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FAST MAGNETIC RESONANCE ELECTRICAL IMPEDANCE

TOMOGRAPHY WITH HIGHLY UNDERSAMPLED DATA ∗
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Abstract. This paper describes the mathematical grounds for a highly undersampled Magnetic
Resonance Electrical Impedance Tomography (MREIT) method, with the aim of visualizing the dy-
namic changes in electrical tissue properties that occur in response to physiological activity. MREIT
with fully sampled MR data (satisfying the Nyquist criterion) has been shown to be capable of high-
resolution conductivity imaging in numerical simulations and in animal experiments. However, when
the data are undersampled (violating the Nyquist criterion for reducing data acquisition time), it is
difficult to extract the component of magnetic flux density that is induced by boundary injection
currents, and it is the data from this component that are used in performing the standard MREIT
algorithm. Here, we show that it is possible to localize small conductivity perturbations using high-
ly undersampled MR data. We perform various numerical simulations to support our theoretical
results.
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1. Introduction. Magnetic resonance electrical impedance tomography (MRE-
IT) is a recently developed MR-based imaging method that enables high-spatial-
resolution imaging of electrical conductivity distribution at a frequency below a few
kHz [18, 19, 26]. The spatial contrast information gained in this manner appears to
be unique as no other method, including electrical impedance tomography (EIT), has
managed to produce high-resolution conductivity images in realistic environments.
The drawback of MREIT is its low temporal resolution due to the slow data acqui-
sition process, which is unavoidable because of the constraints of imaging obtained
using an MR scanner; i.e., the MR data acquisition time is roughly proportional to the
number of time-consuming phase-encoding steps in k-space (or the spatial frequency
domain)[21]. Although EIT enables data acquisition with high temporal resolution,
when its inherent ill-posed nature is taken into consideration, it is difficult to probe
small local conductivity changes located away from the measuring positions.

The aim of this study was to develop a highly undersampled MREIT method for
visualizing the dynamic changes in electrical tissue properties that result from tissue
physiological activity[4, 5, 7, 10, 15, 25]. The poor temporal resolution of MREIT
can be greatly improved by using highly undersampled MRI data that skip many
phase encoding lines in the k-space, given the inherent tradeoff between spatial and
temporal resolutions. Accordingly, when undersampled k-space data are used, it will
be necessary to incorporate some prior information regarding the target image.

Some difficulties arise in using highly undersampled MR data for MREIT re-
construction. In standard MREIT reconstruction, it is necessary to measure the
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z-component of magnetic flux density (Bz) induced by an external current injected
through surface electrodes, where the z-axis is assumed to be in the same direction
as the main magnetic field of the scanner. MREIT reconstruction is based on the
fact that Bz reflects the conductivity distribution σ inside the imaging object Ω via
Ampére’s law ∇ × B ∝ σE, where E is the corresponding electrical field. The Bz

data can be extracted from the inverse Fourier transform of fully sampled k-space MR
data given by

S(kx, ky, z0) =

∫

Ω∩{z=z0}

M(x, y, z)eicBz(x,y,z0)ei2π(kxx+kyy)dxdy,

where M(x, y, z) is a conventional MR magnitude image and c is a known constant.
Here, any systematic phase artifacts were ignored. However, Bz cannot be extracted
from a highly undersampled MRI data. The undersampled k-space data are obtained
by skipping the data of the time-consuming phase-encoding direction (e.g. y-direction)
by the factor of N . In accordance with the Poisson summation formula [21], only N -
folded data of MeicBzare obtained as a nonlinear function of Bz. It is impossible to
extract Bz for the folded data, and it is difficult to handle the inverse problem of
conductivity imaging using the N -folded data of MeicBz alone. A careful analysis is
necessary to express conductivity in terms of the undersampled MR data.

In this paper, we show that it is possible to use highly undersampled data to
localize conductivity changes in time, under the assumption that the time-difference
conductivity is sparsely supported within an imaging object. We find that the time
derivative from the N -folded data of MeicBz provides location information for con-
ductivity changes by using an asymptotic expansion of the time derivative of Bz,
in which the magnitude decays quadratically with distance from the support. We
perform various numerical simulations to test the feasibility of the proposed method.

2. Basic imaging setup of undersampled MREIT. Let the imaging object
such as human body occupy a three-dimensional domain Ω ⊂ R

3 with a smooth
connected boundary ∂Ω. Assume that σ(r, t) is an isotropic conductivity depending
on position r = (x, y, z) ∈ Ω and time t. The goal is to detect the time differential of
the conductivity, ∂σ

∂t , using MREIT technique with a highly undersampled MR data
violating Nyquist criteria [21].

