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PLASMONIC INTERACTION BETWEEN NANOSPHERES

SANGHYEON YU AND HABIB AMMARI

Abstract. When metallic nanospheres are nearly touching, strong nanofocusing of light can
occur due to highly localized surface plasmons. It has potential applications in the design of

nanophotonic integrated circuits, biosensing, and spectroscopy. Due to the singular behavior of
electromagnetic field in the narrow gap region, its analytical investigation is quite challenging.
Moreover, it requires extremely large numerical cost for computing the field accurately. There
are two approaches for studying the interaction between metallic spheres: transformation optics
and the method of image charges. Here we clarify the connection between them. Based on the
connection formula, we reveal the singular nature of plasmonic interaction between nanospheres
in a completely analytical way. We also develop a hybrid numerical scheme for accurately and
efficiently computing the field distribution produced by an arbitrary number of nearly touching
plasmonic spheres.

1. Introduction

Confining light at the nanoscale is challenging due to the diffraction limit. Strongly localized
surface plasmon modes in singular metallic structures offer a promising route to overcome this dif-
ficulty. Among various singular structures, the system of nearly touching spheres is of fundamental
importance. In the narrow gap regions between metallic spheres, a broadband nanofocusing of light
can be observed. Recently, Transformation Optics (TO) has been applied to analyze this phenom-
enon theoretically. Pendry et al. applied a TO inversion mapping to transform two spheres into a
concentric shell and then provided novel physical insights for broadband light focusing. TO also
gives a quasi-analytical solution which is an efficient numerical scheme. However, for a deeper the-
oretical understanding and practical purposes, fully analytical description is still needed. Roughly
speaking, the difficulty comes from the inhomogeneous material parameters in the transformed
space.

Beside analytical obstacles, there are also numerical challenges. When the spheres are nearly
touching, it requires extremely large computational cost to accurately compute singular field distri-
butions. The multipole expansion method requires a large number of moments and finite element
method (or boundary element method) requires very fine mesh in the gap. Although the TO
approach is efficient, it cannot be applied when the number of spheres is greater than two. It is
important to investigate a cluster of plasmonic nanospheres for the design of fano-resonances.

In this article, we solve all these analytical and numerical challenges related to the singular
nature of nearly touching plasmonic spheres. The key in our approach is to clarify the connection
between TO and the method of image charges. The principle of image method is to find fictitious
sources which generate the desired reaction field. We derive a new explicit formula to convert
image sources to TO-type solutions. Our second key ingredient is the image theory developed
by Poladian, who derived the image series solution for two dielectric spheres [23]. Nevertheless,
the series is not convergent when the permittivity is negative and hence it cannot describe the
plasmonic interaction. So our approach is to use the connection formula to convert the image
series into a TO-type solution, resulting in a fully analytical approximate solution which is valid
for two plasmonic spheres. Our formula is highly accurate for a broad range of frequencies and
gap distances. Moreover, it gives clear understanding of the surface plasmon resonance.

For a cluster with an arbitrary number of spheres, Cheng and Greengard developed a hybrid
numerical scheme by combining the method of images and the multipole expansion method. Their
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Figure 1. Two spheres and the bispherical coordinates. Left: Configura-
tion of two spheres. 2d is the distance between the centers. δ is the gap distance.
Right: coordinate level curves for the bispherical coordinate system with α = 1.
The solid line (resp. the dashed line) represents ξ (resp. η) coordinate curves.

scheme is extremely efficient and accurate even if the spheres are nearly touching. However, due to
the non-convergence of the image series, their scheme needs to be modified for plasmonic spheres
clusters. Again, by using the connection between TO and image sources, we develop the modified
hybrid scheme for an arbitrary configuration of plasmonic spheres clusters. We also show its
extreme efficiency and accuracy by presenting several numerical examples. Our proposed scheme
is a result of beautiful interplay between three analytical approaches: TO, the image method, and
the multipole expansion.

2. Transformation optics and the image method

We shall assume that the plasmonic spheres are small compared to optical wavelengths so that
the quasi-static approximation can be adopted. Two spheres system is described in Fig. 1. The
permittivity ǫ of metallic spheres is modeled as ǫ = 1 − ω2

p/(ω(ω + iγ)) where ω is the operating
frequency, ωp is the plasma frequency and γ is the damping parameter. We fit Palik’s data for
silver by adding a few Lorentz terms [18].

2.1. TO approach. Let us briefly review the TO approach by Pendry et al. [19]. To transform
two spheres into a concentric shell, Pendry et al. introduced the inversion transformation Φ as

r′ = Φ(r) = R2
T (r−R0)/|r−R0|2 +R′

0, (1)

where R0,R
′
0 and RT are given parameters. This inversion mapping induces the inhomogeneous

permittivity ǫ′(r′) = R2
T |r′ − R′

0|ǫ in the transformed space. Then, by taking advantage of the

symmetry of the shell, they represented the electric potential using |r′−R′
0|(r′)±(n+ 1

2
)− 1

2Y m
n (θ′, φ′)

as basis functions. Here, {Y m
n } are the spherical harmonics.

The above TO description can be rewritten using the bispherical coordinates, (ξ, θ, ϕ), as

eξ−iη = (z + iρ+ α)/(z + iρ− α) (2)

with ρ =
√
x2 + y2 and ϕ being an azimuthal angle with respect to the z-axis. By letting r′ =

eξ(sin η cosϕ, sin η sinϕ, cos η), R′
0 = (0, 0, 1), R0 = (0, 0, α) and R2

T = 2α, we can see that the
bispherical transformation is identical to the inversion mapping in the TO approach. In Fig. 1,
the geometry of the bispherical coordinates is described.

Any solution to the Laplace’s equation can be represented as a sum of the following bispherical
harmonics Mm

n,±(r):

Mm
n,±(r) =

√
2
√
cosh ξ − cos η e±(n+ 1

2
)ξY m

n (η, ϕ), (3)

We will call Mm
n,± as TO basis since they are the same.
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Figure 2. Image charges for two spheres. Red and green circles represent
image charges placed along the z-axis.

Let us assume that two plasmonic spheres B+ ∪ B− are placed in a uniform incident field
(0, 0, E0Re{eiωt}). Then the quasi-static electric potential V outside the two spheres can be rep-
resented in the following form:

V (r) = −E0z +

∞∑

n=0

An

(
M0

n,+(r)−M0
n,−(r)

)
. (4)

Here, the coefficients An satisfy some recurrence relations. We refer to [7] for details. The TO
approach also yields a similar tridiagonal system for coefficients An [19]. Unfortunately, both
of them cannot be solved analytically. The first goal in this work is to derive an approximate
analytical expression for An by establishing the explicit connection between the method of images
and TO.

2.2. Method of images. Now we discuss the method of images. Poladian developed a general
framework of image sources for two dielectric spheres [22, 23, 24]. He also performed an asymptotic
analysis for the nearly touching case. See also [13] for a similar result in the two-dimensional case.
Here, we briefly review Poladian’s solution for the two dielectric spheres in an uniform incident
field. Let τ = (ǫ− 1)/(ǫ+ 1), s = cosh−1(d/R) and α = R sinh s. Suppose that two point charges
of strength ±1 are at (0, 0,±z0) ∈ B±, respectively. By Poladian’s imaging rule, they produce an
infinite series of image charges of strength ±uk at (0, 0,±zk) for k = 0, 1, 2, ..., where zk and uk

are given by

zk = α coth(ks+ s+ t0), uk = τk
sinh(s+ t0)

sinh(ks+ s+ t0)
.

