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FRACTIONAL SPACE-TIME VARIATIONAL FORMULATIONS OF

(NAVIER-) STOKES EQUATIONS

CHRISTOPH SCHWAB AND ROB STEVENSON

ABSTRACT. Well-posed space-time variational formulations in fractional order
Bochner-Sobolev spaces are proposed for parabolic partial differential equations,
and in particular for the instationary Stokes and Navier-Stokes equations on bounded
Lipschitz domains. The latter formulations include the pressure variable as a pri-
mal unknown, and so account for the incompressibility constraint via a Lagrange
multiplier. The proposed new variational formulations can be the basis of adap-
tive numerical solution methods that converge with the best possible rate, which,
by exploiting the tensor product structure of a Bochner space, equals the rate of
best approximation for the corresponding stationary problem. Unbounded time
intervals are admissible in many cases, permitting an optimal adaptive solution of
long-term evolution problems.

1. INTRODUCTION

The topic of this paper is the development of well-posed space-time variational
formulations of parabolic partial differential equations (PDEs), instationary Stokes
and Navier-Stokes equations. Here and below with well-posed it is meant that the
corresponding operator is boundedly invertible, or in case of a nonlinear equation,
that its Fréchet derivative at the solution has this property.

Other than questions about existence, uniqueness and regularity of solutions, in
the field of PDEs the issue of well-posedness seems to be studied less extensively.
Our interest in this issue is driven by the development of numerical solution meth-
ods.

Firstly, a numerical discretization can only lead to a matrix-vector equation that
is well-conditioned, uniformly in its size, when on the infinite dimensional level
the problem is well-posed. Only in that case, solvers of asymptotic optimal com-
putational complexity can be developed.

Secondly, for a well-posed problem, the norm of the residual of an approximate
solution is proportional to the norm of its error. Such an equivalence is paramount
for the development of adaptive solution methods that converge with the best pos-
sible rates, in linear computational complexity. Although our interest mainly lies
in the construction of adaptive wavelet schemes, these observations about the ne-
cessity of well-posedness apply equally well to other numerical solution methods,
like finite element methods.
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For evolution problems, as parabolic problems and instationary (Navier-) Stokes
equations, traditionally time marching schemes are applied. By applying an (im-
plicit) time discretization, a sequence of stationary PDEs in the spatial domain is
created that have to be solved successively. One drawback of this approach is that
it is inherently sequential, and not suited for a parallel implementation. Recent
years have seen the emergence of methods that reduce this disadvantage, e.g., the
parareal method (see [LMT01]). Sequential time stepping entails, moreover, that
the time increment ∆t at time t is (essentially) independent of the spatial location.
Consequently, the class of possible space-time ‘grids’ does not allow an efficient
approximation of singularities that are localized in space and time. Finally, in ap-
plications where an approximation of the whole time evolution is needed, as with
problems of optimal control or in visualizations, these time stepping methods re-
quire a huge amount of storage.

Having a well-posed space-time variational formulation of an evolutionary PDE
at hand, we advocate to solve the evolution problem numerically as one operator
equation on the space-time cylinder with an adaptive wavelet scheme ([CDD01, SS09,
CS11, Ste14]). Such methods are “embarrassingly parallel”, and converge with the
best possible rate from the basis. Moreover, since these bases are constructed as
tensor products of bases in space and time, under mild (Besov) smoothness con-
ditions on the solution this best possible rate is equal to that as when solving the
corresponding stationary problem. The latter property induces the reduction in
computational cost and storage that we are aiming at.

Although we have wavelet schemes in mind, we emphasize that the advantages
of starting from a well-posed space-time variational formulation equally well ap-
ply to other space-time solution schemes, see e.g. [BJ89, BJ90, Tan13, UP14, And14,
Mol14, AT15, LMN15, Ste15].

This paper is organized as follows: In Sect. 2–4, we consider parabolic PDEs.
By the application of the method of real interpolation, we derive well-posed space-
time variational formulations w.r.t. scales of spaces, being intersections of Bochner
spaces, with which we generalize results known from the literature.

In Sect. 5, being the core of this paper, we construct well-posed space-time varia-
tional formulations for the instationary Stokes problem. Although we build on re-
sults obtained for the parabolic problem, we are not content with a formulation of
the flow problem as a parabolic problem for the divergence-free velocities. Indeed,
only in special cases (Sobolev) spaces of divergence-free functions can be equipped
with wavelet Riesz bases, or, for other solution methods, can be equipped with a
dense nested sequence of trial spaces. Therefore, well-posed variational formula-
tions are constructed for the saddle-point problem involving the pair of velocities
and pressure.

In our previous work [GSS14] on this topic, we arrived at a formulation that
contains Sobolev spaces of smoothness index 2. The same holds true for the for-
mulations derived in [Köh13] that allow more general boundary conditions, and
that extend to Banach spaces. Such Sobolev spaces require trial spaces of glob-

ally C1-functions whose construction is cumbersome on non-product domains. In
the current work, such spaces are avoided, and the arising spaces can be conve-
niently equipped with continuous piecewise polynomial wavelet Riesz bases, for
general polytopal spatial domains (see e.g. [DS99]). Related to this is that, unlike
[GSS14, Köh13], we avoid making a ‘full-regularity’ assumption on the stationary
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Stokes operator, so that the current space-time variational formulations are well-
posed on general bounded spatial Lipschitz domains. To establish the necessary
inf-sup conditions, a key role is played by the right-inverse of the divergence op-
erator that was introduced in [Bog79].

Finally, in Sect. 6 the results are extended to the instationary Navier-Stokes
equations. The results concerning the bounded invertibility of the instationary
Stokes operator are extended to the Oseen operator, being the Fréchet derivative
of the instationary Navier-Stokes operator. The spaces with respect to which we
show well-posedness satisfy all requirements to lead to easily implementable dis-
cretizations in n = 2 space dimensions, but not in n = 3. In the latter case, some
function spaces still mandate trial functions that are continuously differentiable as
function of the spatial variable.

In this work, by C . D we will mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C & D
is defined as D . C, and C h D as C . D and C & D.

For normed linear spaces E and F, by L(E, F) we will denote the normed linear
space of bounded linear mappings E → F, and by Lis(E, F) its subset of bound-
edly invertible linear mappings E → F. We write E →֒ F to denote that E is
continuously embedded into F. For simplicity only, we exclusively consider linear
spaces over the scalar field R.

2. ‘CLASSICAL’ VARIATIONAL FORMULATIONS OF LINEAR PARABOLIC PROBLEMS

Let V, H be separable Hilbert spaces of functions on some “spatial domain”
such that V →֒ H with dense and compact embedding. Identifying H with its
dual, we obtain the Gelfand triple V →֒ H →֒ V′.

We use the notation 〈·, ·〉 to denote both the scalar product on H × H, and its
unique extension by continuity to the duality pairing on W ′ ×W for any densely
embedded W →֒ H.

Let −∞ ≤ α < β ≤ ∞ and denote, for a.e.

t ∈ I := (α, β),

by a(t; ·, ·) a bilinear form on V × V such that for any η, ζ ∈ V, t 7→ a(t; η, ζ) is
measurable on I, and such that, for some constants M, γ > 0 and λ ≥ 0, for a.e.
t ∈ I,

|a(t; η, ζ)| ≤ M‖η‖V‖ζ‖V (η, ζ ∈ V) (boundedness),(2.1)

a(t; η, η) + λ‖η‖2
H ≥ γ‖η‖2

V (η ∈ V) (Gårding inequality).(2.2)

For |I| = ∞, we will need (2.2) for λ = 0, i.e.,

a(t; η, η) ≥ γ‖η‖2
V (η ∈ V) (coercivity).(2.3)

With A(t) ∈ L(V, V′) being defined by (A(t)η)(ζ) = a(t; η, ζ), we are inter-
ested in solving the parabolic initial value problem to find u such that

(2.4)

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I),

u(α) = uα,

where for α = −∞, the initial condition should be omitted.
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In a simultaneous space-time variational formulation, the parabolic PDE reads
as finding u from a suitable space of functions of space and time such that

(2.5) (Bw)(v) :=
∫

I
〈 dw

dt (t), v(t)〉+ a(t; w(t), v(t))dt =
∫

I
〈g(t), v(t)〉 =: g(v)

for all v from another suitable space of functions of space and time.
In [SS09], the initial condition was appended by testing it against additional

test functions. There, the following result was proved (see also [DL92, Ch.XVIII,
§3] and [Wlo82, Ch. IV, §26] for slightly different statements).

Theorem 2.1. For −∞ < α < β < ∞, and under conditions (2.1)-(2.2), with

(Bew)(v1, v2) := (Bw)(v1) + 〈w(α), v2〉,

it holds that
Be ∈ Lis(L2(I; V) ∩ H1(I; V′), (L2(I; V)× H)′),

with the norm of B−1
e being bounded by an increasing function of γ−1, M, |I|−1, and

max(0, λ|I|).

Using this theorem, for given g ∈ L2(I; V′) and uα ∈ H, a valid, well-posed

variational formulation of (2.4) reads as finding u ∈ L2(I; V) ∩ H1(I; V′) such that

(2.6) (Beu)(v1, v2) = g(v1) + 〈uα, v2〉 ((v1, v2) ∈ L2(I; V)× H),

or, in operator form, as Beu = [g uα]⊤. For completeness, with a well-posed weak
formulation, we mean one that corresponds to a boundedly invertible mapping.

A necessary ingredient for Theorem 2.1 is that

(2.7) L2(I; V) ∩ H1(I; V′) →֒ C( Ī, H),

see e.g. [DL92, Ch.XVIII, §1, Thm.1] for a proof of this continuous embedding
result. By definition of the norms involved, the norm of the embedding depends
only on β− α when it tends to zero.

From the norm of B−1
e being uniformly bounded for |I| → ∞ when λ = 0 one

infers the following.

Corollary 2.2. For −∞ < α < β ≤ ∞, and under conditions (2.1) and (2.2), or (2.3)
when β = ∞,

Be ∈ Lis(L2(I; V) ∩ H1(I; V′), (L2(I; V)× H)′).

As a preparation for handling the case that α = −∞, next we focus on the case
of having a homogeneous initial condition. For s ≥ 0, and δ ∈ {α, β}, let

Hs
0,{δ}(I) := closHs(I){v ∈ C∞( Ī) : supp v ∩ {δ} = ∅}.

Note that Hs
0,{δ}

(I) = Hs(I) when δ = ±∞.

Noting that for w ∈ H, w = 0 in H is equivalent to w = 0 in V′, from (2.7) we
infer that for −∞ < α,

L2(I; V) ∩ H1
0,{α}(I; V′) = {w ∈ L2(I; V) ∩ H1(I; V′) : w(α) = 0 in H}.