Let us begin with briefly reviewing the process of data acquisition [16, 17] in
MREIT to explain difficulties of extracting the data from a highly undersampled
k-space data. Let the direction of the main magnetic field of MRI scanner be the
z-axis. In MREIT, we attach a pair of surface electrodes E+ and E− on ∂Ω to
inject a current of I mA with the pulse width of Tc during the MR data collection
process, as shown in Figure 2.1. The injection current produces the internal electrical
field (E = (Ex, Ey, Ez)), current density (J = (Jx, Jy, Jz)) and magnetic flux density
(B = (Bx, By, Bz)) inside Ω. The z-component ofB, Bz, produces an extra phase shift
in the MR signal which can be described as follows: For each slice Ωz0 := Ω∩{z = z0},
the k-space MR signals influenced by Bz can be expressed as

S(kx, ky, z0, t) =

∫

Ωz0

M(x, y, z0)e
iγTcBz(x,y,z0,t)ei2π(kxx+kyy)dxdy, (2.1)

where M(x, y, z) > 0 is a conventional MR magnitude image and γ = 26.75 ×
107rad/T·s, the gyromagnetic ratio of hydrogen. Here, all systematic phase artifacts
were ignored.
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Fig. 2.1. A current is injected to the imaging object Ω through a pair of electrodes attached on
∂Ω. (a) The imaging object with electrodes attached on its boundary. (b) The cross-sectional image
of Ω with the electrode configuration.

In MRI, the spacial resolution of M is determined by the k-space sampling. As-
sume that we apply the phase encoding gradient in y-direction and the frequency
encoding gradient in x-direction. Assume that the MR image M is displayed in the
region {(x, y) : − FOV

2 < x, y < FOV
2 } with the pixel width ∆x = ∆y, where FOV

denotes the field-of-view. According to the Nyquist sampling theorem [21], this image
resolution corresponds to the k-space sampling distance ∆kx = ∆ky = 1/FOV and
the maximum spatial frequency being 1/∆x. For simplicity, assume FOV = 1. In
the absence of the injection current, the discrete image of M , FOV

∆x × FOV
∆x image ma-

trix, can be obtained by the inverse discrete Fourier transform with the fully sampled
k-space data

{S(m∆kx, n∆ky, z0, t) : m,n = 0,±1, · · · ,± 1

2∆y
}.

The data acquisition speed is roughly proportional to 1
2∆ky

in the time-consuming

phase encoding direction (y-direction). For fast MREIT, we reduce the scan-time
significantly by using N -times undersampled k-space data

{S(m∆kx, jN∆ky, z0, t) : m = 0,±1, · · · ,± 1

2∆y
, j = 0,±1, · · · ,± 1

2N∆y
}.

From the Poisson summation formula [21], the inverse Fourier transform of N -times
undersampled k-space data in (2.1) produces the following N -folded image:

MN (x, y, z0, t) :=

N−1∑

j=0

M(x, y +
j

N
, z0) e

iγTcBz(x,y+
j

N
,z0,t). (2.2)

All reconstruction methods in MREIT use the full sampling k-space data which
is the case of N = 1. In this case, the Bz data is extracted easily from M1 from the

identity (2.2), because the imaginary part of 1
γTc

ln
(

M1

M

)
directly gives a wrapped

Bz data. With this Bz data, MREIT methods [18, 19, 20, 22, 23, 26] reconstruct the
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conductivity σ using the Biot-Savart law:

1

µ0
Bz(r, t) =

∫

Ω

(r− r′)× (σ(r′, t) ∇u(r′, t))
4π|r− r′| · ezdr′ +

1

µ0
H(r) for r ∈ Ω, (2.3)

where ez = (0, 0, 1), µ0 = 4π × 10−7H/m is the permeability of the free space and
H is a harmonic function in Ω, representing the z-component of the magnetic field
induced by the current flux density on electrodes and lead wires [23]. Here, u(r, t)
satisfies





∇ · (σ(r, t)∇u(r, t)) = 0 for r ∈ Ω,

− σ(r, t)
∂u

∂n
(r, t) = g(r) for r ∈ ∂Ω,

(2.4)

where g ∈ L2
⋄(∂Ω) = {ψ ∈ L2(∂Ω) :

∫
∂Ω
ψds = 0} represents the injection current

through the pair of the surface electrodes, n denotes the unit outer normal vector to
∂Ω.

However, with undersampled k-space data MN (N ≥ 2), it may not be possible
to extract Bz from the formula (2.2). Let us see this non-uniqueness for the case of
N = 3. It is easy to see that there are infinitely many φ such that

0 =

2∑

j=0

M1(x, y +
j

3
, z0)

(
1− eiγTcφ(x,y+

j

3
)
)

for (x, y, z0) ∈ Ωz0 .

