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Abstract

We analyze combined Quasi-Monte Carlo quadrature and Finite Element ap-
proximations in Bayesian estimation of solutions to countably-parametric opera-
tor equations with holomorphic dependence on the parameters as considered in
[Cl. Schillings and Ch. Schwab: Sparsity in Bayesian Inversion of Parametric Op-
erator Equations. Inverse Problems, 30, (2014)]. Such problems arise in numerical
uncertainty quantification and in Bayesian inversion of operator equations with
distributed uncertain inputs, such as uncertain coefficients, uncertain domains or
uncertain source terms and boundary data. We show that the parametric Bayesian
posterior densities belong to a class of weighted Bochner spaces of functions of count-
ably many variables, with a particular structure of the QMC quadrature weights:
up to a (problem-dependent, and possibly large) finite dimension S product weights
can be used, and beyond this dimension, weighted spaces with so-called SPOD
weights, recently introduced in [J. Dick, F.Y. Kuo, Q.T. Le Gia, D. Nuyens and
Ch. Schwab, Christoph Higher order QMC Petrov-Galerkin discretization for affine
parametric operator equations with random field inputs. SIAM J. Numer. Anal.
52 (2014), 2676–2702.], are used to describe the solution regularity. We establish
error bounds for higher order Quasi-Monte Carlo quadrature for the Bayesian esti-
mation based on [J. Dick, Q.T. LeGia and Ch. Schwab, Higher order Quasi-Monte
Carlo integration for holomorphic, parametric operator equations, Report 2014-23,
SAM, ETH Zürich]. It implies, in particular, regularity of the parametric solu-
tion and of the countably-parametric Bayesian posterior density in SPOD weighted
spaces. This, in turn, implies that the Quasi-Monte Carlo quadrature methods
in [J. Dick, F.Y. Kuo, Q.T. Le Gia, D. Nuyens, Ch. Schwab, Higher order QMC
Galerkin discretization for parametric operator equations, SINUM (2014)] are ap-
plicable to these problem classes, with dimension-independent convergence rates
O(N−1/p) of N -point HoQMC approximated Bayesian estimates, where 0 < p < 1
depends only on the sparsity class of the uncertain input in the Bayesian estima-
tion. Fast component-by-component (CBC for short) construction [R. N. Gantner
and Ch. Schwab Computational Higher Order Quasi-Monte Carlo Integration, Re-
port 2014-25, SAM, ETH Zürich] allow efficient Bayesian estimation with up to 103

parameters.

Key words: Quasi-Monte Carlo, Lattice rules, digital nets, parametric operator equa-
tions, infinite-dimensional quadrature, Bayesian inverse problems, Uncertainty Quantifi-
cation, CBC construction, SPOD weights.
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1 Introduction

The statistical estimation of solutions of operator equations which depend on uncertain
inputs, subject to given noisy data, is a key task in computational uncertainty quantifi-
cation. In the present paper we consider the particular case when the uncertain input
is distributed. Specifically, we allow the distributed, uncertain input u to take values in
an infinite-dimensional, separable Banach space X. The forward responses resulting from
(instances of) uncertain data u ∈ X then take values in a second Banach space, the state
space X . In Bayesian estimation, one is interested in computing the expected value of a
Quantity of Interest (QoI for short) taking values in R. The mathematical expectation
(or ensemble average) is conditional on the given, noisy observation data δ ∈ Y .

The efficient computation of such QoI’s in either forward or inverse problems involves
two basic steps: i) approximate (numerical) solution of the operator equation in the
forward problem, and ii) approximate evaluation of the mathematical expectation w.r.t.
the posterior over all possible realizations of the uncertain input, conditional on given
data, by some form of numerical integration.

Due to the high (infinite) dimensionality of the integration domain, Monte-Carlo meth-
ods have been widely used. In the present paper, building on our previous work [13] on
high-dimensional Quasi-Monte Carlo integration and on numerical Bayesian estimation
[35, 36] we propose a novel deterministic computational approach towards these aims. It
consists in i) uncertainty parametrization: through an unconditional basis {ψj}j≥1 of X,
the forward problem is transformed formally to an infinite-dimensional, parametric deter-
ministic problem. ii) dimension-truncation: the uncertain input u is restricted to a finite
number s of parameters. iii) (Petrov-)Galerkin discretization of the parametric operator
equation and, finally, iv) Quasi-Monte Carlo (QMC) integration in s parameters from
step ii) to compute approximate Bayesian estimates for the quantity of interest (QoI).

The present paper is motivated in part by [28], where QMC integration using a fam-
ily of randomly shifted lattice rules was combined with Petrov-Galerkin Finite Element
discretization for a model parametric diffusion equation, and in part by [38], where the
methodology of [28] was extended to forward problems described by an abstract family
of affine-parametric, linear operator equations.

The treatment of inverse problems is based on the infinite-dimensional Bayesian frame-
work as developed in [44, 7]. In this work, in contrast to [28, 38], we analyze deterministic,
interlaced polynomial lattice rules for the numerical evaluation of Bayesian estimates. As
we show here, these higher order QMC quadratures can provide dimension-independent
convergence rates beyond order one for smooth integrands (cf. [10, 11]); convergence
order 1 was the limitation in [28, 38] and order 1/2 is an intrinsic limitation of Monte-
Carlo based methods (here, convergence order is meant in terms of the number N of
“samples”, i.e. of forward solves). We prove that sparsity of uncertainty parametrization
implies higher order, dimension-independent convergence rates for QMC evaluation of ra-
tio estimators for expectations of QoI’s under the Bayesian posterior, for a broad class of
smooth, nonlinear, and possibly nonaffine-parametric operator equations with distributed
uncertain input data. Our results imply that unlike MCMC and filtering methods, the
presently proposed QMC evaluation of ratio estimators can provide convergence rates
larger than 1/2 regardless of the dimension of the parameter space, while also allowing
for “embarrassing parallelism”.

The structure of this paper is as follows: In Section 2, we introduce a class of smooth,
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nonlinear, holomorphic-parametric operator equations admitted in our approach. We
present sufficient conditions on the nonlinear operators and on the uncertainty for the
forward problems to be well-posed, as in [19, 34]. We require these conditions uniformly
in the set X̃ of admissible uncertainties. We give a parametrization of the uncertain
inputs which reduces the forward problem with distributed uncertain input to a countably-
parametric, deterministic problem. These parameters, denoted by yj, are assumed scaled
so as to take values in [−1, 1].

We review several approximations of these equations which are required in their com-
putational Bayesian inversion, in particular, (Petrov-)Galerkin discretizations of the para-
metric forward equations with discretization error estimates from [19, 34].

In Section 3, we review Bayesian inversion for these operator equations, based on
[44, 7] and on [41, 35, 36]. The countably-parametric representation of the uncertain in-
puts allows us to write the integrals arising in Bayesian estimation as countably iterated
parametric integrals. The principal result of the present paper, a convergence rate bound
of the Quasi Monte-Carlo integration for these integrals, requires precise derivative bounds
for the integrand functions. These are proved based on analytic continuation of the inte-
grand functions into the complex domain. To this end, in Section 4, we review the notion
of holomorphy of countably parametric integrand functions in both forward and inverse
problems. Section 5.1 gives the holomorphy and resulting derivative bounds on paramet-
ric forward solutions, whereas Section 5.2 contains the corresponding holomorphy results
for the Bayesian posterior densities. Section 5.3 reviews recent results on convergence the-
ory for higher-order QMC quadratures (based on [17]) and for the countably-parametric
integrands which arise in Bayesian estimation (based on [13]). Section 5.4 presents the
combined error bound for the QMC-PG approximation of the Bayesian estimate.

Based on the results in Sections 5.1 and 5.2, in [13, 20] variants of the fast CBC
constructions of generating vectors are developed based on [13, 22, 21] which are tailored
to the ‘hybrid’ nature of the QMC weights.

Elliptic model problems illustrating the general theory of holomorphic forward maps
are presented in Section 6. Numerical results for Bayesian estimation for these problems
are presented in Section 7.

2 Forward UQ for Parametric Operator Equations

We introduce a class of smooth, nonlinear operator equations with distributed uncertain
input data u taking values in a separable Banach space X. Upon appropriate uncertainty
parametrization, these equations become countably-parametric operator equations.

2.1 Operator equations with uncertain input

Let X,X and Y be real, separable Banach spaces. For a distributed, uncertain param-
eter u ∈ X, assume a nominal parameter instance 〈u〉 ∈ X (such as, for example, the
expectation of an X-valued random field u), is known.

Let BX(〈u〉;R) be an open ball of radius R > 0 in X centered at a nominal input
〈u〉 ∈ X. We consider the following problem:

given u ∈ BX(〈u〉;R), find q ∈ X s.t. Y ′〈R(u; q), v〉Y = 0 ∀v ∈ Y , (2.1)
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where R : X × X → Y ′ is the residual of a forward operator, depending on u and acting
on q ∈ X .

Given u ∈ BX(〈u〉;R), a solution q0 of (2.1) is called regular at u if and only if the
map R(u; ·) is Fréchet differentiable with respect to q at q0 and if the differential is an
isomorphism: (DqR)(u; q0) ∈ Liso(X ;Y ′). Here and in what follows, Liso shall denote the
set of linear isomorphisms between the Banach space arguments.

We assume the map R(u; ·) : X → Y ′ admits a family of regular solutions locally,
in an open neighborhood of the nominal parameter instance 〈u〉 ∈ X so that the oper-
ator equations involving R(u; q) are well-posed. For all u in a sufficiently small, closed
neighborhood X̃ ⊆ X of 〈u〉 ∈ X we impose the following structural assumption on the
parametric forward problem:

Assumption 1. For every u ∈ X̃ ⊆ X, we assume given maps A(u; q) : X × X → Y ′

and F (u) : X → Y ′ such that

R(u; q) = A(u; q)− F (u) in Y ′ . (2.2)

We denote by a : X × Y → R the bilinear form associated with A. For every fixed
u ∈ X̃ ⊂ X, and for every F (u) ∈ Y ′, the problem to find q(u) ∈ X such that the residual
equation (2.1) is well-posed, i.e. there exists a unique solution q(u) of (2.1) which depends
continuously on u.

The set {(u, q(u)) : u ∈ X̃} ⊂ X ×X is called a regular branch of solutions of (2.1) if

X̃ ∋ u 7→ q(u) is continuous as mapping from X̃ → X ,
R(u; q(u)) = 0 in Y ′ .

(2.3)

The regular branch of solutions (2.3) is called nonsingular if, in addition, the differential

(DqR)(u; q(u)) ∈ L(X ,Y ′) is an isomorphism from X onto Y ′, for all u ∈ X̃ . (2.4)

Well-known sufficient conditions for well-posedness of (2.1) are stated in the following
proposition. More precisely, for regular branches of nonsingular solutions given by (2.1) -
(2.4), the differential DqR satisfies the so-called inf-sup conditions.

