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Dual Mesh Operator Preconditioning On 3D Screens:

Low-Order Boundary Element Discretization.

Ralf Hiptmair∗ Carolina Urzúa-Torres†

Abstract

We provide key estimates that provide the theoretical foundation for dual mesh operator pre-
conditioning [3] of the weakly singular boundary integral operator and the hypersingular boundary
integral operator arising from −∆ on screens in R

3. For each related boundary integral equation
(BIE), this entails the construction of a dual discrete boundary element space (BE space), such that
it has the same dimension as its corresponding primal discrete BE space. We discuss this for trian-
gular elements following Buffa and Christiansen [2], and extend their approach also to quadrilateral
elements. Furthermore, we adapt Steinbach’s work [9] in order to establish mesh assumptions under
which our operator preconditioning policy remains applicable to locally refined meshes.

1 Introduction

We consider the following Dirichlet and Neumann boundary value problems (BVPs) in the exterior of a
open surface Γ ⊂ R3,

−∆U = 0 in R
3 \ Γ̄, U = g or

∂U

∂n
= f on Γ , and |U(x)| = O(‖x‖−1

) for ‖x‖ → ∞, (1)

with suitable boundary data g or f .
We use the Boundary Element Method (BEM) to numerically solve these BVPs. By doing so, we

convert (1) into first-kind boundary integral equations (BIEs) for the unknown jump of the complementary
boundary data on Γ. In other words, depending on the case, we will be interested in solving

(Wψ)(y) :=
1

4π

∫

Γ

ψ(x)
∂2

∂nx∂ny

1

‖x− y‖
dΓ(x) = f(y), y ∈ Γ, ψ ∈ H̃1/2(Γ), (2)

(V u)(y) :=
1

4π

∫

Γ

u(x)

‖x− y‖
dΓ(x) = g(y), y ∈ Γ, u ∈ H̃−1/2(Γ), (3)

where H̃1/2(Γ) be the space of functions whose extension by zero over a closed surface Γc containing Γ
belongs to H1/2(Γc) (cf.[7, Chap. 2.4.2]. These Sobolev spaces satisfy the following duality relations

H̃−1/2(Γ) ≡ (H1/2(Γ))′ and H−1/2(Γ) ≡ (H̃1/2(Γ))′. (4)

When low-order Galerkin BEM discretization is applied to the above first-kind BIEs, one faces linear
systems of equations which are ill-conditioned on fine meshes. Consequently, preconditioning becomes
relevant when using iterative solvers to compute the solution of the problems at hand. There are several
possible alternatives to design a preconditioner, however, in this report, we will only address dual mesh
operator preconditioning.
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In order to use this method for screen problems, one must take into account the additional challenges
that appear when the scatterer is an open surface. On the one hand, there are no Calderón identities
to build preconditioners. On the other hand, the solutions of our BIEs over Γ present a singular be-
haviour towards the boundary ∂Γ of the open surface. This difficulty can be overcome by using adaptive
refinement, however, without preconditioning, this will increase the computational cost of the iterative
solvers as the spectral condition numbers of our systems grow like O(h−1

min), where hmin is the size of
the smallest cell of the mesh.

In this report we aim to discuss and construct the neccessary discretization tools to apply dual mesh
operator preconditioning on simple screens. This means we will follow the precondition strategy proposed
in [3, Theorem 2.1], which will be included in the following section for the sake of clarity. Furthermore,
we do so by building a dual mesh using Buffa and Christiansen approach [2]. Throughout this report
we also consider quadrilateral meshes and some additional discussion regarding their construction is
included, although no rigorous analysis is developed.

As mentioned above, we are particularly interested to apply these techniques to tackle non-uniform
meshes. Analogously to the 2D case, described in [5, 4], we follow Steinbach’s work to prove the inf-
sup condition of the L2 dual pairing for non-uniform meshes. We present 4 possible primal-dual space
combinations, although just two of them are of physical interest at the moment.

2 Operator Preconditioning

The construction of our preconditioning strategy is based on the following theorem [3].

Theorem 2.1 (Thm. 2.1 [3]). Let X, Y be reflexive Banach spaces, and let

a ∈ L(X ×X,C), b ∈ L(Y × Y,C), and t ∈ L(X × Y,C),

be continuous sesquilinear forms with norms ‖a‖, ‖b‖, and ‖t‖.
If Xh ⊂ X, and Yh ⊂ Y are finite-dimensional subspaces such that:

(C1) a, b, and t satisfy discrete inf-sup conditions with constants cA, cB, cT > 0, respectively, on the
corresponding discrete spaces;

and,

(C2) dim Xh =M = dim Yh;

choosing any bases {ϕj}Mj=1 of Xh, and {φi}Mi=1 of Yh. Then the associated Galerkin Matrices

Ah := (a(ϕi, ϕj))
M
i,j=1 , Bh := (b(φi, φj))

M̂
i,j=1 , Th := (t(ϕi, φj))

MM̂
i,j=1 ,

satisfy

κ(T−1
h BhT

−H
h Ah) ≤

‖a‖‖b‖‖t‖2

cAcBc2T
, (6)

where κ designates the spectral condition number.