Then, if Bz satisfies (2.2), so does for Bz+φ. This non-uniqueness with the nonlinear
relation between Bz and MN is the major difficulty to deal with the inverse problem
corresponding to the undersampled MREIT.

3. Main results. In this section, we show feasibility of the undersampled M-
REIT in recovering ∂σ

∂t under its sparsity constraint. We assume that σ(r, t) is of the
following form:

σ(r, t) = σ(r, 0) + η(t)χD(r) for r ∈ Ω, t > 0,

where D is a smooth subdomain of Ω, χD is the characteristic function of D, and η
is a C1 function such that η′(t) 6= 0 and η(0) = 0. We also assume that there exists
a positive constant Λ such that

1

Λ
≤ σ(r, t) ≤ Λ for r ∈ Ω and t > 0. (3.1)

Denote Dz0 = Ωz0 ∩D. Assume that M in (2.1) satisfies

1

c
≤M(x, y, z0) ≤ c for (x, y, z0) ∈ Ωz0 , (3.2)

where c is a positive constant. Assume that we have the reference data M1 at time
t = 0, which is obtained from a fully sampled k-space data at a fixed time period. Let
N ≥ 2. The goal is to detect Dz0 from the N -folded data MN for t > 0.

Taking the time derivative on (2.2), we obtain

∂MN

∂t
(x, y, z0, t) =

N−1∑

j=0

M1(x, y +
j

N
, z0)

∂Bz

∂t
(x, y +

j

N
, z0, t). (3.3)



Fast MREIT with highly undersampled data 5

Let us introduce a function BN defined by:

BN (x, y, z0, t) =
1

iγTc

∂
∂tMN (x, y, z0, t)

M1(x, y, z0, 0)
for (x, y, z0) ∈ Ωz0 . (3.4)

Note that B1, in the special case when N = 1, is a wrapped version of ∂Bz

∂t . We will
explain how the data BN probes

DN
z0 = {(x, y, z0) ∈ Ωz0 : (x, y − j

N
, z0) ∈ Dz0 , j = 0, 1, · · · , N − 1}.

In the next section, we provide a rigorous analysis for the simple case of D.

3.1. Estimation of the folded domain DN
z0 . For a rigorous analysis, let us

restrict ourselves to the simplest case where σ(r, 0) ≡ 1 for r ∈ Ω and D is a simply
connected domain. To be precise, D is expressed as

D = r0 + ǫD̂,

where D̂ is a smooth domain containing the origin, ǫ > 0 is a small scaling factor, and
r0 = (x0, y0, z0) ∈ Dz0 . We also assume that L := dist(D, ∂Ω) > 0. For each t > 0,
let v(·, t) ∈ H1

loc(R
3) be a function solving the equation





∆v = 0 in R
3 \ D̂,

∆v = 0 in D̂,

v+ − v|− = 0 on ∂D̂,

(1 + η(t))
∂v+

∂n
− ∂v

∂n

−

= 0 on ∂D̂,

v(ξ)− ξ → 0 as |ξ| → +∞,

(3.5)

where ξ = r−r0

ǫ is a local variable, v+ = v|D̂ and v− = v|Ω\D̂. Let Φ(r) = − 1
4π|r| be

the fundamental solution. We introduce

Γ1
D̂
(ξ, t) = SD̂[∇⊥

ξ v(ξ, t)n](ξ),

Γ2
D̂
(ξ, t) = SD̂

[
∇SD̂

[
∇⊥

ξ

∂

∂t
(η(t)v(ξ, t))∇u(r0, 0) · n

]
· n
]
(ξ),

where u(r, t) is the solution of (2.4) with the homogeneous reference conductivity
σ(r, 0) ≡ 1 for r ∈ Ω and SΩ[ψ] is the single layer potential defined by

SΩ[ψ](r) =

∫

∂Ω

Φ(r− r′)ψ(r′)dSr
′ for r ∈ R

3 \ ∂Ω.

Let Dd = {r ∈ Ω : dist(r, D) < d} for a fixed positive number d satisfying

√
ǫ < d <

diam(Ωz0)

3N
. (3.6)

Now, we are ready to state our main theorem, which allows to detect N -folded
DN

z0 from a simple thresholding.
Theorem 3.1. Assume that d satisfies the condition (3.6).
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(i) If r ∈ DN
z0 , then

1

µ0
BN (r, t) =

1

iγTc

M1(r♯, t)

M1(r, 0)
∇u(r0, 0)·

[
−η′(t)Γ1

D̂

(
r♯ − r0

ǫ
, t

)
+ η(t)Γ2

D̂

(
r♯ − r0

ǫ
, t

)]
ǫ+O(ǫ3),

(3.7)

where r♯ is the point in Dz0 such that r♯ − r = (0, n
N , 0) for some integer n.