Proposition 2.1. Assume that Y is reflexive and that, for some nominal value 〈u〉 ∈ X of
the uncertainty, the operator equation (2.1) with (2.2) admits a regular branch of solutions
(2.3) with q0 ∈ X denoting the “nominal” solution corresponding to the data 〈u〉 ∈ X.
Then the differential DqR at (〈u〉, q0) given by the bilinear map

X × Y ∋ (ϕ, ψ) 7→ Y ′〈DqR(〈u〉; q0)ϕ, ψ〉Y

is boundedly invertible, uniformly with respect to u ∈ X̃ where X̃ ⊂ X is an open
neighborhood of the nominal instance 〈u〉 ∈ X of the uncertain parameter. In particular,
there exists a constant κ > 0 such that there holds

∀u ∈ X̃ :

inf
0 6=ϕ∈X

sup
0 6=ψ∈Y

Y ′〈(DqR)(u; q0)ϕ, ψ〉Y
‖ϕ‖X‖ψ‖Y

≥ κ > 0 ,

inf
0 6=ψ∈Y

sup
0 6=ϕ∈X

Y ′〈(DqR)(u; q0)ϕ, ψ〉Y
‖ϕ‖X‖ψ‖Y

≥ κ > 0 ,
(2.5)

and

∀u ∈ X̃ : ‖(DqR)(u; q0)‖L(X ,Y ′) = sup
0 6=ϕ∈X

sup
0 6=ψ∈Y

Y ′〈(DqR)(u; q0)ϕ, ψ〉Y
‖ϕ‖X‖ψ‖Y

≤ κ−1 . (2.6)
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For every u ∈ X̃ ⊆ X, under conditions (2.5) and (2.6), there exists a unique, regular
solution q(u) of (2.2) which is uniformly bounded with respect to u ∈ X̃ in the sense that
there exists a constant C(F, X̃) > 0 such that

sup
u∈X̃

‖q(u)‖X ≤ C(F, X̃) . (2.7)

The set {(u, q(u)) : u ∈ X̃} ⊂ X̃ × X is a regular branch of nonsingular solutions when
(2.5) - (2.7) hold.

If the nonlinear functional R is Fréchet differentiable with respect to u and Fréchet
differentiable with respect to q at every point of the regular branch {(u, q(u)) : u ∈ X̃} ⊂
X̃ × X , then the mapping relating u to q(u) with the branch of nonsingular solutions is
locally Lipschitz on X̃: i.e. there exists a Lipschitz constant L(F, X̃) such that

∀u, v ∈ X̃ : ‖q(u)− q(v)‖X ≤ L(F, X̃)‖u− v‖X . (2.8)

This follows from the identity (Duq)(u) = −(DqR)−1(DuR), and from the isomorphism
property (DuRq)(〈u〉; q0) ∈ Liso(X ,Y

′) which is implied by (2.5) and (2.6), and from the
continuity of the differential DqR on the regular branch.

In what follows, we will place ourselves in the abstract setting (2.2) with uniformly
continuously differentiable mapping R(u; q) in a product of neighborhoods BX(〈u〉;R)×
BX (q(〈u〉);R) of sufficiently small radius R > 0. The quantity q(〈u〉) ∈ X is the corre-
sponding regular solution of (2.2) at the nominal input 〈u〉 ∈ X.

2.2 Uncertainty parametrization

We shall be concerned with the particular case where u ∈ X is a random variable taking
values in a subset X̃ of the Banach space X. We assume that X is separable, infinite-
dimensional, and admits an unconditional Schauder basis {ψj}j≥1: X = span{ψj : j ≥ 1}.
Then, every u ∈ X̃ ⊂ X can be parametrized in this basis, i.e.

u = u(y) := 〈u〉+
∑

j≥1

yjψj for some y = (yj)j≥1 ∈ U . (2.9)

Examples of representations (2.9) are Karhunen-Loève expansions (see, e.g., [42, 39, 44, 7])
or unconditional Schauder bases (see, e.g., [4]). Note that the representation (2.9) is not
unique: rescaling yj and ψj will not change u. We will assume, therefore, throughout
what follows that the sequence {ψj}j≥1 is such that U = [−1, 1]N. For any y ∈ U , norm-
convergence in X of the series (2.9) in X is implied by the summability condition

∑

j≥1

‖ψj‖X <∞ . (2.10)

Condition (2.10) will be assumed throughout in what follows.
To obtain convergence rate estimates for the discretization of the forward problem,

we shall restrict uncertain inputs u to sets Xt ⊂ X of inputs u with “higher regularity”
(measured in a smoothness scale {Xt}t≥0 with X = X0 ⊃ X1 ⊃ X2 ⊃ ...), so that u ∈ Xt

will imply in Assumption 1 that F (·) ∈ Y ′
t and q(u) ∈ Xt, with corresponding subspaces

Xt ⊂ X and Y ′
t ⊂ Y ′ with extra regularity from suitable scales.
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We remark that u ∈ Xt in general corresponds to stronger decay of the ψj in (2.9)
which is relevant for optimal convergence estimates for multi-level QMC discretizations.
In the present paper, we consider only single-level algorithms. For u ∈ X, in (2.9) the
{ψj}j≥1 are thus assumed scaled such that (2.10) is strengthened to

b := {‖ψj‖X}j≥1 ∈ ℓp(N) for some 0 < p < 1 . (2.11)

We also introduce the subset1

U = {y ∈ [−1, 1]N : u(y) := 〈u〉+
∑

j≥1

yjψj ∈ X̃} . (2.12)

Once an unconditional Schauder basis {ψj}j≥1 has been chosen, every realization u ∈ X
can be identified in a one-to-one fashion with the pair (〈u〉,y) where 〈u〉 denotes the
nominal instance of the uncertain datum u and y is the coordinate vector of the unique
representation (2.9).

Remark 2.1. In what follows, by a slight abuse of notation, we identify the subset U
in (2.12) with the countable set of parameters from the infinite-dimensional parameter
domain U ⊆ RN without explicitly writing so. The operator A(u; q) in (2.2) then becomes,
via the parametric dependence u = u(y), a parametric operator family A(u(y); q) which
we denote (with slight abuse of notation) by {A(y; q) : y ∈ U}, with the parameter set
U = [−1, 1]N (again, we use in what follows this definition in place of the set U as defined
in (2.12)). In the particular case that the parametric operator family is linear, we have
A(y; q) = A(y)q with A(y) ∈ Liso(X ,Y

′). We do not assume, however, that the maps
q 7→ A(y; q) are linear in what follows, unless explicitly stated.

With this understanding, and under the assumptions (2.7) and (2.8), the operator
equation (2.2) will admit, for every y ∈ U , a unique solution q(y;F ), which is, due to
(2.7) and (2.8), uniformly bounded and depends Lipschitz continuously on the parameter
sequence y ∈ U : there holds

sup
y∈U

‖q(y;F )‖X ≤ C(F, U). (2.13)

If the local Lipschitz condition (2.8) holds, there exists a Lipschitz constant L > 0 such
that

‖q(y;F )− q(y′;F )‖X ≤ L(F, U)‖u(y)− u(y′)‖X . (2.14)

The Lipschitz constant L > 0 in (2.14) is not, in general, equal to L(F, X̃) in (2.8): it
depends on the nominal instance 〈u〉 ∈ X and on the choice of basis {ψj}j≥1.

Unless explicitly stated otherwise, throughout what follows, we shall identify q0 =
q(0;F ) ∈ X in Proposition 2.1 with the solution of (2.1) at the nominal input 〈u〉 ∈ X.

2.3 Dimension truncation

For a truncation dimension s ∈ N, denote the s-term truncation of parametric repre-
sentation (2.9) of the uncertain datum u by us ∈ X. Dimension truncation is equiv-
alent to setting yj = 0 for j > s in (2.9) and we denote by qs(y) the solution of

1For QMC quadrature, ahead, we rescale this set to [−1/2, 1/2]N
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the corresponding parametric weak problem (2.20). Unique solvability of (2.20) implies
qs(y) = q({y1, y2, ..., ys, 0, ...}). For y ∈ U , define y{1:s} := (y1, y2, ..., ys, 0, 0, ...). Propo-
sition 2.1 holds when u(y) is replaced by us(y), with κ > 0 in (2.5) independent of s for
sufficiently large s.

Our estimation of the dimension truncation error q(y)− qs(y) relies on two assump-
tions: (i) We assume the p-summability (2.11) of the sequence b given by bj := ‖ψj‖X in
(2.9). From the definition of the sequence b = (bj)j≥1 in (2.11), the condition is equivalent
to
∑

j≥1 b
p
j <∞; (ii) the bj in (2.11) are enumerated so that

b1 ≥ b2 ≥ · · · ≥ bj ≥ · · · . (2.15)

Consider the s-term truncated problem: given us ∈ X̃,

find qs ∈ X : Y ′〈R(us; qs), w〉Y = 0 ∀w ∈ Y . (2.16)

Proposition 2.2. Under Assumptions (2.10), (2.11), for every f ∈ Y ′, for every y ∈
U and for every s ∈ N, the parametric solution qs(y) of the dimensionally truncated,
parametric weak problem (2.20) with s-term truncated parametric expansion (2.9) satisfies,
with bj as defined in (2.11),

sup
y∈U

‖q(y)− qs(y)‖X ≤ C(F,X)
∑

j≥s+1

bj (2.17)

for some constant C > 0 independent of f . Moreover, for every G(·) ∈ X ′, we have

|I(G(q))− I(G(qs))| ≤ C̃
∑

j≥s+1

bj, (2.18)

where

I(G(q)) =

∫

U

G(q(y)) dy and I(G(qs)) =

∫

[−1,1]s
G(q(y1, . . . , ys, 0, . . .)) dy1 · · · dys,

for some constant C̃ > 0 independent of s. In addition, if conditions (2.10), (2.11) and
(2.15) hold, then in (2.17) and (2.18) holds

∑

j≥s+1

bj ≤ min

(

1

1/p− 1
, 1

)(

∑

j≥1

bpj

)1/p

s−(1/p−1) . (2.19)

Proof. Assumption 1 on well-posedness of the forward problem (2.1) uniformly for all
u ∈ BX(〈u〉;R) and the basis property (2.9) of the sequence {ψj} imply that for sufficiently
large s, us ∈ X̃ and therefore (2.16) admits a unique solution, qs ∈ X , for these s. The
unique local solvability of (2.1) and of (2.16) implies that qs(y) = q(y{1:s}) where we
recall for y ∈ U the notation y{1:s} = (y1, ..., ys, 0, ...). From (2.14) we obtain

‖q(y;F )− qs(y;F )‖X = ‖q(y;F )− q(y{1:s};F )‖X ≤ L sup
y∈U

‖u(y)− u(y{1:s})‖X

= L sup
y∈U

∥

∥

∥

∥

∥

∞
∑

j=s+1

yjψj

∥

∥

∥

∥

∥

X

≤ L

∞
∑

j=s+1

bj,

which is (2.17). The bound (2.18) follows from G(·) ∈ X ′ and from (2.17).
With b ∈ ℓp(N) and the assumption (2.15), Stechkin’s lemma (see also [28, p. 3363])

implies (2.19).
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2.4 Petrov-Galerkin discretization

Assuming that the infinite-dimensional space X of uncertain inputs to admit an uncondi-
tional Schauder basis {ψj}j∈N, the uncertain parameter u ∈ X in (2.2) can be equivalently
expressed as (2.9) which turns (2.2) into an equivalent, deterministic, countably parametric
operator equation: given y ∈ U , find q(y) ∈ X such that

R(y; q(y)) = 0 in Y ′ . (2.20)

Based on the theory in [19, Chap. IV.3] and in [34], an error analysis of Galerkin dis-
cretizations of (2.20) for the approximation of regular branches of solutions of smooth,
nonlinear forward problems (2.2) will be presented in this section. Building on this, in the
next section we generalize the results [28, 30] of Quasi-Monte Carlo, Petrov-Galerkin ap-
proximation to direct and inverse problems for operator equations (2.20) with countably-
parametric uncertain inputs.