In order to establish the building blocks for this theorem, we consider the weak form of the boundary
integral operators (BIOs) introduced in (3) and (2) as the sesquilinear forms a, and the standard L2-scalar
product as the dual pairing t.

Moreover, we can choose boundary element spaces (BE spaces) Xh and Yh to satisfy the condition
(C2) by defining dual basis functions via Buffa-Christiansen approach [2]. The next section is dedicated
to recall some details regarding the construction of this dual discrete space, as well as heuristically extend
its concept to quadrilaterals.

The specific characterization of the aforementioned spaces will be defined later, whereas an appropiate
sesquilinear form b is out of the scope of this report and will be addressed in a different paper [6]. Still,
it is worth mentioning than with all the above ingredients, we will be in a position to formulate our
preconditioner as

Ph = T−1
h BhT

−H
h .
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3 Construction of Discrete Spaces

3.1 Primal, Barycentric and Dual Mesh.

Definition 1. For a given screen Γ in R3, we denote its primal mesh by Γh.

We now recall and extend the concept of barycentric refinement from [2] to quadrilaterals by the
following definition.

Definition 2. For each element τ ∈ Γh:

(i) Locate its center of mass.

(ii) Compute the centers of the edges of τ . From now on referred as mid-edge vertices.

(iii) Create the child elements of τ by connecting the original vertices of τ and those computed in (i)
and (ii) (see Figure 1).

We define the barycentric refinement Γ̄h of Γh as the union of all these children elements.

Figure 1: Barycentric refinement. On the left, we illustrate the 6 obtained children elements

for a triangular element, while on the right we show the 4 children elements in the case of quadri-
laterals. We show the original nodes using red dots, a green diamond for the center of mass and
blue x’s for the mid-egdes nodes.
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Definition 3. The union of all barycentric edges connecting mid-edge vertices with centers of mass,
create the so called dual cells, as shown in Figure 2c.

We define our dual mesh Γ̂h to be the union of all the resulting dual cells.

The fact that these resulting dual elements are unions of barycentric elements, leads us to define the
dual BE space as a linear combination of barycentric basis functions.

Definition 4. Let X̄h ⊂ X and Ȳh ⊂ Y the BE spaces spanned by the basis functions over the barycentric
refinement Γ̄h. Let us introduce the two linking matrices: 1

• Coupling matrix Cp : X̄h → Xh

Basis representation of the embedding identity Xh → X̄h, since Xh ⊂ X̄h. Therefore, if M̄X :=
dim X̄h, and given that M = dimXh, we have that Cp ∈ RM,M̄X .

• Averaging matrix Cd : Ȳh → Yh
Tells us how to combine the barycentric basis functions of Ȳh to get the basis functions of Yh over
the dual mesh. Then, in order to establish dimYh = M , it must hold that Cd ∈ R

M,M̄Y , where
M̄Y := dim Ȳh.

1We borrow their name from [8]. However, we change the notation for the sake of clarity. Cp (Cd ) stands for primal
(dual), to honor the space to which the matrix connects the associated barycentric BE space.
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Figure 2: Primal, barycentric and dual meshes. We use black lines to show the primal
elements, dashed gray lines for the barycentric elements, and green lines to demarcate the dual
cells.
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(a) Primal mesh (b) Barycentric refinement
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(c) Dual mesh

Here we have slightly abused notation and described these linking matrices as operators. On the one
hand, we hope this makes their connection to our preconditioning policy from Theorem 2.1 clearer. On
the other hand, we expect it also conveys their functionality regardless of the specific choice of basis
functions.

The averaging matrix allows us to compute the Galerkin matrix Bh associated to b over the dual
mesh Γ̂h: Let Bb : Ȳh → Ȳh denote the M̄Y × M̄Y Galerkin matrix of b built over the barycentric
refinement Γ̄h, then Bh = CT

dBbCd, and thus Bh ∈ R
M,M .

Analogously, the coupling matrix helps us to build the Galerkin matrix Th associated to the dual
coupling t: Let Mb : X̄h → Ȳh be the M̄Y × M̄X mass matrix computed over the barycentric refinement
Γ̄h. By using the linking matrices, it is clear that Th = CT

pM
T
b C

T
d : Yh → Xh, and that it is in RM,M .

3.2 Discretization and notation

Recall that Γh denotes the primal mesh, Γ̂h refers to the dual mesh, and Γ̄h is the barycentric refinement.
We build the discrete spaces by choosing low-order Lagrangian boundary element functions. Given

a mesh Σh ∈ {Γh, Γ̂h, Γ̄h} we use the following notation:

S−1,0(Σh) := piecewise constants basis functions (characteristic functions),

S0,1(Σh) := piecewise linear basis functions (nodal functions),

S0,1
0 (Σh) := piecewise linear basis functions with zero boundary conditions on ∂Γ

(nodal functions only on internal nodes)2.