From Corollary 2.2, we conclude the following.

Theorem 2.3. For −∞ < α < β ≤ ∞, and under conditions (2.1) and (2.2), or (2.3)
when β = ∞, for the operator B defined in (2.5), it holds that

B ∈ Lis(L2(I; V) ∩ H1
0,{α}(I; V′), L2(I; V)′).
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The norms of B and B−1 are bounded by those of Be and B−1
e , respectively.

With this result, a valid, well-posed weak formulation of the parabolic initial
value problem (2.4) with homogeneous initial condition u(α) = 0, reads as finding

u ∈ L2(I; V) ∩ H1
0,{α}

(I; V′) such that

(Bu)(v) = g(v) (v ∈ L2(I; V),

or, in operator form, as Bu = g.
Finally, the same argument that led to Corollary 2.2 yields the following result.

Corollary 2.4. For −∞ ≤ α < β ≤ ∞, and under conditions (2.1) and (2.2), or (2.3)
when |I| = ∞,

B ∈ Lis(L2(I; V) ∩ H1
0,{α}(I; V′), L2(I; V)′).

3. WELL-POSED VARIATIONAL FORMULATIONS W.R.T. SCALES OF SPACES

By using well-posedness of variational formulations of parabolic problems with
a reversed time direction, duality, and the Riesz-Thorin interpolation theorem, we
derive well-posed variational formulations with respect to scales of spaces.

Let S(t) := −t for t ∈ R, and let B̄ denote the parabolic operator B with I =
(α, β) reading as S(I) = (−β,−α) and a(t; η, ζ) reading as a(S(t); ζ, η).

Remark 3.1. For finite I, or I = R it would be more convenient to replace S(t) by
t 7→ β + α − t, in which case S(I) = I. The current setting, however, allows to
include the case of I being a half-line.

Throughout this and the next section, let ̺ ∈ [0, 1] and W be a separable Hilbert
space with W →֒ V and dense embedding, such that

(3.1) V ≃ [H, W] 1
1+̺

.

We define

(3.2) Vs(1+̺) := [H, W]s, V−s(1+̺) = (Vs(1+̺))′ (s ∈ [0, 1]),

which generally involves a harmless redefinition of V. We assume that H, W, I, ̺
and B are such that

B ∈ Lis(L2(I; V1+̺) ∩ H1
0,{α}(I; V̺−1), L2(I; V1−̺)′),(3.3)

B̄ ∈ Lis(L2(S(I); V1+̺) ∩ H1
0,{−β}(S(I); V̺−1), L2(S(I); V1−̺)′).(3.4)

Note that for ̺ = 0 , and thus

W = V,

(3.3), and so equivalently, (3.4) follow from (2.1) and (2.2), or (2.3) when |I| = ∞,
as shown in Corollary 2.4.

Lemma 3.2. The statement (3.4) is equivalent to

(3.5) B ∈ Lis(L2(I; V1−̺), (L2(I; V1+̺) ∩ H1
0,{β}(I; V̺−1))′),

and the norm of B̄ or B̄−1 implied in (3.4) is equal to that of B or B−1 in (3.5).
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Proof. For w : I → V̺−1 being smooth and compactly supported in I, and v ∈
L2(I; V1+̺) ∩ H1

0,{β}
(I; V1−̺), integration-by-parts followed by a change of vari-

ables that reverses the time direction shows that

(Bw)(v) =
∫

I
−〈w(t), dv

dt (t)〉+ a(t; w(t), v(t))dt

=
∫

S(I)
〈(S∗w)(t), d(S∗v)

dt (t)〉+ a(S(t), (S∗w)(t), (S∗v)(t))dt

= (B̄S∗v)(S∗w) = (B̄′S∗w)(S∗v).

Here, S∗ is defined by (S∗w)(t) = w(S(t)). The operator S∗ is an isomorphism be-

tween L2(S(I); V1−̺) and L2(I; V1−̺), and between L2(S(I); V1+̺)∩H1
0,{β}

(S(I); V̺−1)

and L2(I; V1+̺) ∩ H1
0,{−β}

(I; V̺−1). By the density of the smooth, compactly sup-

ported functions w : I → V̺−1 in L2(I; V̺−1), the proof is completed. �

In the forthcoming Theorem 3.5, from (3.3) and (3.5) we will derive bounded
invertibility of B w.r.t. ‘intermediate’ spaces using the Riesz-Thorin theorem. Until
this theorem, we will discuss the validity of conditions (3.3)–(3.4) for ̺ > 0.

Under mild additional conditions, for a suitable W, (3.3), and equivalently, (3.4)

can be expected to hold for ̺ = 1 , which will be particularly relevant for our

treatment of the instationary Stokes problem. Indeed, considering the case that
A(t) = A(t)′ for a.e. t ∈ I, let

D(A(t)) := {u ∈ H : A(t)u ∈ H},

equipped with
√
‖A(t)u‖2

H + ‖u‖2
H . Under the condition that D(A(t)) is inde-

pendent of t ∈ I, picking some t0 ∈ I, let

(3.6) W := D(A(t0)).

Then (2.1)–(2.2) imply that V ≃ D((A(t0) + λI)
1
2 ) = [H, W] 1

2
, i.e. (3.1) is valid

for ̺ = 1. Moreover, the property (3.3), known under the name maximal regularity,
and equivalently (3.4), holds true when |I| < ∞ and t 7→ A(t) ∈ C(I,L(H, W))
(see [PS01], also for the addition of possible non-symmetric lower order terms to
the operator A(t)).

Assuming (2.3), conditions (3.3)–(3.4) for ̺ = 1 can also hold for |I| = ∞. In
particular, in the autonomous case A(t) ≡ A = A′ > 0, (3.3)–(3.4) with W =
D(A) can be verified by direct calculations by expanding functions w on the space-
time cylinder as w = ∑φ wφ(t)⊗ ϕ with {ϕ} being an orthonormal basis for H of

eigenfunctions of A (cf. [CS11, Thms. 7.1, 7.3]).

Remark 3.3. With the choice (3.6) for W, the spaces Vs for |s| ∈ (1, 2] depend on
A(t0), and it is therefore a priori not clear how to equip them with a (wavelet)

Riesz basis. Therefore, let W̆ be another separable Hilbert space, with W̆ →֒ W
and dense embedding. In applications, for V being a Sobolev space of order m on

a domain Ω ⊂ R
n, e.g. V = Hm(Ω) or V = Hm

0 (Ω), typically W̆ will be given by

H2m(Ω) ∩V. Corresponding to W̆, let

V̆2s := [H, W̆]s, V̆−2s := (V̆2s)′ (s ∈ [0, 1]) .

Then V̆s →֒ Vs for s ∈ [0, 2]. Moreover, it holds that A(t0) + λI ∈ L(W, H).
Since from (2.1), V →֒ H and A(t0) + λI ∈ L(V, V′), we infer that for s ∈ [1, 2],
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A(t0) + λI ∈ L(Vs, Vs−2). Now assume that for some θ ∈ (0, 1],

‖u‖V̆1+θ . ‖(A(t0) + λI)u‖V̆−1+θ (u ∈ V̆1+θ)

known as a regularity condition. Then for any u ∈ V̆1+θ, using V−1+θ →֒ V̆−1+θ we
have

‖u‖V̆1+θ . ‖(A(t0) + λI)u‖V̆−1+θ . ‖(A(t0) + λI)u‖V−1+θ . ‖u‖V1+θ ,

or V1+θ →֒ V̆1+θ, and so

(3.7) Vs ≃ V̆s (|s| ≤ 1 + θ).

As stated before, from (3.3) and (3.4) we are going to derive, in Theorem 3.5,
boundedly invertibility of B w.r.t. a whole range of ‘intermediate’ spaces. A sub-
range of these results will only involve spaces Vs for |s| ≤ 1+ θ, which in applica-
tions therefore can be equipped with (wavelet) Riesz bases.

Our discussion about (3.3)–(3.4) is finished by the following remark.

Remark 3.4. For (J, δ) ∈ {(I, α), (S(I),−β)}, it holds that [L2(J; V1)′, L2(J; V0)′]̺ =

L2(J; V1−̺)′, and
[
L2(J; V1) ∩ H1

0,{δ}(J; V−1), L2(J; V2) ∩ H1
0,{δ}(J; V0)

]
̺

≃ L2(J; V1+̺) ∩ H1
0,{δ}(J; V̺−1).

Consequently, if (3.3)-(3.4) are valid for ̺ = 1, then from the fact that (3.3)-(3.4)
are always valid for ̺ = 0, one infers that (3.3)-(3.4) hold for any intermediate
̺ ∈ (0, 1).

Theorem 3.5. Let (3.3) and (3.4) be valid. For s ∈ [0, 1] and δ ∈ {α, β}, let

H̆s
0,{δ}(I) := [L2(I), H1

0,{δ}(I)]s,

and

H
s

̺,δ := L2(I; V1−̺+2s̺) ∩ H̆s
0,{δ}(I; V(1−2s)(1−̺)).

Then for s ∈ [0, 1] it holds that

B ∈ Lis(H s
̺,α, (H 1−s

̺,β )′).

Remark 3.6. We recall that H̆s
0,{δ}

(I) = Hs
0,{δ}

(I) = Hs(I) for s ∈ [0, 1
2 ) or δ = ±∞.

For δ 6= ±∞, H̆s
0,{δ}

(I) = Hs
0,{δ}

(I) ( Hs(I) for s ∈ ( 1
2 , 1], and H̆

1
2
0,{δ}

(I) →֒

H
1
2
0,{δ}

(I) with the norm on H̆
1
2
0,{δ}

(I) being strictly stronger than that on H
1
2
0,{δ}

(I)

(and so H̆
1
2
0,{δ}

(I) ( H
1
2
0,{δ}

(I)), see, e.g., [LM68, Thm. 11.7]). In the literature,

sometimes the space H̆
1
2
0,{δ}

(I) is also denoted as H
1
2
00,{δ}

(I).

Proof. Note that H 1
̺,δ = L2(I; V1+̺) ∩ H1

0,{δ}
(I; V̺−1) →֒ L2(I; V1−̺) = H 0

̺,δ, and

so (H 0
̺,δ)
′ →֒ (H 1

̺,δ)
′, with dense embeddings. By the application of interpolation,

from (3.3) and Lemma 3.2 we infer that

B ∈ Lis([H 0
̺,α, H 1

̺,α]s, [(H
1

̺,β)
′, (H 0

̺,β)
′]s).
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Since

(3.8) [(H 1
̺,β)
′, (H 0

̺,β)
′]s = [H 0

̺,β, H 1
̺,β]
′
1−s,

the proof follows from the characterisation of these interpolation spaces given in
the following lemma. �

In view of the definition of H s
̺,δ, note that for ̺ < 1, L2(I; V1−̺) 6 →֒ H1

0,{δ}
(I; V̺−1)

and H1
0,{δ}

(I; V̺−1) 6 →֒ L2(I; V1−̺). Nevertheless, we have the following result.