Here, the parameter t0 is such that z0 = α coth(s+ t0). See Fig. 2. The potential U(r) generated
by all the above image charges is given by

U(r) =

∞∑

k=0

uk(G(r− zk)−G(r+ zk)), (5)

where zk = (0, 0, zk) and G(r) = 1/(4π|r|).
Let us consider the potential V outside the two spheres when a uniform incident field (0, 0, E0Re{eiωt})

is applied. Let p0 be the induced polarizability when a single sphere is subjected to the uniform in-
cident field, that is, p0 = E0R

32τ/(3− τ). Using the potential U(r), we can derive an approximate
solution for V (r). For |τ | ≈ 1, we have

V (r) ≈ −E0z + 4πp0
∂(U(r))

∂z0

∣∣∣
z0=d

+QU(r)|z0=d, (6)

where Q is a constant chosen so that the right-hand side in equation (6) has no net flux on the
surface of each sphere; see SI for the details. The accuracy of the approximate formula, equation
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(6), improves as |ǫ| increases and it becomes exact when |ǫ| = ∞. Moreover, the accuracy of
equation (6) is pretty good even if the value of |ǫ| is moderate.

Now we discuss the difficulty in applying the approximate formula (6) to the case of plasmonic
spheres. In view of the expressions for uk, we can see that equation (6) is not convergent when
|τ | > es. For plasmonic materials such as gold and silver, the real part of the permittivity ǫ is
negative over the optical frequencies and then the corresponding parameter |τ | can attain any
value in the interval (es,∞). Moreover, it turns out that all the plasmonic resonant values for τ
are contained in the set {τ ∈ C : |τ | > es}. So, equation (6) cannot be applied to describe the
plasmonic interaction between spheres due to non-convergence.

3. Analytical solution for the two plasmonic spheres

So far we have reviewed TO approach and the image method and pointed out their difficulties
in solving the two plasmonic spheres problem. Now we clarify the connection between these two
methods and then derive the approximate analytical solution for the scattered field from two
plasmonic spheres. We also show that our analytical expression completely captures the singular
behavior of the exact solution.

3.1. Connection formula from image charges to TO. We derive for the first time an explicit
formula connecting the image charges and TO. We state the following lemma (see SI for its proof).

Lemma 1. (Connection formula) The potential ukG(r∓zk) generated by the image charge at ±zk
can be rewritten using TO basis as follows: for r ∈ R

3 \ (B+ ∪B−), we have

ukG(r∓ zk) =
sinh(s+ t0)

4πα

∞∑

n=0

[
τe−(2n+1)s

]k
e−(2n+1)(s+t0)M0

n,±(r). (7)

This identity plays a key role in our derivation of the approximate analytical solution. As
mentioned previously, the reason why the image charge series, equation (5), does not work for
plasmonic spheres is because the factor (τe−s)k may not converge to zero as k → ∞. But the
above connection formula helps us overcome this difficulty. If we sum up all the image charges
in equation (7), we can see that the summation over k can be evaluated analytically using the
following identity:

∞∑

k=0

[
τe−(2n+1)s

]k
=

e(2n+1)s

e(2n+1)s − τ
. (8)

Therefore, from equation (5) and Lemma 1, we obtain the following result.

Theorem 2. Let U(r) be defined as in equation (5). Then it can be rewritten using TO basis as
follows:

U(r) =
sinh(s+ t0)

4πα

∞∑

n=0

e−(2n+1)t0

e(2n+1)s − τ

(
M0

n,+(r)−M0
n,−(r)

)
. (9)

Clearly, the right-hand side of equation (9) does converge for any |τ | > es provided that τ 6=
e(2n+1)s.

3.2. Approximate analytical solution. Let us turn to the problem of two plasmonic spheres
in an uniform incident field (0, 0, E0Re{eiωt}). From equation (6) and Theorem 2, we obtain the
approximate expression for V (r) in terms of TO basis as follows (see SI for its proof).

Theorem 3. If |τ | ≈ 1, the following approximation for the electric potential V (r) holds: for
r ∈ R

3 \ (B+ ∪B−),

V (r) ≈ −E0z +

∞∑

n=0

Ãn

(
M0

n,+(r)−M0
n,−(r)

)
, (10)
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Figure 3. Field and absorption cross section enhancement. R = 30 nm.
Solid line represents the approximate analytical solution. Dashed line represents
the exact solution. (a): field enhancement (b): absorption cross section.

where the coefficient Ãn is given by

Ãn = E0
2τα

3− τ
· 2n+ 1− γ0
e(2n+1)s − τ

, (11)

γ0 =

∞∑

n=0

2n+ 1

e(2n+1)s − τ

/ ∞∑

n=0

1

e(2n+1)s − τ
. (12)

As expected, the above approximate expression is valid even if |τ | > es. Therefore, it can
furnish useful information about the plasmonic interaction between the two spheres. As a first
demonstration, let us investigate the (approximate) resonance condition for the bright modes, that

is, the condition for τ at which the coefficients Ãn diverge. One might conclude that the resonance

condition is given by τ = e(2n+1)s. However, one can see that Ãn has a removable singularity at
each τ = e(2n+1)s. In fact, the (approximate) resonance condition turns out to be

∞∑

n=0

1

e(2n+1)s − τ
= 0. (13)

In other words, the plasmonic resonance does happen when τ is one of zeros of equation (13). It
turns out that the zeros {τn}∞n=0 lie on the positive real axis and satisfy, for n = 0, 1, 2, ...,

e(2n+1)s < τn < e(2n+3)s. (14)

Now let us discuss the asymptotic behavior of the resonance when two spheres are nearly touching.
As the separation distance δ goes to zero, the parameter s also goes to zero (in fact, s = O(δ1/2)).
Then, in view of equation (14), τn will converge to 1 and the corresponding permittivity ǫn goes
to infinity. This means that a red-shift of the resonance mode does occur. Since the approximate
analytical formula for V becomes more accurate as |ǫ| increases, we can expect that accuracy
improves as the separation distance goes to zero. It indicates that the formula contains singular
nature of the field distribution completely. Also, the difference between τn and τn+1 decreases,
which means that the spectrum becomes a nearly continuous one.

It is worth mentioning that the resonance condition, equation (13), is also interesting from
a mathematical point of view. It is known that the plasmon resonance occurs when 1/(2τ) is
close to one of the eigenvalues of the Neumann-Poincaré operator [2]. So equation (13) gives the
approximate eigenvalues of the Neumann-Poincaré operator in the case of two spheres.

3.3. Field and absorption cross section enhancements. Here, we derive approximate formu-
las for the field at the gap and for the absorption cross section. From Theorem 3, we derive the
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Figure 4. Potential distributions. R = 30 nm, δ = 0.25 nm, ω = 3.0 eV,
(a,b): Real and imaginary parts of the exact solution. (c,d): Real and imaginary
parts of the analytical approximate solution.

following (see SI for the details):

E(0, 0, 0) ≈ E0 − E0
8τ

3− τ

[ ∞∑

n=0

(2n+ 1)2

e(2n+1)s − τ
(−1)n

−γ0

∞∑

n=0

2n+ 1

e(2n+1)s − τ
(−1)n

]
.

