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Abstract

Tensor-compressed numerical solution of elliptic multiscale-diffusion
and high frequency scattering problems is considered. For either problem
class, solutions exhibit multiple length scales governed by the correspond-
ing scale parameter : the scale of oscillations of the diffusion coefficient or
smallest wavelength, respectively. As is well-known, this imposes a scale-
resolution requirement on the number of degrees of freedom required to
accurately represent the solutions in standard finite-element (FE) dis-
cretizations. Low-order FE methods are by now generally perceived un-
suitable for high-frequency diffusion coefficients and high wavenumbers,
and special techniques have been proposed instead (such as numerical
homogenization, heterogeneous multiscale method, oversampling, etc.).
They require, in some form, a-priori information on the microstructure of
the solution.

We propose the use of tensor-structured compressed first-order FE
methods for scale resolution without a-priori information. The FE meth-
ods are based on principal components dynamically extracted from the
FE solution by non-linear, quantized tensor train (QTT) decomposition
of the system matrix, load and solution vectors. For prototypical model
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problems, we prove that this approach identifies effective degrees of free-

dom from a uniform “virtual” (i.e. never directly accessed) mesh and its
corresponding degrees of freedom (whose number may be prohibitively
large). Precisely, solutions of model elliptic homogenization and high fre-
quency acoustic scattering problems are proved to admit QTT-formatted
approximations whose number of effective degrees of freedom is robust in
the scale parameter and polylogarithmic with respect to the reciprocal
of the target Sobolev-norm accuracy ε > 0. No a-priori information on
the nature of the problems and intrinsic length scales of the solution is
required in the proposed approach.

As a corollary of our analysis, we prove that the Kolmogorov n-widths
of solutions sets are exponentially small for analytic data, independent
of the problems’ scale parameters. That implies, in particular, robust

exponential convergence of reduced basis and MOR techniques.
Detailed numerical experiments confirm the theoretical bounds.

Keywords: multiscale problems, Helmholtz equation, homogenization,
scale resolution, exponential convergence, tensor decompositions, quan-
tized tensor trains .
AMS Subject Classification (2000): 15A69, 35B27, 35J05, 65N15,
65N30.

1 Introduction

Tensor-structured numerical methods for differential equations (PDEs) have re-
ceived increasing attention in recent years; we refer to the literature survey [15]
and the references below. Their primary motivation has been the numerical so-
lution of PDEs on high-dimensional solution and parameter spaces. Such PDEs
arise, among others, in applications from quantum chemistry (electron structure
calculations) [10, 33] in computational finance (pricing of derivative contracts on
baskets of risky assets) [25] and in computational uncertainty quantification [34].
Recent numerical experiments and mathematical results, given in [27, 23, 28],
indicate that tensor-formatted compressed representations can provide exponen-
tial convergence of low-order finite-element or finite-difference discretizations:
they can produce numerical solutions which achieve accuracy ε > 0 in Sobolev
spaces in polylogarithmic with respect to ε−1 work and memory. Analogous
numerical results have recently been reported also for elliptic problems with
multiple scales in [35], indicating a new computational paradigm in adaptive
FE algorithms which are based on combining classical, low order FE discretiza-
tions with general tensor-compression results as presented in in [40, 32]. In
the present work, we establish scale-independent, exponential convergence rates
for QTT-structured, continuous, piecewise-linear approximations of solutions to
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model elliptic multiscale and Helmholtz problems in one space dimension: we
prove that the number N of QTT parameters is bounded polylogarithmic with
respect to ε−1, independent of the scale parameter of the solution, where ε is the
corresponding H

1-accuracy, for either type of problem, and without any a-priori
information on the type of problem.

As a consequence of our analysis, we also obtain the exponential smallness
of Kolmogorov n-widths of the solution sets independent of the scale parameters.
This implies scale-robust exponential convergence of the so-called reduced basis
approximations.

The outline of this paper is as follows: in section 2, we introduce the
model problems, their variational formulations and the standard FE discretiza-
tions. Section 3 provides a short summary of quantized FE approximations.
Section 4 introduces the homogenization problem, the asymptotic analysis of
its solution and provides scale-separated finite-dimensional approximations with
exponential convergence rate bounds which are interesting in their own right.
These bounds are subsequently used to prove logarithmic in accuracy QTT
rank bounds for the quantized FE solution vectors. Section 5 is devoted to the
same programme for the high frequency Helmholtz equation, where we prove
QTT rank bounds which are mildly depending on the wavenumber and, again,
logarithmic in accuracy. For the practical implementation of quantized tensor
train FE methods, analogous rank bounds for the stiffness and mass matrices
are required, and we prove this in Section 6. Finally, we provide in section 7
numerical experiments which fully confirm the scale-robust tensor rank bounds.

2 Model problems. Weak formulations. Finite-

element discretizations

We shall consider model boundary-value problems for two linear, second-order
differential equations in D = (0, 1): the multiscale-diffusion (homogenization)
equation and the Helmholtz equation. The former arises for homogenization
problems with separated scales, and the latter for high-frequency, time-harmonic
wave propagation. Both model problems are given by equations of the form

− (au′)′ + cu = f in D , (2.1)

with suitable boundary conditions: either homogeneous Dirichlet conditions or,
in the context of wave propagation, so-called “radiating” boundary conditions
(see section 2.2 ahead).

In the remainder of this paper, we shall consider FE discretizations
of (2.1) which are based on the standard variational formulation of (2.1). In
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either case, we shall consider a variational space V where we introduce a bi-
linear (sesquilinear) form a : V ×V → R and a linear form f : V → R. The
corresponding variational formulation of (2.1) then reads:

Find u ∈ V such that a(u, v) = f(v) for all v ∈ V. (2.2)

The form a is assumed to be continuous:

|a(v, w)| ≤ asup ‖v‖H1(D) ‖w‖H1(D) for all w, v ∈ V, (2.3)

where asup = max{‖a‖L∞(D), ‖c‖L∞(D)} is finite under the assumptions we make
below separately for either case.

2.1 Homogenization Problem

For a model homogenization problem, we consider (2.1) with homogeneous
Dirichlet boundary conditions,

u(0) = 0 = u(1), (2.4)

under the following assumption on the coefficients.

Assumption 2.1. [homogenization case] Let δ ∈ (0, 1) and the coefficients
in (2.1) be a = aδ given by

aδ(x) = a1

(x

δ

)

for all x ∈ D (2.5)

and c = 0, where a1 is an analytic, 1-periodic function that satisfies the condi-
tion

ess inf{a1(y) : y ∈ Y} = ainf
1 (2.6)

with a positive constant ainf
1 . The source term f is analytic in D = [0, 1].

We emphasize the dependence of the solution on δ by denoting it with uδ.
In order to avoid technicalities, we assume that δ−1 ∈ N, so that the interval D
is a multiple of the scaled unit cell δ ·Y = (0, δ).

The variational formulation of (2.1) is set in the space V = H
1
0(D) of

functions satisfying homogeneous Dirichlet boundary conditions at the end-
points of D. We also introduce a bilinear form a : V ×V → R and a linear form
f : V → R by setting

a(w, v) =

∫

D

(aw′v′ + cwv) and f(v) =

∫

D

fv for all w, v ∈ V.
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Assumption 2.1 implies the continuity (2.3) and coercivity of a, the latter mean-
ing that there exists C > 0 depending on ainf

1 but not on δ such that

a(v, v) ≥ C ‖v‖2
H1(D) for all v ∈ V. (2.7)

Then, by the Lax–Milgram lemma, the variational problem (2.2) admits a
unique solution for every f ∈ H

−1(D) and for every δ.

2.2 Helmholtz Problem

In the Helmholtz case, we work under the following assumption.

Assumption 2.2. [Helmholtz case] For a wavenumber k > 0, let the coefficients
a and c in (2.1) be given by

a = 1 and c = −k2. (2.8)

The source term f is analytic in D = [0, 1] and g ∈ R is a given constant.

Under assumption 2.2, the equation (2.1) reads

− u′′ − k2u = f in D. (2.9)

We impose the homogeneous Dirichlet boundary condition and the so-called
radiating boundary condition at the left and right endpoints of D, respectively:

u(0) = 0 and u′(1)− iku(1) = g, (2.10)

where i =
√
−1 denotes the imaginary unit.

The solution u of (2.9)–2.10 is complex-valued; for a variational space,
we consider V = {w ∈ H

1(D; C) : w(0) = 0}. The corresponding sesquilinear
and antilinear forms are defined by

a(w, v) =

∫

D

w′v̄′ − k2
∫

D

wv̄ − ikw(1) v(1) and f(v) =

∫

D

f v + gv(1)

for all w, v ∈ V. (2.11)

The bilinear form a satisfies the inf-sup condition

α = inf
w∈Vr{0}

sup
v∈Vr{0}

|a(w, v)|
‖w‖V ‖v‖V

> 0

with α = O(k−1) and α−1 = O(k), see, e.g. [20, theorem 4.2]. Also,

sup
w∈Vr{0}

|a(w, v)|
‖w‖V ‖v‖V

> 0 for all v ∈ V r {0}.
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Then (2.2) admits a unique solution ([2, Theorem 2.1]).
We assume given {Vℓ}∞ℓ=0 a sequence of finite-dimensional spaces Vℓ ⊂ V ,

ℓ ∈ N, which is dense in V ,

lim
ℓ→∞

inf
vℓ∈Vℓ

‖v − vℓ‖V = 0 for all v ∈ V, (2.12)

and inf-sup stable for the variational form (2.2):

αℓ = inf
wℓ∈Vℓ

r{0}

sup
vℓ∈Vℓ

r{0}

|a(wℓ, vℓ)|
‖wℓ‖V ‖vℓ‖V

> 0 for all ℓ ∈ N

and

sup
wℓ∈Vr{0}

|a(wℓ, vℓ)|
‖wℓ‖V ‖vℓ‖V

> 0 for all vℓ ∈ Vℓr {0}.

