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ABSTRACT

We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-
collapse supernovae and compact binary mergers. Based on previous gray leakage schemes, the ASL
scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (rele-
vant in optically thin and thick regimes, respectively), separately for discretized values of the neutrino
energy. Neutrino trapped components are also modeled, based on equilibrium and timescale argu-
ments. The better accuracy achieved by the spectral treatment allows a more reliable computation of
neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against
Boltzmann transport in the context of Newtonian spherically symmetric models of core-collapse su-
pernovae. ASL shows a very good qualitative and a partial quantitative agreement, for key quantities
from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability
and flexibility of our ASL scheme coupling it to an axisymmetric Eulerian and to a three-dimensional
SPH code to simulate core-collapse. Therefore, the neutrino treatment presented here is ideal for
large parameter-space explorations, parametric studies, high-resolution tests, code developments, and
long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not
available or currently computationally too expensive.
Keywords: neutrinos, radiative transfer, hydrodynamics, star: neutron, stars: supernovae: general

1. INTRODUCTION

Neutrinos are elusive, weakly interacting particles.
Due to their small cross-sections with ordinary matter,
which make their detection on the Earth so challeng-
ing, they represent a very efficient way for astrophysi-
cal dense and hot plasma to radiate energy away. In
particular, they are expected to be copiously emitted in
stellar explosive scenarios, including core-collapse super-
novae (CCSNe) (e.g., Janka 2012; Burrows 2013; Foglizzo
et al. 2015, for recent reviews) and compact binary merg-
ers (e.g., Shibata & Taniguchi 2011; Faber & Rasio 2012;
Rosswog 2015b, for recent reviews). The modeling of
such systems is extremely stimulating, due to the large
variety of involved scales, and to the complex and rich
physics required. The treatment of neutrinos, in partic-
ular their transport from optically thick to optically thin
regions, is among the most crucial and difficult parts to
model. This is even more evident for intrinsically mul-
tidimensional problems, where the solution of the Boltz-
mann transport equation would result in a genuine seven-
dimensional problem (e.g., Lindquist 1966).
The large variety of questions and possible initial con-

ditions, together with the parallel increase of computa-
tional power, have motivated the development of several
neutrino treatments, which differ in complexity and ac-
curacy. The solution of the complete Boltzmann equa-
tion for neutrino radiation has been performed for spher-
ically symmetric simulations of CCSNe (Mezzacappa &
Bruenn 1993a,b,c; Liebendörfer et al. 2004; Sumiyoshi
et al. 2005). Solutions in 2D (e.g., Livne et al. 2004;
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Ott et al. 2008; Brandt et al. 2011) and, recently, in 3D
(Sumiyoshi & Yamada 2012; Sumiyoshi et al. 2015), ne-
glecting velocity dependent terms, in the context of col-
lapsing stellar cores, have also been presented. Another
sophisticated approach to the neutrino transport prob-
lem is represented by the so called Moment schemes. In
these schemes, the explicit angular dependence in the
neutrino momentum space is removed by integrating the
distribution function and introducing momenta (for ex-
ample, the energy density is the zeroth momentum, while
the linear momentum density is the first momentum).
The Boltzmann transport equation is replaced by time
evolution equations for the different momenta. Among
them, we recall the (multi-group) flux limited diffusion
schemes, (MG)FLD, where only the 0th moment is con-
sidered (Arnett (1977); Bowers & Wilson (1982); Bruenn
(1985); Swesty & Myra (2009); Zhang et al. (2013);
for related applications see, e.g., Fryer (1999); Dessart
et al. (2006); Burrows et al. (2007); Dessart et al. (2009);
Yakunin et al. (2010); Bruenn et al. (2013); Dolence et al.
(2015)), and the M1 schemes, where both the 0th and 1st
momenta are taken into account (see, e.g., Pons et al.
(2000); Kuroda et al. (2012); O’Connor & Ott (2013);
Obergaulinger et al. (2014); O’Connor (2015); Just et al.
(2015); Foucart et al. (2015b)). The closure relation in
M1 schemes is usually provided by an analytic expres-
sion. It is possible to design moment schemes where
the closure relation is not analytic, but it is given by
a variable Eddington tensor (e.g., Burrows et al. 2000;
Rampp & Janka 2002; Thompson et al. 2003; Buras et al.
2006a,b; Müller et al. 2010; Tamborra et al. 2013)). This
latter solution is close to the solution of the full Boltz-
mann equation. Another noteworthy approximate trans-
port scheme is the Isotropic Diffusion Source Approxima-
tion (IDSA, Liebendörfer et al. (2009); see Suwa et al.
(2011); Takiwaki et al. (2014); Nakamura et al. (2014);
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Pan et al. (2015); Suwa et al. (2015) for some recent ap-
plications), where the distribution function is separated
into a trapped and a free-streaming component. Also
Monte Carlo methods have been developed in the context
of neutrino transport (see, for example, Janka & Hille-
brandt 1989a,b; Janka 1992; Abdikamalov et al. 2012;
Richers et al. 2015). More approximate treatments in-
clude gray transport schemes (Scheck et al. 2006), gray
neutrino leakage schemes (Ruffert et al. 1996; Rosswog
& Liebendörfer 2003) and light-bulb schemes (Murphy
& Burrows 2008; Hanke et al. 2012; Fernández 2012;
Fernández & Metzger 2013; Couch & Ott 2013; Handy
et al. 2014).
In this paper, we present an improved and more so-

phisticated version of the classical leakage scheme. Leak-
age schemes have a long history in computational astro-
physics: due to their reduced computational cost and to
their flexibility, they were, after FLD schemes, among the
first developed neutrino treatments for spherically sym-
metric core-collapse models (van Riper & Lattimer 1981;
Bludman et al. 1982; Cooperstein et al. 1986), and for
the first three-dimensional compact binary merger simu-
lations (Ruffert et al. 1996; Ruffert & Janka 1999; Ross-
wog & Liebendörfer 2003). More recently, gray leakage
schemes have been widely applied to study, for example:
i) neutrino and gravitational wave emissions from rotat-
ing and/or magnetized collapsing stellar cores, in axisym-
metry (Kotake et al. 2005, 2012) or in three dimensions
(Scheidegger et al. 2010; Takiwaki & Kotake 2011); ii)
supernova explosions caused by the magneto-rotational
mechanism (e.g., Suwa et al. 2007; Takiwaki et al. 2009;
Winteler et al. 2012); iii) the influence of the pions and
hyperons in the nuclear equation of state (EoS) of stel-
lar cores collapsing into a black hole (Peres et al. 2013),
iv) the impact of asphericity in the progenitor model for
core-collapse simulations (Couch & Ott 2013), v) grav-
itational waves and neutrino emission from Newtonian
simulations of compact binary mergers (Rosswog et al.
2013). General relativistic extensions of the gray scheme
have also been developed (Sekiguchi 2010; O’Connor &
Ott 2010; Galeazzi et al. 2013). They have been used, for
example, to simulate: i) spherically symmetric models of
supernovae and black hole formation from massive stellar
cores (O’Connor & Ott 2011); ii) three-dimensional gen-
eral relativistic core-collapse models (Ott et al. 2013),
including also magnetic fields (Mösta et al. 2014) ; iii)
gravitational waves and neutrino emission from general
relativistic simulations of compact binary mergers (Ki-
uchi et al. 2012; Deaton et al. 2013; Sekiguchi et al. 2015);
iv) the collapse of rotating stellar core to a black hole
surrounded by an accretion disc (Sekiguchi 2011).
Despite such a broad application field, detailed com-

parisons between the results obtained by a leakage
scheme and more sophisticated neutrino transports are
difficult to find. For example, Dessart et al. (2009); Fou-
cart et al. (2015b,a) compared the luminosities obtained
by a gray leakage scheme with the ones obtained by
MGFLD or moment schemes, during and after a compact
binary merger. Moreover, O’Connor & Ott (2010) and
Sekiguchi (2010) provide temporal profiles of the neu-
trino luminosities and mean energies occurring after core
bounce in CCSNe simulations, together with a few radial
profiles of some relevant quantities (e.g., entropy or elec-
tron fraction). These results can be compared with ref-

erence results in the literature (e.g., Liebendörfer et al.
(2005)). They found a qualitative good agreement, even
if quantitative differences were present. This confirms
the idea that leakage schemes capture the dominant as-
pects of neutrino cooling, even if the evolution of the
neutrino field in the opaque region and the inclusion of
consistent absorption terms in the optically thin region
remain challenging.
In the Advanced Spectral Leakage (ASL) treatment we

conjugate the usual positive aspects associated with leak-
age schemes (mainly, the reduced computational cost and
flexibility), with an improved accuracy, obtained using a
spectral approach (i.e., solving different leakage schemes,
for different energy bins), modeling a neutrino trapped
component in the optically thick region, and including
a consistent absorption term obtained from the spectral
cooling rates. The development of the ASL treatment has
been performed in the framework of spherically symmet-
ric models of CCSNe, where the new treatment has been
compared against a detailed Boltzmann neutrino trans-
port. Perego et al. (2015) used it, in combination with
the IDSA for electron flavor neutrinos, to model heavy
flavor neutrinos in spherically symmetric, artificially in-
duced explosions of CCSNe. However, one of the goals
of this approximate scheme is the application to multi-
dimensional models, with reduced computational costs.
Applications of the ASL scheme in multidimensional as-
trophysical simulations have been already performed in
the past few years. Winteler et al. (2012) simulated a
magnetically-driven CCSN explosion of a 15 M⊙ progen-
itor star, using the three-dimensional, Cartesian MHD
code FISH (Käppeli et al. 2011) coupled with a previous
version of the ASL scheme to model the neutrino cool-
ing. Perego et al. (2014b) studied the neutrino-driven
wind that emerges from the remnant of a binary neutron
star merger, in presence of a long-lived massive neutron
star. They used the FISH code coupled with the ASL
scheme. The neutrino heating rates were based on neu-
trino densities in optically thin regions, computed by a
ray-tracing algorithm.
In Section 2, we provide a detailed presentation of the

ASL scheme and of its terms. In Section 3, we test the
new scheme in the context of spherically symmetric mod-
els of CCSNe, comparing the results obtained by the new
treatment with the solution of the Boltzmann transport
equation. We also briefly explore the impact of the vari-
ation of the few free parameters present in the scheme.
In Section 4, we show the flexibility and the versatility
of the ASL scheme by implementing it in two different
multidimensional codes, a grid code and an SPH code,
modeling CCSNe. Finally, in Section 5, we summarize
and discuss our results.