(15)

In the quasi-static approximation, the absorption cross section σa is defined by σa = ωIm{p},
where p is the polarizability of the system of two spheres and ω is the operating frequency. From
Theorem 3, σa is approximated as follows (see again SI):

σa ≈ ωE0
8τα3

3− τ

[ ∞∑

n=0

(2n+ 1)2

e(2n+1)s − τ

−
( ∞∑

n=0

2n+ 1

e(2n+1)s − τ

)2/ ∞∑

n=0

1

e(2n+1)s − τ

]
.

(16)

Now we compare the above approximate formulas with the exact ones. Fig. 3 represents
respectively the field enhancement and the absorption cross section σa as functions of the frequency
ω for various distances ranging from 0.001 nm to 10 nm. The good accuracy of our approximate
formulas over broad ranges of frequencies and the gap distances is clearly shown. As mentioned
previously, the accuracy improves as the spheres get closer. It is also worth highlighting the red-
shift of the plasmon resonance as the separating distance goes to zero. In Fig. 4, we compare
exact and approximate electric potential distributions. They are also in good agreement and the
field concentration in the gap region is observed.
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4. Hybrid numerical scheme for many-spheres system

Now we consider a system of an arbitrary number of plasmonic spheres. If all the spheres are
well separated, then the multipole expansion method is efficient and accurate for computing the
field distribution (see SI). But, when the spheres are close to each other, the problem becomes
very challenging since the charge densities on each sphere are nearly singular. To overcome this
difficulty, in [5], Cheng and Greengard developed a hybrid numerical scheme combining the mul-
tipole expansion and the method of images; see also [6]. Their algorithm is extremely efficient
and highly accurate even if the distance between the spheres is extremely small. However, due to
non-convergence of the image series, their method cannot be applied to plasmonic spheres. The
second goal of this paper is to show that the hybrid method can be extended to the system of
plasmonic spheres by clarifying the connection between the method of images and TO.

The key ingredient in the hybrid method by Cheng and Greengard is the image source series
produced by a general multipole source. Roughly speaking, Cheng and Greengard modified the
multipole expansion method by replacing a multipole source with the image multipole potential.
Let Ylm(r) be a general multipole source, that is, Ylm(r) = Y m

l (θ, φ)/rl+1. Suppose that a multipole
source Ylm is located at the center of the sphere B+. Then the infinite sequence of the image sources
is produced by Poladian’s imaging rule. Let us denote the resulting potential by U+

lm. Similarly,

let U−
lm be the corresponding potential when the initial position is the center of B−. The detailed

image series representation for U±
lm can be found in SI. Again, the series are not convergent for

|τ | > es. Therefore, for extending Cheng and Greengard’s method to the plasmonic case, it is
essential to establish an explicit connection between the image multipole potential U±

lm and TO.
We have the following result whose proof is given in SI.

Theorem 4. (Converting image multipoles to TO) Assume that the integers l and m are such
that l ≥ 1 and −l ≤ m ≤ l. The potential U±

lm can be rewritten in terms of TO basis as follows:
for r ∈ R

3 \ (B+ ∪B−),

U±
lm(r) =

∞∑

n=0

gmn D±
lm[λm

n ]

e2(2n+1)s − τ2
(e(2n+1)sMm

n,±(r)− τMm
n,∓(r))

− δ0m
Q̃±

l,1

2

∞∑

n=0

M0
n,+(r) + (−1)lM0

n,−(r)

e(2n+1)s + (−1)lτ

∓ δ0m
Q̃±

l,2

2

∞∑

n=0

M0
n,+(r)− (−1)lM0

n,−(r)

e(2n+1)s − (−1)lτ
, (17)

where gmn , λm
n ,D±

lm and Q±
l are given by

gmn =
1

α|m|+1

2|m|

√
(2|m|)!

√
(n+ |m|)!
(n− |m|)! , (18)

λm
n = [sinh(s+ t0)]

2|m|+1 e−(2n+1)t0 , (19)

Nlm = (l − |m|)!
√(

l + |m|
l +m

)(
l + |m|
|m|+m

)
, (20)

D±
lm[f ] =

(±1)l−|m|

Nlm

∂l−|m|

∂[z0(t0)]l−|m|
f

∣∣∣∣
z0=d

. (21)

Q̃±
l,i =

∞∑

n=0

(±1)lg0nD±
l0[λ

0
n]

e(2n+1)s − (−1)l+iτ

/
∞∑

n=0

1

e(2n+1)s − (−1)l+iτ
. (22)

Here, δlm is the Kronecker delta.
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Figure 5. Multipole expansion method vs Hybrid scheme. (a,d): Two
examples of three spheres configurations. (b,c): Plot for the field enhancement at
point A for configuration (a) using the multipole expansion method and the hybrid
method. R = 30nm, δ = 0.25 nm, β = 80◦ (e,f): same but for configuration (d).

Clearly, the above TO representation for U±
lm does converge for |τ | > es. Based on this, we

develop the modified hybrid scheme for the plasmonic spheres system. For a detailed description
of the proposed numerical scheme, we refer to SI.

Next, we present numerical examples to illustrate the hybrid method. We consider two exam-
ples of the three-spheres configuration shown in Figs. 5a and 5d. We show comparison between
multipole expansion method and the hybrid method by plotting the field enhancement at the gap
center A. For the numerical implementation, only finite number of the multipoles Ylm or hybrid
multipoles U±

lm should be used. Let L be the truncation number for the order l. In Figs. 5b
and 5e, the field enhancement is computed using the standard multipole expansion method. The
computations give inaccurate results even if we include a large number of multipole sources with
L = 50. On the contrary, using the hybrid method (Figs. 5c and 5f), the accuracy is pretty good
even when L is small (L = 2 or L = 5). Also, 99% accuracy can be achieved only with L = 20.
For each hybrid multipole U±

lm, the TO harmonics are included upto order n = 300 to ensure

convergence and U±
lm can be evaluated very efficiently.

To achieve 99.9% accuracy at the first resonant peak, it is required to set L = 150 in the
multipole expansion method and a 68, 400×68, 400 linear system needs to be solved. However, the
same accuracy can be achieved only with L = 23 in the hybrid method. The corresponding linear
system’s size is 1, 725 × 1, 725 and it can be solved 2, 000 times faster than that of the multipole
expansion method. The reason for the extreme efficiency and accuracy is that the singular nature
of the field distribution is already captured analytically in the hybrid multipole U±

lm. We also
compute the field distribution for three-spheres examples in Fig. 6. High field concentration in the
narrow gap regions between nanospheres is clearly shown.
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Figure 6. Potential distribution for three spheres examples. (a,b):
Real and imaginary part of the potential for the configuration in Fig. 5a with
β = 80◦. R = 30 nm, δ = 0.25 nm, ω = 3.0 eV. The uniform incident field
(E0 sin 15

◦, 0, E0 cos 15
◦)Re{eiωt} is applied. (c,d): same but for the configura-

tion in Fig. 5d.

