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Tensor-product discretization for the spatially
inhomogeneous and transient Boltzmann equation in 2D

d. Grohs R. Hiptmair S. dintarelli

Abstract

In this paper we extend the previous work [E. FļĻĻ, d. GĿļhŀ, ĮĻı R. HiĽŁĺĮiĿ, Polar spectral
scheme for the spatially homogeneous Boltzmann equation, Tech. Rep. ƊƈƉƌ-ƉƋ, Seminar for Applied
aathematics, ETH nürich, ƊƈƉƌ.] for the homogeneous nonlinear Boltzmann equation to the spatially
inhomogeneous case. We consider a tensor-product discretization of the distribution function combin-
ing Laguerre polynomials times a aaxwellian in velocity with continuous, irst order inite elements
in the spatial domain. he advection problem in phase space is discretized through a Galerkin least
squares technique and yields an implicit formulation in time. he discrete collision operators can be
evaluated with an asymptotic efort ofO(K5), whereK is the number of velocity degrees of freedom
in a single direction. bumerical results in ƊD are presented for diferent aach and Knudsen numbers.

Ɖ Introduction
he Boltzmann equation ofers a mesoscopic description of rareied gases and is a typical representative
of a class of integro partial diferential equations that model interacting particle systems. he binary
particle interactions in d-dimensional space are modeled by a collision operator which involves a 2d− 1
fold integral. Due to its non-linearity and the high dimension, the evaluation of the collision operator is
computationally challenging. Stochastic simulation methods are widely used. A well-known example is
the direct simulationaonte Carlo (DSaC) method developed by Bird and banbu in oƉ] and oƊ]. Among
deterministic approaches Fourier methods are most popular. In oƋ] dareschi et al. introduced a Fourier
based method, related approaches have been introduced in oƌ–Ə]. Fourier methods are fairly eicient and
accurate for short-time simulations, but they sufer from aliasing errors caused by the periodic truncation
of the velocity domain.

To overcome this problem a spectral discretization in velocity based on Laguerre polynomials has been
developed in oƐ] for the spatially homogeneous Boltzmann equation extending the work done in oƑ]. bo
truncation of the velocity domain is necessary. his approach has the advantage that the collision operator
can be represented as a tensor, which enjoys considerable sparsity and whose entries can be precomputed
with highly accurate quadrature.

In this work, we extend this idea to the spatially inhomogeneous Boltzmann equation, combining a
truncation-free spectral Galerkin approximation in velocity with a least squares stabilized inite element
discretization on the spatial domain. he tensor based local evaluation of the discrete collision operator
involves an asymptotic computational efort ofO(K5), whereK is the polynomial degree in one velocity
direction, see Sec. Ƌ. We also explore ways to ensure discrete conservation of mass, momentum, and en-
ergy, see Sec. Ƌ.Ɗ. his can be achieved bymodifying a few trial functions in the spirit of a detrov-Galerkin
discretization. An alternative is the direct enforcement of the constraints through Lagrangianmultipliers.
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In Sec. ƍ we elaborate how to incorporate various physically relevant spatial boundary conditions into our
new scheme.

For time-stepping we rely on a splitting scheme, which separately treats collisions and advection. For
the former we opt for explicit time-stepping, whereas the latter is tackled by a time-implicit least squares
formulation. his has the advantage, that for high Knudsen numbers we are not restricted by a CFL
condition. However, one must note that for small Knudsen numbers, i.e. small mean free path length, the
problem is stif and the time-step must be chosen suiciently small. Extensive numerical tests in various
settings typical of low problems for rareied gases are reported in Sec. Ǝ.

Closely related and conducted parallel to our investigations is the work by Kitzler and Schöberl oƉƈ,
ƉƉ]. hese authors also use a spectral polynomial discretization in velocity, but they rely on a detrov-
Galerkin discretization. he velocity distribution function (VDF) is represented by polynomials times a
shited aaxwellian, while the test functions are polynomials. he complexity for the evaluation of the
collision operator is reduced from O(K6) to O(K5) by exploiting it’s translation invariance properties.
hey locally rescale the basis functions in velocity to it macroscopic velocity and temperature. In phys-
ical space Kitzler and Schöberl use a discontinuous Galerkin scheme. cn the one hand this ofers great
lexibility concerning the local choice of velocity spaces. cn the other hand the DGmethod involves eval-
uating interface luxes and thus requires projection of the velocity distribution function between adjacent
elements. hen stability issues impose constraints on the temperature diferences between neighboring
elements.