Then, by [2, Theorem 2.2], for the FE approximations uℓ ∈ Vℓ, ℓ ≥ L0, of the
solution u of (2.2), which are given by

a(uℓ, vℓ) = f(vℓ) for all vℓ ∈ Vℓ, (2.13)

there holds the following quasi-optimality bound:

‖u− uℓ‖H1(D) ≤ C1 inf
wℓ∈Vℓ

‖u− wℓ‖H1(D), (2.14)

where C1 = 1 + asup/αℓ.

3 QTT-structured finite-element discretization

3.1 FE spaces: nodal bases, parametrization

We consider the coefficient field F being either R or C. We describe the FE
spaces Vl, l ∈ N, that we use below to discretize the solutions of problems of
the form (2.2). We shall use µ1, µ2 ∈ {0, 1} to encode the essential boundary
conditions imposed by the construction of the FE spaces: µ1 = 0 and µ1 = 1
shall denote that the values at the left endpoint of D are fixed and not fixed
respectively, and µ2 shall indicate the same for the right endpoint of D.

For every l ∈ N, we set nl = 2l − µ1 − µ2 and hl = (nl + 1)−1. Then we
consider the uniform partition T

l of D induced by the nodes

tli = (i+ 1− µ1)hl with i ∈ I
l, (3.1)

where I
l = {µ1 − 1, . . . , 2l − µ2}. The number of interior nodes is nl and the

grid size is hl. For the construction of FE spaces that follows, we call the nodes
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indexed by I
l
0 = {0, . . . , 2l − 1} active. The boundary nodes tlµ1−1 = 0 and

tl2l−µ2
= 1 are active for Neumann boundary conditions, i.e., if and only if

µ1 = 1 and µ2 = 1 respectively hold.
For all l ∈ N and i ∈ I

l, we define φl
i ∈ C(D) by requiring linearity

on each interval (tlj−1, t
l
j), j = µ1, . . . , 2

l − µ2, and the following interpolation

condition: φl
i

(

tli′
)

= δii′ for all i′ ∈ I
l. We define the corresponding FE spaces

of continuous piecewise-linear functions over F,

S1(D,T l) = span{φl
i : i ∈ I

l} ⊂ C(D),

S10(D,T
l) = span{φl

i : i ∈ I
l
0} ⊂ C(D),

(3.2)

where the spans are taken with respect to the field F.
For every u ∈ C(D), we consider the following set of admissible approxi-

mations:

F
l
u = S10(D,T

l) + {µ1 = 0}u(0)φl
−1 + {µ2 = 0}u(1)φl

2l ⊂ S1(D,T l), (3.3)

where the boundary terms enter only if the logical expressions enclosed in the

corresponding curly brackets are true. We parametrize it by vectors in F2l using

analysis and synthesis operators A l : C(D) → F2l and S l : F2l → S10(D,T
l):

F
2l ∋ ul = A

lu ↔ ul = S
lul

+ {µ1 = 0}u(0)φl
−1 + {µ2 = 0}u(1)φl

2l ∈ F
l
u, (3.4)

where
(A u)i = u(tli) for all i ∈ I

l
0 and S

lul =
∑

i∈Il
0

ul
i φ

l
i. (3.5)

In the present paper, we are concerned with FE approximations ul ∈ F l
u

that are QTT-structured, i.e. are such that the corresponding coefficient vectors
ul are represented in the QTT format defined in sections 3.2–3.3.

3.2 Tensor Train (TT) representation

We use the tensor train (TT for short) decomposition, a non-linear, low-parametric
approximate representation of multidimensional arrays based on the separation
of variables, developed by Oseledets and Tyrtyshnikov [44, 43].

By a d-dimensional n1 × . . . × nd-vector we mean an array indexed by
d indices, the range of the kth index being 0, 1, . . . , nk − 1 for 1 ≤ k ≤ d.
In the literature such arrays are often called tensors. However, we distinguish
multidimensional vectors and matrices, which represent functions and operators
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on spaces of those. We do so due to the difference in their nature and irrespective
of the number of mode indices, denoted with d right above, since the latter is
subject to change under quantization described in Section 3.3.

Let us consider a d-dimensional n1 × . . . × nd-vector u. In the case
that, for certain two- and three-dimensional arrays U1, U2, . . . , Ud, it admits the
representation

uj1,...,jd =

r1
∑

α1=1

. . .

rd−1
∑

αd−1=1

U1(j1, α1)

· U2(α1, j2, α2) · . . . · Ud−1(αd−2, jd−1, αd−1) · Ud(αd−1, jd) (3.6)

for 0 ≤ jk ≤ nk − 1, where 1 ≤ k ≤ d, we say that u is represented in the
tensor-train (TT) decomposition in terms of the core tensors U1, U2, . . . , Ud.
The summation indices α1, . . . , αd−1 and limits r1, . . . , rd−1 on the right-hand
side of (3.6) are called, respectively, rank indices and ranks of the representation.
A TT decomposition, exact or approximate, can be constructed via the low-rank
representation of a sequence of single matrices; for example, via the SVD. In
particular, for every k = 1, . . . , d− 1 the representation (3.6) implies a rank-rk
factorization of an unfolding matrix U (k) with the entries

U (k)
j1,...,jk

jk+1,...,jd

= uj1,...,jk,jk+1,...,jd .

Here, the overscore denotes the unfolding of a multi-index into a long scalar
index:

j1, . . . , jk =
k

∑

m=1

jm

k
∏

ℓ=m+1

nℓ (3.7)

for the row index, and similarly for the column index. This renders U (k) a
matrix with two “long” indices.

Conversely, if the vector u is such that the unfolding matrices U (1), . . . ,U (d−1)

are of ranks r1, . . . , rd−1 respectively, then the cores U1, U2, . . . , Ud satisfy-
ing (3.6) exist; see Theorem 2.1 in [43]. The ranks of the unfolding matrices are
the lowest possible ranks of a TT decomposition of the vector. They are hence
referred to as TT ranks of the vector.

Another, fundamental, property of the TT representation is that if the
unfolding matrices can be approximated with ranks r1, . . . , rd−1 and accuracies
ε1, . . . , εd−1 in the Frobenius norm, then the vector itself can be approximated

in the TT format with ranks r1, . . . , rd−1 and accuracy
√

∑d−1
k=1 ε

2
k in the ℓ2-

norm. This underlies a robust and efficient algorithm for the low-rank TT
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approximation of vectors given in full format or in the TT format with higher
ranks. For details see Theorem 2.2 with corollaries and Algorithms 1 and 2
in [43]. In practice it may be essential that the TT representation relies on
a certain ordering of the dimensions and reordering dimensions may affect the
numerical values of the TT ranks significantly.

The multiplication of a vector given in the TT decomposition (3.6) by a
d-dimensional (m1 × . . . × md) × (n1 × . . . × nd)-matrix A can be performed
efficiently if the matrix is represented as follows:

Ai1,...,id
j1,...,jd

=

r1
∑

α1=1

. . .

rd−1
∑

αd−1=1

V1(i1, j1, α1)

· V2(α1, i2, j2, α2) · . . . · Vd−1(αd−2, id−1, jd−1, αd−1) · Vd(αd−1, id, jd) . (3.8)

The decomposition (3.8) is recognized as a TT representation of the matrix A;
the TT cores V1, . . . , Vd are now three- and four-dimensional arrays. The dis-
cussion of the efficiency and robustness of the TT decomposition of vectors also
applies to the matrix case. Indeed, (3.8) can be interpreted as TT decomposi-
tion of a vectorization of A, in which the corresponding row and column indices
are merged to obtain a d-dimensional m1 · n1 × . . .×md · nd-vector.

Basic operations of linear algebra with vectors and matrices in the TT
format, such as addition, Hadamard and dot products, multi-dimensional con-
traction, matrix-vector multiplication, etc. are considered in detail in [43]. The
use of tensor-structured approximations aims primarily at reducing the com-
plexity of computations and lifting the curse of dimensionality. The TT format
achieves this with the storage cost and complexity of basic operations of the TT
arithmetic being bounded by dnrα with α ∈ {2, 3}, where n ≥ n1, . . . , nd and
r ≥ r1, . . . , rd−1. This estimate is formally linear in d; however, the TT ranks
r1, . . . , rd−1 in (3.6) may depend on d and n.

So far there has been increasing, mostly experimental, evidence that in
many applications the TT and QTT ranks are moderate, e.g., respectively,
at most linear with respect to d and at most polynomial with respect to l,
which is crucial for the applicability of TT- and QTT-structured methods. For
examples see the papers [19, 5, 9, 11, 24, 29, 36], the extensive survey [15] and
later works [3, 1, 37].

3.3 Quantized Tensor Train (QTT) representation

With the aim of further complexity reduction the TT format can be applied to
a quantized tensor, which leads to the quantized tensor train (QTT) format [40,
32, 42]. The use of quantization in the context of tensor representations, which
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dates back to [49], consists in “folding” the vector (matrix) by introducing lk
“virtual” dimensions (levels) corresponding to the k-th “physical” dimension and
separating all the dimensions, “physical” and “virtual”, just as the former, in
a tensor decomposition. For example, if nk = 2l with l ∈ N, the “virtual”
dimensions corresponding to a “physical” dimension may correspond the bits of
its binary coding:

jk = jk,1, . . . , jk,l =
l

∑

q=1

2q−1 jk,q ↔ (jk,1, . . . , jk,l) (3.9)

with jk,q ∈ {0, 1} for every q = 1, . . . , l, cf. (3.7). Binary quantization, which
is associated with index transformations of the form (3.9), is central for the
remainder of the present paper.

