
Exponential Convergence of hp-FEM for

Elliptic Problems in Polyhedra:Mixed

Boundary Conditions and Anisotropic

Polynomial Degrees

D. Schötzau and Ch. Schwab

Research Report No. 2016-05

January 2016
Latest revision: February 2017

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) and the Swiss National Science Foundation

(SNF)



EXPONENTIAL CONVERGENCE OF hp-FEM FOR ELLIPTIC

PROBLEMS IN POLYHEDRA: MIXED BOUNDARY

CONDITIONS AND ANISOTROPIC POLYNOMIAL DEGREES

DOMINIK SCHÖTZAU AND CHRISTOPH SCHWAB

Abstract. We prove exponential rates of convergence of hp-version finite el-
ement methods on geometric meshes consisting of hexahedral elements for
linear, second-order elliptic boundary-value problems in axiparallel polyhedral
domains. We extend and generalize our earlier work for homogeneous Dirich-
let boundary conditions and uniform isotropic polynomial degrees to mixed
Dirichlet-Neumann boundary conditions and to anisotropic, linearly increasing
polynomial degree distributions. In particular, we construct H1-conforming
quasi-interpolation operators with N degrees of freedom and prove exponen-

tial consistency bounds exp(−b
5
√

N) for piecewise analytic functions with sin-
gularities at edges, vertices and interfaces of boundary conditions, based on
countably normed classes of weighted Sobolev spaces with non-homogeneous
weights in the vicinity of Neumann edges.

Dedicated to Monique Dauge on her 60th birthday

Communicated by Endre Süli

1. Introduction

We prove exponential converge estimates for conforming hp-version finite element
methods (FEMs) for the following elliptic boundary-value problem in an open and
bounded polyhedron Ω ⊂ R3 with mixed boundary conditions:

−∇ · (A∇)u = f in Ω ⊂ R3, (1.1)

γ0(u) = 0 on Γι ⊂ ∂Ω, ι ∈ JD, (1.2)

γ1(u) = 0 on Γι ⊂ ∂Ω, ι ∈ JN . (1.3)

The Lipschitz boundary Γ = ∂Ω is assumed to consist of a finite union of plane,
axiparallel faces Γι indexed by ι ∈ J . The faces Γι are bounded, plane polygons
whose sides form the (open) edges of Ω. The set {Γι}ι∈J is partitioned into a
subset of Dirichlet faces {Γι}ι∈JD

and a subset of Neumann faces {Γι}ι∈JN
, with
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corresponding (disjoint) index sets JD and JN , respectively (i.e., J = JD

.∪ JN ).
The diffusion coefficient matrixA is assumed to be constant and symmetric positive
definite. The function f is a given forcing term, and the operators γ0 and γ1 denote
the trace and (co)normal derivative operators, respectively.

Upon introducing the Sobolev space V := {v ∈ H1(Ω) : v|Γι
= 0, ι ∈ JD}, the

weak formulation of problem (1.1)–(1.3) is to find u ∈ V such that

a(u, v) :=

∫

Ω

A∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V, (1.4)

where we understand the integral on the right-hand side in (1.4) as the duality
pairing in V ⋆ × V , with V ⋆ denoting the dual space of V . For every f ∈ V ⋆,
problem (1.4) admits a weak solution u ∈ V . The solution is unique if JD 6= ∅,
and unique in the factor space V/R if JD = ∅ (in which case we also require the
compatibility condition

∫
Ω f dx = 0).

The hp-version of the finite element method for elliptic problems was proposed by
I. Babuška, B.Q. Guo and coworkers, inspired by earlier exponential convergence
results in free-knot, variable order spline interpolation (see [6, 18]). One of its
key features is that it achieves exponential convergence rates for solutions with
singularities in terms of the total number of freedom N . Specifically, for elliptic
problems in polygonal domains Ω with piecewise analytic data, Babuška and Guo
proved exponential convergence bounds of the form C exp(−b 3

√
N); see [1, 2, 13, 14]

and the references therein. Key ingredients in their proof were geometric mesh
refinement towards the singular set S of the solution (being the finite set of vertices
of Ω) and nonuniform elemental polynomial degrees which increase s-linearly with
the elements’ distance from S. In addition to these approximation results, their
papers also provide elliptic regularity results in countably normed weighted spaces of
the solutions. This constituted an essential advance with respect to the earlier works
in [6, 11, 18], where only particular singular solutions had been considered. Steps to
extend the analytic regularity and the two-dimensional hp-convergence analysis to
three dimensions were undertaken in [3, 12, 15, 16] and the references therein. In the
recent work [5], M. Costabel, M. Dauge and S. Nicaise established a new analytic
regularity shift in scales of anisotropically and non-homogeneously weighted Sobolev
spaces for variational solutions for a class of second-order, linear elliptic boundary-
value problems with constant coefficients. Their analytic regularity result will be
the basis of our exponential convergence proof. We also mention the work [8, 9],
where exponentially accurate non-conforming h-p spectral element methods to solve
elliptic problems in three dimensions were proposed and analyzed.

The present paper builds on and extends our work [20] on exponential conver-
gence for hp-FEMs in polyhedral domains. It also builds on our earlier work [23,
24, 25] on hp-version discontinuous Galerkin (DG) methods for second-order elliptic
boundary-value problems in polyhedra. More precisely, in [20], we considered the
boundary-value problem (1.1) with the homogeneous Dirichlet boundary conditions
in (1.2) imposed on the entire boundary ∂Ω. For axiparallel configurations, we then
used the non-conforming hp-version interpolation operators constructed in [24] in
conjunction with suitable polynomial jump liftings to prove exponential rates of
convergence in terms of the number of degrees of freedom for conforming hp-FEM
discretizations on appropriate combinations of geometrically and anisotropically
refined meshes and for the uniform and isotropic polynomial degree p ≥ 1.
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The principal contribution of the present work is the construction of exponen-
tially convergent conforming hp-FE quasi-interpolation operators on axiparallel,
σ-geometric mesh patches with variable and anisotropic polynomial degree distribu-
tions for the mixed second-order problem (1.1)–(1.3) (and generalizations thereof).

Our main result shows the H1-norm convergence rate estimate C exp(−b 5
√
N),

where b, C > 0 are independent of N . While asymptotically of the same form
as the rate in [20], the univariate hp-approximation results [6, 11, 18] suggest that
the use of variable and, in particular, of anisotropic polynomial degree distribu-
tions will significantly reduce the number of degrees of freedom required to reach a
prescribed accuracy of approximation. This is further corroborated in preliminary
numerical results in three space dimensions.

Loosely speaking, our construction and convergence proof combine the argu-
ments in [25] to define non-conforming base projectors with exponential convergence
in broken norms with the constructions of polynomially stable polynomial trace jump
liftings in [20]. However, the lower regularity of the solutions and the more gen-
eral hp-finite element spaces under consideration entail several significantly new
technical difficulties which are addressed in this work.

First, the mixed boundary conditions in (1.2), (1.3) are considerably more in-
volved than the pure Dirichlet conditions analyzed in [20]. Indeed, with the reg-
ularity theory from [5], solutions of problem (1.1)–(1.3) with piecewise analytic
data belong to countably normed Sobolev spaces Nm

β (Ω) with non-homogeneous

weights. In [25], the non-homogeneous structure of the weights was dealt with by
using L2-projections, by splitting the errors in edge-perpendicular and edge-parallel
contributions and by bounding these two contributions separately. While this con-
struction ensured stability with respect to element anisotropy (up to algebraic losses
in the polynomial degrees) in the context of discontinuous Galerkin discretizations,
it is not sufficient for conforming hp-FEMs. Indeed, finding stable liftings of the
polynomial jumps introduced by the L2-projections in edge-parallel direction over
edge-perpendicular faces between highly anisotropic elements along the same edge
seems to be an open problem.

The first principal contribution of the paper thus is to overcome this difficulty
by a novel construction of non-conforming hp-version base projectors. Our con-
struction employs L2-projections in edge-perpendicular directions and nodally ex-
act H1-projections in edge-parallel direction along anisotropic elements appearing
in edge- and in corner-edge neighborhoods. The nodal exactness property in par-
allel direction then removes the need for liftings over the critical faces mentioned
above, while still allowing to split the errors in edge-perpendicular and edge-parallel
contributions as in [25]. The non-conforming hp-base projectors presented in the
this paper are well-defined on H1(Ω) (in contrast to those in [20]) and converge
exponentially in broken norms. The proof follows along the lines of that in [25],
with a few relevant modifications. For the sake of completeness, we outline the
proof in Appendix A.

Second, we consider in this paper the s-linear polynomial degree distributions
introduced [23], which increase linearly and anisotropically away from edges and
corners with a slope parameter s > 0. While such degree distributions can be rela-
tively easily accommodated by the discontinuous Galerkin approaches in [23, 24, 25],
enforcing conformity for variable polynomial degrees and irregular mesh refinement
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is not straightforward. To do so, we introduce suitable hp-version elemental ba-
sis functions with respect to nodal, edge, face and interior degrees of freedom in
combination with a minimum rule approach for edge and face polynomial degrees
in the spirit of [7]. The second principal contribution of this paper then is the
construction of conforming approximations in the presence of s-linear polynomial
degree distributions and irregular meshes. Starting from the hp-base projectors,
we generalize the averaging strategy in [28] to anisotropic elements, in order to as-
sign unique nodal, edge and face values while retaining exponential convergence
estimates. This yields intermediate approximations which are continuous across all
regularly matching faces and which satisfy the homogeneous Dirichlet boundary
conditions. Finally, we introduce polynomial edge and face jump liftings along the
lines of our previous work [20] to remove discontinuities over all irregular faces.
Our liftings admit bounds which are independent of element aspect ratios, with
algebraic growth in the elemental polynomial degree, thereby preserving the expo-
nential convergence estimates of the hp-version base projectors. Here, we emphasize
again that in our averaging and lifiting approaches, the partial conformity of the
base projectors is essential in the handling of anisotropic elements.

The present analysis is in particular applicable to the pure Dirichlet problem, i.e.,
when JN = ∅, and extends to results in [20] to s-linear and anisotropic polynomial
degree distributions. However, the scope of the paper is beyond the elliptic model
problem (1.1)–(1.3): Our exponential convergence proofs apply directly to hp-FEMs
for more general and vector-valued second-order elliptic boundary-value problems
which admit analytic regularity shifts in the function classes of [5]. Moreover, we
also provide an exponential L2-norm consistency bound for L2-projections under the
weak N1

β(Ω)-regularity (see Theorem 4.3). This may be of independent interest for

approximations of the pressure in mixed hp-FEMs for the (Navier-)Stokes equations
in polyhedra as considered in [21, 22, 27].

The outline of the article is as follows: In Section 2, we recapitulate the countably
normed weighted spaces from [5]. In Section 3, we introduce the hp-version finite
element methods and state our main result (Theorem 3.4), with an outline of its
proof provided in Section 3.4. The new base projectors with partial conformity are
introduced in Section 4. Details of their convergence properties can be found in Ap-
pendix A. Finally, in Sections 5 and 6, we complete the constructions of conforming
approximations with the help of averaging and lifting operators, respectively.

Our notation employed throughout the paper is kept consistent with [23, 24, 25].
We shall use the notations ”.” or ”≃” to denote an inequality or an equivalence
containing generic positive multiplicative constants which are independent of the
discretization and regularity parameters, as well as of the geometric refinement
level, but which may depend on the parameters σ and s.

2. Regularity

We review the countably normed classes of weighted spaces from [5].

2.1. Subdomains and weights. We denote by C the finite set of corners c, and
by E the finite set of (open) edges e of Ω. The singular set of Ω is then given by

S := C .∪ E =
( ⋃

c∈C

c
)

.∪
( ⋃

e∈E

e
)
⊂ Γ . (2.1)
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For c ∈ C, e ∈ E , and x ∈ Ω, we define the following distance functions:

rc(x) = |x− c|, re(x) = inf
y∈e

|x− y|, ρce(x) = re(x)/rc(x). (2.2)

For each corner c ∈ C, we denote by Ec := {e ∈ E : c ∩ e 6= ∅ } the set of all edges
of Ω which meet at c. Similarly, for any e ∈ E , the set of corners of e is given by
Ce := { c ∈ C : c ∩ e 6= ∅ }. Then, for ε > 0, c ∈ C, e ∈ E respectively e ∈ Ec, we
define the neighborhoods

ωc = {x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀ e ∈ Ec },
ωe = {x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀ c ∈ Ce },
ωce = {x ∈ Ω : rc(x) < ε ∧ ρce(x) < ε }.

(2.3)

Without loss of generality as in [23], the domain Ω can be partitioned into four

disjoint subdomains, Ω = ΩC

.∪ ΩE

.∪ ΩCE

.∪ Ω0, referred to as corner, edge, corner-
edge and interior neighborhoods of Ω, respectively, where Ω0 := Ω \ΩC ∪ ΩE ∪ ΩCE

and

ΩC =
⋃

c∈C

ωc, ΩE =
⋃

e∈E

ωe, ΩCE =
⋃

c∈C

⋃

e∈Ec

ωce . (2.4)

We distinguish between Dirichlet and Neumann edges by setting

ED :=
{
e ∈ E : ∃ι ∈ JD with e ∩ Γι 6= ∅

}
, EN := E \ ED. (2.5)

Edges in ED abut at at least one Dirichlet face Γι for ι ∈ JD. Note that we possibly
have EN = ∅.

2.2. Weighted Sobolev spaces. To each c ∈ C and e ∈ E we associate a corner
and an edge exponent βc, βe ∈ R, respectively. We collect these quantities in the
weight exponent vector β = {βc : c ∈ C} ∪ {βe : e ∈ E} ∈ R|C|+|E|. Inequalities
of the form β < 1 and expressions like β ± s, where s ∈ R, are to be understood
componentwise.

We choose local coordinate systems in ωe and ωce, for c ∈ C and e ∈ Ec, such
that the edge e corresponds to the direction (0, 0, 1). Then, we indicate quantities
transversal to e by (·)⊥, and quantities parallel to e by (·)‖. In particular, if α =
(α1, α2, α3) ∈ N3

0 is a multi-index of order |α| = α1 + α2 + α3, then we write
α = (α⊥, α‖) with α⊥ = (α1, α2) and α‖ = α3, and denote the partial derivative

operator Dα by Dα = Dα⊥

⊥ Dα‖

‖ , where Dα⊥

⊥ and Dα‖

‖ signify derivatives in edge-

perpendicular and edge-parallel directions, respectively. We further denote by D⊥

the gradient operator in edge-perpendicular direction, and set D‖ = D1
‖.

The solution u of problem (1.1)–(1.3) belongs to scales of countably normed
weighted Sobolev spaces; cf. [5]. The present exponential convergence results will
be based on the weighted spaces Nk

β(Ω) with anisotropic and non-homogeneous
weighting at all corners c ∈ C and edge e ∈ E ; they are an extremal case of the
family of spaces considered in [5]. For an order k ≥ 0 and weight exponent β, we
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introduce the semi-norm |u|Nk
β
(Ω) by:

|u|2
Nk

β
(Ω) :=

∑

|α|=k

{
‖Dαu‖2L2(Ω0)

+
∑

c∈C

∥∥rmax{βc+|α|,0}
c Dαu

∥∥2

L2(ωc)

+
∑

e∈E

∥∥rmax{βe+|α⊥|,0}
e Dαu

∥∥2
L2(ωe)

+
∑

c∈C

∑

e∈Ec∩E

∥∥rmax{βc+|α|,0}
c ρ

max{βe+|α⊥|,0}
ce Dαu

∥∥2
L2(ωce)

}
.

(2.6)

For m > kβ, with

kβ := −min{min
c∈C

βc,min
e∈E

βe}, (2.7)

we write Nm
β (Ω) for the space of functions u such that ‖u‖Nm

β
(Ω) < ∞, with the

norm ‖u‖2Nm
β

(Ω) :=
∑m

k=0 |u|
2
Nk

β
(Ω). For subdomains Ω′ ⊆ Ω we shall denote by

| · |Nk
β
(Ω′) and ‖ · ‖Nm

β
(Ω′) the semi-norm (2.6) and norm as above with all domains

of integration replaced by their intersections. We note that Mm
β (Ω) ⊂ Nm

β (Ω),

where Mm
β (Ω) is the weighted Sobolev space with homogeneous weights considered

in [5, 20] for the pure Dirichlet problem.

2.3. Analytic regularity. We adopt the analytic function classes of [5].

Definition 2.1. For a domain Ω′ ⊆ Ω, the class Bβ(Ω
′) consists of all functions u

such that u ∈ Nm
β (Ω′) for m > kβ , with kβ as in (2.7), and such that there exists

a constant Cu > 0 with |u|Nk
β
(Ω′) ≤ Ck+1

u Γ(k + 1) for all k > kβ.

The analytic regularity shifts of [5, Corollary 7.1] in (for ED = E), [5, Theo-
rem 7.3] (for 0 ⊂ ED ⊂ E) and in [5, Theorem 7.4] (for ED = ∅) for variational
solutions u of problem (1.1)–(1.3) (with constant coefficients) can be summarized
as follows.

Proposition 2.2. There are bounds bE , bC > 0 (depending on Ω, the coefficient
matrix A and the set ED) such that for weight exponent vectors b with

0 < bc < bC, 0 < be < bE , c ∈ C, e ∈ E , (2.8)

such that for piecewise analytic f as specified in [5], the weak solution u ∈ V
defined (1.4) of problem (1.1)–(1.3) belongs to B−1−b(Ω).

Remark 2.3. As in [25, Remark 2.5], we assume that in (2.8) there holds

0 < bc < 1, 0 < be < 1, c ∈ C, e ∈ E . (2.9)

Then, κβ = κ−1−b ∈ (1, 2) in (2.7). In addition, we shall assume that, for any
polyhedron Ω and right-hand side f in the class of problems considered here, there
exists some θ ∈ (0, 1) such that the weak solution u ∈ V belongs to H1+θ(Ω).
For weight exponents bc ∈ (1/2, 1), be ∈ (0, 1), this follows from [5, Remark 6.2(ii)]
and [15, Theorem 3.5]. We also refer to the discussion in [25, Remark 2.5].

3. Finite Element Discretization and Exponential Convergence

3.1. Geometric meshes. We review geometric mesh constructions from [23, 24].
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Figure 1. Three geometric reference mesh patches on Q̃ with

σ = 0.5: corner patch M̃ℓ,c
σ (left), edge patch M̃ℓ,e

σ (center), and

corner-edge patch M̃ℓ,ce
σ (right).

3.1.1. Geometric mesh patches. We partition the domain Ω into a finite number P

of open, axiparallel and hexahedral patches {Qp }Pp=1 which constitute the patch

mesh M0. In the axiparallel setting, each Qp ∈ M0 is an affine-orthogonal image

Qp = Gp (Q̃) of the reference patch Q̃ = (−1, 1)3. We assume M0 to be regular,

i.e., the intersection Qp ∩Qp ′ of any two patches Qp , Qp ′ ∈ M0, p 6= p ′, is either
empty, a vertex, an entire edge, or an entire face of both patches. Without loss of
generality we assume that (the closure of) each patch intersects with at most one
corner c ∈ C, and with either none, one or several edges e ∈ Ec meeting in c. In
addition, we shall always assume that boundary faces on the patch Qp belong to
exactly one boundary plane Γι.

With each patch Qp ∈ M0, we associate a geometric reference mesh patch M̃p

on Q̃. We recall from [23, Section 3.3] that the geometric mesh patches are gen-
erated recursively by iterating four basic geometric refinement operations, the so-

called hp-extensions (Ex1)–(Ex4) on Q̃, resulting in four geometric mesh patch
types t ∈ {c, e, ce, int}. That is, we take

M̃p ∈ R̃P := {M̃ℓ,c
σ ,M̃ℓ,e

σ ,M̃ℓ,ce
σ ,M̃ℓ,int

σ } = {M̃ℓ,t
σ }t∈{c,e,ce,int}. (3.1)

Whenever Qp abuts at the singular set S, we assign to M̃p (a suitably rotated
and oriented version) of the geometrically refined reference mesh patches shown

in Figure 1 and denoted by M̃ℓ,c
σ (corner patch), M̃ℓ,e

σ (edge patch), and M̃ℓ,ce
σ

(corner-edge patch), respectively. We implicitly allow for simultaneous geometric

refinements towards several edges in the corner-edge patch M̃ℓ,ce
σ , which corre-

sponds to an overlap of at most three rotated versions of the basic corner-edge
patch; see Figure 3 below. The geometric refinements in these reference patches
are characterized by (i) a fixed parameter σ ∈ (0, 1) defining the subdivision ratio of
the geometric refinements and (ii) the index ℓ defining the number of refinements.
For interior patches Qp ∈ M0, which have empty intersection with S, we assign

to M̃p a geometric reference mesh patch M̃ℓ,int
σ on Q̃, which comprises only finitely

many regular refinements and does not introduce irregular faces in Q̃. In the refine-

ment process, the reference mesh M̃ℓ,int
σ is kept unchanged and is independent of the

refinement level ℓ. As different interior patches can be refined differently, without

loss of generality the notation M̃ℓ,int
σ is to be understood in a generic fashion.
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The geometric reference mesh patch M̃p ∈ R̃P introduces the corresponding

patch partition Mp = Gp (M̃p ) := {K : K = Gp (K̃), K̃ ∈ M̃p } on Qp . Inter-
patch continuity of hp-approximations will be ensured by the following hypoth-
esis; cf. [20, Assumption 3.1]. Here and in the sequel, we denote by md(·) the
d-dimensional Lebesgue measure.

Assumption 3.1. For p 6= p ′, let Qp , Qp ′ ∈ M0 be two distinct patches with

Γp p ′ := Qp ∩ Qp ′ 6= ∅ and either m2(Γp p ′) > 0 or m2(Γp p ′) = 0, m1(Γp p ′) > 0.
Then the parametrizations induced by the patch maps on the patch interfaces Γp p ′

are assumed to coincide “from either side”: Gp ◦
(
G−1

p ′ |Γ
p p ′

)
= Gp ′ ◦

(
G−1

p |Γ
p p ′

)
.

In addition, the mesh patches Mp ,Mp ′ are assumed to coincide on Γp p ′ .

3.1.2. Geometric meshes. For fixed parameters σ ∈ (0, 1) and ℓ ∈ N, a σ-geometric
mesh on Ω is now given by the disjoint union

M = Mℓ
σ := ∪P

p=1Mp . (3.2)

If we denote by K̂ := (−1, 1)3 the reference cube, then each K ∈ M is the image

of K̂ under an element mapping ΦK : K̂ → K, given as the composition of the
corresponding patch map Gp with an anisotropic dilation-translation. To achieve
a proper geometric refinement towards corners and edges of Ω without violating
Assumption 3.1, the geometric refinements Mp in the patches Qp have to be
suitably selected and oriented. For a fixed subdivision ratio σ ∈ (0, 1), we call the
sequence Mσ = {Mℓ

σ}ℓ≥1 of geometric meshes a σ-geometric mesh family; see [23,
Definition 3.4]. As before, we shall refer to the index ℓ as refinement level.

Without loss of generality as in [24, Section 5.1.4], every element K ∈ M can be
assumed to be a Cartesian product of the form

K = K⊥ ×K‖ = (0, h⊥
K)2 × (0, h

‖
K), (3.3)

with h⊥
K . h

‖
K . We call K∈ Mℓ

σ isotropic if h⊥
K ≃ h

‖
K ≃ hK uniformly in ℓ;

otherwise, the element K is anisotropic. Elements in corner and interior patches
are isotropic, whereas elements in edge and corner-edge patches may be anisotropic.

