.

For an integer n ∈ Zb and base b ∈ N, b > 1, we define
the polynomial pn(x) = n0 + n1x + . . . + nm−1x

m−1 with
coefficients n0, . . . , nm−1 such that pn(b) = n. We define
the mapping vm : Zb((x

−1)) → [0, 1) which maps formal
Laurent series of the form

∑
i≥1 ρix

−i to the half-open unit



interval by evaluating at x = b and truncating afterm terms,

vm(p) =
m∑

i=1

ρib
−i, p(x) = ρ1x

−1 + ρ2x
−2 + . . . . (8)

Then, the elements of the polynomial lattice point set Pbm(q) =

{y(0), . . . ,y(bm−1)} ⊂ [0, 1)s are given by

y
(n) =

(
vm
(pnq1

P

)
, . . . , vm

(pnqs
P

))
. (9)

Interlaced Polynomial Lattice Rules.
Instead of considering a generating vector in s dimensions,

we consider one in αs dimensions, for some interlacing pa-
rameter α ∈ N, α ≥ 2. We define the interlacing function
Dα(x1, . . . , xα) where the arguments have b-adic expansion
xi = ξi,1b

−1 + ξi,2b
−2 + . . . for i = 1, . . . , α by

Dα(x1, . . . , xα) =
∞∑

a=1

α∑

k=1

ξk,ab
−k−(a−1)α. (10)

For j = 1, . . . , s and n = 0, . . . , bm − 1, the j-th component
of the n-th point y(n) of the point set Pbm(q) is obtained by
interlacing blocks of α points,

y
(n)
j = Dα

(
vm
(pnq(j−1)α+1

P

)
, . . . , vm

(pnqjα
P

))
. (11)

Generating vectors can be efficiently obtained for various
classes of integrands by the Component-by-Component (CBC)
algorithm [32, 33, 34, 9, 16], which we will not focus on here.
We refer to Section 3.4.3 for details on the provided gener-
ating vectors and how to use them in an implementation.

We now state a derivative bound on the function f , which
we assume to hold in the following. Let ν be a finitely
supported multi-index and E ∪ Ec = N, and denote the
restriction νA = (νj)j∈A for any set A ⊂ N. Then, denoting
|ν| =

∑
j≥1 νj and ν! =

∏
j≥1 νj !, we assume f to fulfill

sup
y∈U

|(∂ν
yf)(y)| ≤ CνE !

∏

j∈E

β
νj
j × |νEc |!

∏

j∈Ec

β
νj
j , (12)

for a C > 0 and a sequence β ∈ ℓp(N) for some 0 < p < 1.
It was shown in [9] that for integrand functions f satisfying
a derivative bound of the form (12), such IPL rules converge

with rate N−1/p independent of the truncation dimension s,
and can be constructed with work scaling at most quadrat-
ically in s. For p = 1/2 and α = 2, this gives rate N−2,

which is much better than the rate N−1/2 of MC methods.
A further advantage of IPL rules are that they are formu-

lated in a worst-case framework, not a mean-square frame-
work like Monte Carlo. Thus, no randomization is needed
and all error bounds are for the worst case. Classical QMC
rules based on low-discrepancy sequences are also based on
a worst-case analysis, however they are intrinsically limited
for large s since their integration error depends on the di-
mension. There exist randomized lattice rules which achieve
dimension-independent convergence rates, however these are
limited to rate N−1 and again rely on an L2 setting, see
e.g. [21, 30].

2.3 Single-Level Algorithm
In a single-level context, we consider only one discretiza-

tion level, denoted L, which is chosen to fulfill a certain
prescribed error tolerance. Following the notation from (3)

above, the discretization error is assumed to converge like
δL = O(2−βL) for some problem-dependent parameter β.

Error vs. Work.
For single-level methods, we balance the asymptotic sam-

pling and discretization errors and consider the convergence
with respect to the work. Assuming the work model wL =
2γL as in (4) for a problem dependent constant γ, the total
work is given by

WSL
tot =MwL, (13)

since for each of the M samples we do wL units of work.
We now equilibrate the sampling error err(QPM

[f ]) (as-
sumed to fulfill (7)) and the discretization error δl to deter-

mine the number of required samples M = δ
−1/σ
L = 2βL/σ.

This yields the total workW = O(MwL) = O(δ
−(γσ+β)/(σβ)
L ).

Since the error is proportional to δL, we obtain an error
vs. work relationship of

err ∼ work−r, r =
σβ

γσ + β
. (14)

For various values of β, γ, σ, the resulting theoretical conver-
gence rates of the single-level algorithm are listed in Table 1.

