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PHASE RETRIEVAL IN THE GENERAL SETTING OF

CONTINUOUS FRAMES FOR BANACH SPACES

RIMA ALAIFARI AND PHILIPP GROHS

Abstract. We develop a novel and unifying setting for phase retrieval prob-
lems that works in Banach spaces and for continuous frames and consider the
questions of uniqueness and stability of the reconstruction from phaseless mea-

surements. Our main result states that also in this framework, the problem of
phase retrieval is never uniformly stable in infinite dimensions. On the other
hand, we show weak stability of the problem. This complements recent work
[9], where it has been shown that phase retrieval is always unstable for the set-
ting of discrete frames in Hilbert spaces. In particular, our result implies that
the stability properties cannot be improved by oversampling the underlying
discrete frame.

We generalize the notion of complement property (CP) to the setting of

continuous frames for Banach spaces (over K = R or K = C) and verify that it is
a necessary condition for uniqueness of the phase retrieval problem; when K =
R the CP is also sufficient for uniqueness. In our general setting, we also prove
a conjecture posed by Bandeira et al. [5], which was originally formulated for
finite-dimensional spaces: for the case K = C the strong complement property
(SCP) is a necessary condition for stability. To prove our main result, we show
that the SCP can never hold for frames of infinite-dimensional Banach spaces.

1. Introduction

In different applications, where one seeks to reconstruct an unknown function f ,
only measurements that do not contain phase (or sign) information are at hand.
Phase retrieval deals with the recovery of f from such phaseless intensity measure-
ments.

The most prominent example of a phase retrieval problem was introduced with
the discovery of X-ray crystallography [15] in 1915 to determine the structure of

crystals: Recover a function f from the magnitude of its Fourier transform, |f̂ |.
This problem arises also in other applications, such as in diffractive imaging [8] and
in astronomy [13]. It is known that the solution to this problem is in general not
unique.

In more general phase retrieval problems, one seeks to reconstruct a function
f in a Hilbert space H from the magnitudes of its frame coefficients, i.e. from
(|〈f, ϕλ〉|)λ∈Λ for a frame Φ = (ϕλ)λ∈Λ of H. Such problems occur in audio process-
ing applications, in particular in signal noise reduction [12] and automatic speech
recognition [6]. In these applications the signals typically have a highly noisy phase
so that it is essential to employ phaseless measurements only.

In the finite-dimensional setting, this problem and its properties have been stud-
ied in e.g. [2, 3, 4, 5, 10]. More precisely, in these works it has been analyzed
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under which conditions the problem is uniquely solvable, and in case of injectiv-
ity, whether the reconstruction from phaseless measurements is stable in a certain
sense.

In infinite dimensions and for a specific frame, namely a semi-discrete frame of
Cauchy wavelets, Mallat & Waldspurger [14] have been able to show injectivity
and weak stability of the phase retrieval problem. Moreover, they also state that
the problem is not uniformly stable. Together with Daubechies & Thakur [1], we
prove uniqueness and weak stability of the phase retrieval problem for a general
class of semi-discrete frames, given that they consist of real-valued and band-limited
functions.

Recently, Cahill, Casazza & Daubechies [9] considered the general question of
stability of the reconstruction procedure in the setting of Hilbert spaces and discrete
frames. Their main findings are that the problem of phase retrieval is always
stable for finite-dimensional Hilbert spaces but can never be uniformly stable in
the infinite dimensional setting. Moreover they study the degradation of stability
in finite dimensional subspaces as the dimensions of these subspaces grow. For a
specific instance, the stability is shown to degrade at an exponential rate in the
dimensions of the chosen subspaces. We briefly describe their example:

Example 1.1 (Cahill, Casazza, Daubechies). For the Hilbert space

H = {f ∈ L2(R,R) : supp f̂ ⊆ [−π, π]},
consider the frame Φ = {ϕn}n∈Z of elements ϕn := sinc (· − n

4 ). Let Vn ⊂ H be
defined as

Vn := span {ϕ4ℓ : ℓ ∈ [−n, n]}.
Then, there exists a constant C > 0 such that for all m ∈ N, there exist fm, gm ∈
V2m with

min
τ∈{±1}

‖fm − τgm‖H > C(m+ 1)−123m‖(|fm(n/4)| − |gm(n/4)|)n∈Z‖ℓ2(Z).

A natural question to ask is whether in this example, increasing the redundancy
of the frame Φ could improve on the stability of the problem, resulting in bounds
that deteriorate less severely in the dimension m of the subspace.

Motivated by this question, we consider phase retrieval in a general and unifying
setting of continuous frames in Banach spaces in this paper. The main reason for
studying general continuous frames is the question whether suitably oversampling a
discrete frame can improve on the stability properties of the phase retrieval problem.
In addition, it provides a unified setting that also includes the cases of semi-discrete
frames studied in earlier works. Choosing to work in Banach spaces allows us to
treat phase retrieval problems that do not fit in the Hilbert space setting, such as
the reconstruction of real-valued band-limited functions in general Paley-Wiener
spaces [17].

Before providing a summary of our main findings in Section 1.2, we give a brief
description of the mathematical setting used throughout this paper.