To this end, we assume, as in [38, 13], that we are given two sequences {X h}h>0 ⊂
X and {Yh}h>0 ⊂ Y of finite dimensional subspaces which are dense in X and in Y ,
respectively. For the computational complexity analysis, we also assume the following
approximation properties: there is a scale {Xt}t≥0 of subspaces such that Xt′ ⊂ Xt ⊂ X0 =
X for any 0 < t < t′ <∞ and such that, for 0 < t ≤ t̄ and 0 < t′ ≤ t̄′, and for 0 < h ≤ h0,
there hold

∀v ∈ Xt : inf
vh∈Xh

‖v − vh‖X ≤ Ct h
t ‖v‖Xt

. (2.21)

Typical examples of smoothness scales {Xt}t≥0 and {Y ′
t}t≥0 are furnished by the Sobolev

scale Xt = H1+t(D) in smooth domains or by its weighted counterparts in polyhedra [32].

Proposition 2.3. Assume that the subspace sequences {X h}h>0 ⊂ X and {Yh}h>0 ⊂ Y
are stable, i.e. there exist µ̄ > 0 and h0 > 0 such that for every 0 < h ≤ h0, there hold the
uniform (with respect to y ∈ U) discrete inf-sup conditions

∀y ∈ U : inf
0 6=vh∈Xh

sup
0 6=wh∈Yh

Y ′〈(DqR)(u(y); q0)v
h, wh〉Y

‖vh‖X‖wh‖Y
≥ µ̄ > 0 , (2.22)

∀y ∈ U : inf
0 6=wh∈Yh

sup
0 6=vh∈Xh

Y ′〈(DqR)(u(y); q0)v
h, wh〉Y

‖vh‖X‖wh‖Y
≥ µ̄ > 0 . (2.23)

Then, for every 0 < h ≤ h0 the Galerkin approximations: given y ∈ U ,

find qh(y) ∈ X h : Y ′〈R(y; qh(y)), wh〉Y = 0 ∀wh ∈ Yh , (2.24)

are uniquely defined and converge quasioptimally: there exists a constant C > 0 such that
for all y ∈ U

‖q(y)− qh(y)‖X ≤
C

µ̄
inf

0 6=vh∈Xh
‖q(y)− vh‖X . (2.25)

If q(y) ∈ Xt uniformly w.r.t. y and if (2.21) holds, then

‖q(y)− qh(y)‖X ≤
C

µ̄
ht sup

y∈U
‖q(y)‖Xt

. (2.26)

In the ensuing QMC convergence analysis we shall also require error bounds for the
dimensionally truncated parameter sequences.
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Corollary 2.1. Under the assumptions of Proposition 2.3, for sufficiently large truncation
dimension s ∈ N, for given y{1:s} ∈ U the dimensionally truncated Galerkin approxima-
tions

find qh(y{1:s}) ∈ X h : Y ′〈R(y{1:s}; q
h(y{1:s})), w

h〉Y = 0 ∀wh ∈ Yh , (2.27)

admit unique solutions qh(y{1:s}) ∈ X h which converge, as h ↓ 0, quasioptimally to
q(y{1:s}) ∈ X , i.e. (2.25) and (2.26) hold with y{1:s} in place of y, with the same constants
C > 0 and µ̄ independent of s and of h.

3 Bayesian Inverse UQ

The nonlinear, parametric problems considered in Section 2 were forward problems: for a
single instance of the uncertain datum u ∈ X, and for given input data F , the quantity of
interest was the parametric solution q(u), or q(y) in terms of the parametrization (2.9).
Often, however, also the corresponding inverse problem is of interest: given observational
data δ, predict a “most likely” value of a Quantity of Interest (‘QoI’ for short) φ which,
typically, is a continuously (Fréchet-)differentiable functional of the input u ∈ X.

3.1 General setup

Following [44, 7, 41, 35, 36], we equip the space of uncertain inputs X and the space of
solutions X of the forward maps with norms ‖ · ‖X and with ‖ · ‖X , respectively. We
consider the abstract (possibly nonlinear) operator equation (2.2) where the system’s
forcing F ∈ Y ′ is allowed to depend on the uncertain input u.

The uncertain operator A(u; ·) ∈ L(X ,Y ′) is assumed to be boundedly invertible, at
least locally for the uncertain input u sufficiently close to a nominal input 〈u〉 ∈ X, i.e. for
‖u−〈u〉‖X sufficiently small so that, for such u, the response of the forward problem (2.2)
is uniquely defined. We define the forward response map, which maps a given uncertain
input u and a given forcing F to the response q in (2.2) by

X ∋ u 7→ q(u) := G(u;F ) : X × Y ′ → X .

We omit the dependence of the response on F and simply denote the dependence of the
forward solution on the uncertain input as q(u) = G(u). We assume that we are given an
observation functional O(·) : X → Y , which denotes a bounded linear observation operator
on the space X of observed system responses in Y . Throughout the remainder of this
paper, we assume that there is a finite numberK of sensors, so that Y = RK withK <∞.
We equip Y = RK with the Euclidean norm, denoted by |·|. Then O ∈ L(X ;Y ) ≃ (X ∗)K ,
i.e. O(·) is a K-dimensional vector of observation functionals O(·) = (ok(·))

K
k=1.

In this setting, we wish to predict computationally an expected (under the Bayesian
posterior, defined below) system response of the QoI, conditional on given, noisy mea-
surement data δ. Specifically, we assume the data δ to consist of observations of system
responses in the data space Y , corrupted by additive observation noise, e.g. by a realiza-
tion of a random variable η taking values in Y with law Q0. We assume the following
form of observed data, composed of the observed system response and the additive noise
η

δ = O(G(u)) + η ∈ Y . (3.1)
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We assume that the additive observation noise process η is Gaussian, i.e. a random vector
η ∼ Q0 ∼ N (0,Γ) with a positive definite covariance Γ on RK (i.e., a symmetric, positive
definite covariance matrix Γ ∈ RK×K

sym which we assume to be known). Henceforth, with a
slight abuse of notation, we say Γ > 0 (which means that Γ is positive definite).

The uncertainty-to-observation map G : X → RK of the system is G = O ◦G, so that

δ = G(u) + η = (O ◦G)(u) + η ∈ L2
Γ(R

K) ,

where L2
Γ(R

K) denotes random vectors taking values in Y = RK which are square in-
tegrable with respect to the Gaussian measure with covariance matrix Γ > 0 on the
finite-dimensional observation space Y = RK . Bayes’ formula [44, 7] yields a density
of the Bayesian posterior with respect to the prior whose negative log-likelihood equals
the observation noise covariance-weighted, least squares functional (also referred to as
“potential” in what follows) ΦΓ : X × Y → R given by ΦΓ(u; δ) =

1
2
|δ − G(u)|2Γ, i.e.

ΦΓ(u; δ) =
1

2
|δ − G(u)|2Γ :=

1

2

(

(δ − G(u))⊤Γ−1(δ − G(u))
)

. (3.2)

In [44, 7], an infinite-dimensional version of Bayes’ rule was shown to hold in the present
setting. In particular, the local Lipschitz assumption (2.8) on the solutions’ dependence
on the data implies a corresponding Lipschitz dependence of the Bayesian potential (3.2)
on u ∈ X. Bayes’ Theorem states that, under appropriate continuity conditions on the
uncertainty-to-observation map G = (O ◦ G)(·) and on the prior measure π0 on u ∈ X,
for positive observation noise covariance in (3.2), the posterior πδ of u ∈ X given data
δ ∈ Y is absolutely continuous with respect to the prior π0. The following result is a
version of Bayes’ theorem, from [7, Thm. 3.4].

Theorem 3.1. Assume that the potential ΦΓ : X × Y → R is, for fixed data δ ∈ Y , π0

measurable and that, for Q0-a.e. data δ ∈ Y there holds

Z :=

∫

X

exp (−ΦΓ(u; δ))π0(du) > 0 .

Then the conditional distribution of u|δ (u given δ) exists and is denoted by πδ. It is
absolutely continuous with respect to π0 and there holds

dπδ

dπ0

(u) =
1

Z
exp (−ΦΓ(u; δ)) . (3.3)

In particular, then, the Radon-Nikodym derivative of the Bayesian posterior w.r.t. the
prior measure admits a bounded density w.r.t. the prior π0 which we denote by Θ, and
which is given by (3.3).

3.2 Parametric Bayesian posterior

We parametrize the uncertain datum u in the forward equation (2.2) as in (2.9). Moti-
vated by [35, 36], the basis for the presently proposed deterministic quadrature approaches
for Bayesian estimation via the computational realization of Bayes’ formula is a para-
metric, deterministic representation of the derivative of the posterior measure πδ with
respect to the uniform prior measure π0 on the set U of coordinates in the uncertainty
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parametrization (2.12). The prior measure π0 being uniform, we admit in (2.9) sequences
y which take values in the parameter domain U = [−1, 1]N. As explained in sections
3.1 and 2.2, we consider the parametric, deterministic forward problem in the probability
space

(U,B,π0) . (3.4)

We assume throughout what follows that the prior measure π0 on the uncertain input
u ∈ X, parametrized in the form (2.9), is the uniform measure. With the parameter
domain U as in (3.4), the parametric uncertainty-to-observation map Ξ : U → Y = RK

is given by

Ξ(y) = G(u)
∣

∣

∣

u=〈u〉+
∑

j∈J
yjψj

. (3.5)

Our QMC quadrature approach will be based on a parametric version of Bayes’ Theo-
rem 3.1, in terms of the uncertainty parametrization (2.9). To do so, we view U as the unit
ball of all sequences in U with respect to the ℓ∞-norm, i.e.the Banach space of bounded
sequences taking values in U .

Theorem 3.2. Assume that Ξ : U → Y = RK is bounded and continuous. Then πδ(dy),
the distribution of y ∈ U given data δ ∈ Y , is absolutely continuous with respect to
π0(dy), i.e. there exists a parametric density Θ(y) such that

dπδ

dπ0

(y) =
1

Z
Θ(y) (3.6)

with Θ(y) given by

Θ(y) = exp
(

−ΦΓ(u; δ)
)

∣

∣

∣

u=〈u〉+
∑

j∈J
yjψj

, (3.7)

with Bayesian potential ΦΓ as in (3.2) and with normalization constant Z given by

Z = Eπ0 [1] =

∫

U

Θ(y)π0(dy) > 0 . (3.8)

Bayesian estimation is concerned with the approximation of a “most likely” Quantity
of Interest (QoI) φ : X → R conditional on given (noisy) observation data δ ∈ Y . With
the QoI φ we associate the deterministic, infinite-dimensional, parametric map

Ψ(y) = Θ(y)φ(q(u)) |u=〈u〉+
∑

j∈J
yjψj

= exp
(

−ΦΓ(u; δ)
)

φ(q(u))
∣

∣

∣

u=〈u〉+
∑

j∈J
yjψj

: U → R . (3.9)

Then the Bayesian estimate of the QoI φ, given noisy data δ, takes the form

Eπδ

[φ] = Z ′/Z, Z ′ :=

∫

U

Ψ(y)π0(dy) . (3.10)

The task in computational Bayesian estimation is therefore to approximate the ratio
Z ′/Z ∈ R in (3.10). In the parametrization with respect to y ∈ U , Z and Z ′ take the
form of infinite-dimensional, iterated integrals with respect to the uniform prior π0(dy).
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3.3 Well-posedness and approximation

For the computational viability of Bayesian inversion the quantity Eπδ

[φ] should be stable
under perturbations of the data δ and under changes in the forward problem stemming,
for example, from discretizations as considered in Section 2.4.

Unlike deterministic inverse problems where the data-to-solution maps can be severely
ill-posed, for Γ > 0 the expectations (3.10) are Lipschitz continuous with respect to the
data δ, provided that the potential ΦΓ in (3.2) is locally Lipschitz with respect to the data
δ in the following sense.