2.4 Multilevel Algorithm
Our goal here is to exploit the formulation (2) to obtain

a method with a better convergence rate of the error vs. the
work than in the single-level case above. The idea is to ap-
proximate the expectations on each level with a different
quadrature rule, using many points on coarse levels (where
each evaluation of the integrand is cheap) and few points
on finer levels. Since the integrand on all levels except the
first is a difference of two approximations with varying ac-
curacies, we can hope that the magnitude of the integrand,
and thus its quadrature error, will be small. When using a
randomized method, we need that the variance of the differ-
ences decrease in size for increasing level.

For notational brevity, we assume Sℓ = S and Xℓ = X
for ℓ = 0, . . . , L, allowing us to omit the restrictions Rℓ

and prolongations Pℓ in (2). Then, denoting by QM the
MC or QMC sampling method withM samples and defining
G−1 ≡ 0, we can write the multilevel (Q)MC estimate as

QL[GL] =
L∑

ℓ=0

QMℓ
[Gℓ −Gℓ−1], (15)

for a given distribution of samples per level M0, . . . ,ML.
The total error is then given for CG > 0 up to log factors by
∥∥∥E[G]−QL[GL]

∥∥∥
X

≤ ‖E[G−GL]‖X +
∥∥∥(E−QL)[GL]

∥∥∥
X

≤ δL +
L∑

ℓ=0

‖(E−QMℓ
)[Gℓ −Gℓ−1]‖X

≤ δL + CG

L∑

ℓ=0

δℓM
−σ
ℓ . (16)

The total work is given by

WML
tot =

L∑

ℓ=0

Mℓwℓ. (17)

Before a convergence rate can be derived, a choice of the
number of samples per level Mℓ must be made. This can be



found by solving an optimization problem which minimizes
the error for fixed work, using a Lagrange multiplier argu-
ment, see [10, 15, 17]. In this case, this procedure yields the
choice

Mℓ =

⌈
M02

−(γ+β)ℓ
σ+1

⌉
for ℓ = 1, . . . , L, (18)

with M0 =
⌈
E1/σ2

βL
σ

⌉
for E =

∑L
ℓ=0 2

((γσ−β)ℓ)/(σ+1). Us-
ing this Mℓ, an explicit derivation of the error vs. work
behavior can be conducted to prove the exact rates. We
omit such derivations for brevity, referring instead to [17]
for MLMC and [10] for the HoQMC case. In the following,
we estimate the error vs. work convergence rate by comput-
ing the error (16) and the work Wtot for Mℓ as in (18) and
various L, and estimating the rate by a linear least squares
fit. The resulting predicted convergence rates are listed in
Table 1 for various choices of the parameters β, γ, σ.

β σ γ = 1 γ = 2

SL ML SL ML

1 0.5 0.3333 0.4315 0.25 0.3707
1 1 0.5 0.6825 0.3333 0.4678
1 2 0.6667 0.8641 0.4 0.4915
1 3 0.75 0.9186 0.4286 0.4971
1 4 0.8 0.9361 0.4444 0.4979

2 0.5 0.4 0.4938 0.3333 0.4844
2 1 0.6667 0.9360 0.5 0.8115
2 2 1 1.4822 0.6667 0.9685
2 3 1.2 1.6971 0.75 0.9891
2 4 1.3333 1.7982 0.8 0.9939

4 0.5 0.4444 0.4999 0.4 0.4998
4 1 0.8 0.9980 0.6667 0.9917
4 2 1.3333 1.9368 1 1.7032
4 3 1.7143 2.6507 1.2 1.9140
4 4 2 3.0941 1.3333 1.9651

Table 1: Convergence rate of error with respect to work for
single-level (SL) and multilevel (ML) methods, for various com-
binations of the parameters β, σ and γ, see (3), (7) and (4),
respectively. Note that the case σ = 0.5 corresponds to the MC
method, when considering the L2 error. The SL rate is given by
(14) and the ML rate was obtained by a linear least-squares fit
to the log(error) vs. log(work) graph for L = 0, . . . , Lmax = 8.

3. IMPLEMENTATION
In this section, we present the open-source gMLQMC library

for applying multilevel (quasi) Monte Carlo to a general
parametric model, which is available at https://gitlab.

math.ethz.ch/gantnerr/gMLQMC. The library is designed
in a generic way, allowing arbitrary user-defined types to
be used, provided they fulfill some natural conditions men-
tioned below. Additionally, it allows arbitrary paralleliza-
tion strategies to be specified, providing an extensible high-
performance implementation.