1.1. Mathematical Setup. First, we fix a reflexive Banach space B over the field
K, where K = C or K = R. Let B′ denote the (topological) dual space of B, i.e.,
the Banach space of bounded linear functionals ψ : B → K. For x ∈ B, ψ ∈ B′

we write [x, ψ] := ψ(x). For a closed subspace V ⊂ B we denote V⊥ := {ψ ∈ B′ :
[x, ψ] = 0, for all x ∈ V } the annihilator of V and we use the same notation for the
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annihilator of a closed subspace of B′. Note that for the special case when B = H,
H a Hilbert space with inner product 〈·, ·〉H, the Riesz lemma implies that H can
be identified with H′ and hence, [·, ·] with 〈·, ·〉H.

We further fix a representation system Φ = (ϕλ)λ∈Λ ⊂ B′ for some (not neces-
sarily discrete) index set Λ and the notation ΦS := (ϕλ)λ∈S for S ⊂ Λ. For x ∈ B,
we introduce the following abbreviations:

[x,Φ] := ([x, ϕλ])λ∈Λ, [x,ΦS ] := ([x, ϕλ])λ∈S

and

|[x,Φ]| := (|[x, ϕλ]|)λ∈Λ, |[x,ΦS ]| := (|[x, ϕλ]|)λ∈S .

We define the quotient space PKB of B by PRB := B/{1,−1} for K = R and by
PCB := B/S1 for K = C with distance

dB(x, y) := min{‖x− τy‖B; τ ∈ K, |τ | = 1}.

The problem of phase retrieval that we consider throughout this paper can now
be formulated as follows:

Problem 1.2. Define the operator

(1) AΦ : PKB → R
Λ
+, x 7→ |[x,Φ]|.

Then, the problem of phase retrieval can be formulated as the inversion of AΦ. We
seek to study the uniqueness and stability properties of this inversion problem.

1.2. Contributions. We give a brief overview of the main results of our paper:

• One of the major contributions (Theorem 3.13) of our paper is a general-
ization of the results of [9] to the non-discrete Banach space setting. In
particular, our work for the first time proves the fact that oversampling
does not improve the stability of phase retrieval and further confirms the
fundamental instability of this problem.

• As part of the proof of Theorem 3.13 we establish the auxiliary fact (The-
orem 3.12) that the index set for a continuous frame is necessarily non-
compact for an infinite-dimensional Banach space, which by itself is an
interesting finding.

• On the positive side we are able to show in Theorem 3.3 that the reconstruc-
tion is always locally stable which, by a compactness argument, directly
implies global stability in the finite-dimensional setting. Local stability has
been shown in [14] in a very specific setting and we adapt and generalize
the arguments there to our general setting. To this end we require a novel
characterization of relative compactness in solid Banach spaces (Theorem
A.2) which is interesting in its own right.

• As another contribution (Theorem 3.9) we establish the necessity of the
so-called strong complement property introduced in [5] for stable phase re-
construction – a fact which, in the complex case, was only conjectured in
[5]. This finding suggests that phase retrieval in the complex-valued setting
is at least as ill-posed as in the real case.
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1.3. Outline. The paper is organized as follows. In Section 2, the question of
uniqueness is considered. It is shown, that as in the finite dimensional setting, the
complement property is again a necessary condition for uniqueness and that it is
also a sufficient condition in the real-valued case. Section 3 concerns the question
of stability. First, the concepts of admissible Banach spaces and Banach frames
are introduced. In Section 3.1 we show a weak stability result. Next, we consider
uniform stability in Section 3.2. There, the strong complement property is defined
and it is proved that it provides a necessary condition for stability. Moreover,
we show that it is also a sufficient condition for stability in the real-valued case.
In 3.2.3, uniform stability is derived for the finite dimensional case. Finally, in
3.2.4 we prove that the strong complement property can never hold in the infinite
dimensional setting, so that consequently, the problem of phase retrieval is always
unstable in infinite-dimensional Banach spaces.

2. Injectivity

We first consider the injectivity of AΦ. To this end the following property has
been introduced in [3].

Definition 2.1 (Complement property). The system Φ = (ϕλ)λ∈Λ ⊂ B′ satisfies
the complement property (CP) in B if for every subset S ⊂ Λ, either (span ΦS)⊥ =
{0}, or (span ΦΛ\S)⊥ = {0}.

The following two lemmata have been shown in [3] and [5] in the finite-dimensional
setting, as well as in [9] for the setting of discrete frames of Hilbert spaces. The
proofs carry over to the Banach space case and for uncountable index sets Λ, but
we present them nevertheless, for convenience and to be certain.

Lemma 2.2. If AΦ is injective, then Φ satisfies the CP in B.
Proof. Suppose thatAΦ is injective and consider u ∈ (span ΦS)⊥ and v ∈ (span ΦΛ\S)⊥.
Then,

|[u± v, ϕλ]|2 = |[u, ϕλ]|2 ± 2Re([u, ϕλ][v, ϕλ]) + |[v, ϕλ]|2.
By assumption the term [u, ϕλ][v, ϕλ] vanishes for all λ ∈ Λ, which implies that
AΦ(u + v) = AΦ(u − v). By the injectivity assumption this implies that either
u = 0 or

v = −1− τ

1 + τ
u

for some τ 6= −1. The latter implies v ∈ (span ΦS)⊥ and consequently, [v, ϕλ] = 0
for all λ ∈ Λ. As a result, AΦ(v) = 0 and by the injectivity of AΦ, v = 0. Thus,
either u = 0 or v = 0, which is precisely the CP. �

In the real case, K = R, the CP is also a sufficient condition for the injectivity
of AΦ:

Lemma 2.3. If B is a Banach space over R, then AΦ is injective if and only if Φ
satisfies the CP in B.
Proof. By Lemma 2.2, the injectivity of AΦ implies that Φ satisfies the CP. For
the other direction, suppose now that Φ satisfies the CP and that x, y ∈ B with
AΦ(x) = AΦ(y). Set S := {λ ∈ Λ : [x, ϕλ] = [y, ϕλ]}. It follows that x − y ∈
(span ΦS)⊥ and x+y ∈ (span ΦΛ\S)⊥. By the CP it follows that dB(x, y) = 0. �
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2.1. An example. As an application for showing the injectivity by employing the
CP, we consider the reconstruction in the Paley-Wiener space

PWp,b
R

:= {f ∈ Lp(R,R) : supp f̂ ⊆ [−b/2, b/2]},
with norm

‖f‖PWp,b
K

:= ‖f‖p
and 1 < p <∞.

Functions in PWp,b
R

can be uniquely reconstructed from sufficiently fine se-
quences of their unsigned samples, as we now show (a similar result is shown in
[17], yet we want to illustrate that verifying the CP gives a more general result and
allows for a simpler proof).

Suppose that Λ ⊂ R. Consider the representation system Φ := (ϕλ)λ∈Λ defined
by

[f, ϕλ] := f(λ).

We call Λ a sampling sequence [16] for PWp,b
R

if for all f ∈ PWp,b
R

, the condition

[f, ϕλ] = 0 for all λ ∈ Λ

implies that f = 0.
Various conditions for Λ to be sampling (in terms of density properties) are

known and a general summary can be found in e.g. [16]. One way to characterize
sampling sequences is via their lower Beurling density [11], which for a sequence Λ
can be defined as

D−(Λ) := lim inf
r→∞

inf
a

#(Λ, [a, a+ r))

r
,

where #(Λ, [a, a+ r)) denotes the number of elements λ ∈ Λ∩ [a, a+ r). Sampling
sequences can then be characterized as follows [7]:

Theorem 2.4 (E.g. [7, 16]).

• For p ∈ (0, 1) or p = ∞,

Λ is sampling for PWp,b
R

if and only if D−(Λ) > b;
• for p ∈ (1,∞),

Λ is sampling for PWp,b
R

if D−(Λ) > b and only if D−(Λ) ≥ b.

We now state our following result that gives a general criterion on Λ for injectivity
of AΦ.

Theorem 2.5. Suppose that Λ is a sampling sequence for PWp/2,2b
R

. Then,

AΦ : PWp,b
R
/{1,−1} → R

Λ
+

is injective.

Proof. By Lemma 2.3 we need to show that Φ satisfies the CP. Suppose that the

CP does not hold in PWp,b
R

. Then there exist u, v ∈ PWp,b
R

\ {0} and S ⊂ Λ with

u(S) = 0 and v(Λ \ S) = 0. Let h := u · v ∈ PWp/2,2b
R

. We note that u, v and h
are holomorphic functions. If h vanishes on an open interval Ω ⊂ R, then there is a
subinterval U ⊂ Ω on which u has no zeros. Since u · v = 0 on U , this implies v = 0
on U . Therefore, v has to vanish identically on R, which is a contradiction to our

assumption. We can thus deduce that h ∈ PWp/2,2b
R

\ {0}. By the properties of u
and v, we also have h(Λ) = 0, which contradicts the sampling condition. �
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Corollary 2.6. If Λ ⊂ R is a sequence with lower Beurling density D−(Λ) > 2b,
then

AΦ : PWp,b
R
/{1,−1} → R

Λ
+

is injective.

Remark 2.1. We note that the result in [17] on the injectivity of AΦ required the
sequence Λ to have uniform density, which is a stronger condition than Λ being a
sampling sequence.

3. Stability

Given a representation (or measurement) system Φ satisfying the CP, it is inter-
esting to study whether the inversion of AΦ is stable. To this end we need to put a
metric structure on elements of KΛ. We do this by assuming that the measurements
AΦ(x), x ∈ B, always lie in a fixed Banach space B ⊂ K

Λ with norm ‖ · ‖B. Now
we can consider AΦ as a mapping between two Banach spaces B and B and the
question of continuity makes sense.

To avoid pathologies we impose the following weak conditions on the space B.
In what follows we shall write χS for the indicator function of S ⊂ Λ.

Definition 3.1 (Admissible Banach space). Let Λ be a σ-compact topological space.
A Banach space B ⊂ K

Λ over K is called admissible if it satisfies the following
properties:

(i) For every compact set Λ′ ⊂ Λ the norm of the indicator function is finite,
i.e.,

‖χΛ′‖B <∞.

(ii) B is solid, i.e., it holds that

(2) ‖w‖B = ‖|w|‖B ≤ ‖z‖B
for all z ∈ B with |z(λ)| ≥ |w(λ)| for all λ ∈ Λ.

(iii) The set of elements in B with compact support is dense in B.

Note that the assumptions in Definition 3.1 are truly weak: for example they
are satisfied by every weighted Lp space.

We record the following useful property that we will use in our proofs and which
follows directly from the solidity condition:

(3) ‖w‖B ≥ ‖wχS‖B for all w ∈ B and S ⊂ Λ.