By a QTT decomposition of a vector and the QTT ranks of the decom-
position we mean a TT decomposition of its quantization and the ranks of that
TT decomposition. In particular (3.6) and (3.8), with d being replaced with
l, also present QTT representations of ranks r1, . . . , rl−1 of a one-dimensional
vector v and of a one-dimensional matrix B with entries vj1,...,jl

= uj1,...,jl

and B i1,...,il
j1,...,jl

= Ai1,...,il
j1,...,jl

respectively. In the present paper, for 2l-component

vectors, we shall work with representations of the form

v j1,...,jl
=

r1
∑

α1=1

. . .

rl−1
∑

αl−1=1

U1(j1, α1)

· U2(α1, j2, α2) · . . . · Ul−1(αl−2, jl−1, αl−1) · Ul(αl−1, jl), (3.10)

cf. (3.6). A representation of the form (3.10) allows to parametrize the vector
v by Nl parameters instead of 2l entries, where

Nl = 2r1 +

l−1
∑

k=2

2rk−1rk + 2rl−1 ≤ 2lR2
l (3.11)

with Rl = max{r1, . . . , rl−1}. Note that Rl = O(lθ) with a positive θ implies
Nl = O(l2θ+1).

The structure of basic operation in the TT format and related algorithms,
referred to in section 3.2, when applied to quantized vectors, naturally yield the
same in the QTT format. Compared to the TT representation, the QTT format
seeks to resolve the multilevel structure of the data by splitting the “virtual”
dimensions, introduced by quantization and representing the hierarchy of scales.
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Example 3.1 (Proposition 1.1 in [32]). To demonstrate how the quantization
reduces complexity of structured data, let us consider the one-dimensional vector

u = (1, q, . . . , q2
l−1)⊤ . This vector has a single “physical” dimension, and its

elementwise representation requires storing 2l parameters. However, if we apply
the quantization transformation as described above to split the single dimension
into l virtual levels, u is transformed into an l-dimensional vector that exhibits
a low-parametric structure. Indeed, in terms of the “virtual” indices it is a
rank-one Kronecker product of l vectors with 2 components each:

u =

(

1

q2
l−1

)

⊗
(

1

q2
l−2

)

⊗ . . .⊗
(

1
q

)

,

which implies a QTT decomposition of u with ranks 1, . . . , 1. Other explicit
low-rank examples can be found in [45, 30, 31, 26].

Note that the Hierarchical Tensor Representation [16, 13] itself and com-
bined with tensorization [14], a comprehensive exposition of which is given
in [17], are closely related counterparts of the TT and QTT formats respec-
tively. Also, the TT representation, in fact, is known as matrix product states
(MPS) and has been exploited by physicists to describe quantum spin systems
theoretically and numerically for at least two decades now [52, 50, 51].

3.4 Basic results on QTT-structured approximation

Proposition 3.2 (Sections 4.1 and 4.2 in [43]). Assume that u and v are d-
dimensional vectors of equal mode sizes, given in TT representations of ranks
p1, . . . , pd−1 and q1, . . . , qd−1 respectively. Then for all α, β ∈ R the linear
combination αu+βv has a TT decomposition of ranks p1+ q1, . . . , pd−1+ qd−1.
On the other hand, the Hadamard product u⊙v can be represented in the TT
format with ranks p1q1, . . . , pd−1qd−1.

Proposition 3.3. If a vector u is given in the TT format with certain ranks,
then its diagonalization diagu, which is the square matrix whose diagonal is u,
can be represented in the TT format with the same ranks.

Proof. It is enough to note that under the diagonalization of a vector each TT
core is diagonalized with respect to the corresponding mode index.

Proposition 3.4 (Section 4.3 in [43]). If matrices A and B have TT represen-
tations of ranks p1, . . . , pd−1 and q1, . . . , qd−1 respectively, their product AB,
when it is defined, has a TT representation of ranks p1q1, . . . , pd−1qd−1.

In the QTT approximation of polynomials, we rely on the following result
owing to either of [14, Corollary 13] and [45, Theorem 6].
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Proposition 3.5 (QTT structure of a polynomial). Let l ∈ N. Assume that a
2l-component vector u is given by uj = P (j) for 0 ≤ j ≤ 2l − 1, where P is a
univariate algebraic polynomial of degree p ∈ N. Then u can be represented in
the QTT format with ranks bounded from above by p+ 1.

A similar result for trigonometric polynomials can be based on the fol-
lowing statement.

Proposition 3.6 (QTT structure of a real-valued trigonometric polynomial).
Let q, l ∈ N and ak, bk, ωk, ϕk ∈ R for 1 ≤ k ≤ q. Assume that a 2l-component
vector v is given by vj =

∑q
k=1(ak cos(ωk j + ϕk) + bk sin(ωk j + ϕk)) for j =

0, . . . , 2l − 1. Then v can be represented in the QTT format with ranks bounded
from above by 2q.

Proof. The proof is analogous to that for the sine function, see [32, Lemma 2.5 B].
Indeed, for 1 ≤ k ≤ q, we may write

ak cos(ωkj + ϕk) + bk sin(ωkj + ϕk) =
√

a2k + b2k sin(ωkj + ϕk + ψk),

where ψk ∈ [0, 2π) is such that ak/
√

a2k + b2k = sinψk and bk/
√

a2k + b2k =
cosψk. The claim therefore follows from (a slight generalization of) the proof
of [32, Lemma 2.5 B] to the case when the arguments of the sine functions are
shifted.

An alternative proof, with a more constructive flavor, can be obtained
by a similar generalization of [45, Theorem 7] . Then the statement for a
sum of vectors that we recapitulate in Proposition 3.2 proves the claim. Note
that this argument, unlike the first one, yields immediately an explicit QTT
decomposition of v.

4 QTT-FEM in numerical homogenization

4.1 Asymptotic Expansion of u as δ ↓ 0

We first discuss some classical asymptotic results from homogenization theory
which describe precisely the asymptotic structure of the solution u of (2.1),
(2.4), (2.6) under assumption 2.1 as δ ↓ 0. For our purposes, it will be impor-
tant to have explicit asymptotic expansions and remainder estimates for their
truncation. Once this has been established, we use the quasi-optimality (2.14)
of the FE solution and the asymptotic expansion to obtain QTT rank bounds of
tensor structured approximations of the FE solution: the QTT ranks of certain
finite-element approximations achieving accuracy ε = O(

√
δ) in the H1(D) norm
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are moderate, namely O(log2 δ−1) with a constant independent of the microscale
parameter δ.

First, let us recall classical results on homogenization, from [4, 21]. Let
w1 ∈ C

2(Y) ∩C(Y) solve the problem

(

a1(y)(w
′
1(y) + 1)

)′
= 0 for all y ∈ Y and

∫

Y

w1 = 0, (4.1)

which is uniquely solvable under assumption 2.1. The term “limiting solution”
u0 ∈ C

2(D) ∩C(D), shall denote the solution of the homogenized equation:

−
(∫

Y

dy

a1(y)

)−1

u′′0(x) = f(x) for all x ∈ D, u0(0) = 0 = u0(1), (4.2)

where f ∈ C(D). Under assumption 2.1, the homogenized equation (4.2) is
uniquely solvable.

Classical homogenization techniques treat the problem (2.1), (2.4), (2.5),
(2.6) by expanding the solution with respect to powers of δ, see [4, 21]. We
are interested in the first-order term, or first-order corrector, which reflects
oscillations in the solution induced by those in the coefficient and is given by

u1(x, y) = u′0(x)w1(y) for all (x, y) ∈ D×Y. (4.3)

One may consider a corresponding first-order expansion of the form

U δ
1 (x) = u0(x) + δσ

(

δ−1ρ(x)
)

u1

(

x,
x

δ

)

for all x ∈ D, (4.4)

where ρ(x) = min{x, 1− x}, for every x ∈ D, is the distance from x to ∂D and
σ satisfies the following assumption 4.1.

Assumption 4.1. σ ∈ C
1[0,∞) is such that σ(0) = 0, 0 ≤ σ(t) ≤ 1 for all

t ∈ (0, 1) and σ(t) = 1 for all t ≥ 1.

The first-order approximation U δ
1 satisfies, due to the factor involving

σ, the same boundary conditions as the solutions of the original problem and
of the homogenized equation (4.2). Furthermore, it also satisfies the following
error bound, see, e.g. [4, chapter 2, §3 and chapter 4, §1, theorem 2] or [21,
chapter 1, section 1.4].

Lemma 4.2. Let assumption 2.1 hold and σ satisfy assumption 4.1. Assume
also that the right-hand side f of (2.1) is analytic in D = [0, 1]. Then there
exists a positive constant c such that for every δ with δ−1 ∈ N, the approximation
U δ
1 given by (4.4) satisfies

‖uδ − U δ
1‖H1(D) ≤ c

√
δ. (4.5)
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Below, we shall use U δ
1 of (4.4) with σ given by

σ(t) = t(2− t) for all t ∈ [0, 1], σ(t) = 1 for all t ∈ (1,∞), (4.6)

satisfying assumption 4.1.