3.1 Assumptions on Data Types
We write the estimator from (15) using the restriction

and prolongation mappings Rℓ and Pℓ defined in Section 2.1
above, which may be required depending on the application
at hand. For example, if the returned quantity is a coefficient
vector of a finite element basis on a certain level, it will

need to be prolongated to a finer level before the difference
can be computed. The restrictions Rℓ : Sℓ → Sℓ−1 map
samples y from level ℓ to level ℓ− 1, and the prolongations
Pℓ : Xℓ−1 → Xℓ map solutions Gℓ−1(y) from level ℓ − 1 to
level ℓ. The estimator is

QL[GL] =
L∑

ℓ=0

P̃ℓ QMℓ
[Gℓ − (Pℓ ◦Gℓ−1 ◦Rℓ)], (19)

where we define G−1 ≡ 0 and P̃ℓ = PL ◦ . . . ◦ Pℓ+1.
We assume the spaces Xℓ to be represented by the same

data type X for all ℓ = 0, . . . , L, where the only condition
we require on this type is that vector space operations are
defined. In other words, for x,y instances of X and a scalar
value a that is convertible to double, the expressions x+y and
a*x must compile. For more details, see the VectorSpace

concept in the code documentation.
For the samples, we again assume the spaces Sℓ to be rep-

resented by the same type S for all levels, however we do
not require any conditions on the form of S. This is possible
since the user must specify both the function generating the
samples and the function mapping samples to solutions, and
thus has complete control over the sample type S. The de-
fault sample restriction operator is implemented generically
as the identity.

We now describe how the model Gℓ(y), the restrictions
and prolongations, and the function generating the samples
y are specified in this framework.

3.2 API
The gMLQMC package allows specification of an integrand

function Gℓ as any callable (a function, class with call oper-
ator, lambda or function pointer) accepting as the first ar-
gument a sample of the type S and as second argument the
level l as an integer. The return type is the arbitrary type X
representing the spaces Xℓ. Some possibilities of specifying
integrands are given in Listing 1.

1 // function version
2 X integrand1(S s, int l)
3 { return solver(s); }
4
5 // class instance version
6 struct my_integrand {
7 X operator ()(S s, int l)
8 { return solver(s); }
9 } integrand2; // directly instantiate
10
11 // lambda version
12 auto integrand3 =
13 [](S s, int l){return solver(s);};

Listing 1: Examples of different ways to specify a serial
integrand function Gℓ.

To generate samples, the user must specify a function tak-
ing two arguments: the level l as an integer, and the sample
index n, and returning samples of type S to be passed to
the integrand on levels ℓ and ℓ − 1. To be consistent with
the integrand function, the sample type must of course be
convertible to the type of the first argument of the user-
specified integrand function. For convenience, various sam-
plers are implemented in the framework, see Section 3.4.4
for an overview.

Restriction and Prolongation.
The restriction of a sample from level ℓ to level ℓ − 1

can be realized by specifying a function of the form re-

https://gitlab.math.ethz.ch/gantnerr/gMLQMC
https://gitlab.math.ethz.ch/gantnerr/gMLQMC


strict_sample(S&& s, int l) -> S, which is by default
simply the identity. For the prolongation of the result from
a coarse level ℓ − 1 to a fine level ℓ, a function of the form
project_solution(X& x, int l) -> Xmust be given, where
X is the user-defined type of the result. By default it is simply
the identity, which suffices for e.g. scalar-valued integrands.

Executing MLQMC.
Once the relevant functions are present, the serial multi-

level method can be executed with a call to the function gM-

LQMC::MLQMC(integrand,sampler,Ml), where Ml is a vector
of L + 1 sample numbers M0, . . . ,ML. This vector speci-
fies both Mℓ and the index of the maximal level L, which is
determined based on its length. If restriction and prolonga-
tion operations were defined, they must be specified to the
underlying class instance. This can be done as in Listing 2.

1 // Specify sample restriction operation
2 // for sample type ’sam_t ’, e.g.
3 auto R = []( sam_t && sam , int l){ return sam [0]; };
4 // Specify solution prolongation operation
5 // for solution type ’sol_t ’, e.g.
6 auto P = [&mesh]( sol_t& sol , int l)
7 { return mesh.prolong(sol ,l); };
8 // Instantiate ML simulation class explicitly .
9 gMLQMC :: gMLQMC_simulation <int_t ,sam_t ,serial >

10 gmlqmc(integrand , mysampler);
11 // Set restriction and prolongation operations .
12 // Note that the specification of options can be
13 // chained , and the ordering can be arbitrary.
14 gmlqmc.restrict_sample(R)
15 .prolongate_solution(P);
16 // Execute serially. Ml gives the sample numbers.
17 auto result = gmlqmc.run(Ml);

Listing 2: Example of call to gMLQMC with specification of
restriction and prolongation operations.