In order to ensure that the image of B under the measurement mapping AΦ is
contained in B we assume further that the representation system Φ constitutes a
Banach frame for B, as introduced in the following definition.

Definition 3.2 (Banach frame). Let Φ := (ϕλ)λ∈Λ ⊂ B′ be a family of bounded
linear functionals such that the mapping λ 7→ ϕλ is continuous. Suppose there is an
admissible Banach space B ⊂ K

Λ with norm ‖·‖B and with the following properties:

(B1) For some real constants B ≥ A > 0,

A‖x‖B ≤ ‖[x,Φ]‖B ≤ B‖x‖B
holds for all x ∈ B.
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(B2) There exists a continuous operator R : B → B with

R([x,Φ]) = x for all x ∈ B.
Then, Φ is called a frame for B. We denote the best possible such constants by
AΦ,B,B, BΦ,B,B and call them the frame constants of Φ.

Again the assumption that Φ constitutes a frame is very weak; in fact it is
necessary for stability of the reconstruction even if the phases of [x, ϕλ] were known
for all λ ∈ Λ.

Having introduced the fundamental concepts of admissible Banach spaces and
Banach frames we can now make the question of stability precise:

Suppose that Φ constitutes a frame as in Definition 3.2 and that
the measurement mapping AΦ is injective.
(Q1) Is the mapping AΦ : B → B continuously invertible on its

range?
(Q2) Is the mapping AΦ : B → B uniformly continuously invertible

on its range?

In the remainder of this section we will show that

• The answer to (Q1) is always yes.
• The answer to (Q2) is yes if and only if B is finite dimensional.

In addition we will also obtain some quantitative estimates on the Lipschitz con-
stants of A−1

Φ .

3.1. Weak Stability. We first show that the inverse A−1
Φ is always continuous,

whenever it exists and thereby answer (Q1) affirmatively.

Theorem 3.3. Suppose that Φ constitutes a frame for B with associated admissible
Banach space B, and that AΦ is injective. Then the operator A−1

Φ is continuous
on its range.

Proof. We need to show that for every Cauchy sequence (AΦ(xk))k∈N in B the
sequence (xk)k∈N converges in B. If (AΦ(xk))k∈N is a Cauchy sequence, the set
|K| := {|[xk,Φ]| : k ∈ N} is relatively compact in B. Since B is a Banach space,
relative compactness in B is equivalent to total boundedness in B. Hence, |K| is
bounded, which, by the frame property, implies that {xk : k ∈ N} is bounded in
B. This, together with the continuity of the mapping λ 7→ ϕλ, implies the strong
equicontinuity (see Def. A.1) of the family K := {[xk,Φ] : k ∈ N}, which can be
seen as follows:

By the boundedness of {xk : k ∈ N}, there exists a constant c > 0, such that
for all k ∈ N

‖xk‖B ≤ c.

The continuity of the mapping λ 7→ ϕλ yields that for all ε > 0 there is a neighbor-
hood Uε(λ) ⊂ Λ such that

‖ϕλ − ϕµ‖B′ ≤ ε

c
for all µ ∈ Uε(λ). Therefore,

sup
k∈N

|[xk, ϕλ]− [xk, ϕµ]| = sup
k∈N

|[xk, ϕλ − ϕµ]| ≤ c‖ϕλ − ϕµ‖B′ ≤ ε

for all µ ∈ Uε(λ), which shows that K is strongly equicontinuous.
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Now we can use Corollary A.4 and the relative compactness of |K| to conclude
that the set

K := {[xk,Φ] : k ∈ N}
is relatively compact in B. Thus, there exists a convergent subsequence

([xkl
,Φ])l∈N

in B.
Together with the frame property this implies that the sequence

xkl
= R([xkl

,Φ])

is a Cauchy sequence in B, converging to some x ∈ B. Since AΦ is continuous, it
follows that

lim
l→∞

AΦ(xkl
) = AΦ(x).

Suppose we choose another convergent subsequence converging to a different x′.
Then, by the injectivity of AΦ we have that x′ = x. Consequently, the full sequence
(xk)k∈N converges. �

3.2. Strong Stability. The continuity result which we have just shown is mainly
of theoretical interest, due to the fact that it is non-quantitative. In order to obtain
quantitative results we look for the greatest possible α > 0 and the smallest possible
β <∞ for which

αdB(x, y) ≤ ‖AΦ(x)−AΦ(y)‖B ≤ βdB(x, y).

We call the best possible such constants αΦ,B,B, βΦ,B,B.
Clearly, the stability of the inversion of AΦ is determined by the ratio of these

constants.

Definition 3.4 (Condition number). We call the constant

τΦ,B,B :=
βΦ,B,B

αΦ,B,B

the condition number of AΦ related to B,B.

As a first step we show that the upper Lipschitz constant βΦ,B,B is precisely
given by the upper frame constant of Φ.

Theorem 3.5. Suppose that Φ constitutes a frame for B. Then,

βΦ,B,B = BΦ,B,B.