We also note that the elemental diameters h⊥
K and h

‖
K are related to the relative

distances to the edge e and corner c located nearest to K; cf. [24, Proposition 3.2].

3.1.3. Vertices, edges and faces. For an axiparallel hexahedral element K, we de-
note by N (K), E(K) and F(K) the sets of its elemental vertices, its elemental
edges and its elemental faces, respectively. If E ∈ E(K) and F ∈ F(K), we write
N (E) ⊂ N (K) and N (F ) ⊂ N (K) for the vertices of E and F , respectively,
E(F ) ⊂ F(K) for the four elemental edges of F and F(E) ⊂ F(K) for the two
elemental faces sharing E.

Let M = Mℓ
σ be a geometric mesh. The set of all vertex nodes of M is

N (M) :=
⋃

K∈M

N (K) . (3.4)

The subset ND(M) of all Dirichlet nodes consists of all N ∈ N (M) with N ∈ Γι

for some index ι ∈ JD. The node N is called regular if N ∈ N (K) for all K ∈ M
with N ∩K 6= ∅; otherwise it is called irregular.

The non-trivial two-dimensional intersection F = FK,K′ of the elemental faces
of two distinct neighboring elements K,K ′ ∈ M is called an interior face of M.
Note that FK,K′ = FK,K′ . For our class of geometric meshes and possibly after
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reordering the tuple (K,K ′), we can always assume that F = FK,K′ is an elemental
face of K and a non-vanishing subset of an elemental face of K ′. That is, we have

F ∈ F(K) and F ⊆ F ′ for F ′ ∈ F(K ′) with m2(F ∩ F ′) > 0, (3.5)

where we recall that m2(·) denotes the two-dimensional Lebesgue measure. The
face F is called regular if F ∈ F(K) and F ∈ F(K ′); otherwise it is said to be
irregular. Furthermore, the non-empty and two-dimensional intersection F = FK,Γι

of an elemental face of K ∈ M with a Dirichlet plane Γι for ι ∈ JD is a Dirichlet
boundary face of M. We always have FK,Γι

∈ F(K). Neumann boundary faces are
defined correspondingly. However, as Neumann boundary conditions are enforced
naturally, they will only play a minor role in our analysis. We write FI(M), FD(M)
and FN(M) for the sets of interior, Dirichlet and Neumann boundary faces of M,
respectively, and set FID(M) := FI(M) ∪ FD(M).

The non-trivial one-dimensional intersection E = EF,F ′ of two neighboring faces
F, F ′ ∈ F(M) is called an edge of M. The edge E is called regular in M if
E ∈ E(K) whenever E ∩K 6= ∅; otherwise we call it irregular. Note that an edge
E can be located in a Dirichlet or Neumann face Γι, as well as on a Dirichlet or
Neumann edge e ∈ ED

.∪ EN ; in these cases, we call it a Dirichlet or Neumann
boundary edge of M. Moreover, the non-trivial one-dimensional intersection E =
EF,e of F ∈ F(M) with e ∈ ED

.∪ EN is also called a Dirichlet or Neumann boundary
edge. Edges of this form are always elemental edges of an element K. The set of
all edges is denoted by E(M), and the sets of all Dirichlet and Neumann boundary
edges by ED(M) and EN (M), respectively.

For a piecewise smooth function v, we define the jump of v over FK,K′ ∈ FI(M)
respectively over FK,Γι

∈ FD(M) by

[[v]]FK,K′ := v|K − v|K′ respectively by [[v]]FK,Γι
:= v|K . (3.6)

For F ∈ F(K), we denote by h⊥
K,F the height of K in direction perpendicular to F .

We then introduce the trace mesh size function by

hF :=

{
min

{
h⊥
K,F , h

⊥
K′,F ′

}
, F = FK,K′ ∈ FI(M),

h⊥
K,F , F = FK,Γι

∈ FD(M),
(3.7)

with F ′ ∈ F(K ′) as in (3.5). The bounded variation property in [23, Section 3.3.2]
implies hF ≃ h⊥

K,F ≃ h⊥
K′,F ′ for interior faces FK,K′ ∈ FI(M).

3.2. Finite element spaces. We next introduce discontinuous and continuous
finite element spaces with anisotropic and s-linear degree distributions.

3.2.1. Local finite element spaces. Let M = Mℓ
σ be a geometric mesh. With

each K ∈ M and in accordance with (3.3), we assign an anisotropic polynomial de-

gree vector pK := (p⊥K , p
‖
K), with degrees p⊥K ≥ 1 and p

‖
K ≥ 1 in edge-perpendicular

and edge-parallel directions, respectively. We may and will always assume that

p⊥K ≤ p
‖
K ; cf. [24, Section 3]. For K ∈ M, the elemental tensor-product polynomial

space is

QpK
(K) := { v ∈ L2(K) : v|K ◦ ΦK ∈ QpK

(K̂) }, (3.8)

where ΦK : K̂ → K is the element mapping and QpK
(K̂) the anisotropic tensor-

product polynomial space on K̂ = Î3 with Î = (−1, 1):

QpK
(K̂) := Qp⊥

K
(Î2)⊗ P

p
‖
K

(Î) = Pp⊥
K
(Î)⊗ Pp⊥

K
(Î)⊗ P

p
‖
K

(Î), (3.9)
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with Pp(I) denoting the univariate polynomials of degree less than or equal to p on

an interval I. The polynomial degree vector pK is called isotropic if p⊥K = p
‖
K = pK .

In this case, we write QpK
(K) in place of QpK

(K).
The elemental polynomial degree vectors pK are combined into the polynomial

degree distribution p := {pK : K ∈ M} on M. We set |p| := maxK∈M |pK |, with
|pK | := max{p⊥K , p

‖
K}. We then introduce the generic discontinuous space

V 0(M,p) :=
{
v ∈ L2(Ω) : v|K ∈ QpK

(K), K ∈ M
}
. (3.10)

The hp-extensions (Ex1)–(Ex4) introduced in [23] provide s-linear polynomial de-

gree distributions ps(M̃ℓ,t
σ ) on the geometric reference mesh patches M̃ℓ,t

σ for
t ∈ {c, e, ce, int}, which increase s-linearly and possibly anisotropically away from
singularities for a slope parameter s > 0; see [23, Section 3] for more details. By

construction, the patchwise distributions ps(M̃ℓ,t
σ ) induce a s-linear polynomial

degree distribution on a geometric mesh Mℓ
σ, which we denote by ps(Mℓ

σ).

3.2.2. Face and edge polynomial degrees. Let M = Mℓ
σ be a geometric mesh and p

a polynomial degree distribution on M. To define conforming spaces, we introduce
edge and face polynomial degrees in conjunction with a suitable minimum rule over
neighboring edges and faces; cf. [7].

Let K ∈ M and pK = (p⊥K , p
‖
K) the elemental degree vector. For E ∈ E(K) and

F ∈ F(K), we denote by pK,E ∈ N and pK,F = (p1K,F , p
2
K,F ) ∈ N2 the polynomial

degrees induced by pK on E and F in local coordinates, respectively. In agreement
with (3.5), we further introduce the set

δK,F := {K ′ ∈ M : ∃F ′ ∈ F(K ′) with m2(F ∩ F ′) > 0 }. (3.11)

Notice that K ∈ δK,F and that the cardinality of δK,F is bounded uniformly in ℓ.
For F ∈ F(K), the minimum face degree is

pK,F := min
K′∈δK,F

pK′,F ′ ∈ N2, (3.12)

where the set F ′ ∈ F(K ′) is as in (3.11) and where the minimun in (3.12) is
understood componentwise and with consistent orientation of the elemental degrees
with respect to F . If E ∈ E(K), we define the minimum edge degree as

pK,E := min
F∈F(E)

pK,F,E, (3.13)

where pK,F,E is the degree induced by pK,F along E. This definition ensures that
the minimum edge degrees are always equal to or smaller than the corresponding
minimum face degrees.

Remark 3.2. In the axiparallel setting considered here and under Assumption 3.1,
for any distinct axiparallel elements K,K ′ ∈ M which share a common edge E
or an interior face FK,K′ , the traces of the elemental polynomial spaces on E and
FK,K′ in local coordinates induced by the corresponding elemental maps coincide.
Therefore, for E ∈ E(K) and F ∈ F(K), the edge and face polynomial spaces
PpK,E

(E) and QpK,F
(F ) are well-defined.
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3.2.3. Finite element spaces. On an axiparallel element K ∈ M, we consider poly-
nomial functions v|K ∈ QpK

(K) which can be expanded into basis functions as

v|K := v|nodK + v|edgeK + v|faceK + v|intK , (3.14)

where, with the minimum degrees pK,F in (3.12) and pK,E in (3.13),

v|nodK =
∑

N∈N (K)

cNKΦN
K ,

v|edgeK =
∑

E∈E(K)

pK,E−1∑

i=1

cE,i
K ΦE,i

K ,

v|faceK =
∑

F∈F(K)

p1
K,F−1∑

i=1

p2
K,F−1∑

j=1

cF,i,j
K ΦF,i,j

K ,

(3.15)

with coefficients cNK , cE,i
K and cF,i,j

K . Here, the function ΦN
K ∈ Q1(K) denotes

the trilinear nodal shape function on K with the property that ΦN
K (N ′) = δN ,N ′

for N ′ ∈ N (K). For E ∈ E(K), the edge shape functions {ΦE,i
K }pK,E−1

i=1 on K
are polynomials of degree pK,E along the edge E tensorized with linear blending
functions in the two directions perpendicular to E. They vanish at the end points
N ∈ N (E), on the other elemental edges E′ 6= E, as well as on faces F ∈ F(K)
with F 6∈ F(E). Restricted to E, they span the space PpK,E

(E)∩H1
0 (E). Similarly,

for F ∈ F(K), the face shape functions {ΦF,i,j
K }i,j are anisotropic polynomials of

vector degree pK,F on the face F , tensorized with linear blending functions in the
direction perpendicular to F . They vanish at the nodes N ∈ N (F ), on the edges
E ∈ E(F ) and on the remaining elemental faces F ′ 6= F . Restricted to F , they span
the spaceQpK,F

(F )∩H1
0 (F ). Finally, the interior part v|intK in (3.14) is a polynomial

bubble function in QpK
(K)∩H1

0 (K); as it will be left unchanged in the subsequent
analysis, we will not further specify it. For empty ranges of the indices in (3.15), the
corresponding sums are understood as zero. We refer the reader to [7, Section 2.3]
for an explicit construction of shape functions as in (3.14), (3.15). Shape functions

are pushed forward from the reference element K̂ to K with the element map ΦK .
For K ∈ M, we collect the face and edge degrees in (3.12), (3.13) in the vec-

tor pK , and define the elemental polynomial space

SpK
(K) :=

{
v|K ∈ QpK

(K) : v|K is of the form (3.14), (3.15)
}
. (3.16)

Thus, a polynomial v ∈ SpK
(K) satisfies

v|E ∈ PpK,E
(E), E ∈ E(K) and v|F ∈ QpK,F

(F ), F ∈ F(K). (3.17)

We then introduce the minimum rule hp-finite element spaces

V
0
(M,p) :=

{
v ∈ L2(Ω) : v|K ∈ SpK

(K), K ∈ M
}
, (3.18)

V 1(M,p) :=
{
v ∈ V : v|K ∈ SpK

(K), K ∈ M
}
; (3.19)

cf. [7]. By construction, V
0
(M,p) ⊆ V 0(M,p).
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3.3. Conforming hp-FEM and exponential convergence. For parameters σ ∈
(0, 1) and s > 0, let Mσ = {Mℓ

σ}ℓ≥1 be a σ-geometric mesh family on Ω and
{ps(Mℓ

σ)}ℓ≥1 the corresponding s-linear polynomial degree distributions. We con-
sider the sequence of conforming hp-version finite element spaces

V ℓ,1
σ,s := V 1(Mℓ

σ,ps(Mℓ
σ)), ℓ ≥ 1, (3.20)

and introduce its non-conforming counterparts by setting

V ℓ,0
σ,s := V 0(Mℓ

σ,ps(Mℓ
σ)), V

ℓ,0

σ,s := V
0
(Mℓ

σ,ps(Mℓ
σ)), ℓ ≥ 1. (3.21)

Remark 3.3. The fact that the conforming spaces V ℓ,1
σ,s define proper linear spaces

will follow from our construction of conforming approximations in Sections 5 and 6
ahead. In the pure Neumann case (where JD = ∅), we note that the constant

function belongs to V ℓ,1
σ,s , which will lead to well-defined factor spaces V ℓ,1

σ,s /R.

The hp-version Galerkin discretization of the variational formulation (1.4) reads

as usual: find uℓ ∈ V ℓ,1
σ,s such that

a(uℓ, v) =

∫

Ω

fvdx ∀v ∈ V ℓ,1
σ,s , (3.22)

where we implicitly use the corresponding factor spaces V ℓ,1
σ,s /R in the pure Neu-

mann case. For every ℓ ≥ 1, the discrete variational problem (3.22) admits a

unique solution uℓ ∈ V ℓ,1
σ,s which is quasi-optimal: there exists a constant C > 0

(only depending on Ω, the coefficient matrix A and the set ED) such that

‖u− uℓ‖H1(Ω) ≤ C inf
v∈V

ℓ,1
σ,s

‖u− v‖H1(Ω) . (3.23)

The main result of this paper is the H1-norm exponential convergence of hp-FE
approximations (3.22) for problem (1.1)–(1.3) with weak solutions u ∈ B−1−b(Ω).
This follows from the quasi-optimality (3.23) and the following approximation prop-

erty of the hp-version finite element spaces V ℓ,1
σ,s .

Theorem 3.4. Let b be a weight exponent vector satisfying (2.9). For parameters

σ ∈ (0, 1), s > 0, consider the sequence V ℓ,1
σ,s of H1-conforming hp-version finite

element spaces in (3.20). Then there exist quasi-interpolants Πℓ,1
σ,s : V → V ℓ,1

σ,s such
that for functions u ∈ V with u ∈ B−1−b(Ω) ∩ H1+θ(Ω) for some θ ∈ (0, 1) there
holds

‖u−Πℓ,1
σ,su‖H1(Ω) ≤ C exp (−bℓ) , ℓ ≥ 2 , (3.24)

with constants b, C > 0 independent of ℓ, but depending on the parameters σ, s,
the macro-mesh M0 with its associated patch maps, the minimum weight exponent
in (2.9), the exponent θ, and on u through the analytic regularity constant Cu in
Definition 2.1.

In particular, if the variational solution u ∈ V of problem (1.1)–(1.3) belongs to
B−1−b(Ω)∩H1+θ(Ω) for some θ ∈ (0, 1), cf. Section 2.3, then the conforming finite

element approximations uℓ ∈ V ℓ,1
σ,s in (3.22) converge exponentially:

‖u− uℓ‖H1(Ω) ≤ C exp
(
−b

5
√
N
)

, (3.25)

where the constants b, C > 0 are independent of N = dim(V ℓ,1
σ,s ), the number of

degrees of freedom of the hp-FE discretization.
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Remark 3.5. The quasi-interpolation operators Πℓ,1
σ,s in (3.24) constructed ahead are

well-defined on the space V ⊆ H1(Ω). This is in contrast to the interpolants used
in [20] for homogeneous Dirichlet boundary conditions. They require H2-regularity
in each coordinate direction in the interior of Ω, and are set to zero on elements
abutting at corners and edges of Ω.

Remark 3.6. The global hp-version quasi-interpolants Πℓ,1
σ,s in (3.24) are assembled

from hp-patch quasi-interpolants Πℓ,1,p
σ,s . We write formally

Πℓ,1
σ,s =

∑P

p=1
Πℓ,1,p

σ,s , (3.26)

with restrictions to patches p ∈ [1, ...,P ] implied in Πℓ,1,p
σ,s and where inter-patch

continuity follows from Assumption 3.1. The hp-patch quasi-interpolants Πℓ,1,p
σ,s

in (3.26), in turn, are obtained from four families {Π̃ℓ,1,t
σ,s }ℓ≥1 of hp-reference

patch quasi-interpolants on the geometric reference mesh patches M̃ℓ,t
σ of type

t ∈ {c, e, ce, int} which are transported to the patches Qp ⊂ Ω via the patch
maps Gp . While no liftings are necessary for interior patches (i.e., for t = int), for
patches of type t ∈ {c, e, ce}, our construction yields jump liftings with stability
bounds in the H1(Qp )-norm which grow algebraically in |p|.

Furthermore, the exponential consistency in H1(Q̃) of Π̃ℓ,1,t
σ,s on the reference

patch Q̃ can be readily verified for solutions u ∈ V of (1.1)–(1.3) whose pullbacks

from the mesh patch Qp to Q̃ satisfy the analytic patch regularity

ũp := u|Qp
◦Gp ∈ Bt (Q̃), 1 ≤ p ≤ P , t ∈ {c, e, ce, int} , (3.27)

where Bt (Q̃) is an analytic regularity reference class on Q̃ with weighting towards

corners or edges of Q̃ depending on the refinement type t ∈ {c, e, ce, int}; see

also [20, Section 4.4] for analytic reference classes At (Õ) in the pure Dirichlet

case. For t ∈ {c, ce}, we additionally require in (3.27) that ũp ∈ H1+θ(Q̃); cf.
Remark 2.3. All exponential convergence rate estimates in the present paper apply
verbatim to any solution u ∈ H1(Ω) which, in local patch coordinates, exhibit the
above analytic patch regularity (3.27).

Remark 3.7. The results of Theorem 3.4 remain valid for

V 1(Mℓ
σ, pℓ) :=

{
v ∈ V : v|K ∈ Qpℓ

(K), K ∈ Mℓ
σ

}
, ℓ ≥ 1, (3.28)

with uniform, isotropic polynomial degree pℓ ≥ 1. For these spaces, the mini-
mum rules in Section 3.2.2 are trivially satisfied. The exponential convergence
bounds (3.24) and (3.25) follow in this case as well, provided that pℓ = max{1, ⌊sℓ⌋},
albeit with a generally smaller constant b > 0 (depending on s).

Remark 3.8. The bounds (3.24) and (3.25) hold true in the pure Neumann case.

This follows readily from Remark 3.3 and since Πℓ,1
σ,s reproduces constant functions.

Remark 3.9. The exponential convergence results in this paper apply verbatim to
conforming hp-FEMs for second-order and possibly vector-valued elliptic problems
which allow for analytic regularity shifts in the function classes in Definition 2.1.
In particular, they are valid for stress-strain formulations of the equations of linear
elasticity (with constant material parameters); see [5, Section 7].
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3.4. Outline of the proof. The proof of Theorem 3.4 follows along the general
lines of [20, Section 3.4], but is significantly more involved due to the appearance of
the non-homogeneously weighted Sobolev spaces and the anisotropic and variable
polynomial degree distributions. In this section, we outline the key steps. From
now on we will frequently use the short-hand notation ”.p” for inequalities which
hold up to algebraic losses in |p|:

x .p y ⇔ x . |p|a y for some a ∈ N. (3.29)

3.4.1. Base projectors with partial conformity. We first introduce (non-conforming)
base projectors πℓ

σ,s with partial conformity and exponential convergence estimates
in broken norms.

To discuss the partial conformity, let M = Mℓ
σ be a geometric mesh. For a set

F ′ ⊂ FID(Mℓ
σ) of faces, we define

jmpF ′ [u]2 :=
∑

F∈F ′

h
−1
F ‖[[u]]‖2L2(F ). (3.30)

Then, to avoid the need for jump liftings over edge-perpendicular faces between
highly anisotropic elements, we construct base projectors πℓ

σ,s which are conforming

across certain sets F⊥
ID(M) ⊂ FID(M) of edge-perpendicular faces, and generally

non-conforming edge-parallel faces F ∈ F‖
ID(M) := FID(M)\F⊥

ID(M), which can
be characterized by the property that

F ⊆ F ′ ∈ F(K) : hF ≃ h⊥
K,F ′ ≃ h⊥

K uniformly in ℓ. (3.31)

If we write K as in (3.3), then (possibly after mapping) a face F satisfying (3.31)
can be assumed to be of the form

F = (0, h⊥
K)× (0, h

‖
K) uniformly in ℓ . (3.32)

Note that faces with (3.31), (3.32) appear (i) between isotropic elements and (ii) in
edge-parallel direction between anisotropic elements in edge or corner-edge patches.

To state exponential convergence estimates in broken norms, we set

‖u‖2L2(M′) :=
∑

K∈M′

‖u‖2L2(K) (3.33)

and introduce the broken H1-norms;

Υ⊥
M′ [u]2 :=

∑

K∈M′

N⊥
K [u]2, Υ

‖
M′ [u]

2 :=
∑

K∈M′

N
‖
K [u]2, (3.34)

for any set M′ ⊆ M of axiparallel elements, with elemental norms defined by

N⊥
K [u]2 := (h⊥

K)−2‖u‖2L2(K) + ‖∇u‖2L2(K),

N
‖
K [u]2 := (h

‖
K)−2‖u‖2L2(K) + ‖∇u‖2L2(K).

(3.35)

Evidently, we have

N
‖
K [u]2 . N⊥

K [u]2, K ∈ M′, (3.36)

whereas N⊥
K [u] ≃ N

‖
K [u] for isotropic elements K.

Proposition 3.10. For all parameters σ ∈ (0, 1), s > 0 there are tensor projectors

πℓ
σ,s = πℓ,⊥

σ,s ⊗ π
ℓ,‖
σ,s : H

1(Ω) → V ℓ,0
σ,s , (3.37)
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and sets F⊥
ID(Mℓ

σ) ⊂ FID(Mℓ
σ) of edge-perpendicular faces such that: (i) πℓ

σ,s

is conforming over faces F ∈ FID(Mℓ
σ); (ii) πℓ

σ,s is generally non-conforming

over faces F ∈ F‖
ID(Mℓ

σ) := FID(Mℓ
σ) \ F⊥

ID(Mℓ
σ); (iii) faces F ∈ F‖

ID(Mℓ
σ)

satisfy (3.31), (3.32).
Moreover, for functions u with u ∈ B−1−b(Ω) ∩H1+θ(Ω) for some θ ∈ (0, 1) as

in Theorem 3.4 and for the error ηℓσ,s := u− πℓ
σ,su, we have the H1-norm bound

Υ
‖
Mℓ

σ
[ηℓσ,s]

2 ≤ C exp(−2bℓ), (3.38)

as well as the jump bound

jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,s]

2 ≤ C exp(−2bℓ), (3.39)

with constants b, C > 0 independent of ℓ ≥ 2, but depending σ and s.

We will show the estimate (3.38) for a more general class of tensor projectors
on H1(Ω) in Section 4, see Theorem 4.3, with most parts of the proof relegated to
Appendix A. The jump bound in (3.39) will be established for the specifically cho-
sen projectors in (3.37) under smoothness requirements which are slightly stronger
than u ∈ H1(Ω); in particular, u ∈ B−1−b(Ω) is sufficient.

In the following, we shall also split the sets F‖
ID(Mℓ

σ) into interior and Dirichlet

boundary faces, i.e., F‖
ID(Mℓ

σ) = F‖
I (Mℓ

σ)
.∪ F

‖
D(Mℓ

σ).

