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Abstract

In this paper we derive an impedance boundary condition to approximate the
optical scattering effect of an array of plasmonic nanoparticles mounted on a perfectly
conducting plate. We show that at some resonant frequencies the impedance blows up,
allowing for a significant reduction of the scattering from the plate. Using the spectral
properties of a Neumann-Poincaré type operator, we investigate the dependency of the
impedance with respect to changes in the nanoparticle geometry and configuration.
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1 Introduction

Driven by the search for new materials with interesting and unique optical properties,
the field of plasmonic nanoparticles has grown immensely in the last decade [20]. Re-
cently, there have been several interesting mathematical works on plasmonic resonances
for nanoparticles [4, 10, 11, 12, 13, 14, 16, 18]. On the other hand, scattering of waves by
periodic structures plays a central role in optics [15].

In this paper we consider the scattering by a layer of periodic plasmonic nanoparticles
mounted on a perfectly conducting sheet. We design the layer in order to control and
transform waves. Since the thickness of the layer, which is of the same order of the
diameter of the individual nanoparticles, is negligible compared to the wavelength, it can
be approximated by an impedance boundary condition. Our main result is to prove that
at some resonant frequencies, which are fully characterized in terms of the periodicity,
the shape and the material parameters of the nanoparticles, the thin layer has anomalous
reflection properties and can be viewed as a metasurface. Since the period of the array is
much smaller than the wavelength, the resonant frequencies of the array of nanoparticles
differ significantly from those of single nanoparticles. As shown in this paper, they are
associated with eigenvalues of a periodic Neumann-Poincaré type operator. In contrast
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with quasi-static plasmonic resonances of single nanoparticles, they depend on the particle
size. For simplicity, only one-dimensional arrays embedded in R

2 are considered in this
paper. The extension to the two-dimensional case is straightforward and the dependence
of the plasmonic resonances on the parameters of the lattice is easy to derive.

The array of plasmonic nanoparticles can be used to efficiently reduce the scattering
of the perfectly conducting sheet. We present numerical results to illustrate our main
findings in this paper, which open a door for a mathematical and numerical framework
for realizing full control of waves using metasurfaces [3, 21, 22]. Our approach applies
to any example of periodic distributions of resonators having resonances in the quasi-
static regime. It provides a framework for explaining the observed extraordinary or meta
properties of such structures and for optimizing these properties.

The paper is organized as follows. We first formulate the problem of approximating
the effect of a thin layer with impedance boundary conditions and give useful results
on the 1-d periodic Green function. Then we derive the effective impedance boundary
conditions and give the shape derivative of the impedance parameter. In doing so, we
analyze the spectral properties of the 1-d periodic Neumann-Poincaré operator defined by
(10) and obtain an explicit formula for the equivalent boundary condition in terms of its
eigenvalues and eigenvectors. Finally, we illustrate with a few numerical experiments the
anomalous change in the equivalent impedance boundary condition due to the plasmonic
resonances of the periodic array of nanoparticles. For simplicity, we only consider the
scalar wave equation and use a two-dimensional setup. The results of this paper can be
readily generalized to higher dimensions as well as to the full Maxwell equations.

2 Setting of the problem

We use the Helmholtz equation to model the propagation of light. This approximation can
be viewed as a special case of Maxwell’s equations, when the incident wave ui is transverse
magnetic (TM) or transverse electric (TE) polarized.

Consider a particle occupying a bounded domain D ⋐ R
2 of class C1,α for some 0 <

α < 1 and with size of order δ ≪ 1. The particle is characterized by electric permittivity εc
and magnetic permeability µc, both of which may depend on the frequency of the incident
wave. Assume that ℑmεc > 0,ℜe µc < 0,ℑmµc > 0 and define

km = ω
√
εmµm, kc = ω

√
εcµc,

where εm and µm are the permittivity and permeability of free space respectively and ω
is the frequency. Throughout this paper, we assume that εm and µm are real and positive
and km is of order 1.

We consider the configuration shown in Figure 1, where a particle D is repeated pe-
riodically in the x1-axis with period δ, and is of a distance of order δ from the boundary
x2 = 0 of the half-space R

2
+ := {(x1, x2) ∈ R

2, x2 > 0}. We denote by D this collection of
periodically arranged particles and Ω := R

2
+ \ D.