Ɖ.Ɖ he Boltzmann equation
he time-dependent distribution function f = f(x,v, t) is sought on the 2+2-dimensional phase space
Ω = D × R

2, whereD denotes a spatial domain with piecewise smooth boundary.
We consider the inhomogeneous and time dependent Boltzmann equation

∂tf + v · ∇xf =
1

kn
Q(f, f)(v), (x,v) ∈ Ω = D × R

2, (Ɖ)

with initial distribution

f(x,v, t = 0) = f0(x,v). (Ɗ)

heKnudsen number kn represents themean free path in its nondimensional form. Boundary conditions
are prescribed on the inlowboundaryΓ− := {(x,v) : x ∈ ∂D∧v·n ≤ 0}, wheren denotes the outward
unit normal vector. Common types of boundary conditions are inlow, specular relective and difusive
relective boundary conditions oƉƊ, Sec. Ɖ.ƍ].

Inlow boundary conditions

f(t,x,v) = fin(t,x,v), (x,v) ∈ Γ− (Ƌ)

Specular relective boundary conditions

f(t,x,v) = f(t,x,v − 2v · nn), (x,v) ∈ Γ− (ƌ)

(he particles behave like billiard balls at the wall.)
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Difusive relective boundary conditions he particles are absorbed at the wall and re-emitted with
aaxwellian distributionMw(x,v).

f(t,x,v) = Mw(x,v) ρ+(f), (x,v) ∈ Γ− (ƍ)

where

Mw(x,v) :=

(
1

2π

) 1
2

T
3
2
w e−

∥v∥2

2Tw , (Ǝ)

is a aaxwellian distribution at the boundary, which may depend on x implicitly through the wall tem-
perature Tw(x), and

ρ+(f) :=

∫

Γ+

n ·wf(t,x,w) dw.

Mw is normalized such that
∫

Γ+ n · vMw(x,v) dv = 1. aacroscopic quantities of the gas can be com-
puted in terms of moments of the distribution function f .

aass ρ(t,x) =

∫

R2

f(t,x,v) dv

aomentum u(t,x) =
1

ρ

∫

R2

vf(t,x,v) dv

Energy E(t,x) =
1

ρ

∫

R2

∥v∥2 f(t,x,v) dv

Temperature T (t,x) =
1

2
(E(t,x)− ∥u(t,x)∥2)

he Boltzmann collision operatorQ in 2D is represented by a 3 fold integral:

Q(f, h)(v) =

∫

Rd

∫

Sd−1

B(∥v − v⋆∥ , cos θ)(h′
⋆f

′ − h⋆f) dσ dv⋆ (Ə)

It is common to splitQ into gainQ+ and lossQ− part

Q+(f, h)(v) =

∫

Rd

∫

Sd−1

B(∥v − v⋆∥ , cos θ)h′
⋆f

′ dσ dv⋆ (Ɛ)

Q−(f, h)(v) =

∫

Rd

∫

Sd−1

B(∥v − v⋆∥ , cos θ)h⋆f dσ dv⋆, (Ƒ)

where f = f(v), f ′ = f(v′), h⋆ = h(v⋆), h
′
⋆ = h(v′

⋆). For elastic scattering, the post-collisional
velocities v′,v′

⋆ are given by, see Fig. Ɖ:

v′ =
v + v⋆

2
+ σ
∥v − v⋆∥

2

v′
⋆ =

v + v⋆

2
− σ
∥v − v⋆∥

2

σ ∈ S
1. (Ɖƈ)

We assume that the interaction potential governing collisions is described by the collision kernelB of
the form oƉƊ]:

B(∥v − v⋆∥ , cos θ) = C(cos θ) ∥v − v⋆∥λ , (ƉƉ)
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v′
⋆

v′

v⋆

v

θ1
2 (v⋆ + v)

1
2 ∥v⋆ − v∥

Figure Ɖ

and that C(cos θ) satisies Grad’s cutof assumption oƉƋ]:
∫ 2π

0

C(cos θ) dθ <∞

In the following, we will restrict ourselves to the variable hard spheres model, i.e. we set C ≡ 1
2π and

consider λ ≥ 0. he case λ = 0 is known asaaxwellian molecules. In order to reduce the computational
complexity we will make use of the rotational and translational invariance of the collision operatorQ.