Proof. By the solidity of B and using the reverse triangle inequality, we have

‖AΦ(x)−AΦ(y)‖B = ‖(|[x, ϕλ]| − |[y, ϕλ]|)λ∈Λ‖B
≤ ‖(min{|[x− τy, ϕλ]| : |τ | = 1})λ∈Λ‖B
≤ min{‖(|[x− τy, ϕλ]|)λ∈Λ‖B : |τ | = 1}
≤ BΦ,B,BdB(x, y),

where the last inequality follows from the frame property. Hence, βΦ,B,B ≤ BΦ,B,B.
The converse inequality follows from taking x ∈ B which saturates the upper frame
bound and y = 0. �
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In order to study the lower Lipschitz bound αΦ,B,B the following quantitative
version of the CP has been introduced in [5] in the finite dimensional real-valued
setting.

Definition 3.6 (Strong complement property). The system Φ = (ϕλ)λ∈Λ ⊂ B′

satisfies the σ-strong complement property (SCP) in B if there exists σ > 0 such
that for every subset S ⊂ Λ, we have

max{AΦS ,B,B, AΦΛ\S ,B,B} ≥ σ.

We denote the supremal σ for which Φ satisfies the SCP with σΦ,B,B.

In what follows we show that if Φ constitutes a frame, then in the complex-
valued setting (i.e., when K = C) the SCP is a necessary condition for the stability
of Problem 1.2 (i.e., for the condition τΦ,B,B <∞). This result can be strengthened
in the real-valued setting (K = R). In this case we prove that the SCP is also a
sufficient condition for the stability of Problem 1.2.

3.2.1. The real case. We first formulate the simpler result in the real-valued setting
for which the proof roughly follows the lines of [5].

Theorem 3.7. Suppose that B is a Banach space over R and that Φ = (ϕλ)λ∈Λ ⊂
B′ constitutes a frame of B. Then

σΦ,B,B ≤ αΦ,B,B ≤ 2σΦ,B,B.

Proof. We first show that αΦ,B,B ≤ 2σΦ,B,B. Let σ > σΦ,B,B. There exist S ⊂ Λ
and u, v ∈ B with

σ‖u‖B ≥ ‖[u,ΦS ]‖B
and

σ‖v‖B ≥ ‖[v,ΦΛ\S ]‖B.
Put x := u+ v and y := u− v. It holds that

‖AΦ(x)−AΦ(y)‖B ≤ ‖|[x,ΦS ]| − |[y,ΦS ]|‖B + ‖|[x,ΦΛ\S ]| − |[y,ΦΛ\S ]|‖B
≤ 2‖[u,ΦS ]‖B + 2‖[v,ΦΛ\S ]‖B,

where the last inequality follows from the reverse triangle inequality (cf. [5]) and
the solidity of B. By our assumption on u, v this implies that

‖AΦ(x)−AΦ(y)‖B ≤ 2σ(‖u‖B + ‖v‖B) ≤ 4σmin{‖u‖B, ‖v‖B} = 2σdB(x, y).

Since σ > σΦ,B,B was arbitrary the desired inequality is proven.
It remains to show the inequality σΦ,B,B ≤ αΦ,B,B, for which we consider α >

αΦ,B,B. By the optimality of αΦ,B,B, there exist x, y ∈ B with

αdB(x, y) > ‖AΦ(x)−AΦ(y)‖B.
Now pick

S := {λ ∈ Λ : sign([x, ϕλ]) = −sign([y, ϕλ])}.
Define u := x+ y and v := x− y. It holds that

‖[u,ΦS ]‖B = ‖|[x,ΦS ]| − |[y,ΦS ]|‖B
≤ ‖AΦ(x)−AΦ(y)‖B
≤ αdB(x, y) ≤ α‖u‖B,
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where the first inequality follows from (3). The same argument can be carried out
for v and Λ \ S. This implies

max{AΦS ,B,B, AΦΛ\S ,B,B} ≤ α,

which completes the proof. �

As a corollary we obtain a complete description of the condition number in the
real case.

Corollary 3.8. Suppose that Φ constitutes a frame for B and that K = R. Then

BΦ,B,B

2σΦ,B,B
≤ τΦ,B,B ≤ BΦ,B,B

σΦ,B,B
.

Proof. The statement is a direct consequence of Theorems 3.5 and 3.7. �

3.2.2. The complex case. We go on to study the complex case. Naturally the anal-
ysis becomes much more complicated in this case and it is in particular impossible
to completely characterize the condition number in terms of the SCP. Nevertheless
it is possible to provide a lower bound. We note that the following result (Theorem
3.9) settles a conjecture posed by Bandeira et al. in [5], where the authors state
that they ”suspect that the strong complement property is necessary for stability in
the complex case, but have no proof of this”.

Theorem 3.9. Let Φ = (ϕλ)λ∈Λ ⊂ B′ constitute a frame for B. Then, there exists
a constant C > 0 (depending on only the frame constants of Φ) such that

αΦ,B,B ≤ CσΦ,B,B.

The constant C can be taken to be

C =
1

3 + 4 ·
√
2

BΦ,B,B

AΦ,B,B
.

Proof. Let σ > σΦ,B,B. Then, as in the real case, there exist S ⊂ Λ and u, v ∈ B
with ‖u‖B = 1 = ‖v‖B such that

(4) ‖[u,ΦS ]‖B ≤ σ

and

(5) ‖[v,ΦΛ\S ]‖B ≤ σ.

We also note that, due to the fact that Φ is a frame, it holds that

(6) ‖[u,ΦΛ\S ]‖B ≥ AΦ,B,B − σ,

and

(7) ‖[v,ΦS ]‖B ≥ AΦ,B,B − σ.