2. THE ASL TREATMENT

2.1. Neutrino description and interactions

The ASL scheme is an approximate neutrino treat-
ment designed for neutrinos and antineutrinos of all fla-
vors. While electron neutrinos (νe) and antineutrinos
(ν̄e) are considered separately, µ and τ neutrinos, as well
as their antiparticles, are treated as a single neutrino
species (νµ,τ ). For each of the three independent species,
we perform a spectral treatment, i.e. we distinguish be-
tween neutrinos with different energies.
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The interaction between matter and neutrinos is pro-
vided by weak interaction processes. For each produc-
tion, absorption, or scattering reaction, we compute the
corresponding spectral emissivity jν(E,x), absorptivity
χν,ab(E,x), or scattering rate χν,sc(E,x), respectively,
as they are defined in the Boltzmann transport equation,
for a neutrino energy E and a position x (in this section
we consider a fixed time t). The total emissivity and ab-
sorptivity are computed as the sum over all considered
neutrino processes. While the emissivity provides the
local rates of neutrino production, the absorptivity and
the scattering rates are the sources of the local neutrino
opacity. The local opacity can be expressed in terms of
the total mean free path λν,tot,

λν,tot(E,x) = c

(

∑

r

χν,ab,r(E,x) +
∑

s

χν,sc,s(E,x)

)−1

(1)
where c is the speed of light, and the indexes r and s
run over all the considered absorption and scattering re-
actions, respectively. Besides the total mean free path,
in which all reactions are treated equally, we define also
an energy mean free path, λν,en. The latter represents
the mean free path over which neutrinos can effectively
exchange energy with the fluid. To compute it, we per-
form the geometrical mean between the total mean free
path and the mean free path only due to highly inelastic
processes, i.e. all the absorption processes and the scat-
tering processes where the energy of the incoming and
out-coming neutrinos is expected to differ significantly 4

(see, for example, Shapiro & Teukolsky (1986) or Raffelt
(2001) for analogous expressions):

λν,en(E,x) =

(

c−1
∑

s′

χν,inel,s′(E,x)

)−1/2

(λν,tot(E,x))
1/2

,

(2)
where we have restricted the sum only over inelastic pro-
cesses, abbreviated by inel and labeled by s′.
The neutrino optical depth τν is defined as the path

integral of the inverse neutrino mean free path, λ−1
ν ,

calculated on a typical radiation path, γ, connecting any
point x of the system with its edge:

τν,γ(E,x) =

∫

γ:x→+∞

1

λν(E,x′(s))
ds. (3)

From a physical point of view, it is a measure of the
accumulated opacity of matter to radiation along an es-
cape path: it counts the number of interactions that, on
average, a radiation particle, emitted at a certain point,
experiences before leaving the system. The two mean free
paths introduced above can be used to compute two dif-
ferent optical depths, a total optical depth, τν,tot(E,x),
and an energy optical depth, τν,en(E,x). We note that
τν,en ≤ τν,tot, by definition. In the case of spherically
symmetric models, the optical depth retains the spherical
symmetry and τν can be simply calculated along radial

4 Elastic scattering processes enter the definition of λν,en via
λν,tot. Even if they do not allow direct energy exchange between
neutrinos and matter, they still provide opacity and increase the
probability of inelastic processes to locally happen.

paths:

τν(E,R) =

∫ +∞

R

1

λν(E, r)
dr. (4)

Otherwise, for more general geometries, multidimen-
sional algorithms are required to compute the optical
depth along paths that minimize the number of neutrino-
matter interactions (e.g., Perego et al. (2014a)).
According to the values of τν,tot and τν,en for the most

relevant neutrino energies, several different regimes can
be distinguished:

1. τν,tot ≫ 1 and τν,en & 1, the equilibrium-diffusive
regime. The radiation field is in thermal and weak
equilibrium with the surrounding matter, and neu-
trinos can be considered as a trapped Fermi gas
inside the fluid, behaving like a fluid component
itself. Under these assumptions, the distribution
functions describing the neutrino gas can be ex-
pressed as fν(p,x) = f tr

ν (p,x) + δfν(p,x), where
f tr
ν is the trapped component and δfν is a small
deviation from equilibrium, that we neglect (Coop-
erstein et al. 1986, 1987; Cooperstein 1988). We
assume further that the trapped component has
no explicit angular dependence in the momentum
space, f tr

ν (E,x) (for a more detailed discussion
of the decomposition of the neutrino distribution
function in a (isotropic) trapped component and a
free streaming one see Liebendörfer et al. (2009)).
The integration over the neutrino phase space of
f tr
ν and f tr

ν E gives information about the particle
and the energy contents of the neutrino gas:

Yν(x) =
4π

(hc)3
mb

ρ(x)

∫

f tr
ν (E,x)E2dE , (5)

Zν(x) =
4π

(hc)3
mb

ρ(x)

∫

f tr
ν (E,x)E3dE , (6)

where mb is the baryon mass and h the Planck
constant.

2. τν,tot ≫ 1, but τν,en . 1, the diffusive regime. Neu-
trinos still diffuse, but they are not necessarily in
thermal equilibrium with the surrounding plasma.

3. τν,tot ∼ 1, the semi-transparent regime. The solu-
tion of the Boltzmann transport problem would be
here ideal to model the radiation transport with
accuracy. The surfaces defined by the conditions
τν = 2/3 are called neutrino surfaces (or neutri-
nospheres, in spherically symmetric models). In
the case of τν,tot, they are considered as the last-
interaction surfaces, before neutrinos can stream
away freely. For τν,en, they represent the surface at
which neutrinos decouple thermally from matter.

4. τν,tot . 1, the free streaming regime. In this
regime, neutrinos that are locally produced can
stream out freely, almost with no interaction with
matter. At the same time, a fraction of the large
neutrino fluxes coming from the neutrino surfaces
can be here re-absorbed by matter.
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2.2. The coupling with hydrodynamics

In the following we consider a Newtonian hydrodynam-
ical system at time t, which is evolving in time with a
time-step ∆t. To be more general, we consider a three-
dimensional domain and, unless it is explicitly said, no
symmetries are assumed. The system is described by its
density ρ, temperature T , electron fraction Ye, and veloc-
ity field v. The trapped neutrino components are defined
by Yν and Zν . All these quantities are given at every po-
sition x. We define the vector of conserved variables, U ,
and the corresponding flux tensor, F , as:

U =

















ρ
ρv

ρ
(

e+ v2

2

)

ρYe

ρYν

(ρZν)
3
4

















, F =

















vρ
vρv + IP

vρ
(

e+ v2

2 + P
ρ

)

vρYe

vρYν

v (ρZν)
3
4

















, (7)

where the specific internal energy e and the fluid pressure
P are provided by an EoS as functions of (ρ, T, Ye), while
v is the modulus of the fluid velocity. The evolution of
the system is determined by:

∂

∂t
U +∇ · F = ggrav + gν , (8)

where ggrav is the gravitational source term, depending
on the gravitational potential φ, and gν is the neutrino
source term. The latter is related to the variation of the
specific internal energy, ė, of the electron fraction, Ẏe, of
the neutrino trapped components, Ẏν and Żν , and of the
fluid velocity, v̇, provided by neutrinos:

ggrav =













0
−ρ∇φ

−ρv · ∇φ
0
0
0













, gν =

















0
ρv̇

ρė+ ρv · v̇
ρẎe

ρẎν
3
4 ρ

3/4 Żν

Zν

















. (9)

The goal of the ASL scheme is the estimation of the neu-
trino source term, gν , from the present values of the ther-
modynamical state U of the system. Before proceeding,
it is important to notice that any leakage scheme mod-
els the local net loss of leptons in form of neutrinos, i.e.
the variations of the total (trapped) lepton number, Ẏl,
and of the specific total internal energy, u̇. These quan-
tities are related with the variation rates appearing in
Equation (9) by

Ẏl = Ẏe + Ẏνe − Ẏν̄e (10)

and

u̇ = ė+
1

mb

(

Żνe + Żν̄e + 4 Żνµ,τ

)

. (11)

Note that the contributions to Ẏl given by νµ,τ and ν̄µ,τ
cancel in our approach. Concerning the neutrino stress,
we distinguish v̇ into two contributions:

v̇ = (v̇)τν>1 + (v̇)τν.1 , (12)

i.e., one related with the trapped neutrinos, (v̇)τν>1, and
one with the absorption of radiation in optically thin
conditions, (v̇)τν.1.

In Section 2.3 we show how we compute the rates for
the trapped components Ẏν and Żν , and the neutrino
stress in trapped conditions (v̇)τν>1. The calculation of

the leakage rates, u̇ and Ẏl, and of the neutrino stress in
free-streaming conditions, (v̇)τν<1, is exposed in Section
2.4. In both sections, we omit the explicit dependence
on time and position in the equations, apart when the
neutrino energy is involved. In that case, we only omit
the temporal dependence.

2.3. Trapped component rates

The variation rates for the trapped components are
computed as:

Ẏν =
Ỹν,t+∆t − Yν

∆t
, (13)

Żν =
Z̃ν,t+∆t − Zν

∆t
, (14)

where Ỹν,,t+∆t and Z̃ν,,t+∆t are guesses of the trapped
components at t + ∆t, only due to neutrino processes.
Their computation is done following these steps. i) Re-
construct approximated trapped components of the neu-
trino distribution functions, f tr

ν , at the current time t
based on Yν . This is done assuming that

f tr
ν (E,x) = γ(x) (fν(E,x))eq

(

1− e−τν,en(E,x)
)

. (15)

The exponential cut-off ensures that f tr
ν is significantly

different from 0 only when neutrino trapping conditions
are fulfilled with respect to the energy optical depth, i.e.
τen & 1, and that it is proportional to (f tr)eq for τen ≫
1. The local parameter γ(x) is fixed by Equation (5)
5. The equilibrium distribution functions are assumed to
be Fermi-Dirac distribution functions of a neutrino gas
in thermal and weak equilibrium with matter

(fν)eq(E,x) =
1

e(E/Tν(x)−ην(x)) + 1
, (16)

where Tν is assumed to be equal to the matter temper-
ature (true for τν,en & 1) and ην is the neutrino degen-
eracy parameter. For νe and ν̄e, we use the equilibrium
degeneracy parameter:

ηνe = (µe − µn + µp) /T = − ην̄e , (17)

where µp, µn and µe are the relativistic chemical po-
tentials of neutrons, protons and electrons, respectively.
For T & 0.5MeV, we assume µe+ + µe− = 0. If νµ,τ
are produced by electron-positron annihilation, this re-
lation suggests that neutrinos and antineutrinos of these
flavors have approximately opposite chemical potentials.
However, the substantial equivalence between νµ,τ and
ν̄µ,τ

6 implies also the equivalence between their chemical

5 We notice that the usage of Yν to reconstruct ftr
ν does not

ensure the exact reconstruction of Zν . On one hand we have tested
that the usage of Zν instead of Yν does not change our results
significantly. On the other hand, the usage of the original (i.e., not

reconstructed) values of Zν in the computation of Żν still ensures
energy conservation.