Deinition Ɖ.Ɖ (Translation and rotation operator). he pullbacks induced by the translation τ∗(c) and
rotation operator ρ∗(ω) act on a function f : R2 → R as follows:

τ∗(c)f(v) := f(v + c), for c ∈ R
2 (in Cartesian coordinates)

ρ∗(ω)f(φ, r) := f(φ+ ω, r), for ω ∈ [0, 2π[ (in polar coordinates)

It is easy to see that the collision operator enjoys the following covariance properties:

Q(ρ∗(ω)f, ρ∗(ω)g)(φ, r) = ρ∗(ω)Q(f, g)(φ, r) (ƉƊ)
Q(τ∗(c)f, τ∗(c)g)(φ, r) = τ∗(c)Q(f, g)(φ, r), (ƉƋ)

for any ω ∈ [0, 2π[ and c ∈ R
2.

Ɗ Spectral Velocity Space
For discretization in the velocity coordinate, we use the Polar-Laguerre basis developed in oƉƈ, Sec. Ɗ.Ɖ]. It
can be shown, that the basis is equivalent to weighted polynomials inR2 of total degree≤ K , with weight
e−r2/2. hroughout we designate by (φ, r) polar coordinates in R

2.

Deinition Ɗ.Ɖ (dolar-Laguerre basis functionsΨa
k,j(φ, r)).

Ψa
k,j(φ, r) :=







a(2jφ) r2jL
(2j)
k
2−j

(r2)e−r2/2 k ∈ 2N

a((2j + 1)φ) r2j+1L
(2j+1)
k−1
2 −j

(r2)e−r2/2 k ∈ 2N+ 1
(Ɖƌ)

where a = cos, sin and L(α)
n are the associated Laguerre polynomials.
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he basis functions Ψk,j are orthogonal in the inner product ⟨f, g⟩ :=
∫

R2 f(v)g(v) dv oƉƌ, Chap.
ƊƊ]. We deine the spectral basisBN

V of maximal polynomial degreeK and total number of elementsN :

B
N
V := {Lcos

k : k = 0, . . . ,K} ∪
{
L
sin
k : k = 0, . . . ,K

}
, (Ɖƍ)

where

L
cos
k :=

{
Ψcos

k,j : j = 0 . . . ⌊k2 ⌋
}

L
sin
k :=

{
Ψsin

k,j : j = 1− (kmod 2) . . . ⌊k2 ⌋
}
.

(ƉƎ)

For later usage we deine the function space V N
V := span {BN

V }.
Notation: Unless speciied,N will always denote the number of basis functions used to discretize the

velocity domain and has therefore been included in the superscript of the symbolsBN
V and V N

V .
Remark Ɗ.Ɗ. In oƐ], the test and trial functions in radial direction have the following form:

Ψk(r) = e−r2/2







√
2L

(0)
k
2

(r2) k even
√

1
k+1rL

(1)
k−1
2

(r2) k odd

he Ψk, for k = 0, . . . ,K are then combined with the Fourier modes ei lφ in angle, for l = 0, . . . , L,
such that k ≡ l mod 2. Consider for example k = 1, l = 1:

ei lφΨ1(r) =

√

1

2
ei lφe−

r2

2 ,

which is singular at r = 0, φ ∈ [0, 2π[. he same problem appears for all k ≤ l and causes rapidly
oscillating line integrals during the assembly of the collision tensor entries.

Lemma Ɗ.Ƌ. In Cartesian coordinates, the Polar-Laguerre basis functions Ψcos,sin
k,j are polynomials of total

degree k weighted by e−r2/2.