Lemma 3.7. For s ∈ [0, 1] and δ ∈ {α, β}, it holds that

H
s

̺,δ ≃ [H 0
̺,δ, H 1

̺,δ]s .

Proof. In the last part of this proof, we will demonstrate the claim for the case
I = R. We start with showing that this result implies the result for I ( R. In the
following, let H̄ s denote the space H s

̺,δ with I reading as R.

There exists an extension E of functions on I to R with E ∈ L(L2(I), L2(R)) and
E ∈ L(H1

0,{δ}(I), H1(R)). Furthermore, exists a mapping R of functions on R to

functions on I with R ∈ L(L2(R), L2(I)), R ∈ L(H1(R), H1
0,{δ}

(I)), and RE = Id.

To show the latter, it is sufficient to discuss the construction of R for δ = α and
I = (α, ∞). Let Ē be an extension of functions on (−∞, α) to functions on R such
that Ē ∈ L(L2(−∞, α), L2(R)) and Ē ∈ L(H1(−∞, α), H1(R)). Then R defined by
Ru = u− Ē(u|(−∞,α)) satisfies the assumptions.

By interpolation and a tensor product argument, we have for s ∈ [0, 1],

R⊗ Id ∈ L(Hs(R; V(1−2s)(1−̺)), H̆s
0,{δ}(I; V(1−2s)(1−̺))),

E⊗ Id ∈ L(H̆s
0,{δ}(I; V(1−2s)(1−̺)), Hs(R; V(1−2s)(1−̺))),

from which we infer that

R⊗ Id ∈ L(H̄ s, H s
̺,δ), E⊗ Id ∈ L(H s

̺,δ, H̄ s).

Writing for u ∈ H s
̺,δ, u = (R⊗ Id) ◦ (E⊗ Id)u, the last result together with the

claim for I = R shows that

‖u‖H s
̺,δ

. ‖E⊗ Id‖
H̄ s h ‖E⊗ Id‖[H̄ 0,H̄ 1]s

. ‖u‖[H 0
̺,δ ,H 1

̺,δ]s
,

‖u‖[H 0
̺,δ ,H 1

̺,δ]s
. ‖E⊗ Id‖[H̄ 0,H̄ 1]s

h ‖E⊗ Id‖ ¯H s . ‖u‖H s
̺,δ

,

which proves the claim for a general interval I ⊆ R.
There remains to prove the claim for I = R. With (Λw)(v) := 〈w, v〉V1+̺

and D(Λ) := {w ∈ V1+̺ : Λw ∈ H}, let {ϕ} be an orthonormal basis for H
consisting of eigenfunctions, with eigenvalues λϕ, of the unbounded symmet-
ric operator Λ : H ⊂ D(Λ) → H, which basis exists in virtue of the compact-

ness of the embedding V1+̺ →֒ H (see e.g [DL90, Ch. VIII, §2.6, Thm. 7]). With
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û(ξ, ·) :=
∫

R
u(t, ·)e−i2πtξdt, writing û(ξ, ·) = ∑ϕ ûϕ(ξ)ϕ, it holds that

‖u‖2
¯H 0 =

∫

R
∑
ϕ

|ûϕ(ξ)|
2λ

1−̺
1+̺
ϕ dξ,

‖u‖2
¯H 1 =

∫

R
∑
ϕ

|ûϕ(ξ)|
2
(

λϕ +
(1 + |ξ|2)

1
2

λ
1−̺
1+̺
ϕ

)
dξ,

and so

‖u‖2
[ ¯H 0,H̄ 1]s

=
∫

R
∑
ϕ

|ûϕ(ξ)|
2λ

1−̺
1+̺
ϕ




λϕ + (1+|ξ|2)
1
2

λ

1−̺
1+̺
ϕ

λ
1−̺
1+̺
ϕ




s

dξ

h

∫

R
∑
ϕ

|ûϕ(ξ)|
2
(
λ

1−̺+2s̺
1+̺

ϕ + (1 + |ξ|2)
s
2 λ

(1−2s)(1−̺)
1+̺

ϕ

)

= ‖u‖2
¯H s ,

where we have used that for s ∈ [0, 1] and η, ζ ≥ 0, 1
2 (η

s + ζs) ≤ (η+ ζ)s ≤ ηs + ζs.
�

Remark 3.8. In view of the application of Theorem 3.5 to construct an adaptive
wavelet scheme, let us briefly comment on the construction of tensor product

wavelet Riesz bases for the spaces H s
̺,α and H

1−s
̺,β . For more information, we refer

to [SS09] and, for the case s = 1
2 , to [LS15]. If Θ (Σ) is a collection of temporal (spa-

tial) wavelets that, when normalized in the corresponding norm, is a Riesz basis

for L2(I) (V1−̺+2ς̺) and H̆
ς
0,{δ}

(I) (V(1−2ς)(1−̺)), then, normalized, the collection

Θ⊗ Σ is a Riesz basis for H
ς

̺,δ.

Suitable collections Θ are amply available. When V is a Sobolev space of order
m = 1 on a general polytopal domain Ω ⊂ R

n, then the same holds true for Σ

when the smoothness indices 1− ̺ + 2ς̺, (1− 2ς)(1− ̺) ∈ (− 3
2 , 3

2 ). Indeed, for
those indices, Σ can be a collection of continuous piecewise polynomial wavelets,

whereas smoothness indices outside (− 3
2 , 3

2 ) require smoother (primal or dual)
wavelets, whose construction is troublesome on non-rectangular domains. For
ς ∈ {s, 1− s}, these conditions are fulfilled when ̺ = 0, whereas for ̺ = 1 they

read as |s| < 3
4 (where |2s| < 1 + θ might already be needed to guarantee that V2ς

is (isomorphic to) a Sobolev space of order 2ς, cf. (3.7)).
When the bases Θ and Σ have polynomial reproduction orders dt and dx, re-

spectively, then functions in H
s

̺,α that satisfy a mild (Besov) smoothness condition

can be (nonlinearly) approximated from the tensor product basis at an algebraic

rate min(dt − s, dx−1
n ) when ̺ = 0 (up to a logarithmic factor when s = 0 and

dt =
dx−1

n ), or, when ̺ = 1, at rate min(dt − s, dx−2s
n ) (up to a logarithmic factor

when s = 0 and dt =
dx
n ) . Note that for dt− s ≥ dx−1

n or dt− s ≥ dx−2s
n , these rates

are equal to the generally best possible rates of best approximation in the spaces V

or V2s for the corresponding stationary elliptic problem. Consequently, using the
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adaptive wavelet scheme the time evolution problem can be solved at an asymp-
totic error versus work rate which is equal to solving the stationary problem.

Noting that for ̺, s ∈ [0, 1], 1− ̺ + 2s̺ ≥ 0, and for ̺ ∈ [0, 1], (1− 2s)(1− ̺) ≥

0 if and only if s ≤ 1
2 , we infer that for all s ∈ [0, 1]\{ 1

2}, either H s
̺,α or H

1−s
̺,β ,

which spaces appear in the statement B ∈ Lis(H s
̺,α, (H 1−s

̺,β )′) given in Theo-

rem 3.5, involve a ‘spatial’ Sobolev space of negative order. Interestingly, for the

special case s = 1
2 , no Sobolev spaces of negative order enter the formulation. This

is in particular convenient for numerical schemes that are not based on wavelets.

Below we repeat the variational formulation for this case. Note that H
1
2

̺,δ is inde-

pendent of ̺, which fact we use to formulate the next corollary under the mildest
conditions which correspond to the case ̺ = 0.

Corollary 3.9. Under conditions (2.1) and (2.2), or (2.3) when |I| = ∞, it holds that

B ∈ Lis
(

L2(I; V) ∩ H̆
1
2
0,{α}

(I; H),
(
L2(I; V) ∩ H̆

1
2
0,{β}

(I; H)
)′)

.

This latter result generalizes corresponding known results for the half-line I =
(α, ∞) to I = (α, β) for general −∞ ≤ α < β ≤ ∞, so in particular to finite I.
(See e.g. [BB83, Thm. 2.2], [Fon09, Thm. 4.3] (also for nonlinear spatial operators),
and [LS15]. The proofs of well-posedness in these references are based on the
application of a Hilbert transform in the temporal direction).

Remark 3.10. For |I| < ∞ or I = R, the problem of finding w ∈ L2(I; V) ∩

H̆
1
2
0,{α}

(I; H) such that (Bw)(v) = g(v) (v ∈ L2(I; V) ∩ H̆
1
2
0,{β}

(I; H)) is equivalent

to

(3.9)
∫

I
〈 dw

dt (t), v(β+ α− t)〉+ a(t; w(t), v(β+ α− t))dt =
∫

I
〈g(t), v(β+ α− t)〉

(v ∈ L2(I; V) ∩ H̆
1
2
0,{α}

(I; H)). Now if, for a.e. t ∈ I, a(β + α − t, ·, ·) = a(t, ·, ·),

and a(t, ·, ·) is symmetric, then the bilinear form at the left hand side of (3.9) is
symmetric. It can, however, not be expected to be coercive.

4. INHOMOGENEOUS INITIAL CONDITION

A valid, well-posed weak formulation of the parabolic initial value problem
(2.4) with a possibly inhomogeneous initial condition at α > −∞ was already given
in (2.6). In this section, we investigate whether such a problem can also be solved

in L2(I; V1−̺+2s̺) ∩ Hs(I; V(1−2s)(1−̺)) for (s, ̺) 6= (1, 0). In order to do so, we
need a substitute for the embedding from (2.7).

Proposition 4.1. For any s ∈ ( 1
2 , 1] and ε > 0,

L2(I; V1−̺+2s̺) ∩ Hs(I; V(1−2s)(1−̺)) →֒ C( Ī, V(2s−1)̺−ε),

with a compact embedding when |I| < ∞.