4.2 Polynomial approximation in D

First, we shall consider approximation in a reference interval Ĵ = (−1, 1).
For i ∈ N0, by Li we denote the ith Legendre polynomial with the stan-

dard normalization: Li(1) = 1 and 〈Li, Li〉L2(Ĵ) = (i+ 1
2 )

−1.

Definition 4.3. For every p ∈ N, we define a quasi-interpolation operator
π̂p : H

1(Ĵ) → Pp by setting

û(−1) = π̂pû(−1) and (π̂pû)
′ =

p−1
∑

i=0

ciLi

for every û ∈ H
1(Ĵ), where ci = (i+ 1

2 ) 〈û′, Li〉L2(Ĵ) for i = 0, 1, . . . , p− 1.

For every p ∈ N, the quasi-interpolation operator π̂p is continuous. Also,
by [48, theorem 3.14] or [6, lemma 5], we have the following property

Proposition 4.4. For every p ∈ N, π̂p is nodally exact:

∀û ∈ H
1(Ĵ) : û(±1) = π̂pû(±1) .

We shall use the following accuracy and stability bounds.

Proposition 4.5. Assume that p ∈ N and s ∈ N0 are such that s ≤ p. Then,
for any function û ∈ H

s+1(Ĵ), the interpolant π̂pû satisfies

|û− π̂pû|2
H1(Ĵ)

≤ (p− s)!

(p+ s)!
|û|2

Hs+1(Ĵ)
,

‖û− π̂pû‖2
L2(Ĵ)

≤ 1

p (p+ 1)

(p− s)!

(p+ s)!
|û|2

Hs+1(Ĵ)
,

|π̂pû|2
H2(Ĵ)

≤ 1

2
(p2 − 1)|û|2

H2(Ĵ)
.

(4.7)

Proof. A proof of the accuracy bounds can be found, for example, in [48, Corol-
lary 3.15] or [6, Corollary 2]. The stability bound is shown in [28, lemma A-
2.2].
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Lemma 4.6. For all ̺ ≥ 1 and p ∈ N such that p ≥ ̺, we set s =
⌊

p/̺
⌋

, so

that 1 ≤ s ≤ p. Then there holds, with c2 = e5/
√
2π,

(̺− 1)2s(s!)2
(p− s)!

(p+ s)!
≤ c2 s exp

(

−2p

̺

)

.

Proof. For a proof, see, e.g. [28, lemma A-1.2].

Proposition 4.7. Given a function û which is analytic in Ĵ, there exist positive
constants b, C and Cm with m = 0, 1, 2 such that for every p ∈ N the interpolants
π̂pû satisfy the error bound

‖û− π̂pû‖H1(Ĵ) ≤ C exp(−bp)

and the stability bounds

|π̂pû|Hm(Ĵ) ≤ Cm for either m = 0, 1, |π̂pû|H2(Ĵ) ≤ C2 p.

Proof. Since û is analytic in Ĵ, there exist positive constants M and d such that
the inequality

∥

∥û(s+1)
∥

∥

L∞(Ĵ)
≤Mds+1(s+ 1)! (4.8)

holds for all s ∈ N. Consider p ∈ N and ̺ = 1+ d, and choose s = ⌊p/̺⌋. Using
proposition 4.5, Lemma 4.6 and (4.8), we obtain

‖û− π̂pû‖2
H1(Ĵ)

= ‖û− π̂pû‖2
L2(Ĵ)

+ |û− π̂pû|2
H1(Ĵ)

≤M2d2
{

1

p(p+ 1)
+ 1

}

(s+ 1)2 (̺− 1)2s (s!)2
(p− s)!

(p+ s)!

≤M2d2
{

1

p(p+ 1)
+ 1

}

(s+ 1)2 c2 s exp(−2p/̺) ≤ C2p3 exp(−2bp)

with b = (1 + d)−1 and a positive constant C independent of p.
The H

m-stability bound with m = 2 follows immediately from propo-
sition 4.5, with m = 1, from definition 4.9, with m = 0, from the triangle
inequality and the L

2-error bound.

The following bound is a particular case of [22, theorem 1].

Proposition 4.8. Let p ∈ N0. Then every algebraic polynomial u ∈ Pp satisfies
the bound

‖u‖
L∞(Ĵ) ≤

1√
2
(p+ 1) ‖u‖

L2(Ĵ).
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Rescaling yields polynomial approximations on the interval D.

Definition 4.9. For every p ∈ N, we define a quasi-interpolation operator
πp : H

1(D) → Pp through π̂p given by definition 4.3 by rescaling from D to Ĵ:

(πpu) ◦ϕ = π̂p(u ◦ϕ) in Pp for all u ∈ H
1(D),

where ϕ(t) = (t+ 1)/2 for all t ∈ Ĵ.

4.3 Fourier approximation in Y

For every k ∈ Z, we consider Tk : C → C given by Tk(z) = exp(2πikz) for all
z ∈ C.

The functions Tk, k ∈ Z, form an orthonormal basis in L
2(Y), with

Y = (0, 1). For every w ∈ L
2(Y),

w =
∑

k∈Z

ckTk in L
2(Y), (4.9)

where the Fourier coefficients are given by

ck = 〈w, Tk〉L2(Y) =

∫

Y

wTk for all k ∈ Z. (4.10)

In particular, if w is real-valued, we have ck = c−k for all k ∈ N and

w = c0 +
∑

k∈N

{

ak ReTk + bk ImTk
}

in L
2(Y), (4.11)

where ReTk and ImTk are cosine and sine functions for each k ∈ N and

ak = 2Re ck = c−k + ck, bk = −2 Im ck = c−k − ck for all k ∈ N . (4.12)

For every q ∈ N, we set Tq = span{Tk}qk=−q, where the span is taken with
respect to the field C.

Definition 4.10. For every w ∈ L
2(Ĵ) and q ∈ N, we define a projection

operator τq : L
2(Y) → Tq by setting

τqw =
∑

|k|≤q

ckTk

where ck with k = −q, . . . , q are given by (4.10).
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Lemma 4.11. Let the function w be real-analytic and 1-periodic in Y. Then
there exist positive constants b, C and Cm with m = 0, 1, 2 such that the pro-
jections τqû with q ∈ N satisfy the error bound

‖w − τqw‖H1(Y) ≤ Cq exp(−bq) (4.13)

and the stability bound

|τqw|Hm(Y) ≤ Cmq
m for every m = 0, 1, 2 . (4.14)

Proof. For |k| ≤ q, the kth coefficient ck of τqw, as introduced in definition 4.10,
is given by (4.10). By the classical power series argument, the integrand, being
real-analytic, admits a unique extension to the strip

Sθ = {z ∈ C : 0 ≤ Re z ≤ 1, |Im z| < θ/(2π)} (4.15)

with some θ > 0 which extension is holomorphic in Sθ and continuous on its
closure. Since the integrand is 1-periodic with respect to the real part of z, so
is its extension, by uniqueness of this extension. By Cauchy’s integral formula,
we may therefore shift the path of integration in the integral in (4.10) to D +
i(sgn k)θ/(2π). The elementary estimate

|Tk(y + i(sgn k)θ/2π)| = exp(−|k|θ),

valid for all y ∈ Y, results in the bound

|ck| = |c−k| ≤Mθ exp(−θk) for all k ∈ N, (4.16)

where Mθ is the maximum of |w| on Sθ. Then we obtain

‖w − τqw‖2H1(Y) = ‖w − τqw‖2L2(Y) + |w − τqw|2H1(Y) =
∑

|k|>q

(1 + k2)|ck|2

≤ 2M2
θ exp(−2θq)

exp(−2θ)

(1− exp(−2θ))3
(1 + (q + 1)2) ≤ C2q2 exp(−2θq),

where C2 = 10 ·M2
θ exp(−2θ)/(1− exp(−2θ))3 depends on θ but not on q.

The stability bounds of (4.14) follow from the orthogonality of the expo-
nential basis and, for m = 1, 2, by the differentiation of the truncated expan-
sion.

The following bound is a particular case of [39, theorem 1].
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Proposition 4.12. Let I ⊂ Z be finite and consider a trigonometric polynomial

w =
∑

k∈I

ckTk (4.17)

with ck ∈ C for every k ∈ I. Then

‖w‖L∞(Y) ≤ |I| 12 ‖w‖L2(Y).

4.4 Approximation of U δ

1

Based on proposition 4.7 and lemma 4.11, we now analyze the approximate
QTT structure of the first-order asymptotic representation (4.4).

Lemma 4.13. Assume that f is real-valued and analytic on D, and that a1 is
1-periodic, real-valued and analytic in Y and σ is given by (4.6).

Then there exist positive constants b, Ĉ and Ĉ2 with which, for every δ
such that δ−1 ∈ N, the function Ũ δ

1 given by

Ũ δ
1 (x) = (πpu0)(x) + δσ

(

δ−1ρ(x)
)

ũ1

(

x,
x

δ

)

for all x ∈ D (4.18a)

with ũ1 given by

ũ1(x, y) = (πpu
′
0)(x) (τpw1)(y) for all (x, y) ∈ D×Y (4.18b)

satisfies the following error and stability bounds:

∥

∥Ũ δ
1 − U δ

1

∥

∥

H1(D)
≤ Ĉp exp(−bp),

∣

∣Ũ δ
1

∣

∣

H2(D)
≤ Ĉ2

1

δ
p5/2, (4.19)

where U δ
1 is given by (4.4).