Proof. oƉƈ, Lemma ƍ] Use that

cosnφ =

⌊n
2 ⌋
∑

j=0

(
n

2j

)

sin(φ)
2j
cos(φ)

n−2j
, sinnφ =

⌊n−1
2 ⌋
∑

j=0

(
n

2j + 1

)

sin(φ)
2j+1

cos(φ)
n−2j−1 (ƉƏ)

For k even:

Ψcos
k,j e

r2/2 =

j
∑

i=0

(
2j

2i

)

sin(φ)
2j
cos(φ)

2j−2i
r2jL

(2j)
k
2−j

(r2)

=

j
∑

i=0

(
2j

2i

)

(r sin(φ))
2j
(r cos(φ))

2j−2i
L
(2j)
k
2−j

(r2)

=

j
∑

i=0

(
2j

2i

)

y2jx2j−2iL
(2j)
k
2−j

(r2)

(ƉƐ)

L k
2−j(r

2) is a polynomial of total degree 2(k2 − j) and thus multiplication with y2jx2j−i yields a poly-
nomial of total degree k.
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Whenever convenient, we will drop the double index (k, j) of Ψk,j and denote elements of BN
V by

bi, i = 0, . . . , N − 1. hus we may formally write the expansion fP with dolar-Laguerre coeicients
cPj , j = 0, . . . , N − 1, of a function f : R2 → R:

fP(φ, r) =
N−1∑

j=0

cPj bj(φ, r). (ƉƑ)

Figure Ɗ: dolar-Laguerre basis functionsΨcos
k,j(v), v ∈ [−5, 5]2.

First row: j = 0, k = 0, 2, 6, Second row: k = 6, j = 1, 2, 3.

Deinition Ɗ.ƌ (Hermite basis). he expansion of a function f : R2 → R in Hermite polynomials of total
degree≤ K reads:

fH(x, y) =

K∑

k=0

k∑

s=0

cs,k−shs(x)e
− x2

2 hk−s(y)e
− y2

2 , (Ɗƈ)

where hi(x) are suitably normalized Hermite polynomials [14], such that
∫

R
hi(x)hj(x)e

−x2

dx = δi,j .
Deinition Ɗ.ƍ (bodal basis). he expansion of a function f : R2 → R in Lagrange polynomials of degree
K reads:

fN (x, y) =
K∑

i=0

K∑

j=0

cNi,jℓi(x)e
− x2

2 ℓj(y)e
− y2

2 , (ƊƉ)
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where ℓi denote the Lagrange polynomials at the Gauss-Hermite quadrature nodes xi with weights wi [14].

ℓi(x) =
1√
wi

∏

0≤m≤K
m ̸=i

x− xm

xi − xm
.

We normalize the ℓi(x) such that ⟨ℓi(x), ℓj(x)e−x2⟩ = δi,j .

Notation In the following, we will tag coeicient vectors c with a superscript P,H,N to indicate that
they belong to the dolar-Laguerre, Hermite or the nodal basis.

Ƌ Treatment of the Collision Operator
In this section we will discuss the discretization of the collision operator.

Ƌ.Ɖ Discretization in velocity coordinate
he following derivation is identical to the one presented in oƐ], except that we use a real valued basis in
φ. Consider the homogeneous Boltzmann equation

∂tf = Q(f, f). (ƊƊ)

Temporarily let V̂ N
V stand for a generic function space. Speciic choices will be given in Sec. Ƌ.Ɗ. aulti-

plication of (ƊƊ) with a test function g ∈ V̂ N
V and integration over Rd gives

∂t

∫

Rd

f(t,v)g(v) dv =

∫

Rd

Q(f, f)g(v) dv. (ƊƋ)

aaking the ansatz f ∈ V N
V in (ƊƋ) and choosing g = b̂i and {b̂i}

N

1 as a basis of V̂ N
V gives rise to a 3-

dimensional tensorQN . cne may think of it as an array ofN ×N matrices Si, i = 0, . . . , N − 1, where
slice Si is obtained by testing with b̂i ∈ V̂ N

V :

(Si)i1,i2 :=
⟨

Q(bi1 , bi2), b̂i

⟩

L2(R2)
, bi1 , bi2 ∈ B

N
V (Ɗƌ)

We splitQ(f, f) = Q+(f, f)−Q−(f, f), as in (Ɛ) and (Ƒ), and accordingly S = S+ − S−.