3.4.2. Discontinuous hp-version base spaces. To exploit the approximation proper-
ties for the non-conforming base projectors πℓ

σ,su in Proposition 3.10 for the mini-

mum rule finite element spaces V
ℓ,0

σ,s in (3.21), we introduce discontinuous hp-base

spaces as follows. For axiparallel K ∈ Mℓ
σ we introduce the subsets F⊥(K) and

F‖(K) of elemental faces of F(K), which are perpendicular and parallel, respec-

tively, to the nearest singular edge. For K ∈ F‖(K), we write pK,F = (p⊥K , p
‖
K) to

distinguish the perpendicular and parallel components pK,F .

Lemma 3.11. Let ps(Mℓ
σ) be a s-linear degree distribution on Mℓ

σ. For K ∈ Mℓ
σ,

let the face degrees pK,F be defined in (3.12). Then there exists µ ∈ (0, 1] depending
only on s > 0 such that

∀K ∈ F⊥(K) : µp⊥K ≤ p1K,F ≤ p⊥K , µp⊥K ≤ p2K,F ≤ p⊥K , (3.40)

∀K ∈ F‖(K) : µp⊥K ≤ p⊥K,F ≤ p⊥K , µp
‖
K ≤ p

‖
K,F ≤ p

‖
K . (3.41)

Proof. These properties follow from the construction of the s-linear degree dis-
tributions and their properties of bounded variation; cf. [23, Section 3.2 and Re-
mark 3.9]. �

On K ∈ Mℓ
σ, we then introduce the base degree vector p̌K = (p̌⊥K , p̌

‖
K) ∈ N2 as

p̌⊥K := min
F∈F⊥(K)

{min{p1K,F , p
2
K,F }}, p̌

‖
K := min

F∈F‖(K)
p
‖
K,F . (3.42)

Hence,

Qp̌K
(K) ⊆ SpK

(K), K ∈ Mℓ
σ. (3.43)

From Lemma 3.11, we further have µp⊥K ≤ p̌⊥K and µp
‖
K ≤ p̌

‖
K . As a consequence,

the base degree vectors {p̌K}K∈Mℓ
σ
give rise to a š-linear polynomial degree dis-

tribution pš(Mℓ
σ), for a base slope parameter š with 0 < š ≤ s and only depending
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on s. Hence, the discontinuous hp-base spaces V ℓ,0
σ,š thus constructed satisfy

V ℓ,0
σ,š ⊆ V

ℓ,0

σ,s. (3.44)

We point out that for the uniform and isotropic spaces in (3.28), the construction
of discontinuous hp-base spaces is not necessary and can be omitted.

3.4.3. Averaging over regular vertices, edges and faces. We denote by V
ℓ,0,⊥
σ,s the

subspace of functions in V
ℓ,0

σ,s which are conforming over F⊥
ID(Mℓ

σ) and possibly

non-conforming over F‖
ID(Mℓ

σ). We then adopt the approach of [28] to assign

to v ∈ V
ℓ,0,⊥
σ,s vertex, edge and face values which are obtained by averaging over

regularly matching vertices, edges and faces.

Theorem 3.12. There are linear averaging operators Aℓ
σ,s : V

ℓ,0,⊥
σ,s → V

ℓ,0,⊥
σ,s such

that the following holds: (i) Aℓ
σ,s(v) is continuous over regular faces in the interior

of each mesh patch; (ii) Aℓ
σ,s(v) vanishes on all Dirichlet boundary faces; (iii)

Aℓ
σ,s(v) is continuous across adjacent mesh patches; (iv) Aℓ

σ,s(v)≡v for v ∈ V ℓ,1
σ,s ;

(v) for all v ∈ V
ℓ,0,⊥
σ,s and with jmp as in (3.30), there holds the stability bound

Υ⊥
Mℓ

σ
[v −Aℓ

σ,s(v)]
2 + jmp

F
‖
I
(Mℓ

σ)
[Aℓ

σ,s(v)]
2 .p jmp

F
‖
ID

(Mℓ
σ)
[v]2 . (3.45)

Remark 3.13. The construction of Aℓ
σ,s(v) in Theorem 3.12 is carried out on each

element K ∈ Mℓ
σ separately, by adding averaged values associated with elemental

vertices N ∈ N (K), elemental edges E ∈ E(K) and elemental faces F ∈ F(K).
As a consequence, Aℓ

σ,s can (in principle) be obtained from corresponding refer-

ence averaging operators on Q̃ as in Remark 3.6, with inter-patch continuity being
ensured by Assumption 3.1.

Theorem 3.12 will be established in Section 5.

3.4.4. Polynomial jump liftings. The averaged approximations Aℓ
σ,s(v) in Theo-

rem 3.12 are non-conforming over irregular faces in the interior of mesh patches.
Our proof then proceeds as in [20] by introducing suitable polynomially stable
jump liftings on Mℓ

σ which preserve stability bounds as in (3.45). This leads to the
following result.

Theorem 3.14. Let Aℓ
σ,s be the averaging operator from Theorem 3.12. Then there

exist linear operators Lℓ
σ,s : range(Aℓ

σ,s) → V ℓ,1
σ,s such that the following holds: (i)

Lℓ
σ,s(v) = v for v ∈ V ℓ,1

σ,s ; (ii) we have the stability bound

Υ⊥
Mℓ

σ
[v − Lℓ

σ,s(v)] .p jmp
F

‖
I
(Mℓ

σ)
[v]2, (3.46)

for all v ∈ range(Aℓ
σ,s) ⊂ V

ℓ,0,⊥
σ,s .

Remark 3.15. Since functions in v ∈ range(Aℓ
σ,s) have non-vanishing jumps only

over irregular faces in the interior of mesh patches, upon mapping it is sufficient to

construct Lℓ
σ,s on the reference mesh patches M̃ℓ,t

σ of type t ∈ {c, e, ce, int}; inter-
patch continuity will again follow from Assumption 3.1; cf. [20]. This observation

along with Remark 3.15 allows us to assemble Πℓ,1
σ,s from reference patch quasi-

interpolants as discussed in Remark 3.6.
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The proof of Theorem 3.14 will be detailed in Section 6.

Remark 3.16. The bounds (3.45) and (3.46) involve relatively large algebraic losses
in the polynomial order |p|. As in [20], this is due to the use of polynomial trace lift-
ings which are linear in one or more directions. The algebraic losses can be possibly
improved by employing polynomial liftings of higher order, but are inconsequential
in establishing the exponential convergence rate (3.25).

3.4.5. Proof of Theorem 3.4. To prove (3.24), consider u ∈ V . Let πℓ
σ,šu ∈ V ℓ,0

σ,š be

the base projection of u defined in (3.37) into the hp-base space V ℓ,0
σ,š constructed

in Section 3.4.2, for the base slope parameter š > 0. By Proposition 3.10 and the

inclusion (3.44), we have πℓ
σ,šu ∈ V

ℓ,0,⊥
σ,s . In addition, the broken H1-norms of the

interpolation errors ηℓσ,š = u − πℓ
σ,šu converge exponentially by (3.38), albeit with

respect to the base slope š. We then define

Πℓ,1
σ,s(u) :=

(
Lℓ
σ,s ◦ Aℓ

σ,s ◦ πℓ
σ,š)(u) ∈ V ℓ,1

σ,s , (3.47)

with the operators Aℓ
σ,s and Lℓ

σ,s from Theorems 3.12 and 3.14. Clearly, the quasi-

interpolation operator Πℓ,1
σ,s is well-defined. It is linear, reproduces constant func-

tions and can readily be seen to be idempotent on a subspace of V ℓ,1
σ,s .

We now set v = πℓ
σ,šu, v

f := Aℓ
σ,s(v), and vc := Lℓ

σ,s(v
f). With the triangle

inequality and property (3.36), we obtain

‖u−Πℓ,1
σ,su‖2H1(Ω) . Υ

‖
Mℓ

σ
[u− v]2 +Υ⊥

Mℓ
σ
[v − vf ]2 +Υ⊥

Mℓ
σ
[vf − vc]2.

The bounds (3.45) and (3.46) imply

Υ⊥
Mℓ

σ
[v − vf ]2 +Υ⊥

Mℓ
σ
[vf − vc]2 .p jmp

F
‖
ID

(Mℓ
σ)
[v]2.

Since v = πℓ
σ,šu and [[u]]F = 0 for F ∈ FID(Mℓ

σ), we conclude that

‖u−Πℓ,1
σ,su‖2H1(Ω) .p Υ

‖
Mℓ

σ
[ηℓσ,š]

2 + jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,š]

2.

Referring to (3.38), (3.39) in Proposition 3.10 yields (3.24) for u piecewise analytic
as in Theorem 3.4. The error bound (3.25) follows from (3.23) and (3.24) by noting
that N ≃ ℓ5 +O(ℓ4).

4. Non-conforming Base Projectors

We prove exponential convergence in broken norms for non-conforming and ten-
sorized hp-base projectors, and establish Proposition 3.10.

4.1. Tensor projectors. We introduce a class of anisotropic tensor projectors on

the reference cube K̂.
To this end, let Î = (−1, 1) be the reference interval. For p ≥ 0, we denote

by π̂p,0 the univariate L2-projection onto Pp(Î). For p ≥ 1, we further introduce

the univariate H1-projector π̂p,1 : H1(Î) → Pp(Î) by

(π̂p,1û)(ξ) := û(−1) +

∫ ξ

−1

(π̂p−1,0û
′)(η)dη; (4.1)

cf. [26, Theorem 3.14]. The projector satisfies (π̂p,1û)
′ = π̂p−1,0(û

′) and

(π̂p,1û)(±1) = û(±1). (4.2)
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Some hp-version approximation properties of π̂p,0 and π̂p,1 are collected in Sec-
tion A.1.1.

We consider next the reference cube K̂ = Î3 with Î = (−1, 1). In analogy to (3.3),

we write K̂ = K̂⊥ × K̂‖ = Î2 × Î. Let p = (p⊥, p‖) be an anisotropic polynomial
degree vector, and r ∈ {0, 1} a conformity index in edge-parallel direction. For a

function û : K̂ → R, we define the tensor projector π̂p,rû into Qp(K̂) = Qp⊥(K̂⊥)⊗
Pp‖(K̂‖) by

π̂p,rû :=
(
π̂
(1)

p⊥,0
⊗ π̂

(2)

p⊥,0
⊗ π̂

(3)

p‖,r

)
û =

(
π̂⊥
p⊥,0 ⊗ π̂

‖

p‖,r

)
û, (4.3)

where the univariate projector π̂
(i)
p,t acts in direction x̂i, and where we write π̂⊥

p⊥,0

and π̂
‖

p‖,r
to denote the projectors in edge-perpendicular and in edge-parallel direc-

tion, respectively. The projector π̂p,0 is the (tensor-product) L2-projection which

is well-defined for û ∈ L2(K̂), whereas π̂p,1 is an anisotropic projector which is

well-defined for û ∈ L2(K̂⊥)⊗H1(K̂‖) and nodally exact in edge-parallel direction;

cf. property (4.2). Note that H1(K̂) ⊂ L2(K̂⊥) ⊗ H1(K̂‖). In Section A.1.2 we
derive approximation properties for π̂p,r in (4.3), with the aid of tensor-product
arguments and consistency bounds for the univariate projectors π̂p,0 and π̂p,1.

4.2. Exponential convergence in broken norms. We next establish exponen-
tial convergence bounds in broken norms for the families of tensor projectors ob-
tained in (4.3).

4.2.1. Families of projectors. Consider the discontinuous spaces V ℓ,0
σ,s in (3.21) on

a geometric mesh M = Mℓ
σ∈ Mσ and for a s-linear degree distribution ps(M) =

{pK}K∈M. To each K ∈ M, we assign an elemental conformity index rK ∈ {0, 1}.
We then investigate tensor projectors π : H1(Ω) → V ℓ,0

σ,s given by

πu|K := πpK ,rK (u|K), K ∈ M, (4.4)

where the elemental projectors πpK ,rK : H1(K) → QpK
(K) are

πpK ,rK (u|K) := (π̂pK ,rK (u|K ◦ ΦK)) ◦ Φ−1
K , (4.5)

with π̂pK ,rK defined in (4.3) and ΦK : K̂ → K the element mapping. As the

projectors πpK ,rK tensorize into πpK ,rK = π⊥
p⊥
K
,0
⊗ π

‖

p
‖
K
,rK

on K = K⊥ ×K‖ and

L2-projections are used in perpendicular direction, we simply write

πu|K = π⊥
0 ⊗ π‖u|K . (4.6)

For u ∈ H1(Ω), we consider the error terms

η = u− πu, η⊥0 = u− π⊥
0 u, η‖ = u− π‖u, (4.7)

and note that
η = (u− π⊥

0 u) + π⊥
0 (u− π‖u) = η⊥0 + π⊥

0 η‖. (4.8)

In the above notation, we generally omit the dependence on rK in edge-parallel

direction. However, if rK = r ∈ {0, 1} for all K ∈ Mℓ
σ, we write πr = π⊥

0 ⊗ π
‖
r

for the projectors resulting in (4.4), (4.6), as well as ηr, η
‖
r for the errors in (4.7).

In particular, π0 = π⊥
0 ⊗ π

‖
0 : L2(Ω) → V ℓ,0

σ,s is the usual L2-projection. A specific
choice of conformity indices rK leading to πℓ

σ,s in Proposition 3.10 will be introduced
in Section 4.3 below.
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4.2.2. Error bounds. We show that the full errors η can be bounded in terms of the
errors η⊥ and η‖ in edge-perpendicular and in edge-parallel directions, in appropri-
ate norms and except for corner elements; cf. [25].

We first establish the following stability result.

Lemma 4.1. Let K = K⊥ ×K‖ ∈ Mℓ
σ be of the form (3.3) and p⊥K ≥ 1. Then

‖D⊥(π
⊥
p⊥
K
,0u)‖2L2(K⊥) . (p⊥K)4‖D⊥u‖2L2(K⊥), u ∈ H1(K⊥). (4.9)

Furthermore, for the element errors in (4.7) and any rK ∈ {0, 1}, we have

‖η‖2L2(K) . ‖η⊥0 ‖2L2(K) + ‖η‖‖2L2(K),

‖D⊥η‖2L2(K) . ‖D⊥η
⊥
0 ‖2L2(K) + (p⊥K)4‖D⊥η

‖‖2L2(K),

‖D‖η‖2L2(K) . ‖D‖η
⊥
0 ‖2L2(K) + ‖D‖η

‖‖2L2(K).

(4.10)

Proof. Since both sides of the inequalities in (4.9) and (4.10) scale in the same way,

it is sufficient to prove them for the reference element K̂ = K̂⊥×K̂‖. To show (4.9)

on K̂⊥, note that

D̂⊥(π̂
⊥
p⊥
K
,0û) = D̂⊥(π̂

⊥
p⊥
K
,0û− π̂⊥

0,0û) = D̂⊥(π̂
⊥
p⊥
K
,0(û − π̂⊥

0,0û)). (4.11)

The inverse inequality in [26, Theorem 4.7.6, eq. (4.6.5)], the L2-stability of π̂⊥
p⊥
K
,0

and standard approximation properties for π̂⊥
0,0 yield (4.9) due to

‖D̂⊥(π̂
⊥
p⊥
K
,0û)‖2L2(K̂⊥)

. (p⊥K)4‖π̂⊥
p⊥
K
,0(û − π̂⊥

0,0û)‖2L2(K̂⊥)

. (p⊥K)4‖û− π̂⊥
0,0û‖2L2(K̂⊥)

. (p⊥K)4‖D̂⊥û‖2L2(K̂⊥)
.

The L2-norm bound in (4.10) follows from the splitting (4.8) with the aid of the
triangle inequality and the L2-stability of the L2-projection π̂⊥

p⊥
K
,0
. The second esti-

mate in (4.10) is a consequence of (4.8), the triangle inequality and the p-dependent
stability bound (4.9) in perpendicular direction. The third estimate in (4.10) is

again obtained from (4.8), by employing the commutativity of D̂‖ and π̂⊥
p⊥
K
,0
, as

well as the L2-stability of π̂⊥
p⊥
K
,0
. �

To exclude corner elements, for c ∈ C, we set Tℓ
σ,c := {K ∈ Mℓ

σ : K ∩ c 6= ∅ }
and define

Tℓ
σ,C :=

⋃

c∈C

Tℓ
σ,c, Mℓ

σ,C := Mℓ
σ \ Tℓ

σ,C . (4.12)

Here, we will always assume that the initial patch mesh M0 is sufficiently fine so
that Tℓ

σ,c and Tℓ
σ,c′ are disjoint for c 6= c′.

Lemma 4.2. Let u ∈ H1(Ω) and let πu = π⊥
0 ⊗ π‖u be the base projector in (4.4)

for any conformity indices rK ∈ {0, 1}. For the error terms in (4.7), we have

Υ
‖
Mℓ

σ
[η]2 .p Υ⊥

Mℓ
σ,C

[η⊥0 ]
2 +Υ

‖

Mℓ
σ,C

[η‖]2 +Υ
‖

Tℓ
σ,C

[η]2. (4.13)

Moreover, let u ∈ L2(Ω) and let π0u = π⊥
0 ⊗ π

‖
0u be the L2-projection obtained

in (4.4) by taking rK = 0 for all K ∈ Mℓ
σ. Then we have

‖η0‖2L2(Mℓ
σ)

. ‖η⊥0 ‖2L2(Mℓ
σ,C)

+ ‖η‖0‖2L2(Mℓ
σ,C)

+ ‖η0‖2L2(Tℓ
σ,C)

. (4.14)

Proof. These bounds follow from Lemma 4.1 and the inequality (3.36). �
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4.2.3. Exponential convergence. With (4.13), (4.14), we now state the following
exponential convergence rates in broken norms. Note that these bounds do not
imply the jump estimate (3.39); this result will be shown in Section 4.3.6 ahead.

Theorem 4.3. Let b be a weight exponent vector satisfying (2.9). For parame-

ters σ ∈ (0, 1) and s > 0, consider the sequence V ℓ,0
σ,s of discontinuous finite element

spaces (3.21).
Let u ∈ B−1−b(Ω) ∩ H1+θ(Ω) for some θ ∈ (0, 1), cf. Section 2.3, and let

πu = π⊥
0 ⊗ π‖u : H1(Ω) → V ℓ,0

σ,s be the non-conforming family of tensor projectors
in (4.4), for any elemental conformity indices rK ∈ {0, 1}. Then, for the errors η,
η⊥0 and η‖ in (4.7), we have

Υ
‖
Mℓ

σ
[η]2 .pΥ

⊥
Mℓ

σ,C
[η⊥0 ]

2 +Υ
‖

Mℓ
σ,C

[η‖]2 +Υ
‖

Tℓ
σ,C

[η]2 ≤ C exp(−2bℓ), (4.15)

with constants b, C > 0 independent of ℓ ≥ 2.

In addition, let u ∈ B−b(Ω)∩Hθ(Ω) for some θ ∈ (0, 1), and let π0u = π⊥
0 ⊗π

‖
0u

be the L2-projection obtained in (4.4) by taking rK = 0 for all K ∈ Mℓ
σ. For the

errors η0, η
⊥
0 and η

‖
0 , we have

‖η0‖2L2(Mℓ
σ)

.‖η⊥0 ‖2L2(Mℓ
σ,C)

+ ‖η‖0‖2L2(Mℓ
σ,C)

+‖η0‖2L2(Tℓ
σ,C)

≤ C exp(−2bℓ), (4.16)

with constants b, C > 0 independent of ℓ ≥ 2.

Note that upon adjusting the constants b, C to absorb the algebraic loss in |p|,
the bound (4.15) implies

Υ
‖
Mℓ

σ
[η]2 ≤ C exp(−2bℓ), (4.17)

with b, C > 0 independent of ℓ.

Remark 4.4. For simplicity, our proof of Theorem 4.3 is based on univariate hp-
approximation bounds for π̂p,0 and π̂p,1 in (4.1) which require p ≥ 1; cf. (A.1)
and (A.3). Alternatively, the proof of the L2-bound (4.16) could be solely based on
the L2-norm estimates for the L2-projection in [26, Theorem 3.11], thereby allowing

elemental polynomial degrees p⊥K ≥ 0, p
‖
K ≥ 0 in (4.16).

Remark 4.5. If u ∈ H1(Ω)/R respectively u ∈ L2(Ω)/R in Theorem 4.3, the

bounds (4.15), (4.17) respectively (4.16) remain true over the factor space V ℓ,0
σ,s /R.

This follows from the fact that the elemental interpolants πpK ,rK in (4.4) reproduce
constant functions.

Remark 4.6. The L2-norm bound (4.16) is of independent interest in the con-
text of mixed hp-FEMs for the (Navier-)Stokes equations or for linear elasticity
in mixed form under B−b(Ω)-regularity assumptions on the multipliers (although
corresponding regularity shifts do not seem to be available in the literature). We
refer to [21, 22, 27] and the references therein.

As in [25, Section 7], by superposition and due to the structure of the patch
mappings, it is sufficient to provide the proof of the exponential convergence bounds

in Theorem 4.3 for a reference corner-edge configuration on Q̃ as shown in Figure 1,
which involves a single corner c ∈ C and a single edge e ∈ Ec emanating from it.
In this setting, the proof of the bound (4.17) follows the lines of [24, Section 7.2],
albeit with essential modifications. For completeness, we review it in Appendix A,
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and detail the relevant changes as compared to [24, Section 7.2]. The proof of the
L2-norm bound (4.16) is similar and will be outlined simultaneously.

4.3. The base projectors πℓ
σ,s with partial conformity. We introduce and

analyze particular tensor product projectors of the form (4.4), which lead to the

base projectors πℓ
σ,s and the sets F⊥

ID(Mℓ
σ), F‖

ID(Mℓ
σ) in Proposition 3.10.

4.3.1. Base projectors for corner, edge and interior patches. We define reference

base projectors π̃t on each reference mesh M̃ℓ,t
σ for t ∈ {c, e, ce, int} with respect

to the linear polynomial degree distribution ps(M̃ℓ,t
σ ). Recall that the elemental

polynomial degree vectors pK are isotropic for t ∈ {c, int} and generally anisotropic

for t ∈ {e, ce}. For reference patches M̃ℓ,t
σ of type t ∈ {c, e, int}, we take the

reference base projectors π̃t as

π̃t (u|K) :=

{
πpK ,0(u|K), K ∈ M̃ℓ,t

σ , t ∈ {c, int},
πpK ,1(u|K), K ∈ M̃ℓ,e

σ ,
(4.18)

with the nodally exact projector in (4.1) applied in edge-parallel direction.

4.3.2. Base projectors for corner-edge patches with refinement along one edge. We

next consider the corner-edge reference mesh patch M̃ℓ,ce
σ with refinement along

one edge e ∈ Ec for a corner c. Following [20], we partition M̃ℓ,ce
σ as

M̃ℓ,ce
σ := M̃ℓ,ce,⊥

σ

.∪ M̃ℓ,ce,‖
σ , ℓ ≥ 2 , (4.19)

where the mesh M̃ℓ,ce,⊥
σ is a corner-patch type mesh of elements which are isotrop-

ically refined into the corner c. The mesh M̃ℓ,ce,‖
σ consists of a sequence of ℓ − 1

geometrically scaled edge-patch meshes, translated along the edge e:

M̃ℓ,ce,‖
σ =

ℓ⋃

ℓ′=2

Ψ̃ℓ′,ce(M̃ℓ′,e
σ ), ℓ ≥ 2 , (4.20)

where Ψ̃ℓ′,ce is a translation with respect to the edge-parallel variable x‖ combined

with a dilation by a factor only depending on σ, ℓ, ℓ′, and where the mesh M̃ℓ′,e
σ

is a reference edge mesh patch on Q̃ with ℓ′ + 1 mesh layers. In Figure 2 (left), a
schematic illustration of the patch decomposition (4.19), (4.20) is provided in which
the scaled edge-patch blocks are highlighted in boldface. In Figure 2 (right), we
show two adjacent edge-patch meshes as in (4.20) along the edge e.

