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SUMMARY

Shape sensitivity measures the impact of small perturbations of geometric features of a problem on certain
quantities of interest. The shape sensitivity of PDE constrained output functionals is derived with the help of
shape gradients. In electromagnetic scattering problems, the standard procedure of the Lagrangian approach
cannot be applied due to the fact that the solution of the state problem is complex valued. We derive a closed
form formula of the shape gradient of a generic output functional constrained by Maxwell’s equations. We
employ cubic B-splines to model local deformations of the geometry, and derive sensitivity probings over the
surface of the scatterer. We also define a sensitivity representative function over the surface of the scatterer
based on local sensitivity measurements. Several numerical experiments are conducted to investigate the
shape sensitivity of different output functionals for different geometric settings.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decades, plasmonic nano particles have attracted interest due to their localized field

enhancement properties. The localized field can be exploited, e.g., for amplifying Raman and

fluorescence scattering [1–4].

The effect of the shape and the size of nano particles on the performance of the device has been

studied thoroughly in literature [5–7]. Most simulations investigate only the impact of a limited

number of geometric parameters on the quantity of interest, whereas any change of shape can

have a significant effect on the behavior of the structure. Since fabrication-based perturbations are

inevitable, it is important to study the sensitivity of the performance of a structure with respect to

small shape variations.

Shape sensitivity analysis studies how sensitive an output functional J is with respect to variations

of the interface. To measure the shape sensitivity, one needs to evaluate the shape gradient of J .

In electromagnetic scattering problems, the shape functional measures a physical quantity of the

problem. This means that J depends on the shape of the structure and is constrained by Maxwell’s

equations.

Derivation of shape gradients of PDE constraint shape functionals for scalar problems has been
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2 S. SARGHEINI, A. PAGANINI, ET AL.

studied thoroughly during the last decades [8–13]. In this paper, we investigate the shape sensitivity

for 3D electromagnetic scattering. We extend the Lagrangian approach [8] to derive the shape

gradient based on complex-valued solutions of adjoint P and state E boundary value problems.

The shape sensitivity analysis for Maxwell’s equations gets more complicated due to the regularity

preservation [14, 15]. In Section 2, it is discussed that we need to use the covariant transformation

in order to guarantee that solutions of adjoint and state problems in the mapped domain are still

H(curl; Ω) functions. The final formula is in terms of a volume integral which is continuous in the

energy norm and well-defined on the natural variational space.

We calculate the obtained shape gradient using perturbations with local support over the surface of

the scatterer. Second order B-splines are used as probing perturbation fields. To get a representation

of the shape sensitivity over the surface of the scatterer, we use the Hadamard-Zolesio structure

theorem to define a representative function g based on local shape gradients. We explicitly provide

g for different nano antennas with different shape functionals.

2. SHAPE GRADIENT

In this paper, we are mainly interested in 3D electromagnetic scattering. We assume the scatterer

to occupy a bounded domain Ωs with Lipschitz boundary ∂Ωs. We also introduce domain Ω with

boundary ∂Ω such that Ωs ⊂ Ω := {r ∈ R
3 : |r| < R}, where R > 0 (see Figure 1).

Figure 1. Domain definition for the scattering problem.

We assume that the permittivity of the material in both scatterer and surrounding domain ǫ(r) ∈ C

is piecewise constant, linear, homogeneous, and isotropic. We also restrict ourselves to non-

magnetic materials (µ = permeability of the free space µ0).

We define the space of three-dimensional vector functions as the following†.

H(curl,Ω) = {u ∈ L2(Ω)|∇ × u ∈ L2(Ω)}.

†For the sake of readability, we use the same notation for scalar and vectorial Sobolev spaces.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
Prepared using jnmauth.cls DOI: 10.1002/jnm



SHAPE SENSITIVITY ANALYSIS OF METALLIC NANO PARTICLES 3

The time harmonic electric field E ∈ H(curl,Ω) at angular frequency ω is obtained as the solution

to the following weak formulation of the second order Maxwell’s equation [16, Sec. 4.1]

∫

Ω

∇×E · ∇ ×W − k2(r) E ·W dr−

∫

∂Ω

DtN[E] ·W ds(r) = (1)

∫

∂Ω

((∇×Ei)× n̂) ·W − DtN[Ei] ·W ds(r) ∀W ∈ H(curl,Ω) ,

where Ei is the incident electric field, and k(r) := w
√

ǫ(r)µ0 is the wavenumber. By DtN we

denote Dirichlet-to-Neumann operator (also named Calderon map) which is used to bound the

solution domain [16, Ch. 9, Sec. 4]. W is the complex conjugate of W.