Assumption 2. [7, Assumption 4.2] Let X̃ ⊆ X and assume ΦΓ ∈ C(X̃ × Y ;R) is
Lipschitz on bounded sets. Assume also that there exist functions Mi : R+ × R+ → R+,
i = 1, 2, (depending on Γ > 0) which are monotone, non-decreasing separately in each
argument, and with M2 strictly positive, such that for all u ∈ X̃, and for all δ, δ1, δ2 ∈
BY (0, r)

ΦΓ(u; δ) ≥ −M1(r, ‖u‖X), (3.11)

and
|ΦΓ(u; δ1)− ΦΓ(u; δ2)| ≤ M2(r, ‖u‖X)‖δ1 − δ2‖Y . (3.12)

We remark that in the present context, (3.12) follows from (3.2); for convenient ref-
erence, we include (3.12) in Assumption 2. Under Assumption 2, the expectation (3.10)
depends Lipschitz continuously on δ (see, e.g., [7, Sec. 4.1] for a proof):

∀φ ∈ L2(πδ1 , X;R) ∩ L2(πδ2 , X;R) : |Eπδ1 [φ]− Eπδ2 [φ]| ≤ C(Γ, r)‖δ1 − δ2‖Y . (3.13)

Ahead, we shall be interested in the impact of approximation errors in the forward
response of the system (e.g. due to discretization and approximate numerical solution
of system responses) on the Bayesian predictions (3.10). To ensure continuity of the
expectations (3.10) w.r.t. changes in the potential, we impose the following assumption.

Assumption 3. [7, Assumption 4.6] Let X̃ ⊆ X and assume ΦΓ ∈ C(X̃;R) is Lipschitz
on bounded sets. Assume also that there exist functions Mi : R+ → R+, i = 1, 2,
independent of the number M of degrees of freedom in the discretization of the forward
problem, where the functions Mi are monotonically non-decreasing separately in each
argument, and with M2 strictly positive, such that for all u ∈ X̃, and all δ ∈ BY (0, r),

ΦΓ(u; δ) ≥ −M1(‖u‖X), (3.14)

and there is a positive, monotonically decreasing ϕ(·) such that ϕ(M) → 0 as M → ∞,
monotonically and uniformly w.r.t. u ∈ X̃ (resp. w.r.t. y ∈ U) and such that

|ΦΓ(u; δ)− ΦM
Γ (u; δ)| ≤ M2(‖u‖X)ϕ(M) . (3.15)

Denote by πδ
M the Bayesian posterior, for given data δ ∈ Y , with respect to the

approximate potential ΦM
Γ obtained from a Petrov-Galerkin discretization (2.27).

Proposition 3.1. Suppose that Assumption 3 holds, and assume that for X̃ ⊆ X and for
some bounded set B ⊂ X we have π0(X̃ ∩ B) > 0 and

X ∋ u 7→ exp(M1(‖u‖X))(1 +M2
2(‖u‖X)) ∈ L1

π0
(X;R) .
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Then there holds, for every QoI φ : X → R such that φ ∈ L2
πδ(X;R) ∩ L2

πδ
M

(X;R)

uniformly w.r.t. M and such that Z > 0 in (3.8), the consistency error bound

‖Eπδ

[φ]− Eπδ
M [φ]‖R ≤ C(Γ, r)ϕ(M) . (3.16)

For a proof of Proposition 3.1, we refer to [7, Thm. 4.8, Rem. 4.9].
Below, we shall present concrete choices for the convergence rate function ϕ(M) in

estimate (3.15), in terms of i) “dimension truncation” of the uncertainty parametrization
(2.9), i.e. to a finite number of s ≥ 1 terms in (2.9), and ii) discretization of the dimen-
sionally truncated problem for particular classes of forward problems. The verification
of the consistency condition (3.15) in either of these cases will be based on the following
observation.

Proposition 3.2. Assume we are given a sequence {qM}M≥1 of approximations to the
forward response X ∋ u 7→ q(u) ∈ X such that, with the parametrization (2.9),

sup
u∈X̃

‖(q − qM)(y)‖X ≤ ϕ(M) (3.17)

with a consistency error bound ϕ(M) ↓ 0 as in Assumption 3. Denote by GM the corre-
sponding (Galerkin) approximations of the parametric forward maps. Then the approxi-
mate Bayesian potential is

ΦM
Γ (u; δ) =

1

2
(δ − GM(u))⊤Γ−1(δ − GM(u)) : X × Y → R , (3.18)

where GM := O ◦GM , satisfies (3.15).

Proof. By definition (3.2) of the Bayesian potential, for every u ∈ X̃ (i.e. every y ∈ U
defined in (2.12))

|ΦΓ(u; δ)− ΦM
Γ (u; δ)|

=
1

2

∣

∣

∣

(

δ − (O ◦G)(u)
)⊤

Γ−1
(

δ − (O ◦G)(u)
)

−
(

δ − (O ◦GM)(u)
)⊤

Γ−1
(

δ − (O ◦GN)(u)
)

∣

∣

∣

≤
1

2

∥

∥Γ−1/2O
∥

∥

X ∗

∥

∥(G−GM)(u)
∥

∥

X

∣

∣2δ −O ◦ (G+GM)(u)
∣

∣

Γ

=
1

2

∥

∥Γ−1/2O
∥

∥

X ∗

∥

∥(q − qM)(y)
∥

∥

X

∣

∣2δ −O ◦ (q + qM)(y)
∣

∣

Γ
.

Throughout the following, we will denote by qM the Petrov-Galerkin discretization
(2.27) in Section 2.4, with M =Mh = dim(X h) = dim(Yh) degrees of freedom.

4 Holomorphic parameter dependence

As indicated, a key role in the present paper is played by holomorphy of countably para-
metric families of operator equations and their solution families. By this we mean that
the parametric family of solutions permits, with respect to each parameter yj, a holo-
morphic extension into the complex domain C; for purposes of QMC integration, in
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addition some uniform bounds on these holomorphic extensions must be satisfied in order
to prove approximation rates and QMC quadrature error bounds which are independent
of the number of parameters which are “activated” in the approximation, i.e. in the QMC
quadrature process. In [23, 3], the notion of (b, p, ε)-holomorphy of parametric solutions
has been introduced to this end. In the remainder of Section 4 and throughout the next
Section 5.1, all spaces X, Y , X and Y will be understood as Banach spaces over C, without
notationally indicating so.

4.1 Holomorphic Families of Countably-Parametric Maps

Definition 4.1. ((b, p, ε)-holomorphy) Let ε > 0 and 0 < p < 1 be given. For a positive
sequence b = (bj)j≥1 ∈ ℓp(N), we say that a parametric solution family q(y) : U → X
of (2.2) satisfies the (b, p, ε)-holomorphy assumption if and only if all of the following
conditions hold:

1. The map y 7→ q(y) from U to X , for each y ∈ U , is uniformly bounded with respect
to the parameter sequence y, i.e. there is a bound C0 > 0 such that

sup
y∈U

‖q(y)‖X ≤ C0 . (4.1)

2. There exists a positive sequence b = (bj)j≥1 ∈ ℓp(N) such that, for any sequence
ρ := (ρj)j≥1 of numbers ρj > 1 that satisfies

∑

j≥1

(ρj − 1)bj ≤ ε, (4.2)

for sufficiently small ε > 0, the parametric solution map U ∋ y 7→ q(y) admits an
extension z 7→ q(z) to the complex domain that is holomorphic with respect to each
variable zj in a cylindrical set of the form Oρ :=

⊗

j≥1Oρj where, for every j ≥ 1,
[−1, 1] ⊂ Oρj ⊂ C with open sets Oρj ⊂ C.

3. For any poly-radius ρ satisfying (4.2), there is a second family Õρ :=
⊗

j≥1 Õρj of
open, cylindrical sets

[−1, 1] ⊂ Oρj ⊂ Õρj ⊂ C

(strict inclusions), such that the extension is bounded on Õρ according to

sup
z∈Õρ

‖q(z)‖X ≤ Cε , (4.3)

where the bounds Cε > 0 depend on ε, but are independent of ρ.

The notion of (b, p, ε)-holomorphy depends implicitly on the choice of sets Õρj . De-
pending on the approximation process in the parameter domain U under consideration,
a particular choice of the sets Õρj has to be made in order to obtain sharp convergence
bounds under minimal holomorphy requirements.

Some particular choices of sets Õρj are as follows. For a real number κ > 1, we
denote by Dκ = {z ∈ C||z| ≤ κ} the closed disc of radius κ > 1 in C. Choosing
Õρj = Dρj implies, for example, p-summability of partial sums of finitely truncated Taylor
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expansions of q(y) about y = 0, cf. [3] and the references there. This choice arises also in
connection with Chebysev approximation, cf. [23]. The existence of analytic continuations
to polydiscs arises naturally in the context of affine parametric operator equations which
were considered in [13].

A second choice is the Bernstein ellipse in the complex plane, which is defined for
some κ > 1 by (cp. [8, Sec. 1.13])

Õκ = Eκ :=

{

w + w−1

2
: w ∈ C , 1 ≤ |w| ≤ κ

}

, (4.4)

which has foci at ±1 and semi axes of length 1
2
(κ + 1/κ) and 1

2
(κ − 1/κ). This class of

holomorphy domains is well known to afford sharp results on the convergence of approx-
imations by truncated Legendre series, cf. [8, 3, 6]. Importantly, this class of domains
can be obtained by local analytic continuation into discs of radii larger than ρj − 1 of the
parametric mapping q(y) about a finite number of points ym ∈ [−1, 1] (cp. [3]).

For the derivative bounds which arise in connection with higher order Quasi-Monte
Carlo error analysis (see, e.g., [13, 28]) we use the following family of smaller continuation
domains, as in [15]: for κ > 1, consider by Tκ the set of points

Tκ = {z ∈ C|dist(z, [−1, 1]) ≤ κ− 1} =
⋃

−1≤y≤1

{z ∈ C||z − y| ≤ κ− 1} ⊂ C . (4.5)

Then, once more, for a poly-radius ρ satisfying (4.2), we denote by Tρ the corresponding
cylindrical set Tρ :=

⊗

j≥1 Tρj ⊂ CN.

4.2 Examples of (b, p, ε)-holomorphic families

We present several classes of examples of parametric equations R(u; q) in (2.2) for which
(b, p, ε)-holomorphy can be verified. To this end, we denote by X and Y separable and
reflexive Banach spaces over R (all results will hold with the obvious modifications also
for spaces over C) with (topological) duals X ′ and Y ′, respectively. By L(X ,Y ′), we
denote the set of bounded linear operators A : X → Y ′. We next consider parametric
forward models and the regularity of their (countably-) parametric solution families. The
following result, proved in [3], shows that holomorphy of the solution map y 7→ q(y)
follows from the holomorphy of the maps A and F in (2.2). Ahead, in Section 5.2, it will
be seen to imply holomorphy of the parametric Bayesian posterior which, in turn, will
be seen in Section 5.3 to yield dimension independent convergence rates for higher order
QMC quadrature approximations of Z and Z ′ in the Bayesian estimate (3.10).

Theorem 4.1. For ε > 0 and 0 < p < 1, assume that there exist a positive sequence
b = (bj)j≥1 ∈ ℓp(N), and two constants 0 < r ≤ R < ∞ independent of u ∈ X̃ such that
the following holds:

1. For any sequence ρ := (ρj)j≥1 of numbers strictly greater than 1 that satisfies (4.2),
the parametric maps a(y; ·, ·) (corresponding to the linear operator A(y) ∈ L(X ,Y ′))
and F admit extensions to complex parameters that are holomorphic with respect to
every variable z on a set of the form Oρ =

⊗

j≥1Oρj , where Oρj ⊂ C is an open set

containing Õρj .
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2. These extensions satisfy for all z ∈ Oρ the uniform continuity conditions

sup
w∈Y\{0}

|F (z;w)|

‖w‖Y
≤ R, sup

v∈X\{0},w∈Y\{0}

|a(z; v, w)|

‖v‖X‖w‖Y
≤ R, (4.6)

and the uniform inf-sup conditions: there exists r > 0 such that for every z ∈ Oρ

there hold the uniform inf-sup conditions

inf
v∈X\{0}

sup
w∈Y\{0}

|a(z; v, w)|

‖v‖X‖w‖Y
≥ r and inf

w∈Y\{0}
sup

v∈X\{0}

|a(z; v, w)|

‖v‖X‖w‖Y
≥ r . (4.7)

Then, the nonlinear, parametric residual operator R(u(z); q) = A(u(z); q)−F (u(z); q) in
(2.2) (where z ∈ Oρ) satisfies the (b, p, ε)-holomorphy assumptions with the same p and
ε and with the same sequence b.