Proof. We observe that the assumption that a1 being real analytic, and 1-
periodic implies that the exists a holomorphic extension (again denoted by a1 to
the complex domain which is 1-periodic.This, in turn, implies that the solution
w1 of the cell problem (4.1) is, likewise, holomorphic and 1-periodic.

By lemma 4.11 and proposition 4.7, there exist positive constants b, C
and Cm, m = 0, 1, 2, such that, for every p ∈ N, the approximations ũ0 = πpu0,
ṽ1 = πpu

′
0 and w̃1 = τpw1 satisfy the error bounds

‖u0 − ũ0‖H1(D), ‖u′0 − ṽ1‖H1(D), ‖w1 − w̃1‖H1(D) ≤ Cp exp(−bp) (4.20)

and the stability bounds

|ũ0|Hm(D), |ṽ1|Hm(D) ≤ Cmp
max{m−1,0}, |w̃1|Hm(D) ≤ Cmp

m (4.21)
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for m = 0, 1, 2.
Let p ∈ N and ψ(x) = σ

(

δ−1ρ(x)
)

for all x ∈ D. The error of approxi-

mating U δ
1 with Ũ δ

1 reads

Ũ δ
1 − U δ

1 = u0 − ũ0 + δψ
{

u′0 − ṽ1
}

w1

( ·
δ

)

+ δψṽ1{w1 − w̃1}
( ·
δ

)

. (4.22)

Since |ψ(x)| ≤ 1 and |ψ′(x)| ≤ 2/δ for all x ∈ D, the error (4.22) can be
estimated in the H

1-norm as follows:

∥

∥Ũ δ
1 − U δ

1

∥

∥

2

H1(D)
=

∥

∥Ũ δ
1 − U δ

1

∥

∥

2

L2(D)
+
∣

∣Ũ δ
1 − U δ

1

∣

∣

2

H1(D)

≤ 3‖u0 − ũ0‖2L2(D) + 3|u0 − ũ0|2H1(D)

+ (3δ2 + 36)‖u′0 − ṽ1‖2L2(D)‖w1‖2L∞(Y) + (3δ2 + 36)‖ṽ1‖2L∞(D)‖w1 − w̃1‖2L2(Y)

+ 9δ2 |u′0 − ṽ1|2H1(D)‖w1‖2L∞(Y) + 9‖u′0 − ṽ1‖2L2(D)‖w′
1‖2L∞(Y)

+ 9δ2‖ṽ′1‖2L∞(D)‖w1 − w̃1‖2L2(Y) + 9‖ṽ1‖2L∞(D)|w1 − w̃1|2H1(Y)

≤ 3‖u0 − ũ0‖2H1(D)

+ 39δ2‖u′0 − ṽ1‖2H1(D)‖w1‖2L∞(Y) + 39‖ṽ1‖2L∞(D)‖w1 − w̃1‖2H1(Y)

+ 39δ2‖ṽ′1‖2L∞(D)‖w1 − w̃1‖2H1(Y) + 39‖u′0 − ṽ1‖2H1(D)‖w′
1‖2L∞(Y)

≤ 3‖u0 − ũ0‖2H1(D) + 39‖u′0 − ṽ1‖2H1(D)

{

‖w1‖2L∞(Y) + ‖w′
1‖2L∞(Y)

}

+ 39
{

‖ṽ1‖2L∞(D) + ‖ṽ′1‖2L∞(D)

}

‖w1 − w̃1‖2H1(Y)

Using the Nikolskii inequality (see proposition 4.8) and the estimates (4.20)–
(4.21), we obtain

∥

∥Ũ δ
1 − U δ

1

∥

∥

2

H1(D)
≤ 3C2p2 exp(−2bp)

+ 39C2p2 exp(−2bp)
{

‖w1‖2L∞(Y) + ‖w′
1‖2L∞(Y)

}

+ 39
{

‖u′0‖2L2(D) + ‖u′′0‖2L2(D)

}

C2p2(p+ 1)2 exp(−2bp)

≤ Ĉ2p4 exp(−2bp)

with a positive constant Ĉ independent of p and δ.
Furthermore, we estimate the stability of the approximation as follows:

since |ψ(x)| ≤ 1, |ψ′(x)| ≤ 2/δ and |ψ′′(x)| ≤ 2/δ2 for all x ∈ D:

∣

∣Ũ δ
1

∣

∣

2

H2(D)
≤ 2|ũ0|2H2(D) +12

4

δ2
‖ṽ1‖2L2(D)‖w̃1‖2L∞(Y) +12δ2|ṽ1|2H2(D)‖w̃1‖2L∞(Y)

+ 12
1

δ2
‖ṽ1‖2L2(D)‖w̃′′

1‖2L∞(Y) + 12|ṽ1|2H1(D)‖w̃′
1‖2L∞(Y)
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+ 12 · 4

δ2
‖ṽ1‖2L2(D)‖w̃′

1‖2L∞(Y) + 12 · 4|ṽ1|2H1(D)‖w̃1‖2L∞(Y).

By the Jackson–Nikolskii inequality (see proposition 4.12) and the estimates (4.20)–
(4.21), we therefore obtain

∣

∣Ũ δ
1

∣

∣

2

H2(D)
≤ 2C2

2p
2 +

48

δ2
C2

0 2p ‖w̃1‖2L2(Y) + 12δ2C2
2p

2 2p ‖w̃1‖2L2(Y)

+
12

δ2
C2

0 2p ‖w̃′′
1‖2L2(Y) + 12C2

1 2p ‖w̃′
1‖2L2(Y)

+
48

δ2
C2

0 2p ‖w̃′
1‖2L2(Y) + 48C2

1 2p ‖w̃1‖2L2(Y)

≤ 2C2
2p

2 +
48

δ2
C2

0 2p ‖w1‖2L2(Y) + 12δ2C2
2p

2 2p ‖w1‖2L2(Y)

+
12

δ2
C2

0 2p p
4 ‖w′′

1‖2L2(Y) + 12C2
1 2p p

2 ‖w′
1‖2L2(Y)

+
48

δ2
C2

0 2p p
2 ‖w′

1‖2L2(Y) + 48C2
1 2p ‖w1‖2L2(Y) ≤ Ĉ2

2

1

δ2
p5

with a positive constant Ĉ2 independent of p and δ.

Theorem 4.14. Let f , c and a1 satisfy assumption 2.1. Then there exist
positive constants ĉ, λ and R such that the following holds.

For all δ > 0 such that log2(δ
−1 − 1) ∈ N, the solution uδ of the prob-

lem (2.1) admits an approximation uδ,l ∈ F l
uδ ⊂ S1(D,T l) with

l =
⌈

λ log2 δ
−1

⌉

, (4.23a)

where S1(D,T l) and F l
uδ are given by (3.2) and (3.3), such that the error bound

∥

∥uδ − uδ,l
∥

∥

H1(D)
≤ ĉ

√
δ (4.23b)

holds and the coefficient vector ul = A luδ,l admits an exact QTT representation
with ranks bounded from above by

R log22 δ
−1. (4.23c)

Proof. First, we observe that since a1 and f are analytic in D, the solution w1

of the unit-cell problem (4.1) and the solution u0 of (4.2) together with its first
derivative u′0, all of which are independent of the scale parameter δ, are likewise
analytic in Y and D respectively. Then, by lemma 4.13, the approximation Ũ δ

1
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given by (4.18) and (4.6) satisfies the bounds of (4.19) with positive constants
b, Ĉ and Ĉ2 for all p ∈ N. Let us, for some α > 0, set

κα = sup
t>1

(

1

2
+ α

)

log t

tα
and p =

⌊

b−1 log δ−1/2−α
⌋

. (4.24)

Then we have κα <∞, δαp ≤ b−1κα and exp(−bp) ≤ e δ1/2+α.
Consider λ = 3/2 + 5α/2 and the corresponding l given by (4.23a). Let

uδ,l ∈ F l
uδ be the nodal interpolant of Ũ δ

1 given by (4.4), (4.6) at the nodes
of T

l satisfying the boundary conditions, i.e. the element of F l
uδ such that

ul = A luδ,l = A lŨ δ
1 . From proposition 4.5, we obtain a bound on the error of

the nodal interpolation:

∥

∥uδ,l − Ũ δ
1

∥

∥

2

H1(D)
≤ 1

8
h2l

{

1 +
1

8
h2l

}

|Ũ δ
1 |2H2(D)

≤ 9

64
Ĉ2

2 2
−2l p

5

δ2
≤ 9

64
Ĉ2

2 (δ
αp)5 δ ≤ 9

64
Ĉ2

2 (b
−1

κα)
5 δ, (4.25)

using the second bound of (4.19). The first bound of (4.19) results in

∥

∥Ũ δ
1 − U δ

1

∥

∥

2

H1(D)
≤ Ĉ2p2 exp(−2bp) ≤ Ĉ2e2 (δαp)2δ ≤ Ĉ2e2 (b−1

κα)
2 δ (4.26)

By lemma 4.2, the inequality (4.5) holds with a positive constant c. Combining
it with (4.25) and (4.26) and applying the triangle inequality, we arrive at

∥

∥uδ − uδ,l
∥

∥

H1(D)
=

∥

∥

(

uδ − U δ
1

)

+
(

U δ
1 − Ũ δ

1

)

+
(

Ũ δ
1 − uδ,l

)∥

∥

H1(D)
≤ ĉ

√
δ

with ĉ = c+ Ĉ e b−1κα + (3/8) Ĉ2 (b
−1κα)

5/2, which proves (4.23b).
To prove the rank bound (4.23c), let us introduce 2l-vectors ul