5. Discussion

In this article we have fully characterized the singular behavior of nearly touching plasmonic
nanospheres in an analytical way. We have derived an approximate analytical formula for the
electric field for two plasmonic spheres. The formula is highly accurate for wide ranges of complex
permittities (or frequencies) and gap distances. Finally, we have extended Cheng and Greengard’s
hybrid method to the case of plasmonic spheres. The extreme efficiency and accuracy is shown by
several numerical examples. We have assumed that the spheres are identical only for simplicity.
Our approach can be directly extended to the case where the spheres are not equisized and have
different material parameters. A system of nanospheres on a plane (or a substrate) can also be
considered. The nonlocal effect is an important issue when the spheres are extremely closely spaced.
By adopting the shifting boundary method developed by Luo et al [12], this effect can be easily
incorporated.
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SUPPLEMENTARY MATERIAL FOR ”PLASMONIC

INTERACTION BETWEEN NANOSPHERES”

SANGHYEON YU AND HABIB AMMARI

The supplementary material (SI) is organized as follows. In section 1, we review
the basics of the bispherical coordinates. In section 2, we collect various definitions
and some of the properties of spherical harmonics. In section 3, we review Poladian’s
method of images for two spheres. In section 4, we prove our main result, which
provides the connection between the Transformation Optics (TO) and the method
of images. In section 5, we discuss the hybrid numerical scheme for the system of
plasmonics spheres. In section 6, we prove various useful formulas. For clarity and
convenience, some parts of SI overlap with the main text.

1. Bispherical coordinates (inversion mapping in TO)

Here we review the definition and the properties of the bispherical coordinates.
The bispherical coordinate system, (ξ, θ, ϕ), is defined by

eξ−iθ = (z + iρ+ α)/(z + iρ− α), (1)

where ρ =
√
x2 + y2 and α is a positive constant. The Cartesian coordinates can be

written in terms of the bispherical ones as follows:

x =
α sin η cosϕ

cosh ξ − cos η
, y =

α sin η sinϕ

cosh ξ − cos η
, z =

α sinh ξ

cosh ξ − cos η
. (2)

Note that the origin (0, 0, 0) corresponds to ξ = 0, η = π, ϕ = 0. The point at infinity
corresponds to (ξ, η) → (0, 0). On the other hand, it can be easily shown that the
coordinate surfaces {ξ = c} and {θ = c} for a nonzero c are respectively the zero level
set of

fξ(x, y, z) = (z − α coth c)
2
+ ρ2 − (α/sinh c)

2
, (3)

fη(x, y, z) = (ρ− αcot c)2 + z2 − (α/sin c)
2
. (4)

Note also that the ξ-coordinate surface is the sphere of radius α/ sinh c centered at
(0, 0, α coth c). Therefore, ξ = c (or ξ = −c) represents a sphere contained in the
region z > 0 (resp. z < 0). Moreover, |ξ| < c (resp. |ξ| > c) represents the region
outside (resp. inside) the two spheres.

Suppose that two spheres B+ and B− of the same radius R are centered at (0, 0,+d)
and (0, 0,−d), respectively. Let us parameterize these two spheres by {ξ = ±s}. To
do this, we set s and α by d = α coth s and R = α sinh s in view of (3). Note that
d = (α/sinh s) cosh s = R cosh s.

It is well-known that any solution to the Laplace equation can be represented as a
sum of the following bispherical harmonics Mm

n,±(r):

Mm
n,±(r) =

√
2
√
cosh ξ − cos η e±(n+ 1

2
)ξY m

n (η, ϕ).

The scale factors for the bispherical coordinates are

σξ = ση =
α

cosh ξ − cos η
and σϕ =

α sin η

cosh ξ − cos η
,

1
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so that the gradient for scalar valued function g can be written in the form

∇g =
1

σξ

∂g

∂ξ
êξ +

1

ση

∂g

∂η
êη +

1

σϕ

∂g

∂ϕ
êϕ.

The normal derivative on the sphere {ξ = ±s} is given by

∂

∂n

∣∣∣
∂B±

= ∓êξ · ∇|∂B±
= ∓cosh s− cos η

α

∂

∂ξ

∣∣∣
ξ=±s

, (5)

where n denotes the outward unit normal vector.
If the function g is of the following form:

g(r) =

∞∑

n=0

n∑

m=−n

cmn Mm
n,+(r) + dmn M0

m,−(r),

then z-component of the gradient at the origin is given by

êz · ∇g(0, 0, 0) =
23/2

α

∞∑

n=0

(c0n − d0n)(n+ 1/2)(−1)n, (6)

where êz = (0, 0, 1).

2. Some definitions and properties

• Let us define the spherical harmonics Y m
l by

Ylm(θ, φ) =

√
(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ,

where Pm
l (x) is the associated Legendre polynomial given by

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x).

Here, Pl(x) is the Legendre polynomial of degree l.
• The Legendre polynomial Pn(x) has the following generating function:

1√
1− 2xt+ t2

=

∞∑

n=0

tnPn(x). (7)

• The associated Legendre polynomial Pm
n (x) has the following generating func-

tion:

(−1)m(2m− 1)!!
(1− x2)m/2tm

[1− 2xt+ t2]m+1/2
=

∞∑

n=0

tnPm
n (x). (8)

• We have
Pn
n (x) = (−1)n(2n− 1)!!(1− x2)n/2. (9)

• Let us define the solid harmonics Ylm and Zlm by

Ylm(r) = r−(l+1)Ylm(θ, φ),

Zlm(r) = rl Ylm(θ, φ).

• Let us introduce

wlm =

{
1, m ≥ 0,

(−1)|m|, m < 0.

• Let the constant Nlmab be given by

Nlmab = (−1)a+b

√(
l + a− b+m

l +m

)(
l + a+ b−m

a+ b

)
.
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3. Poaldian’s image solution for two spheres (review)

3.1. Two spheres in an uniform electric field. Here, we briefly review Poladian’s
solution for the two dielectric spheres. Let G(r) = 1/(4π|r|) be the electric potential
generated by a unit point charge. We also introduce the electric potential D(r) =
ez · r̂/(|r|2) generated by a point dipole source with unit moment ez, where r̂ = r/|r|.

Suppose that we locate a point charge of the magnitude±1 at the position (0, 0,±z0)
in the sphere B±, respectively. These point charges induce infinite series of image
charges. Let us denote the location of m-th image charge in the sphere B± by
±zm = (0, 0,±zm), respectively. We also let ±um to be the magnitude of m-th image
charge in the sphere B±, respectively. Using Poladian’s imaging rule, we can easily
see that zm and um satisfy the following recursive relations:

d− zk+1 =
R2

d+ zk
, uk+1 = τ

R

d+ zk
uk.

These recursive relations can be solved explicitly. To state the solutions for uk and
zk, we introduce a parameter t0 which satisfies

z0 = α coth(s+ t0).

Note that if the initial position is equal to the center of each sphere(that is, z0 =
d = R cosh s), then it holds that t0 = 0. Using this representation for z0 and the
hyper-trigonometric identities, one can see that the solutions for zk and uk are given
as follows:

zk = α coth(ks+ s+ t0),

uk = τk
sinh(s+ t0)

sinh(ks+ s+ t0)
.