Proof. We apply [Ama00, Thm. 5.2] (see also [Sim87, Corollary 9]) with ‘n’= 1,

‘X’= I,‘E0’= V(1−2s)(1−̺), ‘E1’= V1−̺+2s̺, ‘s0’= s, ‘s1’= 0, and ‘p0’=‘p1’= 2 (so

that ‘pθ’= 2). Thanks to s > 1
2 , there exists a θ ∈ [0, 1] with ‘sθ ’:= s(1− θ) =

1+ε
2 >

1
2 , where we use that it is sufficient to consider −ε ≥ 1 − 2s. Taking
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‘E’= [V(1−2s)(1−̺), V1−̺+2s̺]θ = V(2s−1)̺−ε, all conditions are satisfied, and our
statement follows. �

Unfortunately, given an s ∈ ( 1
2 , 1], for any ε > 0, the mapping L2(I; V1−̺+2s̺) ∩

Hs(I; V(1−2s)(1−̺)) → V(2s−1)̺−ε : u 7→ u(α) cannot be surjective, since u(α)

is also in V(2s−1)̺−ε/2. Consequently, on the basis of Proposition 4.1, for s <

1 it is not possible to solve the parabolic problem with inhomogeneous initial

condition in L2(I; V1−̺+2s̺) ∩ Hs(I; V(1−2s)(1−̺)) from a well-posed weak formu-
lation of type (2.6), so where the inhomogeneous initial condition is appended

as an equation in V(2s−1)̺−ε. Note that the well-posedness of (2.6) implies that

L2(I; V) ∩ H1(I; V′)→ H : u 7→ u(α) is surjective.
With a formulation of type (2.6), the initial condition plays the role of an essential

condition. As proposed in [CS11] (see also the earlier works [BJ89, BJ90] for A(t) ≡
A = A′ > 0) it is, however, possible, and computationally more convenient, to
impose it as a natural condition by applying integration by parts over time.

Let u be a ‘classical’ solution of problem (2.4). Multiplying the PDE with smooth

test functions t 7→ v(t) ∈ V1+̺−2s̺ that vanish at β, integrating over space and
time, applying integration-by-parts over time, and substituting the initial condi-
tion yields

∫

I
−〈u(t), dv

dt (t)〉H + a(t; u(t); v(t))dt =
∫

I
〈g(t), v(t)〉H + 〈uα, v(α)〉H.

For v as above, and t 7→ u(t) ∈ V1−̺+2s̺ being smooth on I and vanishing at {α},
the bilinear form at the left hand side reads as (Bu)(v) as defined in (2.5). For s ∈
[0, 1], such functions u and v form dense subsets in H s

̺,α and H
1−s

̺,β , respectively.

We conclude that the unique extension of the left hand side to a bilinear form

on H s
̺,α ×H

1−s
̺,β is (Bu)(v). For s ∈ [0, 1

2 ), g ∈ (H 1−s
̺,β )′ and uα ∈ V(2s−1)̺+ε,

Proposition 4.1 shows that the right-hand side is an element of (H 1−s
̺,β )′. For s = 0,

this holds even true when uα ∈ V−̺ by (a generalisation of) (2.7). In line with these

facts, we recall that for s ∈ [0, 1
2 ), H

s
̺,α = L2(I; V1−̺+2s̺) ∩ Hs(I; V(1−2s)(1−̺)),

so without the incorporation of a homogeneous boundary condition at α. From
Theorem 3.5 we conclude the following result:

Theorem 4.2. Assume conditions (3.3)-(3.4). Then for any s ∈ [0, 1
2 ), assuming that

g ∈ (H 1−s
̺,β )′, and, for some ε > 0, uα ∈ V(2s−1)̺+ε, or even uα ∈ V−̺ when s = 0, a

valid, well-posed weak formulation of the parabolic initial value problem (2.4) with possibly
inhomogeneous initial condition u(α) = uα reads as finding u ∈ H s

̺,α such that

(Bu)(v) = g(v) + 〈uα, v(α)〉H (v ∈H
1−s

̺,β ).

For alternative well-posed variational formulations of the inhomogeneous par-
abolic initial value problem (on the half-line) we refer to [Tom83, eqs. (0.15), (0.16)
and Thm. 2] and [Fon09, Thm. 4.10].

5. INSTATIONARY STOKES

For n ≥ 2, let Ω ⊂ R
n be a bounded Lipschitz domain, and −∞ < α < β ≤ ∞.

Given a constant ν > 0, a vector field f on I × Ω, and a function g on I ×Ω, we
consider the instationary inhomogeneous Stokes problem with no-slip boundary
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conditions and, for the moment, homogeneous initial condition to find the velocities
u and pressure p that satisfy

(5.1)





∂u
∂t − ν∆xu +∇x p = f on I ×Ω,

divx u = g on I ×Ω,
u = 0 on I × ∂Ω,

u(α, ·) = 0 on Ω,∫
Ω

p dx = 0.

With

(5.2)





c(u, v) :=
∫

I

∫

Ω

∂u
∂t · v + ν∇xu : ∇xv dxdt,

d(p, v) := −
∫

I

∫

Ω
p div v dxdt,

f(v) :=
∫

I

∫

Ω
f · v dxdt,

g(q) :=
∫

I

∫

Ω
g q dxdt,

in variational form it reads as finding (u, p) in some suitable space, that ‘incorpo-
rates’ the homogeneous initial/boundary conditions for u and

∫
Ω

p dx = 0, such
that

(S(u, p))(v, q) := c(u, v) + d(p, v) + d(q, u) = f(v)− g(q)

for all (v, q) from another suitable space. As always, the bilinear forms should
be interpreted as the unique extensions to the arising spaces of the bilinear forms
on dense subsets of sufficiently smooth functions in these spaces. Consequently, in
particular, sometimes it will be more natural to read−

∫
Ω

p div v dx as
∫

Ω
v · ∇p dx

and
∫

I
∂u
∂t v dt as −

∫
I

∂v
∂t u dt.

We start with collecting results about the stationary Stokes problem. Let, for
s ∈ [0, 2],

Ĥs(Ω) := [L2(Ω), H2(Ω) ∩ H1
0(Ω)] s

2
,

H̄s−1(Ω) := [(H1(Ω)/R)′, H1(Ω)/R)] s
2
,

where second definition should be interpreted w.r.t. the embedding of H1(Ω)/R

into (H1(Ω)/R)′ by means of H1(Ω)/R →֒ L2(Ω)/R ≃ (L2(Ω)/R)′ →֒ (H1(Ω)/R)′.
Let

a(u, v) := ν
∫

Ω
∇u : ∇v dx, (d̃iv v)(p) := −b(p, v) := −

∫

Ω
p div v dx.

For s ∈ [0, 2], a is bounded on Ĥs(Ω)n× Ĥ2−s(Ω)n, and b is bounded on H̄1−s(Ω)n×

Ĥs(Ω), i.e., d̃iv ∈ L(Ĥs(Ω)n, H̄s−1(Ω)). We set

Ĥ0(div 0; Ω) : =
{

u ∈ L2(Ω)n : d̃iv u = 0
}

,

Ĥ2(div 0; Ω) : =
{

u ∈ Ĥ2(Ω)n : d̃iv u = 0
}

.

For smooth fields u, it holds that d̃iv u = div u. On the other hand, it is known
that Ĥ0(div 0; Ω) =

{
u ∈ L2(Ω)n : div u = 0, u|∂Ω · n = 0

}
.

We will be interested in ‘inf-sup conditions’ satisfied by b, i.e., in surjectivity of

d̃iv, for which operator we will construct a right-inverse. It will be relevant that
the same right-inverse is bounded simultaneously w.r.t. different norms.
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Lemma 5.1. There exists a mapping F with F ∈ L(Hk
0(Ω), Hk+1

0 (Ω)n) (k ∈ N0),

(div ◦F)v = v when
∫

Ω
v(x) dx = 0, and F′ ∈ L(L2(Ω)n, H1(Ω)).

For Ω ⊂ R
n being bounded and star-shaped with respect to a ball K, F was

constructed in [Bog79] as Fv(x) =
∫

Ω
G(x, y)v(y)dy with G = (G1, . . . , Gn) be-

ing defined as G(x, y) =
∫ 1

0
1

sn+1 (x − y)ω(y + x−y
s )ds for arbitrary ω ∈ C∞

0 (K)

with
∫

K ω dx = 1. Membership of F ∈ L(Hk
0(Ω), Hk+1

0 (Ω)) (k ∈ N0) was shown

in [Bog79], [Gal94, Lemma III.3.1], and F′ ∈ L(L2(Ω)n, H1(Ω)) in [GHH06]. In
[Gal94, GHH06], the construction was generalized to any bounded Lipschitz do-
main Ω using the property that such an Ω can be written as a finite union of star-
shaped domains.

Corollary 5.2. There exists a mapping div+ ∈ L(H̄s(Ω), Ĥ1+s(Ω)n) (s ∈ [−1, 1
2 ))

with d̃iv ◦div+ = I.

Proof. For s ∈ [0, 1], we have F ∈ L([L2(Ω), H1
0(Ω)]s, [H1

0(Ω)n, H2
0(Ω)n]s) by

Lemma 5.1. For s ∈ [0, 1
2 ), it is known that [L2(Ω), H1

0(Ω)]s ≃ Hs(Ω) as well as

[H1
0(Ω)n, H2

0(Ω)n]s ≃ Ĥ1+s(Ω)n. Defining div+ as the restriction of F to functions

with vanishing mean, in particular we have div+ ∈ L(H̄s(Ω), Ĥ1+s(Ω)n).

With 1 := x 7→ vol(Ω)
−1
2 , for u ∈ C∞

0 (Ω)n and v ∈ C∞(Ω̄)/R, we have

〈u, div+ v〉L2(Ω)n = 〈F′~u− 〈F′~u, 1〉L2(Ω)1, v〉L2(Ω),

i.e., (div+)′ = ~u 7→ F′~u− 〈F′~u, 1〉L2(Ω)1. From Lemma 5.1, we infer that (div+)′ ∈

L(L2(Ω)n, H̄1(Ω)), i.e., div+ ∈ L(H̄−1(Ω), L2(Ω)n).
By an application of interpolation, we conclude that div+ ∈ L(H̄s(Ω), Ĥ1+s(Ω)n)

for s ∈ [−1, 1
2 ). Since for smooth v with zero mean, (d̃iv ◦div+)v = v, the proof is

completed. �

Corollary 5.3. With

Ĥs(div 0; Ω) := [Ĥ0(div 0; Ω), Ĥ2(div 0; Ω)] s
2
, (s ∈ [0, 2]),

it holds that

Ĥs(div 0; Ω) ≃ {u ∈ Ĥs(Ω)n : d̃iv u = 0}, (s ∈ [0, 3
2 )).

Proof. By the definition of a real interpolation space using the K-functional, it
holds that

(5.3) Ĥs(div 0; Ω) →֒ {u ∈ Ĥs(Ω)n : d̃iv u = 0} for s ∈ [0, 2].