We additionally introduce the restricted space S−1,0
∗ (Γ̂h) resulting from imposing the condition (C2),

i.e. dimXh = dimYh, when Xh = S0,1
0 (Γh). We point out that these conditions are enforced via the

averaging matrix Cd.
Considering this notation, the 4 combinations of primal and dual spaces are summarized in Table 1.

We will dedicate the remainder of this section to discuss the construction of our linking matrices Cp and
Cd for cases A and B following the techniques from [2], while C and D can be deduced from the other
cases.

2Also referred as constrained piecewise linear basis functions.

4



Table 1: Summary of dual pairs of spaces and their discretization. (see Theorem 2.1 for notation).

Continuous Discrete
X Y Xh Yh

Case A H̃−1/2(Γ) H1/2(Γ) S−1,0(Γh) S0,1(Γ̂h)

Case B H̃1/2(Γ) H−1/2(Γ) S0,1
0 (Γh) S−1,0

∗ (Γ̂h)

Case C H−1/2(Γ) H̃1/2(Γ) S0,1(Γh) S−1,0(Γ̂h)

Case D H1/2(Γ) H̃−1/2(Γ) S−1,0(Γh) S0,1
0 (Γ̂h)

3.3 Linking matrices for triangles

3.3.1 Case A: X = H̃−1/2(Γ), Y = H1/2(Γ)

• Coupling matrix Cp : X̄h = S−1,0(Γ̄h) → Xh = S−1,0(Γh)

We aim to connect primal piecewise (p.w.) constant basis functions with barycentric p.w. con-
stants. Since in both cases the degrees of freedom (dofs) are the element in which the functions
are supported, this operator just connects primal elements to barycentric elements.

Concretely, let N and N̄ be the number of elements in Γh and Γ̄h, respectively. Additionally,

consider Γh =
⋃N
i=1 τi and Γ̄h =

⋃N̄
j=1 τ̄j , then

Cp[i, j] =

{
1 if τ̄j is a child of τi.

0 otherwise.
(7)

From where it is clear that each row (primal dof) will have 6 non-zero entries filled with 1 (related
barycentric/ children element).

• Averaging matrix Cd : Ȳh = S0,1(Γ̄h) → Yh = S0,1(Γ̂h)

Figure 3: Illustration of coefficients of Cd under Case A using triangular elements.
On the left, we present the case when the element is adjacent to the boundary ∂Γ. On the right,
we show the case when the element has a node located on ∂Γ. Nv (Nw) stands for the number of
triangles sharing node v (w). In both situations, ∂Γ is indicated by the shaded gray line. We use
black lines to indicate primal triangles, green lines for dual cells. Red ’x’s designate barycentric
nodes.

× ×

×

×

×

×
×

1/2
1/2

1/2

1/3

1

1/Nv

1

×

×

×
×
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1/Nv

1/Nw

1/2
1/2

1/2
1/3

1

We point out that each dual dof associated to a dual p.w.linear basis function is located in the
barycentric vertex corresponding to the center of mass of a primal element. Therefore, each dual
basis function is a p.w.linear combination of the barycentric p.w.linear basis functions defined on
the barycentric vertices contained in the primal element to which the center of mass belongs.
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Now, the coefficient cv associated to a barycentric vertex v is given by cv = 1
Nv

, where Nv equals
the number of primal elements that are adjacent to v, which is also the number of dual dofs to
which the barycentric node v will contribute. This allows the total contribution of the barycentric
dof to the dual BE space to be one.

For the nodes given by the centers of mass, we know that this number will always be one.
Analogously, it is always 1

2 for the internal mid-edge nodes and 1 for those lying in boundary
edges. Figure 6 shows a color version of the original illustration of the associated coefficients
provided by Buffa and Christiansen [2, Figure 4].

3.3.2 Case B: X = H̃1/2(Γ), Y = H−1/2(Γ).

• Coupling matrix Cp : X̄h = S0,1
0 (Γ̄h) → Xh = S0,1

0 (Γh)

In this case, the dofs corresponding to constrained primal p.w.linear basis functions are the
internal vertices. Furthermore, the barycentric dofs associated with each primal dof lie in the
vertices of the neighbouring barycentric elements.

As before, the coefficient cv of each barycentric dof v is such that its total contribution to the
primal BE space is one. Therefore, as it is summarized in Figure 4a, we have three possibilities:
The barycentric node v is

– located in the center of the parent triangle: As the barycentric edges connect this node with
3 primal mesh nodes, its coefficient is cv = 1/3.

– in the middle of an edge: This node is connected with 2 primal mesh nodes. Hence, cv = 1/2.

– an inherited node: cv = 1, since it will contribute only to itself in the parent mesh.