(ii) There exists a positive constant C independent of ǫ such that
∣∣∣∣
1

µ0
BN (r, t)

∣∣∣∣ ≤ Cǫ3, (3.8)

for r ∈ (Ω \Dd) ∩ {z = z0}.

The proof of Theorem 3.1 relies on the following Lemma, which provides an
estimation of ∂Bz

∂t both inside and outside of D.
Lemma 3.2. Under the assumption of Theorem 3.1, we have the followings:
(i) For r ∈ D, we have

1

µ0

∂Bz

∂t
(r, t) = ∇u(r0, 0) ·

[
−η′(t)Γ1

D̂

(
r− r0

ǫ
, t

)
+ η(t)Γ2

D̂

(
r− r0

ǫ
, t

)]
ǫ+O(ǫ3).

(ii) For r ∈ Ω \Dd, we have
∣∣∣∣
1

µ0

∂Bz

∂t
(r, t)

∣∣∣∣ ≤ C
ǫ3

[d+ dist(r, Dd)]2
,

where C is a positive constant independent of ǫ.
Proof. (i) A simple integration by parts yields

u(r, t) = −η(t)
∫

D

∇r
′Φ(r− r′) ·∇u(r′, t)dr′−DΩ[f(·, t)](r)+SΩ[g](r) r ∈ Ω, (3.9)

where f(·, t) = u(·, t)|∂Ω and DΩ[ψ] is the double layer potential of ψ ∈ L2(∂Ω) given

by DΩ[ψ](r) =
∫
∂Ω

∂Φ(r−r
′)

∂n
r
′

ψ(r′)dSr
′ for r ∈ R

3 \ ∂Ω. Taking the time derivative on

both sides of the identity (3.9), we obtain

−∂u
∂t

(r, t) =

∫

D

∇r
′Φ(r− r′) · ∇r

′

[
η′(t)u(r′, t) + η(t)

∂u

∂t
(r′, t)

]
dr′

+DΩ

[
∂f

∂t
(·, t)

]
(r, t) for r ∈ Ω.

(3.10)

Denoting J(r, t) = −σ(r, t)∇u(r, t), we have

∂J

∂t
(r, t) = −∂σ

∂t
(r, t)∇u(r, t)− σ(r, t)∇∂u

∂t
(r, t). (3.11)

Substituting σ(r, t) = 1 + η(t)χD and (3.10) into (3.11), we get

∂J

∂t
(r, t) = [1 + η(t)χD]

∇
∫

D

∇r
′Φ(r− r′) · ∇r

′

[
η′(t)u(r′, t) + η(t)

∂u

∂t
(r′, t)

]
dr′

− η′(t)∇u(r, t)χD + [1 + η(t)χD]∇DΩ

[
∂f(·, t)
∂t

]
(r, t).

(3.12)
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From (2.3), ∂Bz

∂t is expressed as

∂Bz

∂t
(r, t) = −µ0

∫

Ω

∇r
′Φ(r− r′)× ∂

∂t
J(r′, t) · ezdr′. (3.13)

Substituting the identity (3.12) into (3.13) and denoting ∇⊥ = ( ∂
∂y ,− ∂

∂x , 0), we get

1

µ0

∂Bz

∂t
(r, t) =

3∑

j=1

Ij(r, t) +
3∑

j=1

Rj(r, t) for r ∈ Ω, (3.14)

where

I1(r, t) := −η′(t)
∫

D

∇r
′Φ(r− r′) · ∇⊥

r
′u(r′, t)dr′,

I2(r, t) := η(t)η′(t)

∫

D

∇r
′Φ(r− r′) · ∇⊥

r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇u(r̃, t)dr̃dr′,

I3(r, t) := η2(t)

∫

D

∇r
′Φ(r− r′) · ∇⊥

r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇∂u

∂t
(r̃, t)dr̃dr′,

R1(r, t) := η′(t)

∫

Ω

∇r
′Φ(r− r′) · ∇⊥

r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇u(r̃, t)dr̃dr′,

R2(r, t) := η(t)

∫

Ω

∇r
′Φ(r− r′) · ∇⊥

r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇∂u

∂t
(r̃, t)dr̃dr′,

R3(r, t) :=

∫

Ω

[1 + η(t)χD]∇r
′Φ(r− r′) · ∇⊥DΩ

[
∂f(·, t)
∂t

]
(r′)dr′.