(S−
i )i1,i2 =

⟨

Q−(bi1 , bi2), b̂i

⟩

=

∫

R2

∫

R2

B(∥v − v⋆∥ , cos θ)bi1(v)bi2(v⋆)b̂i(v) dσ dv⋆ dv

=

∫

R2

bi1(v)b̂i(v)

∫

R2

bi2(v⋆)I−(v,v⋆) dv⋆ dv

(Ɗƍ)

where the inner integral I− is given by

I− =

∫

S1

B(∥v − v⋆∥ , cos θ) dσ = ∥v − v⋆∥λ
∫

S1

C(cos θ) dσ, (ƊƎ)
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and as stated in the beginning C ≡ 1
2π .

(S+
i )(i1,i2) =

⟨

Q+(bi1 , bi2), b̂i

⟩

L2(R2)
=

∫

R2

∫

R2

B(∥v − v⋆∥ , cos θ)bi1(v′)bi2(v
′
⋆)b̂i(v) dσ dv⋆ dv

= C

∫

R2

bi1(v)

∫

R2

bi2(v⋆)I(+)
i (v,v⋆) dv⋆ dv

(ƊƏ)

with

I(+)(v′,v′
⋆; b̂i) =

∫

S1

B(∥v′ − v′
⋆∥ , cos θ)b̂i(v′) dσ, (ƊƐ)

see (Ɖƈ) and Fig. Ɖ for the deinition of θ and v′, v′
⋆. bote that, in the second line of (ƊƏ), we have made

the change of variables v,v⋆ ↔ v′,v′
⋆. bext, we substitute w′ = Rα v′ for α = − arg(v + v⋆). Rα

denotes the rotation by α around the origin in counter clockwise direction. Taking the test function b̂i
are from Def. Ɗ.Ɖ, we assume that they are of the form a(lφ)ϕr(r), where a is either sin or cos.

I(+)(v′,v′
⋆; b̂i) = ∥v′ − v′

⋆∥
λ
C

∫

S1

b̂i(arg(w
′) + α, ∥w′∥) dσ

= ∥v′ − v′
⋆∥

λ
C

∫

S1

a(l (arg(w′) + α))ϕr(∥w′∥) dσ
(ƊƑ)

We simplify (ƊƑ) for a = sin

I(+)(v′,v′
⋆; b̂i) = ∥v′ − v′

⋆∥
λ
C

∫

S1

[

sin(l arg(w′)) cos(lα)+cos(l arg(w′) sin(lα))
]

ϕr(∥w′∥) dσ

= sin(lα) ∥v′ − v′
⋆∥

λ
C

∫

S1

cos(l arg(w′))ϕr(∥w′∥) dσ, (Ƌƈ)

and for a = cos

I(+)(v′,v′
⋆; b̂i) = ∥v′ − v′

⋆∥
λ
C

∫

S1

[

cos(l arg(w′)) cos(lα)−sin(l arg(w′) sin(lα))
]

ϕr(∥w′∥) dσ

= cos(lα) ∥v′ − v′
⋆∥

λ
C

∫

S1

cos(l arg(w′))ϕr(∥w′∥) dσ. (ƋƉ)

hus we have found that, up to a factor, the integral I+(v′,v′
⋆; b̂i), which is cheap to compute, depends

only on d := ∥v′ − v′
⋆∥ and on c := ∥v′ + v′

⋆∥.

Ƌ.Ɗ Conservative discretization
An important property of (ƊƊ) is that mass, momentum and energy are conserved. In particular it holds
that

∂t





ρ(f)
ρu(f)
ρE(f)



 =

∫

R2

Q(f, f)





1
v

∥v∥2



 dv ≡ 0, (ƋƊ)

by fundamental properties of the Boltzmann collision operator oƉƍ, sec. ƍ]. In the following we present
two options for conservative time-stepping schemes for the homogeneous Boltzmann equation (ƊƊ).