Let ui(x) = eikmd·x be the incident wave. Here, d is the unit incidence direction. The
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Figure 1: Thin layer of nanoparticles in the half space.

scattering problem is modeled as follows



















































∇ · 1

µD
∇u+ ω2εDu = 0 in R

2
+ \ ∂D,

u+ − u− = 0 on ∂D,

1

µm

∂u

∂ν

∣

∣

∣

∣

+

− 1

µc

∂u

∂ν

∣

∣

∣

∣

−

= 0 on ∂D,

u− ui satisfies an outgoing radiation condition at infinity,

u = 0 on ∂R2
+ = {(x1, 0), x1 ∈ R},

(1)

where

εD = εmχ(Ω) + εcχ(D), µD = εmχ(Ω) + εcχ(D),

and ∂/∂ν denotes the outward normal derivative on ∂D.
Following [1], under the assumption that the wavelength of the incident wave is much

larger than the size of the nanoparticle, a certain homogenization occurs, and we can
construct z ∈ C such that the solution to















∆uapp + k2muapp = 0 in R
2
+,

uapp + δz
∂uapp

∂x2
= 0 on ∂R2

+,

uapp − ui satisfies outgoing radiation condition at infinity,

(2)

gives the leading order approximation for u. We will refer to uapp + δz
∂uapp

∂x2
= 0 as the

equivalent impedance boundary condition for problem (1).
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3 1-d periodic Green function

Consider the function G♯ : R
2 → C satisfying

∆G♯(x) =
∑

n∈Z

δ(x+ (n, 0)). (3)

We call G♯ the 1-d periodic Green function for R2.

Lemma 1. Let x = (x1, x2), then

G♯(x) =
1

4π
log

(

sinh2(πx2) + sin2(πx1)
)

,

satisfies (3).

Proof. We have

∆G♯(x) =
∑

n∈Z

δ(x+ (n, 0))

=
∑

n∈Z

δ(x2)δ(x1 + n)

=
∑

n∈Z

δ(x2)e
i2πnx1 , (4)

where we have used the Poisson summation formula
∑

n∈Z δ(x1 + n) =
∑

n∈Z e
i2πnx1 .

On the other hand, since G♯ is periodic in x1 of period 1, we have

G♯(x) =
∑

n∈Z

βn(x2)e
i2πnx1 ,

therefore
∆G♯(x) =

∑

n∈Z

(β
′′

n(x2) + (i2πn)2βn)e
i2πnx1 . (5)

Comparing (4) and (5) yields

β
′′

n(x2) + (i2πn)2βn = δ(x2).

A solution to the previous equation can be found by using standard techniques for ordinary
differential equations. We have

β0 =
1

2
|x2|+ c,

βn =
−1

4π|n|e
−2π|n||x2|, n 6= 0,

4



where c is a constant. Subsequently,

G♯(x) =
1

2
|x2|+ c−

∑

n∈Z\{0}

1

4π|n|e
−2π|n||x2|ei2πnx1

=
1

2
|x2|+ c−

∑

n∈N\{0}

1

2πn
e−2πn|x2| cos(2πnx1)

=
1

4π
log

(

sinh2(πx2) + sin2(πx1)
)

,

where we have used the summation identity (see, for instance, [17, pp. 813-814])

∑

n∈N\{0}

1

2πn
e−2πn|x2| cos(i2πnx1) =

1

2
|x2| −

log(2)

2π

− 1

4π
log

(

sinh2(πx2) + sin2(πx1)
)

,

and defined c = − log(2)

2π
.

Throughout, we denote by Hs(∂B) the usual Sobolev space of order s on ∂B and by
Id the identity operator. Let us also denote by G♯(x, y) := G♯(x− y). In the following we
define the 1-d periodic single layer potential and 1-d periodic Neumann-Poincaré operator,

respectively, for a bounded domain B ⋐

(

− 1

2
,
1

2

)

×R which we assume to be of class C1,α

for some 0 < α < 1. Let

SB♯ : H
− 1

2 (∂B) −→ H1
loc(R

2), H
1
2 (∂B)

ϕ 7−→ SB,♯[ϕ](x) =

∫

∂B

G♯(x, y)ϕ(y)dσ(y)

for x ∈ R
2, x ∈ ∂B and let

K∗
B♯ : H

− 1
2 (∂B) −→ H− 1

2 (∂B)

ϕ 7−→ K∗
B,♯[ϕ](x) =

∫

∂B

∂G♯(x, y)

∂ν(x)
ϕ(y)dσ(y)

for x ∈ ∂B. As in [19], the periodic Neumann-Poincaré operator can be symmetrized.
The following lemma holds.