0 = A lπpu0,
vl
1 = A lπpu

′
0, w

l
1 = A l(τpw̃1)(·/δ) and σl = A lσ(ρ(·)/δ). Then for the vector

ul = A luδ,l = A l Ũ δ
1 , by (4.18), we have the decomposition

ul = ul
0 + δσl ⊙vl

1 ⊙wl
1. (4.27)

By proposition 3.5, there exist exact QTT representations of ul
0 and vl

1 with
ranks bounded by p+1. Also, from proposition 3.6 we conclude that wl

1 admits
an exact QTT representation of ranks bounded by 2p. Also, by (4.6) and [29,
lemma 3.7], σl admits an exact QTT representation of ranks bounded by 5.
By proposition 3.2, these arguments and (4.27) result in the QTT rank bound
r = (p+1)+5(p+1)2p = (p+1)(10p+1) for ul. Due to the choice of p, we have
p ≤ b−1(1/2 + α) log δ−1, and r ≤ R log22 δ

−1 holds with a positive constant R
independent of δ, which proves (4.23c).
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Remark 4.15. The preceding tensor-rank bounds for the first order finite-
element solution are polylogarithmic in the scale parameter δ. They imply cor-
responding results for model-order-reduction and reduced-basis methods. Con-
sider parametric families of two-scale problems (2.1), (2.4), (2.6) under as-
sumption 2.1 corresponding to pairs of aµ1 and fµ parametrized by a parameter
µ ∈ M. Here, M denotes a closed and bounded parameter set (more generally,
a compact, metric space would suffice for the following). For every δ ∈ (0, 1)
such that log2(δ

−1 − 1) ∈ N, for all µ ∈ M and for l ∼ log δ−1 (4.23a), denote
by ûδ,µ,l ∈ S1(D,T l) and uδ,µ,l ∈ S1(D,T l) the exact Galerkin solution and its
QTT-FE approximation given by theorem 4.14 respectively. Consider the sets

Û
δ,l =

{

ûδ,µ,l : µ ∈ M

}

and U
δ,l =

{

uδ,µ,l : µ ∈ M

}

,

the exact solutions from the former being approximated by the corresponding
approximate solutions from the latter.

Assume that, with respect to the parameter µ ∈ M, all aµ1 admit holo-
morphic extensions to a strip Sθ (4.15) that are uniformly separated from zero
and all fµ uniformly satisfy the analyticity condition (4.8). Then, for p =
O(log δ−1) (4.24), W

δ,l ⊂ S1(D,T l), the linear space of continuous, piecewise-
linear interpolants on T

l of products of algebraic and trigonometric polynomials
of degrees at most p+1 and p respectively, satisfies dimW

δ,l = (p+2)(2p+1) =
O(log2 δ−1) and, due to (4.18), we have U

δ,l ⊂ W
δ,l. The subspace W

δ,l thus
realizes an upper bound on the Kolmogorov n-width dn in H

1(D) (see, e.g. [46]

and the references there for definitions of this terminology) of the set Û
δ,l of

approximate solutions: there holds

dn

(

Û
δ,l,H1(D)

)

≤ C
{

exp(−b
√
n ) +

√
δ
}

.

Here, b and C are positive constants which are independent of δ and n.

5 QTT-FEM for the Helmholtz Equation

We now consider the model problem (2.1) under assumption 2.2. We establish
QTT rank bounds of the solution which are explicit in the wavenumber k.

For the sake of brevity, we denote with ‖ · ‖ the L
2(D)-norm and | · |m =

‖ ·(m) ‖, the H
m(D)-seminorm. The error analysis is based on the wavenumber-

weighted H
1 norm ‖ · ‖(k) given by ‖v‖2(k) = ‖v‖2 + k2|v|21 for every v ∈ V . We

work in the variational space V = H
1
0,{0}(D) = {u ∈ H

1(D) : u(0) = 0}.

22



5.1 Polynomial approximation of the solution

We start by collecting some a-priori estimates on the solution uk of (2.9) for
(real-valued) wavenumber k > 0

Proposition 5.1. [20, theorem 4.4] Consider (2.9)–(2.10) under assumption 2.2.
Then, there exists a unique solution uk ∈ V and there hold the wavenumber-
explicit a-priori estimates

‖uk‖ ≤ k−1‖f‖ , |uk|1 ≤ ‖f‖ , |uk|2 ≤ (1 + k)‖f‖ . (5.1)

As for the analysis in the homogenization case in Section 4, for the QTT
rank analysis we assume that f in (2.1) is analytic in D. This implies that, for
every polynomial degree p ∈ N, the L

2(D)-projection fp of f onto the space
of polynomials of degree at most p defined in D converge exponentially: there
exist positive constants b and C such that for every p ∈ N the bound

‖f − fp‖ ≤ C exp(−bp) (5.2)

holds. We remark that the L2(D)-projection fp is realized by a p-term truncated
Legendre expansion of f (for a convergence proof, see, e.g. [8, theorem 12.4.7]).
The a-priori bounds (5.1) and the error bound (5.2) imply, by superposition,
the following result.

Proposition 5.2. Consider (2.1) under assumption 2.2. Denote by ukp the
unique solution of (2.1) under assumption 2.2 with fp in place of f . Then there
exist positive constants b and C independent of k such that there holds the error
bound

‖uk − ukp‖H1(D) ≤ C exp(−bp). (5.3)

We denote the Helmholtz operator (2.1), (2.8) by Lk. The inequality (5.3)
implies a bound on the n-width of the solution set Xk = L−1

k A(D), where A(D)
denotes the set of functions analytic on D.

To study the QTT rank of ukp with p ∈ N, with particular attention to

its dependence on the wavenumber k, we represent L−1
k by its Green function:

ukp(x) = (L−1
k fp)(x) =

∫ 1

0

Gk(x, s)fp(s) ds, (5.4)

where the Green’s function Gk(x, s) of (2.9)–(2.10) with g = 0 is given by

Gk(x, s) =
1

k

{

sin(kx) exp(iks) 0 ≤ x ≤ s ≤ 1,
sin(ks) exp(ikx) 0 ≤ s ≤ x ≤ 1.

(5.5)
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5.2 QTT-FE approximation of the solution

For discrete approximations of the solution, we consider functions from V l =
S10(D,T

l) = S1(D,T l)∩ V (3.2), l ∈ N, as introduced in section 3.1 with µ1 = 0
and µ2 = 1 due to the boundary conditions (2.10).

Theorem 5.3. Let assumption 2.2 hold. Then there exist positive constants Ĉ,
l0, R and r0 independent of the wave number k such that the following holds.

For every k > 0, the unique solution uk of the problem (2.9)–(2.10) in
the weak form (2.2)–(2.11) admits a sequence of approximations uk,l ∈ F l

uk ⊂
S1(D,T l), l > l0, where S1(D,T l) and F l

uk are given by (3.2) and (3.3), satis-
fying the accuracy estimate

‖uk − uk,l‖H1(D) ≤ Ĉ (k + 2) 2−l (5.6a)

and such that every coefficient vector uk,l = A luk,l, l > l0, admits an exact
QTT representation with ranks bounded from above by

R l + r0. (5.6b)

Proof. Let us consider p ∈ N and the corresponding function ukp defined in

proposition 5.2. Then we define a 2l-component vector uk,l = A lukp and uk,l ∈
F l

uk ⊂ S1(D,T l) such that uk,l = A luk,l. In other words, uk,l is the piecewise-
linear interpolant of ukp at the nodes of T l except the origin and satisfying the

boundary condition (2.10) at the origin, and uk,l is the corresponding coefficient
vector.

By the triangle inequality, we have

‖uk − uk,l‖H1(D) ≤ ‖uk − ukp‖H1(D) + ‖ukp − uk,l‖H1(D). (5.7)

By proposition 5.2, there exist positive constants C1 and b1 such that,
for all p ∈ N and k > 0, the following bound holds:

‖uk − ukp‖H1(D) ≤ C1 exp(−b1p). (5.8)

By proposition 4.5, we bound the error of the nodal interpolation by

‖ukp − uk,l‖2
H1(D) ≤

1

8
2−2l

{

1 +
1

8
2−2l

}

|ukp|2H2(D)

≤ 9

64
2−2l C2 (1 + k)2 ‖fp‖2L2(D) ≤ 2−2l Ĉ2 (1 + k)2, (5.9)

where we use the third bound of proposition 5.1 with a positive constant C
independent of k and p, take into account the projection property of fp and

introduce Ĉ = 3C‖f‖L2(D)/8.
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Let us set
p = ⌈b−1

1 (l log 2 + logC1/Ĉ)⌉. (5.10)

Then we have p ∈ N for large enough l ∈ N and, from (5.7)–(5.9), we obtain
the inequality

‖uk − uk,l‖H1(D) ≤ Ĉ (k + 2) 2−l.

We rewrite (5.4)–(5.5) as follows:

(2ik)ukp(x) = eikx
∫ 1

0

eiksfp(s) ds

− eikx
∫ x

0

e−iksfp(s) ds− e−ikx

∫ 1

x

eiksfp(s) ds for all x ∈ D. (5.11)

For every α ∈ N and for all ξ, η ∈ D and κ ∈ Rr {0}, the following holds:

∫ η

ξ

eiκssα ds =

α
∑

β=0

(−1)α−β

(iκ)α−β+1

α!

β!