Now the potential U(r) generated by all the above image charges is given by

U(r) =

∞∑

k=0

uk(G(r− zk)−G(r+ zk)), (10)

where zk = (0, 0, zk).
Let us now turn to original problem: two spheres in a uniform electric field

(0, 0, E0). Let τ = (ǫ− 1)/(ǫ+ 1) and let p0 be the induced polarizability when a
single sphere is probed by a uniform electric field E0, that is, p0 = E0R

32τ/(3− τ).
When two spheres are probed by a uniform electric field, the external field is first im-
aged in each sphere. An image dipole with moment p0 is induced at the center of each
sphere. Then these images are imaged back and forth between the spheres producing
an infinite sequence of images [4]. The dipole p0 can be considered as the limit of two
initial charges ±4πp0/2h at the points z0 = (0, 0, d ± h) as h → 0. It is equivalent
to taking derivative 4πp0∂/∂z0 at z0 = d. So we get the following expression for the
image potential generated by the point dipole p0:

V1(r) := 4πp0
∂(U(r))

∂z0

∣∣∣
z0=d

. (11)

Since we have

∂

∂z0

∣∣∣
z0=d

= − sinh2 s

α

∂

∂t0

∣∣∣
t0=0

, (12)
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we can represent V1 more explicitly in the form

V1(r) =

∞∑

m=0

pmD(r− rm)− qmG(r− rm)

+

∞∑

m=0

pmD(r+ rm) + qmG(r+ rm),

where rm, pm and qm are given by

rm = zm|t0=0 = (0, 0, α coth(m+ 1)s),

pm = τmp0

( sinh s

sinh(m+ 1)s

)3

, qm = τm
p0
R

sinh s sinhms

sinh2(m+ 1)s
.

As pointed out by Poladian in [4], the potential V1 is unphysical because the total
charge on each sphere is non-zero. We have to neutralize them. Following Poladian’s
strategy, we introduce an additional potential by locating a point charge ±Q at the
center of the sphere B±, respectively. Then the corresponding image potential is

V2(r) := QU(r)|z0=d

= Q

∞∑

m=0

u0
m(G(r− rm)−G(r+ rm)),

where u0
k is defined by

u0
k = uk|t0=0 = τk

sinh s

sinh(k + 1)s
.

Now we choose the constant Q so that the potential V1 + V2 has no net flux on each
sphere. Then Q becomes

Q =

∞∑

j=0

qj

/ ∞∑

j=0

u0
m. (13)

Finally, we get the approximation for the potential V (r) by superposing the uniform
electric field and the aformentioned potentials:

V (r) ≈ −E0z + V1(r) + V2(r). (14)

3.2. Imaging rule for general multipoles. Here, we review Poladian’s imaging
framework for general multipole sources. We shall consider the case when a multipole
source Ylm is an initial image source. Note that, since the point charge potential G
and the dipole potential D satisfy G(r) = 1

4πY00 and D(r) = Y10(r), then the image
potentials (10) and (11) can been seen as special cases of potentials generated by
image multipole sources.

Before considering a general multipole source Ylm, let us first consider a sectoral
multipole Y|m|,m. If an initial sectoral multipole Y|m|,m is located at (0, 0, z0), the

image sequence is produced by Poladian’s rule as follows: u
(2k)
m Y|m|,m at (0, 0, z2k) and

−u
(2k+1)
m Y|m|,m at (0, 0,−z2k+1) for k = 0, 1, 2, .... Similarly, if an initial location is

(0, 0,−z0), then the following image sequence is produced: u
(2k)
m Y|m|,m at (0, 0,−z2k)

and −u
(2k+1)
m Y|m|,m at (0, 0,+z2k+1) for k = 0, 1, 2, .... Here, u

(k)
m satisfies a recursive

relation

u(k+1)
m = τ

( R

d+ zk

)2|m|+1

u(k)
m , k = 0, 1, 2, ... .

It can be explicitly solved as follows:

u(k)
m = τk

( sinh(s+ t0)

sinh(ks+ s+ t0)

)2|m|+1

.
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Let U±
m be the potential due to the image sequence when the initial position is

(0, 0,±z0), respectively. Then the potential U+
m is given by

U±
m(r) =

∞∑

k=0

u(2k)
m Y|m|,m(r∓ z2k)

− u(2k+1)
m Y|m|,m(r± z2k+1). (15)

Now we consider the general multipole source Ylm(r). Let U±
l,m be the potential

generated by all the image sources when an initial image multipole Ylm is located
at the center of the sphere B±, respectively. In [4], it was shown that the general
multipole Ylm can be represented as a derivative of the sectoral multipole Y|m|,m:

Ylm(r∓ r0) = D±
lm

[
Y|m|,m(r∓ z0)

]
, (16)

where the differential operator D±
lm is defined by

D±
lm[f ] =

(±1)l−|m|

(l − |m|)!Nl,m,|m|,m

∂l−|m|

∂z
l−|m|
0

f

∣∣∣∣
z0=d

.

Therefore, the image potential U±
l,m is represented as

U±
l,m(r) = D±

lm

[
U±
m(r)

]
. (17)

Actually, this is not the end. We need to be careful when we consider the case
m = 0. In this case, the total charges on each sphere B± may be non-zero. Since
this is unphysical, we have to neutralize them. We introduce an image potential by
locating a point charge −Q±

l at the center of the sphere B±, respectively. Here, the

constant Q±
l is to be determined. More specifically, we should modify U±

l,m as follows:

U±
l,m(r) = D±

lm

[
U±
m(r)

]
− δ0mQ±

l,1U
+
0 (r)|z0=d − δ0mQ±

l,2U
−
0 (r)|z0=d, (18)

where δlm is the Kronecker delta and the constant Q±
l,i is chosen so that the total flux

on each surface ∂B± is zero.

4. Proofs of the main results

Here, we prove our main results.

4.1. From image charges to TO. We prove the following lemma.

Lemma 1. (Connection formula) The potential ukG(r∓ zk) generated by the image
charges can be rewritten using TO basis as follows: for r ∈ R

3 \ (B1 ∪B2), we have

ukG(r∓ zk) =
sinh(s+ t0)

4πα

∞∑

n=0

[
τe−(2n+1)s

]k

× e−(2n+1)(s+t0)M0
n,±(r). (19)

Proof. We have from (1) that

z + iρ =
2α

eξ−iη − 1
+ α.

We also have the following identity:

coth t =
sinh 2t

cosh 2t− 1
=

2

e2t − 1
+ 1.
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Hence, by letting z(t) = (0, 0, α coth t), it follows that

1

|r− z(t)| =
∣∣z + iρ− α coth t

∣∣−1

=
1

2α

∣∣∣∣
1

eξ−iη − 1
− 1

e2t − 1

∣∣∣∣
−1

=
1

2α

∣∣∣∣
(e2t − 1)(eξ−iθ − 1)

e2t(eξ−2t−iθ − 1)

∣∣∣∣

=
sinh |t|

α

√
cosh ξ − cos η√

cosh(ξ − 2t)− cos η
. (20)

From (7), it is easy to check that we have

1√
cosh(ξ − 2t)− cos η

=
√
2

∞∑

n=0

e−(n+
1
2 )|ξ−2t|Pn(cos θ). (21)

Then, from (20), we get

α

sinh |t|
1

|r∓ z(t)| =
√
2
√

cosh ξ − cos θ

×
∞∑

n=0

e−(2n+1)te±(n+ 1
2
)ξPn(cos θ).