We have d̃iv ∈ L(H2
0(Ω)n, H̄1(Ω) ∩ H1

0(Ω)) and d̃iv ∈ L(L2(Ω)n, H̄−1(Ω)). As

we have shown in Lemma 5.1 and Corollary 5.2, d̃iv admits a right-inverse div+

with div+ ∈ L(H̄1(Ω) ∩ H1
0(Ω), H2

0(Ω)n) and div+ ∈ L(H̄−1(Ω), L2(Ω)n). By an
abstract interpolation result from [LM68] (cf. [MM08, Lemma 2.13]), the existence
of such a right-inverse guarantees that

{
u ∈

[
L2(Ω)n, H2

0(Ω)n
]

s
2

: d̃iv u = 0
}

≃
[{

u ∈ L2(Ω)n : d̃iv u = 0
}

,
{

u ∈ H2
0(Ω)n : d̃iv u = 0

}]
s
2

(s ∈ [0, 2]).
(5.4)



14 CHRISTOPH SCHWAB AND ROB STEVENSON

For s ∈ [0, 3
2 ) the space on the left in (5.4) is isomorphic to {u ∈ Ĥs(Ω)n : d̃iv u =

0}. By H2
0(Ω) →֒ Ĥ2(Ω), the space on the right in (5.4) is continuously embedded

in Ĥs(div 0; Ω), which completes the proof. �

Proposition 5.4 (elliptic regularity). With A ∈ L(Ĥ1(div 0; Ω), Ĥ1(div 0; Ω)′) de-
fined by

(Au)(v) = a(u, v) (u, v ∈ Ĥ1(div 0; Ω)),

let D(A) := {u ∈ Ĥ0(div 0; Ω) : Au ∈ Ĥ0(div 0; Ω)}, equipped with the graph norm.
Then

[Ĥ0(div 0; Ω), D(A)] s
2
≃ Ĥs(div 0; Ω) (s ∈ [0, 3

2 )).

Proof. As shown in [MM08, Thm. 5.1], for Ω being a bounded Lipschitz domain,

and s ∈ ( 1
2 , 3

2 ),

D(A
s
2 ) h {u ∈ Ĥs(Ω)n : d̃iv u = 0}.

Since the space on the left is isomorphic to [Ĥ0(div 0; Ω), D(A)] s
2
, the proof is com-

pleted by Corollary 5.3 and the application of interpolation. �

For the analysis of the instationary Stokes operator, for s ∈ [0, 1] and δ ∈ {α, β}
we set

U
s

δ := L2(I; Ĥ2s(Ω)n) ∩ H̆s
0,{δ}(I; L2(Ω)n),

P
s
δ :=

(
L2(I; H̄2s−1(Ω)′) ∩ H̆1−s

0,{δ}
(I; H̄1(Ω)′)

)′
.

Applications of Lemma 3.7 for ̺ = 1, show that for δ ∈ {α, β} and s ∈ [0, 1],

[U 0
δ , U 1

δ ]s = [L2(I; L2(Ω)n), L2(I; Ĥ2(Ω)n) ∩ H̆1
0,{δ}(I; L2(Ω)n)]s

≃ L2(I; Ĥ2s(Ω)n) ∩ H̆s
0,{δ}(I; L2(Ω)n) = U

s
δ ,

and

[P0
δ , P1

δ ]s =
[(

L2(I; H̄1(Ω)) ∩ H̆1
0,{δ}

(
I; H̄−1(Ω)

))′
, L2(I; H̄1(Ω))

]
s

= [L2(I; H̄−1(Ω)), L2(I; H̄1(Ω)) ∩ H̆1
0,{δ}

(
I; H̄−1(Ω)

)
]′1−s

≃
(

L2(I; H̄1−2s(Ω)) ∩ H̆1−s
0,{δ}

(I; H̄−1(Ω))
)′

= P
s
δ .

Theorem 5.5. Recalling that Ω ⊂ R
n is a bounded Lipschitz domain, for s ∈ ( 1

4 , 3
4 ), it

holds that

S ∈ Lis(U s
α ×P

s
β, (U 1−s

β ×P
1−s
α )′).

Proof. One easily verifies that S ∈ L(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′) is valid for s ∈

{0, 1}, meaning that it is valid for s ∈ [0, 1].
Corollary 5.2 gives the existence of a right-inverse div+ of div that satisfies both

div+ ∈ L(H̄−1(Ω), L2(Ω)n) and, for s ∈ [0, 3
4 ), div+ ∈ L(H̄2s−1(Ω), Ĥ2s(Ω)n),

from which it follows that I ⊗ div+ ∈ L((P1−s
α )′, U s

α ). This implies that for s ∈
[0, 3

4 ), I ⊗ div ∈ L(U s
α , (P1−s

α )′) is surjective, i.e.,

inf
0 6=q∈P

1−s
α

sup
0 6=u∈U s

α

d(u, q)

‖u‖U s
α
‖q‖

P
1−s
α

> 0,
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and analogously, that for 1− s ∈ [0, 3
4 ), i.e., s ∈ ( 1

4 , 1],

inf
0 6=p∈Ps

β

sup
0 6=v∈U

1−s
β

d(v, p)

‖v‖
U

1−s
β
‖p‖Ps

β

> 0.

We conclude that both these inf-sup conditions are valid for s ∈ ( 1
4 , 3

4 ).
Having established the boundedness of S and both inf-sup conditions, the the-

ory about the well-posedness of saddle-point problems (e.g. [GSS14, Sect. 2])
shows that what remains to prove is that

(5.5) (Cu)(v) := c(u, v)

defines an invertible operator between the spaces {u ∈ U s
α : d(P1−s

α , u) = 0} and(
{v ∈ U

1−s
β : d(P s

β, v) = 0}
)′

.

For (ς, δ) ∈ {(s, α), (1− s, β)}, using P
1−ς
δ ≃ L2(I; H̄1−2ς(Ω))+ (H̆

ς
0,{δ}

)′(I; H̄1(Ω)),

we infer that

{u ∈ U
ς

δ : d(P1−ς
δ , u) = 0}

= {u ∈ L2(I; Ĥ2ς(Ω)n) : d(L2(I; H̄1−2ς(Ω)), u) = 0}

∩ {u ∈ H̆
ς
0,{δ}

(I; Ĥ0(Ω)n) : d
(
(H̆

ς
0,{δ}

)′(I; H̄1(Ω)), u
)
= 0}

= {u ∈ L2(I; Ĥ2ς(Ω)n) : (I ⊗ d̃iv)u = 0}

∩ {u ∈ H̆
ς
0,{δ}

(I; Ĥ0(Ω)n) : (I ⊗ d̃iv)u = 0}

≃ L2(I; Ĥ2ς(div 0; Ω))∩ H̆
ς
0,{δ}

(I; Ĥ0(div 0; Ω)) =: U
ς

δ (div 0),(5.6)

where the last isomorphism is valid for ς ∈ [0, 3
4 ) by virtue of Corollary 5.3.

On the other hand, the analysis from Sect. 2-3 shows that

C ∈ Lis
(

L2(I; D(A))∩ H1
0,{α}(I; Ĥ0(div 0; Ω)), L2(I; Ĥ0(div 0; Ω))

)
,

C ∈ Lis
(

L2(I; Ĥ0(div 0; Ω)), (L2(I; D(A))∩ H1
0,{β}(I; Ĥ0(div 0; Ω)))′

)

(i.e. (3.3) and (3.5) for ̺ = 1, ‘H’ = Ĥ0(div 0; Ω), and ‘W’ = D(A)), so that by
Theorem 3.5,

(5.7) C ∈ Lis(Ũ ς
α (div 0), (Ũ 1−ς

β (div 0))′) (ς ∈ [0, 1]),

where

(5.8) Ũ
ς

δ (div 0) := L2(I; [Ĥ0(div 0; Ω), D(A)]ς) ∩ H̆
ς
0,{δ}

(I; Ĥ0(div 0; Ω)).

The proof is completed by Ĥ2ς(div 0; Ω) ≃ [Ĥ0(div 0; Ω), D(A)]ς for ς ∈ [0, 3
4 ),

as shown in Proposition 5.4, and thus Ũ
ς

α (div 0) ≃ U
ς

α (div 0). �

Remark 5.6. Adaptive wavelet methods inherit, through the Riesz basis property,
‘stability’ from the underlying infinite dimensional problem. If the instationary
Stokes problem is solved by another numerical method, stability of the finite-
dimensional discretized system has to be verified separately. For the presently
considered space-time formulation the results from [MSW13] seem then relevant.
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Under an additional regularity condition on the stationary Stokes operator S0

defined below, the range of values of s for which Theorem 5.5 is valid can be ex-
tended. With

(S0(u, p))(v, q) := a(u, v) + b(p, v) + b(q, u)

we have S0 ∈ L
(

Ĥs(Ω)n × H̄s−1(Ω), (Ĥ2−s(Ω)n × H̄1−s(Ω))′
)

for s ∈ [0, 2]. The
‘full’ regularity condition imposed in the following theorem is known to be satis-

fied for n ∈ {2, 3} and ∂Ω ∈ C2, see e.g. [Tem79, Ch. 1, Prop. 2.3].1

Theorem 5.7. Assuming S0 ∈ Lis
(

Ĥ2(Ω)n × H̄1(Ω), Ĥ0(Ω)n × H̄1(Ω)
)
, it holds

that
S ∈ Lis(U s

α ×P
s
β, (U 1−s

β ×P
1−s
α )′)

for s ∈ [0, 1].

Proof. Since S0 is symmetric, we also have S0 ∈ Lis
(

Ĥs(Ω)n× H̄s−1(Ω), (Ĥ2−s(Ω)n×

H̄1−s(Ω))′
)

for s = 0, and so for s ∈ [0, 2].

Defining div+ := g 7→ u by (u, p) := S−1
0 (0, g), we have d̃iv ◦div+ = I, and

div+ ∈ L(H̄s−1(Ω), Ĥs(Ω)n) (s ∈ [0, 2]).

Following the proof of Corollary 5.3, replacing H2
0(Ω) by Ĥ2(Ω), we infer that

Ĥs(div 0; Ω) ≃ {u ∈ Ĥs(Ω)n : div u = 0} (s ∈ [0, 2]).

For the operator A from Proposition 5.4 we find that D(A) ≃ Ĥ2(div 0; Ω), and
so

[Ĥ0(div 0; Ω), D(A)] s
2
≃ Ĥs(div 0; Ω) (s ∈ [0, 2]).