Choice of β, γ, σ and Mℓ.
The file gMLQMC/tools/standard_Ml.hpp contains a rou-

tine for computing Mℓ according to (18), given the values of
β, γ, σ. The values β and γ are the convergence rate of the
discretization error and the scaling of the work complexity,
respectively, and can often be derived from properties of the
integrand. If not known a-priori, they can be estimated in a
precomputation step by a fit to the graph of the discretiza-
tion error or computational work vs. the level ℓ. The choice
of sampling method fixes σ, see e.g. Section 4.1.3.

3.3 Parallelization
We use MPI for parallelization, which allows execution on

the largest parallel computers currently available. Moreover,
the well-behaved scaling properties of this software will al-
low its use in the context of exascale computing. It should
be mentioned that MLMC methods have been shown to be
intrinsically fault-tolerant [35], further justifying their pos-
sible future use in this context.

In order to obtain a parallel implementation that allows
a similar generality with respect to the involved types, we
rely on the boost::mpi library, which only requires that a
type is “serializable” 1 in order to send or receive it between
nodes. In short, the user-defined type X must either con-
tain a member function serialize, or a global serialize
function must be available. Many types are already sup-
ported by Boost or gMLQMC, in particular all basic types,

1For a formal specification of the requirements, see the doc-
umentation at www.boost.org/libs/serialization/doc/.

std::vector<T> if T is serializable, the types of the Eigen
matrix library [22], and many more.

The gMLQMC library supports both parallel evaluation of a
“serial integrand”, by which we mean a function that itself
does not require more than one processor to run, as well
as parallel evaluation of a “parallel integrand”, leading to
nested parallelism. For parallel integrands, the function sig-
nature introduced above with two parameters (the sample
and the level) does not suffice. For such functions to be
compatible with this library, they must accept a third ar-
gument, the MPI communicator 2 representing the group of
processors the function is allowed to use. Depending on its
signature (which is determined at compile-time), the third
argument is automatically passed. See Section 4.3.3 for an
example.

We denote by {Pℓ}
L
ℓ=0 the number of workers per level,

which are responsible for computing Gℓ − Gℓ−1 for ℓ ≥ 1
and G0 for ℓ = 0, and by {Dℓ}

L
ℓ=0 the number of CPUs

per worker on each level, which is only relevant for parallel
integrands. Vectors containing these values can be passed
to the MLQMC function, and are then passed to the specified
strategy.

Parallelization strategies are located in the gMLQMC/strat-
egy directory, and are specified as a template argument to
the MLQMC function. The gMLQMC::strategy::full strategy
implements full parallelization, with NCPU =

∑L
ℓ=0 PℓDℓ

total CPUs. It uses the method from [43] and assumes Pℓ

and Dℓ given for ℓ = 0, . . . , L. For a working example, see
the file examples/strategy_full.cpp in the gMLQMC library
folder. A serial strategy for small simulations and testing
purposes is given by gMLQMC::strategy::serial.

3.4 User Guide
gMLQMC is a header-only library, which means that no li-

brary files need to be compiled and installed prior to use.
To use the library, simply extract the provided archive file
to a known location, and add the gMLQMC/include subfolder
to the include path when compiling. In Table 2, a list of
software dependencies is given.

3.4.1 Compiling Tests and Examples

The two subfolders examples and test of the code archive
contain some example programs and test cases, respectively.
The CMake build system [27] is used to automatically detect
dependencies and their include and library locations, and to
generate makefiles for compiling the code.

The workflow is as follows: first, a build directory should
be created, from which the cmake command should be called
with the path to the root of gMLQMC. For example, if you are
currently in the root of the code archive, execute:

1 mkdir build
2 cd build
3 cmake ..

Then, in the build folder, execute the following to compile
and run the serial and parallel tests:

1 make serial_testrun
2 make parallel_testrun

and the following for the compiling all examples and listing
the built executables:

2Note that the third argument can be either a pure MPI
communicator or a boost::mpi::communicator, since they
are convertible into each other.

www.boost.org/libs/serialization/doc/


Library Description

Boost::
Serialization

This library is required to allow generic
serialization of objects, which is used
by boost::mpi for communication oper-
ations.

Boost::MPI This library provides a C++ wrapper for
the MPI interface, and simplifies many
of the required operations. This library
must be consistent with the version of
MPI used. The user-specified functions
may use any MPI commands, and are not
required to use Boost::MPI.