Therefore, from the fact that zk = z(ks + s + t0) and the definitions of uk, G and
Mm

n,±, the conclusion follows immediately. �

As explained in the main text, by applying the above lemma to (10) and using the
following identity

∞∑

k=0

[
τe−(2n+1)s

]k
=

e(2n+1)s

e(2n+1)s − τ
, (22)

we obtain the following result.

Theorem 2. Let U(r) be defined as in (10). Then U(r) can be rewritten using TO
basis as follows:

U(r) =
sinh(s+ t0)

4πα

∞∑

n=0

e−(2n+1)t0

e(2n+1)s − τ

(
M0

n,+(r)−M0
n,−(r)

)
.

4.2. Approximate analytical solution. Now we prove the following result which
states an approximate analytical solution for V (r).

Theorem 3. If |τ | ≈ 1, the following approximation for the electric potential V (r)
holds: for r ∈ R

3 \ (B1 ∪B2),

V (r) ≈ −E0z +

∞∑

n=0

Ãn

(
M0

n,+(r)−M0
n,−(r)

)
,

where the coefficient Ãn is given by

Ãn = E0
2τα

3− τ
× 2n+ 1− γ0

e(2n+1)s − τ
,

γ0 =
∞∑

n=0

2n+ 1

e(2n+1)s − τ

/ ∞∑

n=0

1

e(2n+1)s − τ
.
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Proof. We shall prove the result by applying our connection formula to Poladian’s
solution. From Theorem 2 and the following identity:

∂

∂z0

∣∣∣
z0=d

= − sinh2 s

α

∂

∂t0

∣∣∣
t0=0

,

we get

V1(r) = p0∂z0
∣∣
z0=d

U(r)

= E0
2τα

3− τ

∞∑

n=0

2n+ 1− coth s

e(2n+1)s − τ
(M0

n,+(r)−M0
n,−(r)). (23)

Similarly, we have

V2(r) = −QU(r)|z0=d = −Q

∞∑

n=0

M0
n,+(r)−M0

n,−(r)

e(2n+1)s − τ
. (24)

Now let us consider the constant Q. Its expression derived in (13) does not converge
for |τ | > es. So, here we derive the constant Q in a slightly different way. We impose
the following condition:

∫

∂B+

∂V1

∂n
dS +

∫

∂B+

∂V2

∂n
dS = 0.

Then, by using Theorem 9, we obtain

E0
2τα

3− τ

∑ 2n+ 1− coth s

e(2n+1)s − τ
= Q

∑ 1

e(2n+1)s − τ
. (25)

Hence, we see that

Q = γ0 − E0
2τα

3− τ
coth s.

Therefore, from (14), (23) and (24), the conclusion follows. �

4.3. Electric field at the origin and the polarizability. From (6), we can see
that the magnitude of the electric field at the gap is given by

E = −(∇V · êz)(0, 0, 0) = E0 −
23/2

α

∞∑

n=0

An(2n+ 1)(−1)n.

As mentioned in the main text, the absorption cross section σa is given by σa =
ωIm{p} where p is the polarizability. In [3], it was shown that the polarizability p is
given by

p =
√
2α2

∞∑

n=0

(2n+ 1)An.

Therefore, by replacing An by Ãn, we can derive approximate analytical expressions
for E and σa.

4.4. General multipole sources. Here we generalize our connection formula to
the case of general multipole source Ylm(r). As mentioned in the main text, it is
essentially used to develop the hybrid numerical scheme for plasmonic spheres.

We first consider the sectoral multipole Y|m|,m. We can represent it using TO basis
as follows.
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Lemma 4. For r ∈ R
3 \ (B+ ∪B−) (or |ξ| < s), we have

u(k)
m Y|m|m(r∓ zk) =

∞∑

n=|m|

gmn λm
n

[
τe−(2n+1)s

]k

× e−(2n+1)sMm
n,±(r),

where λm
n and gmn are given by

λm
n = [sinh(s+ t0)]

2|m|+1e−(2n+1)t0 ,

gmn =
1

α|m|+1

2|m|

√
(2|m|)!

√
(n+ |m|)!
(n− |m|)! .

Proof. For simplicity, we consider only u
(k)
m Y|m|,m(r − zk). From (9) and the fact

that ρ = |r− zk| sin θk, we have

Y|m|,m(r− zk) =
1√

(2|m|)!
P

|m|
|m| (cos θk)e

imφk

|r− zk||m|+1

= ωm
[sin θk]

|m|

|r− zk||m|+1
eimφk

= ωm
ρ|m|

|r− zk|2|m|+1
eimφk , (26)

where the constant ωm is defined by

ωm =
(−1)|m|(2|m| − 1)!!√

(2|m|)!
.

From (20) and the fact that zk = z(ks+ s+ t0), we see that

1

|r∓ zk|
=

sin(ks+ s+ t0)
√
cosh ξ − cos η

α
√

cosh(ξ ∓ 2(ks+ s+ t0))− cos η
.

We also have from (2) that ρ = α sin η/(cosh ξ − cos η). By substituting these expres-
sions for 1/|r− zk| and ρ into (26), we get

u(k)
m Y|m|,m(r− zk) = τk

sinh2|m|+1(s+ t0)√
(2|m|)!α|m|+1

√
cosh ξ − cos η

× 2|m|+1/2(−1)|m|(2|m| − 1)!![sin η]|m|

[2(cosh(ξ − 2(ks+ s+ t0))− cos η)]|m|+1/2
. (27)

By letting t = e−|ζ| and x = cos η in (8), it is easy to check that

(−1)m(2m− 1)!![sin η]m

[2(cosh ζ − cos η)]m+1/2
=

∞∑

n=m

e−(n+ 1
2
)|ζ|Pm

n (cos η).

By applying this identity to (27), we immediately obtain that

u(k)
m Y|m|,m(r− zk) = τk2|m| sinh

2|m|+1(s+ t0)√
(2|m|)!α|m|+1

×
√
2
√
cosh ξ − cos η

×
∞∑

n=|m|

e−(2n+1)(ks+s+t0)e(n+
1
2
)ξP |m|

n (cos η),

for |ξ| < s. Then, from the definition of Mm
n,+, the conclusion follows. �



SUPPLEMENTARY MATERIAL 9

Now we are ready to prove the connection formula for general multipole sources.
We have the following result.

Theorem 5. (Converting multipole images to TO) Assume l and m to be integers
such that l ≥ 1 and −l ≤ m ≤ l. Then the potential U±

lm can be rewritten in terms of
TO basis as follows: for r ∈ R

3 \ (B+ ∪B−),

U±
lm(r) =

∞∑

n=|m|

g±lmnDlm[λm
n ]

e2(2n+1)s − τ2
(e(2n+1)sMm

n,±(r)− τMm
n,∓(r))

− δ0m
Q̃±

l,1

2

∞∑

n=0

M0
n,+(r) + (−1)lM0

n,−(r)

e(2n+1)s + (−1)lτ

∓ δ0m
Q̃±

l,2

2

∞∑

n=0

M0
n,+(r)− (−1)lM0

n,−(r)

e(2n+1)s − (−1)lτ
,

where the operator Dlm and the constant Q±
l,i are given by

g±lmn =
(±1)l−|m|

α|m|+1

2|m|

√
(2|m|)!