Indeed, obviously D(A) ←֓ Ĥ2(div 0; Ω). To show the reversed embedding, for

f ∈ Ĥ0(div; Ω) consider Au = f. After extending f, with preservation of its norm,
to L2(Ω)n, the solution u is the first component of the solution (u, p) of S0(u, p) =
(f, 0), and so ‖u‖H2(Ω)n . ‖f‖L2(Ω)n .

Using these ingredients, by following the proof of Theorem 5.5, the statement
is proven. �

Remark 5.8. One might think that div+ constructed by means of the inverse sta-
tionary Stokes operator, as employed in the above proof, would also be applicable
in the proof of Theorem 5.5. Under the conditions of that theorem, however, such

a div+ is in L(H̄s−1(Ω), Ĥs(Ω)n) generally for s ∈ ( 1
2 , 3

2 ) only. For the proof of

Theorem 5.5, it is needed that also div+ ∈ L(H̄−1(Ω), Ĥ0(Ω)n).

Theorem 5.9. Let Ω ⊂ R
2 be a bounded, convex polygon. Then for s ∈ (0, 1)

S ∈ Lis(U s
α ×P

s
β, (U 1−s

β ×P
1−s
α )′) .

Proof. Let

H̆1(Ω) :=
{

v ∈ H1(Ω) : ‖v‖2
H̆1(Ω)

:= |v|2
H1(Ω) +∑

z

∫

Ω

|v(x)|2

|x− z|2
dx < ∞

}
,

where z runs over the finite set of corners of the polygon.

1This regularity condition cannot be expected to hold for convex Ω ⊂ R
n for n = 2, 3 that have

an only piecewise smooth boundary as we erroneously suggested in [GSS14]. Such domains will be

addressed in Theorem 5.9 and Remark 5.10.



FRACTIONAL SPACE-TIME VARIATIONAL FORMULATIONS OF (NAVIER-) STOKES EQUATIONS 17

Inside the proof of this theorem, we redefine

H̄s−1(Ω) := [(H̆1(Ω)/R)′, H1(Ω)/R)] s
2
, (s ∈ [0, 2]),

and with that, redefine the spaces P s
δ .

For even any bounded polygon without slits Ω ⊂ R
2, in [ASV88, (3.2)] it was

shown that d̃iv ∈ L(Ĥ2(Ω)2, H̆1(Ω)/R). From this, one verifies that S ∈ L(U s
α ×

P s
β, (U 1−s

β ×P1−s
α )′) is valid for s ∈ {0, 1}, meaning that it is valid for s ∈ [0, 1].

Using that Ω is convex, in [KO76] it was shown that

(5.9) S0 ∈ Lis
(

Ĥ2(Ω)n × H1(Ω)/R, Ĥ0(Ω)n × H̆1(Ω)/R
)
.

Now following the steps from the proof of Theorem 5.7, we conclude that S ∈

Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′) for s ∈ [0, 1].

In view of the fact that the definitions of P s
β and P1−s

α incorporate the spaces

H̄2s−1(Ω) and H̄1−2s(Ω), respectively, the proof will be completed once we have
shown that

[(H̆1(Ω)/R)′, H1(Ω)/R)] s
2
≃ [(H1(Ω)/R)′, H1(Ω)/R)] s

2
(s ∈ (0, 2]),

i.e.,

[(H1(Ω)/R)′, H̆1(Ω)/R)] s
2
≃ [(H1(Ω)/R)′, H1(Ω)/R)] s

2
(s ∈ [0, 2)).

In [ASV88, Thm. 3.1], a right-inverse for d̃iv was constructed, that we denote

here as d̃iv
+

, that for s ∈ ( 1
2 , 1) satisfies d̃iv

+
∈ L(Hs(Ω), Ĥ1+s(Ω)2). Using

d̃iv ∈ L(Ĥ2(Ω)2, H̆1(Ω)/R) and d̃iv ∈ L(L2(Ω)2, (H1(Ω)/R)′), we infer that

‖ d̃iv d̃iv
+

v‖[(H1(Ω)/R)′,H̆1(Ω)/R)] s+1
2

. ‖ d̃iv
+

v‖Ĥ1+s(Ω)2 . ‖v‖Hs(Ω)/R

h ‖v‖[(H1(Ω)/R)′,H1(Ω)/R)] s+1
2

,

with which the proof is completed. �

Remark 5.10. In view of the regularity result for the stationary Stokes operator
S0 given in [Dau89, Thm. 9.20], which generalizes (5.9) to the three-dimensional
case, it can be envisaged that a result such as Theorem 5.9 also holds on convex
polytopes Ω in R

3.

Remark 5.11. In view of the application of the obtained well-posedness results for
the instationary Stokes operator S for constructing an adaptive wavelet scheme,
we briefly discuss the construction of tensor product wavelet Riesz bases for the

spaces U
ς

δ and P
1−ς
δ for (ς, δ) ∈ {(s, α), (1− s, β)}.

If Θ (Σ) is a collection of temporal (spatial) wavelets that, when normalized

in the corresponding norm, is a Riesz basis for L2(I) (Ĥ2ς(Ω)n) and H̆
ς
0,{δ}

(I)

(L2(Ω)n), then, properly normalized, the collection Θ⊗ Σ is a Riesz basis for U
ς

δ .
Suitable collections Θ are amply available. The same holds true for Σ when Ω

is a polytope and 2ς <
3
2 , i.e., when s ∈ ( 1

4 , 3
4 ). For those values of s, Σ can be a

collection of continuous piecewise polynomial wavelets.
The latter means an important step forwards compared to our earlier results

in [GSS14]. There we established well-posedness as in Theorem 5.5 but for the
cases s ∈ {0, 1} only, which require continuously differentiable wavelets whose
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construction is cumbersome on domains Ω that are not of product type. More-
over, the results in [GSS14] were derived under a ‘full regularity’ condition on the
stationary Stokes operator as imposed in Theorem 5.7.

Moving to the construction of a basis for the pressure space, if Θ̄ (Σ̄) is a col-
lection of temporal (spatial) wavelets that, when normalized in the corresponding

norm, is a Riesz basis for L2(I) (H̄2ς−1(Ω)) and H̆
1−ς
0,{δ}

(I)′ (H̄1(Ω)), then, normal-

ized, the collection Θ̄⊗ Σ̄ is a Riesz basis for P
ς
δ . For ς ∈ [0, 1], bases are amply

available, for Ω being a general polytope.
Similar to Remark 3.8 for the parabolic problem, thanks to the use of tensor

product bases, the instationary Stokes problem can be solved at an asymptotic
error vs. work rate equal to solving the stationary Stokes problem.

Finally in this section we consider the case of having a possibly inhomogeneous
initial condition in (5.1). Similarly to Theorem 4.2, we have

Theorem 5.12. Let s ∈ [0, 1
2 ) be such that S ∈ Lis(U s

α ×P s
β, (U 1−s

β ×P1−s
α )′) (cf.

Theorems 5.5, 5.7, 5.9, and Remark 5.10). Then for f ∈ (U 1−s
β )′ and g ∈ (P1−s

α )′,

and, for some ε > 0, uα ∈ (Ĥ1−2s−ε
0 (Ω)n)′, or even uα ∈ (H1

0(Ω)n)′ when s = 0,
a valid, well-posed weak formulation of the Stokes equations (2.4) with initial condition
u(α) = uα reads as finding (u, p) ∈ U s

α ×P s
β such that

(S(u, p))(v, q) = f(v)− g(q) +
∫

Ω
uα(x) · v(α, x)dx

((v, q) ∈ U
1−s

β ×P1−s
α ).

6. INSTATIONARY NAVIER-STOKES

For n ≥ 2, let Ω ⊂ R
n be a bounded Lipschitz domain, and −∞ < α < β ≤ ∞.

Given a constant ν > 0, a vector field f on I × Ω, and a function g on I × Ω,
we consider the instationary inhomogeneous Navier-Stokes problem with no-slip
boundary conditions and homogeneous initial condition to find the velocities u and
pressure p that satisfy

(6.1)





∂u
∂t − ν∆xu + u · ∇xu +∇x p = f on I ×Ω,

divx u = g on I ×Ω,
u = 0 on I × ∂Ω,

u(α, ·) = 0 on Ω,∫
Ω

p dx = 0.

With the trilinear form

(6.2) n(y, z, v) :=
∫

I

∫

Ω
y ·∇xz · v dxdt ,

in variational form (6.1) reads as finding (u, p) in some suitable space H, that ‘in-
corporates’ the homogeneous initial/boundary conditions for u and

∫
Ω

p dx = 0,
such that

(6.3) NS(u, p)(v, q) := (S(u, p))(v, q)+ n(u, u, v) = f(v)− g(q)

for all (v, q) from another suitable space K.
In this setting of having a nonlinear problem, we call the above space-time vari-

ational formulation well-posed when
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(1) NS : H ⊃ dom(NS)→ K′,
(2) there exists a (u, p) ∈ H such that (6.3) is valid for all (v, q) ∈ K,
(3) NS is continuously Frechét differentiable in a neighborhood of (u, p),
(4) DNS(u, p) ∈ Lis(H, K′).

In view of constructing an efficient numerical solver of the space-time variational
problem, we aim also at the situation that

(5) both H and K can be conveniently equipped with (wavelet) Riesz bases, or,
alternatively, with an infinite nested sequence of finite dimensional sub-
spaces.

We start with deriving upper bounds for the trilinear form n. For s ≥ 0, let

Z
s := L2(I; H2s(Ω)n) ∩ Hs(I; L2(Ω)n).

For s ∈ [0, 1] and δ ∈ {α, β}, obviously U
s

δ →֒ Z
s.

Proposition 6.1. For s1, s2, s3 ≥ 0 with s1 + s2 + s3 > n+2
4 , it holds

(6.4) |n(y, z, v)| . ‖y‖Z s1 ‖z‖
Z

s2+
1
2
‖v‖Z s3 .

(y ∈ Z s1 , z ∈ Z
s2+

1
2 , v ∈ Z s3). For n = 2, (6.4) is also valid for s2 = 0, s1 + s3 ≥ 1.

Proof. For pi, qi ≥ 1 with ∑
3
i=1

1
pi
≤ 1, ∑

3
i=1

1
qi
≤ 1, Hölder’s inequality yields

∣∣
∫

I

∫

Ω
y ·∇xz · v dxdt

∣∣ ≤
∫

I
‖y(t, ·)‖Lq1

(Ω)n‖z(t, ·)‖W1
q2
(Ω)n‖v(t, ·)‖Lq3

(Ω)n dt

≤ ‖y‖Lp1
(I;Lq1

(Ω)n)‖z‖Lp2
(I;W1

q2
(Ω)n)‖v‖Lp3

(I;Lq3
(Ω)n).(6.5)

From [Ama00, Thm. 5.2], it follows that for s ≥ 0, θ ∈ [0, 1], r < (1− θ)s,

(6.6) Z
s →֒ Hr(I; H2sθ(Ω)n).