To describe physical outputs based on the solution of (1), we rely on shape functionals of the form

J (Ω) :=

∫

Ωm

j(E) dr, (2)

where j : C3 → R, and Ωm is the measurement region.

The sensitivity of J with respect to perturbations of the surface of the scatterer can be expressed

through the Eulerian derivative of J in the direction of the vector field V ∈ C1(Ω) [8, Ch. 1, Sec. 9]

dJ (Ω;V) := lim
sց0

J (Ts·V(Ω))− J (Ω)

s
, (3)

where the mapping TV models domain perturbations in the direction V

TV(r) :

{

R
3 → R

3

r → r+ V(r)
.

In literature, dJ is called the shape gradient of J at Ω [9].

To calculate the shape gradient of the output functional (2), we first need to make the following

assumption and also to state Lemmas 1 and 2.

Assumption 1

We assume that the perturbation V ∈ C1(Ω) and it vanishes on ∂Ω and inside Ωm the measurement

region.

Lemma 1

The covariant transformations

ΨV :

{

H(curl;TV(Ω)) 7→ H(curl; Ω)

F 7→ DTT
V (F ◦ TV)

, (4)

ΦV :

{

H(div;TV(Ω)) 7→ H(div; Ω)

F 7→ detDTV

(

DT−1
V (F ◦ TV)

) , (5)

and satisfy ∇×ΨV(F) = ΦV

(

∇V × F
)

, (6)

are isomorphism [17]. By ∇V we denote the derivative in the transformed domain.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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Lemma 2

Let Y (Ω) be a vector space over C and u ∈ Y (Ω) be the solution to the following problem

Re {a(u, v)− ℓ(v)} = 0 ∀ v ∈ Y (Ω) ,

where a : Y × Y 7→ C and ℓ : Y 7→ C are sesquilinear and linear forms defined on Y (Ω). Then u is

the solution of the following variational problem

a(u, v)− ℓ(v) = 0 ∀ v ∈ Y (Ω) ,

Proof

If arg(a(u, v)− ℓ(v)) = ϕ, then

e−iϕ(a(u, v)− ℓ(v)) = a(u, e−iϕv)− ℓ(e−iϕv)

= Re
{

a(u, e−iϕv)− ℓ(e−iϕv)
}

= 0 .

Theorem 1

The shape gradient of the shape functional J (Ω) (2) subject to Maxwell’s equation (1) is

dJ = Re

(
∫

Ω

∇×E · (DV +DV⊤) ∇×P+E · (DV +DV⊤) P

−∇ · V (∇×E · ∇ ×P+ k2(r) E ·P)dr

)

, (7)

where DV is the Jacobian of V , and P(r) ∈ H(curl,Ω) is the solution of the following variational

problem

∫

Ω

∇×P · ∇ ×W − k2(r) P ·W dr−

∫

∂Ω

DtN∗[P] ·W ds(r)

=

∫

Ωm

j′(E) ·W dr ∀W ∈ H(curl; Ω). (8)

By j′, we denote the derivative of j. The adjoint operator DtN∗ is defined as 〈DtN[A],B〉∂Ω =
〈A,DtN∗[B]〉∂Ω, where A, B ∈ H(curl,Ω) and 〈A,B〉∂Ω =

∫

∂Ω
A ·B ds(r).

Proof

Since the shape functional (2) is real valued while the constraint (1) is complex valued, the standard

Lagrangian approach [8, Ch. 10, Sec. 5] cannot be applied. Following [18], we define the Lagrangian

as

L (Ω,U,P) =Re

{

J (U) +

∫

Ω

∇×U · ∇ ×P− k2(r) U ·Pdr (9)

−

∫

∂Ω

DtN[U] ·P− DtN[Ei] ·P+ ((∇×Ei)× n̂) ·P ds(r)

}

,

where the functions U and P are in H(curl; Ω).