Figure 4: Illustration of coefficients of Cp under Case B using triangular elements. We
use black lines to indicate primal triangles, green lines for dual cells. Green dots designate primal
nodes, and red ’x’s barycentric nodes.
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(a) Cp coefficients associated to the
different kind of barycentric nodes.

b

b

b

b

b

b

b

b

×
× ×

×
× ×

×

×
×

×

×

×

××

×

×
×

×
×

×

×

nA1

nA2

nA3

nA4

nA5

nA6

nA7 nB1

nB2

nB3

nB4

nB5

nB6

nB7

nC

(b) Example of barycentric refinement dofs cou-
pling with a given dual mesh dof (nC).

Let us illustrate this with the case shown in Figure 4b. There we have

ψ̂nC
= ψ̄nC

+
1

3

7∑

i=1

ψ̄nAi
+

1

2

7∑

i=1

ψ̄nBi
,

where ψ̂n(·)
represent p.w.linear basis functions over the dual mesh Γ̂h and ψ̄n(·)

p.w.linear basis

functions over the barycentric refinement Γ̄h.
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• Averaging matrix Cd : Ȳh = S−1,0(Γ̄h) → Yh = S−1,0
∗ (Γ̂h)

Notice that each dual piecewise constant dof coincides with a vertex of the primal mesh. As we
intend to connect dual p.w.constant basis functions with barycentric p.w.constant basis functions,
our matrix has to relate each primal vertex with the barycentric elements that belong to its dual cell.
However, as you may observe in Figure 5, such barycentric elements are actually those surrounding
the given primal vertex.

Let N̄v be the number of barycentric triangles neighbouring the primal vertex v. Then the
associated coefficient cv for said barycentric elements is cv = 1

N̄v
.

Figure 5: Illustration of coefficients of Cd under Case B using triangular elements. We
use black lines to indicate primal triangles, green lines for dual cells, green dots for the dofs of the
primal and dual meshes (nodes), and a shaded gray line for the boundary ∂Γ. The green diamonds
show the neglected dual mesh dofs at ∂Γ. Consider node v as the center of the dual mesh filled
with gray, N̄v stands for the number of barycentric triangles neighbouring this node (highlighted
by a red ’x’).
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3.4 Definition of linking matrices for quadrilateral elements

Although the following constructions were deduced by analogy to [2], they are just formal and the
corresponding analysis has not been carried out yet.

3.4.1 Case A: X = H̃−1/2(Γ), Y = H1/2(Γ).

• Coupling matrix Cp : X̄h = S−1,0(Γ̄h) → Xh = S−1,0(Γh)

Recall from subsection 3.3.2 that we want to link primal elements with barycentric elements. We
do this by applying the same formula (7).

Therefore, now the resulting matrix has rows with 4 columns equal to 1 (instead of 6), due to the
fact that the quadrilateral elements generate 4 barycentric/children elements.

• Averaging matrix Cd : S0,1(Γ̄h) → S0,1(Γ̂h)

The concept remains the same as before: dual dofs correspond to the center of mass of each
primal element, while barycentric dofs coincide with barycentric vertices.

Once again, the total contribution of each barycentric basis function must be one, therefore, for
a give barycentric vertex v, its coefficient is cv = 1/Nv, where Nv is the number of neighbouring
primal elements (to which it will contribute).

Figure 6: Illustration of coefficients of Cd under Case A using quadrilateral elements.
On the left, we present the case when the element is adjacent to the boundary ∂Γ. On the right,
we show the case when the element has a node located on ∂Γ. Nv (Nw) stands for the number
of quadrilateral sharing node v (w). In both situations, ∂Γ is indicated by the shaded gray line.
We use black lines to indicate primal quadrilaterals, green lines for dual cells. Red ’x’s designate
barycentric nodes.

×× ×

×××
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×

1/3

1/Nv
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×

×
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×
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×

×
×
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1/3
1

1/Nw

3.4.2 Case B: X = H̃1/2(Γ), Y = H−1/2(Γ).

• Coupling matrix Cp : X̄h = S0,1
0 (Γ̄h) → Xh = S0,1

0 (Γh)

Recall, we aim to connect the primal dofs corresponding to constrained primal p.w.linear basis
functions with the barycentric dofs associated with each primal dof. This boils down to relate the
internal nodes to the nodes of the neighbouring barycentric elements.
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Taking into account that the coefficient cv of each barycentric dof v is such as its contribution to
the primal boundary element space is one, we have then three possibilities: Barycentric node v is

– located in the center of the parent quadrilateral: This node is artificially connected with 4
primal mesh nodes, so we get cv = 1/4.

– in the middle of an edge: This node is connected with 2 primal mesh nodes. Hence, its
coefficient is cv = 1/2.

– an inherited node: cv = 1, since it will contribute only to itself in the parent mesh.