We refer to Section 6 ahead for concrete examples.

5 Higher order QMC-PG method for Bayesian in-

verse problems

5.1 Regularity of parametric solutions

The dependence of the solution q(y) of the parametric, variational problem (2.2) on the
parameter vector y is studied in this subsection. Precise bounds on the growth of the
partial derivatives of q(y) with respect to y will be given. These bounds will, as in [28],
imply dimension independent convergence rates for QMC quadratures.

In the following, let NN
0 denote the set of sequences ν = (νj)j≥1 of nonnegative integers

νj, and let |ν| :=
∑

j≥1 νj. For |ν| < ∞, we denote the partial derivative of order ν of
q(y) with respect to y by

∂νyq(y) :=
∂|ν|

∂ν1y1∂
ν2
y2 · · ·

q(y) . (5.1)

In [5, 28, 27], bounds on the derivatives (5.1) were obtained by an induction argument
which strongly relied on affine-parametric dependence of the parametric operator.

Alternative bounds on ‖(∂νyq)(y)‖X based on complex variable methods from [6, 41,
35, 36, 3], which give rise to product weights at least for a finite (possibly large, but
in general operator-dependent) “leading” dimension of the parameter space are derived
in [15]. These bounds are based on a holomorphic extension of the parametric integrand
functions to the complex domain (we add that not all PDE problems afford such extensions
and refer to [25] for an example).

For the particular case of linear, countably affine-parametric operator families (b, p, ε)-
holomorphy as in Definition 4.1 holds on polydiscs Dρ.

We remark that the smaller tubes Tρ of holomorphy in (4.5) are, nevertheless, impor-
tant: on the one hand, the ensuing result about (b, p, ε)-holomorphic, countably para-
metric functions belonging to SPOD-weighted spaces of integrands admissible for QMC
quadrature by higher order digital nets is stronger (being valid under weaker hypotheses).
On the other hand, in certain cases the possibility of covering the parameter intervals
[−1, 1] by a finite number of small balls (whose union is contained in a tube Tρj for radius
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sufficiently close to ρj = 1) is crucial to verify holomorphy of the parametric solution fam-
ilies for certain nonlinear operator equations, see for example [3, Sec. 5.2]. The following
result is the main result from [15]; it shows that (b, p, ε)-holomorphy with respect to the
domains Tρj ⊂ C for j ≥ 1 implies derivative bounds for higher order QMC integration
with dimension-independent rates of convergence.

Theorem 5.1. For every mapping q(y) : U → X which is (b, p, ε)-holomorphic on a
polytube Tρ of poly-radius ρ = (ρj)j≥1 with ρj > 1 satisfying (4.2), there exists a sequence
β ∈ ℓp(N) (depending on the sequence b in (4.2)) and a partition N = E ∪ Ec such that
the parametric solution q(y) satisfies, for every ν ∈ NN

0 with |ν| <∞, the bound

sup
y∈U

‖(∂νyq)(y)‖X ≤ CενE!
∏

j∈E

β
νj
j × |νEc |!

∏

j∈Ec

β
νj
j . (5.2)

Here, E = {1, 2, ..., J} for some J = J(b) < ∞ depending on the sequence b in (4.2),
and for ν ∈ NN

0 , we set νE := {νj : j ∈ E}. The sequence β = (βj)j≥1 satisfies
βj = 4‖b‖ℓ1(N)/ε, i.e. it is in particular independent of j for 1 ≤ j ≤ J . Moreover,
βj . bj for j > J with the implied constant depending only on J(b) and on ‖b‖ℓ1(N).

The derivative bounds (5.2) were deduced from (b, p, ε)-holomorphy of the forward
map U ∋ y 7→ q(y). The same argument immediately implies corresponding derivative
estimates for bounded, linear observation functionals O(·) of the parametric solution.
With the (b, p, ε)-holomorphy of the posterior densities Θ(y) and Ψ(y) in Proposition 5.1,
corresponding bounds for the parametric integrand functions in the Bayesian estimate
(3.10) follow analogously. We sum up these observations in the following.

Corollary 5.1. Assume that the parametric solution map U ∋ y 7→ q(y) of the for-
ward problem is (b, p, ε)-holomorphic. Then, for every bounded, linear observation func-
tional O(·) : X → Y , the countably-parametric uncertainty-to-observation map G(y) :=
O(q(y)) : U → Y satisfies the estimates (5.2): for given 0 < ε < 1 and b ∈ ℓp(N) there
exist a constant Cε > 0, a sequence β(ε) ∈ ℓp(N) and a partition N = E ∪ Ec depending
only on ε and on b such that for every ν ∈ NN

0 with |ν| <∞, there holds

sup
y∈U

‖∂νyG(y)‖Y ≤ CενE!
∏

j∈E

β
νj
j × |νEc |!

∏

j∈Ec

β
νj
j ≤ Cε|ν|!β

ν . (5.3)

5.2 Holomorphy of Bayesian posterior Θ(y)

Our verification of existence and (b, p, ε)-holomorphy of analytic continuations Θ(z) and
Ψ(z) defined in (3.7) and (3.9), respectively, which appear in the parametric version (3.10)
of Bayes’ formula will be based on (b, p, ε)-holomorphy of the forward map y 7→ q(y) for
the parametric posterior density Θ(y) defined in (3.6) and (3.7). Sufficient conditions for
this were given in Theorem 4.1 above.

Proposition 5.1. [36, Thm. 4.1] Consider the Bayesian inversion of the parametric
operator equation (2.2) with uncertain input u ∈ X, parametrized by the sequence y =
(yj)j∈J ∈ U . Assume further that the corresponding forward solution map U ∋ y 7→ q(y)
is (b, p, ε)-holomorphic for some sequence b ∈ ℓp(N) for some 0 < p < 1 and some ε > 0.
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Then the Bayesian posterior densities Θ(y) and Ψ(y) defined in (3.7) and (3.9),
respectively, are, as a function of the parameter y, likewise (b, p, ε)-holomorphic, with the
same p and the same ε.

The modulus of the holomorphic extension of the Bayesian posterior Θ(y) over the
polyellipse Eρ for a (b, ε)-admissible poly-radius ρ as in (4.2) is bounded as

Bε = sup
z∈∂Eρ

|Θ(z)| ≤ C exp(θ2‖Γ−1‖), (5.4)

with Γ > 0 denoting the positive definite covariance matrix in the additive, Gaussian
observation noise model (3.1). The constants θ, C > 0 in (5.4) depend on the condition
number of the uncertainty-to-observation map G(·) = (O ◦G)(·) but are independent of Γ
in (3.1). The densities Θ(y) : U → R and Ψ(y) : U → R in the Bayesian estimate (3.10)
also satisfy estimates (5.2), with norms taken in the respective spaces R and R.

5.3 Higher order quasi-Monte Carlo integration

In order to prove error bounds using QMC quadrature, we require the integrand to be
smooth. A result on the smoothness of the (b, p, ε)-holomorphic solution of families of
nonlinear parametric operator equations with (b, p, ε)-holomorphic operators has been
shown in [15] and is restated above (Theorem 5.1). For our purposes it is important to
obtain error bounds which are independent of the dimension s, where s is the truncation
dimension, i.e. we consider (2.16) and its (Petrov-)Galerkin discretization (2.27). This
means that we truncate the infinite sum in (2.9) to a finite number s ≥ 1 of terms
and then estimate the resulting s dimensional integral to approximate the mathematical
expectation of the random solutions in (3.8) and (3.10).

For a real-valued integrand function g ∈ C0([0, 1]s;R), we consider the s-variate inte-
gration problem

Is(g) :=

∫

[0,1]s
g(y) dy . (5.5)

We approximate this integral by an equal weight QMC quadrature rule

QN,s(g) :=
1

N

N−1
∑

n=0

g(yn) , (5.6)

where the quadrature points y0, . . . ,yN−1 ∈ [0, 1]s are judiciously chosen. In the following
we restate the necessary definitions and results from [13].

Definition 5.1. Let nonnegative integers α, s ∈ N, and real numbers 1 ≤ q ≤ ∞ and
1 ≤ r ≤ ∞ be given. Let γ = (γu)u⊂N be a collection of nonnegative real numbers
called weights. For every s ∈ N, assume that the integrand function g : [0, 1]s → R has
partial derivatives of orders up to α with respect to each variable. Define 0/0 := 0 and
a/0 := ∞ for a > 0. The smoothness of the integrand function g in (5.5) is quantified by
the unanchored Sobolev norm

‖g‖s,α,γ,q,r :=

(

∑

u⊆{1:s}

(

γ−q
u

∑

v⊆u

∑

τ
u\v∈{1:α}

|u\v|

∫

[0,1]|v|

∣

∣

∣

∣

∫

[0,1]s−|v|

(∂
(αv,τu\v,0)
y g)(y) dy{1:s}\v

∣

∣

∣

∣

q

dyv

)r/q)1/r

,

(5.7)
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with the obvious modifications if q or r is infinite. Here {1 : s} is a shorthand notation
for the set {1, 2, . . . , s}, and (αv, τ u\v,0) denotes a sequence ν with νj = α for j ∈ v,
νj = τj for j ∈ u \ v, and νj = 0 for j /∈ u. Let Ws,α,γ,q,r denote the Banach space of all
such functions g with finite norm.

Note that if γu = 0 for some set u then the corresponding projection term

∑

v⊆u

∑

τ
u\v∈{1:α}

|u\v|

∫

[0,1]s−|v|

(∂
(αv,τu\v,0)
y g)(y) dy{1:s}\v

has to be 0 for all g ∈ Ws,α,γ,q,r. The next theorem, from [13, Thm. 3.5], states an upper
bound on the worst-case integration error in Ws,α,γ,q,r using a QMC rule based on a digital
net.