Now, we use the inner expansion in [1, 2, 3] to get the following pointwise expan-
sion

u(r, t) = u(r0, 0) + ǫv (ξ, t) · ∇u(r0, 0) +O(ǫ2) for r ∈ D, (3.15)

where ξ = r−r0

ǫ . Hence, we have

∇u(r, t) = ǫ∇rv(ξ, t)∇u(r0, t) +O(ǫ) for r ∈ D

and

∇⊥u(r, t) = ∇⊥
ξ v(ξ)∇u(r0, 0) +O(ǫ) for r ∈ D.

Substituting (3.14) into Ij (j = 1, 2, 3), we obtain

3∑

j=1

Ij(r, t)(r, t) = −η′(t)∇u(r0, 0) ·
∫

D

∇⊥
r
′v

(
r′ − r0

ǫ
, t

)
∇r

′Φ(r− r′)dr′

+ η(t)∇u(r0, 0)·∫

D

∫

D

∇r̃

∂

∂t

[
η(t)v

(
r̃− r0

ǫ
, t

)]
∇⊥

r
′∇r̃Φ(r− r′)∇r

′Φ(r− r′)dr̃dr′.

(3.16)

Next, we estimate
∑3

j=1 Rj(r, t). For R1, we have
∣∣∣∣∇⊥

r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇⊥u(r̃, t)dr̃

∣∣∣∣ =
∣∣∣∣
∫

D

∇⊥
r
′∇r̃Φ(r

′ − r̃) · ∇⊥u(r̃, t)dr̃

∣∣∣∣

≤ 3

8πL3

∫

D

|∇⊥u(r̃, t)|dr̃ ≤ 3|D̂|1/2ǫ3/2
8πL3

‖∇⊥u(·, t)‖L2(D) for r′ ∈ ∂Ω.

(3.17)
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Here, the last inequality comes from Jensen’s inequality and the fact that |D| = ǫ3|D̂|.
From Lemma 1 in [6], there exists a constant C1 > 0, independent of ǫ, such that

‖∇⊥u(·, t)‖L2(D) ≤ ‖∇⊥u(·, 0)‖L2(D) + ‖∇⊥[u(·, t)− u(·, 0)]‖L2(D)

≤ [sup
r∈D

|∇⊥u(r, 0)|+ C1]|D̂|1/2ǫ3/2

≤ [C2‖g‖L2(∂Ω) + C1]|D̂|1/2ǫ3/2,

(3.18)

where C2 is a constant independent of ǫ. The last inequality of (3.18) comes from the
standard interior estimate [9]. Substituting (3.18) into (3.17), we obtain that
∣∣∣∣∇⊥

r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇⊥u(r̃, t)dr̃

∣∣∣∣ ≤
3|D̂|
8πL3

[C2‖g‖L2(∂Ω) + C1]ǫ
3 for r′ ∈ ∂Ω.

Hence, we have

|R1(r, t)| ≤ |η′(t)| 3|D̂|
8πL3

[
C2‖g‖L2(∂Ω) + C1

]
SΩ[1](r)ǫ

3 for r ∈ Ω. (3.19)

Next, we will estimate R2. Note that ∂u
∂t satisfies the following equation





∇ ·
(
(1 + η(t)χD)∇∂u

∂t

)
= −∇ · (η′(t)χD∇u) in Ω,

∇∂u

∂t
· n|∂Ω = 0.

(3.20)

It follows from (3.18) and (3.20) that
∥∥∥∥∇

∂u

∂t
(·, t)

∥∥∥∥
L2(D)

≤ Λ |η′(t)| ‖∇u‖L2(D)

≤ Λ |η′(t)| [C2‖g‖L2(∂Ω) + C1]|D̂|1/2ǫ3/2,
(3.21)

where Λ is the positive constant given in (3.1).
By repeating the arguments as in estimating R1, we obtain

|R2(r, t)| ≤ Λ2 |η′(t)| 3|D̂|
8πL3

[C2‖g‖L2(∂Ω) + C1]SΩ[1](r)ǫ
3 for r ∈ Ω. (3.22)

It remains to estimate R3. From the outer expansion in [3], we have

u(r, t) = u(r, 0)− ǫ3∇u(r0, 0) · Q(λ(t), D̂)∇N (r, r0) +O(ǫ4) for r ∈ ∂Ω,

where Q(λ, D̂) = (qij)
d
i,j=1 is the polarization tensor given by

qij =

∫

∂D̂

(λ(t)I −K∗
D̂
)−1[ni](ξ)ξjdσξ,

with λ(t) = η(t)+2
2η(t) and K∗

D̂
φ(r) =

∫
∂D̂

〈r′−r,nr〉
4π|r−r

′|3φ(r
′)dSr

′ , the dual of the trace operator

[8] and N is the Neumann function, the solution of




∆N (r, r′) = δ(r− r′) for r ∈ Ω,

∂N
∂nr

|∂Ω = − 1

|∂Ω| ,∫

∂Ω

N (r, r′)dSr
′ = 0 for r ∈ Ω,

(3.23)
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Hence, we have

|R3(r, t)| =
∣∣∣∣SΩ

[
∇⊥DΩ

[
∇u(r0, 0) ·

∂Q
∂t

(λ(t), D̂)∇N (r, r0)