• Averaging matrix Cd : Ȳh = S−1,0(Γ̄h) → Yh = S−1,0
∗ (Γ̂h)

Our matrix is required to connect each primal vertex with the barycentric elements that belong
to its dual cell. In other words, using the same a notation as before, each barycentric element
neighbouring a primal vertex v will be linked to it with coefficient cv =

1
N̄v

.

Figure 7: Illustration of coefficients of linking matrices under Case B using quadri-
lateral elements. We use black lines to indicate primal triangles, green lines for dual cells, green
dots for the dofs of the primal and dual meshes (nodes).

b1

×
1/4

u
1/2 ×

1/4

u
1/2

×
1/4

u
1/2

×1/4

u1/2

(a) Coupling matrix Cp. We indicate the
central node by a red x, the mid-edges nodes
by gray triangles and the original nodes by
green dots. Next to each node we show the
related coefficient.

b

×1/N̄v ×1/N̄v

×
1/N̄v×

1/N̄v

(b) Averaging matrix Cd. Consider node v

as the center of the dual mesh filled with gray,
N̄v stands for the number of barycentric tri-
angles neighbouring this node (highlighted by
a red ’x’).

4 Stability of Discrete Duality Pairing on Non-Uniform Trian-

gular Meshes

The key concept is to establish an inf-sup condition for the dual pairing t, in this case the L2-inner
product over Γ. This entails maintaining the H1-stability of a generalized L2-projection Q̃h, defined via
a Petrov-Galerkin approach, as it will be explained later. For this purpose, we adapt the work developed
by Steinbach in [9] and introduce some of his notation.

We begin by presenting the mesh assumptions under which we will assert the desired stability results.

Assumption 4.1. We consider a shape regular and locally quasi-uniform family of primal meshes
{Γh}h∈H, h > 0 of Γ, whose members are labelled by h from an index set H.

Let us consider a given primal mesh Γh, and denote the mesh-width of an arbitrary element τl ∈ Γh
by hl. We equip Xh with the standard locally supported nodal basis functions. As a consequence of

9



local quasi-uniformity, we can introduce for each basis function ϕk ∈ Xh, an associated mesh size ĥk
satisfying

1

cQ
≤
ĥk
hl

≤ cQ for all l such that τl ∩ supp{ϕk} 6= ∅, k = 1, . . . ,M, (8)

with a global constant cQ ≥ 1.
Let us now define the local trial spaces

Xh(τl) := {ϕli : ∃ϕk ∈ Xh : ϕli(x) = ϕk(x) for x ∈ τl} = Xh|τl ,

Yh(τl) := {φli : ∃φk ∈ Yh : φli(x) = φk(x) for x ∈ τl} = Yh|τl .

Let Ml = dimXh(τl) = dimYh(τl). We introduce the local Gram matrices as

Gl[j, i] =
〈
ϕli , ϕ

l
j

〉
L2(τl)

, for i, j = 1, ..,Ml, (9)

G̃l[j, i] =
〈
ϕli , φ

l
j

〉
L2(τl)

, for i, j = 1, ..,Ml, (10)

Ĝl[j, i] =
〈
φli , φ

l
j

〉
L2(τl)

, for i, j = 1, ..,Ml. (11)

Assumption 4.2 (Assumption 2.1 in [9]). Let Hl = diag(ĥk)
Ml

k=1, and Dl := diag(Gl). We can find a
constant c0 > 0 such that

(HlG̃
T
l H

−1
l xl,xl) ≥ c0 · (Dlxl,xl), ∀xl ∈ R

Ml (12)

for all l and h.

Theorem 4.3. Let Assumptions 4.1 and 4.2 be satisfied. Then, for the following combinations of
discrete spaces

Case A: Xh = S−1,0(Γh)⊂ X = H̃−1/2(Γ), Yh = S0,1(Γ̂h) ⊂ Y = H1/2(Γ),

Case B: Xh = S0,1
0 (Γh) ⊂ X = H̃1/2(Γ), Yh = S−1,0

∗ (Γ̂h)⊂ Y = H−1/2(Γ),

Case C: Xh = S−1,0(Γh)⊂ X = H−1/2(Γ), Yh = S0,1
0 (Γ̂h) ⊂ Y = H̃1/2(Γ),

Case D: Xh = S0,1(Γh) ⊂ X = H1/2(Γ), Yh = S−1,0(Γ̂h)⊂ Y = H̃−1/2(Γ),

the discrete inf-sup condition

sup
vh∈Yh

|〈wh , vh〉|

‖vh‖Y
≥

1

cs
‖wh‖X , ∀ wh ∈ Xh. (13)

holds with a positive constant cs independent of h.

Rather than prove Theorem 4.3 as a whole, we split it into the individual cases following the order
D-B-C-A. Case D follows as a Corollary of [9, Theorem 2.2], and the same strategy can be applied to
prove Case B. Finally, due to duality, cases C and A follow from the first two results and their proof the
same as in 2D, already given in [4, 5, Theorem 4.3].