Proposition 5.2. Let nonnegative integers α, s ∈ N with α > 1, and real numbers 1 ≤
q ≤ ∞ and 1 ≤ r ≤ ∞ be given. Let γ = (γu)u⊂N be a collection of weights. Let
r′ ≥ 1 be the Hölder conjugate of r, i.e. 1/r + 1/r′ = 1. Let b be prime, m ∈ N, and let
S = {yn}

bm−1
n=0 denote a digital net with generating matrices C1, . . . , Cs ∈ Zαm×m

b . Then

sup
‖g‖s,α,γ,q,r≤1

∣

∣

∣

∣

∣

1

bm

bm−1
∑

n=0

g(yn)−

∫

[0,1]s
g(y) dy

∣

∣

∣

∣

∣

≤ es,α,γ,r′(S) ,

with

es,α,γ,r′(S) :=

(

∑

∅6=u⊆{1:s}

(

C
|u|
α,b γu

∑

ku∈D∗
u

b−µα(ku)

)r′
)1/r′

. (5.8)

Here D∗
u
is the “dual net without 0 components” projected to the components in u. More-

over, we have µα(ku) =
∑

j∈u µα(kj) with

µα(k) :=











0 if k = 0,

a1 + · · ·+ amin(α,ρ)

if k = κ1b
a1−1 + · · ·+ κρb

aρ−1 with

κi ∈ {1, . . . , b− 1} and a1 > · · · > aρ > 0,

(5.9)

and

Cα,b := max

(

2

(2 sin π
b
)α
, max
1≤z≤α−1

1

(2 sin π
b
)z

)

×

(

1 +
1

b
+

1

b(b+ 1)

)α−2(

3 +
2

b
+

2b+ 1

b− 1

)

. (5.10)

We are interested in the case where the integrand g(y) is a composition of a continuous,
linear functional O(·) ∈ X ′ with the (Petrov-)Galerkin approximation qhs (2y − 1) of the
dimension-truncated, parametric and (b, p, ε)-holomorphic, operator equation (2.1). For
every s ∈ N , the dimension-truncated integrand functions g(y) := (O ◦ qs)(y{1:s}) are
(b, p, ε)-holomorphic uniformly w.r.t. s ∈ N (see Section 2.3). It follows from Theorem 5.1
that they satisfy the derivative estimates (5.2) uniformly w.r.t. s ∈ N. In [13, Sec. 3] and
[15, Prop. 4.1] we showed the following result on convergence rates of QMC quadratures
based on higher order digital nets for functions g(y) which satisfy (5.2).
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Proposition 5.3. Let s ≥ 1 and N = bm for m ≥ 1 be integers and b be prime. Let
β = (βj)j≥1 be a sequence of positive numbers, and denote by βs = (βj)1≤j≤s its truncation
after s terms. Assume that

∃ 0 < p ≤ 1 :
∞
∑

j=1

βpj <∞ . (5.11)

Define, for 0 < p ≤ 1 as in (5.11),

α := ⌊1/p⌋+ 1 . (5.12)

Consider integrand functions g(y) whose mixed partial derivatives of order α satisfy

∀y ∈ U ∀s ∈ N ∀ν ∈ {0, 1, . . . , α}s : |(∂νyg)(y)| ≤ c(g)νE!
∏

j∈E

β
νj
j × |νEc |!

∏

j∈Ec

β
νj
j

(5.13)
for some fixed integer J ∈ N where E = {1, 2, . . . , J} and Ec = N\E, and where c(g) > 0
is independent of y, s and of ν. Then, for every N ∈ N, one can construct an interlaced
polynomial lattice rule of order α with N points using a fast component-by-component
algorithm, using O(α (min{s, J}+ α(s− J)+)N logN) operations, plus O(α2(s− J)2+N)
update cost, plus O(N + α(s− J)+N) memory cost, where (w)+ = max{0, w}, such that
there holds the error bound

∀s,N ∈ N : |Is(g)−QN,s(g)| ≤ Cα,β,b,pN
−1/p , (5.14)

where Cα,β,b,p <∞ is a constant independent of s and N .

Remark 5.1. It has been observed, see for instance [20], that in implementations of
the CBC construction of good generating vectors components tend to repeat, resulting
in rather nonuniform lower dimensional projections. To avoid this problem, [20] used a
“pruned” CBC algorithm where components of the generating vector are forced to differ
from each other. A theoretical justification of this algorithm was provided in [12]. If we
use this modified algorithm in Proposition 5.3 then, provided that N > 2s, the upper
bound (5.14) still remains valid albeit with a slightly larger constant: the constant Cα,b
is replaced by 2Cα,b, which is still independent of the dimension s.

Remark 5.2. The bound (5.13) in Theorem 5.1 was shown for functions defined on the
domain [−1, 1]N. However, QMC theory uses the domain [0, 1]s. The change from [−1, 1]
to [0, 1] can be achieved by the simple linear transformation y 7→ (y + 1)/2. Using (5.2)
together with this change of variable in Proposition 5.3 increases the constant in (5.10)
by a factor of at most 2α. Thus, in order for the theory to apply to the integrands from
Sections 2 and 5.1, we need to scale the Walsh constant Cα,b in (5.10) by a factor 2α.

If the function g satisfies (5.13), then its norm (5.7) with r = ∞ and for any q, can be
bounded by

‖g‖s,α,γ,q,∞ ≤ c max
u⊆{1:s}

γ−1
u

∑

νu∈{1:α}|u|

νu∩E!
∏

j∈u∩E

(

2δ(νj ,α)β
νj
j

)

|νu∩Ec |!
∏

j∈u∩Ec

(

2δ(νj ,α)β
νj
j

)

= c(g) max
u⊆{1:s}

γ−1
u

∑

νu∈{1:α}|u|

νu∩E! |νu∩Ec |!
∏

j∈u

(

2δ(νj ,α)β
νj
j

)

,
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where δ(νj, α) is 1 if νj = α and is 0 otherwise. To make ‖g‖s,α,γ,q,∞ ≤ c, we choose

γu :=
∑

νu∈{1:α}|u|

νu∩E! |νu∩Ec |!
∏

j∈u

(

2δ(νj ,α)β
νj
j

)

. (5.15)

5.4 Combined QMC-PG Error Bound

We approximate the Bayesian estimate Eπ
δ

[φ] = Z ′/Z with the ratio estimator Z ′
N,s,h/ZN,s,h

where

Z ′
N,s,h = QN,s(Θ

s,h(·)φ(qs,h(·)) ∈ R , (5.16)

ZN,s,h = QN,s(Θ
s,h(·)) ∈ R , (5.17)

where Θs,h is given by (cf.(3.7) and (3.18))

Θs,h(y) = exp
(

−ΦM
Γ (u; δ)

)

∣

∣

∣

u=〈u〉+
∑s

j=1
yjψj

, (5.18)

and qs,h(y) := qh(y{1:s}) with q
h(y{1:s}) being the Galerkin approximation of the forward

problem with dimension-truncation to dimension s as defined in (2.27). We recall that
M = Mh = dim(X h) = dim(Yh) (see Section 2.4). We are now in position to prove our
main result: an error bound for the approximate Bayesian estimates which accounts for
the errors of dimension truncation to finite dimension s given by (2.16), Petrov-Galerkin
discretization (2.27) of (2.16) and, finally, the QMC integration (5.6) of the goal func-
tional G(·) evaluated at the dimensionally truncated solution, i.e. of the approximation
QN,s(G(q

s,h)) of I(G(q)). All implied constants in the error bounds of the ensuing theorem
are independent of the truncation dimension s.

Theorem 5.2. Suppose that Assumptions 1, 2 and 3 hold. Suppose further that the
parametric forward problem (2.1) admits, for every y ∈ U , a unique solution q(y) which
belongs to the smoothness space Xt for some t > 0 affording the approximation property
(2.21). Assume further the sparsity condition (2.11) for the uncertainty parametrization,
and that conditions (2.15) hold. Then, for given positive definite observation noise co-
variance Γ, the normalization constant Z in (3.8) is positive.

Assume further that the QoI φ : X → R is Lipschitz continuous in an open ball in X
about the forward solution q(〈u〉) at the nominal input 〈u〉 ∈ X (resp. about the origin
0 ∈ U).

Then there exist N0, s0, h0 (depending on the bound r > 0 on the size |δ| of the data,
and on the observation noise covariance Γ in Assumption 2), such that the QMC-PG
approximation of the Bayesian estimate Eπ

δ

[φ] in (3.10) obtained as approximate ratio
estimate Z ′

N,s,h/ZN,s,h with QMC-PG approximations Z ′
N,s,h and ZN,s,h of the integrals Z ′

and Z in (3.10), satisfies, for N ≥ N0, s ≥ s0 and for h ≤ h0, the error bound

∣

∣

∣E
πδ

[φ]− Z ′
N,s,h/ZN,s,h

∣

∣

∣ ≤ C(Γ, p)
(

ht + s−(1/p−1) +N−1/p
)

. (5.19)

Before giving the proof, we remark that the constant C(Γ, p) depends on the observa-
tion noise covariance Γ > 0 and on the summability exponent p, but is independent of the
truncation dimension s and of the number N of QMC points. We refer to [37] for details.
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We also remark that the ensuing proof does not require bounds (5.13) for (functionals of)
the Petrov-Galerkin discretized solution and, therefore, the verification of h-independence
of the domain of holomorphy of the PG approximation qs,h(y) of the parametric forward
solution is not necessary.

Proof. (of Theorem 5.2): Both integrands Ψ(y) and Θ(y) in the definition (3.10) of Z and
of Z ′ are (b, p, ε)-holomorphic by Proposition 5.1. By Theorem 5.1, their approximations
Ψs,h(y) and Θs,h(y) satisfy the derivative estimates (5.2) and (5.3), uniformly with respect
to the truncation dimension s, and the Petrov-Galerkin discretization parameter h: as
dimension truncation amounts to restricting y to y{1:s} (see Section 2.3), the QMC error
bounds in Proposition 5.3 are applicable.

By the triangle inequality, we have

|Z ′ZN,s,h − Z ′
N,s,hZ| = |Z ′ZN,s,h − ZZ ′ + ZZ ′ − Z ′

N,s,hZ|

≤ |Z ′||ZN,s,h − Z|+ |Z||Z ′ − Z ′
N,s,h| .

(5.20)

By condition (3.8), there is N0, s0 ∈ N and h0 > 0 so that ZN,s,h ≥ Z/2 for all N ≥ N0,
s ≥ s0 and 0 < h ≤ h0. Using this and (5.20) we obtain

∣

∣

∣

∣

Z ′

Z
−
Z ′
N,s,h

ZN,s,h

∣

∣

∣

∣

=
|Z ′ZN,s,h − Z ′

N,s,hZ|

|ZZN,s|
≤

|Z ′||ZN,s,h − Z|

|ZZN,s,h|
+

|Z ′ − Z ′
N,s,h|

|ZN,s,h|

≤
2|Z ′||ZN,s,h − Z|

|Z|2
+

2|Z ′ − Z ′
N,s,h|

|Z|
.

With Z = I(Θ) and ZN,s,h = QN,s(Θ
s,h), we bound the error |Z − ZN,s,h| using Proposi-

tion 5.3. There exists a constant C > 0 (independent of the parameter dimension s) such
that for all N

|I(Θ)−QN,s(Θ)| ≤ CN−1/p .

With Z ′ = I(Θφ(q)) and Z ′
N,s,h as in (5.16), we bound the combined error |Z ′ − Z ′

N,s,h|
incurred by dimension-truncation, QMC integration and Petrov-Galerkin discretization
as follows:
∣

∣I(Θφ(q))−Qs,N(Θφ(q
s,h))

∣

∣ ≤ ‖Θ‖∞
(

|I(φ(q))− I(φ(qs))|+ |I(φ(qs))−QN,s(φ(q
s))|

+
∣

∣QN,s(φ(q
s))−QN,s(φ(q

s,h))
∣

∣

)

.

Here, the first term can be bounded using Proposition 2.2, and (2.18) and (2.19) yield

|I(φ(q))− I(φ(qs))| = |I(φ(q))− Is(φ(q))| ≤ C(p)‖φ‖L(X ,R)s
−(1/p−1) .

The second term is bounded using Proposition 5.3 as

|I(φ(qs))−QN,s(φ(q
s))| = |Is(φ(q))−QN,s(φ(q

s))| ≤ CN−1/p .