6 This approximation is valid as long as the temperature is not
high enough to produce a significant amount of muons and an-
timuons (T ≪ mµ ≈ 105.7 MeV), and nuclear effects distinguish-
ing ν and ν̄ (like weak magnetism) are neglected.
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potentials. Thus, the degeneracy parameter for νµ,τ is
set to 0.
ii) Evolve f tr

ν according to timescale arguments between
t and t+∆t. This is done considering the neutrino pro-
duction and diffusion as two competing processes:

df tr
ν

dt
= ḟ tr

ν,prod + ḟ tr
ν,diff (18)

with:

ḟ tr
ν,prod =

((fν)eq − f tr
ν )

max(tν,prod,∆t)
exp

(

−
tν,prod
tν,diff

)

(19)

and

ḟ tr
ν,diff = −

f tr
ν

max(tν,diff ,∆t)
exp

(

−
tν,diff
tν,prod

)

. (20)

In Equations (19) and (20), all the quantities are eval-
uated at position x and for a certain neutrino energy
E. In Equation (19), the term before the exponential
ensures that the distribution function reaches the equi-
librium value whenever the production timescale is small
enough compared to the time-step ∆t. Similarly, the
first part of Equation (20) causes the distribution func-
tion to go to 0, if the diffusion timescale is small enough
compared with ∆t. The exponential factors in both ex-
pressions are a switch between the diffusive and the free-
streaming regime. The production timescale, tν,prod, is
set by the neutrino emissivity:

tν,prod(E,x) =
1

jν(E,x)
. (21)

Following Rosswog & Liebendörfer (2003) (cf. Ruffert
et al. (1996)) we define the diffusion timescale, tν,diff , as

tν,diff(E,x) =
∆xν(E,x)

c
τν,tot(E,x) (22)

The quantity ∆xν can be understood as the effective
width of a layer drained by the diffusion flux and it is
calculated as

∆xν(E,x) = αdiff τν,tot(E,x)λν,tot(E,x). (23)

Usually, αdiff ∼ 3 (e.g., Mihalas & Mihalas (1984), Ruf-
fert et al. (1996) and Rosswog & Liebendörfer (2003)).
While for large optical depths Equation (22) provides an
estimate of a proper diffusion timescale, in the optically
thin regime its value decreases significantly, due to its
quadratic dependence on the optical depth.
iii) Obtain Ỹν,t+∆t and Z̃ν,t+∆t from f tr

ν (t + ∆t, E,x),
based on Equations (5) and (6).
Trapped neutrinos provide a source of stress for the

fluid. This stress is determined by the gradient of the
pressure of the neutrino gas

(v̇)τν>1 = −
∇Pν,tot

ρ
, (24)

where the neutrino pressure is evaluated based on the
energy content of the neutrino gas,

Pν,tot =
∑

ν

Pν =
1

3

ρ

mb
(Zνe + Zν̄e + 4Zνµ,τ

) . (25)

2.4. Emission rates

The rates for the total lepton number and total specific
internal energy are obtained as the net balance between
the emission rates (R0

ν for the particles and R1
ν for the

energy) and the absorption rates in optically thin condi-
tions (H0

ν for the particles and H1
ν for the energy):

Ẏl = −mb

(

R0
νe −R0

ν̄e −H0
νe +H0

ν̄e

)

, (26)

and

u̇ = −
(

R1
νe +R1

ν̄e + 4R1
νµ,τ

)

+
(

H1
νe +H1

ν̄e

)

. (27)

In Equations (26) and (27), νµ,τ and ν̄µ,τ do not pro-
vide any net contribution to the lepton number and do
not contribute to the absorption in optically thin condi-
tions. The emission and absorption rates are obtained
from spectral emission (rν) and absorption (hν) rates,
according to:

Rk
ν(x) =

∫ +∞

0

rν(E,x)E2+k dE, (28)

Hk
ν (x) =

∫ +∞

0

hν(E,x)E2+k dE, (29)

with k = 0, 1.
The emission rates are computed as smooth interpola-

tion between the production rates,

rν,prod(E,x) =
4π

(hc)3
jν(E,x)

ρ(x)
, (30)

and the diffusion rates,

rν,diff(E,x) =
4π

(hc)3
1

ρ(x)

(fν)eq(E,x)

tν,diff(E,x)
. (31)

The former are expected to be dominant in optically thin
conditions, while the latter in the opaque region. The
interpolation formula is provided by

rν(E,x) = (1− αν,blk) r̃ν(E,x)×

1

Ψν (x)
exp (−τν,en (E,x) /τcut), (32)

where

r̃ν(E,x) =
rν,prod(E,x)× rν,diff(E,x)

rν,prod(E,x) + rν,diff(E,x)
(33)

is the interpolation expression used for the emission rates
in gray leakage schemes (cf, for example, Ruffert et al.
1996; Rosswog & Liebendörfer 2003). αν,blk and τcut are
parameters, and Ψν is a local normalization factor:

Ψν(x) =

∫ +∞

0
r̃ν(E,x)e−τν,en(E,x)/τcut E2dE
∫ +∞

0 r̃ν(E,x)E2dE
(34)

Then, for αν,blk = 0 and τcut → +∞, we obtain rν = r̃ν .
Finite, non-zero values of these constants introduce two
important improvements in the ASL scheme:
i) in the case where αblk = 0, the total amount of emit-
ted νe’s and ν̄e’s is usually overestimated. When a large
fraction of the emission rates is produced in the semi-
transparent and optically thin conditions, the interpola-
tion favors the usage of the production rates, calculated
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as integral over the whole solid angle of isotropic emis-
sion rates, Equation (30). However, a significant frac-
tion of those neutrinos are emitted toward the optically
thick region. Moreover, the emission rates can be signif-
icantly reduced by Pauli’s blocking factors, provided by
the large amount of free streaming neutrinos emitted at
the neutrino surface or locally produced. To efficiently
take into account these effects, we have introduced the
factor (1− αν,blk) in Equation (32). αν,blk is a free pa-
rameter of the model and it is expected to be ∼ 0.5 for νe
and ν̄e in strongly accreting systems. On the other hand,
since the emission of νµ,τ from optically thin conditions
is usually negligible, we use αblk,νµ,τ

∼ 0.
ii) The rates obtained with Equation (33) retain spec-
tral information of the local thermodynamical proper-
ties of matter. Nevertheless during the diffusion process,
high energy neutrinos coming from optically thick re-
gions thermalize to lower energies, at least as long as
τν,en ≫ 1. Thus, the spectrum emerging from the neu-
trinospheres is softer than the one provided by Equa-
tion (33). To mimic this transition, we have included
the term exp(−τν,en/τcut)/Ψν in Equation (32). The def-
inition of Ψν , Equation (34), ensures that the number of
neutrinos emitted is preserved, while their final spectrum
is modeled according to the energy optical depth. Since
a few inelastic interactions are necessary to thermalize
the spectrum, we expect τcut ∼ O(10).

2.4.1. Absorption rates

Eventually, neutrinos emitted at the neutrino surface
and above it stream away in the optically thin region,
with a non-negligible probability to be re-absorbed by
the fluid. In the ASL scheme, we include an estimate of
this non-local absorption rates, hν(E,x), based on the
computation of the neutrino densities outside the neu-
trino surfaces. The spectral absorption rates for νe and
ν̄e in optically thin conditions are calculated as:

hν(E,x)=
1

ρ(x)
nν,τν.1(E,x) ×

χν,ab(E,x) Fe(E,x) H(E,x). (35)

Fe,ν is the Pauli blocking factor for electrons or positrons
in the final state:

Fe∓ =

(

1−
1

exp ((E ±Q∓ µe)/T ) + 1

)

(36)

where we have assumed that the electron or positron
produced by the absorption of an electron neutrino or
antineutrino, respectively, has an energy equal to the en-
ergy of the incoming neutrino, corrected by the mass
difference Q = (mn −mp) c

2 ≈ 1.293MeV. In Equa-
tion (35), H(E,x) ≡ exp(−τν,tot(E,x)) is an exponential
term that ensures the application of the heating rates
only in the optically thin region. The quantity nν,τν.1

is the spectral neutrino density, defined such as the total
neutrino density outside the neutrino surface, Nν,τν.1,
is:

Nν,τν.1(x) =

∫ +∞

0

nν,τν.1(E,x)E2 dE. (37)

One of the limits of any leakage scheme is that it does
not model the spatial and angular distribution of the

emission outside the neutrino surface. Thus, the calcula-
tion of hν requires first a separate evaluation of nν,τν.1.
This task depends strongly on the nature of the prob-
lem and on the symmetry of the system. For spherically
symmetric models, the preferential propagation direction
is the radial one, and the neutrino densities are related
to the spherically symmetric neutrino spectral particle
luminosities, lν , by

nν,τν.1(E,R) =
lν(E,R)

4πR2c µν(E,R)
(38)

where R is the radial coordinate (e.g., Janka (2001)).
This conversion between the neutrino flux and density
involves the (spectral) flux factor µν(E,R). It repre-
sents the average of the cosine of the propagation an-
gle for the free-streaming neutrinos. Far from the neu-
trinospheres, the distribution functions are expected to
peak in the forward direction, meaning µν(R ≫ Rν) ∼ 1.
Close to the neutrinospheres, assuming that radiation
is emitted isotropically above the plane tangential to
the neutrinospheres, µν(R ∼ Rν) ∼ 1/2. Following
Liebendörfer et al. (2009), we use an analytic approxi-
mation for R > Rν(E):

µν(E,R) =
1

2



1 +

√

1−

(

Rν(E)

max(R,Rν(E))

)2


 .

(39)
The quantity lν is computed at each radius and for each
neutrino energy as a solution of the differential equation

dlν(E,R)

dR
= 4πR2 ρ(R) rν(E,R)−

χab(E,R)

c
H(E,R) lν(E,R). (40)

The neutrinos absorbed in free-streaming conditions
deposit momentum in the fluid. In the case of spherically
symmetric models, the related stress is computed as:

(v̇)τν.1 (R) =
1

c

∫ +∞

0

h(E,R)µν(E,R)E3 dE . (41)

For systems with an approximate spherical symmetry
(like collapsing stellar cores), the procedure described
above to compute nν and (v̇)τν.1 can be applied in a

ray-by-ray fashion (i.e., along radial paths starting from
the center of the system). For more general geometries,
ray-tracing algorithms can be designed (e.g., Perego et al.
(2014b)).