A particular role will be played by the subset D̃ℓ,ce
σ ⊂ M̃ℓ,ce,‖

σ of the elements in
the outermost layer of each scaled mesh-patch block. It also consists of ℓ−1 layers:

D̃ℓ,ce
σ :=

ℓ⋃

ℓ′=2

D̃ℓ′,ce
σ , ℓ ≥ 2. (4.21)

Elements in D̃ℓ,ce
σ are referred to as diagonal elements of M̃ℓ,ce,‖

σ ; cf. [20]. They are

isotropic and illustrated in Figure 2. The isotropic mesh M̃ℓ,ce,⊥
σ is decomposed

into

M̃ℓ,ce,⊥
σ := T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ , (4.22)
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where T̃ℓ,c
σ is given by the eight elements nearest to c, and where the remaining

elements are collected in the mesh Õℓ,ce,⊥
σ . We then choose the reference base

projector on the reference corner-edge mesh as

π̃ce(u|K) :=

{
πpK ,0(u|K), K ∈ T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ

.∪ D̃ℓ,ce
σ ,

πpK ,1(u|K), K ∈ M̃ℓ,ce,‖
σ \ D̃ℓ,ce

σ ,
(4.23)

where in πpK ,1 the nodally exact projectors in (4.1) are applied in direction of e.
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Figure 2. Left: Patch decomposition (4.19)–(4.22) for σ = 0.5
and ℓ = 5. The diagonal elements are shaded. Right: The scaled

edge-patch blocks Ψ̃ℓ′,ce(M̃ℓ′,e
σ ) and Ψ̃ℓ′−1,ce(M̃ℓ′−1,e

σ ) for σ = 0.5
and ℓ′ = 5. The diagonal elements K4,K6 and K ′

4,K
′
6 belong to

D̃ℓ′,ce
σ and D̃ℓ′−1,ce

σ , respectively.

4.3.3. Base projectors for corner-edge patches with refinements along two or three

edges. For a corner-edge patch M̃ℓ,ce
σ with refinement along two edges e1, e2 meet-

ing at a common vertex c and isotropic refinement in perpendicular direction as
illustrated in Figure 3 (left), we write

M̃ℓ,ce
σ := M̃ℓ,ce,⊥

σ

.∪
(
M̃ℓ,ce1,‖

σ ∪ M̃ℓ,ce2,‖
σ

)
, ℓ ≥ 2, (4.24)

with two sequences of ℓ− 1 scaled edge-patch meshes as in (4.20) and an isotropic

corner-type mesh M̃ℓ,ce,⊥
σ perpendicular to e1, e2. The latter mesh is again decom-

posed as

M̃ℓ,ce,⊥
σ := T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ , (4.25)

where T̃ℓ,c
σ is the same set of corner elements as in (4.22) and Õℓ,ce,⊥

σ the set of

all remaining elements. We denote by D̃ℓ,cei
σ ⊂ M̃ℓ,cei,‖

σ the diagonal elements

of M̃ℓ,cei,‖
σ defined as above; cf. Figure 3 (left). We then set

π̃ce(u|K) :=

{
πpK ,0(u|K), K ∈ T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ

.∪
(
D̃ℓ,ce1

σ ∪ D̃ℓ,ce2
σ

)
,

πpK ,1(u|K), K ∈ M̃ℓ,cei,‖
σ \ D̃ℓ,cei

σ , i = 1, 2,
(4.26)

where again the univariate projectors (4.1) are employed along ei for i = 1, 2.
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Remark 4.7. The elements in D̃ℓ,cei
σ act as isotropic buffer zones and allow us to

unambiguously assign different directions in M̃ℓ,ce1,‖
σ and M̃ℓ,ce2,‖

σ .

Finally, if M̃ℓ,ce
σ is refined along three edges e1, e2, e3 meeting at a common

vertex c, as depicted in Figure 3 (right), we analogously write

M̃ℓ,ce
σ := T̃ℓ,c

σ

.∪
(
M̃ℓ,ce1,‖

σ ∪ M̃ℓ,ce2,‖
σ ∪ M̃ℓ,ce3,‖

σ

)
, (4.27)

now with three sequences of ℓ − 1 scaled edge-patch blocks. The set D̃ℓ,cei
σ ⊂

M̃ℓ,cei,‖
σ denotes the diagonal elements of M̃ℓ,cei,‖

σ . With (4.27), we define

π̃ce(u|K) :=

{
πpK ,0(u|K), K ∈ T̃ℓ,c

σ

.∪
(
∪3
i=1 D̃ℓ,cei

σ

)
,

πpK ,1(u|K), K ∈ M̃ℓ,cei,‖
σ \ D̃ℓ,cei

σ , 1 ≤ i ≤ 3,
(4.28)

once more with the nodally exact projectors applied in the direction ei.

K1 K2
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K
′
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′
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K
′
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K
′′
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K
′′′
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K
′
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K
′
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′
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′′′
4

K
′′′
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Figure 3. Scaled edge-patch blocks for σ = 0 and ℓ′ = 5. Left:
Refinement along two edges with diagonal elementsK1,K4,K6 and
K ′

1,K
′
4,K

′
6. Right: Refinement along three edges with diagonal

elements K1,K4,K6 and K ′
1,K

′
4,K

′
6.

4.3.4. The base projectors πℓ
σ,s. The reference base projectors π̃t in (4.18), (4.23),

as well as the variants in (4.26) and (4.28), give rise to the (non-conforming) base

tensor projectors πℓ
σ,s = πℓ,⊥

σ,s ⊗ π
ℓ,‖
σ,s : H1(Ω) → V ℓ,0

σ,s in (3.37) in Proposition 3.10.
The bound (4.17) resulting from Theorem 4.3 then yields the broken norm error

bound (3.38) there. Next, we define the sets F⊥
ID(Mℓ

σ), F‖
ID(Mℓ

σ) and prove the
jump bound (3.39).

4.3.5. Partial conformity. We first consider edge-perpendicular interfaces Γp p ′ of
two mesh patches Mp , Mp ′ along the same edge e. Recall that the interface Γp p ′

consists of ℓ+ 1 mesh layers, cf. [23, Section 3.2], and that the patches coincide on
the interfaces due to Assumption 3.1. The definition of πℓ

σ,s and the nodal exactness
property (4.2) imply the following results.
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Lemma 4.8. For u ∈ V , there holds: (i) if Mp ,Mp ′ are two adjacent edge
mesh patches along the same edge, then πℓ

σ,su is continuous across all layers of the
interface Γp p ′ ; (ii) if Mp is an edge mesh patch and Mp ′ an adjacent corner-edge
patch along the same edge, then πℓ

σ,su is continuous across the inner layers of the
interface Γp p ′ , but is generally discontinuous across the outermost layer of Γp p ′ .

Remark 4.9. Conformity properties analogous to those in Lemma 4.8 hold on edge-
perpendicular boundaries of edge or corner-edge mesh patches which are situated
on a Dirichlet boundary face Γι for ι ∈ JD. On the corresponding elemental
boundaries, the projection πℓ

σ,su vanishes if u ∈ V .

Next, we analyze the continuity within different edge-patch blocks Ψ̃ℓ′,ce(M̃ℓ′,e
σ )

in (4.20) and as appearing in the representations (4.19), (4.24) and (4.27).

Lemma 4.10. For u ∈ V and 3 ≤ ℓ′ ≤ ℓ, let Ψ̃ℓ′−1,ce(M̃ℓ′−1,e
σ ) and Ψ̃ℓ′,ce(M̃ℓ′,e

σ )
be two adjacent edge-patch blocks along the same edge. Then πℓ

σ,su is continuous

across perpendicular faces between Ψ̃ℓ′−1,ce(M̃ℓ′−1,e
σ ) and Ψ̃ℓ′,ce(M̃ℓ′,e

σ ), except for

the faces between the diagonal elements in D̃ℓ′−1,ce
σ and the corresponding elements

in Ψ̃ℓ′,ce(M̃ℓ′,e
σ ).

To illustrate Lemma 4.10, we note that πℓ
σ,su is generally non-conforming across

the isotropic faces FK′
4
,K′′

4
, FK′

6
,K′′

6
in Figure 2 (right), and across the isotropic faces

FK′
1
,K′′

1
, FK′

4
,K′′

4
, FK′

6
,K′′

6
, FK′

6
,K′′′

6
in Figure 3 (left).

The partial conformity in Lemma 4.8, Remark 4.9 and Lemma 4.10 allows us

to identify sets F⊥
ID(Mℓ

σ) and F‖
ID(Mℓ

σ) = F‖
I (Mℓ

σ) ∪ F‖
D(Mℓ

σ), over which πℓ
σ,su

is conforming and non-conforming, respectively. The faces F ∈ F‖
ID(Mℓ

σ) sat-
isfy (3.31), (3.32), as claimed in Proposition 3.10.

4.3.6. Polynomial face jump bounds. Next, we bound the face jumps of πℓ
σ,su over

the faces F ∈ F‖
ID(M) for M = Mℓ

σ, and show the estimate (3.39).
To this end, we first recall the anisotropic trace inequality from [23, Lemma 4.2]

(with t = 2).

Lemma 4.11. For F ∈ F‖
ID(M) with F ⊆ F ′ ∈ F(K) and u ∈ H1(K), there

holds h
−1
F ‖u‖2

L2(F ) . (h⊥
K)−2‖u‖2

L2(K) + ‖D⊥u‖2L2(K) . N⊥
K [u]2.

Next, we establish the following variant of the jump estimate of [25, Section 5.5],
which is essential for controlling the jumps of πℓ

σ,su over anisotropic faces of M.

Due to the appearance ofH1-projectors in edge-parallel direction, we require in this
bound a local smoothness assumption which is slightly stronger than H1-regularity.

Lemma 4.12. Consider an edge-parallel face F = FK1,K2
∈ F‖

I (M) shared by

two axiparallel elements K1 = K⊥
1 × K‖ and K2 = K⊥

2 × K‖ as in (3.3), with
K‖ = (0, h‖) in parallel direction and with K⊥

1 and K⊥
2 two shape-regular and

possibly non-matching rectangles of diameters h⊥
K1

≃ h⊥
K2

≃ h⊥ in perpendicular

direction, for parameters h⊥ . h‖. Let the elemental polynomial degrees be given by

pKi
= (p⊥i , p

‖). Let u ∈ H1((K
⊥
1 ∪K

⊥
2 )

◦)⊗H1(K‖) and π1u|Ki
= π⊥

0 ⊗ π
‖
1u|Ki

=
πpKi

,1(u|Ki
) for i = 1, 2. For the error terms η1 = u − π1u, η

⊥
0 = u − π⊥

0 u and
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η
‖
1 = u− π

‖
1u as in (4.7), we have the bound

h
−1
F ‖[[π1u]]F ‖2L2(F ) .p

2∑

i=1

(
‖D⊥η

⊥
0 ‖2L2(Ki)

+ ‖D⊥η
‖
1‖2L2(Ki)

)
. (4.29)

Similarly, let F = FK,Γι
∈ F‖

D(M), ι ∈ JD, be an edge-parallel Dirichlet face of

K = K⊥×K‖, with K‖ = (0, h‖) and K⊥ a shape-regular rectangle of diameter h⊥,
for h⊥ . h‖. Let the elemental polynomial degrees be given by pK = (p⊥, p‖). Let

u ∈ H1(K⊥)⊗H1(K‖) with u|F = 0 and π1u|K = π⊥
0 ⊗π

‖
1u|K = πpK ,1(u|K). Then

we have the bound

h
−1
F ‖[[π1u]]F ‖2L2(F ) .p ‖D⊥η

⊥
0 ‖2L2(K) + ‖D⊥η

‖
1‖2L2(K). (4.30)

Proof. Note that the setting is such that property (3.31) is fulfilled with hF ≃
h⊥
Ki

≃ h⊥. On element Ki, i = 1, 2, we have

η⊥0 − π⊥
0 η

⊥
0 = (u − π⊥

0 u)− π⊥
0 (u− π⊥

0 u) = u− π⊥
0 u = η⊥0 . (4.31)

Then, we note that π
‖
1u|Ki

∈ H1(K⊥
i ) ⊗ Pp‖(K‖) ⊂ H1(K) for i = 1, 2. Hence,(

π
‖
1u|K1

)
|F =

(
π
‖
1u|K2

)
|F in L2(F ). With this identity and since π⊥

0 and π
‖
1 com-

mute, we conclude that

‖[[π1u]]F ‖2L2(F ) = ‖π1u|K1
− π1u|K2

‖2L2(F )

.

2∑

i=1

‖π⊥
0 ⊗ π

‖
1u|Ki

− π
‖
1u|Ki

‖2L2(F ) =

2∑

i=1

‖π‖
1η

⊥
0 |Ki

‖2L2(F ).

We then consider element Ki for i = 1, 2. With Lemma 4.11, we have

h
−1
F ‖π‖

1η
⊥
0 |Ki

‖2L2(F ) . (h⊥
Ki

)−2‖π‖
1η

⊥
0 ‖2L2(Ki)

+ ‖D⊥(π
‖
1η

⊥
0 )‖2L2(Ki)

.

Property (4.31) and standard h-version approximation results for π⊥
0 in perpendic-

ular direction yield

‖π‖
1η

⊥
0 ‖2L2(Ki)

= ‖(π‖
1η

⊥
0 )− π⊥

0 (π
‖
1η

⊥
0 )‖2L2(Ki)

. (h⊥
Ki

)2‖D⊥(π
‖
1η

⊥
0 )‖2L2(Ki)

.

Therefore,

h
−1
F ‖π‖

1η
⊥
0 |Ki

‖2L2(F ) . ‖D⊥(π
‖
1η

⊥
0 )‖2L2(Ki)

. ‖D⊥((π
‖
1 − π

‖
0)η

⊥
0 )‖2L2(Ki)

+ ‖D⊥(π
‖
0η

⊥
0 )‖2L2(Ki)

.
(4.32)

We next bound the two terms in the second line of (4.32). We write the first term
as

(π
‖
1 − π

‖
0)η

⊥
0 = (π

‖
1 − π

‖
0)u− π⊥

0 (π
‖
1 − π

‖
0)u

= π
‖
0(π

‖
1u− u)− π⊥

0

(
π
‖
0(π

‖
1u− u)

)
.

With the triangle inequality and the stability bound (4.9) for π⊥
0 , we find

‖D⊥

(
(π

‖
1 − π

‖
0)η

⊥
0

)
‖2L2(Ki)

. (p⊥i )
4‖D⊥

(
π
‖
0(π

‖
1u− u)

)
‖2L2(Ki)

.

Then, since Dα⊥

⊥ and π
‖
0 commute, the L2-stability of the L2-projection π

‖
0 implies

‖D⊥

(
(π

‖
1 − π

‖
0)η

⊥
0

)
‖2L2(Ki)

. (p⊥i )
4‖D⊥η

‖
1‖2L2(Ki)

.
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To estimate the second term in (4.32), we invoke the L2-stability of π
‖
0 as before to

obtain
‖D⊥(π

‖
0η

⊥
0 )‖2L2(K1)

. ‖D⊥η
⊥
0 ‖2L2(K1)

.

Combining these arguments yields (4.29).
The proof of (4.30) for a Dirichlet boundary face F is obtained analogously, by

noting that
(
π1u|K

)
|F = 0 in L2(F ). �

Lemma 4.13. Let u ∈ B−1−b(Ω) and let πℓ
σ,s = πℓ,⊥

σ,s ⊗π
ℓ,‖
σ,s be the hp-base projectors

introduced in Section 4.3.4. With the error terms defined as in (4.7), i.e., ηℓσ,s =

u− πℓ
σ,su, η

ℓ,⊥
σ,s = u− πℓ,⊥

σ,s u and η
ℓ,‖
σ,s = u− π

ℓ,‖
σ,su, we have the bound

jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,s]

2 .p Υ⊥
Mℓ

σ,C
[ηℓ,⊥σ,s ]

2 +Υ
‖

Mℓ
σ,C

[η
ℓ,‖
σ,s]

2 +Υ
‖

Tℓ
σ,C

[ηℓσ,s]
2. (4.33)

Proof. Anisotropic faces F in F‖
ID(Mℓ

σ) arise in (mapped) edge patches M̃ℓ,e
σ and in

the inner-most ℓ′ layers of edge-patch blocks Ψℓ′,ce(M̃ℓ′,e
σ ) of (mapped) corner-edge

patches M̃ℓ,ce
σ (with refinement along one, two or three edges); see Sections 4.3.2

and 4.3.3. All these faces are edge-parallel and do not abut at corners. Hence, the
jumps of πℓ

σ,su over such faces can be bounded by the estimates in Lemma 4.12, upon
noting that the same polynomial degrees are employed in edge-parallel direction and
that, for u ∈ B−1−b(Ω), the smoothness assumptions in Lemma 4.12 are satisfied;

see (2.6). The remaining faces in F‖
ID(Mℓ

σ) are isotropic and the jumps over them
can by bounded by isotropic versions of the trace inequality in Lemma 4.11, along
with the stability bounds in Lemma 4.1. �

Lemma 4.13 along with estimate (4.15) for πℓ
σ,s then establishes the bound (3.39)

for jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,s], which completes the proof of Proposition 3.10.

5. Averaging Operators

We construct the averaging operators Aℓ
σ,s : V

ℓ,0,⊥
σ,s → V

ℓ,0,⊥
σ,s in Theorem 3.12

over geometric meshes M = Mℓ
σ.

5.1. Sets of adjacent elements. Let K ∈ M. For N ∈ N (K), E ∈ E(K) and
F ∈ F(K), we introduce the following sets of elements which regularly share N , E
and F , respectively:

∆K,N := {K ′ ∈ M : N ∈ N (K ′) }, (5.1)

∆K,E := {K ′ ∈ M : E ∈ E(K ′) }, (5.2)

∆K,F := {K ′ ∈ M : F ∈ F(K ′) }. (5.3)

Clearly, we have K ∈ ∆K,N , K ∈ ∆K,E and K ∈ ∆K,F ⊆ δK,F , with δK,F

introduced in (3.11), respectively. Then, card(∆K,N ) ≥ 1, card(∆K,E) ≥ 1, and
card(∆K,F ) ∈ {1, 2}. There holds

N ∈ N (E) : ∆K,E ⊆ ∆K,N and E ∈ E(F ) : ∆K,F ⊆ ∆K,E . (5.4)

Moreover, the sets defined in (5.1)–(5.3) have the property that

∆K,N = ∆K′,N , K ′ ∈ ∆K,N , (5.5)

∆K,E = ∆K′,E, K ′ ∈ ∆K,E , (5.6)

∆K,F = ∆K′,F , K ′ ∈ ∆K,F . (5.7)
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In the following, we denote by ND(K) ⊂ N (K), ED(K) ⊂ E(K) and FD(K) ⊂
F(K), the sets of elemental nodes, edges and faces, respectively, which are situated
on a Dirichlet boundary face Γι for ι ∈ JD.

For N ∈ N (K) \ ND(K) respectively N ∈ ND(K), we define

F‖
I (∆K,N ) := {F = FK,K′ ∈ F‖

I (M) : K ′ ∈ ∆K,N \ {K} },
F‖

D(∆K,N ) := {F = FK′,Γι
∈ F‖

D(M) : K ′ ∈ ∆K,N and ι ∈ JD }.
(5.8)

Similarly, for E ∈ E(K) \ ED(K) respectively E ∈ ED(K), we set

F‖
I (∆K,E) := {F = FK,K′ ∈ F‖

I (M) : K ′ ∈ ∆K,E \ {K} },
F‖

D(∆K,E) := {F = FK′,Γι
∈ F‖

D(M) : K ′ ∈ ∆K,E and ι ∈ JD} .
(5.9)

Finally, if F ∈ F(K) \ FD(K) respectively F ∈ FD(K), we introduce

F‖
I (∆K,F ) := {F = FK,K′ ∈ F‖

I (M) : K ′ ∈ ∆K,F \ {K} },
F‖

D(∆K,F ) := {F = FK′,Γι
∈ F‖

D(M) : K ′ ∈ ∆K,F and ι ∈ JD} .
(5.10)

We further define

F‖
ID(∆K,N ) := F‖

I (∆K,N ) ∪ F‖
D(∆K,N ), (5.11)

F‖
ID(∆K,E) := F‖

I (∆K,E) ∪ F‖
D(∆K,E), (5.12)

F‖
ID(∆K,F ) := F‖

I (∆K,F ) ∪ F‖
D(∆K,F ). (5.13)

Notice that any of the sets in (5.8)–(5.13) could be empty.

5.2. Averaging over ∆K,N . Let v ∈ V
ℓ,0,⊥
σ,s be fixed. We first construct an ap-

proximation vn ∈ V
ℓ,0,⊥
σ,s by modifying v at possibly all elemental vertices. For

K ∈ M and N ∈ N (K), we define the averaged vertex value AK,N (v) by averag-
ing v over all elements of ∆K,N in (5.1):

AK,N (v) :=





1

card(∆K,N )

∑

K′∈∆K,N

v|K′(N), N ∈ N (K) \ ND(K),

0, N ∈ ND(K).

(5.14)

The averaged value AK,N (v) in (5.14) is well-defined irrespective of whether N ∈
N (K) gives rise to a regular or irregular node in N (M). With (5.5), we have

AK,N (v) = AK′,N (v), K ′ ∈ ∆K,N . (5.15)

Hence, the values AK,N assign a unique vertex value on the elements in ∆K,N

which match regularly at the vertex N .
For K ∈ M and N ∈ N (K), we denote by LK,N (v) ∈ Q1(K) the unique

polynomial vertex lifting with the property that, for N ′ ∈ N (K),

LK,N (v)(N ′) =

{
v|K(N) −AK,N (v) N ′ = N ,

0 N ′ 6= N .
(5.16)

Lemma 5.1. For K ∈ M and N ∈ N (K), let the vertex lifting LK,N (v) be defined
by (5.16) with the averages AK,N (v) in (5.14). Then there holds

N⊥
K [LK,N (v)]2. |pK |4jmp

F
‖
ID

(∆K,N )
[v]2, (5.17)
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with F‖
ID(∆K,N ) in (5.11) and jmpF ′ [v] defined in (3.30). If F‖

ID(∆K,N ) = ∅, the
sum on the right-hand side of (5.17) is understood as zero.

Proof. From the definition (5.14) and anisotropic scaling, we readily find that

‖LK,N (v)‖2L2(K) . (h⊥
K)2h

‖
K

∣∣v|K(N)−AK,N (v)
∣∣2. (5.18)

The univariate inverse estimate in [26, Theorem 3.91], applied in each direction and

combined with anisotropic scaling (employing that h⊥
K . h

‖
K , p⊥K ≤ p

‖
K), yields the

anisotropic inverse inequality

‖∇v‖2L2(K) . (p
‖
K)4(h⊥

K)−2‖v‖2L2(K), v ∈ QpK
(K) . (5.19)

From (5.19) (recalling that LK,N ∈ Q1(K)) and (5.18), we obtain

N⊥
K [LK,N (v)]2. (h⊥

K)−2‖LK,N (v)‖2L2(K) . h
‖
K

∣∣v|K(N) −AK,N (v)
∣∣2. (5.20)

We proceed by estimating |v|K(N) −AK,N (v)
∣∣ in (5.20). We consider first the

case where N ∈ N (K) is a node of N (K) \ ND(K). Then the triangle inequality,
the fact that card(∆K,N )−1 is bounded uniformly in ℓ, and the partial conformity

of v ∈ V
ℓ,0,⊥
σ,s imply

∣∣v|K(N) −AK,N (v)
∣∣2 .