]
· n
]∣∣∣∣ ǫ

3 +O(ǫ4). (3.24)

Therefore, the proof of (i) follows from (3.16), (3.19), (3.22) and (3.24) with the
change of variable ξ = r−r0

ǫ .
(ii) Let r ∈ Ω \Dd. Using Jensen’s inequality, we have

|I1(r, t)| ≤ |η′(t)| 1

4πd2
‖∇⊥u(·, t)‖L1(D) ≤ |η′(t)| |D|1/2

4πd2
‖∇⊥u(·, t)‖L2(D).

From (3.18), we obtain

|I1(r, t)| ≤ |η′(t)| |D̂|
4πd2

[C2‖g‖L2(∂Ω) + C1]ǫ
3. (3.25)

From Calderon-Zygmund estimate [11], we have

(∫

D

∣∣∣∣∇⊥
r
′

∫

D

∇r̃Φ(r
′ − r̃) · ∇u(r̃, t)dr̃

∣∣∣∣
2

dr′

)1/2

≤ C3‖∇u(·, t)‖L2(D),

where C3 is a constant independent of ǫ. Hence, for r ∈ Ω \Dd, we have

|I2(r, t)| ≤ |η(t)| |η′(t)| C3|D̂|
4πd2

[C2‖g‖L2(∂Ω) + C1]ǫ
3. (3.26)

Same method can be used to estimate I3(r, t) for r ∈ Ω \Dd:

|I3(r, t)| ≤ η2(t) |η′(t)| C3Λ|D̂|
4π[d+ dist(r, Dd)]2

[C2‖g‖L2(∂Ω) + C1]ǫ
3. (3.27)

The proof of (ii) follows from (3.25), (3.26), (3.27), (3.19), (3.22) and (3.24). This
completes the proof.

Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1 Dividing iγTcM1(r, 0) on both sides of (3.3), we obtain

BN (r, t) =
1

iγTc

N−1∑

j=0

M1(r+ aj , t)

M1(r, 0)

∂Bz

∂t
(r+ aj , t), (3.28)

where aj = (0, j
N , 0) for j = 0, 1, 2, · · · , N − 1.

(i) For r ∈ DN
z0 , due to the periodic structure, there exists n such that r♯ ∈ Dz0

and r+ aj ∈ Ωz0 \ (Dd ∩ {z = z0}) for j = 0, 1, 2, · · · , N − 1 and j 6= n. Hence, from
(3.28) we obtain

BN (r, t) =
M1(r♯, t)

iγTcM1(r, 0)

∂Bz

∂t
(r♯, t) +

N−1∑

j=0,j 6=n

M1(r+ aj , t)

iγTcM1(r, 0)

∂Bz

∂t
(r+ aj , t). (3.29)

(3.7) follows from the identity (3.29) and Lemma 3.2.
(ii) Let r ∈ (Ω \Dd)∩ {z = z0}, using the periodic structure and the assumption

that d < FOV
3N , we have r+ aj ∈ (Ω \Dd) ∩ {z = z0} for j = 0, 1, 2, · · · , N − 1. (3.8)

follows from the identity (3.28), Lemma 3.2 and the assumption (3.2). This completes
the proof. �
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3.2. A remark on Theorem 3.1. According to Theorem 3.1, the N -folded
DN

z0 can be detected from the method of thresholding:

DN
z0 ≈

{
r ∈ Ωz0 :

∣∣BN (r, t)
∣∣ ≥ Υt

}
, (3.30)

where Υt is a suitably chosen thresholder. Although the theoretical results are ob-
tained under the assumption that the reference conductivity is homogeneous and D
is a single anomaly, various numerical simulations show that the proposed detection
method works well for very general cases. In Figure 3.1, we test the proposed method
when the reference conductivity σ(r, 0) is inhomogeneous and D consists of two sub-
domains D1 and D2. We set Υt = 10% × ‖B4(·, t)‖L∞(Ωz0

). Comparing Figure 3.1

(b) and (d), we know that this approach for detecting the D4
z0 works very well even

for the general cases.

1D 2D

(a) (b)
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Fig. 3.1. Detection of D4
z0

when the reference conductivity σ(r, 0) is inhomogeneous and D

consists of two subdomains D1 and D2. (a) The reference conductivity distribution and configuration
of two subdomains D1 and D2 . (b) Configuration of D4

z0
. (c) The image of B4. (d) The threshold

image of B4 by setting Υt = 10%× ‖B4(·, t)‖L∞(Ωz0
).