Lemma 2. (i) For any ϕ ∈ H− 1
2 (∂B), SB♯[ϕ] is harmonic in B and in

(

− 1

2
,
1

2

)

×R\B;

(ii) The following trace formula holds: for any ϕ ∈ H− 1
2 (∂B),

(−1

2
Id+K∗

B♯)[ϕ] =
∂SB♯[ϕ]

∂ν

∣

∣

∣

−
;

(iii) The following Calderón identity holds: KB♯SB♯ = SB♯K∗
B♯, where KB♯ is the L2-

adjoint of K∗
B♯;
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(iv) The operator K∗
B♯ : H

− 1
2

0 (∂B) → H
− 1

2
0 (∂B) is compact self-adjoint equipped with the

following inner product
(u, v)H∗

0
= −(u,SB♯[v])− 1

2
, 1
2

(6)

with (·, ·)− 1
2
, 1
2
being the duality pairing between H

− 1
2

0 (∂B) and H
1
2
0 (∂B), which makes

H∗
0 equivalent to H

− 1
2

0 (∂B). Here, by E0 we denote the zero-mean subspace of E.

(v) Let (λj , ϕj), j = 1, 2, . . . be the eigenvalue and normalized eigenfunction pair of K∗
B♯

in H∗
0(∂B), then λj ∈ (−1

2 ,
1
2) and λj → 0 as j → ∞.

Proof. First, note that a Taylor expansion of sinh2(πx2) + sin2(πx1) yields

G♯(x) =
log |x|
2π

+R(x),

where R is a smooth function such that

R(x) =
1

4π
log(1 +O(x22 − x21)).

We can decompose the operators SB♯ and K∗
B♯ on H∗

0(∂B) accordingly. We have

SB♯ = SB + GB, K∗
B♯ = K∗

B + FB,

where SB and K∗
B are the single layer potential and Neumann-Poincaré operator (see [7]),

respectively, and GB,FB are smoothing operators. Using this fact, the proof of the Lemma
follows the same arguments as those given in [5, 7].

4 Boundary layer corrector and effective impedance

In order to compute z, we introduce the following asymptotic expansion [1, 2]:

u = u(0) + u
(0)
BL + δ(u(1) + u

(1)
BL) + ... (7)

where the leading-order term u(0) is solution to















∆u(0) + k2mu(0) = 0 in R
2
+,

u(0) = 0 on ∂R2
+,

u(0) − ui satisfies an outgoing radiation condition at infinity.

The boundary-layer correctors u
(0)
BL and u

(1)
BL have to be exponentially decaying in the x2-

direction. Note that according to [1, 2], u
(0)
BL is introduced in order to correct (up to the

first-order in δ) the transmission condition on the boundary of the nanoparticles, which
is not satisfied by the leading-order term u(0) in the asymptotic expansion of u, while

u
(1)
BL is a higher-order correction term and does not contribute to the first-order equivalent

boundary condition in (2).
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We next construct the corrector u
(0)
BL. We first introduce a function α and a complex

constant α∞ such that they satisfy the rescaled problem:



















































∆α = 0 in
(

R
2
+\B

)

∪ B,

α|+ − α|− = 0 on ∂B,
1

µm

∂α

∂ν

∣

∣

∣

∣

+

− 1

µc

∂α

∂ν

∣

∣

∣

∣

−

=
( 1

µc
− 1

µm

)

ν2 on ∂B,

α = 0 on ∂R2
+,

α− α∞ is exponentially decaying as x2 → +∞.

(8)

Here, ν = (ν1, ν2) and B = D/δ is repeated periodically in the x1-axis with period 1 and
B is the collection of these periodically arranged particles.

Then u
(0)
BL is defined by

u
(0)
BL(x) := δ

∂u(0)

∂x2
(x1, 0)

(

α(
x

δ
)− α∞

)

.

The corrector u(1) can be found to be the solution to















∆u(1) + k2mu(1) = 0 in R
2
+,

u(1) = α∞
∂u(0)

∂x2
on ∂R2

+,

u(1) satisfies an outgoing radiation condition at infinity.

By writing

uapp = u(0) + u
(0)
BL + δu(1), (9)

we arrive at (2) with z = −α∞, up to a second order term in δ. We summarize the above
results in the following theorem.

Theorem 1. The solution uapp to (2) with z = −α∞ approximates pointwisely (for x2 >
0) the exact solution u to (1) as δ → 0, up to a second order term in δ.