1

card(∆K,N )2

∑

K′∈∆K,N\{K}

∣∣v|K(N)− v|K′(N)
∣∣2

.
∑

K′∈∆K,N\{K}

|[[v]]FK,K′ (N)|2

.
∑

K′∈∆K,N\{K}

‖[[v]]FK,K′ ‖2L∞(FK,K′ )

.
∑

F∈F
‖
I
(∆K,N )

‖[[v]]F ‖2L∞(F ).

(5.21)

If the sets ∆K,N \ {K} or F‖
I (∆K,N ) are empty, then the right-hand side of (5.21)

is understood as zero; then we have v|K(N) = AK,N (v).
Second, let N ∈ ND(K). Consider a Dirichlet boundary face F = FK′,Γι

with
N ∈ N (F ), F ∈ F(K ′), for K ′ ∈ ∆K,N and ι ∈ JD. We may assume that F ∈
F‖

D(∆K,N ); otherwise we have v|K(N) = 0, AK,N (v) = 0 and LK,N (v) = 0 by the
conformity properties of v and definitions (5.14), (5.16), respectively. Therefore,

∣∣v|K(N) −AK,N (v)
∣∣2 ≤ ‖[[v]]F ‖2L∞(F ) ≤

∑

F∈F
‖
D
(∆K,N )

‖[[v]]F ‖2L∞(F ). (5.22)

Combining (5.20), (5.21) and (5.22) gives

N⊥
K [LK,N (v)]2. h

‖
K

∑

F∈F
‖
ID

(∆K,N )

‖[[v]]F ‖2L∞(F ). (5.23)

To bound the L∞-norms of the jumps of v in (5.23), we recall from [26, Theo-
rems 3.92] the following univariate inverse inequality: let I = (a, b) be an interval
of size h = b− a. Then

|q(a)|2 + |q(b)|2 ≤ ‖q‖2L∞(I) . p2h−1‖q‖2L2(I) , q ∈ Pp(I). (5.24)
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for all polynomials q ∈ Pp(I). A face F ∈ F‖
ID(∆K,N ) can be written in the

form (3.32). Applying (5.24) in the two directions on F (see also [23, Lemma 4.3(b)])
and the definition of the face polynomial degrees pK,F in (3.12) yield

‖[[v]]F ‖2L∞(F ) . |pK |4(h⊥
K)−1(h

‖
K)−1‖[[v]]F ‖2L2(F ). (5.25)

The bound (5.17) follows from (5.23) and (5.25) using that hF ≃ h⊥
K by (3.31). �

For K ∈ M, we introduce the full vertex lifting

Ln
K(v) :=

∑

N∈N (K)

LK,N (v) ∈ Q1(K). (5.26)

We further define the approximation vn ∈ SpK
(K) as

vn|K := v|K − Ln
K(v), K ∈ M. (5.27)

The function vn|K has assigned vertex values at all elemental vertex nodes:

vn|K(N) = AK,N (v), N ∈ N (K). (5.28)

Note also that, in the expansion (3.14), (3.15), only the nodal parts of vn|K and v|K
differ, while the edge, face and interior parts of vn|K and v|K coincide.

Proposition 5.2. For K ∈ M, let vn|K be defined in (5.27). Then, vn ∈ V
ℓ,0,⊥
σ,s

and there holds

Υ⊥
M[v − vn]2 + jmp

F
‖
ID

(M)
[vn]2 . |p|4 jmp

F
‖
ID

(M)
[v]2. (5.29)

Proof. The function v ∈ V ℓ,0,⊥
σ,s is continuous over all faces F ∈ F⊥

ID(M). Prop-
erty (5.15) and definition (5.16) then imply that the liftings Ln

K(v) yield conforming
approximations over the same faces. Since vn|K = v|K − Ln

K(v), the approxima-

tion vn is continuous over these faces as well, and thus, vn ∈ V
ℓ,0,⊥
σ,s . The bound

for Υ⊥
M[v− vn]2 in (5.29) follows immediately by summing (5.17) over all elements

K ∈ M and N ∈ N (K). To bound the L2-norms of the jumps of vn, consider an

interior face F = FK,K′ ∈ F‖
ID(M). The definition (5.27), the triangle inequality

and the trace inequality in Lemma 4.11 (noting that hF ≃ h⊥
K) yield

h
−1
F ‖[[vn]]F ‖2L2(F ) . h

−1
F ‖[[v]]F ‖2L2(F ) +N⊥

K [Ln
K(v)]2 +N⊥

K′ [Ln
K(v)]2.

A corresponding bound holds for Dirichlet faces F ∈ F‖
D(M). Summing these

estimates over all F ∈ F‖
ID(M) and again applying (5.17) gives the desired bound

for jmp
F

‖
ID

(M)
[vn]2 in (5.29). �

5.3. Averaging over ∆K,E. With (3.17) and since Ln
K(v) in (5.26) is trilinear,

the approximation vn ∈ V
ℓ,0,⊥
σ,s from Section 5.2 satisfies

(vn|K)|E ∈ PpK,E
(E), K ∈ M, E ∈ E(K), (5.30)

with the minimum edge degree pK,E≥ 1 in (3.13). For K ∈ M and E ∈ E(K), we
next average vn over the set ∆K,E in (5.2) and define:

AK,E(v
n) :=





1

card(∆K,E)

∑

K′∈∆K,E

(
vn|K′

)
|E , E ∈ E(K) \ ED(K),

0, E ∈ ED(K).

(5.31)

By (5.30), the function AK,E(v
n) is a polynomial in PpK,E

(E).
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Lemma 5.3. Let K ∈ M and E ∈ E(K). Then, AK,E(v
n) = AK′,E(v

n) for
K ′ ∈ ∆K,E. Moreover, for N ∈ N (E), we have AK,E(v

n)(N) = vn|K(N).

Proof. The first assertion follows from (5.6). Then, with (5.4), (5.15), there holds
AK′,N (v) = AK,N (v) for K ′ ∈ ∆K,E . In combination with (5.31) and (5.28), this
property yields

AK,E(v
n)(N) =

1

card(∆K,E)

∑

K′∈∆K,E

AK′,N (v)

=
1

card(∆K,E)

∑

K′∈∆K,E

AK,N (v) = AK,N (v) = vn|K(N).

The second assertion follows. �

For K ∈ M and E ∈ E(K), we denote by LK,E(v
n) ∈ SpK

(K) the unique
polynomial lifting which satisfies

LK,E(v
n)|E = (vn|K)|E −AK,E(v

n) ∈ PpK,E
(E) on E, (5.32)

and which is given by linear blending functions in the two directions orthogonal
to E. With Lemma 5.3, there holds

LK,E(v
n)(N) = 0, N ∈ N (E). (5.33)

The lifting LK,E(v) vanishes on the remaining elemental edges E′ 6= E, as well as
on faces F ∈ F(K) with E 6∈ F(E).

Lemma 5.4. For K ∈ M and E ∈ E(K), let the edge lifting LK,E(v
n) be defined

by (5.32) with the averages AK,E(v
n) in (5.31). Then there holds

N⊥
K [LK,E(v

n)]2 . |pK |6jmp
F

‖
ID

(∆K,E)
[vn]2, (5.34)

with F‖
ID(∆K,E) in (5.12). If F‖

ID(∆K,E) = ∅, the sum on the right-hand side is
understood as zero.

Proof. We denote by hE the length of E ∈ E(K). Then, by (3.3), either hE ≃ h⊥
K

or hE ≃ h
‖
K . From the definition of (5.32) and anisotropic scaling, we see that

‖LK,E(v
n)‖2L2(K) .

{
h⊥
Kh

‖
K‖vn|K −AK,E(v

n)‖2L2(E), hE ≃ h⊥
K ,

(h⊥
K)2‖vn|K −AK,E(v

n)‖2L2(E), hE ≃ h
‖
K .

(5.35)

Hence, the inverse inequality (5.19) implies

N⊥
K [LK,E(v

n)]2

. |pK |4
{

(h⊥
K)−1h

‖
K‖vn|K −AK,E(v

n)‖2
L2(E), hE ≃ h⊥

K ,

‖vn|K −AK,E(v
n)‖2

L2(E), hE ≃ h
‖
K .

(5.36)

We continue by bounding ‖vn|K − ve|K‖L2(E). First, we consider the case E ∈
E(K) \ ED(K). From the definition (5.31), the triangle inequality, the uniform

boundedness of card(∆K,E)
−2, and the fact that vn ∈ V

ℓ,0,⊥
σ,s (cf. Proposition 5.2),
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we obtain

‖vn|K −AK,E(v
n)‖2L2(E) .

1

card(∆K,E)2

∑

K′∈∆K,E\{K}

‖vn|K − vn|K′‖2L2(E)

.
∑

K′∈∆K,E\{K}

‖[[vn]]FK,K′ ‖2L2(E) (5.37)

.
∑

F∈F
‖
I
(∆K,E)

‖[[vn]]F ‖2L2(E).

Again, if the sets ∆K,E \ {K} or F ∈ F‖
I (∆K,E) are empty, then the right-hand

side of (5.37) is understood as zero, in which case we have (vn|K)|E = AK,E(v
n).

Second, let E ∈ ED(K) be a Dirichlet edge. Then, consider a boundary face
F = FK′,Γι

with E ∈ E(F ), F ∈ F(K ′), for K ′ ∈ ∆K,E and ι ∈ JD. As before, we

may assume F ∈ F‖
D(∆K,E), otherwise LK,E(v

n) = 0 due to the partial conformity
of vn and (5.31), (5.32). We find that

‖vn|K −AK,E(v
n)‖2L2(E) ≤ ‖[[vn]]F ‖2L2(E) .

∑

F∈F
‖
D
(∆K,E)

‖[[vn]]F ‖2L2(E). (5.38)

For F ∈ F‖
ID(∆K,E) written in the form (3.32), the inequality (5.24) applied on

E ⊂ F in direction perpendicular to E implies

‖[[vn]]F ‖2L2(E) .

{
|pK |2(h‖

K)−1‖[[vn]]F ‖2L2(F ) hE ≃ h⊥
K ,

|pK |2(h⊥
K)−1‖[[vn]]F ‖2L2(F ) hE ≃ h

‖
K .

(5.39)

Therefore, combining the inequalities in(5.36), (5.37), (5.38) and (5.39) gives the
desired bound (5.34). �

We define the full edge lifting

Le
K(vn) :=

∑

E∈E(K)

LK,E(v
n) ∈ SpK

(K), K ∈ M, (5.40)

and introduce the approximation ve ∈ SpK
(K) by

ve|K := vn|K − Le
K(vn), K ∈ M. (5.41)

The definition (5.41) only affects the edge parts of vn|K in (3.14), (3.15), while
nodal, face and interior parts of vn|K are not modified. By construction and
Lemma 5.3, there holds

(
ve|K

)
|E = AK,E(v

n), E ∈ E(K), (5.42)

ve|K(N) = vn|K(N), N ∈ N (K). (5.43)

The analog of Proposition 5.2 reads as follows.

Proposition 5.5. For K ∈ M, let ve|K be defined in (5.41). Then, ve ∈ V
ℓ,0,⊥
σ,s

and there holds

Υ⊥
M[v − ve]2 + jmp

F
‖
ID

(M)
[ve]2 . |p|10 jmp

F
‖
ID

(M)
[v]2. (5.44)
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Proof. By construction, it follows that ve ∈ V
ℓ,0,⊥
σ,s . Then, by proceeding as in the

proof of Proposition 5.2, the estimate (5.34) yields

Υ⊥
M[vn − ve]2 + jmp

F
‖
ID

(M)
[ve]2 . |p|6 jmp

F
‖
ID

(M)
[vn]2.

The triangle inequality and the bound (5.29) now show (5.44). �

5.4. Averaging over ∆K,F . With (3.17) and the definition of the minimum edge

degrees in (3.13), the approximation ve ∈ V
ℓ,0,⊥
σ,s satisfies:

(ve|K)|F ∈ QpK,F
(F ), K ∈ M, F ∈ F(K), (5.45)

with the minimum face degree pK,F∈ N2 in (3.12). We average ve over ∆K,F

in (5.3):

AK,F (v
e) :=





1

card(∆K,F )

∑

K′∈∆K,F

(ve|K′)|F , F ∈ F(K) \ FD(K),

0, F ∈ FD(K).

(5.46)

By (5.45), the function AK,F (v
e) is a polynomial in QpK,F

(F ).

Lemma 5.6. Let K ∈ M and F ∈ F(K). Then, AK,F (v
e) = AK′,F (v

e) for K ′ ∈
∆K,F . Moreover, if E ∈ E(F ) is an edge of F , we have AK,F (v

e)|E = (ve|K)|E.
Proof. The first property follows from (5.7). To show the second property, consider
x ∈ E ∈ E(K). With (5.4) and Lemma 5.3, AK′,E(v

n) = AK,E(v
n) for K ′ ∈ ∆K,F .

Employing (5.46) and (5.42) then yields

AK,F (v
e)(x) =

1

card(∆K,F )

∑

K′∈∆K,F

AK′,E(v
n)(x)

=
1

card(∆K,F )

∑

K′∈∆K,F

AK,E(v
n)(x) = AK,E(v

n)(x) = ve|K(x),

which completes the proof. �

For K ∈ M and F ∈ F(K), we denote by LK,F (v
e) ∈ SpK

(K) the unique
polynomial lifting which is given by

LK,F (v
e)|F := (ve|K)|F −AK,F (v

e) ∈ QpK,F
(F ) on F , (5.47)

and by a linear blending function in direction orthogonal to F . With Lemma 5.6,
there holds

LK,F (v
e)|E = 0, E ∈ E(F ). (5.48)

Therefore, the lifting LK,F (v
e) vanishes on all other elemental faces F ′ ∈ F(K)

with F ′ 6= F .

Lemma 5.7. For K ∈ M and F ∈ F(K), let the face lifting LK,F (v
e) be defined

by (5.47) with AK,F (v
e) in (5.46). Then there holds

N⊥
K [LK,F (v

e)]2 . |pK |4jmp
F

‖
ID

(∆K,F )
[ve]2, (5.49)

with F‖
ID(∆K,F ) in (5.13). If F‖

ID(∆K,F ) = ∅, the sum on the right-hand side is
understood as zero.
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Proof. Let first F ∈ F(K)\FD(K). We have card(∆K,F ) ∈ {1, 2}. If card(∆K,F ) =
1, then F is irregular in F(M) or a Neumann boundary face in FN (M). In this

case, we find that LK,F (v
e) = 0 and F‖

ID(∆K,F ) = ∅. Hence, (5.49) is satisfied.
Next, let card(∆K,F ) = 2. Then there is K ′ ∈ ∆K,F such that F = FK,K′∈ FI(M)

is a regular face. We may assume that F ∈ F‖
I (M); otherwise we have LK,F (v

e) = 0

since ve ∈ V
ℓ,0,⊥
σ,s . The properties (3.31), (3.32), anisotropic scaling and the inverse

inequality (5.19) yield

N⊥
K [LK,F (v

e)]2 . |pK |4h−1
F ‖ve|K −AK,F (v

e)‖2L2(F )

. |pK |4h−1
F ‖[[ve]]F ‖2L2(F ).

(5.50)

Second, consider F ∈ FD(K). Then, F = FK,Γι
∈ FD(M) is a Dirichlet face for

ι ∈ JD. Again, we may assume F ∈ F‖
D(M). Proceeding as before, we obtain

N⊥
K [LK,F (v

e)]2 . |pK |4h−1
F ‖[[ve]]F ‖2L2(F ). (5.51)

Referring to the bounds (5.50), (5.51) and the definition of the sets F‖
ID(∆K,F )

in (5.13) implies (5.49). �

For K ∈ M, we define the full face lifting by

Lf
K(ve) :=

∑

F∈F(K)

LK,F (v
e) ∈ SpK

(K), (5.52)

and introduce vf ∈ V
ℓ,0,⊥
σ,s by setting

vf |K := ve|K − Lf
K(ve) ∈ SpK

(K), K ∈ M. (5.53)

The definition (5.53) only affects the face parts of ve|K in (3.14), (3.15), while the
other parts of ve|K are left unchanged. In particular, the interior part of vf |K is
equal to that of v|K . By construction, the function vf is conforming over all faces

F ∈ F⊥
ID(M)∪F‖

D(M) and over all regularly matching interior faces F ∈ F‖
I (M).

With Lemmas 5.3 and 5.6, there holds
(
vf |K

)
|F = AK,F (v

e), F ∈ F(K), (5.54)
(
vf |K

)
|E = (ve|K)|E , E ∈ E(K), (5.55)

vf |K(N) = vn|K(N), N ∈ N (K). (5.56)

We are now ready to establish Theorem 3.12 in Section 3.4.

Proof of Theorem 3.12. Given v ∈ V
ℓ,0,⊥
σ,s , we define Aℓ

σ,s(v) := vf with vf ∈ V
ℓ,0,⊥
σ,s

as introduced above. Clearly, Aℓ
σ,s is linear. By construction, the function vf is

conforming over all faces F ∈ F⊥
ID(Mℓ

σ)∪F‖
D(Mℓ

σ) and over all regularly matching

interior faces F ∈ F‖
I (Mℓ

σ). With Assumption 3.1, this implies items (i), (ii), (iii)

in Theorem 3.12. In addition, if v ∈ V ℓ,1
σ,s , all liftings constructed in this section are

zero, which implies item (iv). Similarly to the proofs of Propositions 5.2 and 5.5,
it follows from (5.49) that

Υ⊥
M[ve − vf ]2 + jmp

F
‖
I
(M)

[vf ]2 . |p|4 jmp
F

‖
ID

(M)
[ve]2.

Hence, the triangle inequality and the bounds (5.29), (5.44) yield

Υ⊥
M[v − vf ]2 + jmp

F
‖
I
(M)

[vf ]2 . |p|14 jmp
F

‖
ID

(M)
[v]2, (5.57)
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which is the bound (3.45) in Theorem 3.12. �

6. Polynomial Jump Lifting Operators

We construct the operators Lℓ
σ,s and prove Theorem 3.14. Throughout this

section, we fix vf = Aℓ
σ,s(v) for v ∈ V

ℓ,0,⊥
σ,s . While conforming across regular faces

and over different mesh patches, the approximations vf are generally discontinuous
over irregular faces between different mesh layers in the interior of mesh patches.
By construction of our meshes, it is sufficient to consider three types of irregular
mesh configurations in the context of the reference mesh patches.

6.1. Anisotropic faces. Anisotropic irregular faces arise in the generic geometric
situation illustrated in Figure 4 along an edge e (i.e., in direction of x‖). The figure

x
‖

x
⊥
1

x
⊥
2 h

‖

a
⊥
1

b
⊥
1

a
⊥
2

K

K1 K2

F1 F2

E
⊥
1

E
⊥
2

E
‖

E
‖
1

E
‖
2

Figure 4. Interface between K and K1,K2 for σ = 0.5 and
length h‖. The anisotropic irregular faces F1, F2, the irregular

edge E‖ and the elemental edges E⊥
1 , E

‖
1 , E

⊥
2 , E

‖
2 of K are illus-

trated. The highlighted nodes are regular vertex nodes.

displays the elemental face F ∈ F(K) of the outer element K, which is subdivided
into two irregular faces F1 := FK1,K ∈ F(K1) and F2 := FK2,K ∈ F(K2), for two

refined elements K1,K2 in the inner layer. The corresponding irregular edge E‖

on F is an elemental edge of K1, K2, but E
‖ 6∈ E(K). All elements belong to the

same mesh patch of the underlying geometric mesh. The elements {K,K1,K2} and
the faces {F, F1, F2} are possibly anisotropic; their edge-parallel lengths are thus
denoted by the generic parameter h‖. The edge-perpendicular diameters of the
elements involved are shape-regular and of size h⊥

K ≃ h⊥
Ki

≃ h⊥ for i = 1, 2, with

h⊥ . h‖. The precise locations of the elements in edge-perpendicular direction are
determined by the parameters a⊥1 , a

⊥
2 , b

⊥
1 , b

⊥
2 , whose values only depend on σ. The

setting is such that the irregular faces F, Fj satisfy (3.31), (3.32). The configuration
shown in Figure 4 is prototypical as it appears along edges in reference edge mesh

patches M̃ℓ,e
σ or in the scaled edge-patch blocks M̃ℓ,ce,‖

σ introduced in (4.19), (4.20)
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for reference corner-edge mesh patches M̃ℓ,ce
σ . We note that two rotated and su-

perimposed configurations of this type can overlap over one of the smaller elements
K1 or K2; cf. Figure 1 and [20, Figure 2].

In Figure 4, we have E‖ = {(a⊥1 , 0, x‖) : x‖ ∈ (0, h‖)}. We further introduce the

parallel elemental edges E
‖
1 , E

‖
2 ∈ E(K) given by E

‖
1 = {(0, 0, x‖) : x‖ ∈ (0, h‖)}

and E
‖
2 = {(a⊥2 , 0, x‖) : x‖ ∈ (0, h‖)}. In the reference mesh patches these edges

always appear as regular edges. With (5.4), the nodes highlighted in Figure 4
are then regular vertex nodes. We further denote by E⊥

1 , E⊥
2 ∈ E(K) the per-

pendicular elemental edges of K given by E⊥
1 = {(x⊥

1 , 0, 0) : x⊥
1 ∈ (0, a⊥2 )} and

E⊥
2 = {(x⊥

1 , 0, h
‖) : x⊥

1 ∈ (0, a⊥2 )}. Accordingly, we have E
⊥
i = E

⊥
i1 ∪ E

⊥
i2 for

i = 1, 2, with E⊥
ij ∈ E(Kj) irregular in E(M). Upon writing pK,F = (p⊥K,F , p

‖
K,F )

and pKj ,Fj
= (p⊥Kj ,Fj

, p
‖
Kj ,Fj

) and since ∆K,F = {K,K1,K2}, ∆Kj ,Fj
= {Kj,K},

the definitions (3.12) and (3.13) imply

p⊥K,F ≤ p⊥Kj ,Fj
, p

‖
K,F ≤ p

‖
Kj,Fj

, pK,E⊥
i
≤ pKj ,E

⊥
ij
, 1 ≤ i, j ≤ 2. (6.1)

With (6.1) and noting that (vf |K)|E⊥
i
∈ Pp

K,E⊥
i

(E⊥
i ) and (vf |K)F ∈ QpK,F

(F ), it

follows that

(vf |K)|E⊥
ij
∈ Pp

Kj,E
⊥
ij

(E⊥
ij ), (vf |K)|Fj

∈ QpKj,Fj
(Fj), 1 ≤ i, j ≤ 2. (6.2)

The face approximation vf is generally discontinuous across the irregular face Fj ;
we then recall from (3.6) that [[v]]Fj

= v|Kj
− v|K . The properties in (6.2) imply

(
[[vf ]]Fj

)
|E⊥

ij
∈ Pp

Kj,E
⊥
ij

(E⊥
ij ), [[vf ]]Fj

∈ QpKj,Fj
(Fj), j = 1, 2. (6.3)

We define the jump [[v]]F over F = F 1 ∪ F 2 piecewise as
(
[[v]]F )|Fj

:= [[v]]Fj
, j = 1, 2. (6.4)

Lemma 6.1. In the configuration of Figure 4, we have [[vf ]]F ∈ C0(F ), as well as

[[vf ]]F = 0 on E
‖
1 and on E

‖
2.