Inserting U = E(Ω) gives

J (Ω) = L (Ω,E(Ω),P) ∀P ∈ H(curl,Ω).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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Consequently, we have

dJ (Ω,V) =

〈

∂L (Ω,E(Ω),P)

∂E
,E′(Ω,V)

〉

+

〈

∂L (Ω,E(Ω),P)

∂Ω
,V

〉

, (10)

where E′(Ω,V) denotes the derivative of E(Ω) with respect to Ω in the direction V .

Since P is an arbitrary parameter, we choose P ∈ H(curl,Ω) such that

〈

∂L (Ω,E(Ω),P)

∂E
,W

〉

= 0 ∀W ∈ H(curl,Ω), (11)

which leads to the following adjoint problem

Re

{
∫

Ω

∇×P · ∇ ×W − k2(r) P ·W dr−

∫

∂Ω

DtN∗[P] ·W ds(r) (12)

−

∫

Ω

j′(U) ·W dr

}

= 0 ∀W ∈ H(curl,Ω) .

As implied by Lemmma 2, taking the real part in (12) is redundant . Hence, one can simply dispose

Re in (12) to derive the final adjoint formulation in (8).

By (10) and (11), we can write that

dJ (Ω,V) =

〈

∂L (Ω,E(Ω),P)

∂Ω
,V

〉

. (13)

Based on Lemma 1, the Lagrangian in the transformed domain is

L (Ts·V(Ω),E,P) = Re

{

J (E) +

∫

Ts·V(Ω)

∇×E · ∇ ×P− k2(r) E ·Pdr

−

∫

∂Ω

DtN[E] ·P− DtN[Ei] ·P+ ((∇×Ei)× n̂) ·P ds(r)

}

= Re

{

J (Es) +

∫

Ω

∇×Es ·
DTs·V

detDTs·V

DTT
s·V

detDTs·V
∇×P

s
| detDTs·V | dr

−

∫

Ω

k2(r) Es · DT−T
s·V DT−1

s·V P
s
| detDTs·V |dr

−

∫

∂Ω

DtN[Es] ·P
s
− DtN[Ei] ·P

s
+ ((∇×Ei)× n̂) ·P

s
ds(r)

}

,

(14)

where Fs = Ψs·V(F).

Using Tailor expansion, one can simply show that [9, Ch. 2]











(detDTs·V)
−1 = 1− s ∇ · V +O(s2)

DT−1
s·V = I − s DV +O(s2)

for s → 0, (15)

where I is the identity matrix.

By plugging (15) in (14), one can derive the corresponding formula for the shape gradient of J
in (7).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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Figure 2. Directions of B-splines assigned to r1 and r2 located on an edge and on a corner, respectively.

3. SHAPE SENSITIVITY REPRESENTATIVE AND NUMERICAL APPROXIMATION

Our aim is to define a representative function g of dJ on the boundary ∂Ωs. To justify the existence

of g, we make the following assumption.

Assumption 2

We assume that dJ : V → dJ (Ω,V) defines a linear continuous operator on H1(Ω).

Remark 1

Assumption 2 is fulfilled if, for instance, E, P ∈
{

u ∈ L4(Ω) | ∇ × u ∈ L4(Ω)
}

.

For a smooth ∂Ωs, the Hadamard-Zolesio structure theorem [8, Ch. 9, Thm 3.6] and Assumption

2 guarantee the existence of a function g ∈ H−1/2(∂Ωs) such that

∫

∂Ωs

(V(r) · n̂(r)) g(r) ds(r) = dJ (Ω;V) ∀V ∈ H1(Ω) . (16)

Note that, if the output functional measures the energy flux, then the dimension of g is [ J
m4 ].

The absolute value of the shape sensitivity representative function |g| shows how the output

functional changes under the influence of local small shape perturbations normal to the surface of

the scatterer. Based on the values of |g| over ∂Ωs, one can see which parts of the structure must be

fabricated with higher accuracy.

To compute g numerically, we consider only finitely many vector fields Vn = {Vi}
n
i=1, where

n := dim Vn. More specifically, we consider probing vector fields of the following form

Vi = Bi ℓ̂i,

where Bi is a scalar tensor product B-spline [19, Sec. 7.3] of degree 2 centered on ri ∈ ∂Ωs, and ℓ̂i
is a unit vector denoting the direction of Vi.

B-splines are piecewise polynomials and have compact support. To construct these functions we

consider a regular grid on the surface of the scatterer. The ith B-spline Bi is centered on the knot ri
of this grid. In light of (16), the direction ℓ̂i is chosen to be normal to ∂Ωs at the point ri.