3. CALIBRATION AND VALIDATIONS

We implement the ASL scheme, as it is described in
Section 2, in the implicit, spherically symmetric hydro-
dynamics code Agile (e.g., Liebendörfer et al. 2002; Fis-
cher et al. 2010, and references therein). For the cal-
culation of the neutrino emissivities, absorptivities and
scattering rates, we include a minimal set of neutrino-
matter reactions containing the most relevant ones. For
the production and the absorption of electron flavor neu-



The ASL neutrino treatment 7

trinos,

e− + p↔n+ νe, (42)

e− + (A,Z)↔ (A,Z − 1) + νe, (43)

e+ + n↔p+ ν̄e. (44)

where e− and e+ refer to electrons and positrons, while n,
p and (A,Z) to neutrons, protons and nuclei with mass
number A and atomic number Z, respectively. Pair pro-
cesses, like electron-positron annihilation and neutrino
bremsstrahlung from free nucleons (generically referred
as N), are expected to be secondary sources for νe and
ν̄e, but primary for νµ,τ :

e− + e+↔ν + ν̄, (45)

N +N ↔N +N + ν + ν̄. (46)

All the reactions listed above are considered as inelas-
tic. Major sources of opacity for all neutrino species are
provided by scattering on nucleons and nuclei:

N + ν→N + ν, (47)

(A,Z) + ν→ (A,Z) + ν. (48)

These scattering reactions are considered as elastic in the
computation of the total and energy mean free paths.
All these weak interactions are implemented according
to Bruenn (1985), apart from neutrino bremsstrahlung
(Hannestad & Raffelt 1998) and pair production (Bruenn
1985; Mezzacappa & Messer 1999), whose implementa-
tion is described in Appendix A. The opacity provided
by the scattering of neutrinos on electrons and positrons
has not yet been implemented. It has been shown that
this process is relevant to thermalize neutrinos during the
collapse of the core (e.g., Mezzacappa & Bruenn (1993b))
and in the cooling phase of the proto-neutron star (PNS)
in exploding models, seconds after core bounce (Fischer
et al. 2012). Even if the effect of this reaction on the
total and energy mean free path is not considered, the
thermalization effect provided by it in the optically thick
regime is partially taken into account in our scheme by
enforcing the usage of equilibrium Fermi-Dirac distribu-
tion functions to model the neutrino trapped component.
The impact of this effective treatment in the different
parts of a core-collapse simulation is discussed later in
more detail.

3.1. 15 M⊙ progenitor

The ASL scheme is an effective treatment for neutrino-
radiation hydrodynamics. Therefore, it requires to be
tested and compared against a reference solution, not
only to check its validity and accuracy, but also to set
the free parameters that appear in the scheme. To per-
form this test, we choose the case of spherically sym-
metric core-collapse models. We start with a zero age
main sequence (ZAMS) 15 M⊙ progenitor model, ob-
tained by Woosley et al. (2002). We follow the col-
lapse of the core and the first 300 milliseconds after core
bounce. We include ≈ 2.05 M⊙ from the initial pro-
genitor, distributed over 103 radial zones on the adap-
tive Lagrangian grid of Agile . The corresponding ini-
tial outer radius is ≈ 7500 km far from the origin. As
reference solution, we use the results obtained by the
BOLTZTRAN code (Mezzacappa & Bruenn 1993a,b,c; Mez-

zacappa & Messer 1999; Liebendörfer et al. 2004; Fis-
cher et al. 2012, and references therein), also coupled
with the Agile code. BOLTZTRAN solves the Boltzmann
equation using the method of discrete ordinates with
a Gauss-Legendre quadrature. BOLTZTRAN incorporates
all the neutrino reactions listed in Equations (42)-(48).
For consistency with our ASL implementation, we rely
on the neutrino reactions implementation reported in
Liebendörfer et al. (2005). Recently, Lentz et al. (2012a)
has shown the impact of modern neutrino rates in Ag-
ile-BOLTZTRAN runs. We postpone the implementation
of more accurate reaction rates in the ASL to a future
step. Furthermore, we notice that, even if neutrino-
electron scattering is implemented in the BOLTZTRAN ver-
sion we are using, for consistency our reference runs
do not include it, if not stated otherwise. We per-
form our tests and compute our reference solutions as-
suming Newtonian gravity to be able to compare later
with different multidimensional Newtonian hydrodynam-
ical schemes. In all our Agile-ASL runs, as well as in
the Agile-BOLTZTRAN ones, we use the Lattimer-Swesty
EoS (Lattimer & Swesty 1991), with nuclear compress-
ibility K = 220MeV. Neutrino energies are discretized
by 20 geometrically increasing energy groups in the range
3MeV ≤ Eν ≤ 300MeV. In the Agile-BOLTZTRAN runs,
the neutrino propagation angle is discretized by 6 angu-
lar bins.

3.1.1. Parameter choice

Table 1

Name αdiff αblk τcut

Calibration sets
CAL {3, 4, 5, 6} {0.4, 0.45, 0.5, 0.55, 0.6} {10, 15, 20, 25}

Standard set
STD 3 + 2Xh 0.55 20

Parameter variation study
AD 2 2 0.55 20
AD 5 5 0.55 20
AB 45 3 + 2Xh 0.45 20
AB 65 3 + 2Xh 0.65 20
TC 7 3 + 2Xh 0.55 7
TC 54 3 + 2Xh 0.55 54

Note. — Table with a summary of the values of the parame-
ters used in the Agile-ASL runs. In the calibration runs (CAL),
the three parameters are varied independently. The standard set
(STD) is also used in the multidimensional runs.

The validation and the calibration of the ASL scheme
are done by comparing directly the temporal and the
radial profiles of some relevant quantities obtained with
Agile-ASL with our reference solutions. We do not define
a quantitative criterion to compare the different results,
because our simulations span a broad range of conditions
and this prevents the possibility to select a single quan-
tity as indicator. Instead, we search for the parameter set
that, overall, best matches the most important features
of a CCSN model between collapse and a few hundreds of
milliseconds after core bounce. In particular, during the
collapse we focus on central quantities (e.g., density, en-
tropy and electron fraction). Before and after bounce, we
monitor the profiles of matter density, ρ, matter entropy
per baryon, s, electron fraction, Ye, and radial velocity,
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Figure 1. Left: Central electron fraction (black lines), electron neutrino fraction (red lines) and lepton fraction (blue lines) evolution
during the collapse of the 15 M⊙ model, as a function of the central density. The solid lines refer to the run obtained with the ASL
scheme, while the dashed to the run obtained with BOLTZTRAN . Right: Same as for the left panel, but for central entropy (black lines) and
temperature (red lines), as a function of the central density during the collapse.
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Figure 2. Profiles of the electron fractions (left), temperature (middle) and radial velocity (right) as a function of the enclosed mass
profile for the 15 M⊙ model, at three different times labeled by their central densities (black: 1011 g cm−3, red: 1012 g cm−3 and blue:
1013 g cm−3). The solid lines represent the run obtained with the ASL scheme, the dashed the run obtained with BOLTZTRAN .

vr. Regarding the neutrino quantities, we investigate
the radial profile of Yν , together with the luminosities,
Lν , and the root mean squared (RMS) neutrino ener-

gies, Erms =
√

〈E2
ν 〉, both measured at 300 km from the

center. The different versions of Agile-ASL differ by the
usage of a distinct set of parameters, (αdiff , αblk, τcut).
The ranges we have explored are reported in the first
row of Table 1.
The values of the parameters that provide the overall

best agreement in all the monitored quantities, during
the entire simulation, are:

• αdiff = 3 (1 + 2Xh/3), where Xh is the mass frac-
tion of heavy nuclei. This peculiar dependence is
a simple interpolation between two limiting behav-
iors: αdiff ≈ 5 in the unshocked regions (more rel-
evant in the collapse phase) and αdiff ≈ 3 in the
shocked ones (more relevant in the post bounce
phase). The physical interpretation of this differ-
ence is linked with the fact that in the unshocked
region νe and ν̄e opacities depend more on quasi-
elastic scattering on nucleons and nuclei than on in-
elastic absorption processes (τν,en ≪ τν,tot); while
in the shocked region both are equally important

(τν,en . τν,tot). When isoenergetic scattering dom-
inates, high energy neutrinos diffuse changing more
slowly their energy and interacting more with mat-
ter, compared with thermalized neutrinos. This
effect leads to a significant increase of the diffusion
timescale.

• ανe,ν̄eblk = αblk = 0.55, while ανµ,τ ,blk = 0.

• τcut = 20.

We will refer to this set of values as our standard set
(second row in Table 1).

3.1.2. Collapse and bounce phase

In the following, we describe the results we obtain
for our 15 M⊙ model and how they compare with our
reference solution. The stellar iron core collapses un-
til densities in excess of nuclear saturation density are
reached in the center and a shock wave forms. Free
streaming neutrinos reduce the total lepton number,
while the electron fraction is further decreased by the
conversion of electrons into νe. The core reaches core
bounce on a time tbounce = 248ms after the begin-
ning of the simulation. The central density at bounce
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is ρbounce = 3.36 × 1014 g cm−3 and the enclosed mass
at the shock formation point is Menc,bounce = 0.75 M⊙.
The central density and the initial PNS mass com-
pare closely with the corresponding values obtained by
Agile-BOLTZTRAN (ρbounce,AB = 3.34 × 1014 g cm−3 and
Menc,bounce,AB = 0.74 M⊙, respectively), while the col-
lapse time of the reference model is shorter, tbounce,AB =
205ms. In Figure 1, we compare the central values ob-
tained for Yeand Yνe (left panel), and for the entropy and
temperature (right panel), as a function of the central
density during the collapse. Moreover, in Figure 2, we
plot radial profiles of Ye, temperature and radial veloc-
ity, as a function of the enclosed mass, for three different
times during the collapse (labeled by their central den-
sity). In all cases, we have obtained a good agreement
with the reference solution. The decrease of Yeis well re-
produced during the deleptonization process, while neu-
trino trapping occurs when the central density reaches
ρc ≈ 2 × 1012 g cm−3. After that, the further decrease
of Yeis compensated by the growth in Yνe , keeping the
total lepton number and the entropy roughly constant.
In the ASL model, the entropy per baryon and the elec-
tron fraction stay almost constant after neutrino trap-
ping up to core bounce, inside the innermost 0.8 M⊙.
In the BOLTZTRAN reference solution, the detailed treat-
ment of the equilibrium approach and diffusion process
slightly reduces the total lepton number (∆Yl ≈ 0.02),
compared with the ASL solution. Similarly, the entropy
per baryon rises just before the formation of the shock
wave (∆s ≈ 0.2 kB). This difference is due to full thermal
and weak equilibrium with matter assumed in the ASL
treatment. However, this equilibrium is only approxi-
mated and deviations from it leads to a slightly larger
matter entropy (Cooperstein et al. 1986, 1987). Finally,
in the radial velocity profile, we notice a wiggle appear-
ing after neutrino-trapping sets in, aroundMenc ≈ 1 M⊙.
This is due to the neutrino stress, computed according
to Equation (24), which can overestimate the stress at
the interface between the trapped and the free-streaming
regime, and neglect additional momentum transfer in op-
tically thin conditions.