Proof. By Theorem 3.12, the approximation vf is continuous across the regular face

FK1,K2
, which implies [[vf ]]F ∈ C0(F ). Since E

‖
1 and E

‖
2 are regular edges, then

{K,Kj} ⊂ ∆
K,E

‖
j

= ∆
K1,E

‖
j

; see (5.6). The second assertion follows now from the

construction of vf ; cf. (5.42) and (5.55). �

To remove non-vanishing jumps of vf over the perpendicular elemental edge E⊥
1

of K, we introduce the polynomial edge jump lifting LF,E⊥
1

e (vf) by

LF,E⊥
1

e (vf) :=

{
[[vf ]]F (x

⊥
1 , 0, 0)(1− x⊥

2 /b
⊥
1 )(1− x‖/h‖), on K1,K2,

0, on K.
(6.5)

Due to Lemma 6.1, LF,E⊥
1

e (vf) ∈ C0(K1 ∪K2). With (6.3) and since LF,E⊥
1

e (vf) is

linear in directions of x⊥
2 and x‖, we have LF,E⊥

1
e (vf)|Kj

∈ SpKj
(Kj) for j = 1, 2.

The lifting reproduces [[vf ]]F on E⊥
1 and vanishes on the planes x⊥

2 = b⊥1 , x
‖ =

h‖, as well as on the edges E
‖
1 , E

‖
2 . Moreover, it vanishes identically if E⊥

1 is a
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Dirichlet boundary edge. A corresponding lifting LF,E⊥
2

e (vf) can be constructed for
the edge E⊥

2 . In the geometry of Figure 4, we then introduce the full edge lifting

LF,E
e (vf) :=

2∑

i=1

LF,E⊥
i

e (vf). (6.6)

Lemma 6.2. For j = 1, 2, there holds

N⊥
Kj

[LF,E
e (vf)]2 . |p|6h−1

Fj
‖[[vf ]]Fj

‖2L2(Fj)
. (6.7)

Proof. The proof follows along the lines of Lemma 5.4: The definition (6.5) yields

‖LF,E⊥
i

e (vf)‖2L2(Kj)
. h⊥h‖‖[[vf ]]Fj

‖2
L2(E⊥

ij)
. (6.8)

Then, the inequality (5.24) applied on E
⊥
ij ⊂ F j in edge-parallel direction implies

‖[[vf ]]Fj
‖2
L2(E⊥

ij
) . |p|2(h‖)−1‖[[vf ]]Fj

‖2L2(Fj)
. (6.9)

The inverse estimate (5.19), the above bounds and employing that h⊥ ≃ hFj
give

N⊥
Kj

[LF,E⊥
i

e (vf)]2. |p|4(h⊥)−2‖LF,E⊥
i

e (vf)‖2L2(Kj)
. |p|6h−1

Fj
‖[[vf ]]Fj

‖2L2(Fj)
. (6.10)

This implies (6.7). �

Remark 6.3. The lifting LF,E
e (vf) does not generally vanish on x‖ = 0 and x‖ =

h‖. However, with Assumption 3.1 the constructions of corresponding liftings in
adjacent elements will lead to conformity of vf,F,E across x‖ = 0 and x‖ = h‖ in
edge-perpendicular direction. This will be detailed in Section 6.3.

Next, we introduce the auxiliary function

vf,F,E :=

{
vf − LF,E

e (vf), on K1,K2,

vf , on K.
(6.11)

Then, vf,F,E ∈ C0(K1 ∪ K2) and vf,F,E|Kj
∈ SpKj

(Kj). With (6.1) and as in

Lemma 6.1, we have [[vf,F,E]]Fj
∈ QpKj,Fj

(Fj) and [[vf,F,E]]F ∈ C0(F ). By construc-

tion,

[[vf,F,E]]F = 0 on E⊥
i , [[vf,F,E]]F = 0 on E

‖
i , i = 1, 2. (6.12)

Morever, we have

([[vf,F,E ]]Fj
)|E‖ ∈ Pp

Kj,E
‖
(E‖), j = 1, 2, (6.13)

since pKj ,E‖ = p
‖
Kj ,Fj

by (3.13), (vf |K)E‖ ∈ P
p
‖
K,F

(E‖) and p
‖
K,F ≤ p

‖
Kj ,Fj

by (6.1).

Following [20, Section 5.2.1], we introduce the lifting associated with F by

LF
e (v

f) :=

{
[[vf,F,E]]F (x

⊥
1 , 0, x

‖)(1− x⊥
2 /b

⊥
1 ), on K1,K2,

0, on K,
(6.14)

with vf,F,E in (6.11). Clearly, LF
e (v

f) ∈ C0(K1 ∪ K2). Due to (6.12), (6.13),
LF
e (v

f)|Kj
∈ SpKj

(Kj) for j = 1, 2, and LF
e (v

f)|F = [[vf,F,E ]]F . Morever, the lifting

LF
e (v

f) vanishes on the planes x⊥
2 = b⊥1 , x

⊥
1 = 0, x⊥

1 = a⊥2 , and x‖ = 0, x‖ = h‖.
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Lemma 6.4. For j = 1, 2, there holds

N⊥
Kj

[LF
e (v

f)]2 . |p|10h−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

. (6.15)

Proof. As in (5.49), we have

N⊥
Kj

[LF
e (v

f)]2 . |p|4h−1
Fj

‖[[vf,F,E]]Fj
‖2L2(Fj)

. (6.16)

Then, the trace inequality in Lemma 4.11 implies

h
−1
Fj

‖[[vf,F,E]]Fj
‖2L2(Fj)

. h
−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

+N⊥
Kj

[LF,E
e (vf)]2.

Referring to (6.7) completes the proof. �

To analyze the lifting (6.14), we introduce the piecewise polynomial function

vf,F :=

{
vf − LF,E

e (vf)− LF
e (v

f), on K1,K2,

vf , on K,
(6.17)

We have vf,F ∈ C0(K1 ∪K2) and vf,F |Kj
∈ SpKj

(Kj) for j = 1, 2.

Lemma 6.5. The function vf,F in (6.17) is continuous across F .

Proof. Consider x ∈ Fj for j = 1, 2. Then, with the definitions in (6.6), (6.14),

[[vf,F ]]Fj
(x) = [[vf ]]Fj

(x)−LF,E
e (vf)|Kj

(x)− [[vf,F,E]]Fj
(x),

with vf,F,E in (6.11). Since [[vf,F,E]]Fj
(x) = [[vf ]]Fj

(x)−LF,E
e (vf)|Kj

(x), it follows

that [[vf,F ]]F (x) = [[vf,F ]]Fj
(x) = 0. �

6.2. Isotropic faces. Isotropic irregular faces appear by subdivision of elemental
faces into four or two isotropic faces.

6.2.1. Refinement of one elemental face into four faces. First, we consider the
generic configuration in Figure 5 where the elemental face F ∈ F(K) of the outer
element K is subdivided into four irregular faces Fj = FKj ,K ∈ F(Kj), 1 ≤ j ≤ 4,
with four elements K1,K2,K3,K4 in the inner layer. All elements and faces in-
volved are in the same mesh patch and are isotropic of mesh size h. As such, the
faces F and Fj satisfy (3.31), (3.32). As before, the parameters a1, a2, b1 and c1, c2
only depend on σ. We further denote by E1, E2, E3, E4 the elemental edges of K
on x2 = 0; cf. Figure 5. The elemental vertices of K on x2 = 0 always appear
as regular vertex nodes in N (M). This configuration arises in reference corner

mesh patches M̃ℓ,c
σ or in corner-type sub-meshes M̃ℓ,ce,⊥

σ of reference corner-edge

mesh patches M̃ℓ,ce
σ with refinement along one or two edges; cf. Figure 1 and [20,

Figures 4, 8 and 10]. Again, two rotated and superimposed configurations of this
type can overlap over two of the elements in {K1,K2,K3,K4}; cf. Figure 1 and [20,
Figure 4].

From (3.12), we see that

p1K,F ≤ p1Kj ,Fj
, p2K,F ≤ p2Kj ,Fj

, 1 ≤ j ≤ 4. (6.18)

Therefore, as in (6.1), we have

(vf |K)|Fj
∈ QpKj,Fj

(Fj), [[vf ]]Fj
∈ QpKj,Fj

(Fj), 1 ≤ j ≤ 4. (6.19)

As in Section 6.1, we define the jump [[vf ]]F piecewise as
(
[[vf ]]F )|Fj

:= [[vf ]]Fj
, 1 ≤ j ≤ 4. (6.20)
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x1

x2

x3

a1

b1

c1

a2

c2

K

K1 K2

K3K4

F1
F2

F3

E1

E2

Figure 5. Interface between K and K1,K2,K3,K4 for σ = 0.5.
The isotropic irregular faces F1, F2, F3 and the elemental edges
E1, E2 ofK are indicated. The highlighted nodes are regular vertex
nodes.

Lemma 6.6. In the configuration of Figure 5, there holds: (i) [[vf ]]F ∈ C0(F );
(ii) [[vf ]]F (Ni) = 0 at the four elemental vertices N1 = (0, 0, 0), N2 = (a2, 0, 0),
N3 = (a2, 0, c2), and N4 = (0, 0, c2).

Proof. By Theorem 3.12, the approximation vf in (5.53) is continuous over the
regular faces FK1,K2

, FK2,K3
, FK3,K4

and FK1,K4
. As a consequence, we have

[[vf ]]F ∈ C0(F ). Since {K,Kj} ∈ ∆K,N = ∆Kj ,N (see (5.5)), the second assertion

follows again from the construction of vf and property (5.56). �

We introduce edge liftings associated with the elemental edges E1, E2, E3, E4

of K. We focus in detail on edge E1 = {(x1, 0, 0) : x1 ∈ (0, a2)} ∈ E(K) intersecting
with F1, F2 and K1,K2. By writing E1 = E11 ∪E12 with E1j ∈ E(Kj), j = 1, 2, it
follows from (3.13), (6.18) that pK,E1

≤ pKj,E1j
, j = 1, 2. Therefore,

(vf |K)|E1j
∈ PpKj,E1j

(E1j),
(
[[vf ]]Fj

)
|E1j

∈ PpKj,E1j
(E1j), j = 1, 2. (6.21)

We then introduce the polynomial edge jump lifting associated with E1 by

LF,E1

c (vf) :=

{
[[vf ]]F (x1, 0, 0)(1− x2/b1)(1 − x3/c1), on K1,K2,

0, on K3,K4.
(6.22)

From Lemma 6.6, LF,E1
c (vf) ∈ C0(∪4

j=1Kj). Due to (6.19), (6.21) and since

LF,E1
c (vf) is linear in directions of x2, x3, we have LF,E1

c (vf)|Kj
∈ SpKj

(Kj) for

1 ≤ j ≤ 4. The lifting reproduces [[vf ]]F on E1 and with Lemma 6.6 vanishes on the
other edges E2, E3, E4. It also vanishes on x2 = b1 and x3 = c1. It vanishes identi-
cally if E1 is a Dirichlet boundary edge. Corresponding liftings {LF,Ei

c (vf)}4i=2 can
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again be constructed for the other edges E2, E3, E4. The full edge lifting is thus
defined as

LF,E
c (vf) :=

4∑

i=1

LF,Ei
c (vf). (6.23)

Proceeding as in Lemma 6.2 (with isotropic scaling) immediately yields the stability
bound

N⊥
Kj

[LF,E
c (vf)]2 . |p|6h−1

Fj
‖[[vf ]]Fj

‖2L2(Fj)
, 1 ≤ j ≤ 4. (6.24)

Remark 6.7. As will be discussed in Section 6.3, the conformity of LF,E
c (vf) across

outer boundaries of {K1,K2,K3,K4} will follow from the constructions of corre-
sponding liftings in adjacent layers of elements; cf. Remark 6.3.

We next consider the piecewise polynomial function

vf,F,E :=

{
vf − LF,E

c (vf), on K1,K2,K3,K4,

vf , on K.
(6.25)

Then, vf,F,E ∈ C0(∪4
j=1Kj). and vf,F,E|Kj

∈ SpKj
(Kj). With (6.18), (6.19) and

similarly to Lemma 6.6, we have [[vf,F,E]]F ∈ C0(F ) and [[vf,F,E]]Fj
∈ QpKj,Fj

(Fj).

Moreover, the analog of property (6.12) holds:

[[vf,F,E]]F = 0 on Ei, 1 ≤ i ≤ 4. (6.26)

If E′ ∈ E(Fj) with E′ ∩ Ei = ∅ for all 1 ≤ i ≤ 4 (i.e., E′ ∈ E(Kj) is irregular
between K,Kj and situated in the interior of F ), we further have

([[vf,F,E]]|Fj
)|E′ ∈ PpKj,E

′ (E
′), (6.27)

since, as in (6.13), pKj ,E′ = pkKj ,Fj
for an index k = 1, 2, (vf |K)E′ ∈ Ppk

K,F
(E′) and

pkK,F ≤ pkKj ,Fj
due to (6.18).

Following [20, Section 5.3.1], we then introduce the lifting over the face F by

LF
c (v

f) :=

{
[[vf,F,E]]F (x1, 0, x3)(1− x2/b1), on K1,K2,K3,K4,

0, on K,
(6.28)

with vf,F,E in (6.25). Then, LF
c (v

f) ∈ C0(∪4
j=1Kj) and LF

c (v
f)|Kj

∈ SpKj
(Kj),

1 ≤ j ≤ 4, in view of (6.26), (6.27). The lifting LF
c (v

f) vanishes on x2 = b1 and
over the sets Ei× (0, c1), 1 ≤ i ≤ 4. Proceeding as in proof of (6.15) (with isotropic
scaling) yields

N⊥
Kj

[LF
c (v

f)]2 . |p|10h−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

, 1 ≤ j ≤ 4. (6.29)

Analogously to (6.17), we introduce

vf,F :=

{
vf − LF,E

c (vf)− LF
c (v

f), on K1,K2,K3,K4,

vf , on K,
(6.30)

We have vf,F ∈ C0(∪4
j=1Kj) and vf,F |Kj

∈ SpKj
(Kj) for 1 ≤ j ≤ 4.

The following variant of Lemma 6.5 holds true.

Lemma 6.8. The approximation vf,F in (6.30) is continuous across F .
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6.2.2. Refinement of two elemental faces into two faces. Second, we consider the
isotropic configuration depicted in Figure 6. It involves an element K where two
adjacent elemental faces F, F ′ ∈ F(K) are subdivided by using isotropic versions
of the irregular refinement in Figure 4, thereby yielding the elements K1,K2 and
K ′

1,K
′
2.

E
x1

x2

x3

a1

b1

c1

K

K1 K2

K
D
1 K

D
2

K
′
1 K

′
2

F2

F
′
2

Figure 6. Two elemental faces F, F ′ ∈ F(K) are irregularly sub-
divided as in Figure 4. The elements K1,K2,K

′
1,K

′
2,K

D
1 ,KD

2 , the
irregular faces F2, F

′
2 and the elemental edge E ∈ E(K) are illus-

trated. The highlighted nodes are regular vertex nodes.

As in Section 6.1, we then introduce the irregular faces Fj := FKj ,K ∈ F(Kj)

and F ′
j := FK′

j
,K ∈ F(K ′

j) for j = 1, 2. Then, F = F 1 ∪ F 2 and F
′
= F

′
1 ∪ F

′
2. In

Figure 6, we further illustrate the elements KD
1 ,KD

2 on the diagonal. We consider
the elemental edge E ∈ E(K) given by

E := { (x1, 0, 0) : 0 < x1 < a1 }. (6.31)

All elements are situated in the same mesh patch. This geometry only arises in
diagonal elements of corner-edge mesh patches with simultaneous refinement along
two or three edges ei, with K, KD

1 and KD
2 corresponding to diagonal elements; cf.

Figure 3. With (6.4) and the continuity properties of vf , we have [[vf ]]F = [[vf ]]F ′

on E. However, the edge liftings LF,E
e (vf) over dFe := {K,K1,K2} associated

with F as in (6.5) and LF ′,E
e (vf) over dF

′

e =: {K,K ′
1,K

′
2} associated with F ′ are

not necessarily continuous across the regular faces FKj ,K
D
j
and FK′

j
,KD

j
for j = 1, 2.

To correct for this, we introduce on {KD
1 ,KD

2 } the additional diagonal edge lifting

LD(vf) := [[vf ]]F (x1, 0, 0)(1− x2/b1)(1 − x3/c1), on KD
1 ,KD

2 . (6.32)

This lifting reproduces [[vf ]]F on E. Since [[vf ]]F (N) = 0 for N = (0, 0, 0) and
N = (a1, 0, 0), see Lemma 6.1, it vanishes on ∂KD

1 ∩{x1 = 0} and ∂KD
2 ∩{x1 = a1},

implying that it does not affect the values of vf outside the configuration depicted



hp-FEM FOR ELLIPTIC PROBLEMS IN POLYHEDRA 41

in Figure 6. We also have LD(vf) ∈ C0(K
D

1 ∪KD

2 ) and LD(vf)|KD
j

∈ Sp
KD

j

(KD
j )

for j = 1, 2. As in (6.24), the following (isotropic) stability bound holds:

N⊥
KD

j
[LD(vf)]2 . |p|6hFj

‖[[vf ]]‖2L2(Fj)
, j = 1, 2. (6.33)

Similarly to (6.11) and in the geometry of Figure 6, we then introduce the aux-
iliary function

vf,D :=





vf − LF,E
e (vf), on K1,K2,

vf − LF ′,E
e (vf), on K ′

1,K
′
2,

vf − LD(vf), on KD
1 ,KD

2 ,

vf , on K.

(6.34)

We have vf,D|K ∈ SpK
(K) for K ∈ {K1,K2,K

′
1,K

′
2,K

D
1 ,KD

2 }. Then, since the

faces FKi,K
D
i

and FK′
i
,KD

i
are regularly matching for i = 1, 2, the function vf is

conforming over these two faces due to Theorem 3.12. From the definition of the
liftings it then follows that

vf,D ∈ C0(K1 ∪K2 ∪K
′
1 ∪K

′
2 ∪K

D

1 ∪K
D

2 ). (6.35)

6.3. Superposition. We superimpose the constructions in Sections 6.1 and 6.2.
Upon employing the patch maps Gp , it is sufficient to consider the geometric refer-

ence mesh patches. For M̃ ∈ {M̃ℓ,t
σ }t∈{c,e,ce,int}, we denote by Fe(M̃) and Fc(M̃)

the sets of all macro-faces F appearing as in Figures 4 and 5, respectively. We
denote by dFe = {K,K1,K2} respectively dFc = {K,K1, . . . ,K4} the sets of ele-
ments associated with these configurations. The geometry in Figure 6 involves two

isotropic versions of the configuration in Figure 4. We then denote by D(M̃) the set
of all pairs D = {KD

1 ,KD
2 } of elements appearing on the diagonal as in Figure 6.

Let Mp = Gp (M̃) be a mesh patch and let M̃ ∈ {M̃ℓ,t
σ }t∈{c,e,ce,int} be the cor-

responding geometric reference mesh patch. The averaged approximations vf |Mp
in

Theorem 3.12 restricted to the mesh patch Mp can be pulled back to the reference

patch M̃ and will be denoted by ṽf |
M̃
. We now define ṽc|

M̃
as:

ṽc|
M̃

:= ṽf |
M̃

−
∑

F∈Fe(M̃)

(
LF,E
e (ṽf) + LF

e (ṽ
f)
)

−
∑

F∈Fc(M̃)

(
LF,E
c (ṽf) + LF

c (ṽ
f)
)
−

∑

D∈D(M̃)

LD(ṽf).
(6.36)

Here, LF,E
e (ṽf) and LF

e (ṽ
f) are the liftings in (6.5), (6.6) and (6.14) associated with

the face F and the elements in dFe . The liftings LF,E
c (ṽf) and LF

c (ṽ
f) are given

in (6.22), (6.23) and (6.28) with respect to the set dFc . Finally, LD(ṽf) are liftings
as in (6.32) over the element pairs D = {KD

1 ,KD
2 } depicted in Figure 6.

Remark 6.9. The liftings LF
e (ṽ

f), LF
c (ṽ

f) and LD(ṽf) in (6.36) are locally supported

and vanish at the patch interfaces of M̃. Hence, they do not affect inter-patch
continuity.

For Mp = Gp (M̃), we then set vc|Mp
= ṽc|

M̃
◦ G−1

p |Qp
. This gives rise to

a finite element function vc ∈ V
ℓ,0

σ,s. The approximation vc belongs in fact to the

conforming space V ℓ,1
σ,s , as we show in two steps.
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Lemma 6.10. The approximation vc vanishes on all Dirichlet boundary faces and
is continuous across adjacent mesh patches.

Proof. Since ṽf and the liftings LF,E
e (ṽf), LF,E

c (ṽf) in (6.36) vanish on patch faces
corresponding to Dirichlet boundary faces, it follows with Remark 6.9 that ṽc van-
ishes on Dirichlet boundary faces. The approximation vf is conforming across
adjacent mesh patches; see Theorem 3.12. Similarly, from Assumption 3.1 and
the continuity properties of vf , we conclude that mapped versions of the liftings
LF,E
e (ṽf) and LF,E

c (ṽf) in (6.36) yield conforming approximations over the corre-
sponding mesh layers across two matching irregular configurations of two adjacent
mesh patches. With Remark 6.9, this implies inter-patch continuity. �

We next establish the inner-patch continuity of vc.

Lemma 6.11. On each mesh patch Mp , the approximation vc|Mp
is continuous

across all faces within Mp .

Proof. Since Mp = Gp (M̃) for M̃ ∈ {M̃ℓ,t
σ }t∈{c,e,ce,int}, upon mapping it is

sufficient to verify separately the continuity of ṽc in (6.36) for each reference mesh
patch type. Note that ṽf is continuous over all regular faces where no additional
jump liftings are necessary; cf. Theorem 3.12.

Interior patches: By construction, only regular faces arise in an interior patch

M̃ = M̃ℓ,int
σ . That is, Fe(M̃) = Fc(M̃) = D(M̃) = ∅ in (6.36). Hence, ṽc|

M̃
=

ṽf |
M̃

and the inner-patch continuity follows.

Edge patches: For M̃ = M̃ℓ,e
σ , we have Fe(M̃) 6= ∅ and Fc(M̃) = D(M̃) = ∅.

In each of the ℓ − 1 outermost layers of the patch, the definition (6.36) involves
two rotated and overlapping versions of the anisotropic irregular configurations in

Figure 4, along a common edge corresponding to E
‖
1 or E

‖
2 in Figure 4; cf. Figure 1

and [20, Figure 2]. Let then F be an irregular face in the patch. By the properties
of the liftings LF,E

e (ṽf) and LF
e (ṽ

f), the jump [[ṽc]]F coincides with [[ṽf,F ]]F , where
ṽf,F is defined in (6.17) over the elements dFe associated with F . Then Lemma 6.5
ensures the conformity across the irregular face F .