(

eiκssβ
)∣

∣

s=η

s=ξ
. (5.12)

Since fp is a polynomial of degree p at most, there exist cα ∈ C, α = 0, 1, . . . , p,
such that fp(x) =

∑p
α=0 cα x

α for all x ∈ D. Then, combining (5.11) and (5.12),
we obtain

ukp(x) =
1

2ik

p
∑

α=0

cα

α
∑

β=0

(−1)α−β

(ik)α−β+1

α!

β!

{

eik(1+x)+
(

1+(−1)α−β
)

xβ − eik(1−x)
}

= eik sin(kx)

p
∑

α=0

cα

α
∑

β=0

(−1)α−β

(ik)α−β+1

α!

β!
+

p
∑

α=0

cα
∑

β=0,1,...,α:
α−β∈2Z

1

(ik)α−β+2

α!

β!
xβ

(5.13)

for all x ∈ D. Applying propositions 3.6 and 3.5, we obtain that the vector
uk,l = A lukp of 2l nodal values of ukp admits an exact QTT representation with
ranks bounded from above by

r ≤ 2 + (p+ 1) = p+ 3. (5.14)

Together with (5.10), that leads to the claimed rank bound (5.6b).

Similarly to what was outlined in remark 4.15, our analysis admits the
following extension.
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Remark 5.4. The preceding rank bounds imply corresponding results for model-
order-reduction and reduced-basis methods. Consider parametric families of
Helmholtz problems (2.9)–(2.10) under assumption 2.2 corresponding to right-
hand sides fµ parametrized by a parameter µ ∈ M. Here, M denotes a closed
and bounded parameter set (more generally, a compact, metric space would suf-
fice for the following). For all k ∈ R and l ∈ N such that k > 0 and l > l0,
where l0 is the constant given by theorem 5.3, which is independent of k, we
denote by ûk,µ,l ∈ S1(D,T l) and uk,µ,l ∈ S1(D,T l) the exact Galerkin solution
and its QTT-FE approximation given by theorem 5.3 respectively. Consider the
sets

Û
k,l =

{

ûk,µ,l : µ ∈ M

}

and U
k,l =

{

uk,µ,l : µ ∈ M

}

,

the exact solutions from the former being approximated by the corresponding
approximate solutions from the latter.

Assume that, with respect to the parameter µ ∈ M, all fµ uniformly sat-
isfy the analyticity condition (4.8). Then, for p = O(l) (5.10), Wk,l ⊂ S1(D,T l),
the linear space of continuous, piecewise-linear interpolants on T

l of all func-
tions of the form (5.13), satisfies dimW

k,l = ⌈(p + 1)/2⌉ = O(l) and, due
to (4.18), we have U

k,l ⊂ W
k,l. The subspace W

k,l thus realizes an upper bound

on the Kolmogorov n-width dn in H
1(D) of the set Û

k,l of approximate solu-
tions: there holds

dn

(

Û
k,l,H1(D)

)

≤ C
{

exp(−bn) + (k + 2) 2−l
}

.

Here, b and C are positive constants independent of k and n.

6 QTT Compressibility of the System Matrix

For l ∈ N, we consider the solution of (2.2) in the form of a FE approximation
ul ∈ F l

u, where the admissible approximation set F l
u is given by (3.3). For

every l ∈ N, we represent the solution by a vector ul ∈ R2l of its values at the
active nodes of T l:

ul = A
lul

in the sense of (3.1)–(3.5). The discrete problem reads as follows: find u ∈ Rn

such that
(Al +Cl)ul = f l. (6.1)

Here, f l is the load-vector corresponding to the right-hand side of (2.1) and
Al and Cl are matrices corresponding to the two terms in the left-hand side
of (2.1): the first is a tridiagonal stiffness matrix, and the second is a diagonal
matrix.
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To demonstrate the QTT compressibility of the matrix of (6.1), we con-
sider the case of homogeneous Dirichlet boundary conditions. Then, using the
midpoint quadrature rule, we construct the matrix Al from the values of the dif-
fusion coefficient a in the following way: 2−2lAl

ii = a(x̃i)+a(x̃i+1) for 0 ≤ i < n
and 2−2lAl

i,i+1 = 2−2lAl
i+1,i = −a(x̃i+1) for 0 ≤ i < n− 1. The second matrix,

Cl, is approximated as follows: Cl
ii = c(zi) for 0 ≤ i < n. We define vectors

a+ = I
l
+a,a− = I

l
−a, c = A lc. Then

Al = (I l − Sl) diagal
+ + (I l − Sl⊤) diagal

− and Cl = diag cl, (6.2)

where a square matrix Sl denotes the matrix of one-position downward shift:

Sl =













0

1
. . .

. . .
. . .

1 0













.

Let us assume that the coefficients a and c are approximated with ã and
c̃. This approximation induces the corresponding approximations ãl

+, ãl
− and

c̃l of al
+, al

− and c. Then approximations Ã
l
, C̃

l
and Ã

l
+ C̃

l
of the matrices

Al, Cl and Al +Cl arise analogously to (6.2).

Lemma 6.1. Assume that the vectors ãl
+ and ãl

− have QTT representations

with the ranks bounded by Rã and c̃l has one with the ranks bounded by Rc̃.

Then the matrices Ã
l
, C̃

l
and Ã

l
+ C̃

l
defined above can be represented in the

QTT format with the ranks bounded by 6Rã, Rc̃ and 6Rã +Rc̃ respectively.

Proof. According to proposition 3.3, the diagonalization of a QTT-structured
vector results in a matrix with the corresponding format with the same ranks.
On the other hand, as it follows from [30, lemma 3.1], the bidiagonal matrices

I l − Sl and I l − (Sl)
⊤

can be represented in the QTT format with the ranks
bounded by 3. By applying proposition 3.4 to the representation (6.2), we

obtain the rank bounds for Ã
l

and C̃
l
. Together with proposition 3.2, they

lead to the rank bound for Ã
l
+ C̃

l
.

A representation of the form (6.2) was suggested in [10, p. 10]. In that
work, under the same assumption on ã+ and ã−, a QTT representation of Ã
with ranks bounded by 7Rã was considered. Here, in Lemma 6.1, we make a
straightforward reduction of the constant from 7 to 6.
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Assume that the coefficients a and c are analytic in D. Then the approx-
imations ã and c̃ can be constructed as algebraic polynomials of degrees pa and
pc, similarly to u0 in theorem 4.14. If the coefficients satisfy assumption (2.1),
then ã and c̃ can be constructed as rescaled trigonometric polynomials of de-
grees pa and pc, similarly to w1(·/δ) in theorem 4.14. In either case, we have
the bounds

‖ã− a‖L∞(D)

‖a‖L∞(D)
≤ Ca exp(−bapa),

‖c̃− c‖L∞(D)

‖c‖L∞(D)
≤ Cc exp(−bcpc).

Here, the constants Ca, ba and Cc, bc depend only on the properties of the func-
tions being approximated, namely on the size of the domains of possible holo-
morphic extensions of the functions into the complex plane and on the growth
of the extensions in these domains. In either case, by propositions 3.5 and 3.6,
we obtain the bounds on the accuracy estimate of the QTT-structured repre-
sentation of the matrices, see Theorem 6.2 below. With ‖·‖max we denote the
maximum-entry matrix norm; for example, ‖Al‖max = max0≤i,j<n|Al

ij |.

Theorem 6.2. There exist constants Ca, ba > 0 such that, for every r ∈ N, the
matrix A has an approximation Ã that admits QTT representation with ranks
bounded by r and satisfies the accuracy estimate

‖Ãl −Al‖max

‖Al‖max

≤ Ca exp(−bar) .

Analogous statements hold, with different constants, for the matrices Cl and
Al +Cl.

The results in this section cover, in particular, the case of two-scale dif-
fusion, i.e. (2.1) under assumption 2.1. In the Helmholtz case (2.9)–(2.10), the
coefficients are constant and the matrices Al and Cl admit, independently of
the wavenumber k, exact QTT-representations with ranks bounded by 3 and 2
respectively, see [30, lemma 3.1] for the first term of a in (2.11) and proposi-
tion 3.3 for the second and third terms.

7 Numerical Experiments

In this section we provide numerical experiments for two problems, one is the
multiscale problem and another is the 1D dimensional Helmholtz problem with
radiating boundary condition.

Our goal is to show that the solution can be well-approximated in the
QTT-format with a small error in the H

1-norm and compare the behavior of
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the error with respect to the number of degrees of freedom and the multiscale
parameter δ. Supplementary materials with the code are available online1.

Once we have confirmed the QTT-structure of the solution and of the
matrix itself, we can make use of black-box QTT-solvers, for example the
DMRG [41] or AMEn [12] solvers. We note in passing that special treatment
for small (relative to the machine precision) virtual meshwidth is needed, since
in this case the condition number of the matrix which arises from the virtual
discretization could be prohibitive. Even if the original matrix is represented
exactly within machine precision, the solution to the perturbed problem re-
sulting from QTT-formatted rank truncation could be very far from the true
one. Thus, and efficient numerical algorithm to determine the QTT-structured
solution requires numerical algorithms and/or discretization schemes that are
better suited for this purpose. We note that the system with better condition
number can be dense and even larger than the initial one, but still useful for
the QTT approach due to the logarithmic complexity.

In the numerical experiment below, we study, in particular, how certain
estimates εl of the H1-norm errors of QTT-FE approximate solutions depend on
the number l of levels and on the corresponding number of QTT parameters Nl

used to represent the approximate solutions. In both the problems, we observe
the following convergence with respect to l:

εl ≤ C exp(−bN1/κ
l ) (7.1)

with positive constants C, b and κ independent of l. Both the left- and right-
hand sides of (7.1) depend also on the respective scale parameter, δ or k.