By putting x := u+ v and y := u− v, one again obtains

‖AΦ(x)−AΦ(y)‖B ≤ 2‖[u,ΦS ]‖B + 2‖[v,ΦΛ\S ]‖B.
By our assumption on u, v this implies that

‖AΦ(x)−AΦ(y)‖B ≤ 4σ

Since σ > σΦ,B,B, it follows that

αΦ,B,B ≤ 4σΦ,B,B

dB(x, y)
.
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It remains to show that dB(x, y) is not small. We need to give a lower bound on
‖x − τy‖B that holds for any τ ∈ C with |τ | = 1. By the frame property of Φ we
have

BΦ,B,B‖x− τy‖B ≥ ‖[x− τy,Φ]‖B.

Applying (3) twice for Λ′ = S and Λ′ = Λ \ S yields

BΦ,B,B‖x− τy‖B ≥ ‖[x− τy,Φ]‖B

≥ 1

2
‖[x− τy,ΦS ]‖B +

1

2
‖[x− τy,ΦΛ\S ]‖B

≥ 1

2
‖[(1− τ)u+ (1 + τ)v,ΦS ]‖B

+
1

2
‖[(1− τ)u+ (1 + τ)v,ΦΛ\S ]‖B.

Employing the reverse triangle inequality and Eqns (4)–(7) we further obtain

BΦ,B,B‖x− τy‖B ≥ |1 + τ |
2

‖[v,ΦS ]‖B − |1− τ |
2

‖[u,ΦS ]‖B

+
|1− τ |

2
‖[u,ΦΛ\S ]‖B − |1 + τ |

2
‖[v,ΦΛ\S ]‖B

≥ max{|1 + τ |, |1− τ |} ·
(
1

2
· (AΦ,B,B − σ)− σ

)

≥ 1√
2
AΦ,B,B − 3√

2
σ,

provided that AΦ,B,B−3σ ≥ 0. Thus, we have obtained a lower bound on ‖x−τy‖B
which proves that dB(x, y) is not small if σ is small. In particular, we have

αΦ,B,B ≤ σΦ,B,B
4
√
2 ·BΦ,B,B

AΦ,B,B − 3σΦ,B,B
,

whenever σΦ,B,B ≤ tAΦ,B,B with t < 1/3. On the other hand, using Theorem 3.5,
we have the trivial estimate

αΦ,B,B ≤ βΦ,B,B = BΦ,B,B ≤ σΦ,B,B
BΦ,B,B

tAΦ,B,B

whenever σΦ,B,B ≥ tAΦ,B,B. Combining these estimates, one can choose

C := min
t<1/3

( 4
√
2

1− 3t
,
1

t

)BΦ,B,B

AΦ,B,B
=

1

3 + 4
√
2

BΦ,B,B

AΦ,B,B
.

�

The preceding result implies the following immediate corollary.

Corollary 3.10. Suppose that Φ constitutes a frame for B and that K = C. Then

BΦ,B,B

CσΦ,B,B
≤ τΦ,B,B

with C given as in the formulation of Theorem 3.9.
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3.2.3. Uniform stability always holds in finite dimensions. Suppose that B is finite
dimensional. We show that in this case, the condition number τΦ,B,B is always
finite. In the setting of discrete frames for Hilbert spaces this result has been
shown in [9].

Theorem 3.11. Suppose that B is finite dimensional (K can be either R or C).
Assume further that Φ constitutes a frame for B with associated Banach space B,
and that AΦ is injective. Then,

τΦ,B,B <∞.

Proof. We need to study uniform continuity of the map A−1
Φ . Since this mapping is

scaling-invariant, we may without loss of generality only consider the mapping A−1
Φ ,

restricted to AΦ(B)∩B1, where B1 denotes the unit ball in B. The set AΦ(B)∩B1

is compact since B is finite-dimensional and by Theorem 3.3 the mapping A−1
Φ is

continuous on this set. Therefore, it is uniformly continuous and this proves the
claim. �

3.2.4. The SCP can never hold in infinite dimensions. We have seen that the SCP
is a necessary condition for the stability of the phase retrieval problem 1.2, both in
the real and the complex case. In the Hilbert space setting and for discrete frames,
it has been shown in [9], that phase retrieval can never be done stably if the space is
infinite-dimensional. One might ask whether increasing the redundancy of a frame
might help. We show that there is unfortunately no hope. More precisely, the
following results state that in our more general Banach space setting and even for
continuous frames, the SCP can never hold. To prove this, we first need a result,
that is interesting in its own right:

Theorem 3.12. Suppose B is an infinite-dimensional Banach space. Then, for
any compact set Λ and any system Φ = (ϕλ)λ∈Λ ⊂ B′, Φ cannot constitute a frame
for B. In particular, for B an admissible Banach space associated with B, there is
no positive lower bound AΦ,B,B > 0 such that

(8) AΦ,B,B‖x‖B ≤ ‖[x,Φ]‖B
for all x ∈ B.

Proof. We argue by contradiction. Suppose that for a compact set Λ and Φ =
(ϕλ)λ∈Λ ⊂ B′ a frame for B, there exists AΦ,B,B > 0 that satisfies (8). Let ν > 0
be arbitrary. Since the mapping λ 7→ ϕλ is continuous there exists, for every λ ∈ Λ
an open set Uλ such that

(9) ‖ϕω − ϕλ‖B′ < ν for all ω ∈ Uλ.