The Sobolev embedding theorem shows that for p ≥ 2 and r ≥ 1
2 −

1
p , or q ≥ 2,

k ∈ N0, and t ≥ n( 1
2 −

1
q ) + k (the latter with strict inequality when q = ∞ and n

is even), it holds that

(6.7) Hr(I) →֒ Lp(I), Ht(Ω) →֒Wk
q (Ω),

respectively. We infer that for k ∈ N0, p, q ≥ 2 and n
2 (

1
2 −

1
q ) +

1
2 −

1
p < s,

(6.8) Z
s+ k

2 →֒ Lp(I; Wk
q (Ω)n).

Indeed with s̃ = s + k
2 , select r = 1

2 −
1
p , and θ from the non-empty interval

(
( n

2 (
1
2 −

1
q ) +

k
2 )/s̃, 1 + ( 1

p −
1
2 )/s̃

)
⊂ (0, 1),

and apply (6.6), and subsequently (6.7).

We apply (6.8) to (6.5). For some ε i ∈ [si −
n+2

4 , si], we take 1
qi

= 1
pi

:= 1
2 −

2
n+2(si − ε i) ∈ [0, 1

2 ]. We select ε i such that ∑i ε i ≤ ∑i si −
n+2

4 , so that ∑
3
i=1

1
pi

=

∑
3
i=1

1
qi
≤ 1, and such that ε i ≥ 0 with ε i > 0 whenever si > 0. Then, for si > 0,

it holds that n
2 (

1
2 −

1
qi
) + 1

2 −
1
pi

= si − ε i < si, so that for k ∈ N0, Z
si+

k
2 →֒

Lpi
(I; Wk

qi
(Ω)n) by (6.8). For si = 0, we have ε i = 0, and so pi = qi = 2, and thus

Z
si+

k
2 = Z

k
2 →֒ L2(I; Hk(Ω)n) = Lpi

(I; Wk
qi
(Ω)n).
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It remains to define ε i that satisfy above conditions. When for some i = ı,

sı >
n+2

4 , then we take ε ı = sı −
n+2

4 , and for j 6= ı, ε j = sj. When for all i,

si ≤
n+2

4 , we take ε i = min(si, (∑
3
j=1 sj −

n+2
4 )/3). With this the proof of the first

claim is completed.
To show the second claim, we note that for s ≥ 0,

Z
s →֒ H

s
2 (I; Hs(Ω)n),

which extends (6.6) to the special case r = s
2 and θ = 1

2 . To see this, let {θ} and {σ}
be a Riesz bases for L2(I) and L2(Ω)n, such that {θ/‖θ‖Hs (I)} and {σ/‖σ‖H2s(Ω)n}

are Riesz bases for Hs(I) and H2s(Ω)n, which collections exist. Then
{

θ⊗ σ/(‖θ‖Hs(I)‖σ‖H2s(Ω)n)
1
2

}
and

{
θ ⊗ σ/

√
‖θ‖2

Hs(I)
+ ‖σ‖2

H2s(Ω)n

}

are Riesz bases for H
s
2 (I; Hs(Ω)n) and Z s, respectively. Now one infers the state-

ment from 2‖θ‖Hs(I)‖σ‖H2s(Ω)n ≤ ‖θ‖2
Hs(I)

+ ‖σ‖2
H2s(Ω)n .

Furthermore, for n = 2, we have H
s
2 (I; Hs(Ω)2) →֒ L 2

1−s
(I; L 2

1−s
(Ω)2), and

obviously Z
1
2 →֒ L2(I; H1(Ω)n). Taking pi = qi =

2
1−si

for i = 1, 3, and p2 = q2 =

2, one has ∑
3
i=1

1
pi

= ∑
3
i=1

1
qi
≤ 1 when s1 + s3 ≥ 1, which completes the proof of

(6.4) for the special case. �

Proposition 6.2. Let n = 3 and s ∈ ( 3
4 , 1], or n = 2 and s ∈ [ 1

2 , 1]. Then

(i). NS : U s
α ×P s

β → (U 1−s
β ×P1−s

α )′. For (ū, p̄) ∈ U s
α ×P s

β, its Fréchet derivative

is given by

DNS(ū, p̄) = DNS(ū) : (u, p) 7→
(
(v, q) 7→ S(u, p)(v, q) + n(u, ū, v) + n(ū, u, v)

)
,

and satisfies

(6.9) ū 7→ DNS(ū)− S ∈ L
(
U

s
α ,L(U s

α ×P
s
β, (U 1−s

β ×P
1−s
α )′)

)
.

(ii). Let, additionally, s be such that S ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′) (cf. Theo-

rems 5.5, 5.7, 5.9, and Remark 5.10). Then, for (f, g) ∈ (U 1−s
β ×P1−s

α )′ sufficiently

small,

(6.10) NS(u, p)(v, q) = f(v)− g(q) ((v, q) ∈ U
1−s

β ×P
1−s
α ),

has a unique solution (u, p) in some ball in U s
α ×P s

β around the origin, and ‖u‖U s
α
+

‖p‖Ps
β
. ‖f‖(U 1−s

β )′ + ‖g‖(P1−s
α )′ .

(iii). DNS(u) ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′) for sufficiently small u ∈ U s
α .

Proof. (i) Recall that S ∈ L(U ς
α ×P

ς
β, (U 1−ς

β ×P
1−ς
α )′) for ς ∈ [0, 1]. An applica-

tion of Proposition 6.1 with s1 = s, s2 = s− 1
2 , s3 = 1− s shows that

(6.11) |n(u, w, v)| . ‖u‖U s
α
‖w‖U s

α
‖v‖

U
1−s

β
,

and so in particular |n(u, u, v)| . ‖u‖2
U s

α
‖v‖

U
1−s

β
, which shows the first statement.

From

n(u + h, u + h, ·)− n(u, u, ·) = n(h, u, ·) + n(u, h, ·) + n(h, h, ·),
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together with an application of (6.11), we arrive at the claimed expression for the
Fréchet derivative.

Also the third statement of (i) is an easy consequence of (6.11).
To show (ii), we observe that from n(u, u, ·) − n(w, w, ·) = n(u − w, u, ·) +

n(w, u−w, ·) and (6.11), the nonlinearity is locally Lipschitz: With N(u)(v) :=
n(u, u, v) we find

(6.12) ‖N(u)− N(w)‖(U 1−s
β )′ . (‖u‖U s

α
+ ‖w‖U s

α
)‖u−w‖U s

α
.

Now using the additional assumption, the statement about the solvability follows
by an application of Banach’s fixed point theorem, e.g. see [Tem79] or [GSS14,
Lemma 5.1].

Assertion (iii) follows from (6.9) for sufficiently small u in U s
α . �

Finally, we show that under a (moderate) regularity condition on ū, without a

smallness assumption, it holds that DNS(ū) ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′). 2

Theorem 6.3. Let |I| < ∞, and let s ∈ [ 1
2 , 1] be such that S ∈ Lis(U s

α ×P s
β, (U 1−s

β ×

P1−s
α )′) and, for ς ∈ [0, s], D(A

ς
2 ) ≃ {u ∈ Ĥς(Ω)n : d̃iv u = 0}, with A as defined in

Proposition 5.4. For some s̄ > n
4 , let ū ∈ U s̄

α . Then DNS(ū) ∈ Lis(U s
α ×P s

β, (U 1−s
β ×

P1−s
α )′).

Remark 6.4. In the cases that we verified S ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′), we

did this under assumptions that guarantee D(A
ς
2 ) ≃ {u ∈ Ĥς(Ω)n : d̃iv u = 0}

for ς ∈ [0, s].

Remark 6.5. Let |I| < ∞, and let s ∈ ( n
4 , 1] be such that S ∈ Lis(U s

α ×P s
β, (U 1−s

β ×

P1−s
α )′) and, for ς ∈ [0, s], D(A

ς
2 ) ≃ {u ∈ Ĥς(Ω)n : d̃iv u = 0}. Then any solu-

tion (u, p) ∈ U s
α ×P s

β of (6.10) is locally unique. Indeed, by Theorem 6.3, we have

DNS(u) ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′), and (6.9) shows that u 7→ DNS(u) is

continuous, so that the statement is a consequence of the implicit function theo-

rem. This statement about local uniqueness extends to n = 2 and s = 1
2 at solutions

(u, p) with u ∈ U s̄
α for some s̄ > 1

2 .

Proof. From Sect. 5, in particular (5.2), (5.5), and (5.8), recall the definitions of c( , ),
C, and Ũ s

δ (div 0). We define (δC(ū)u)(v) := n(ū, u, v) + n(u, ū, v).
The general theory about the well-posedness of saddle-point problems shows

that S ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′) is equivalent to S ∈ L(U s
α ×P s

β, (U 1−s
β ×

P1−s
α )′), C ∈ Lis

(
{w ∈ U s

α : (I ⊗ d̃iv)w = 0},
(
{w ∈ U

1−s
β : (I ⊗ d̃iv)w = 0}

)′)
,

and two inf-sup conditions (cf. proof of Thm. 5.5). So the only thing to verify is
whether the condition involving C is satisfied with C reading as C + δC(ū).

The assumption that D(A
ς
2 ) ≃ {u ∈ Ĥs(Ω)n : d̃iv u = 0} for ς ∈ [0, s] implies

that

(6.13) {w ∈ U
ς

δ : (I ⊗ d̃iv)w = 0} ≃ Ũ
ς

δ (div 0)

2We are embarrassed to admit that Thm. 5.3, Remark 5.4 and Thm. 5.7 from [GSS14] are not correct
as stated. Viewing u 7→ ū · ∇xu+u · ∇xū as a first order perturbation of the spatial differential operator

u 7→ −ν∆xu is valid only under the provision of substantial extra regularity ū ∈ L∞(I; W1
∞(Ω)n).
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(cf. e.g. [DS10, Thm. 3.2]), so that it suffices to prove

(6.14) C + δC(ū) ∈ Lis(Ũ s
α (div 0), Ũ 1−s

β (div 0)′) .

For κ ∈ R, let hκ denote the operator of multiplication by the exponential function
t 7→ eκt. Due to the assumption |I| < ∞, for γ ∈ {α, β} and for every κ ∈ R it
holds h±κ ∈ Lis(Ũ ς

γ (div 0), Ũ ς
γ (div 0)) (ς ∈ [0, 1]). Also (δC(ū)(hκu))(h−κv) =

(δC(ū)u)(v), and, with Cκ := C + κI, there holds (C(hκu))(h−κv) = (Cκu)(v), so
that

(C+ δC(ū))(u)(v) = (Cκ + δC(ū))(h−κu)(hκv) (u ∈ Ũ
s

α (div 0), v ∈ Ũ
1−s

β (div 0)) .