3.1.3. Post bounce phase

After core bounce, the shock wave propagates out-
wards and iron group nuclei falling into the shock are
photo-dissociated into neutrons and protons. Once the
shock reaches the relevant neutrinospheres, electron cap-
ture on free protons in almost free-streaming conditions
causes a peak in νe luminosity and a fast neutronization
of the shocked matter. Later, the absorption of electrons
and positrons on free nucleons, together with neutrino
pair processes, produces an intense radiation emission of
neutrinos of all flavors. The combined effect of the nu-
clei photo-dissociation and neutrino emission causes the
prompt shock expansion to stop and the shock itself to
stall within a few tens of milliseconds. The absorption
of neutrinos inside the so-called gain region increases the
shock radius during several tens of milliseconds after the
stalling. However, this energy deposition is not enough
to revive the shock and lead to an explosion of the star.
Figure 3 shows radial profiles of several quantities at

core bounce, as a function of the enclosed mass, as well as
at two different times after core bounce (t ≈ 30ms and
t ≈ 120ms), as a function of the radial distance from

the center. The results obtained with the ASL scheme
show the most relevant features and the expected typi-
cal evolution. We find a good agreement for the location
of the shock during the different phases. We recognize
the effect of the passage of the shock wave in the elec-
tron fraction profile as well as the result of the neutrino
emission and absorption on the entropy profile (especially
around 120 ms, where the increase of the entropy inside
the gain region can be seen). A detailed comparison with
the reference solution shows several quantitative differ-
ences between the two models. They originate from our
approximate treatment, compared to a detailed neutrino
transport scheme. However, the overall qualitative (and
also a partial quantitative) agreement between the two
models is preserved during the entire simulation time.
In the left panel of Figure 4, we present the tempo-

ral evolution of the shock and PNS radii (defined as
ρ(RPNS) = 1011 g cm−3). Overall, Rshock and RPNS evo-
lutions are in good agreement with the reference model.
In the Agile-ASL run, the shock expansion reaches its
maximum, ≈ 145 km, around at 140 ms. This max-
imum extension is ∼ 10% smaller than the maximum
Rshock obtained by the Agile-BOLTZTRAN simulation. We
also notice that the latter reaches its maximum earlier
(≈ 105ms). In general, the shock evolution is more pes-
simistic in the ASL model than in the reference one. On
one hand, this is a consequence of the smaller PNS ra-
dius (e.g. Marek & Janka 2009), which in turn is due
to an overestimated neutrino cooling happening in the
semi-transparent regime. On the other hand, the com-
parison with a BOLTZTRANmodel including also neutrino-
electron scattering (thin long-dashed lines) suggests that
the smaller shock radius obtained by the ASL during
the first 30ms after core bounce could also be the result
of the effective inclusion of the neutrino thermalization
provided by this inelastic process. This effect, together
with the enhanced νe luminosity around neutrino burst,
compensates for the larger enclosed mass at core bounce.
Finally, despite the slightly smaller extension, the PNS
contraction rate within the first 300 ms is similar to the
one of the reference solution.

3.1.4. Neutrino quantities

The neutrino luminosities and RMS energies are dis-
played in the middle and right panels of Figure 4.
During the collapse phase, electron capture on nuclei

causes the νe luminosity to rise. This increase pro-
ceeds monotonically up to neutrino trapping (Lνe ≈
10.6 × 1052 erg s−1), when the enhanced core opacity
and the fast decreasing collapse timescale halt (and even
slightly decrease) the νe luminosity. Once the core has
bounced and the shock has passed through the rele-
vant neutrinospheres, Lνe shows a burst and peaks at
4.1 × 1053 erg s−1. The same behavior appears in the
reference solution obtained by Agile-BOLTZTRAN , even
if the luminosities are a bit smaller (9.5 × 1052 erg s−1

at trapping and 3.5 × 1053 erg s−1 at burst). After the
neutrino burst, Lνe decreases and stabilizes during the
accretion phase, Lνe ≈ 5.0 × 1052 erg s−1. At the same
time, the ν̄e luminosity rises and becomes almost equal to
Lνe during the whole accretion phase. The same trend is
observed in the reference solution and the differences in
the absolute values are usually within 10%. The smaller
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Figure 3. Profiles of the density and radial velocity (top row), and of the entropy and electron fraction (bottom row), at three different
times for the 15 M⊙ model: at core bounce (left panels, using the enclosed mass as independent variable), at 30 ms and 120 ms after core
bounce (central and right panels, respectively, using the radial distance as independent variable). The solid lines represent the run obtained
with the ASL scheme, the dashed to the run obtained with BOLTZTRAN .
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Figure 4. Temporal evolution of the shock and PNS radii (left panel), of the neutrino luminosities (middle panel) and of the neutrino RMS
energies (right panel) for the calibration run of a 15 M⊙ progenitor. The solid lines represent the run obtained with the ASL scheme, the
thick-short dashed lines the run obtained with BOLTZTRAN . For comparison purposes, we also plot results obtained with BOLTZTRAN including
neutrino-electron scattering (thin-long dashed lines).

values obtained by the ASL scheme are related with the
smaller neutrinosphere radii. Also the rise of Lνµ,τ

pro-
ceeds after core bounce, but a few milliseconds before
Lν̄e . This is expected because of the negative ν̄e degen-
eracy parameter and to their larger opacity. In the rising
phase (i.e., within the first ∼ 75ms), the ASL scheme un-
derestimates the νµ,τ luminosities, while the agreement
increases during the stationary accretion phase. This dis-
crepancy is due to the difficulty by the ASL scheme in
modeling the dynamical rise of the νµ,τ ’s, which are char-
acterized by an extended scattering atmosphere above
the radius where neutrino bremsstrahlung and pair pro-
duction freeze out.
The RMS energies obtained by the ASL scheme show

trends in agreement with the reference solution. A harder
spectrum is obtained for νe during the collapse phase and
for ν̄e in the first tens of milliseconds after core bounce.
We notice that the RMS energies for νµ,τ ’s are consistent
with the values obtained by the reference solution, i.e.
without including neutrino-electron scattering. However,
the inclusion of this process in Agile-BOLTZTRAN leads to
significantly smaller energies (by ∼ 20−25%). This indi-

cates that this process is responsible for efficiently down-
scattering high energy νµ,τ ’s, while they diffuse out from
the core. The same behavior is visible for νe’s during the
latest phases of the collapse.

3.1.5. Parameter variations

We briefly explore the sensitivity of the ASL scheme
with respect to variations of its free parameters
(αdiff , αblk, τcut) around the calibrated values. To do this,
we consider the 15 M⊙ model of Section 3.1, with its
standard set of parameters, and we vary independently
each of them. We choose αdiff = 2 (AD 2 model) and
αdiff = 5 (AD 5 model), αblk = 0.45 (AB 45 model) and
αblk = 0.65 (AB 65 model), and τcut = 7 (TC 7 model)
and τcut = 54 (TC 54 model), representing six indepen-
dent tests (see Table 1). We notice that the diffusion
rates are proportional to 1/αdiff, and the chosen diffu-
sion parameters could be also expressed as 1/αdiff = 0.5
(AD 2 model) and 1/αdiff = 0.2 (AD 5 model). Thus,
the variations of αdiff and αblk span an effective inter-
val of roughly ±30% around the calibrated values. For
τcut, we choose two values such that ln (τcut)/ ln (20) ≈
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1± (1/3)
In Figure 5, we show the shock and PNS radius, the νe

luminosity, and the νe RMS energy (the corresponding
curves for ν̄e and νµ,τ present analogous trends) for each
of the six tests, in comparison with the reference case.
The parameter αblk alters the emission rates everywhere
inside the core (cf. Equation (32)), causing a variation of
the total neutrino luminosity roughly equal to the varia-
tion of the parameter itself. Since it applies equally to all
neutrino energies, it does not affect directly the neutrino
spectrum and it modifies only marginally the evolution
of the neutrino mean energies. The variations of the
RMS energies that we observe in AB 45 and AB 65 are
mainly due to the different evolution of the radial profiles
of the thermodynamical quantities. A variation of ±30%
of αblk does not change the qualitative behavior of the
simulations, but it changes the shock radius significantly,
by a few tens of kilometers. Variations of the PNS radius
are more restrained.
Since the diffusion rates affect mainly the behavior of

the deep interior of the collapsing core, the radius of the
PNS is more sensitively affected by variations of the dif-
fusion parameter αdiff . In particular, an increase of αdiff

(AD 5) causes a decrease of the diffusion rates. It also
moves outwards the transition region between the diffu-
sion and the production rates (cf. Equation (33)). The
combined results of these effects are a decrease of the
neutrino luminosities (also in this case, roughly equal
to the relative variation of the parameter) and a signif-
icant softening of the neutrino spectrum. Lower neu-
trino mean energies and luminosities translate into a less
efficient neutrino heating. Nevertheless the consequent
reduced energy deposition behind the shock is partially
compensated by the slower contraction of the PNS and
of the shock radius, which is expected in the case of re-
duced neutrino luminosities. A decrease of αdiff (AD 2)
provides parallel, but opposite effects.
The variations of the parameter τcut have the smallest

impact on the ASL scheme results. In particular, a large
increase of τcut from 20 to 54 (TC 54) provides larger
neutrino mean energies, but it also increases the emis-
sion rates associated with high energy neutrinos, Equa-
tion (32). The more intense energy emission coming from
the optically thick region is still not enough to modify sig-
nificantly the evolution of the PNS radius. However, it
almost compensates the more efficient absorption pro-
vided in optically thin conditions, and limits the dif-
ferences in the radial profiles and in the shock condi-
tions. Analogous, but opposite, considerations apply to

the TC 7 run.
Our brief parametric study has shown that even sig-

nificant variations of the free parameters of the model
(of the order of ±30%) around the calibrated values do
not change qualitatively the results of the simulations
for the tested 15 M⊙ progenitor. On the other hand,
quantitative differences are present: variations of the pa-
rameters αblk and αdiff have the largest impact, since
they modify significantly the neutrino luminosities and
mean energies. The diffusion parameter regulates also
the contraction rate of the PNS, while it has a less pro-
nounced effect on the neutrino mean energies, compared
with αblk. Variations of τcut affect mainly the neutrino
mean energies, but have a reduced impact on the overall
dynamics.

3.2. 12 M⊙ and 40 M⊙ progenitors

After having presented the calibration of the ASL free
parameters for the core-collapse of a 15 M⊙ ZAMS star,
we test them with two different progenitors: 12 M⊙

(Woosley et al. 2002) and 40 M⊙ (Woosley & Heger 2007)
ZAMS stars. Also for these cases, we compare the re-
sults obtained in Newtonian simulations performed with
Agile-ASL with the ones of Agile-BOLTZTRAN . For the
12 M⊙ case, we include 1.67 M⊙ from the initial progen-
itor, distributed over 103 radial zones. The initial radius
extends up to 6800 km. For the 40 M⊙ case, we include
2.60 M⊙ from the initial progenitor, distributed over 135
radial zones, ranging initially from 0 up to 5100 km from
the center.
The comparison of the collapse profiles between the

Agile-ASL and the Agile-BOLTZTRAN results shows a very
good agreement, for example in the evolution of the cen-
tral entropy and electron fraction, similar to the one we
have observed for the 15 M⊙ calibration model. The
time necessary to reach core bounce is again larger by
15-20% in the ASL case: 169 ms and 354 ms, to be com-
pared with 142 ms and 313 ms obtained in the detailed
neutrino transport run, for the 12 M⊙ and 40 M⊙ case,
respectively. The enclosed mass where the shock forms
is larger in the ASL models by only a few percents (2-3
%). In Figure 6, we present the evolution of some key
quantities during 250 ms after core bounce, for both the
12 M⊙ (upper panels) and the 40 M⊙ (lower panels) pro-
genitor models. For comparison purposes, we plot also
the results obtained by the Agile-BOLTZTRAN code. Over-
all, the results obtained with the ASL model reproduce
qualitatively, and partially quantitatively, the results ob-
tained by the detailed Boltzmann neutrino transport.
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Figure 6. Same as in Figure 4, but for 12 M⊙ (top panels) and 40 M⊙ (bottom panels) progenitors.