The Uλ’s form an open cover of the compact set Λ. Therefore, already finitely many
Uλ’s cover Λ. We denote them by Uλ1

, . . . , UλN
. W.l.o.g. we can assume that these

sets have ”small overlaps” in the sense that

‖
N∑

i=1

χUλi
‖B ≤ k‖χΛ‖B

for some constant k independent of N . Let cΛ := k‖χΛ‖B.
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By the frame condition of B and the solidity of B we have

AΦ,B,B‖x‖B ≤ ‖[x,Φ]‖B = ‖|[x,Φ]|‖B

≤ ‖
N∑

i=1

|[x,ΦUλi
]|‖B

≤ ‖
N∑

i=1

(|[x, ϕλi ]|χUλi
(λ))λ∈Λ‖B + ‖

N∑

i=1

(|[x, ϕλ − ϕλi ]|χUλi
(λ))λ∈Λ‖B

≤
N∑

i=1

|[x, ϕλi ]|‖χUλi
‖B + ‖

N∑

i=1

(|[x, ϕλ − ϕλi ]|χUλi
(λ))λ∈Λ‖B(10)

We note that for λ ∈ Uλi , by Equation (9)

|[x, ϕλ − ϕλi
]| ≤ ν‖x‖B.

Together with the solidity of B and our assumption on the Uλi
’s, we can rewrite

the second term of the RHS in (10) to

‖
N∑

i=1

(|[x, ϕλ − ϕλi ]|χUλi
(λ))λ∈Λ‖B ≤ cΛν‖x‖B.

In summary, writing

ωi := ‖χUλi
‖B,

we obtain

AΦ,B,B‖x‖B ≤
N∑

i=1

ωi|[x, ϕλi
]|+ cΛν‖x‖B,

or

(11) (AΦ,B,B − cΛν)‖x‖B ≤
N∑

i=1

ωi|[x, ϕλi
]|.

Note that since cΛ is independent of ν, we can take ν sufficiently small, such
that AΦ,B,B − cΛν > 0. Let ΦN = (ϕλi

)i=1,...,N . Due to the finite dimensionality
of ΦN , one can pick x ∈ (span ΦN )⊥ with ‖x‖B 6= 0. This is a contradiction to
(11). �

We are now in the position to state our main result.

Theorem 3.13. Suppose that B is infinite-dimensional and let B be an admissible
Banach space associated with B. Then for every frame Φ ⊂ B′ of B with upper
frame bound BΦ,B,B <∞ it holds that σΦ,B,B = 0. Consequently, by Theorem 3.9,

inf
Φ⊂B′,BΦ,B,B<∞

τΦ,B,B = ∞.

Proof. Pick ε > 0 arbitrary. We will show that there exist a subset S ⊂ Λ and
elements u, v ∈ B which satisfy ‖u‖B = 1 = ‖v‖B, together with
(12) ‖[u,ΦS ]‖B ≤ ε,

and

(13) ‖[v,ΦΛ\S ]‖B ≤ ε.
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In fact, we can pick u to be any arbitrary but fixed function with ‖u‖B = 1. The
frame property of Φ implies

‖[u,Φ]‖B ≤ BΦ,B,B.

Since, by Assumption 3.1, Λ is σ-compact, there exists a sequence of compact sets
(Λn)n∈N such that Λn ⊂ Λn+1 for all n ∈ N and

⋃
n∈N

Λn = Λ. On the other hand,
we have assumed that the set of compactly supported functions is dense in B, so
that

‖[u,Φ]− [u,Φ]χΛn‖B → 0 as n→ ∞.

Thus, there exists some N ∈ N for which

‖[u,Φ]χΛ\ΛN
‖B ≤ ε,

and hence (12) holds with S = Λ \ ΛN .
Since ΛN is compact, by Theorem 3.12, we can pick v ∈ B which satisfies ‖v‖B =

1, and (13) for S = ΛN . �

Remark 3.1. The above theorem shows the inherent instability of phase retrieval
regardless of the redundancy of the discrete frame from which the phaseless mea-
surements are drawn. For the reconstruction of a real-valued band-limited function
f from unsigned measurements as described in Examples 1.1 and 2.1, our theorem
implies that even knowing |f(x)| for all x ∈ R would not suffice for stable recov-
ery of f . Hence, starting from a discrete set of measurements there is no hope to
improve on the stability of the reconstruction problem through oversampling.
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Appendix A. Relative Compactness in Admissible Banach Spaces

This appendix provides proofs for results on relative compactness in admissible
Banach spaces which are needed in the proof of Theorem 3.3. Our main result
is that, under an additional assumption, a subset K ⊂ B is relatively compact
(meaning that its closure is compact) if and only if the set of its absolute values
|K| := {|w| : w ∈ K} is relatively compact. The additional assumption is as follows.

Definition A.1 (Strong equicontinuity). Let B be an admissible Banach space and
let K ⊂ B. We call K strongly equicontinuous if for all ε > 0 and all λ ∈ Λ there
exist open sets Uε(λ) ⊂ Λ such that

sup
w∈K

|w(µ)− w(λ)| ≤ ε for all µ ∈ Uε(λ).

Before we proceed we record a few facts on relative compactness in complete
metric spaces. A subset K of a complete metric space X is called totally bounded if
for all δ > 0 it admits a finite covering by balls of radius δ, i.e., there exist nδ ∈ N

and w1, . . . , wnδ
∈ X such that

K ⊂
nδ⋃

i=1

BX
δ (wk).