√
(n+ |m|)!
(n− |m|)! ,

Nlm = (l − |m|)!
√(

l + |m|
l +m

)(
l + |m|
|m|+m

)
,

Q̃±
l,i =

∞∑

n=0

(±1)lg0nD±
l0[λ

0
n]

e(2n+1)s − (−1)l+iτ

/
∞∑

n=0

1

e(2n+1)s − (−1)l+iτ
.

Proof. By applying Lemma 4 to (15) and then using the following identity:

∞∑

k=0

[
τe−(2n+1)s

]2k
=

e2(2n+1)s

e2(2n+1)s − τ2
, (28)

we obtain

U±
m(r) =

∞∑

n=|m|

gmn λm
n

e(2n+1)sMm
n,±(r)− τMm

n,∓(r)

e2(2n+1)s − τ2
.

Then, by using (18), we get

U±
l,m(r) =

∞∑

n=|m|

gmn D±
lm[λm

n ]

e2(2n+1)s − τ2
(e(2n+1)sMm

n,±(r)− τMm
n,∓(r))

− δ0mQ±
l,1

sinh s

α

∞∑

n=0

e(2n+1)sM0
n,+(r)− τM0

n,−(r)

e2(2n+1)s − τ2

− δ0mQ±
l,2

sinh s

α

∞∑

n=0

(−τ)M0
n,+(r) + e(2n+1)sM0

n,−(r)

e2(2n+1)s − τ2
. (29)

Now we consider the following flux conditions:
∫

∂B+

∂(U±
l,m)

∂n
dS = 0,

∫

∂B−

∂(U±
l,m)

∂n
dS = 0. (30)

Then, by applying Theorem 9 to the above conditions and using (29), we obtain that

Q±
l,1

sinh s

α
=

Q̃±
l,1 ± Q̃±

l,2

2
, Q±

l,2

sinh s

α
= (−1)l

Q̃±
l,1 ∓ Q̃±

l,2

2
. (31)
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By rearranging terms and using the fact that Nlm = (l− |m|)!Nl,m,|m|,m, the conclu-
sion follows. �

5. Hybrid numerical scheme for many spheres

In this section, we show that the Cheng and Greengard hybrid method can be
extended to systems of plasmonic spheres by using the established connection between
the image method and TO.

5.1. Multipole expansion. Suppose that the spheres Bj , j = 1, 2, ..., J of radius R
are located disjointly in R

3 and let cj be the center of the sphere Bj . We also suppose
that all the spheres have the same permittivity ǫ and ǫ0 = 1. The classical way to
solve the many-spheres problem is Rayleigh’s multipole expansion method. Here, we
briefly review this method. Recall that the solid harmonics Ylm and Zlm are defined
by

Ylm(r) =
Y m
l (θ, φ)

rl+1
, Zlm(r) = rlY m

l (θ, φ).

Any solution to Laplace’s equation can be represented as a sum of Ylm and Zlm.
The potential V (r) can be represented as the following multipole expansion: for r

belonging to the region outside the spheres, we have

V (r) = −E0z +

J∑

j=1

∞∑

l=1

l∑

m=−l

Cj,lmYlm(r− cj), (32)

where the coefficients Cj,lm are unknown constants. For the inner region of Bj , we
can easily extend the above representation by imposing the continuity of the potential
on the surface ∂Bj . For r ∈ Bj , we have

V (r) =
∞∑

l=0

l∑

m=−l

Cj,lm
Zlm(r− cj)

R2l+1
.

Then, by using the addition formula for solid harmonics (see (35)) and the flux bound-
ary conditions, ∇V · n|ext = ǫ∇V · n|int on the surface ∂Bj , the infinite dimensional
linear system for unknowns Cj,lm can be derived. If all the spheres are well-separated,
the linear system can be truncated by a small order. But, if some of the spheres are
close to touching, the charge densities on their surfaces become more singular. So
more harmonics are required to describe them accurately.

5.2. Cheng and Greengard’s hybrid method. Now we briefly review Cheng and
Greengard’s hybrid method and then explain which part should be modified for sys-
tems of plasmonic spheres. To illustrate Cheng and Greengard’s method, let us con-
sider an example of three spheres (that is, J = 3). Suppose that the spheres B1

and B2 are closely located but well-separated from B3. Then the charge density on
∂B3 can be well represented by a low-order spherical harmonics expansion. But the
charge densities both on ∂B1 and ∂B2 may be singular, so it is better to use the image
method to describe their associated potentials. In view of this observation, Cheng
and Greengard introduced the modified representation: for r belongs to the region
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outside the spheres,

V (r) = −E0z +
2∑

j=1

∞∑

l=1

l∑

m=−l

C12,lmU12,lm(r)

+

∞∑

l=1

l∑

m=−l

C3,lmYlm(r− c3),

where U12,lm is the potential which includes all the image sources induced from the
multipoles Cj,lmYlm(r − cj) for j = 1, 2, due to the interaction between two spheres
B1 and B2. This representation for V (r) can be directly generalized to a system of
arbitrary number of spheres.

As mentioned previously, the image method cannot be applied for plasmonics. So,
our strategy for extending the hybrid method to systems of plasmonic spheres is to
convert the image series for the multipole sources to a TO-type solution.

5.3. Outline of the modified algorithm. Here, we explain the algorithm of the
modified hybrid scheme for the plasmonic spheres.

1 Write down the potential V (r) in the multipole expansion form as in (32).
2 If a pair of spheres, say Bj and Bk, are closely located (the separating distance
is smaller than a given number, for example, the radius R), then we rotate
the xyz-axis for both r− cj and r− ck so that the +z-axis is in the direction
of the axis of the pair of spheres, that is, cj − ck.

3 We also transform the multipole expansion for Bj into the rotated frame using
formula (36). Let us denote the coefficients in the rotated frame by C ′

j,lm.

4 By using the connection formula for general multipoles (Theorem 5), we mod-
ify the multipole expansion in the rotated frame by replacing C ′

j,lmYlm(r) with

TO solution C ′
j,lmU+

lm(r).

5 Do the same as in step 4 for Bk with U−
lm(r) instead of U+

lm(r).
6 We convert the TO-type expansion for Bj and Bk into the form of multipole
expansion using Theorem 8.

7 Rotate the axis of the coordinate system and transform the multipole expan-
sions into the original frame.

8 Perform steps 2-7 for all the pairs of closely spaced spheres.
9 We extend the resulting multipole expansion to the inner regions of Bj for
j = 1, 2, ..., J using Theorem 7.

10 By applying the addition formula (35) for Ylm and Zlm with the flux boundary
conditions, we construct the infinite dimensional linear system for unknowns
Cj,lm.

11 We solve the linear system after truncation.

6. Useful formulas

Here we collect many useful formulas and outline their proofs.

6.1. Potential inside two spheres. The following theorems are useful for finding
the potential inside two spheres when we have an explicit representation in the outside
region.

Theorem 6. Suppose that V satisfies the Laplace equation inside and outside the
two spheres B+ and B−. We also assume that the potential V is continuous on each
surface ∂B±. We also assume that, outside the spheres, the potential V is given by

V (r) =

∞∑

n=0

n∑

m=−n

amn,+Mm
n,+(r) + amn,−Mm

n,−(r),
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for r ∈ R
3\(B+∪B−) and some coefficients amn,±. Then the potential V (r) for r ∈ B±

is given by

V (r) =

∞∑

n=0

n∑

m=−n

(amn,±e
(2n+1)s + amn,∓)Mm

n,∓(r),

for r ∈ B±.