Hence, here we focus on the proof of Case B. This means, given the generalized Galerkin L2-Projection
Q̃h : L2(Γ) → S0,1

0 (Γh), for a given u ∈ L2(Γ) defined according to
〈
Q̃hu , φh

〉

L2(Γ)
= 〈u , φh〉L2(Γ) , ∀φh ∈ S−1,0

∗ (Γ̂h) , (14)

we are interested in its L2 and H1 stability. On the one hand, the L2 stability of Q̃h follows from
the stability of the L2 product, given in the following lemma:

Lemma 4.4. The L2-stability

sup
ψh∈S−1,0

∗
(Γ̂h)

|〈ψh , wh〉|

‖ψh‖L2(Γ)

≥ cst ‖wh‖L2(Γ) , ∀wh ∈ S0,1
0 (Γh), ∀h ∈ H, (15)

where cst > 0 independent of h, holds under Assumption 4.1.
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Which is a particular case of [9, Lemma 1.7]. On the other hand, the H1-stability of Q̃h is tackled in
the following Proposition via a quasi-interpolation operator, as in [9, Section 1.5]. The proof is almost
the same as in Steinbach’s work except for some small technical details due to the treatment of the tilde
spaces and zero boundary conditions. For the sake of completeness, it is provided in the Appendix.

Proposition 4.5. Let Assumptions 4.1 and 4.2 be satisfied. Then the L2-projection Q̃h : H1
0 (Γ) →

Xh = S0,1
0 (Γh) defined in (14) satisfies

∥∥∥Q̃hu
∥∥∥
H1(Γ)

≤ c̃st ‖u‖H1(Γ) , ∀u ∈ H1
0 (Γ), (16)

with c̃st a positive constant independent of h.

The remainder of the Theorem’s proof for case B follows exactly as in the 2D case [4, 5].

Remark 1. The stability results discussed in this section are independent of the choice of basis functions.
As a consequence, the considered mesh assumptions allow us to lift Buffa and Christiansen’s dual discrete
space construction on quasi-uniform triangular meshes to non-uniform meshes.

It might be worth pointing out that in [2, Prop. 3.13], the discrete inf-sup condition (13) for case
B requires global quasi-uniformity together with the following local non-degeneracy condition [2, Prop
3.11]:

Let Γ0
h and Γ1

h denote the sets of vertices and edges on a given primal mesh Γh, respectively. Let Nt
denote the number of vertices v ∈ Γ0

h connected to the vertex t ∈ Γ0
h. The family of meshes {Γh}h∈H is

such that for some δ′ < 1 we have for each h ∈ H and s ∈ Γ0
h:

∑

t∈Γ0
h
:{s,t}∈Γ1

h

1/Nt ≤ δ′ 117 . (17)

Proposition 4.6. For Case B, Assumption 4.1 implies the local non-degeneracy condition (17).

The proof is given in the Appendix, where the neccessary notation is introduced.
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A Appendix: Stability Proofs

Let N be the number of elements over the primal mesh Γh. We define the following basis functions for
the primal and dual space defined by Case B:

Xh = S0,1
0 (Γh) = span{ϕk}

M
k=1,

Yh = S−1,0(Γ̂h) = span{φk}
M
k=1,

where M is the number of internal nodes on Γh, ϕk are “tent functions” such as ϕk(aj) = δkj for a given
vertex aj, and φk are “indicator function“ (of an element τk).

A.1 Mesh conditions

In Steinbach’s original work, the required mesh assumptions where defined as follows

Assumption A.1 (Assumptions 1.1 and 1.2 in [9]). Let Dl := diag(Gl). We assume that

cG1 (Dlxl,xl) ≤ (Glxl,xl) ≤ cG2 (Dlxl,xl), (18)

cG̃1 (Dlxl,xl) ≤ (G̃lxl,xl) ≤ cG̃2 (Dlxl,xl), (19)

cĜ1 (Dlxl,xl) ≤ (Ĝlxl,xl) ≤ cĜ2 (Dlxl,xl), (20)

hold uniformly for all xl ∈ RMl , (l = 1, .., N) with positive constants.

Proposition A.2. Assumption 4.1 implies Assumption A.1

Proof. This is done by local computations via the reference element (see Figure 8). In order to prove
(18) we observe

Gl =
∆l

12




2 1 1
1 2 1
1 1 2


 , (21)

with ∆l is the area of the element τl. Then we get the desired
condition

1

2
(Dlxl,xl) ≤ (Glxl,xl) ≤ 4(Dlxl,xl). (22)

For (19) and (20) we refer to [9, Section 2.2].

Figure 8: local primal and
dual mesh in
reference triangle.

(0,0) (1,0)

(0,1)

For the sake of clarity, we explicitly work with Assumption A.1 in the subsequent proofs in this
appendix.