The third term is estimated by the PG-discretization error
∣

∣QN,s(φ(q
s))−QN,s(φ(q

s,h))
∣

∣ =
∣

∣QN,s(φ(q
s − qs,h))

∣

∣ ≤ ‖φ‖L(X ,R) sup
y∈U

‖qs(y)− qs,h(y)‖X ,

which, in turn, is estimated by Proposition 2.3 as

∣

∣QN,s(φ(q
s))−QN,s(φ(q

s,h))
∣

∣ ≤
C

µ̄
‖φ‖L(X ,R)h

t sup
y∈U

‖q(y)‖Xt
.
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Remark 5.3. The preceding analysis used that φ ∈ L(X ,R) = X ′. If the QoI φ has more
regularity, such as φ ∈ L(Xt′ ,R) for some t′ > 0, higher PG convergence rates O(ht+t

′
) in

(5.19) are possible, provided that the adjoint of the differential (DqR)(u; q0) is boundedly
invertible in suitable scales of spaces. We refer to [28, 30, 14] for a statement of results
and proofs in the case of linear, affine-parametric forward problems.

6 Model Problems

We illustrate the hypotheses in Section 2, with a view towards the numerical experiments
in Section 7 ahead, by a model, affine-parametric diffusion problem which was already
considered in [6]. We emphasize that these model problems are selected to illustrate the
preceding error analysis; the preceding theory is applicable to considerably more general
problems.

6.1 Affine-parametric diffusion problem

To illustrate the preceding convergence estimates, we consider a linear elliptic diffusion
equation on the physical domain D = (0, 1)d in space dimension d = 1 or d = 2, with un-
certain diffusion coefficient u(x), known source term f(x) ∈ L2(D) and with homogeneous
Dirichlet boundary conditions, ie.,

−∇ · (u(x)∇q(x)) = f(x) in D = (0, 1)d , q(x) = 0 for x ∈ ∂D . (6.1)

Problem (6.1) is a particular instance of the abstract setting introduced in Section 2.1,
with X = Y = H1

0 (D) and with deterministic right-hand side F ∈ Y ′ obtained by
associating to f a continuous, linear functional F on X = H1

0 (D), i.e.

A(u; q) = −∇ · (u∇q) ∈ L(H1
0 (D), H−1(D)), F (·) = 〈f, ·〉 .

We now parametrize the diffusion coefficient as in (2.9) with the s-dimensional parameter
vector y ∈ Us = [−1, 1]s, which we indicate by writing u(x,y). Note that the QMC
integration domain Us = [−1

2
, 1
2
]s can be equivalently obtained by rescaling. For a nominal

input 〈u〉 ∈ X := L∞(D), a finite truncation dimension s and a sequence (ψj)j≥1 ⊂ X,
we consider affine-parametric uncertainties

u(·,y) = 〈u〉+
s
∑

j=1

yjψj(·) . (6.2)

We assume that the nominal coefficient 〈u〉 is positive and bounded,

0 < ūmin ≤ 〈u〉 ≤ ūmax . (6.3)

We suppress in the following the explicit dependence on x. We also assume the sparsity
condition (‖ψj‖L∞(D))j ∈ ℓr(N) for some 0 < r < 1. The parametric weak formulation
reads: for y ∈ Us find q(·,y) ∈ H1

0 (D) such that for all v ∈ H1
0 (D) holds

∫

D

u(x,y)∇xq(x,y) · ∇xv(x) dx =

∫

D

f(x)v(x) dx . (6.4)

In [3], Problem (6.4), with U given by (6.2), was considered for complex parameter se-
quences z = (zj)j≥1 under the following assumption.

22



Assumption 4 (Uniform Ellipticity). There exist constants 0 < u− < u+ <∞ such that
for a.e. x ∈ D and for all z ∈ Us = {zj ∈ C : |zj| ≤ 1, 1 ≤ j ≤ s}, s ∈ N, there holds

0 < u− ≤ ℜu(z) ≤ u+ <∞ . (6.5)

We remind the reader that 〈u〉 and ψj are assumed to be real-valued functions. The
choice z = 0 in Assumption 4 and (6.3) imply u− ≤ 〈u〉 ≤ u+. A sufficient condition for
Assumption 4 to hold is (6.3) and the condition

γ :=

∥

∥

∥

∥

∥

1

〈u〉

∑

j≥1

|ψj|

∥

∥

∥

∥

∥

L∞(D)

< 1 . (6.6)

The Lax–Milgram lemma implies, with (6.5), for every fixed z ∈ Us, and for every s ∈ N

the existence of a unique solution to the variational problem (6.4). Symmetric Galerkin
discretization as explained in Section 2.4, yields for each parameter instance y ∈ Us a
unique, parametric Galerkin solution qh(y) ∈ X h ⊂ X = H1

0 (D). The family {qh(y) :
y ∈ Us} ⊂ X h is uniformly bounded in X with respect to s, h and y ∈ Us.

6.2 Parametric Regularity

The parametric solution family z → q(z) of the linear forward problem (6.1) with
complex-parametric input (6.2) is, for any value of s, holomorphic in the sense of Defini-
tion 4.1. To verify this, we recall from [6, Eqn. (2.8)] the notion of δ-admissibility of a
poly-radius ρ = (ρj)j≥1 with ρj > 1: ρ is called δ-admissible if there exists a δ > 0 such
that

∑

j≥1

ρj|ψj(x)| ≤ 〈u〉 − δ for almost all x ∈ D . (6.7)

As above, δ-admissibility (6.7) of the poly-radius ρ implies ρ-weighted ellipticity

γ(ρ) :=

∥

∥

∥

∥

∥

1

〈u〉

∑

j≥1

ρj|ψj|

∥

∥

∥

∥

∥

L∞(D)

< 1 . (6.8)

Under (6.6), the sequence ρj = 1 is δ-admissible for some δ > 0 and (6.8) and (6.6)
coincide.

It was shown in [6, Lemma 2.4] that under condition (6.7) or (6.8), the family of
parametric solutions {q(y) ∈ X : y ∈ U} admits a holomorphic extension to the polydisc
Uρ :=

∏

j≥1{|zj| < ρj} ⊂ CN. In particular, for every fixed y ∈ U , q(y) admits an
extension with respect to y{1:s} to the finite dimensional cylinder Uρ,s :=

∏

1≤j≤s{|zj| <
ρj} ⊂ Cs for any finite dimension s ∈ N with modulus ‖q(z)‖X uniformly bounded with
respect to z ∈ Uρ,s, and uniformly with respect to s ∈ N.

In particular, for uncertainty parametrizations (6.2) with sequences (ψj)j≥1 satisfying
(6.8) with ρ ∈ ℓp(N), Theorem 5.1 then implies that the parametric solution family q(z) is

(b, p, ε)-holomorphic with b =
(

1
〈u〉

‖ψj‖L∞(D)

)

j≥1
. This in turn implies by Proposition 5.1

that the parametric Bayesian posterior densities Θ(y) and Ψ(y) are (b, p, ε) holomorphic,
so that by Theorem 5.1 the parameter derivatives of q(y), Θ(y) and Ψ(y) satisfy, for
y ∈ Us, with any finite parameter dimension s ∈ N the bounds (5.2) and (5.3).

23



6.3 Example 1: Karhunen-Loève series

Here, we choose d = 1, D = (0, 1), 〈u〉 = 1 and, for some parameter ζ > 1 to be specified,

ψ2j(x) = (2j)−ζ sin(jπx), ψ2j−1(x) = (2j − 1)−ζ cos(jπx) (6.9)

Then for every finite s, the s-term expansion (6.2) is smooth with respect to x; this
regularity is, however, not uniform with respect to the truncation dimension s: the choice
of ζ in (6.9) limits the spatial Sobolev regularity of u(y) in Sobolev and Hölder scales in
the physical domain D. Here we have (6.6) and b = (‖ψj‖L∞(D))j≥1 ∈ ℓp(N) holds for any
1 ≥ p > 1/ζ.

6.4 Example 2: Indicator functions

When ψj are indicator functions of sets Dj ⊂ D which from a partition of D could
be viewed as a model for material mixtures. We choose the basis in parametric space
{ψj(x)}

s
j=1 as “step functions” with supports Dj, i.e.

ψj(x) = bjχDj
(x), bj = θj−ζ , 0 ≤ θ ≤ u−/4 , (6.10)

where χI denotes the characteristic function of the interval I ⊂ D and where {Dj}
s
j=1

denote a partition of the physical domain D. For the choice (6.10) of ψj, (6.8) holds with
the particular sequence

ρj = 1 +
u−

4‖ψj‖L∞(D)

= 1 +
u−
4bj

. (6.11)

This follows from
∥

∥

∥

∥

∥

s
∑

j=1

ρjψj

∥

∥

∥

∥

∥

L∞(D)

= max
1≤j≤s

(

1 +
u−
4bj

)

bj =
u−
4

+ ‖b‖ℓ∞ ≤
u−
2
.

In this case E = N and Ec = ∅ in Proposition 5.3 so that HoQMC weights in (5.15) become
product weights. This, in turn, implies in Proposition 5.3 that the complexity of the
CBC construction for the HoQMC generating vectors scales linearly with the parameter
dimension s.

7 Numerical Results

7.1 Construction of Interlaced Polynomial Lattice Rules

We consider the construction of interlaced polynomial lattice rules introduced in [13] by
the component-by-component (CBC) algorithm. Proposition 5.3 shows that the CBC con-
struction is feasible in O(α2s2N logN) operations for SPOD weights and in O(αsN logN)
operations for product weights, which were both verified computationally in [20]. We con-
sider the examples mentioned in Sections 6.3 and 6.4 above, which are of the SPOD and
product type, respectively. The SPOD weights case corresponds to an empty set E in
Proposition 5.3; for the product weights case we have J = ∞, i.e. Ec is empty.

In a computer implementation of the CBC algorithm for polynomial lattice rules, it
is most natural to use the base b = 2, since then polynomials over Z2 of degree less
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than m can be represented as bit sequences of length m, allowing for very efficient bit-
wise manipulations. In [45] it was shown that for b = 2, we have Cα,b = 1, which
yields significantly improved generating vectors (in terms of the observed convergence of
the integration error for suitable test integrands) compared to the previous bounds with
Cα,b > 1. Further improvement is observed in practice by reducing the numerical value
of C used in the CBC construction; in all experiments below, we use generating vectors
based on the choice C = 0.1. A computational study of the impact on the choice of the
Walsh constant was performed in [20].

7.2 Approximation of Prior Expectation

We consider here forward uncertainty quantification under the assumption of uniformly
distributed parameters y ∈ Us, i.e. we choose the prior distribution π0 = λs, where λs

denotes the s-dimensional Lebesgue measure. We denote in the following by qh(x,y) the
finite element approximation of the solution q of (6.1) with discretization parameter h.
The goal of the computation is then the approximation of the expectation of a quantity
of interest (QoI) function φ(y). We choose here and in the following as the quantity of
interest the point evaluation of qh at the point x̄ = 0.25, φ(y) = qh(x̄,y), and thus seek
to compute the approximation

Eπ0 [φ] :=
1

N

N−1
∑

n=0

qh(x̄;y(n)) ≈ Eπ0 [φ] =

∫

Us

qh(x̄;y) dy, (7.1)

where {y(n)}N−1
n=0 is the interlaced polynomial lattice point set. We are interested in the rate

of convergence of the quadrature approximation Eπ0 to the true value Eπ0 . Additionally,
we consider the convergence of the dimension truncation and finite element errors, where
applicable.

7.3 Approximation of Posterior Expectation

The approximation of the Bayesian inverse, as introduced in Section 3, is computationally
very similar to the approximation of the prior expectation, since we must compute the
ratio estimate Eπδ

[φ] = Z ′/Z, where Z and Z ′ are high-dimensional integrals given by
(3.8) and (3.10). We apply the same higher-order QMC rule mentioned above to both of
these integrals.

Note that when using the same QMC rule for both integrals, the forward model is
evaluated at exactly the same parameters y(0), . . . ,y(N−1) in both integrands; this allows
a simple optimization leading to a reduction of the computational work by a factor two.
Additionally storing the result of the prior expectation in the iteration over the quadrature
points allows both forward and inverse UQ problems to be solved in one run, still requiring
only N total evaluations of the forward model.