Remark 2

The normal direction may not be uniquely defined if the boundary is piecewise smooth only, for

instance for polyhedral domains. In the presence of edges and corners, one needs to consider all the

possible directions for the shape perturbation. As shown in Figure 2, we assign more than one

probing vector field {Bi ℓ̂
j
i}

q
j=1 for perturbations which are centered on edges or corners. The

number of vector fields q is equal to the number of faces that share the given edge or corner. By

ℓ̂
j
i , we denote the normal direction on the j-th face sharing the corresponding edge or corner.

To solve (16), we discretize the function space of g and define gh ∈ Yh as follows

gh =

m
∑

j=1

g̃j bj(r), (17)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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where g̃j ∈ R, and bj ∈ Yh are basis functions of Yh, j = 1, . . . ,m, with m := dim Yh.

Using (16) and (17), we have

Ã g = f , (18)

where g := (g̃1, · · · , g̃m)
⊤

and f := (dJ (D;V1), · · · , dJ (D;Vn))
⊤

. The entries of the n×m

matrix Ã are given by

Ãij =

∫

∂Ωs

(Vi · n̂) bj ds(r). (19)

In order for gh to be sufficiently accurate, the trial space Yh must be large enough, we impose at

least m > n. In this case, the system of linear equations in (18) is underdetermined. Using the least

squares method, we define

X̃ := argmin
x∈Rm

‖Ãx− f‖Rn . (20)

We must mention that X̃ is a set which can contain more than one element. To obtain a unique

result, we use the H1-regularization and define g as an element of X̃ which has the minimum norm

g = argmin
x ∈ X̃

‖x‖2
H
, (21)

where ‖x‖H = x⊤ H x. By H we denote a m×m matrix with Hij =
∫

∂Ωs

∇tui · ∇tbj ds(r),
where ∇t is the tangential gradient on the surface ∂Ωs. Note that to compute g we must make

the trial space Yh satisfy Yh ⊂ H1(∂Ωs).

Remark 3

The choice of H1-seminorm in (21) cannot be justified rigorously. However, we experienced that

employing the L2-regularization creates artifacts. Employing higher order regularizations might be

too strong a constraint.

4. NUMERICAL RESULTS

We solve the variational problems (1) and (8) numerically. We use third order Nedelec finite

elements on a quasi-uniform tetrahedral mesh‡. To truncate the solution domain and approximate

the DtN map, we use a box Perfectly Matched Layer (PML). The integrals in the domain are

computed by a 6th order quadrature rule in each element. We also use first order finite elements to

approximate g over the surface of scatterers.

To simplify implementations, we locate probing vector fields on vertices of a grid which is

independent of the FEM mesh. The size of the B-spline grid must be fine enough to model surface

perturbations properly. In our simulations, we observe that hB = 3max(hFEM) is a good choice

(hB and hFEM are element sizes of the B-spline grid and the FEM mesh, respectively).

In numerical experiments, we consider two types of output functionals. The first type measures

the near field data within the domain Ωm ⊂ Ω

J near =

∫

Ωm

|Es|
2 dr, (22)

where Es = E−Ei is the scattered field.

As a second type of the output functional, we consider the field value at far distances which is

‡Our experiments are based on the finite element library NGSolve developed by Joachim Schoeberl at the Vienna
University of Technology.
http://sourceforge.net/projects/ngsolve.
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(a) (b)

Figure 3. (a) The silver brick with dimensions (a, b, c) = (50, 150, 10)nm. The substrate material is

glass with refractive index n2 = 1.5. (b) The relative sensitivity representative
∣

∣

g
J

∣

∣ obtained based on

finite element approximation of E and P using 469405 DoFs and considering 1116 B-splines as local
perturbations. The output functional measures the energy flux of the far-field.

collected through an objective lens with the opening angle of α = 74◦ and centered on the z-axis

J far =

∫

Ωlens

|E∞|2 dr, (23)

where E∞ is the far field [20, Eq. 4.10]. By Ωlens, we denote the area of the objective lens.