3.3. Localization of Dz0 from MN in general case. From the arguments in
the previous sections, the folded domain DN

z0 can be estimated from (3.30). It remains
to select Dz0 out of DN

z0 . The selection is possible with the use of the governing
equations (2.3), (2.4), and (3.3) .

To be precise, denote

DN,j
z0 = {r ∈ DN

z0 : r+ (0,
j

N
, 0) ∈ Dz0} for j = 0, 1, · · · , N − 1. (3.31)
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Set σj(x, y, z0, t) = σ(x, y, z0, 0) + η(t)χDN,j
z0

. Using the method in [23], we generate

the simulated MN
j from the formula (2.2) with the conductivity σj . We select a

number j̃ out of the set {0, 1, · · · , N − 1} which minimizes the misfit ‖MN (·, t) −
MN

j (·, t)‖L2(Ωz0
). Then Dz0 ≈ DN,j̃

z0 .

We summarize the selection procedures as follows:

Step 1. At t = 0, we get the data of M1(r, 0) and Bj
z(r, 0) (j = 1, 2) on the

slice Ωz0 , and reconstruct σ(r, 0) for r ∈ Ωz0 by using the harmonic Bz

algorithm [18].
Step 2. Fix N ≥ 2, and get the corresponding skipped k-space data for t > 0.

Generate MN (r, t) by taking inverse Fourier transform.
Step 3. Compute BN (x, y, z0, t) in (3.4).
Step 4. For a given thresholder Υt, segment the N -folded region DN

z0 by (3.30).
Step 5. For each DN,j

z0 , j = 0, 1, 2, · · · , N − 1, set σj(r, t) = σ(r, 0) + η(t)χDN,j
z0

to generate the simulated data MN
j .

Step 6. Select j̃ = argminj∈{0,1,··· ,N−1} ‖MN (·, t) −MN
j (·, t)‖L2(Ωz0

) and Dz0 =

DN,j̃
z0 .

4. Numerical experiments. To validate the proposed algorithm, we perform
numerical experiments by constructing a modified 3D Shepp and Logan phantom
[24]. This phantom is constructed by 11 ellipsoids using COMSOL 3.5a. Figure 4.1
(a) illustrates the geometry of this phantom. In Figure 4.1 (b), we cut a half of the out
layers of this phantom to see the internal structures. There are two subdomains Dj

(j = 1, 2) where the conductivity changes occur; in Figure 3.1 (a) we show the position
of Dj through a slice Ωz0 of Ω. We assume that σ(r, t) = σ(r, 0)+0.04tχD1

+0.02tχD2
,

where σ(x, y, z0, 0) is illustrated in Figure 4.1 (c). Two pairs of electrodes E±
j (j = 1, 2)

are attached to ∂Ω. Through E±
j we inject a sinusoidal current with amplitude of

5mA (see Figure 2.1). The z-th component of the magnetic flux density B, Bz, can

(a) (b)
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(c)

Fig. 4.1. Modified 3D Shepp and Logan phantom; (a) geometry of the phantom; (b) the internal
structures of the phantom; (c) conductivity distribution in the cross-sectional slice Ωz0 at t = 0.

be generated using the forward solver proposed in [12, 21]. Particularly, for t = 0, we
inject two linearly independent current Ij through two pairs of surface electrodes E±

j .

The generated Bj
z(x, y, z0, 0) (j = 1, 2) are respectively shown in Figure 4.2 (a) and

(b). Using the harmonic Bz algorithm [18], we reconstruct the reference conductivity
distribution σ(x, y, z0, 0); the reconstruction result is shown in Figure 4.2 (c).

For t > 0, we first generate the k-space signal S(kx, ky, z0, t) by taking Fourier
transform of M1(x, y, z0, t) which can be calculated from formula (2.2). We skip
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Fig. 4.2. Reconstruction of the reference conductivity using harmonic Bz algorithm: (a) the
image of B1

z(x, y, z0, 0); (b) the image of B2
z(x, y, z0, 0); (c) the reconstructed conductivity distribu-

tion σ(x, y, z0, 0).

S(kx, ky, z0, t) by N steps in the y direction, and generate SN (kx, ky, z0, t). Figure
4.3 illustrates the fully sampled k-space data S1(kx, ky, z0, 0) and undersampled k-
space data for SN (kx, ky, z0, 1) by a factor of N = 4. If we take inverse Fourier
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Fig. 4.3. MR k-space data: (a) and (c) show the real and imaginary parts of S1(kx, ky , z0, 0)
respectively; (b) and (d) show the real and imaginary parts of S4(kx, ky , z0, 1).

transform of S4(kx, ky, z0, 1), we will obtain the 4-folded complex magnitude image
M4(x, y, z0, 1) shown in Figure 4.4. Using these images and the formula (3.4), B4 can
be obtained in Figure 4.5 (a). By setting Υ1 = 10%×‖B4(·, 1)‖L∞(Ωz0

), we could get
the threshold results shown in Figure 4.5 (b).