Proof. It is obvious that the series on the right-hand side satisfies the Laplace
equation. Using the following identity:

Mm
n,+(r)|∂B±

=
√
2
√
cosh ξ − cos ηe±(n+1/2)sY m

n (η, ϕ)

= e±(2n+1)sMm
n,−(r)|∂B±

,

one can easily check the continuity of the potential V on each surface ∂B± = {ξ =
±s}. Therefore, the proof is complete. �

Theorem 7. Suppose that V satisfies the Laplace equation inside and outside the
two spheres B+ and B−. We also assume that the potential V is continuous on each
surface ∂B±. Furthermore, we assume that, outside the spheres, the potential V is
given by

V (r) =

∞∑

l=0

l∑

m=−l

c+l,mYlm(r− r0) + c−l,mYlm(r+ r0),

for r ∈ R
3 \(B+∪B−) and some coefficients c±l,m. Then the potential V (r) for r ∈ B±

is given by

V (r) =

∞∑

l=0

l∑

m=−l

c+l,m
R2l+1

Zlm(r− r0) +
c−l,m
R2l+1

Zlm(r+ r0),

for r ∈ B±.

6.2. Multipole expansion of TO solution. When we apply the hybrid numerical
scheme, we need to convert TO solution into a multipole expansion.

Let us consider the following general potential W± in the form of TO solution:

W±(r) =

∞∑

n=0

n∑

m=−n

amn,±Mm
n,±(r), (33)

for some coefficients amn,±. We want to convert the potential W± into a multipole
expansion form:

W±(r) =





∞∑

l=0

n∑

m=−n

c±l,mYl,m(r∓ r0), r ∈ R
3 \B±,

∞∑

l=0

n∑

m=−n

d±l,mZl,m(r∓ r0), r ∈ B±.

(34)

where coefficients c±l,m and d±l,m are to be determined.

We have the following result for explicit formulas for c±l,m and d±l,m.

Theorem 8. (Conversion of TO solution into multipole expansion) The multipole
coefficients c±l,m are represented in terms of TO coefficients amn,± as follows:





c±l,m = 2αR2l+1
∞∑

n=|m|

amn,±g
m
n D±

lm[λm
n ],

d±l,m = 2α
∞∑

n=|m|

amn,∓e
−(2n+1)sgmn D±

lm[λm
n ].
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In view of (34), the total flux on the surface ∂B± is given as
∫

∂B±

∂(W+ +W−)

∂n
dS = 4πc±0,0.

So, we have the following flux formula from the above theorem.

Theorem 9. (Total flux formula) Let W± be the potential given as (33). Then the
total flux on the surface ∂B± is

∫

∂B±

∂(W+ +W−)

∂n
dS = 8πα

∞∑

n=0

a0n,±.

6.3. Coordinate transformation: translation and rotation. To apply Rayleigh’s
multipole expansion method, we need to represent a multipole source in translated or
rotated coordinates. The following identities are derived in [4].

Translation:
We have

Ylm(r− r′) =
∞∑

a=0

a∑

b=−a

wmwbwm−b

×Nlmab(−1)l+aZab(r<)Yl+a,m−b(r>), (35)

where r< is the smaller (in magnitude) of r and r′ and r> is the larger.

Rotation:
Suppose that the coordinate axes are rotated through Euler angle α, β, γ. The point

(θ, φ) becomes (θ̃, φ̃). The following result holds:

Ylm(θ, φ) =

l∑

M=−l

wmwMD
(l)
mM (α, β, γ)YlM (θ̃, φ̃), (36)

where

D
(l)
mM (α, β, γ) = e−iα+MγdlmM (β),

and

dlmM (β) = cos(β/2)2l+m−M sin(β/2)M−m

×
∑

t

√(
l +m

t

)(
l −M

t

)(
l +M

l +m− t

)(
l −m

l −M − t

)

× (−1)t tan(β/2)2t.

The summation in t is carried over max(0,m−M) ≤ t ≤ min(l +m, l −M).

6.4. Proof of Theorem 8. Let σ± be the charge density on the surface ∂B±, respec-
tively. Now let us decompose σ± using the spherical harmonics Y m

l (θ±, φ±), where
(r±, θ,±, φ±) are the spherical coordinates for r∓ r0. Let us write σ± as

σ± =
∞∑

l=0

l∑

m=−l

σ±
lmYlm(θ±, φ±).

Here, σ±
lm can be determined using the orthogonality of the spherical harmonics as

follows:

σ±
lm =

2l + 1

4π

1

R2

∫

∂B±

σ±Ylm(θ±, φ±) dS. (37)

To calculate the right-hand side of (37), we need to express σ± and Ylm(θ±, φ±) in
terms of TO harmonics Y m

n (η, ϕ).
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First, let us consider σ±. Let ’ext’(or ’int’) denote the limit from the outside (or
inside) the sphere, respectively. It is well-known that the electric field E = −∇W
satisfies the following boundary condition on ∂B±:

E · n|ext −E · n|int = σ±, on ∂B±,

where n is the outward unit normal vector to ∂B±. To use the above condition, we
need an explicit expression for W± in the region inside the spheres B±, respectively.
From Theorem 6, we have, for r ∈ B±,

W±(r) =

∞∑

n=0

n∑

m=−n

amn,±e
(2n+1)sMm

n,∓(r), (38)

respectively. So, by using (5), we obtain

σ± = −∂W

∂n

∣∣∣
ext

∂B+

+
∂W

∂n

∣∣∣
int

∂B+

= (2α)1/2[J(η)]−3/2

×
∑

n,m

amn,±(2n+ 1)e(n+
1
2
)sY m

n (η, ϕ), (39)

where J(η) is defined by

J(η) =
α

cosh s− cos η
.

Next, let us consider Y m
n (θ±, φ±). From (16) and Lemma 4, we have for r ∈ ∂B+,

Y m
l (θ±, ϕ±) = Rl+1Yl,m(r∓ r0),

= Rl+1D±
lm[Y|m|,m(r∓ z0)],

= Rl+1(2α)1/2[J(η)]−1/2

×
∞∑

n=0

gmn D±
lm[λm

n ]e−(n+1/2)sY m
n (η, ϕ). (40)

Now, we are ready to compute σ+
lm. By substituting (39) and (40) into E(37), we

obtain

σ±
lm =

2l + 1

4π

1

R2

∫ 2π

0

∫ π

0

σ±Ylm[J(η)]2 sin ηdηdϕ,

= (2l + 1)2αRl−1
∞∑

n=|m|

amn,±g
m
n D±

lm[λm
n ]. (41)

It is easy to check that the potential generated by the charge densities σ± =∑
σ±
lmYlm is given as follows: for r ∈ R

3 \ (B+ ∪B−),

W±(r) =
∑

l,m

σ±
lm

Rl+2

2l + 1
Ylm(r∓ r0)

By comparing the above expression and (34), we immediately arrive at

c±l,m = σ±
lm

Rl+2

2l + 1
.

Then, the formula for c±l,m follows from (41). For the case of d±l,m, it can be proved
in a similar way. �
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