Ɛ



Option I: Petrov-Galerkin discretization Condition (ƋƊ) can be naturally enforced for the ordinary
diferential equation (ƊƋ) by choosing the test space V̂ N

V such that it contains 1,v, ∥v∥2. Inspection of
the basis functions from B

N
V reveals that it is suicient to multiply a few of them by a factor er2/2 to

conserve mass, momentum and energy:

Ψcos
0,0 exp(r2/2) = 1, Ψsin

1,0 exp(r2/2) = sin(φ) r

Ψcos
1,0 exp(r2/2) = cos(φ) r Ψcos

2,0 exp(r2/2) = (1− r2)
(ƋƋ)

herefore we use a test space V̂ N
V which is identical to V N

V , except that Ψcos
0,0 ,Ψ

sin
1,0,Ψ

cos
1,0 ,Ψ

cos
2,0 have been

multiplied by the weight exp(r2/2). he discretized collision operator QN has the following expansion
into basis functions:

QN (fP , gP )(v) =
N∑

i=1

(

M−1[cTSjd]
N

j=1

)

i
bi(v), (Ƌƌ)

where (M)j,j′ = ⟨bj , bj′⟩, fP , gP ∈ V N
V with coeicient vectors c,d with respect to the basis. he mass

matrix M is diagonal, except for dense blocks in the rows corresponding to {Ψcos
0,0 ,Ψ

sin
1,0,Ψ

cos
1,0 ,Ψ

cos
2,0} ×

er
2/2 of size at most 1 × K . For now, the cost for applying QN is O(K6). In the next section we show

that, due to the polar representation, the complexity can actually be reduced by a factorK .

Option II:GalerkindiscretizationwithLagrangemultipliers Alternatively one can also use aGalerkin
discretization and solve a constrainedminimization problemwith respect to theL2-norm such that mass,
momentum and energy are conserved. his has been proposed in oƎ] for the Fourier-spectral method. In
the context of a time-stepping method, let ck be the coeicient vector in the dolar-Laguerre basis at time
tk.

Ɖ. Compute coeicients at the next time-step by a single step of an explicit time-stepping scheme, here
explicit Euler:

c̃k+1 = ck +∆tk QN (ck, ck)

Ɗ. Solve the saddle point problem:

ck+1 = argmin
c
k+1
⋆ ∈RN

∥
∥ck+1

⋆ − c̃k+1
∥
∥
2
+ λTHT (ck+1

⋆ − ck)
︸ ︷︷ ︸

conservation of mass, momentum and energy

, (Ƌƍ)

whereHT ∈ R
2+2×N ,HT c = (ρ, ρu, ρE)

T , with Lagrange multiplier λ ∈ R
2+2. he entries of

HT are given by:
[
HT
]

1,i
=

∫

R2

bi(v) dv

[
HT
]

2,i
=

∫

R2

vxbi(v) dv

[
HT
]

3,i
=

∫

R2

vybi(v) dv

[
HT
]

4,i
=

∫

R2

∥v∥2 bi(v) dv.







for bi ∈ B
N
V , i = 1, . . . , N (ƋƎ)
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he solution to (Ƌƍ) is

ck+1 = c̃k+1 − 1

2
Hλ, (ƋƏ)

with

λ = 2(HTH)
−1

HT (c̃k+1 − ck). (ƋƐ)

Also note thatHTH is positive deinite.

Ƌ.Ƌ Computational aspects
We repeat the deinition Ɗ.Ɖ of the dolar-Laguerre basis functions Ψk,j , and, for the sake of simplicity in
the current discussion, replace the real valued Fourier modes by their complex counterparts:

Ψk,j(φ, r) :=







ei 2jφ r2jL
(2j)
k
2−j

(r2)e−r2/2 k ∈ 2N

ei (2j+1)φ r2j+1L
(2j+1)
k−1
2 −j

(r2)e−r2/2 k ∈ 2N+ 1
(ƋƑ)

First, we observe that theΨk,j ’s are of the form fφ(lφ) fr(r) with angular frequency l ∈ Z.