MPI An implementation of MPI must be avail-
able. gMLQMC has been tested with open-

MPI and mpich.

catch.hpp⋆ This header-only testing library is re-
quired for executing the unit tests. https:
//github.com/philsquared/Catch.

jsoncons⋆† This is a header-only implementation of
the JSON file format, used for reading
generating vectors https://github.com/

danielaparker/jsoncons.

NTL† If IPL rules are to be used, the NTL
(Number Theory Library) [40] must be
available. For CMake to find the
library, set the environment variable
NTL_DIR=/path/to/ntl.

GMP† This is a dependency of NTL. For CMake
to find the library, set the environment
variable GMP_DIR=/path/to/gmp.

Table 2: Dependencies of gMLQMC. Those marked ⋆ are included
in the code archive, those with † are only required if IPL rules
are used. For serial execution, MPI and Boost libraries can be
omitted.

Sampler Description

Uniform Random sampling from the uniform dis-
tribution U([a, b]).
In: gMLQMC/samplers/uniform.hpp

Normal Random sampling from the normal distri-
bution N (µ,Γ), where µ ∈ R

s and Γ ∈
R

s×s
sym.

In: gMLQMC/samplers/normal.hpp

Halton Implements the Halton sequence in s di-
mensions, where by default the first s
primes are used as the bases.
In: gMLQMC/samplers/halton.hpp

IPL Evaluation of interlaced polynomial lat-
tice rules, initialized with a lattice obtain-
able as mentioned in Section 3.4.3 above.
In: gMLQMC/samplers/IPL.hpp

Table 3: Samplers provided with gMLQMC.

1 make examples
2 ls examples/

Alternatively, single examples can be executed by calling
make example_name where example_name is the name of the
.cpp file in the examples folder without the extension.

3.4.2 Multiple Quantities of Interest

In the presentation above, we consider only the approxi-
mation of the expectation of G, not of any higher moments
or other QoI functionals φ. We give here a straightforward
method for implementing the computation of further quan-
tities of interest, without significantly complicating the im-
plementation. We assume the number of samples in the
multilevel method to be previously fixed, e.g. by techniques
mentioned in [18, Sec. 2.5].

If, for example, G is real-valued and φ : U → R
2 with

φ(y) = (G(y), (G(y))2), the variance Var[G] = E[G2] −
E[G]2 can be computed as Y2 − Y 2

1 , where Y = E[φ(y)].
Of course, φ can be implemented such that G is evaluated
only once for each y. Further applications of this technique
include Bayesian inversion, see Section 4.3.2.

More generally, if we denote φ : U → Y, a representation
of Y must be implemented in the form of a type Y, and vector
space operations required by the gMLQMC framework must be
specified (see Section 3.1). This can be tedious and time-
consuming, and has to be redone every time a new variation
of the QoI is considered.

To alleviate this, we provide a class template called di-

rect_product, which, given an arbitrary number of tem-
plate parameters, constructs a type representing the direct
product of the given types. If the individual types support
vector space operations (i.e. expressions involving the addi-
tion of two instances or multiplication with a double com-
pile), the resulting type will automatically support vector
space operations. An example is given in Listing 3.

3.4.3 Generating Vector Repository

We include in the subdirectory genvecs a selection of gen-
erating vectors for IPL rules suitable for high-dimensional
numerical integration of functions of the type considered in
[9, 16], for product and SPOD-type weights. For an exam-
ple of HOQMC quadrature applied to some of the functions
considered in [16], see examples/IPL_quadrature.cpp.

IPL rules involve various parameters which affect their
performance. We do not discuss details of this here, referenc-
ing instead a repository of generating vectors for IPL rules
located at http://www.sam.math.ethz.ch/HOQMC, which con-
tains generating vectors for various canonical situations.

3.4.4 Available Samplers

Some common samplers are provided with the gMLQMC li-
brary, and are listed in Table 3. They assume the sam-
ple type S to be std::vector<double>, which is a common
choice. For more details on how to use custom samplers,
see the code documentation. See gMLQMC/samplers/ran-

dom_base.hpp for a general base class for random samplers.

https://github.com/philsquared/Catch
https://github.com/philsquared/Catch
https://github.com/danielaparker/jsoncons
https://github.com/danielaparker/jsoncons
http://www.sam.math.ethz.ch/HOQMC


4. EXAMPLES

4.1 Parametric Integration
This example is inspired by the original 2001 paper by

Heinrich, which first developed MLMC in the context of the
computation of parametric integrals [23]. Our goal in this
example is to give a simple illustration of the ML(Q)MC
algorithm and the resulting expected and measured conver-
gence rates. We wish to stress that in terms of convergence
rates of the discretization error, this simple example mod-
els the same behavior as more complex PDE-based models
relevant in practical applications.