The claim (6.14) then follows if for sufficiently large κ > 0 holds

(6.15) Cκ + δC(ū) ∈ Lis(Ũ s
α (div 0), Ũ 1−s

β (div 0)′) .

To prove (6.15), we first consider the case that s ∈ [ 1
2 , 1). The case s = 1 will

be discussed separately. Taking ε ∈ (0, s̄− n
4 ) and ε ≤ 1− s, thanks to s̄, s ≥ 1

2 ,
1− s− ε ≥ 0, and s̄ > n

4 , two applications of Proposition 6.1, together with (6.13),
show

|(δC(ū)u)(v)| . ‖ū‖U s̄
α
‖u‖

Ũ s
α (div 0)‖v‖Ũ 1−s−ε

β (div 0),

i.e.,

(6.16) δC(ū) ∈ L(Ũ s
α (div 0)), Ũ 1−s−ε

β (div 0)′).

In other words, δC(ū) is a compact perturbation of Cκ .

Similarly to (5.7), for κ ≥ 0 and ς ∈ [0, 1], Cκ ∈ Lis(Ũ ς
α (div 0), Ũ 1−ς

β (div 0)′).

For f ∈ L2(I; Ĥ0(div 0; Ω)) ≃ Ũ 0
β (div 0)′, u := C−1

κ f ∈ Ũ 1
α (div 0) satisfies

∫

I

∫

Ω
ν∇xu : ∇xv+ κu ·v dxdt =

∫

I

∫

Ω
f ·v− ∂u

∂t ·v dxdt
(
v ∈ L2(I; Ĥ0(div 0; Ω))

)
.

Substituting v = u, and using that −
∫

I

∫
Ω

∂u
∂t · u dxdt = − 1

2

∫
I

d
dt‖u‖

2
L2(Ω)ndt ≤

1
2‖u(α)‖

2
L2(Ω)n = 0, we find that κ‖u‖2

L2(I;L2(Ω)n)
≤ ‖f‖L2(I;L2(Ω)n)‖u‖L2(I;L2(Ω)n) or,

for κ > 0,

(6.17) ‖C−1
κ ‖L(L2(I;Ĥ0(div 0;Ω)),L2(I;Ĥ0(div 0;Ω))) ≤ κ−1.

From C−1
κ = C−1

0 − C−1
0 κIC−1

κ , we infer sup
κ>0

‖C−1
κ ‖L(Ũ 0

β (div 0)′,Ũ 1
α (div 0)) < ∞.

Similarly, C−1
κ = C−1

0 − C−1
κ κIC−1

0 shows sup
κ>0

‖C−1
κ ‖L(Ũ 1

β (div 0)′,Ũ 0
α (div 0)) < ∞. By

an interpolation argument, we arrive at

(6.18) sup
κ>0

sup
ς∈[0,1]

‖C−1
κ ‖L(Ũ 1−ς

β (div 0)′,Ũ
ς

α (div 0))
< ∞.

Recalling that ε ≤ 1− s, we have s
1−ε ∈ [0, 1]. From s + ε − 1 = ε · 0 + (1−

ε)( s
1−ε − 1) and s = ε · 0 + (1− ε) s

1−ε , an application of the Riesz-Thorin theorem
shows that

‖C−1
κ ‖L(Ũ 1−ε−s

β (div 0)′,Ũ s
α (div 0))

≤‖C−1
κ ‖

ε
L(L2(I;Ĥ0(div 0;Ω)),L2(I;Ĥ0(div 0;Ω)))

× ‖C−1
κ ‖

1−ε

L(Ũ
1− s

1−ε
β (div 0)′,Ũ

s
1−ε

α (div 0))
.

(6.19)
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From (6.17) and (6.18) we infer that the right-hand side can be made arbitrar-

ily small by taking κ large. Now writing Cκ + δC(ū) = Cκ(I + C−1
κ δC(ū)), and

combining the latter result with (6.16) and (6.18), the proof of (6.15) for the case

s ∈ [ 1
2 , 1) is completed.

Finally, for the case s = 1, we write Cκ + δC(ū) = (I + δC(ū)C−1
κ )Cκ . Taking

ε ∈ (0, s̄− n
4 ), two applications of Proposition 6.1, together with (6.13), show that

|(δC(ū)u)(v)| . ‖ū‖U s̄
α
‖u‖

Ũ
1−ε

α (div 0)‖v‖Ũ 0
β (div 0),

i.e.,

δC(ū) ∈ L(Ũ 1−ε
α (div 0)), Ũ 0

β (div 0)).

Similarly to (6.19), one infers that ‖C−1
κ ‖L((Ũ 0

β (div 0)),Ũ 1−ε
α (div 0)) can be made arbi-

trarily small by taking κ large, from which the proof for this case follows. �

So far we considered the instationary Navier-Stokes equations with homoge-
neous initial conditions. The approach of appending inhomogeneous conditions as
natural boundary conditions as employed for the Stokes problem in Theorem 5.12
is not applicable because it requires searching the solution (u, p) ∈ U s

α ×P s
β for

some s <
1
2 , whereas we established in Proposition 6.2 that NS : U

s
α ×P

s
β →

(U 1−s
β ×P1−s

α )′ for s ≥ 1
2 if n = 2 and for s > 3

4 if n = 3.

Therefore, let ū0 denote a lifting of the given, inhomogeneous initial datum u0

to the space-time cylinder I×Ω. Then, writing the solution in the form (u+ ū0, p),
u satisfies homogeneous initial conditions. One infers that with

S̃(u, p)(v, q) := S(u, p)(v, q) + n(ū0, u, v) + n(u, ū0, v),

ÑS(u, p)(v, q) := S̃(u, p)(v, q) + n(u, u, v),

the pair (u, p) solves formally

(6.20) ÑS(u, p)(v, q) = f(v)− g(q)− c(ū0, v)− d(q, ū0)− n(ū−, ū0, v)

for all test functions (v, q).
The same proof that showed Theorem 6.3 also shows the following.

Proposition 6.6. Let |I| < ∞, and let s ∈ [ 1
2 , 1] be such that S ∈ Lis(U s

α ×P
s
β, (U 1−s

β ×

P1−s
α )′) and, for ς ∈ [0, s], D(A

ς
2 ) ≃ {u ∈ Ĥς(Ω)n : d̃iv u = 0}, with A as defined

in Proposition 5.4. For some s̄ > n
4 , let ū0 ∈ U s̄

α . Then S̃ ∈ Lis(U s
α ×P s

β, (U 1−s
β ×

P1−s
α )′).

Remark 6.7. Alternatively, by applying the technique of Proposition 6.2, the condi-
tion |I| < ∞ can be replaced by the condition of ū0 ∈ U s̄

α being sufficiently small.

This setting allows s̄ = s = 1
2 when n = 2.

With these results at hand, the analysis for the operator NS given in Proposi-

tion 6.2 and Theorem 6.3 can be repeated for ÑS. In applications, the construction
of the required lifting of u0 to ū0 ∈ U s̄

α can be non-trivial.

Finally, considering our desiderata (1)–(5), we conclude that our results for

n = 3 are not fully satisfactory concerning (5). The condition s >
3
4 imposed

in Proposition 6.2 requires globally C1-wavelets or finite elements. On the other
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hand, s ≥ 1
2 , sufficient for n = 2, allows for easy to construct continuous wavelets

or finite elements.
We established existence and local uniqueness of a solution (u, p) of (6.10) (in

particular, (2)-(4)) under smallness assumptions on the data. Without any small-
ness assumptions on the data, we established local uniqueness of any solution of
(6.10) in U s

α ×P s
β for s > n

4 (in particular, (3)-(4)). For existence results for large

data, we refer to the extensive literature on this topic. Since usually these results
concern only the velocities in a divergence-free setting, we note the following: Let

u ∈ {w ∈ U s
α : I ⊗ d̃iv w = 0} be such that

(6.21) NS(u, 0)(v, 0) = f(v) (v ∈ {w ∈ U
1−s

β : I ⊗ d̃iv w = 0}),

with s ∈ [0, 1] being such that S ∈ Lis(U s
α ×P s

β, (U 1−s
β ×P1−s

α )′). The last prop-

erty implies that

inf
0 6=p∈Ps

β

sup
0 6=v∈U

1−s
β

d(v, p)

‖v‖
U

1−s
β
‖p‖Ps

β

> 0,

which, together with (6.21) implies the existence of a (unique) p ∈P s
β with d(v, p) =

f(v)−NS(u, 0)(v, 0) for all v ∈ U
1−s

β , so that (u, p) is a solution of (6.3).

In Theorem 6.3 we imposed ū ∈ U s̄
α for some s̄ > n

4 to ensure that δC(ū) is
a perturbation of strictly lower order to the instationary Stokes operator. The
arguments employed in [Fon10] indicate that for n = 2 and I being the half

line (α, ∞), (6.21) defines a diffeomorphism from {w ∈ U
1
2

α : I ⊗ d̃iv w = 0} to

{w ∈ U
1
2

β : I ⊗ d̃iv w = 0}′ (where here the homogenous condition at time t = β

is void since β = ∞). In other words, it seems that in space dimension n = 2

the additional regularity condition ū ∈ U s̄
α for some s̄ strictly larger than 1

2 can
be avoided. The same comment applies to the treatment of the inhomogeneous

initial condition where we imposed ū0 ∈ U s̄
α for some s̄ strictly larger than 1

2 .

7. CONCLUSION

We proposed well-posed space-time variational saddle point formulations of
instationary incompressible Stokes and Navier-Stokes equations, in scales of frac-
tional Bochner-Sobolev spaces. A novel aspect is that the formulations do not
require a full-regularity condition on the stationary Stokes operator, and therefore
apply on general bounded Lipschitz spatial domains.

The variational formulations can be the basis of space-time adaptive numeri-
cal solution methods. In particular, for Stokes and, when n = 2, Navier-Stokes
equations, all arising temporal and spatial Sobolev spaces can be conveniently
equipped with bases of continuous piecewise polynomial wavelets. By equipping
the arising Bochner spaces with the resulting tensor product bases, the whole time
evolution problem can be solved by an adaptive wavelet method at the best pos-
sible convergence rate, and for Stokes, at linear cost. Under mild (Besov) smooth-
ness conditions, this rate is equal as when solving one instance of the correspond-
ing stationary problem.
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