Corner patches: For M̃ = M̃ℓ,c
σ , there holds Fe(M̃) = D(M̃) = ∅. As before,

in each of the ℓ − 1 outermost layers in the patch, the definition (6.36) yields
three rotated and superimposed versions of the geometry in Figure 5, along edges
corresponding to Ei in Figure 5; cf. Figure 1 and [20, Figure 4]. If two geometries
are superposed over such an edge Ei, the continuity properties of ṽf imply that the
corresponding edge liftings LF,Ei

c (ṽf) defined as in (6.22) from within each of the
two configurations coincide on Ei; cf. [20, Lemma 5.10]. If F is now an irregular
face in the patch, then [[ṽc]]F is equal to [[ṽf,F ]]F , where ṽf,F is defined in (6.30)
in terms of liftings LF,E

c (ṽf) and LF
c (ṽ

f) over the elements dFc associated with F .
Lemma 6.8 yields conformity across F .

Corner-edge patches with refinement along one edge: Note that D(M̃) = ∅
in (6.36). We then use the representation (4.19)–(4.22) in Section 4.3.2. In each

edge-patch block Ψ̃ℓ′,ce(M̃ℓ′,e
σ ), 2 ≤ ℓ′ ≤ ℓ, the definition (6.36) activates the edge-

patch liftings LF,E
e (ṽf) and LF

e (ṽ
f) as above; thereby ensuring conformity across ir-

regular faces F within each of these blocks due to Lemma 6.5. In edge-perpendicular

direction, the isotropic mesh Õℓ,ce,⊥
σ

.∪ D̃ℓ,ce
σ consists of two sequences of ℓ − 1

irregular and overlapping configurations as in Figure 5, with the smallest config-

uration extending into the corner mesh T̃ℓ,c
σ ; see Figure 2. The approximation ṽc
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in (6.36) then invokes the corner-patch liftings LF,E
c (ṽf) and LF

c (ṽ
f), which, as in

the corner patch case, enforce the continuity across irregular faces in Õℓ,ce,⊥
σ

.∪ D̃ce
σ

and from Õℓ,ce,⊥
σ into T̃ℓ,c

σ ; cf. Lemma 6.8. The edge-jump liftings LF,E
c (ṽf) and

LF,E
e (ṽf) result in approximations which are conforming across edge-perpendicular

faces of diagonal elements into the corresponding elements of M̃ℓ,ce,‖
σ (for exam-

ple, across the regular faces fK′
4
,K′′

4
and fK′

6
,K′′

6
in Figure 2 (right)). Similarly,

they yield continuous approximations from corner elements in T̃ℓ,c
σ into elements in

Ψ2,ce(M̃2,e
σ ).

Corner-edge patches with refinement along two edges: We now have D(M̃) 6= ∅,
as the refinements towards two edges introduce the geometric situation analyzed

in Figure 6 over the diagonal elements in D̃ℓ,ce1
σ ∩ D̃ℓ,ce2

σ (e.g., over K6,K
′
6 in

Figure 3 (left)). We use the representation (4.24), (4.25) in Section 4.3.3. In

the submeshes M̃ℓ,ce1,‖
σ and M̃ℓ,ce2,‖

σ , the liftings LF,E
e (ṽf) and LF

e (ṽ
f) are again

activated and ensure the continuity over edge-parallel anisotropic faces. Simi-
larly, the liftings LF,E

c (ṽf) and LF
c (ṽ

f) yield continuity across the irregular faces

in Õℓ,ce,⊥
σ

.∪ (D̃ℓ,ce1
σ ∪ D̃ℓ,ce2

σ ) in perpendicular direction and from Õℓ,ce,⊥
σ into the

corner elements in T̃ℓ,c
σ . In addition to LF,E

e (ṽf), ℓ−1 versions of the liftings LD(ṽf)
in (6.32) are invoked in (6.36) (e.g., from K6 into D = {K ′

3,K
′
6} in Figure 3 (left),

where K ′
3 is the element depicted underneath K ′

6). In the configuration situated

closest to c, these liftings extend into two corner elements of T̃ℓ,c
σ . With (6.35),

this procedure ensures continuity over diagonal elements along the edges. In per-
pendicular direction, the edge-jump liftings LF,E

c (ṽf) and LF,E
e (ṽf) give conforming

approximations across faces of diagonal elements into the corresponding elements in
the edge-patch blocks (e.g., across the regular faces FK′

1
,K′′

1
or FK′

4
,K′′

4
in Figure 3

(left)), as well as from T̃ℓ,c
σ into elements in Ψ2,cei(M̃2,ei

σ ) for i = 1, 2.

Corner-edge patches with refinement along three edges: Clearly, D(M̃) 6= ∅.
With (4.27), the geometric situation in Figure 6 now appears along three edges

on the diagonal elements in D̃ℓ,ce1
σ ∩ D̃ℓ,ce2

σ , D̃ℓ,ce2
σ ∩ D̃ℓ,ce3

σ , and D̃ℓ,ce1
σ ∩ D̃ℓ,ce3

σ

(e.g., over the element pairs {K1,K
′
1}, {K4,K

′
4} and {K6,K

′
6} in Figure 3 (right)).

Isotropic irregular faces as in Figure 5 are not present in this case (i.e., Fc(M̃) = ∅).
Hence, in (6.36), only the liftings LF,E

e (ṽf), LF
e (ṽ

f) and LD(ṽf) in (6.32) are active.

The liftings LD(ṽf) extend into the corner elements in T̃ℓ,c
σ . Property (6.35) then

ensures the continuity over diagonal elements and into T̃ℓ,c
σ . �

We now complete the proof of Theorem 3.14 in Section 3.4.

Proof of Theorem 3.14. We set Lℓ
σ,s(v

f) := vc, with vc constructed above. By

construction, Lℓ
σ,s is linear and reproduces functions in V ℓ,1

σ,s . Lemmas 6.11 and 6.10

imply vc ∈ V ℓ,1
σ,s . From (6.36) and the properties of the liftings, we further find that

Υ⊥
M̃
[ṽf − ṽc]2 .

∑

F∈Fe(M̃)

(
Υ⊥

dF
e
[LF,E

e (ṽf)]2 +Υ⊥
dF
e
[LF

e ṽ
f)]2

)

+
∑

F∈Fc(M̃)

(
Υ⊥

dF
c
[LF,E

c (ṽf)]2 +Υ⊥
dF
c
[LF

c (ṽ
f)]2

)
+

∑

D∈D(M̃)

Υ⊥
D[LD(ṽf)]2,

for any geometric reference mesh patch M̃. The stability estimates (6.7), (6.15) for
LF,E
e (ṽf) and LF

e (ṽ
f), the estimates (6.24), (6.29) for LF,E

c (ṽf) and LF
c (ṽ

f), and the
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bound (6.33) for LD(ṽf) finally yield

Υ⊥
M̃
[ṽf − ṽc]2 . |p|10jmp

F
‖
I
(M̃)

[ṽf ]2, (6.37)

where F‖
I (M̃) denotes the interior faces on M̃ which satisfy (3.31), (3.32). After

mapping to the physical patches and summing over all patches, this implies the
bound (3.46). �

7. Conclusions

We established the H1-norm exponential convergence rate exp(−b 5
√
N) of con-

forming hp-FEMs in axiparallel polyhedral domains Ω ⊂ R3. The FE spaces are
based on σ-geometric mesh families Mσ of hexahedral elements containing, in gen-
eral, irregular faces and edges. Geometric meshes M ∈ Mσ are obtained as finite
unions of four types t ∈ {c, e, ce, int} of σ-geometric reference geometric mesh

patches M̃ℓ,t
σ . The hp-version FE spaces allow for anisotropic elemental polyno-

mial degree distributions with s-linear growth in terms of the logarithmic element
distance to the singularity set S of Ω. General subdivision ratios 0 < σ < 1 and
slope parameters s > 0 are admitted (the analysis extends in a straightforward fash-
ion also to directional slope parameters s‖ and s⊥). Inter-patch mesh compatibility
is ensured by a compatibility requirement on the patch maps, and inter-element
continuity is ensured by a minimum degree rule on the local polynomial spaces.

Our principal technical contribution are the constructions of hp-version quasi-
interpolation operators. The operators can be assembled from four types of refer-

ence patch quasi-interpolants Π̃ℓ,1,t
σ,s which are well-defined on H1(Q̃) and exponen-

tially consistent in the H1-norm for functions ũ belonging to an analytic reference

class Bt (Q̃), with weighting towards corners and edges of Q̃ according to the patch
type t ∈ {c, e, ce, int}. Analogous L2-norm error bounds for L2-projections for the
approximation of solutions in B−b(Ω) are also obtained.

We considered the particular, second-order model elliptic problem (1.1)–(1.3) for
which analytic regularity was established in [5]. The presently proved exponential
convergence rate estimates are, however, independent of the particular PDE and
apply to any elliptic problem which admits an analytic regularity shift in the ana-
lytic classes B−1−b(Ω) in Definition 2.1. The present results extend also to hp-FE
spaces which enforce conformity by the maximum degree rule. They also imply ex-
ponential bounds dN (K,X ) . exp(−b 5

√
N) on the KolmogoroffN -widths dN (K,X )

of the analytic classes K = B−1−b(Ω) ∩H1+θ(Ω) which are compact subsets of the
Hilbert space X = H1(Ω). This bound is of interest in connection with reduced ba-
sis approximations generated by greedy algorithms in X . We refer to [4] for theory,
and to [17] for recent developments for elliptic problems.

Appendix A. Proof of Theorem 4.3

We outline the major steps of the proof of Theorem 4.3.

A.1. Approximation results. We first establish auxiliary approximation results.

A.1.1. Univariate approximation properties. The following consistency bound holds

for the H1-projector πp,1 in (4.1) on Î = (−1, 1); see [26, Corollary 3.15].
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Lemma A.1. Let p ≥ 1, û ∈ Hs+1(Î) and 0 ≤ s ≤ p. Then there holds

‖û− π̂p,1û‖2H1(Î)
. Ψp,s‖û(s+1)‖2

L2(Î)
. (A.1)

Here,

Ψq,r :=
Γ(q + 1− r)

Γ(q + 1 + r)
, 0 ≤ r ≤ q, (A.2)

where Γ is the Gamma function satisfying Γ(m+ 1) = m! for any m ∈ N0.

The subsequent H1-norm error bound holds for the L2-projection π̂p,0 (see
also [26, Theorem 3.11] for p-optimal bounds).

Lemma A.2. Let p ≥ 1, û ∈ Hs+1(Î) and 0 ≤ s ≤ p. Then there holds

‖û− π̂p,0û‖2H1(Î)
. p4Ψp,s‖û(s+1)‖2

L2(Î)
. (A.3)

Proof. We recall from [25, Lemma 5.1] that

‖(π̂p,0û)
(s)‖

L2(Î) . max{1, p}2s‖û(s)‖
L2(Î), p ≥ 0, s ≥ 0. (A.4)

With (A.4) and for p ≥ 1, we find that

‖û− π̂p,0û‖H1(Î) ≤ ‖û− π̂p,1û‖H1(Î) + ‖π̂p,0(û− π̂p,1û)‖H1(Î)

. p2‖û− π̂p,1û‖H1(Î).

Referring to (A.1) yields (A.3). �

A.1.2. Approximation properties of π̂p,r. We next derive approximation results for

the tensor projectors in (4.3). On K̂ = Î3, we introduce the tensor-product space

H1
mix(K̂) := H1

mix(K̂
⊥)⊗H1(K̂‖) := H1(Î)⊗H1(Î)⊗H1(Î). (A.5)

endowed with the standard (tensor-product) norm ‖ · ‖
H1

mix
(K̂). Let K = K⊥⊗K⊥

be an axiparallel element, pK = (p⊥K , p
‖
K) an elemental degree vector and rK ∈

{0, 1} an elemental conformity index in edge-parallel direction. For u : K → R, we

denote by û := u◦ΦK the pull-back to the reference element K̂. In this setting, the

tensor projection π̂pK ,rK û = π̂⊥
p⊥
K
,0
⊗π̂

‖

p
‖
K
,rK

û defined in (4.3) satisfies the subsequent

bounds.

Proposition A.3. The error η̂⊥0 = û − π̂⊥
p⊥
K
,0
û in edge-perpendicular direction

satisfies

‖η̂⊥0 ‖2H1
mix

(K̂)
. (p⊥K)8Ψp⊥

K
,s⊥

K
E⊥

s⊥
K
(K;u), (A.6)

for any 0 ≤ s⊥K ≤ p⊥K , with

E⊥
s (K;u) :=

s+2∑

|α⊥|=s+1

∑

α‖=0,1

(h⊥
K)2|α

⊥|−2(h
‖
K)2α

‖−1‖Dα⊥

⊥ Dα‖

‖ u‖2L2(K) . (A.7)

The error η̂‖ = û− π̂
p
‖
K
,rK

û in edge-parallel direction satisfies

‖D̂α⊥

⊥ D̂α‖

‖ η̂‖‖2
L2(K̂)

.p Ψ
p
‖
K
,s

‖
K

(h⊥
K)2|α

⊥|−2(h
‖
K)2s

‖
K
+1‖Dα⊥

⊥ D
s
‖
K
+1

‖ u‖2L2(K), (A.8)

for any rK = 0, 1, |α⊥| ≥ 0, α‖ = 0, 1, and 0 ≤ s
‖
K ≤ p

‖
K .
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Proof. We have

η̂⊥0 = û− π̂
(1)

p⊥
K
,0
⊗ π̂

(2)

p⊥
K
,0
û = (û − π̂

(1)

p⊥
K
,0
û) + π̂

(1)

p⊥
K
,0

(
û− π̂

(2)

p⊥
K
,0
û
)

.

Hence, by the triangle inequality and the stability property (A.4) of the univariate

L2-projector π̂
(1)

p⊥
K
,0
, we find

‖η̂⊥0 ‖2H1
mix

(K̂)
. (p⊥K)4

( 2∑

i=1

‖û− π̂
(i)

p⊥
K
,0
û‖2

H1
mix

(K̂)

)
.

The univariate approximation properties (A.3) in Lemma A.2 now imply

‖η̂⊥0 ‖2H1
mix

(K̂)
. (p⊥K)8Ψp⊥

K
,s⊥

K

( ∑

0≤α⊥
2
,α‖≤1

‖D̂(s⊥K+1,α⊥
2 ,α‖)û‖2

L2(K̂)

+
∑

0≤α⊥
1
,α‖≤1

‖D̂(α⊥
1 ,s⊥K+1,α‖)û‖2

L2(K̂)

)
,

for any 0 ≤ s⊥K ≤ p⊥K and where we write Dα = D(α1,α2,α3) for a multi-index
α = (α1, α2, α3). This bound and a scaling argument as in [24, Section 5.1.4] yield
the desired bound (A.6) for η̂⊥0 .

The bound for η̂‖ is an immediate consequence of the consistency bounds (A.1)
(rK = 1) and (A.3) (rK = 0) applied in edge-parallel direction, combined again
with a scaling argument as in [24, Section 5.1.4]. �

A.1.3. Weighted norm estimates in plane domains. In plane domains perpendicular
to edges, we shall use estimates in weighted spaces analogous to those in [13, Sec-
tion 3]. To state them, let K be an axiparallel and shape-regular rectangle of diame-

ter hK which is affinely equivalent to the reference square K̂ = Î2. Let c be a corner
of K and set r(x) = |x−c|. For a weight exponent β ∈ [0, 1), we denote by L2

β(K) the

weighted L2-space endowed with the weighted norm ‖u‖L2
β
(K) := ‖rβu‖L2(K). For

m = 1, 2, the weighted Sobolev space Hm,m
β (K) is defined as the completion of all

C∞(K)-functions with respect to the norm ‖u‖2
H

m,m

β
(K) := ‖u‖2

Hm−1(K)+|u|2
H

m,m

β
(K),

where |u|2
H

m,m

β
(K) :=

∑
|α|=m ‖rβDαu‖2

L2(K). We denote by π2
p,0 the L2-projection

onto the tensor-product polynomial space Qp(K) obtained by mapping π̂2
p,0 on K̂.

Lemma A.4. Let β ∈ [0, 1) be a weight exponent. For u ∈ H1,1
β (K) and p ≥ 0,

there holds

‖u− π2
p,0u‖2L2(K) . h2−2β

K |u|2
H

1,1

β
(K)

. (A.9)

Similarly, for u ∈ H2,2
β (K) and p ≥ 1, there holds

‖u− π2
p,0u‖2L2(K) + h2

K‖∇(u− π2
p,0u)‖2L2(K) . p4h4−2β

K |u|2
H

2,2

β
(K)

. (A.10)

The implied constants depend on the aspect ratio of K.

Proof. To prove (A.9), we apply the triangle inequality and the stability of the
L2-projection π2

p,0 to obtain

‖u− π2
p,0u‖L2(K) . ‖u− π2

0,0u‖L2(K) + ‖π2
p,0(u − π2

0,0u)‖L2(K) . ‖u− π2
0,0u‖L2(K).

The proof of (A.9) for p = 0 can then be found in [19, Proposition 27].
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To show (A.10), upon scaling it is sufficient to consider the reference square

K̂ = (−1, 1)2. We denote by p̂21,0 the L
2-projection onto the polynomial space P1(K̂).

With the stability bound (A.4), it follows that

‖û− π̂2
p,0û‖2H1(K̂)

. ‖û− p̂21,0‖2H1(K̂)
+ ‖π̂2

p,0(û− p̂21,0û)‖2H1(K̂)

. p4‖û− p̂21,0û‖2H1(K̂)
.

Hence, it suffices to prove (A.10) for p̂21,0: We claim that there is a constant Ĉ > 0
independent of û such that

‖û‖
H

2,2

β
(K̂) ≤ Ĉ

(
|û|

H
2,2

β
(K̂) + ‖p̂21,0û‖L2(K̂)

)
. (A.11)

The bound (A.11) follows with standard arguments from the Peetre-Tartar lemma

(see [10, Lemma A.38]) and the fact that the embedding H2,2
β (K̂) →֒ H1(K̂) is

compact (see [13, Lemma 3.4]). Invoking (A.11) for û − p̂21,0û and noting that

|p̂21,0û|H2,2

β
(K) = 0, p̂21,0(û − p̂21,0û) = 0, results in ‖û − p̂21,0û‖H2,2

β
(K̂) ≤ Ĉ|û|

H
2,2

β
(K̂),

which finishes the proof. �

A.1.4. Edge-parallel interpolation. We construct univariate hp-projectors and es-
tablish exponential convergence bounds for univariate geometric refinements on
the interval ω = (0, 1) towards x = 0. These results will be used for the hp-
approximations along edges e ∈ Ec towards corners c ∈ C.

In ω and for σ ∈ (0, 1), we introduce geometric meshes T ℓ
σ = {Ij}ℓ+1

j=1 with

elements given by I1 = (0, σℓ) and Ij = (σℓ+2−j , σℓ+1−j) for 2 ≤ j ≤ ℓ + 1,
respectively. We introduce the local mesh sizes h1 := σℓ and

hj := σℓ+1−j(1− σ), 2 ≤ j ≤ ℓ+ 1 . (A.12)

Then, there is a constant κ > 0 solely depending on σ ∈ (0, 1) with

κ−1hj ≤ x ≤ κhj , x ∈ Ij , 2 ≤ j ≤ ℓ+ 1 . (A.13)

On the geometric mesh T ℓ
σ , let p‖ = (p

‖
1, . . . , p

‖
ℓ+1) ∈ Nℓ+1 be an (edge-parallel)

polynomial degree vector with p
‖
j = max{1, ⌊sj⌋}, for s > 0 as in Section 3.2.1. We

set |p‖| = maxℓ+1
j=1 p

‖
j and introduce the space

V 0(T ℓ
σ ,p

‖) :=
{
v ∈ L2(ω) : v|Ij ∈ P

p
‖
j

(Ij), j = 1, . . . , ℓ+ 1
}
. (A.14)

For conformity indices rj ∈ {0, 1}, we denote by π the projection onto V 0(T ℓ
σ ,p

‖),
given on interval Ij as the (scaled) univariate projector π

p
‖
j
,rj

: Hrj(Ij) → P
p
‖
j

(Ij).

For u ∈ H1(ω), we define the approximation errors η := u− πu, and set

Tj[η]
2 := h−2

j ‖η‖2L2(Ij)
+ ‖η′‖2L2(Ij)

. (A.15)

Lemma A.5. For a weight exponent β > 0, let u ∈ H1(ω) be such that

‖|x|−1−β+su(s)‖L2(ω) ≤ Cs+1
u Γ(s+ 1), s ≥ 2. (A.16)

Then, for any conformity indices rj ∈ {0, 1}, there exist b, C > 0 independent of

ℓ ≥ 1 such that
∑ℓ+1

j=2 Tj [η]
2 ≤ C exp(−2bℓ).
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Proof. Fix Ij ∈ T ℓ
σ for 2 ≤ j ≤ ℓ + 1. A straightforward scaling argument yields

Tj[η]
2 ≃ (hj/2)−1 ‖η̂‖2

H1(Î)
, where as usual we denote by v̂ the pull-back operator

from v|Ij to the reference interval Î = (−1, 1). The bounds in (A.1) and (A.3) yield

Tj[η]
2 . |p‖|4

(
hj/2

)−1
Ψ

p
‖
j
,s

‖
j

‖û(s
‖
j
+1)‖2

L2(Î)
,

for any 1 ≤ s
‖
j ≤ p

‖
j , where we exclude s

‖
j = 0 in (A.1), (A.3) to ensure that s ≥ 2

in (A.16). Scaling the right-hand side above back to element Ij results in

Tj[η]
2 . |p‖|4 (hj/2)

2s
‖
j Ψ

p
‖
j
,s

‖
j

‖u(s
‖
j
+1)‖2L2(Ij)

. (A.17)

Moreover, by the equivalence (A.13),

‖u(s
‖
j
+1)‖2L2(Ij)

≃ h
2+2β−2(s

‖
j+1)

j ‖|x|−1−β+(s
‖
j
+1)u(s

‖
j
+1)‖2L2(Ij)

. (A.18)

By combining (A.17), (A.18) with the regularity assumption (A.16), we find that

Tj [η]
2 . |p‖|4h2β

j 2−2s
‖
jΨ

p
‖
j ,s

‖
j

‖|x|−1−β+(s
‖
j
+1)u(s

‖
j
+1)‖2L2(Ij)

. |p‖|4h2β
j (Cu/2)

2s
‖
j Ψ

p
‖
j
,s

‖
j

Γ(s
‖
j + 2)2 ,

(A.19)

for 1 ≤ s
‖
j ≤ p

‖
j . An interpolation argument as in [24, Lemma 5.8] shows that the

bound (A.19) holds for any real s
‖
j ∈ [1, p

‖
j ].

Next, we sum the bound (A.19) over all intervals 2 ≤ j ≤ ℓ+1. In view of (A.12),
we obtain

ℓ+1∑

j=2

Tj [η]
2 . |p‖|4

( ℓ+1∑

j=2

σ2(ℓ+1−j)β min
s
‖
j
∈[1,p

‖
j
]

[
C2s

‖
j Ψ

p
‖
j
,s

‖
j

Γ(sj + 2)2
] )

.

By [24, Lemma 5.12], the bracket on the right-hand side above is exponentially
small. Adjusting the constants to absorb |p‖|4 finishes the proof. �

Similarly, we obtain the following result.