We consider the problem of computing the following ex-
pectation, where we assume the random parameter y to fol-
low a uniform distribution on the s-dimensional unit cube,

E [I(y)] = E

[∫ 1

0

f(x,y) dx

]
=

∫

[0,1]s+1

f(x,y) dx dy.

In the following, we consider the function

f(x,y) =

(
u0 +

s∑

j=1

(2yj − 1)ψj(x)

)−1

,

where we define the basis functions by ψj(x) = j−2 sin(jπx)
for j = 1, . . . , s and use u0 ≡ π. We seek to compute the
expectation of I(y), and now introduce a discretization of
I in the form of one-dimensional quadrature over x, where
we increase the number of quadrature points as we go to
finer levels. Note that the use of the term ‘quadrature’ may
seem confusing; we use ‘quadrature’ solely for the integral
over x and speak of ‘sampling’ the integrand I(y) at different
realizations of the parameter y (by an MC or QMCmethod).

4.1.1 Discretization Methods

We consider multiple levels of discretization, where on dis-
cretization level ℓ we use Nℓ = 2ℓ0+ℓ + 1 quadrature points.
In order to be able to examine different combinations of
convergence rate and discretization error δℓ = O(2−βℓ), we
consider three different quadrature rules:

1. Van der Corput sequence: δℓ = O(N−1+ε
ℓ ) [13, 3.4.2],

2. Trapezoidal rule: δℓ = O(N−2
ℓ ),

3. Simpson’s rule: δℓ = O(N−4
ℓ ).

We thus consider in the following the values β ∈ {1, 2, 4}.
The coarsest level ℓ = 0 has the fewest quadrature pointsN0,
and thus the greatest quadrature (or discretization) error for
a given realization of y. On the finest level with ℓ = L, we
have NL ≫ N0 quadrature points, giving us a very good
(but expensive) approximation of I(y), for any y. The work
is assumed to be proportional to the number of function
evaluations, so we set wℓ = Nℓ = O(2ℓ), giving γ = 1 in (4).

4.1.2 Properties of the Integrand

The form of this basis is crucial to the applicability of HO-
QMC methods: the norm ‖ψj‖L∞([0,1]) decreases like j−2

with respect to the coordinate index j. This means, intu-
itively, that the integration variables yj become successively
less important (asymptotically) as the dimension increases,
with a known rate (which is not always available).

Combined with a derivative bound of the form (12), the
property that in the infinite-dimensional case the sequence
(‖ψj‖L∞)j≥1 ∈ ℓp(N) for a 0 < p < 1 is called sparsity [6,

11, 37], and allows such high dimensional integrals to be

approximated by an M -point IPL rule with rate M−1/p [9,
Thm. 3.1]. Here, this property holds for p > 1/2, yielding
a convergence rate of the QMC approximation of M−2. In
the notation of MLQMC developed above, this corresponds
to the case σ = 2. See [16] for examples of the application of
QMC quadratures to integrands with similar properties, in-
cluding numerical results verifying these rates. Note that for
a large class of parametric operator equations with holomor-
phic parameter dependence, their solutions can be shown to
exhibit the same type of properties, allowing these higher-
order QMC methods to be applied [8].

4.1.3 Sampling Methods

We consider the following sampling methods for approxi-
mating the expectation over U = [0, 1]s, which have an error
convergence rate of err(QM [f ]) = O(M−σ):

a. Monte Carlo: σ = 1/2 (RMSE error),

b. Halton sequence [31, p. 29]: σ = 1− ε,

c. Interlaced polynomial lattice rule with α = 2: σ = 2.

4.1.4 Results

To study the convergence of the error vs. work, we vary
the maximal discretization level in the range L = 0, . . . , 8.
For the single-level algorithm, we proceed as in Section 2.3,
choosing the number of (Q)MC points asM = 2βL/σ, where
β and σ are as in the lists in Sections 4.1.1 and 4.1.3 above,
respectively. We compute the work as in (13). In the multi-
level case, we choose the number of samples per level as in
(18) and compute the work with (17).