In addition, for each basis function ϕk ∈ Xh we define the set

I(k) := {l ∈ {1, ..., N} : τl ∩ supp {ϕk} 6= ∅}, (23)

and for each τl ∈ Γh, the set

J(l) := {k ∈ {1, ...,M} : supp {ϕk} ∩ τl 6= ∅}. (24)

Then we can point out that for Case B, the stability Assumption 4.2 is satisfied if the following local
mesh condition:

51

7
−

√ ∑

k1∈J(l)

ĥk1
∑

k2∈J(l)

ĥ−1
k2

≥ c0 > 0 ∀τl ∈ Γh, (25)

holds with a global positive constant c0 [9, eq. (2.30)]]. The proof is given by Steinbach in [9, Section
2.2].
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Proof of Proposition 4.6. We define Nt as the number of vertices s such that {s, t} ∈ Γ̂1
h, i.e. the number

of vertices connected to t by a dual edge.
Define the dual mesh locally via a reference element (see Figure 8). Then, when computing the local

“mixed” Gram mass using Buffa and Christiansen’s approach, we get:

G̃l =
1

36




22
N

a0

7
N

a1

7
N

a2

7
N

a0

22
N

a1

22
N

a2

7
N

a0

7
N

a1

22
N

a2


 , Dl =




2 0 0
0 2 0
0 0 2



 . (26)

Here notice that as the basis functions in [2] are normalized, we drop the coefficient ∆l

3 .
Then for any xl = (x0, x1, x2) ∈ R3

2CG̃1

2∑

i=0

x2i ≤
2∑

i=0




∑

j 6=i

xjxi
7

Nai
+ x2i

22

Nai



 ≤ 2CG̃2

2∑

i=0

x2i ,

which holds particularly when ∑

j=0..2:j 6=i

1/Nj ≤ δ′ 227
1

Nai
, (27)

i.e. the local version of condition (17). Finally, if one sums this quantity over the
Nai

2 primal triangles
containing the vertex ai, one gets the desired non-degeneracy condition.

A.2 Proof of Proposition 4.5

The proof follows exactly as in the 2D case [4]. The argument slightly changes in some local computations
in the proof of the last lemma in this appendix ([4, Lemma B.2]). For the sake of completeness we recall
the ingredients here and provide the technical computations for the latter.

Let ωk = supp{ϕk}, then define the related space locally by Xh(ωk) := {ϕj|ωk
: ϕj ∈ S0,1

0 (Γh)}. Let
Qkh denote the Galerkin L2-Projection onto the local trial space Xh(ωk), such that for u ∈ L2(ωk)

〈
Qkhu , vh

〉
L2(ωk)

= 〈u , vh〉L2(ωk)
, ∀ vh ∈ Xh(ωk). (28)

Due to Assumption A.1, we have the stability estimate as well as the quasi optimal error estimate

∥∥Qkhu
∥∥
L2(ωk)

≤ ‖u‖L2(ωk)
, for all u ∈ L2(ωk), (29)

∥∥(Id−Qkh)u
∥∥
L2(ωk)

≤ clocst ĥk |u|H1(ωk)
, for all u ∈ H1(ωk). (30)

In particular, local quasi-uniformity gives us the following stability estimate

∥∥Qkhu
∥∥
H1(ωk)

≤ c̃locst ĥk ‖u‖H1(ωk)
for all u ∈ H1(ωk). (31)

Then, it is possible to define a quasi interpolation operator by

(Phu)(x) =

M∑

k=1

(Qkhu)(xk) · ϕk(x), (32)

which is also a projection onto S0,1
0 (Γh). Moreover, Ph have properties which will be key pieces for our

proof. We introduce these results in the following two lemmas.

Lemma A.3. (Extension of Lemma 1.9 [9], [4, Lemma B.1]) Let u ∈ H1
0 (Γ). Then, there exists a

positive constant cp1 independent of h such that

‖(Id−Ph)u‖L2(Γ) ≤ cp1
∑

k∈J(l)

ĥk |u|H1(ωk)
, l = 1, . . . , N, (33)
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where J(l) is the set of indices of hat functions ϕk that do not vanish on τl defined in (24). Moreover,

‖Phu‖H1(Γ) ≤ cp1 ‖u‖H1(Γ) , for all u ∈ H1
0 (Γ), (34)

and
M∑

k=1

ĥ−2
k ‖(Id−Ph)u‖

2
L2(ωk)

≤ cp1 ‖u‖
2
H1(Γ) , for all u ∈ H1

0 (Γ). (35)

Since the only difference with the original Lemma is due to the boundary, where the arguments
involved also hold, proof follows from [9, Lemma 1.9].

Lemma A.4. (Extension of Lemma 2.3 [9], [4, Lemma B.2]) Let condition (12) from Assumption 4.2
be satisfied and φk ∈ S−1,0

∗ (Γ̂h), k = 1, . . . ,M . Then

N∑

l=1

h−2
l ‖vh‖

2
L2(τl)

≤ cp2

M∑

k=1

[
〈vh , φk〉L2(Γ)

ĥk ‖φk‖L2(Γ)

]2

, (36)

for all vh ∈ S0,1
0 (Γh) with a positive constant cp2.