To select the domain Dz0 from the 4-folded D4
z0 , we need to minimize the misfit

function ‖M4
j1,j2

(·, 1) − M4(·, 1)‖L2(Ωz0
). The meaning of j1 and j2 are depicted
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Fig. 4.4. MR images: (a) and (c) show the real and imaginary parts of M1(kx, ky , z0, 0); (b)
and (d) show the real and imaginary parts of M4(kx, ky , z0, 1).
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Fig. 4.5. (a) is the image of B4(x, y, z0, 1). (b) is the threshold result by setting Υ1 = 10% ×
‖B4(·, 1)‖L∞(Ωz0

). (c) shows the meaning of j1 and j2 in the notation M4
j1,j2

.

in Figure 4.5 (c). Table 4.1 gives the results of ‖M4
j1,j2

(·, 1) − M4(·, 1)‖L2(Ωz0
) for

j1, j2 = 1, 2, 3. As we can see that when j1 = 1, j2 = 2, ‖M4
j1,j2

(·, 1)−M4(·, 1)‖L2(Ωz0
)

is minimized. Therefore, Dz0 = D4,1,2
z0 .

To test the performance of our algorithm, we also set N = 8, N = 16 and
N = 32; for these N , Figure 4.6 illustrates the images of BN (x, y, z0, 1) and the
threshold results by setting Υ1 = 10% × ‖BN (·, 1)‖L∞(Ωz0

). As we can see from the
images that, it is possible to localize the source region Dz0 if N = 8 and N = 16.
However, since each DN,j

z0 is not well separated, it could be difficult to localize Dz0

for the case N = 32.

At last, we add Gaussian random noise to the simulated Bz. From [13, 17] we
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Table 4.1

Values of ‖M4
j1,j2

(·, 1)−M4(·, 1)‖L2(Ωz0
) for SNR = ∞

j1 = 1 j1 = 2 j1 = 3

j2 = 1 1.356× 10−7 1.669× 10−7 1.659× 10−7

j2 = 2 0 1.604× 10−7 1.525× 10−7

j2 = 3 1.176× 10−7 1.608× 10−7 1.527× 10−7

know that the standard deviation s of Bz is given by s = 1/2γTcSNR, where Tc = 50
ms and SNR = 2000 is the signal-to-noise ratio. Repeating the above procedures, we
get the images of BN (x, y, z0, 1) for N = 4, 8, 16 as shown in Figure 4.7. Table 4.2
gives the values of ‖M4

j1,j2
(·, 1) −M4(·, 1)‖L2(Ωz0

) for SNR= 2000. From Table 4.2,

it is obvious that Dz0 = D4,1,2
z0 .
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Fig. 4.6. Images of BN (x, y, z0, 1) and the threshold images for SNR= ∞. (a), (b) and (c)
are respectively images of BN (x, y, z0, 1) for N = 8, 16 and 32. (d), (e) and (f) are respectively the
corresponding threshold results for Υ1 = 10%× ‖BN (·, 1)‖L∞(Ωz0

).

Table 4.2

Values of ‖M4
j1,j2

(·, t)−M4(·, t)‖L2(Ωz0
) for SNR = 2000

j1 = 1 j1 = 2 j1 = 3

j2 = 1 8.92× 10−7 8.991× 10−7 8.978× 10−7

j2 = 2 8.795× 10−7 8.940× 10−7 8.922× 10−7

j2 = 3 8.862× 10−7 8.952× 10−7 8.942× 10−7

5. Discussion and conclusion. In this paper, we provide a mathematical
ground for highly undersampled MREIT, which aims to localize conductivity changes
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Fig. 4.7. Images of BN (x, y, z0, 1) and the threshold images for SNR= 2000 and N = 4, 8 and
16. Each figure has the similar meaning as that in Figure 4.6.

associated with tissue physiological activity. Numerical simulations show that the
proposed method is capable of localizing the conductivity changes using only 1/16
of the k-space data. Since the data acquisition speed is roughly proportional to the
number of the phase encoding encoding lines in the k-space, 1/N -subsampled MREIT
may has nearly N times faster data acquisition speed. Hence, the proposed method
can be used for functional MREIT to provide a mapping of conductivity perturba-
tion associated with neural activity or pathological changes in tissue [14, 27]. Future
studies include in vivo animal experiments to test the performance of the proposed
method in practical environment.
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