In order to compute α∞, we derive an integral representation for the solution α to (8).
We make use of the periodic Green function G♯ defined by (3). Let

G+
♯ (x, y) = G♯

(

(x1 − y1, x2 − y2)
)

−G♯

(

(x1 − y1,−x2 − y2)
)

,

which is the periodic Green’s function in the upper half space with Dirichlet boundary
conditions, and define

S+
B♯ : H

− 1
2 (∂B) −→ H1

loc(R
2), H

1
2 (∂B)

ϕ 7−→ S+
B,♯[ϕ](x) =

∫

∂B

G+
♯ (x, y)ϕ(y)dσ(y)
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for x ∈ R
2
+, x ∈ ∂B and

(K∗
B♯)

+ : H− 1
2 (∂B) −→ H− 1

2 (∂B)

ϕ 7−→ (K∗
B,♯)

+[ϕ](x) =

∫

∂B

∂G+
♯ (x, y)

∂ν(x)
ϕ(y)dσ(y)

(10)

for x ∈ ∂B.
It is clear that the results of Lemma 2 hold true for S+

B♯ and (K∗
B♯)

+. Moreover, for

any ϕ ∈ H− 1
2 (∂B), we have

S+
B,♯[ϕ](x) = 0 for x ∈ ∂R2

+.

Now, we can readily see that α can be represented as α = S+
B,♯[ϕ], where ϕ ∈ H− 1

2 (∂B)
satisfies

1

µm

∂S+
B,♯[ϕ]

∂ν

∣

∣

∣

∣

+

− 1

µc

∂S+
B,♯[ϕ]

∂ν

∣

∣

∣

∣

−

=
( 1

µc
− 1

µm

)

ν2 on ∂B.

Using the jump formula from Lemma 2, we arrive at

(

λµId− (K∗
B♯)

+
)

[ϕ] = ν2,

where

λµ =
µc + µm

2(µc − µm)
.

Therefore, we obtain that

α = S+
B,♯

(

λµId− (K∗
B♯)

+
)−1

[ν2].

Lemma 3. Let x = (x1, x2). Then, for x2 → +∞, the following asymptotic expansion
holds:

α = α∞ +O(e−x2),

with

α∞ = −
∫

∂B

y2
(

λµId− (K∗
B♯)

+
)−1

[ν2](y)dσ(y).

Proof. The result follows from an asymptotic analysis of G+
♯ (x, y). Indeed, suppose that
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x2 → +∞, we have

G+
♯ (x, y) =

1
4π log

(

sinh2(π(x2 − y2)) + sin2(π(x1 − y1))
)

− 1

4π
log

(

sinh2(π(x2 + y2)) + sin2(π(x1 − y1))
)

=
1

4π
log

(

sinh2(π(x2 − y2))
)

− 1

4π
log

(

sinh2(π(x2 + y2))
)

+O
(

log

(

1 +
1

sinh2(x2)

)

)

=
1

2π

(

log
(eπ(x2−y2) − e−π(x2+y2)

2

)

− log
(eπ(x2+y2) − e−π(x2−y2)

2

)

)

+O
(

log
(

1 + e−x2
2

)

)

= −y2 +O(e−x2),

which yields the desired result.

Finally, it is important to note that α∞ depends on the geometry and size of the
particle B.

Since (K∗
B♯)

+ : H∗
0 → H∗

0 is a compact self-adjoint operator, where H∗
0 is defined as in

Lemma 2, we can write

α∞ = −
∫

∂B

y2
(

λµId− (K∗
B♯)

+
)−1

[ν2](y)dσ(y),

= −
∫

∂B

y2

∞
∑

j=1

(ϕj , ν2)H∗
0
ϕj(y)

λµ − λj
dσ(y),

=
∞
∑

j=1

(ϕj , ν2)H∗
0
(ϕj , y2)− 1

2
, 1
2

λµ − λj
,

where λ1, λ2, . . . are the eigenvalues of (K∗
B♯)

+ and ϕ1, ϕ2, . . . is a corresponding orthornor-
mal basis of eigenvectors.

On the other hand, by integrating by parts we get

(ϕj , y2)− 1
2
, 1
2
=

1
1
2 − λj

(ϕj , ν2)H∗
0
.

This together with the fact that ℑmλµ < 0 (by the Drude model [4]), yield the following
lemma.

Lemma 4. We have ℑmα∞ > 0.

Finally, we give a formula for the shape derivative [8] of α∞. This formula can be used
to optimize |α∞| , for a given frequency ω, in terms of the shape B of the nanoparticle.
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Let Bη be an η-perturbation of B; i.e., let h ∈ C1(∂B) and ∂Bη be given by

∂Bη =

{

x+ ηh(x)ν(x), x ∈ ∂B

}

.