4.1. Silver brick

In the first experiment, we investigate the sensitivity of the energy flux at far field (23) with

respect to shape perturbations over the surface of a silver brick (see Figure 3a). The grid over

the surface of the scatterer in Figure 3a represents the B-spline grid which in this example

consists of 1116 vector fields. The excitation wavelength is λ = 500nm and the incident wave

is Ei = exp(ik0(sin(
π
3 )x− cos(π3 )z)) ŷ (where ŷ is the unit vector in the direction y). Optical

constants of the silver at the given frequency is obtained using the data provided by [21]. The

nano-particle is mounted on a glass substrate with n2 = 1.5.

We approximate the solutions of state and adjoint problems by using the finite element method

with 469405 degrees of freedom (DoFs). The shape sensitivity representative function g is also

obtained by considering a finite element mesh over the surface of the brick with 3646 DoFs.

Figure 3b shows the absolute value of the relative shape sensitivity | g
J
| over the scatterer. Based on

the obtained result, the far-field pattern is mostly sensitive to the central part of the brick.

To see the effect of the finite element mesh on the sensitivity pattern, we repeat the previous

experiment using two finer meshes to achieve 886890 and 1163595 DoFs for discretizing state and

adjoint problems, while all the other settings are kept untouched. As shown in Figures 4a and 4b,

the sensitivity representative is not affected significantly by the mesh resolution.

Finally, we investigate the effect of the B-spline grid resolution on g by increasing the number

of probation vector fields to 2126 while the finite element method used to solve state and adjoint

problems have 469405 DoFs. Based on the result shown in Figure 4c, the sensitivity pattern remains

almost the same when increasing the number of B-splines.

4.2. Groove antenna

We now repeat the previous experiment by adding a V-groove in the central part of the silver

brick (see Figure 5a) [22]. The dimension of the nano-particle is (a, b, c) = (50, 150, 10)nm and

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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(a) (b) (c)

Figure 4. The relative sensitivity representative
∣

∣

g
J

∣

∣ over the silver brick obtained based on (a) finite element

approximation of E and P using 886890 DoFs and considering 1116 B-splines as local perturbations, (b)
finite element approximation of E and P using 1163595 DoFs and considering 1116 B-splines as local
perturbations, and (c) finite element approximation of E and P using 469405 DoFs and considering 2126

B-splines as local perturbations.

(d1, d2, d3) = (6, 6, 6)nm. Material properties and the excitation are similar to those in the previous

experiment. The finite element method used to solve Maxwell’s equations employs 901860 DoFs.

(a) (b)

Figure 5. (a) The silver V-groove waveguide. The dimensions are (a, b, c) = (50, 150, 10)nm and
(d1, d2, d3) = (6, 6, 6)nm. The substrate material is glass with refractive index n2 = 1.5. (b) The relative

sensitivity representative
∣

∣

g
J

∣

∣ over the V-groove. The output functional measures the energy flux of the

far-field.

The experiment investigates the sensitivity of the far-field functional (23). The B-spline grid

consists of 1225 B-splines over the surface of the groove ∂Ωs. To discretize g over ∂Ωs, we exploit

a finite element discretization with 3862 DoFs.

As shown in Figure 5b, the energy in the far field is more sensitive to the shape of the channel.

Comparing Figure 5b and Figure 3b, one can see that the addition of the V-groove channel changes

the sensitivity profile such that | g
J
| is no more concentrated in the central part of the structure. It

can be explained by considering the waveguiding effect of the V-groove based on Channel Plasmon

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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Polariton (CPP) effect [22]. One other observation based on Figure 5b is that the end parts of the

channel have less effect on the far-field pattern.

4.3. Nano antenna consisting two rectangular blocks in free space

In this experiment, we consider a gold nano antenna made of two rectangular gold blocks, brick-1

and brick-2 located in free space (see Figure 6a).

(a) (b)

Figure 6. (a) Gold nano antenna consisting of two brown rectangular-blocks with dimensions (a, b, c, d) =
(98.5, 40, 40, 25)nm. The blue domain in the gap area Ωm shows the near-field integration region. (b) The

absolute value of the electric field at λ = 640nm.

In our simulations we consider λ = 770nm, and Ei = exp(ik0(sin(
π
3 )x− cos(π3 )z)) ŷ. Since

gold is a dispersive material, we use the measured data provided by [21] to obtain optical constants

of gold at a given frequency. The finite element method used to solve Maxwell’s equations employs

604595 DoFs. Since the structure is symmetric, we perform the sensitivity analysis only on one of

the arms of the antenna, brick-1.