Lemma A.6. For a weight exponent β > 0, let u ∈ L2(ω) be such that

‖|x|−β+su(s)‖L2(ω) ≤ Cs+2
u Γ(s+ 2), s ≥ 1 . (A.20)

For any conformity indices rj ∈ {0, 1}, there exist b, C > 0 independent of ℓ ≥ 1

such that
∑ℓ+1

j=2 ‖η‖2L2(Ij)
≤ C exp(−2bℓ).

Proof. This follows as in Lemma A.5 or [25, Proposition 5.5]. �

A.2. Reference corner-edge mesh. We consider the reference corner-edge mesh

patch M̃ℓ,ce
σ on Q̃ for c ∈ C and e ∈ Ec; cf. Figure 1 (right). As in [25, Section 7],

it is sufficient to focus on the elements in M̃ℓ,ce
σ near the corner-edge pair. To this

end, we introduce the submesh K̃ℓ,ce
σ ⊂ M̃ℓ,ce

σ given by

K̃ℓ,ce
σ =

ℓ+1⋃

j=1

j⋃

i=1

L̃ij
ce, (A.21)

where the sets L̃ij
ce stand for layers of elements with identical scaling properties

with respect to c and e; cf. [24, Section 5.2.4]. The index j indicates the number
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of the geometric mesh layers in edge-parallel direction along the edge e, whereas
the index i indicates the number of mesh layers in direction perpendicular to e. In

agreement with [25, Section 7.1], we split K̃ℓ,ce
σ into interior elements away from c

and e, boundary layer elements along e (but away from c), and corner elements

abutting at c. That is, we have K̃ℓ,ce
σ = Õℓ

ce

.∪ T̃ℓ
e

.∪ T̃ℓ
c, with

Õℓ
ce :=

ℓ+1⋃

j=2

j⋃

i=2

L̃ij
ce, T̃ℓ

e :=

ℓ+1⋃

j=2

L̃1j
ce, T̃ℓ

c := L̃11
ce. (A.22)

Here, for 2 ≤ i, j ≤ ℓ+ 1, interior elements K ∈ L̃ij
ce satisfy

re|K ≃ h⊥
K ≃ σℓ+1−i, rc|K ≃ h

‖
K ≃ σℓ+1−j . (A.23)

Similarly, boundary layer elements K ∈ L̃1j
ce satisfy

re|K . h⊥
K ≃ σℓ, rc|K ≃ h

‖
K ≃ σℓ+1−j , 2 ≤ j ≤ ℓ+ 1. (A.24)

Finally, a corner element in the layer T̃ℓ
c = L̃11

ce is isotropic with re|K . hK ≃ σℓ,

and rc|K . hK ≃ σℓ. The sets L̃1j
ce and L̃11

ce are in fact singletons, and without loss

of generality Kj ∈ L̃1j
ce can be written in the form

Kj = K⊥ ×K
‖
j , 2 ≤ j ≤ ℓ+ 1 , (A.25)

cf. (3.3), where K⊥ = (0, σℓ)2, and the sequence {K‖
j }ℓ+1

j=2 forms a one-dimensional

geometric mesh T ℓ
σ along the edge e as in Section A.1.4. The s-linearly increasing

polynomial degree distributions on K̃ℓ,ce
σ in (A.21) are given by

∀K ∈ L̃ij
ce : pK = (p⊥i , p

‖
j ) ≃ (max{1, ⌊si⌋},max{1, ⌊sj⌋}). (A.26)

In the sequel, we introduce the domain Ω̃ℓ
ce :=

(
∪
K∈K̃ℓ,ce

σ
K
)◦
. Analogously

to (2.6) and for exponents β = {βc, βe}, we introduce the non-homogeneous refer-

ence corner-edge semi-norm on Ω̃ℓ
ce:

|u|2
Ñk

β
(Ω̃ℓ

ce)
:=

∑

|α|=k

∥∥∥rmax{βc+|α|,0}
c ρmax{βe+|α⊥|,0}

ce Dαu
∥∥∥
2

L2(Ω̃ℓ
ce)

, (A.27)

for any k ≥ 0 and where rc and re are the distances to c and e, respectively, and

ρce = re/rc. For m > kβ as in (2.7), the weighted Sobolev spaces Ñm
β (Ω̃ℓ

ce) are

defined as in Section 2.2 with respect to the norms ‖ · ‖2
Ñm

β
(Ω̃ℓ

ce)
=

∑m

k=0 | · |2Ñk
β
(Ω̃ℓ

ce)
.

The corresponding analytic reference class Bβ(Ω̃
ℓ
ce) consists of all functions u :

Ω̃ℓ
ce → R such that u ∈ Ñk

β(Ω̃
ℓ
ce) for k > kβ and such that there is a constant

du > 0 with

|u|
Ñk

β
(Ω̃ℓ

ce)
≤ dk+1

u Γ(k + 1) ∀ k > kβ. (A.28)

In the following, we restrict ourselves to the classes B−1−b(Ω̃
ℓ
ce) and B−b(Ω̃

ℓ
ce)

for exponents b = {bc, be} in (0, 1) as in Remark 2.3. In the first case, we have
kβ ∈ (1, 2) and the norms on the right-hand in (A.27) are given by





‖Dαu‖2
L2(Ω̃ℓ

ce)
|α| = 0, 1, |α⊥| = 0, 1,

‖r−1−bc+|α|
c Dαu‖2

L2(Ω̃ℓ
ce)

|α| ≥ 2, |α⊥| = 0, 1,

‖rbe−bc+α‖

c r
−1−be+|α⊥|
e Dαu‖2

L2(Ω̃ℓ
ce)

|α| ≥ 2, |α⊥| ≥ 2.

(A.29)
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Similarly, for the second analytic class B−b(Ω̃
ℓ
ce), we have kβ ∈ (0, 1) and the norms

on the right-hand side of (A.27) take the form




‖u‖2
L2(Ω̃ℓ

ce)
|α| = 0, |α⊥| = 0,

‖r−be+α‖

c Dαu‖2
L2(Ω̃ℓ

ce)
|α| = 1, |α⊥| = 0,

‖rbe−bc+α‖

c r
−be+|α⊥|
e Dαu‖2

L2(Ω̃ℓ
ce)

|α| ≥ 1, |α⊥| ≥ 1.

(A.30)

In the axi-parallel setting considered in the present paper, when functions u ∈
B−1−b(Ω) and u ∈ B−b(Ω) as in Theorem 4.3 are localized and scaled to Ω̃ℓ

ce, they

belong to the reference classes B−1−b(Ω̃
ℓ
ce) and B−b(Ω̃

ℓ
ce), respectively; cf. [20,

Section 3.4].
To prove Theorem 4.3 in the reference corner-edge framework, it is now enough

to bound the error contributions as in (3.34), (3.33) over K̃ℓ,ce
σ = Õℓ

ce

.∪ T̃ℓ
e

.∪ T̃ℓ
c.

Proposition A.7. For bc, be ∈ (0, 1), let u ∈ B−1−b(Ω̃
ℓ
ce) ∩H1+θ(Ω̃ℓ

ce) for some

θ ∈ (0, 1), and let πu = π⊥
0 ⊗ π‖u be the base interpolant (4.4) over K̃ℓ,ce

σ for any
conformity indices rK ∈ {0, 1}. For the errors η, η⊥0 , η

‖ in (4.7), we have

Υ⊥
Õℓ

ce

[η⊥0 ]
2 +Υ

‖

Õℓ
ce

[η‖]2 +Υ⊥
T̃ℓ

e

[η⊥0 ]
2 +Υ

‖

T̃ℓ
e

[η‖]2 +Υ
‖

T̃ℓ
c

[η]2 ≤ C exp(−2bℓ),

with b, C > 0 independent of ℓ.

Moreover, for bc, be ∈ (0, 1), let u ∈ B−b(Ω̃
ℓ
ce) ∩ Hθ(Ω̃ℓ

ce) for some θ ∈ (0, 1),

and let π0u = π⊥
0 ⊗ π

‖
0u be the L2-projection over K̃ℓ,ce

σ . For the errors η0, η
⊥
0 , η

‖
0

in (4.7), we have

‖η⊥0 ‖2L2(Õℓ
ce)

+ ‖η‖0‖2L2(Õℓ
ce)

+ ‖η⊥0 ‖2L2(T̃ℓ
e)
+ ‖η‖0‖2L2(T̃ℓ

e)
+ ‖η0‖2L2(T̃ℓ

c)
≤ C exp(−2bℓ),

with b, C > 0 independent of ℓ.

The remainder of this section is devoted to the proof of Proposition A.7.

A.3. Proof of Proposition A.7. We bound the errors in Proposition A.7 sep-

arately for the set Õℓ
ce (Propositions A.9 and A.10), for T̃ℓ

e (Propositions A.11

and A.12), and for T̃ℓ
c (Proposition A.13).

A.3.1. Convergence on Õℓ
ce. We begin our analysis by recalling essential scaling

properties; see [24, Section 5.1.4].

Lemma A.8. Let K = (0, h⊥
K)2 × (0, h

‖
K) be of the form (3.3). Let v : K → R,

and v̂ = v ◦ Φ−1
K . Then:

(i) ‖v‖2
L2(K) . (h⊥

K)2h
‖
K‖v̂‖2

L2(K̂)
.

(ii) (h
‖
K)−2‖v‖2

L2(K) + ‖D‖v‖2L2(K) . (h⊥
K)2(h

‖
K)−1

(
‖v̂‖2

L2(K̂)
+ ‖D̂‖v̂‖2L2(K̂)

)
.

(iii) (h⊥
K)−2‖v‖2L2(K) + ‖D⊥v‖2L2(K) . h

‖
K

(
‖v̂‖2

L2(K̂)
+ ‖D̂⊥v̂‖2

L2(K̂)

)
.

We bound η⊥0 over Õℓ
ce as follows.

Proposition A.9. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there are

constants b, C > 0 independent of ℓ such that Υ⊥
Õℓ

ce

[η⊥0 ]2 ≤ C exp(−2bℓ) respectively

‖η⊥0 ‖2L2(Õℓ
ce)

≤ C exp(−2bℓ).
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Proof. Let u ∈ B−1−b(Ω̃
ℓ
ce). We consider an element K ∈ L̃ij

ce with 2 ≤ j ≤ ℓ + 1

and 2 ≤ i ≤ j; see (A.22). With Lemma A.8 (observing that h⊥
K . h

‖
K), the

approximation results for η̂⊥0 in Proposition A.3 and (A.26), we conclude that

N⊥
K [η⊥0 ]2 . h

‖
K‖η̂⊥0 ‖2H1

mix
(K̂)

.p h
‖
KΨp⊥

i
,s⊥

i
E⊥

s⊥
i
(K;u),

for 1 ≤ s⊥i ≤ p⊥i , where E⊥
s⊥
i

(K;u) is the expression in (A.7). Notice that here we

exclude the choice s⊥i = 0 to ensure that |α| ≥ |α⊥| ≥ 2 in E⊥
s⊥
i

(K;u). Thanks to

the equivalences (A.24), we insert the appropriate weights as in (A.29) and obtain

‖Dα⊥

⊥ Dα‖

‖ u‖2L2(K) ≃ (h
‖
K)2bc−2be−2α‖

(h⊥
K)2+2be−2|α⊥|

× ‖rbe−bc+α‖

c r−1−be+|α⊥|
e Dα⊥

⊥ Dα‖

‖ u‖2L2(K) ,

for 2 ≤ s⊥i + 1 ≤ |α⊥| ≤ s⊥i + 2 and α‖ = 0, 1. Hence, it follows that

N⊥
K [η⊥0 ]

2.p(h
‖
K)2bc−2be(h⊥

K)2be
s⊥i +3∑

k=s⊥
i
+1

|u|2
Ñk

−1−b
(K) .

The analytic regularity (A.28) then implies the existence of C > 0 such that

N⊥
K [η⊥0 ]

2.pΨp⊥
i
,s⊥

i
(h

‖
K)2bc−2be(h⊥

K)2beC2s⊥i Γ(s⊥i + 4)2, (A.31)

for all 1 ≤ s⊥i ≤ p⊥i . Summing (A.31) over all layers in Õℓ
ce in (A.22) in combination

with (A.23) results in

Υ⊥
Õℓ

ce

[η⊥0 ].p

ℓ+1∑

j=2

σ2(bc−be)(ℓ+1−j)
( j∑

i=2

σ2be(ℓ+1−i)Ψp⊥
i
,s⊥

i
C2s⊥i Γ(s⊥i + 4)2

)
.

By interpolating to real parameters s⊥i ∈ [1, p⊥i ] as in [24, Lemma 5.8], this sum
is of the same form as S⊥ in the proof of [24, Proposition 5.17], and the assertion
now follows from the arguments there and after adjusting the constants to absorb
the algebraic loss in |p|.

For u ∈ B−b(Ω̃
ℓ
ce), we proceed similarly and note that

‖η⊥0 ‖2L2(K)(h
⊥
K)2h

‖
K‖η̂⊥0 ‖2H1

mix
(K̂)

.p (h
⊥
K)2h

‖
KΨp⊥

i
,s⊥

i
E⊥

s⊥
i
(K;u),

for 1 ≤ s⊥i ≤ p⊥i . Hence, we obtain

‖η⊥0 ‖2L2(K).pΨp⊥
i
,s⊥

i
(h

‖
K)2bc−2be(h⊥

K)2be
s⊥i +3∑

k=s⊥
i
+1

|u|2
Ñk

−b
(K) .

The second bound follows as before. �

Next, we establish the analog of Proposition A.9 in edge-parallel direction.

Proposition A.10. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ such that Υ
‖

Õℓ
ce

[η‖]2 ≤ C exp(−2bℓ) respec-

tively ‖η‖0‖2L2(Õℓ
ce)

≤ C exp(−2bℓ).
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Proof. For u ∈ B−1−b(Ω̃
ℓ
ce), we claim that

N
‖
K [η‖]2.p‖u‖2

Ñ
s
‖
K

+2

−1−b
(K)

, (A.32)

for any K ∈ Õℓ
ce and 1 ≤ s

‖
K ≤ p

‖
K . To prove (A.32), we start by employing

Lemma A.8 and the approximation property for η̂‖ in Proposition A.3:

(h
‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K) . (h⊥
K)2(h

‖
K)−1

∑

α‖=0,1

‖D̂α‖

‖ η̂‖‖2
L2(K̂)

.pΨp
‖
K
,s

‖
K

(h
‖
K)2s

‖
K‖Ds

‖
K
+1

‖ u‖2L2(K)

for any 1 < s
‖
K ≤ p

‖
K , where we again exclude the choice s

‖
K = 0 so that |α| ≥ 2.

We then insert suitable weights with the aid of (A.23), (A.29) to obtain

‖Ds
‖
K
+1

‖ u‖2L2(K) ≃ (h
‖
K)2bc−2s

‖
K‖r−1−bc+s

‖
K
+1

c D
s
‖
K
+1

‖ u‖2L2(K).

Hence,

(h
‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K).pΨp
‖
K
,s

‖
K

(h
‖
K)2bc |u|2

Ñ
s
‖
K

+1

−1−b
(K)

.

By proceeding similarly, we find that, for |α⊥| = 1,

‖Dα⊥

⊥ η‖‖2L2(K) . h
‖
K

∑

α‖=0,1

‖D̂α⊥

⊥ D̂α‖

‖ η̂‖‖2
L2(K̂)

.pΨp
‖
K
,s

‖
K

(h
‖
K)2s

‖
K
+2‖Dα⊥

⊥ D
s
‖
K
+1

‖ u‖2L2(K)

.pΨp
‖
K
,s

‖
K

(h
‖
K)2bc‖r−bc+s

‖
K
+1

c Dα⊥

⊥ D
s
‖
K
+1

‖ u‖2L2(K)

.pΨp
‖
K
,s

‖
K

(h
‖
K)2bc |u|2

Ñ
s
‖
K

+2

−1−b
(K)

.

This establishes the bound (A.32).

For u ∈ B−b(Ω̃
ℓ
ce), we use analogous arguments based on Lemma A.8, Proposi-

tion A.3 and (A.30). This results in

‖η‖0‖2L2(K).pΨp
‖
K
,s

‖
K

(h
‖
K)2s

‖
K
+2‖Ds

‖
K
+1

‖ u‖2L2(K)

.pΨp
‖
K
,s

‖
K

(h
‖
K)2bc‖r−bc+s

‖
K
+1

c D
s
‖
K
+1

‖ u‖2L2(K)

.p(h
‖
K)2bc |u|2

Ñ
s
‖
K

+1

−b
(K)

.

(A.33)

Next, we sum the bounds in (A.32), (A.33) over all layers of Õℓ
ce. By notic-

ing (A.23), (A.26) and the analytic regularity (A.28), we conclude that

u ∈ B−1−b(Ω̃
ℓ
ce) : Υ

‖

Õℓ
ce

[η‖]2.p

ℓ+1∑

j=2

j∑

i=2

Ψ
p
‖
j
,s

‖
j

σ2(ℓ+1−j)bcC2s
‖
jΓ(s

‖
j + 3)2,

u ∈ B−b(Ω̃
ℓ
ce) : ‖η‖0‖2L2(Õℓ

ce)
.p

ℓ+1∑

j=2

j∑

i=2

Ψ
p
‖
j
,s

‖
j

σ2(ℓ+1−j)bcC2s
‖
jΓ(s

‖
j + 2)2.
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The terms in the sums above are independent of the inner index i. Interpolation to

non-integer differentiation orders s
‖
j ∈ [1, p

‖
j ] as in [24, Lemma 5.8], applying [24,

Lemma 5.12] and absorbing the algebraic loss in |p| complete the proof. �

A.3.2. Convergence on T̃ℓ
e. We first consider edge-perpendicular elements.

Proposition A.11. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ such that Υ⊥
T̃ℓ

e

[η⊥0 ]
2 ≤ C exp(−2bℓ) respec-

tively ‖η⊥0 ‖2L2(T̃ℓ
e)

≤ C exp(−2bℓ).

Proof. Let K = Kj = K⊥ ×K
‖
j be an element of T̃ℓ

e as in (A.25). We claim that

(h⊥
K)−2‖η⊥0 ‖2L2(K) + ‖D⊥η

⊥
0 ‖2L2(K . σ2min{bc,be}ℓ|u|2

Ñ2
−1−b

(K)
, (A.34)

‖D‖η
⊥
0 ‖2L2(K) . σ2min{bc,be}ℓ|u|2

Ñ3
−1−b

(K)
, (A.35)

‖η⊥0 ‖2L2(K) . σ2min{bc,be}ℓ|u|2
Ñ1

−b
(K)

. (A.36)

To show (A.34), let s = |α⊥| = 0, 1. Applying the bound (A.10) with β = 1− be
(noting that p⊥K = max{1, s} by (A.26)) and from (A.24), (A.29), we see that

(h⊥
K)2(s−1)‖Dα⊥

⊥ η⊥0 ‖2L2(K) . (h⊥
K)2be‖r1−be

e D2
⊥u‖2L2(K),

. (h
‖
K)−2(be−bc)(h⊥

K)2be‖rbe−bc
c r1−be

e D2
⊥u‖2L2(K),

where |D2
⊥v|2 =

∑
|α⊥|=2 |Dα⊥

⊥ v|2. Thus, combining these estimates and expressing

the mesh sizes in terms of σ, see (A.24), we have

(h⊥
K)2(s−1)‖Dα⊥

⊥ η⊥0 ‖2L2(K) . σ2bc(ℓ+1−j)+2be(j−1)|u|2
Ñ2

−1−b
(K)

. σ2min{bc,be}ℓ|u|2
Ñ2

−1−b
(K)

,

which yields (A.34). To prove (A.35), we similarly conclude that

‖D‖η
⊥
0 ‖2L2(K) . (h⊥

K)2+2be‖r1−be
e D2

⊥D‖u‖2L2(K)

. (h
‖
K)−2−2be+2bc(h⊥

K)2+2be‖rbe−bc+1
c r1−be

e D2
⊥D‖u‖2L2(K)

. σ2min{bc,be}ℓ|u|2
Ñ3

−1−b
(K)

.

For proving (A.36), we employ an analogous argument based on (A.9) (with
β = 1− be). With (A.24) and (A.30), this results in

‖η⊥0 ‖2L2(K) . (h⊥
K)2be‖r1−be

e D⊥u‖2L2(K)

. (h
‖
K)2bc−2be(h⊥

K)2be‖rbe−bc
c r1−be

e D⊥u‖2L2(K)

. σ2min{bc,be}ℓ|u|2
Ñ1

−b
(Ω̃ℓ

ce)
,

which is (A.36).
The assertions now follow by summing the estimates (A.34), (A.35) and (A.36)

over all elements K ∈ T̃ℓ
e (i.e., over 2 ≤ j ≤ ℓ + 1) and by suitably adjusting the

constants. �

A similar estimate holds for the approximation errors in direction parallel to e.
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Proposition A.12. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ such that Υ
‖

T̃ℓ
e

[η‖]2 ≤ C exp(−2bℓ) respec-

tively ‖η‖0‖2L2(T̃ℓ
e)

≤ C exp(−2bℓ).

Proof. For u ∈ B−1−b(Ω̃
ℓ
ce), we have u,D‖u,D⊥u ∈ L2(Ω̃ℓ

ce) with (A.28) and

‖r−1−bc+α‖

c Dα‖

‖ u‖
L2(Ω̃ℓ

ce)
≤ Cα‖+1Γ(α‖ + 1), α‖ ≥ 2,

‖r−bc+α‖

c Dα‖

‖ D⊥u‖L2(Ω̃ℓ
ce)

≤ Cα‖+2Γ(α‖ + 2), α‖ ≥ 1.

Similarly, for u ∈ B−b(Ω̃
ℓ
ce) it follows with (A.30) that u ∈ L2(Ω̃ℓ

ce) and

‖r−bc+α‖

c Dα‖

‖ u‖
L2(Ω̃ℓ

ce)
≤ Cα‖+1Γ(α‖ + 1), α‖ ≥ 1.

In view of (A.24), (A.25), these properties correspond to the one-dimensional an-
alytic regularity assumptions considered in (A.16) and (A.20), respectively. More-

over, due to (A.26), the polynomial degrees p
‖
K along the edge e are s-linearly

increasing away from the corner c. Hence, Lemma A.5 respectively Lemma A.6
along with the tensor-product structure of the elements yield the assertions. �

A.3.3. Convergence on T̃ℓ
c. It remains to show exponential convergence on T̃ℓ

c.

Proposition A.13. Let u ∈ H1+θ(Ω̃ℓ
ce) respectively u ∈ Hθ(Ω̃ℓ

ce) for some θ ∈
(0, 1). Then there exist constants b, C > 0 independent of ℓ such that Υ

‖

T̃ℓ
c

[η]2 ≤
C exp(−2bℓ) respectively ‖η0‖2

L2(T̃ℓ
c)

≤ C exp(−2bℓ).

Proof. The element K ∈ T̃ℓ
c is isotropic with hK ≃ σℓ; cf. (A.22). Standard

h-version approximation properties then show that N
‖
K [η]2 . h2θ

K ‖u‖2
H1+θ(K) re-

spectively ‖η0‖2L2(K) . h2θ
K ‖u‖2

Hθ(K). This implies the assertions. �
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[1] I. Babuška and B. Q. Guo. The h-p version of the finite element method for domains with
curved boundaries. SIAM J. Numer. Anal., 25(4):837–861, 1988.
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[22] D. Schötzau, Ch. Schwab, and A. Toselli. Mixed hp-DGFEM for incompressible flows. II.

Geometric edge meshes. IMA J. Numer. Anal., 24(2):273–308, 2004.
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