Proof. Again, this proof can be derived by adapting Steinbach’s original proof (similarly to what it was
shown in [1]). For the sake of clarity, we highlight the main difference from the steps given in [4, Lemma
B.2] using bold letters (see local computations almost at the end).

Recall I(k) from (23) as the set of indices of elements τl where ϕk is supported; and J(l) from (24).

Seeing that vh =
∑M

k=1 vkϕk ∈ S0,1
0 (Γh), we can write

N∑

l=1

h−2
l ‖vh‖L2(τl)

≤ cp

N∑

l=1

h−2
l

∑

k∈J(l)

v2k ‖ϕk‖
2
L2(τl)

≤ cp

M∑

k=1

v2k
∑

l∈I(k)

h−2
l ‖ϕk‖

2
L2(τl)

= cp

M∑

k=1

v2kγ
2
k,

where γk :=
√∑

l∈I(k) h
−2
l ‖ϕk‖

2
L2(τl)

. Setting xk := vkγk this gives

N∑

l=1

h−2
l ‖vh‖

2
L2(τl)

≤ cp ‖x‖
2
2 .

On the other hand,

M∑

k=1

[
〈vh , φk〉L2(Γ)

ĥk ‖φk‖L2(Γ)

]2

=

M∑

k=1



M∑

j=1

vj
〈ϕj , φk〉L2(Γ)

ĥk ‖φk‖L2(Γ)



2

=

M∑

k=1



M∑

j=1

xj
〈ϕj , φk〉L2(Γ)

γj ĥk ‖φk‖L2(Γ)



2

= ‖Ax‖22 ,

where A is a matrix given by

A := D−1
q G̃hD

−1
γ , Dq := diag(ĥk ‖φk‖L2(Γ)), Dγ := diag(γk).

Let Ḡh = H−1G̃hH . Define for any y ∈ RM

bh :=

M∑

k=1

hkykϕk ∈ S0,1
0 (Γh), qh :=

M∑

k=1

h−1
k ykφk ∈ S−1,0(Γ̂h).

Then, using
(H−1

l G̃lHlxl,xl) ≥ c0(Dlxl,xl) for all xl ∈ R
Ml , l = 1...N − 1, (37)
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which is transposed to (12), we derive the following bound:

(Ḡhy,y) = (H−1G̃hHy,y) = (G̃hHy, H−1y) = 〈bh , qh〉L2(Γ) =

N∑

l=1

〈bh , qh〉L2(τl)

=

N∑

l=1

(H−1
l G̃lHlyl,yl) ≥ c0

N∑

l=1

(Dlyl,yl) = c0(Dy,y).

Now, set D
1/2
h := diag(‖ϕk‖L2(Γ)). From

c0

∥∥∥D1/2
h y

∥∥∥
2

2
= c0(Dy,y) ≤ (Ḡhy,y) = (D

−1/2
h Ḡhy, D

1/2
h y)

≤
∥∥∥D−1/2

h Ḡhy
∥∥∥
2

∥∥∥D1/2
h y

∥∥∥
2
,

we conclude that

c0

∥∥∥D1/2
h y

∥∥∥
2
≤

∥∥∥D−1/2
h Ḡhy

∥∥∥
2
.

Taking z := Dγy, this is equivalent to

c0

∥∥∥D1/2
h D−1

γ z
∥∥∥
2
≤

∥∥∥D−1/2
h DqD

−1
q ḠhD

−1
γ z

∥∥∥
2
.

From the local quasi-uniformity, the ratio of the diagonal entries satisfies

D
1/2
h [k, k]

Dγ [k, k]
=

‖ϕk‖L2(Γ)√∑
l∈I(k) h

−2
l ‖ϕk‖

2
L2(τl)

≥ cĥk,

due to

D
1/2
h [k, k]

Dγ [k, k]
=

√∑
l∈I(k) ‖ϕk‖

2
L2(τl)√∑

l∈I(k) h
−2
l ‖ϕk‖

2
L2(τl)

≥
1√

max
l∈I(k)

h−2
l

≥ cĥk,

and
Dq[k, k]

D
1/2
h [k, k]

=
ĥk ‖φk‖L2(Γ)

‖ϕk‖L2(Γ)

≤ cĥk.

We derive this last result from the fact that ‖φk‖L2(Γ) =
∑
l∈I(k) clhl ≤ CQĥk and ĥk =

‖ϕk‖L2(Γ).
Thus, by taking x = Hz

cp ‖x‖2 = cp ‖Hz‖2 ≤
∥∥HD−1

q ḠhD
−1
γ z

∥∥
2
=

∥∥∥HD−1
q H−1G̃hHD

−1
γ H−1x

∥∥∥
2
= ‖Ax‖2 .
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