Figures 1 to 3 show the convergence rates for the different
sampling methods listed above, for s = 10. The results
correspond to the theoretical rates from Table 1. All errors
were computed with respect to a reference solution on level
L = 11 obtained using SL IPL sampling. In the MC case,
R = 20 repetitions were used to estimate the L2 error.
In Figure 4, the various sampling methods are directly

compared, showing the vast gains possible when considering
higher-order convergent discretizations, both when switch-
ing from a single-level to a multilevel formulation, and from
a MC to a QMC or HoQMC method.
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SL MC, β=4, fit: −0.460
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Figure 1: Convergence of L2 error vs. work for MC sampling.
The L2 error was computed by averaging over R = 20 repetitions
and approaches the optimal rate, i.e. error ∼ work−1/2.
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Figure 2: Convergence of error vs. work for Halton sampling,
where the optimal rate is error ∼ work−1+ε.
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Figure 3: Convergence of error vs. work for interlaced polyno-
mial lattice rules, where the optimal rate is error ∼ work−α for
interlacing parameter α ≥ 2. Here, we use α = 2.
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Figure 4: Convergence of error vs. work for various sampling
methods, with β = 2 in the discretization error (3). For error level
10−5, each ML method is approximately one order of magnitude
faster than the corresponding SL method, while ML with IPL
sampling is around 5 orders of magnitude faster than MLMC.

4.2 Parallel Scaling
We consider a parametric diffusion equation posed in a 2d

spatial domain D = (0, 1)2 with parameter y ∈ [− 1
2
, 1
2
]N,

−∇·(u(x;y)∇q(x;y)) = f(x) in D, q(x;y) = 0 for x ∈ ∂D,

where the uncertain diffusion coefficient u is parametrized
by u(x;y) = u0 +

∑
j≥1 yjψj(x). For a suitable choice of

u0 and (ψj)j≥1, chosen here as in [10], we have that the
sequence (‖ψj‖L∞(D))j≥1 ∈ ℓp(N) for some p < 1

2
, where

u0 is chosen to ensure u(x,y) ≥ ǔ > 0 ∀y. This allows
integrals of functionals of the parametric solution q(x;y) to
be approximated by interlaced polynomial lattice rules with
higher orders of convergence [9, 10, 8]. We consider the QoI
φ(y) =

∫
D
q(x;y) dx and aim to approximate E[φ(y)], where

we consider a uniform distribution y ∼ U(U). We solve
this PDE with the finite element method with truncation
dimension s = 1024, using the BETL library [24].

In this example, we wish to investigate parallel scaling
properties of the gMLQMC library. To this end, we consider
strong scaling with fixed total work and varying CPU num-
ber, as well as weak scaling where the amount of work per
CPU is fixed. We choose L = 5, resulting in 6 levels of
uniform mesh refinement and consider at least one CPU per
level. For weak scaling, we increase the number of sampling
points (chosen as in [10, (3.28)]) by a factor increasing with
number of CPUs and average the execution time over 5 runs
[26]. Table 4 shows the measured parallel efficiency for up
to 12288 CPUs.

P Efficiency

strong weak

6 1.000 1.000
12 1.000 1.000
24 1.000 1.000
48 0.998 0.998
96 0.998 0.998
192 0.998 0.998
384 0.998 0.997
768 0.997 0.996
1536 0.997 0.994
3072 0.969 0.988
6144 0.944 0.962
12288 0.848 0.913

Table 4: Parallel efficiency for strong and weak scaling, com-
puted with estrong = t6/(PtP ) and eweak = t6/tP , where P is
the number of CPUs and tP the execution time of the call to
gMLQMC::MLQMC with P CPUs. Note that P = 6 corresponds to
one CPU per level.

4.3 Common Use Cases
We briefly mention various use cases that arise in practice

and give examples of how the different components of the
library can be used to efficiently implement them.

4.3.1 Expansions of Random Fields

Many applications involving distributed random inputs,
e.g. random spatially varying coefficients of a PDE model,
can be treated by parametrizing the input uncertainty in a
countable basis. One such representation is the Karhunen-
Loève expansion of a random field, see [38, 39, 41]. Assume
the uncertain input u ∈ V is in a separable Banach space



V with unconditional Schauder basis {ψj}j≥1. Then, re-
scaling the ψj s.t. U = [− 1

2
, 1
2
]N, every u ∈ V can be given

for a y ∈ U as

u(y) = u0 +
∑

j≥1

yjψj . (20)

In a practical application, u0(x) represents the nominal in-
put and ψj(x) a basis of the fluctuations, which often de-
crease in magnitude like ‖ψj‖L∞ ∼ j−a for an a > 1. The
sum in (20) can then be truncated at a truncation dimen-
sion s < ∞. A smaller s will require less work while giving
a larger error, which naturally fits into the multilevel frame-
work developed above.