It is a fundamental fact that relative compactness and total boundedness coincide,
see for example [18]:

Theorem A.2. Suppose that X is a complete metric space and K ⊂ X. Then K

is relatively compact if and only if it is totally bounded.

We are now ready to prove the main result of this appendix. The strong equicon-
tinuity assumption could be weakened but the following is sufficient for our pur-
poses.

Theorem A.3. Let B be an admissible Banach space. Suppose that K ⊂ B is
strongly equicontinuous. Then K is relatively compact if and only if

(RC1) K is bounded, and
(RC2) for every ε > 0 there exists a compact set Λε ⊂ Λ such that

sup
w∈K

‖wχΛ\Λε
‖B ≤ ε.
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Proof. We start with the implication that if K is relatively compact and strongly
equicontinuous, then (RC1) and (RC2) hold. First of all, clearly K is bounded if it
is relatively compact. We need to show (RC2). By assumption there exists a finite
ε/2-cover of K which we denote by K1, . . . ,KN . Pick zi ∈ Ki for all i = 1, . . . , N .
Then, by the admissibility of B there exist compact subsets Λ1, . . . ,ΛN ⊂ Λ such
that

sup
i=1,...,N

‖ziχΛ\Λi
‖B ≤ ε/2.

Now denote Λε :=
⋃N

i=1 Λi, which is a compact subset of Λ. Let w ∈ K be arbitrary.
Then, by assumption there exists i ∈ {1, . . . , N} with ‖w−zi‖B ≤ ε/2. This implies
(by the solidity of B) that

‖wχΛ\Λε
‖B ≤ ‖w − zi‖B + ‖ziχΛ\Λi

‖B ≤ ε,

which implies (RC2).
Now to the converse statement. Suppose that K is strongly equicontinuous and

that (RC1) and (RC2) hold true. First note that, by Theorem A.2, relative com-
pactness follows if we can show that for every ε > 0 there exists a compact subset
Kε ⊂ B with

(14) sup
w∈K

inf
z∈Kε

‖w − z‖B ≤ ε,

because this would immediately imply the total boundedness of K.
Pick Λε/2 as in (RC2). Consider the set K′ := {wχΛε/2

: w ∈ K}. By construc-
tion we have that

sup
w∈K

inf
z∈K′

‖w − z‖B ≤ ε/2.

If Λ is discrete we are now finished because in that case the set K′ is compact. To
prove the result for general Λ we proceed as follows:

Let ν > 0 be arbitrary and let Uν(λ) be the sets from Definition A.1. Consider
the sets Vν(λ) := Uν(λ) ∩ Λε/2, λ ∈ Λε/2, which constitute an open covering of the
compact set Λε/2. By compactness of Λε/2 there exist λ1, . . . , λN ∈ Λε/2 such that
the sets Vν(λi), i = 1, . . . , N cover Λε/2. By reducing these sets (and sacrificing
the openness assumption) we can further achieve for simplicity that the sets Vν(λi)
constitute a disjoint covering in the sense that

(15)

N∑

i=1

χVν(λi) = χΛε/2
.

Consider the set

K
′′ := {

N∑

i=1

w(λi)χVν(λi) : w ∈ K′}.

The set K′′ is contained in a finite dimensional subspace (the span of the indicator
functions of the sets Vν(λi)) and it is bounded, which can be seen as follows:

It suffices to consider elements in K
′′ of the form

∑N
i=1 w(λi)χVν(λi), where w =

wχΛε/2
and w ∈ K (since the more general case follows by limiting arguments). We

have that

‖
N∑

i=1

w(λi)χVν(λi)‖B ≤ ‖wχΛε/2
−

N∑

i=1

w(λi)χVν(λi)‖B + ‖wχΛε/2
‖B.
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Exploiting (15), the strong equicontinuity assumption and the solidity of B, one
further obtains

‖
N∑

i=1

w(λi)χVν(λi)‖B ≤ ‖
N∑

i=1

(w − w(λi))χVν(λi)‖B + ‖wχΛε/2
‖B,

≤ ν‖χΛε/2
‖B + ‖wχΛε/2

‖B.
Hence, by assumption (RC1), K′′ is bounded. Altogether, this establishes that K′′

is compact.
Now, let w ∈ K be arbitrary. Then we have that

‖w −
N∑

i=1

w(λi)χVν(λi)‖B ≤ ‖w − wχΛε/2
‖B + ‖

N∑

i=1

(w − w(λi))χVν(λi)‖B.

The first term above is bounded by ε/2. By the strong equicontinuity assumption
and the solidity the second term is bounded by ν‖χΛε/2

‖B.
In summary we get that

‖w −
N∑

i=1

w(λi)χVν(λi)‖B ≤ ε/2 + ν‖χΛε/2
‖B.

Note that ν was arbitrary. By making it sufficiently small we can achieve that

sup
w∈K

inf
z∈K′′

‖w − z‖B ≤ ε,

as desired. This implies (14) and the proof is finished. �

The previous result is interesting in its own right; for our purpose the following
corollary will be especially useful.

Corollary A.4. Suppose that B is an admissible Banach space and that K ⊂ B is
strongly equicontinuous. Then K is relatively compact if and only if |K| is relatively
compact.
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