The B-spline grid exploits 1166 B-splines over the surface of brick-1, and the finite element mesh

used to discretize g has 1811 DoFs.

We solved the problem for both near-field and far-field functionals. The near-field integration

region Ωm in Equation (22) is shown as a region in light blue in Figure 6a. Relative sensitivities of

J near and J far over brick-1 are shown in Figures 7a and 7b, respectively. As one can see, both

near-field and far-field functionals are the most sensitive to changes in the left side of brick-1 where

is closer to the gap. An interesting observation is that the far-field functional, unlike the near-field

one, is less sensitive to perturbations of edges and corners. This means that despite the high field

localization around corners, they do not have significant effect on the far-field pattern, whereas the

near-field is strongly affected by their shape.

4.4. Nano antenna consisting two rectangular blocks over a substrate

To see the effect of a substrate on g, we mount the antenna consisting of two rectangular blocks on

a glass substrate located at z < 0 with the refractive index n2 = 1.5 (see Figure 8a). The size of the

antenna, the wavelength, and the incident field are the same as those in the previous experiment.

Let Γs be the face of brick-1 which touches the substrate. Probing functions located on Γs perturb the

surface of the substrate as well. This means that the part of the substrate surface which is touching

the antenna is no longer flat after deformations.

The sensitivity representative function over the surface of brick-1 for the far-field functional is

shown in Figure 8b. As one can see, the presence of the substrate causes g to increase on Γs. In

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
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(a) (b)

Figure 7. The relative sensitivity representative
∣

∣

g
J

∣

∣ of (a) near-field (b) far-field functionals over the right

arm of the gold nano antenna consisting of two rectangular blocks.

(a) (b)

Figure 8. (a) Gold nano antenna consisting of two rectangular particles with dimensions (a, b, c, d) =
(98.5, 40, 40, 25)nm on a glass substrate with refractive index n2 = 1.5. (b) The relative sensitivity

representative
∣

∣

g
J

∣

∣ over brick-1. The output functional measures the energy flux of the far-field.

other words, the output functional becomes more sensitive to the shape of Γs.

4.5. Nano antenna consisting two rectangular blocks with displaced arms

Now, we displace brick-2 by ∆x = 20nm in the x̂ direction (see Figure 9a). The size of the antenna,

the incident field, the working frequency, the output functional, and the material of the substrate are

the same as those in the previous experiment. As shown in Figure 9b, the relative sensitivity profile

is also displaced in the direction x̂. Which means the position of the antenna gap and the substrate

are key elements in forming the sensitivity representative for nano antennas.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2010)
Prepared using jnmauth.cls DOI: 10.1002/jnm



12 S. SARGHEINI, A. PAGANINI, ET AL.

(a) (b)

Figure 9. (a) Gold nano antenna, consisting of two rectangular blocks, with left arm displaced in x̂ direction.
The dimensions are (a, b, c, d) = (98.5, 40, 40, 25)nm, and ∆x = 20nm. The substrate material is glass with

refractive index n2 = 1.5. (b) The relative sensitivity representative
∣

∣

g
J

∣

∣ over brick-1. The output functional

measures the energy flux of the far-field.

5. CONCLUSION

Shape calculus is a technique to investigate the sensitivity of an output functional with respect to

the shape of the domain. The calculation of shape gradients for 3D scattering problems gets more

complicated due to the presence of vector electromagnetic fields.

We formulated shape gradients for 3D Maxwell’s equation. Given that the solution of the state

problem is complex valued while the shape functional is real valued, we used generalized

Lagrangian approach to find dJ . In order to have a mapping which is isomorphism from the

reference domain to the perturbed domain, a covariant transformation was applied.

Second order B-Splines were used as probing perturbation functions to deform the object locally.

We used Hadamard-Zolesio structure theorem to obtain shape sensitivity representative based on

sensitivity probings.

Several numerical experiments were conducted to investigate the shape sensitivity of different

plasmonic nano antennas. Based on the obtained results, the gap area is the most sensitive part,

which means small perturbations introduced in this region affects the performance of the nano-

particle significantly.

Shaping edges and corners is one of the main challenges during fabrication process. However, our

results showed that the far-field functional is not highly sensitive to the shape of corners and edges.

The presence of a substrate is also another issue that can affect the sensitivity of the particle. We

also showed that the far-field pattern gets more sensitive to perturbations of the face touching the

substrate.
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