The agreement is better for the 40 M⊙ case. This is
due to the fact that, despite the large difference in the
ZAMS mass, the core properties of the 15 M⊙ progeni-
tor show similarities with more massive progenitors and
differences with lighter progenitors. In the 12 M⊙ case,
the results obtained by the ASL scheme look more pes-
simistic, due to a faster and more intense energy loss
above the neutrinospheres during the first tens of mil-
liseconds after core bounce. The lower νe and ν̄e lu-
minosities, and the larger RMS energies, observed for
t & 0.75ms, are a consequence of the more compact PNS
and shock. Also for these two progenitor models (and es-
pecially for the 12 M⊙ one), the νe luminosity and shock
radius evolutions within the first tens of milliseconds af-
ter core bounce follow more closely the results obtained
with BOLTZTRAN , once the neutrino scattering on elec-
trons and positrons has been included. The reasons are
analog to the 15 M⊙ case. According to the analysis
reported in Section 3.1.5, the more pessimistic results
obtained for the 12 M⊙ case can also indicate that light
progenitors would require a slightly different parameter
choice to better match results from the reference model
(in particular, larger αdiff and αblk).

4. EXAMPLES IN MULTIDIMENSIONAL
SIMULATIONS

In Section 3, we have compared results from the ASL
scheme against Boltzmann transport in spherically sym-
metric models. To do that, we used the same hydro-
dynamics code, Agile . In order to show the possibility
for the scheme to be implemented in multidimensional
contexts, we report the following two tests, performed
with two different hydrodynamical codes. In the first
one, we apply the ASL scheme in a multidimensional
setting by coupling it to an axisymmetric Eulerian and
non-relativistic hydrodynamics solver, to model the core-
collapse of a stellar iron core. In the second one, we
couple our algorithm with a Lagrangian hydrodynam-
ics code, and we simulate the same stellar core-collapse

in 3D using smoothed particle hydrodynamics (SPH). In
both cases we consider a 15 M⊙ progenitor from Woosley
et al. (2002). We use the Lattimer & Swesty (1991) EoS
with nuclear compressibility K = 220 MeV and the ASL
standard parameter set, as described in Section 3, with
20 geometrically increasing energy bins between 3 MeV
and 300 MeV.
The different dimensions, implementations and nu-

merical techniques are expected to introduce differences
among the multidimensional tests and compared with
1D results (see Section 3). Nevertheless, during the col-
lapse phase and in the first tens of milliseconds after core
bounce, the profiles and the shock shape are expected to
behave similarly to spherically symmetric models (e.g.,
Marek & Janka 2009; Müller et al. 2012b; Bruenn et al.
2013), even if deviations due to PNS and prompt con-
vection can appear (e.g., Buras et al. 2006a; Müller et al.
2012b). At later times, multidimensional effects change
significantly the dynamics of the system. Several mul-
tidimensional CCSN results, employing more sophisti-
cated neutrino treatments, have been published. In the
case of axisymmetric models of a 15 M⊙ model, see e.g.
Scheck et al. (2006); Buras et al. (2006b); Müller et al.
(2012a); Suwa et al. (2013); Zhang et al. (2013); Bruenn
et al. (2013, 2014); Müller & Janka (2014); Pan et al.
(2015); Dolence et al. (2015). For three-dimensional SPH
models, see e.g. Fryer & Warren (2004). They provide
reference cases to check the qualitative behavior of our
simulations and of the neutrino quantities within a few
hundreds milliseconds after core bounce. However, our
focus is to demonstrate the versatility and portability of
the ASL algorithm, along with the validation of the re-
sults it provides with 1D detailed simulations, but not
to compare to other hydrodynamical codes and among
different dimensions.

4.1. 2D grid-CCSN model

The equations of hydrodynamics in spherical coordi-
nates and azimuthal symmetry are evolved with a di-
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Figure 7. Profiles of the density and radial velocity (top row), and of the entropy and electron fraction (bottom row) for the 1D ASL
reference (solid lines) and the spherically averaged 2D ASL model (dashed lines). The left, middle and right panels refer to 0, 30 and 120
ms after bounce, respectively.
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rectionally unsplit finite-volume scheme. The scheme
is of Godunov type using a second-order in space well-
balanced reconstruction (Käppeli & Mishra 2014b,a)
with characteristic limiting, a HLLC approximate Rie-
mann solver (Toro 1997) and a second-order in time
Strong Stability Preserving Runge-Kutta (SSP-RK2)
(Gottlieb et al. 2001) time integration. Spurious solu-
tions near strong (grid aligned) shocks are avoided by the
use the H-correction method by Sanders et al. (1998).
Newtonian self-gravity is approximated by a spatially

second-order accurate discretization of the monopole
term (i.e., by spherically averaging the mass density and
integrating the resulting one-dimensional profile) and
a spatially second-order five-point discretization of the
Poisson equation for the deviation from the monopole
term.
The ASL scheme is coupled to the hydrodynamics by

a ”ray-by-ray” approach: apart from the trapped neu-

trino components (Yν , Zν), which we evolve according
the corresponding multidimensional advection equations
(see Equations (8)-(7)), the ASL scheme is applied as de-
scribed in Section 2 along each radial ”ray”. However, in
the present implementation we have neglected the neu-
trino stress in the momentum equation.
The computational domain includes the innermost

5000 km and the full [0,π] polar realm. The radial di-
rection is discretized by Nr = 512 logarithmically spaced
cells: ∆ri = ∆r1a

i, i = 1, ..., Nr, a − 1 = 5.659 × 10−3

and ∆r1 = 1 km. The polar direction is uniformly
discretized by Nθ = 256 cells. The progenitor is then
mapped (without adding any rotation and perturbations)
onto the computational domain and evolved numerically
through collapse, bounce and until 300 ms post-bounce.
The collapse proceeds without any noticeable devia-

tions from spherical symmetry until it is halted by parts
of the inner core bouncing at tbounce = 222 ms after the
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Figure 9. Snapshots of the post-bounce evolution of the 2D CCSN model at different times (27 ms, 120 ms, 200 ms and 300 ms). In each
snapshot the data is mirrored along the symmetry axis displaying on the left the net neutrino heating rate and on the right the specific
entropy.

start of the simulation due to the stiffening of the EoS. At
that time the central density reaches ρbounce = 3.29×1014

g cm−3. The enclosed mass at the shock formation radius
is Menc,bounce = 0.66 M⊙, which is slightly lower than in
the one-dimensional reference simulation. In Figure 7,
we present a detailed comparison of the profiles from the
axisymmetric simulation with the one-dimensional refer-
ence. At bounce (left panels), we observe that all the
quantities are in good agreement. The 2D simulation
has a slightly more compact PNS, which we attribute to
the fact that we have neglected the neutrino stress. At
30 ms after bounce (middle panels) the agreement is still
very good up to the negative entropy gradient, which
was washed out by prompt convection. At later times,
the two-dimensional simulation deviates from the one-
dimensional reference due to multidimensional effects,
e.g., convection and shock instabilities. This is illus-
trated in the right panels of Figure 7, where we compare
the profiles at 120 ms after bounce.
In the left panel of Figure 8, we show the minimum,

average and maximum shock and PNS radii. In the same

panel, the spherically averaged net heating rate by elec-
tron flavor neutrinos is also shown. The shock and PNS
radii evolution can be separated in three distinct phases.
The first lasts from bounce up to ≈ 30 ms after bounce.
This phase features the initial very strong acceleration
of the shock wave. When the shock passes the neutrino
spheres, the neutronization burst induces strong cooling
as indicated by the negative heating rate. During this
phase the evolution is almost perfectly spherically sym-
metric. The second phase starts at ≈ 30 ms after bounce
and lasts up to ≈ 170 ms. During this phase the un-
stable entropy profile left behind by the shock wave trig-
gers strong convective motions, i.e., the so-called prompt-
convection. This induces anisotropic shock movements,
which are visible in the minimum and maximum shock
radii. The effect is also visible in the minimum and max-
imum PNS radii, but to a much lesser extent. How-
ever, the anisotropic shock movements remain mild, i.e.,
the difference between minimum and maximum shock ra-
dius does not exceed ≈ 40 km. In the upper-left panel
of Figure 9, we show a snapshot at 27 ms post-bounce
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when prompt-convection just sets in. During this sec-
ond phase, one observes the appearance and progressive
growth of regions below the shock with net neutrino heat-
ing. In the right-upper panel we show a snapshot at 120
ms post-bounce. It can be seen, that there is an extended
heating region below the shock. At this time, convective
motions due to neutrino energy deposition start to set
in. The third and last phase starts ≈ 170 ms and lasts
until we stopped the simulation. During this phase, the
energy deposited by the neutrinos triggers strong con-
vective motions. Plumes rise by buoyancy against the
continuous accretion flow. This in turn triggers increas-
ingly strong shock movements and it is illustrated in the
two lower panels of Figure 9.
In the central and right panels of Figure 8, we show the

neutrino luminosities and RMS energies from the axisym-
metric simulation. Both quantities agree well with the
one-dimensional reference. Moreover, the multidimen-
sional one shows some oscillations in all the quantities
after ≈ 50 ms post bounce. These oscillations become
stronger after ≈ 150 ms, especially in the luminosities.
We attribute these differences again to multidimensional
effects.

4.2. 3D SPH-CCSN models

The calculation is performed using our SPH code,
SPHYNX, that solves the Euler equations derived from a
variational principle (see, e.g., Rosswog 2009, and ref-
erences therein). SPHYNX uses high order interpolating
kernels, namely the sinc kernels with n = 5 (Cabezón
et al. 2008; Garćıa-Senz et al. 2014), and an improved
gradients evaluation based in the integral approach IAD0

(Garćıa-Senz et al. 2012; Cabezón et al. 2012; Rosswog
2015a). Three dimensional gravity is calculated with a
hierarchical tree structure created using the Barnes-Hut
algorithm (Hernquist & Katz 1989), and the neutrino
treatment is handled with a three dimensional version of
the ASL treatment presented in Section 2.