We briefly describe our choice of observation operator and specific noise model. As
observation operator, we consider the evaluation of the solution q(·,y) at theK = 3 points
xobs = (0.2, 0.5, 0.7). As in the exposition in Section 3 above, we consider measurements
perturbed by additive Gaussian noise η ∼ N (0,Γ) with known covariance matrix Γ ∈
RK×K
sym . In the experiments, we consider one fixed instance of the measurement, i.e. we

generate one realization of η ∈ R3 which determines the measurement used throughout
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the computation. The measurement δ ∈ R3 is then given for the unknown, exact value of
the parameter y⋆ as

δ =





q(0.2,y⋆) + η1
q(0.5,y⋆) + η2
q(0.7,y⋆) + η3



 .

We assume independent noise for each component and unit variance, giving as covariance
matrix simply the identity Γ = I3×3. The parameters of the diffusion equation were
chosen such that this makes sense, i.e. the size of the range of values of the observations
are roughly O(1). As output quantity of interest, the solution evaluated at the point
x̄ = 0.25 is used, as in the prior expectation above.

7.4 Results for Example 1: Karhunen-Loève Series

We consider the trigonometric basis (6.9) where ū in (6.2) is chosen to be a constant of the
size necessary to fulfill the uniform ellipticity conditions (6.5). For the Karhunen-Loève
basis functions (6.9), we have ‖ψj‖L∞(D) = j−ζ , ρj = 1, and thus (‖ψj‖L∞(D))j ∈ ℓp(N)
with 1 ≥ p > 1

ζ
. The CBC construction of the generating vectors was based on SPOD

weights (i.e., (5.15) with E = ∅), given by

γu :=
∑

νu∈{1:α}|u|

|νu|!
∏

j∈u

(

2δ(νj ,α)β
νj
j

)

,

where δ(νj, α) = 1 if νj = α and δ(νj, α) = 0 otherwise and with the sequence βj = θj−ζ

with θ = 0.2 and ζ = 2. We thus expect the QMC quadrature approximation to both prior
and posterior expectation to converge with s-independent rateO(N−ζ) for digit interlacing
parameter α ≥ 2 in (5.12). To compare these QMC based results to the performance of
existing methods, we also apply standard Monte Carlo sampling consisting of realizations
of uniformly distributed points in Us; as a (rough) work measure we use in either case
the number N of samples, which coincides with the number of forward PDE solves. As
the algorithms considered in the present paper are single level algorithms, all PDE solves
were performed with equal accuracy; multi-level extensions of either method are available
and are known to deliver improved work versus accuracy [30, 14].

We briefly list the parameters used in the simulations. As right-hand side forcing
term, we consider the function f(x) = 100x. Unless otherwise specified, we use a solution
with N = 220 quadrature points and meshwidth h = 2−20 as a reference. In the Monte
Carlo results, we approximate the L2 error using 10 repetitions of the estimator. In the
Bayesian inverse problem, we assume the measurement errors to result from a normal
distribution with unit variance.

7.4.1 Finite Element Approximation

We solve the PDE (6.1) by the finite element method with piecewise linear basis functions
and meshes obtained by regularly refining an initial mesh consisting of the points {0, 1}.
The PG discretization error of the posterior approximation, |Eµ

δ

[q(x̄;y)]−Eµ
δ

[qh(x̄;y)]|,
is measured by replacing q(x̄;y) with a reference solution obtained on a mesh with mesh-
width h = 2−20. Since as QoI we consider only the evaluation of the solution at the point
x̄, we only consider the absolute value of the (scalar) results. For QMC quadrature, we
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use N = 210 points. The convergence results of the finite element error of the posterior
approximation, as well as of the individual integrands Z and Z ′ are shown in Figure 1a.

7.4.2 Dimension Truncation

To numerically verify the convergence rate of the error committed by dimension truncation
to a finite dimension s < ∞, we consider the QMC-PG approximation of Eπδ

N [φ(qhs )] for
varying s. In order to be able to neglect the other two error contributions, the finite
element meshwidth is chosen as h = 2−20 and N = 220 QMC points are used. By (2.19),
we expect a convergence rate of s−(1/p−1); for the case ζ = 2 in (6.10), we have p > 1/2,
giving an expected rate of s−1+ε for an ε > 0. In Figure 1b, this expected convergence
rate can be clearly seen.
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Figure 1: FEM and dimension truncation errors. Reference solutions were obtained using
h = 2−20 for (a) and s = 1024 dimensions for (b).

7.4.3 QMC Convergence

Figures 2 and 3 show the convergence of the QMC approximation to the prior and posterior
expectations, respectively. In both cases, the convergence rate N−2 is clearly visible for
the considered interlaced polynomial lattice rule with interlacing factors α = 2, 3. This
rate of convergence is in particular independent of the dimension s of the parametric space
Us, for the values considered here.
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Figure 2: Convergence of the prior approximation vs. the number of samples N = bm for
C = 0.1, θ = 0.2, s = 128, 1024, ζ = 2, α = 2, 3, h = 2−20. For MC, the L2 error was
approximated using 10 repetitions.
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Figure 3: Convergence of the posterior approximation vs. the number of samples N = bm

for C = 0.1, θ = 0.2, s = 128, 1024, ζ = 2, α = 2, 3, h = 2−20. For MC, the L2 error was
approximated using 10 repetitions.

7.5 Results for Example 2: Indicator Functions

We consider the indicator function basis as in (6.10), with the intervals Dj = (xj−1, xj)
chosen based on the points x0, . . . , xs of a graded mesh T ⊂ (0, 1). The points in T are
obtained by transforming an equidistant mesh with the function g(x) = xa for an a ∈ R.
In the following, we use a = 0.2, yielding the points xj = (j/s)1/5 for j = 0, . . . , s. This
choice implies that the support of the first few parametric basis functions is relatively
large, ensuring that the range of the observations of the solution is of the same order of
magnitude for the values of s used in the experiments. This, together with the choice
of f mentioned below, justifies the use of Γ = I3×3 in the measurement model of the
Bayesian inverse problem. Note that for different “truncation” dimensions s the choice
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(6.10) with intervals Dj = (xj−1, xj) and xj = (j/s)1/5 implies that we solve different
problems; convergence for s→ ∞ is moot for this data.

In the following, we consider the right-hand side function f(x) to be constant. Together
with the piecewise constant diffusion coefficient model, this implies that the solution is a
piecewise quadratic function on the given mesh T . Thus, if we use quadratic element basis
functions in the finite element computations, we will obtain the exact solution, allowing
us to ignore effects of the discretization error.

7.5.1 Choice of QMC weights

As mentioned in Section 6.4, this choice of diffusion coefficient model allows the use of
product weights in the norm in Definition 5.1 of the form (cp. (5.15) with Ec = ∅)

γu :=
∑

νu∈{1:α}|u|

νu!
∏

j∈u

(

2δ(νj ,α)β
νj
j

)

,

which we construct with the sequence βj = θj−ζ with θ = 0.25 and ζ = 2. This is an ad-
vantage because the number of operations required for the construction of the generating
vector is linear in the dimension s, whereas for the SPOD weights used in Section 7.4 it
scaled quadratically with respect to s (see Proposition 5.3). This renders problems with
large parametric dimension s computationally accessible.

7.5.2 QMC Convergence

Figures 4 and 5 show the convergence of the QMC approximation to the prior and posterior
expectations, respectively. In both cases, we observe the expected rate N−2, which seems
to be independent of the parameter space dimension s for the values of s considered here.
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Figure 4: Convergence of the prior approximation vs. the number of samples N = bm for
C = 0.1, θ = 0.25, s = 1024, 8192, ζ = 2, α = 2, 3.
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Figure 5: Convergence of the posterior approximation vs. the number of samples N = bm

for C = 0.1, θ = 0.25, s = 1024, 8192, ζ = 2, α = 2, 3.

Comparing these convergence results with the corresponding results for the Karhunen-
Loève basis, the ‘levelling’ of the total errors at around 10−10 in Fig. 2 is due to the spacial
discretization error, which is absent in the presently considered indicator function basis
with P2-Finite Elements, suggesting that the additive structure of the combined error
bound (5.19) (which resulted from the triangle inequality) is sharp in these cases.
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To appear in Monte Carlo and Quasi-Monte Carlo Methods 2014, R. Cools and D.
Nuyens (eds.), 2016.

[21] T. Goda, Good interlaced polynomial lattice rules for numerical integration in
weighted Walsh spaces. J. Comput. Appl. Math., 285, 279–294, 2015.

[22] T. Goda and J. Dick, Construction of interlaced scrambled polynomial lattice rules
of arbitrary high order. Found. Comput. Math., 15, 1245–1278, 2015.

[23] M. Hansen and Ch. Schwab, Analytic regularity and best N -term approximation of
high dimensional, parametric initial value problems. Vietnam Journal of Mathemat-
ics, 41, 181–215, 2013.

[24] V.H. Hoang and Ch. Schwab, Analytic regularity and polynomial approximation of
stochastic, parametric elliptic multiscale PDEs. Analysis and Applications (Singa-
pore), 11, (01), 2011.

[25] V. H. Hoang and Ch. Schwab, Regularity and Generalized Polynomial Chaos Ap-
proximation of Parametric and Random Second-Order Hyperbolic Partial Differen-
tial Equations. Analysis and Applications (Singapore), 10, (3), 2012.

[26] V. H. Hoang and Ch. Schwab and A.M. Stuart, Complexity analysis of accelerated
MCMC methods for Bayesian inversion, Inverse Problems 29(8) 2013.

[27] A. Kunoth and Ch. Schwab, Analytic Regularity and GPC Approximation for
Stochastic Control Problems Constrained by Linear Parametric Elliptic and
Parabolic PDEs. SIAM J. Control Optim., 51, 2442 – 2471, 2013.

[28] F. Y. Kuo, Ch. Schwab and I. H. Sloan, Quasi-Monte Carlo finite element methods
for a class of elliptic partial differential equations with random coefficient. SIAM J.
Numerical Analysis, 50, 3351–3374, 2012.

[29] F. Y. Kuo, Ch. Schwab and I. H. Sloan, Quasi-Monte Carlo methods for very high
dimensional integration: the standard weighted-space setting and beyond. ANZIAM
Journal, 53, 1–37, 2011.

[30] F. Y. Kuo, Ch. Schwab and I. H. Sloan, Multi-Level Quasi-Monte Carlo finite element
methods for a class of elliptic partial differential equations with random coefficient,
Found. Comp. Math., 15, 411–449, 2015.

[31] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, Philadelphia, 1992.

32



[32] V. Nistor and Ch. Schwab, High order Galerkin approximations for parametric sec-
ond order elliptic partial differential equations. Math. Models Methods Appl. Sci.,
23, 1729 – 1760, 2013.

[33] D. Nuyens and R. Cools, Fast algorithms for component-by-component construction
of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math.
Comp., 75, 903 – 920, 2006.

[34] J. Pousin and J. Rappaz, Consistency, Stability, apriori an aposteriori errors for
Petrov-Galerkin methods applied to nonlinear problems. Numer. Math., 69, 213–
231, 1994.

[35] Cl. Schillings and Ch. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian
inverse problems. Inverse Problems, 29, 065011, 28 pp, 2013.

[36] Cl. Schillings and Ch. Schwab, Sparsity in Bayesian Inversion of Parametric Operator
Equations, Inverse Problems, 30, 065007, 30 pp., 2014.

[37] Cl. Schillings and Ch. Schwab, Scaling Limits in Computational Bayesian Inver-
sion. Report 2014-26, Seminar for Applied Mathematics, ETH Zürich, (to appear in
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