Following [9] (see also [5]), we can prove that

α∞(Bη) = α∞(B) + η(
µm

µc
− 1)

×
∫

∂B

h

[

∂v

∂ν

∣

∣

−

∂w

∂ν

∣

∣

−
+

µc

µm

∂v

∂τ

∣

∣

−

∂w

∂τ

∣

∣

−

]

dσ,

where ∂/∂τ is the tangential derivative on ∂B, v and w periodic with respect to x1 of
period 1 and satisfy







































∆v = 0 in
(

R
2
+\B

)

∪ B,

v|+ − v|− = 0 on ∂B,
∂v

∂ν

∣

∣

∣

∣

+

− µm

µc

∂v

∂ν

∣

∣

∣

∣

−

= 0 on ∂B,

v − x2 → 0 as x2 → +∞,

and






































∆w = 0 in
(

R
2
+\B

)

∪ B,
µm

µc

w|+ − w|− = 0 on ∂B,
∂w

∂ν

∣

∣

∣

∣

+

− ∂w

∂ν

∣

∣

∣

∣

−

= 0 on ∂B,

w − x2 → 0 as x2 → +∞,

respectively. Therefore, the following lemma holds.

Lemma 5. The shape derivative dSα∞(B) of α∞ is given by

dSα∞(B) = (
µm

µc
− 1)

[

∂v

∂ν

∣

∣

−

∂w

∂ν

∣

∣

−
+

µc

µm

∂v

∂τ

∣

∣

−

∂w

∂τ

∣

∣

−

]

.

If we aim to maximize the functional J := 1
2 |α∞|2 over B, then it can be easily seen that

J is Fréchet differentiable and its Fréchet derivative is given by ℜe dSα∞(B)α∞(B). As in
[6], in order to include cases where topology changes and multiple components are allowed,
a level-set version of the optimization procedure described below can be developed.

5 Numerical illustrations

5.1 Setup and methods

Here, we assume that the particles are made of gold and use the Drude model to compute
their electric properties as a function of the wavelength. We recall that, from the Drude
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model [4], the electric properties of the particles depend on the frequency of the incoming
wave, or equivalently, the wavelength. The effective impedance α∞ is computed using
periodic layer potentials.

Figure 2 shows |α∞| as a function of the wavelength for disks of different sizes, all
centered at (0, 0.5).

Figure 3 shows |α∞| as a function of the wavelength for two disks of the same fixed
radius equal to 0.2 but centered at two different distances from x2 = 0.

In Figures 4 and 5 we plot |α∞| as a function of the wavelength for a disk and a group
of three well-separated disks. We can see that a disk can be excited roughly at one single
frequency whereas three disks can be excited at different frequencies but with lower values
of |α∞|.

5.2 Results and discussion

An important conclusion is that the spectrum of the periodic Neumann-Poincaré operator
defined by (10) varies with the position and size of the particles. Therefore, the resonances
of the effective impedance α∞ depend not only on the geometry of the particle B but also
on its size and position. One can see (Figs. 2 and 3) a change in the magnitude and a
shift of the resonances. The plasmonics resonances shift to smaller wavelengths and the
magnitude of the peak value increases with increasing volume. We remark that this is not
particular to the examples considered here. In fact, this is the case for any particle. These
two phenomena are due to the strong interaction between the particles and the ground
that appears as their sizes increase while the period of the arrangement is fixed.

Note also that in our analysis we did not assume the particles to be simply connected.
In fact, the theory is still valid for particles which have two or more components. This
allows for more possibilities when choosing a particular geometry for the optimization of
the effective impedance. For instance, one may want to design a geometry such that a
single frequency is excited with a very pronounced peak or, on the other hand, to excite
not only a specific frequency but rather a group of them.

6 Concluding remarks

In this paper we have considered the scattering by an array of plasmonic nanoparticles
mounted on a perfectly conducting plate and showed both analytically and numerically the
significant change in the boundary condition induced by the nanoparticles at their periodic
plasmonic frequencies. We have also proposed an optimization approach to maximize this
change in terms of the shape of the nanoparticles. Implementation and testing of this
approach will be reported elsewhere. Our results in this paper can be generalized in many
directions. Different boundary conditions on the plate as well as curved plates can be
considered. Our approach can be easily extended to two-dimensional arrays embedded
in R

3 and the lattice effect can be included. Full Maxwell’s equations to model the light
propagation can be used. The observed extraordinary or meta properties of periodic
distributions of subwavelength resonators can be explained by the approach proposed in
this paper.
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Figure 2: |α∞| as a function of the wavelength for disks of different radii, ranging from
0.1 to 0.4.
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Figure 3: |α∞| as a function of the wavelength for a disk centered respectively at distance
0.25 and 0.45 from x2 = 0.
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Figure 5: Delocalized resonances for three well-separated disks.
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