7.1 Two-scale diffusion problem

7.1.1 Discrete problem

We consider (2.1), (2.4), i.e.

(au′)′ = 1 in D, u(1) = u(0) = 0,

under assumption 2.1, but with the coefficient a is taken, differently from (2.5),
as in [18]:

a(x) = a0(x) a1

(x

δ

)

for all x ∈ D, (7.2)

with a0(x) = 1 + x for all x ∈ D and a1(y) = 2/3 (1 + cos2(y)) for all y ∈ Y.

1 https://github.com/rakhuba/homhelm_experiments/blob/master/data_preparation.

ipynb
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To discretize the problem, we use finite-element approximations based
on 2l interior nodes, where l ∈ N, see section 3.1 with µ1 = µ2 = 0. For every
l ∈ N, the Galerkin solution uδ,l is parametrized by the 2l-component vector
uδ,l = A luδ,l solving the Galerkin system of the form

Aδ,luδ,l = f l. (7.3)

7.1.2 QTT approximation of the discrete solution

For various l ∈ N, we approximate these solutions by uδ,lqtt such that

‖uδ,lqtt − uδ,l‖H1(D) ≤ τl(δ) (7.4)

with a certain accuracy τl(δ) and that the corresponding 2l-component vector

u
δ,l
qtt = A luδ,lqtt is represented in the QTT format with the minimal number of

parameters Nl (3.11). For the error of the QTT-structured approximation with
respect to the exact solution,

ε̂l(δ) = ‖uδ,lqtt − uδ‖H1(D), (7.5)

the triangle inequality results in the bound

ε̂l(δ) ≤ ‖uδ,l − uδ‖H1(D) + τl(δ). (7.6)

In particular, for τl = ‖uδ,l − uδ‖H1(D) for all l ∈ N, using the quasi-
optimality of the Galerkin FEM, we arrive at the quasi-optimality of the QTT-
structured solutions uδ,lqtt, l ∈ N, under (7.4).

Since the exact solution uδ is not known analytically, ‖uδ,l−uδ‖H1(D) has
to be evaluated approximately. For each l ∈ N, we use Aitken’s extrapolation
procedure with an adaptive selection of the order using solutions on three con-
secutive discretization levels (l− 2, l− 1 and l) to obtain an extrapolation uδ,lext.

Then, using (7.4)–(7.6) with τl(δ) = ‖uδ,l − uδ,lext‖H1(D) and the approximation

‖uδ,l−uδ‖H1(D) ≈ ‖uδ,lext −uδ,l‖H1(D), we arrive at the error estimate εl(δ) given
by

εl(δ) = 2 ‖uδ,lext − uδ,l‖H1(D), (7.7)

which approximates ε̂l(δ) given by (7.5).

7.1.3 Results for various values of the microscale parameter

For every m = 1, 2, 3, 4, we consider δ = 10−m. The error estimate εl(δ), as
expected, converges algebraically with respect to 2l, which is the number of
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virtual degrees of freedom, see figure 1. On the other hand, with respect to
Nl (3.11), which is the number of QTT parameters, the same error estimate
converges exponentially. Namely, we observe (7.1) with κ ≈ 2, see figure 2.
This convergence is superior to the theoretical bound with κ = 5, which follows
immediately from (3.11) and theorem 4.14 in the case of a0 = 1 in (7.2).

We also study the dependence of the error on the microscale parameter
δ. For each pair of ε = 4 · 10−m with m = 2, 3, 4, and δ = 10−m with m =
1, 2, 3, 4, we find the minimal value of l such that ‖uδ,l − uδext‖H1(D) ≤ ε/2.

Then we obtain the corresponding QTT approximation uδ,lqtt of uδ,l such that

‖uδ,lqtt − uδ,l‖H1(D) ≤ ε/2, and hence ‖uδ,lqtt − uδ‖H1(D) ≈ ‖uδ,lqtt − uδ,lext‖H1(D) ≤ ε.

The results are presented in figure 3, which shows the dependence Nl ∼ logϑ δ−1

with ϑ < 3.
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Figure 1: Error estimate εl(δ) (7.7)
w.r.t the number l of levels, for var-
ious δ.
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Figure 2: Error estimate εl(δ) (7.7)
w.r.t the number l of levels, for var-
ious δ, plotted against the corre-
sponding numbersNl (3.11) of QTT
parameters.

7.2 Helmholtz problem

As the second example, we consider the one-dimensional Helmholtz problem (2.1),
(2.9) with radiating boundary conditions (2.10) and the right-hand side f = 1.

The H
1-error of QTT-FE approximations is estimated as in section 7.1.1,

by εl(k) for all l and k.
As expected, the QTT-FE approximations we consider converge alge-

braically with respect to 2l, which is the number of virtual degrees of freedom,
see figure 4. With respect to the corresponding values of the number Nl (3.11)
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Figure 3: The numbers Nl (3.11) of QTT parameters w.r.t. the microscale pa-
rameter δ, for various values of the tolerance ε. For each data point, the number
l of levels is set the minimal such that ‖uδ,l−uδext‖H1(D) ≤ ε/2. The correspond-

ing QTT approximation uδ,lqtt of uδ,l is obtained so that ‖uδ,lqtt−uδ,l‖H1(D) ≤ ε/2,

and hence ‖uδ,lqtt−uδ‖H1(D) ≈ ‖uδ,lqtt−uδ,lext‖H1(D) ≤ ε. The reference lines indicate

the dependence Nl ∼ logϑ δ−1 with ϑ < 3 independent of δ.

of QTT parameters, we observe the exponential convergence (7.1) with κ < 3/2,
see figure (5).

We also study, in the same way as in section 7.1.3, the dependence of
the error on the microscale parameter, k. The results are presented in figure 6,
which illustrates the moderate dependence of the number of QTT parameters
Nl (3.11) on the the wavenumber k: Nl ∼ logϑ k with ϑ < 1, cf. the bound
with ϑ = 3 resulting from theorem 5.3 and the inequality of (3.11).

8 Conclusion

In the present paper, we proposed and analyzed a QTT-structured finite ele-
ments for two classes of model multiscale problems in one space dimension. For
solutions with singularities, it was proven in [27, 23, 28] that the lowest-order
FE approximation on uniform meshes (in the present setting, continuous and
piecewise-linear FE) with classical, Lagrangian nodal basis functions and with
QTT-formatted coefficient vectors achieves exponential convergence rates typ-
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Figure 5: Error estimate εl(k) (7.7)
w.r.t the number l of levels, for var-
ious k, plotted against the corre-
sponding numbersNl (3.11) of QTT
parameters.

ically afforded by hp-FEM Importantly, in QTT-formatted approximations of
solutions, the mesh becomes virtual in the sense that it is never activated in full.
Instead, nonlinear approximations extract, from this space and at runtime (i.e.
“online”), low-parametric subspaces and manifolds which capture the solutions
to the level of accuracy and resolution afforded by the finest FE mesh which
could be virtually addressed in the adopted tensor formats.

For homogenization problems, we show that QTT-formatted low-order
FE approximations without additional features for microscale resolution (such
as numerical homogenization, HMM, oversampling, etc., which require, in some
form, a-priori provision of information on the microstructure of problem and
solution) achieve scale resolution and exponential convergence rates. In par-
ticular, a two-scale diffusion problem admits approximate QTT-FE solutions
of accuracy O(

√
δ) in the energy norm and ranks O(log2 δ−1), where δ is the

scale parameter. We show similar results for the model Helmholtz problems,
namely that they admit approximate QTT-FE solutions of accuracy O(k 2−l)
in the energy norm and ranks O(l), where k is the wavenumber and l ∈ N is the
number of virtual levels underlying quantization.

In remarks 4.15 and 5.4, we noted the exponential smallness of the Kol-
mogorov n-widths of the solution sets, uniformly with respect to the scale pa-
rameter. By the arguments of [38, 47], these bounds imply in particular expo-
nential convergence rates of reduced basis and model order reduction methods
with respect to the subspace dimension n, with constants which are bounded
independently of the scale parameter.
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Figure 6: The numbers Nl (3.11) of QTT parameters w.r.t. the microscale pa-
rameter k, for various values of the tolerance ε. For each data point, the number
l of levels is set the minimal such that ‖uk,l−ukext‖H1(D) ≤ ε/2. The correspond-

ing QTT approximation uk,lqtt of uk,l is obtained so that ‖uk,lqtt−uk,l‖H1(D) ≤ ε/2,

and hence ‖uk,lqtt−uk‖H1(D) ≈ ‖uk,lqtt−uk,lext‖H1(D) ≤ ε. The reference lines indicate

the dependence Nl ∼ logϑ k with ϑ < 1 independent of k.

The present results were developed in one space dimension. Two- and
three-dimensional problems show, in numerical experiments, completely anal-
ogous behavior; the corresponding analysis will be presented elsewhere. All
proofs given in the present paper generalize to the corresponding error bounds
for space dimensions d = 2, 3 using tensorized meshes, where the techniques
of [48, 6, 7] can be applied for singular problems to achieve similar, polylog-
arithmic in accuracy rank bounds for elliptic problems with corner singulari-
ties [23, 27, 28].

Since algorithmic realizations of QTT-structured low-order FEM can be
based to a large extent on standard FEM with uniform meshes, the observations
in the present paper offer a perspective of reproducing the performance of special
methods (such as HMM and scale-resolving gFEM) in solving boundary-value
problems for diffusion equations with multiple scales and for Helmholtz equa-
tions at large wavenumbers without code redevelopment for a range of problems
of engineering interest.
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