4.2.1. SPH + ASL coupling

To evolve the system with SPHYNX we solve the hy-
drodynamical equations in Lagrangian form, including a
gravitational and a neutrino source term. In the momen-
tum equation, we add the total neutrino pressure, Equa-
tion (25), to the plasma pressure. Therefore, the stress
provided by the trapped neutrinos is directly taken into
account. The evolution of each Zν is provided by an
energy equation (similar to the equation for the plasma
internal energy e) which consistently uses the neutrino
pressure Pν .
From the position of the SPH particles and the EoS,

we compute the local density, gradient of pressure, grav-
itational potential and internal energy. Moreover, each
particle carries information regarding the electron frac-
tion, Yeand the neutrino trapped components, (Yν , Zν).
Similarly to the method presented in Section 2, the ASL
scheme ultimately provides the rates of change for these
quantities (Ẏe, Ẏν , Żν) and for the internal energy (ėν).
The abundances of electrons and neutrinos are evolved

explicitly, while the implementation of the energy equa-
tion for Zν is described in Appendix B.
Most of the quantities which are needed to compute

the previous terms are local, so the implementation of

the ASL scheme in the SPH structure is straightforward
and directly done in 3D with very few modifications of
the hydrodynamical part of the code. The only non-local
quantities are the spectral optical depths, τν,tot(x, E) and
τν,en(x, E), and the spectral neutrino densities, nν(E,x),
used in the calculation of the non-local absorption rates,
hν(E,x), Equation (35)).
To compute the optical depths we use the expected

quasi-spherical symmetry of a collapsing stellar core by
defining a one dimensional radial grid. On this grid we
calculate the spherical averages of the neutrino spec-
tral mean free paths (which are computed locally in
3D, at each SPH particle position). Then, we integrate
1/λ(R,E) radially, from the external edge up to each ra-
dial position to obtain the radial optical depth. Finally,
the spherically symmetric optical depth is mapped back
on the three dimensional SPH particle distribution, in-
terpolating with respect to the distance from the center
of mass. Using the 3D density as interpolation variable
led to no significant differences. Regarding the neutrino
densities, we also consider them to be spherically sym-
metric, and to evaluate them we calculate the spectral
number luminosity via performing a radial integration
over all the particles sorted from lower to higher radius.

4.2.2. Setup and results

We set up a CCSN SPH simulation with 200,000 par-
ticles, using Newtonian gravity. We map the spherically
symmetric progenitor model into a three dimensional
quasi-random Sobol distribution of equal mass particles.
We simulate ∼ 1.8 M⊙ of mass and up to 3, 800 km in
radius. Next we perform an angular relaxation of the
system by allowing the particles to move, but with fixed
radius. In this way we erase artificial gradients of pres-
sure formed by random clumps of particles, and obtain
clean radial profiles that adjust to the initial 1D model.
The dynamics of the collapse and of the early post-

bounce phase are in very good agreement with the pre-
vious results. The electron fraction in the center of the
PNS decreases until it reaches Ye ∼ 0.31. When the
central density becomes ρbounce = 3.3 · 1014 g cm−3, the
core bounces and a shock wave forms at the surface of the
newly born PNS. More specifically, the shock is formed
at ≈ 14 km, which corresponds to an enclosed mass of
Menc,bounce = 0.76 M⊙ of unshocked material.
In Figure 10, we present radial profiles of radial veloc-

ity (left column), electron fraction (central column) and
entropy (right column), at four different times from core
bounce up to 100ms. Each point in the panels represents
one of the SPH particles. From the low dispersion of the
profiles at bounce, we can see that the collapse preserves
spherical symmetry, as expected. We notice the position
of the shock wave from the entropy spike and from the
corresponding starting deleptonization in the Yeprofile.
As the shock proceeds, multidimensional effects and in-
homogeneities appear and grow inside the shocked mate-
rial. This effect can be seen from the spread of particles
in the profiles of all represented quantities in the sec-
ond row. After 50 ms the initial prompt convection has
been quenched and the evolution proceeds more steadily.
Later on, convection slowly settles again in the shocked
material, but with a longer timescale, which can be seen
in the profiles of radial velocity and Yeas a increased scat-
ter of the particles (last row). The shape and the evolu-
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Figure 10. Snapshots of the radial profiles of radial velocity (left), Ye(middle), and entropy (right) at different times (bounce, 17 ms,
50 ms and 100 ms, from the top to the bottom) from our SPH model of a 15 M⊙ CCSN. Each point represents one SPH particle, and only
1 every 10 are plotted.

tion of multidimensional instabilities can be better seen
in Figure 11. In this series of snapshots, we project onto
the xy plane all the particles included in a thin layer
of 20 km around the equatorial plane (Z = 0), for the
same time steps used in Figure 10. The size of the box is
200 km side. Material processed by the shock is slowed
down, deleptonized, and accreted onto the hot PNS. At
17 ms we show the development of a transitory violent
convection that comes right after the shock launch, which
in this snapshot has reached the outer edge of the plot, at
R ≃ 100 km. At 50 ms the convection modes have been

quenched and the PNS accretes with a steady flow. This
leads to the more evolved image at 100 ms, where accre-
tion occurs smoothly on a slowly compactifying PNS. As
time proceeds, the accretion and compression of matter
increases the temperature above the surface where the
shock was launched. The low numerical diffusion of SPH
helps keeping the heat located in this region. The strong
deleptonization via neutrino emission can be seen at work
in all snapshots, even at 17 ms, where evident 3D fea-
tures occur, showing that the ASL is working correctly
in multidimensional simulations.
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Figure 11. Snapshots of the post-bounce evolution at different times (0.6 ms, 17 ms, 50 ms and 100 ms) from our SPH model of a 15
M⊙ CCSN. We show here only a thin slice of the 3D domain on the xy plane and each box is 200 km wide, i.e. −100 km < x, y < 100 km.
Each arrow represents one SPH particle and shows its projected velocity. Temperature, density, Ye, and entropy are color coded in each
snapshot.
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Figure 12. Same as in Figure 8, but for our 3D SPH simulation of a 15 M⊙ CCSN.

In the left panel of Figure 12, we show the evolution
of the PNS radius (black line) and of the shock radius
(red line) as a function of time after bounce. The PNS
shows a stable evolution with a slowly decreasing radius,
corresponding to a more compactified configuration due
to accretion and cooling. The shock position is deter-
mined within the local resolution as the radius at which
the artificial viscosity (AV) peaks. The AV is specifi-
cally designed to dissipate energy only when shocks are

present. We saw in all of our simulations that, once the
shock is formed and launched, the AV is approximately
two orders of magnitude higher at the shock position
than in the surrounding matter. The overall evolution of
the shock is similar to the spherical results, with a fast
expansion reaching 100 km within the first 5 ms, and af-
ter some oscillations, triggered by 3D convection, it set-
tles around 150 km. In the same figure, we also present
the time evolution of the local cooling and heating rates
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color-coded. The thin white region between the cooling
(blue) and the heating (red) regions is the location of the
gain radius, which settles around 100 km at 50 ms after
bounce and slowly recedes, while the neutrino heating
sets in behind the shock.
In the central and right panels of Figure 12, we show

the temporal evolution of the neutrino luminosities and
RMS energies, respectively, calculated during our SPH
simulation with the ASL scheme. The obtained results
agree well with the 1D simulation performed with the
ASL scheme. In particular, in the luminosity evolutions
we distinguish all relevant features expected in the col-
lapse, burst and accretion phases. Also the RMS ener-
gies have an evolution that corresponds very well with
the results obtained with the reference 1D model, and
their hierarchy is preserved through the simulation. An-
other feature which looks interesting is the oscillation in
the luminosities within the first milliseconds after neu-
trino burst: they appear in all three curves and they are
related to violent convection inside the PNS during the
very early post-bounce phase. Prompt, violent convec-
tion inside the PNS was also observed, for example, by
Herant et al. (1994) in 2D SPH simulations, and more
recently by Dolence et al. (2015) and Pan et al. (2015)).
This feature deserves a deeper investigation (see, e.g., the
analysis performed by Bruenn et al. (2004) and Buras
et al. (2006a)).

5. CONCLUSIONS

We have presented the Advanced Spectral Leakage
(ASL) scheme. This provides an approximate treat-
ment for the neutrino transport problem in astrophys-
ical contexts, like the core-collapse of massive star or the
merger of compact objects. The goal of the scheme is
to provide an efficient and physically motivated treat-
ment that contains all the major aspects of neutrino
emission and absorption, with a level of accuracy lower
than other more sophisticated (multidimensional) neu-
trino transports (like, for example, M1 schemes, MGFLD
schemes or IDSA), but higher than the classical gray
leakage schemes. It allows the application to different as-
trophysical contexts, codes, and geometrical dimensions,
with a reduced computational cost. Due to its effec-
tive nature, details of the neutrino transport can not al-
ways be reproduced. Nevertheless, it is optimal: 1) to
study problems where a spectral neutrino treatment is re-
quired, but the details of the neutrino behavior are of sec-
ondary importance; 2) to perform extensive parametric
or high-resolution studies, which are still computation-
ally too costly in multidimensional simulations with de-
tailed neutrino transports; 3) to accomplish preparatory
and exploratory tests; 4) during the developing and test-
ing of a hydrodynamic code, when the usage of an easily
verifiable, but still reliable neutrino treatment could be
useful; 5) to study complex and very dynamical systems
in which, due to the lack of symmetries, other more so-
phisticated neutrino treatments are still not available.
Due to its approximate nature, it is not well suited

to investigate aspects where the details of the neutrino
transport are crucial (e.g., Lentz et al. 2012a,b; Müller
et al. 2012b; Melson et al. 2015). Moreover, since it
avoids the solution of the transport problem in the dif-
fusive regime by estimates of the diffusion timescales, it
is not designed to study the detailed cooling of compact

objects, especially over long timescales (Hüdepohl et al.
2010; Fischer et al. 2012; Roberts et al. 2012; Suwa 2014).
We have developed and tested the scheme against refer-

ence models provided by numerical solutions of the Boltz-
mann equation. We have explored three progenitors with
12,15 and 40 M⊙ ZAMS masses. The 15 M⊙ case has
been more extensively studied to calibrate the free pa-
rameters of the scheme. We have also investigated the
impact of the variation of their values on the obtained
results. Usually, the changes we have tested produced
differences qualitatively in agreement with what we ex-
pected. Large quantitative discrepancies are observed
when the parameter values differ significantly from the
calibrated ones. The 12 M⊙ and 40 M⊙ cases have been
used to show the robustness of the calibrated parameters
with respect to the progenitor model.
Overall, the radial profiles of several hydrodynamical