Thus, if we consider a non-decreasing sequence (sℓ)ℓ≥0 of
truncation dimensions on different levels ℓ, a dimension trun-
cation error must be considered in addition to the sampling
and discretization errors considered above. See [10] for the
corresponding multilevel analysis and example applications
including numerical results.

In the multilevel context, we thus generate a sample on
level ℓ in the form of a vector of coefficients yℓ ∈ R

sℓ of (20),
which must be projected from the fine level ℓ to the coarse
one, ℓ − 1. In this case, the sample restriction mapping
is Rℓ : R

sℓ → R
sℓ−1 , given by Rℓ(yℓ) = (y1, . . . , ysℓ−1).

A concrete example involving such a restriction is given in
the file examples/dimension_truncation.cpp in the code
repository.

4.3.2 Bayesian Inversion

Bayesian inversion considers the problem of determining
moments of a functional φ(y), given a perturbed measure-
ment δ = O(G(y⋆))+η of the model G, where O : X → R

K ,
K < ∞ denotes an observation operator. The exact pa-
rameter y⋆ is assumed unknown and the measurement error
η ∼ N (0,Γ) for given covariance matrix Γ ∈ R

K×K
sym .

Assuming a uniform distribution as the prior distribu-
tion on y, Bayes’ theorem yields a posterior distribution,
denoted by y|δ, which incorporates the given measurement
instance δ. Following [7, 41], the expectation of the QoI
φ(y) wrt. the posterior given data δ can be written as (with
‖x‖2Γ := xTΓ−1x)

E
y|δ[φ(y)] =

Z′

Z
:=

∫
U
φ(y) exp(− 1

2
‖O(G(y))− δ‖2Γ) dy∫

U
exp(− 1

2
‖O(G(y))− δ‖2Γ) dy

,

which requires the computation of two integrals. Consider-
ing a single-level computation with fixed discretization level
L, we must evaluate both integrands for each sample y. We
give in Listing 3 a brief example of a possible computational
realization of this using the technique from Section 3.4.2,
noting that in the MC case, MCMC and SMC methods [4,
5, 14, 25] outperform this approach but still converge like

N−1/2 asymptotically. The higher-order methods included
here are relevant in this context and have been shown to
outperform MC methods [7].

4.3.3 Nested Parallelism

One may wish to apply uncertainty quantification tech-
niques like QMC to known problems for which parallel solvers
utilizing MPI exist. In the context of the finite element
method for PDEs, this could correspond to the use of mesh
partitioning and distributed assembly and/or solution of the
resulting linear system. Using the technique mentioned in
Section 3.3, we wish to simply wrap a MLQMC method

around an existing PDE solver without intrusive solver mod-
ifications.

We consider here again the parametric integration exam-
ple from above, where now on level ℓ we use Dℓ = 2ℓ CPUs
to evaluate the quadrature rule in x. This example is im-
plemented for a simple equidistant equal-weight quadrature
rule and Halton sampling in examples/nested.cpp.

1 // Bayesian inversion with forward map G
2 // 1. redefine the integrand
3 auto integrand = [&]( sample_t y, int level) {
4 sol_t sol = G(y, level , captured_params);
5 // potential is e.g. a captured lambda
6 // meas is captured sol_t (the measurement )
7 double theta = exp(-potential(meas , sol));
8 return direct_product <sol_t ,sol_t ,double >(
9 sol , theta*sol , theta);
10 };
11 // 2. execute SL algorithm
12 // sampler generates samples from prior distr.
13 // auto is direct_product <sol_t ,sol_t ,double >
14 auto out = gMLQMC :: SLQMC(integrand ,sampler ,M,L);
15 // 3. extract prior and posterior means
16 sol_t prior_mean = get <0>(out);
17 sol_t posterior_mean = 1./get <2>(out)*get <1>(out);

Listing 3: Example of multiple QoIs in the context of
Bayesian inverse problems, allowing computation of the prior
and posterior expectations in one run. The observation
operator is assumed to be implemented inside the potential
function.

5. CONCLUSION
We consider approximations of high-dimensional integrals

arising in uncertainty quantification and give a brief overview
of single- and multilevel MC and QMC methods including
derivations of their theoretical convergence rates. A generic,
high-performance C++ framework implementing these meth-
ods was described, and some examples and computational
results were presented. The results in Figure 4 show that
extremely large gains are possible when using a combination
of a higher-order discretization and multilevel higher-order
QMC rules. This will allow the efficient solution of current
problems in uncertainty quantification to much higher accu-
racies, or, conversely, the treatment of much larger problems
than currently possible with Monte Carlo methods.
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