and thermodynamical quantities obtained by the ASL
scheme show a good agreement with the reference solu-
tions during the whole simulated period (from the col-
lapse to the neutrino heating phase). Small differences
are present during the collapse phase and in the prompt
shock expansion, while in the neutrino heating phase,
where a detailed treatment would be required to model
with accuracy both the neutrino emission and absorp-
tion, differences tend to grow. Usually, the shock posi-
tion is well reproduced, with typical differences not larger
than 10− 15 km even at later times (larger discrepancies
have been observed only for the 12 M⊙ case). The pro-
files of electron fraction and entropy are the ones that
present the most notable differences, even though some
differences can be interpreted as radial or temporal shifts.
We have also compared the temporal evolution of the
neutrino luminosities and mean energies, for all neutrino
flavors. Again, the most relevant features are present also
in the approximate results, especially for νe’s. Quantita-
tive differences are nevertheless visible, especially in the
rapid growth of ν̄e’s and νµ,τ ’s in the early post-bounce
phase. The behaviors and the values we have obtained
for the RMS energies of νe and ν̄e are consistent with the
reference solution. This is true especially in the neutrino
heating phase, where describing correctly the mean neu-
trino energies is crucial to model the neutrino absorption
in the optically thin region .
We have also shown that the scheme can be applied,

without conceptual changes, to different types of codes
and to different spatial dimensions. In this respect,
we have implemented and tested it in multidimensional
core-collapse models using an axisymmetric Eulerian grid
code and a three-dimensional Lagrangian SPH code.
These models agrees with our spherically symmetric so-
lution during the collapse and in the early post-bounce
phase. Multidimensional features appear in the post-
bounce phase and they agree (at least, at a qualitative
level) with published results obtained in multidimen-
sional models employing more detailed neutrino trans-
port. In fact, the ASL treatment have already been ap-
plied to multidimensional CCSN models (Winteler et al.
2012; Perego et al. 2015) and to the study of the after-
math of neutron star mergers (Perego et al. 2014b).
The scheme presents a modular structure which allows

the inclusion of new neutrino reactions and opacities, as
well as the possibility to include more sophisticated treat-
ments (for example, for the reconstruction of the trapped
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distribution functions or for the neutrino thermalization
process), without changing its basic features. The in-
clusion of additional neutrino reactions, like neutrino-
electron scattering, or of some relevant relativistic and
Doppler effects (e.g., Lentz et al. 2012b, and references
therein) in the ASL scheme will be carried out in the
nearby future.
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APPENDIX

A. IMPLEMENTATION OF THE PAIR PROCESSES IN THE ASL SCHEME

In this appendix, we present our implementation of the neutrino pair processes, Eqs. (45) and (46), in the context
of the ASL scheme. Our goal is the computation of the associated emissivities, (jν)pair and absorptivities, (χν)pair.

These quantities are necessary to compute the local mean free paths, Eqs. (1) and (2) , the production and diffusion
timescales Equations (21) and (22), and the production rates, Equation (30). We start from the expression of the
collision integral for pair processes in the Boltzmann equation for the neutrino species ν (see, e.g., Bruenn (1985) or
Hannestad & Raffelt (1998)):

ḟν(kν)
∣

∣

∣

coll,pair
= (1− fν(kν))

1

c (2π~c)
3

∫

d3kν̄ (1− fν̄(kν̄))S
pr
pair(kν ,kν̄)

− fν(kν)
1

c (2π~c)
3

∫

d3kν̄ fν̄(kν̄)S
ab
pair(kν ,kν̄) (A1)

where ν̄ denotes the antiparticle of ν, kν and kν̄ the neutrino momenta, fν and fν̄ the neutrino distribution functions,
and Spr

pair and Sab
pair the kernel of the pair reactions.

To compute the local emissivities, we consider the first term in the integral of Equation (A1) and we perform the
integral over the ν̄ phase space, neglecting Pauli blocking factors for ν̄ in the final state, since the production rate is
mainly relevant in the optically thin region:

jem,pair(Eν) =
1

c (2π~c)
3

∫

d3kν̄ S
pr
pair(kν ,kν̄) . (A2)

For the absorptivities, we consider the right term of the integral in Equation (A1), and we integrate it over the phase
space of ν̄,

χab,pair(Eν) =
1

c (2π~c)3

∫

d3kν̄ fν̄(kν̄)S
ab
pair(kν ,kν̄) , (A3)

assuming that fν̄ is described by Fermi-Dirac distribution functions in weak and thermal equilibrium. Within this
assumption, we recover the correct limit in the diffusive regime, where the calculation of the mean free path and of
the optical depth are more relevant. In the optically thin limit, where the actual distribution functions are expected
to differ significantly from Fermi-Dirac distributions, our approach is expected to overestimate the absorptivity due
to pair processes. This would lead to a smaller λpair. However, we have tested that, for the corresponding relevant
thermodynamical conditions, λpair is still significantly larger than the mean free path due to assorption or scattering
on nucleons. Moreover, λpair is always much larger than the linear dimension of the system. Thus, our overestimated
absorptivities in optically thin conditions do not affect critically the location of the neutrino surfaces.
The reaction kernels, Sab

pair and Spr
pair, are calculated following Hannestad & Raffelt (1998) for the bremsstrahlung

process, and Bruenn (1985); Mezzacappa & Messer (1999) for the pair annihilation process. The calculation of the
integrals (A2) and (A3) during runtime would be by far the most expensive part of the rate computation. Thus, we
decide to tabulate these emission and absorption rates, and to interpolate them during the program execution. We
compute them as a function of the matter density, electron fraction and temperature. For our tables we consider a
three-dimensional grid, where we uniformly sample: i) the logarithm of the matter density, with 104 points between
105.1 g cm−3 and 1015.4 g cm−3; ii) the electron fraction, with 72 points between 0.0 and 0.56; iii) the logarithm of the
matter temperature, with 31 points between 0.1 MeV and 100 MeV. We perform the integral over the neutrino energy
by splitting the [0,+∞) integration interval into two segments, [0, Eref) and [Eref ,+∞), with Eref = 3T/2. For the
second, improper integral, we perform the change of variable E → 1/E. Then, we integrate each of the two integrals
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using the Gauss-Legendre quadrature with 16 points. The interpolation at runtime is accomplished by a trilinear
interpolation method.

B. CALCULATION OF THE ENERGY DENSITY OF NEUTRINOS IN SPHYNX

In this appendix, we present our implementation of the equation that evolves Zν in the SPH implementation of the
ASL. In the following, all SPH equations use IAD0 for calculating derivatives (Garćıa-Senz et al. 2012; Cabezón et al.
2012; Rosswog 2015a). To make a conversion to the traditional SPH prescription simply substitute all Aij by ∇iWij .
The trapped neutrino energy Zν is evolved according to

dZν

dt
= −

Pν

ρ
∇ · v + Żν (B1)

From Equation (B1) it is clear that the variation of Zν consists of two contributions: The first term is is due to the
PdV work and can be calculated using a SPH equation similar to the SPH (baryonic) energy equation, which takes
into account the neutrino pressure (instead of the baryonic pressure) and the density changes of the fluid. The second
one is the source term provided by the ASL scheme and takes into account the rate of change of energy of the trapped
neutrinos due to production and diffusion. In overall, evolving independent equations for Żν is equivalent to split the
equation for the total internal energy u in two components: baryonic and neutrinos. The baryonic part is accounted
with a regular SPH equation for specific internal energy e, while the neutrino component is calculated with:

(

dZν

dt

)

i

=
Pν,i

Ωiρ2i

∑

j

mj(vi − vj) · Aij + Żν,i , (B2)

where i is the particle index, v is the velocity vector, and Ωi is the grad-h term. Then, Zn+1
ν could be calculated using

the same integration method used for the specific internal energy.
Although this scheme is quite straightforward, in order to calculate the new Zν we evaluate the rate of change Żν ,

which in fact depends on Zν itself via Pν (Equation 25). Therefore, we opted for developing a semi-implicit scheme
that preserves the consistency between both magnitudes at a very low computational cost. Noting that our objective
is

Pn+1
ν =

1

3
ρZn+1

ν (B3)

we can now substitute Equation (B3) into Equation (B2) to explicitly show its dependence on Zn+1
ν . Taking into

account all sources we can write:

Zn+1
ν,i = Zn

ν,i + Żn
ν,i ∆t+

1

3

Zn+1
ν,i

Ωiρi

∑

j

mj(vi − vj) · Aij∆t. (B4)

Regrouping and isolating Zn+1
ν,i on the left hand side, we obtain the final version for the evolution of Zν,i for each

neutrino species:

Zn+1
ν,i =

Zn
ν,i + Żn

ν,i∆t

1− 1
3

1
Ωiρi

∑

j mj(vi − vj) · Aij∆t
. (B5)

Equation (B5) shows a very stable evolution for Zν in all the simulations and it provides consistent values for the
neutrino pressure and the neutrino energy by construction. After its evaluation, we use the new Zn+1

ν to calculate,
via Equation (B3), the neutrino pressure Pν that is afterwards included in the momentum equation via adding it to
the baryonic pressure.
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Scheidegger, S., Käppeli, R., Whitehouse, S. C., Fischer, T., &

Liebendörfer, M. 2010, A&A, 514, A51+
Sekiguchi, Y. 2010, Classical and Quantum Gravity, 27, 114107
—. 2011, Journal of Physics Conference Series, 314, 012076
Sekiguchi, Y., Kiuchi, K., Kyutoku, K., & Shibata, M. 2015,

Phys. Rev. D, 91, 064059
Shapiro, S. L., & Teukolsky, S. A. 1986, Black Holes, White

Dwarfs and Neutron Stars: The Physics of Compact Objects,
ed. Shapiro, S. L. & Teukolsky, S. A.

Shibata, M., & Taniguchi, K. 2011, Living Reviews in Relativity,
14, 6

Sumiyoshi, K., Takiwaki, T., Matsufuru, H., & Yamada, S. 2015,
ApJS, 216, 5

Sumiyoshi, K., & Yamada, S. 2012, ApJS, 199, 17
Sumiyoshi, K., Yamada, S., Suzuki, H., et al. 2005, ApJ, 629, 922
Suwa, Y. 2014, PASJ, 66, L1
Suwa, Y., Kotake, K., Takiwaki, T., Liebendörfer, M., & Sato, K.

2011, ApJ, 738, 165
Suwa, Y., Takiwaki, T., Kotake, K., et al. 2013, ApJ, 764, 99
Suwa, Y., Takiwaki, T., Kotake, K., & Sato, K. 2007, PASJ, 59,

771
Suwa, Y., Yoshida, T., Shibata, M., Umeda, H., & Takahashi, K.

2015, MNRAS, 454, 3073
Swesty, F. D., & Myra, E. S. 2009, ApJS, 181, 1
Takiwaki, T., & Kotake, K. 2011, ApJ, 743, 30
Takiwaki, T., Kotake, K., & Sato, K. 2009, ApJ, 691, 1360
Takiwaki, T., Kotake, K., & Suwa, Y. 2014, ApJ, 786, 83
Tamborra, I., Hanke, F., Müller, B., Janka, H.-T., & Raffelt, G.

2013, Physical Review Letters, 111, 121104
Thompson, T. A., Burrows, A., & Pinto, P. A. 2003, ApJ, 592,

434
Toro, E. F. 1997, Riemann Solvers and Numerical Methods for

Fluid Dynamics. A Practical Introduction (Springer-Verlag
GmbH)

van Riper, K. A., & Lattimer, J. M. 1981, ApJ, 249, 270
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