Corollary Ƌ.Ɖ. Let f and g be represented in polar coordinates as

f(r, φ) = fr(r)e
i kφ, g(r, φ) = gr(r)e

i lφ

for some functions fr, gr and l, k ∈ Z. hen,

Q(f, g)(r, φ) = C(r)e− i(k+l)φ (ƌƈ)

Proof. oƐ] We get ρ∗(ω)f = ei kωf , and correspondingly for g. Using (ƉƊ) and the bilinearity of Q we
obtain

ρωQ(f, g)(r, φ) = ei(k+l)ωQ(f, g)(r, φ). (ƌƉ)

Choose ω = −φ and rearrange to ind

Q(f, g)(r, φ) = e− i(k+l)φρφQ(f, g)(r, φ).

he result follows since ρφQ(f, g)(r, φ) = Q(f, g)(r, 0) is independent of φ.

As a direct consequence of Cor. Ƌ.Ɖ, in the complex Fourier basis, the collision tensor contains nonzero
entries for l + k = j only, where l, k and j are the angular frequencies of the trial function and the test
function respectively. In the real valued Fourier basis, we have nonzero entries for k+ l = j or |k− l| = j
only. he derivation can be found in Appendix Ə.Ɖ.

Corollary Ƌ.Ɗ. he consequence of 3.1 is that each Si from (Ƌƌ) only has O(K3) nonzero entries, and
therefore the tensor representation ofQN hasO(K5) nonzero entries.

euadrature is carried out in polar coordinates. We use Gauss quadrature nodes and weights in the ra-
dial direction r on the interval [0,∞]with weight r e−r2/2, which are computed via the Golub-Welsch al-
gorithm oƉƎ]. Recursion formulas for the coeicients contained in the Jacobi matrix can be found in oƉƏ].
Due to numerical instabilities, both the recursion formulas and the eigenvalue problem have to be com-
puted with extended precision. We compute the quadrature nodes and weights with 128 digit accuracy,
which is suicient for degrees up to order≈ 100, and store them in tables.
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Figure Ƌ: bonzero entries for a few slices of the collision tensor forK = 16. he plots are labeled by the
angular part of the test function, since the location of the nonzero entries depend on it solely. he basis
functions are sorted by (l, cos / sin, k), where l is the angular frequency and k denotes the polynomial
degree in radial direction.

Ƌ.ƌ Exploiting the translational invariance ofQ
We have used the rotational invariance of the collision operator for eicient computation and storage of
its discrete analogue. According to (ƉƋ), Q is also invariant to translation. A aaxwellian at temperature
T = 1 with momentum u = 0 is represented in the polar basis by a single non-zero coeicient. In order
to represented the sameaaxwellian withmomentumu ̸= 0with same accuracy, the required polynomial
degreeK grows with ∥u∥, cf. Sec. Ƌ.ƌ.Ɖ. If one wants to apply the collision operator to a given function,
it would be beneicial to perform irst a change of variables such that it has zero momentum, apply the
collision operator and then shit it back to the original position. his has the advantage that a given
function with zero momentumwill have faster decaying coeicients compared to its nonzero momentum
counterpart and thus one might truncate at a lowerK without loss of accuracy. he straightforward way
to translate a given function in its polar representation to zero momentum is to compute the expansion
of f(v + u) in the dolar-Laguerre basis, where u denotes the momentum. his entails the evaluation of
f , which costsO(K2), atO(K2) quadrature points, resulting in a total cost ofO(K4). In the following,
we will show that this can be done with complexityO(K3) if we temporarily switch to the Hermite basis.
he Hermite expansion with coeicients cs,k−s of a function f : R2 → R reads

f(x, y) =
K−1∑

k=0

k∑

s=0

cs,k−shs(x)hk−s(y)e
− x2+y2

2 , (ƌƊ)

where hs(x), hk−s(y) are Hermite polynomials orthogonal with respect to the weights e−x2 and e−y2 .
As a consequence of Lemma (Ɗ.Ƌ), any function in the dolar-Laguerre basis of degree K has an exact
representation through Hermite polynomials of total degree K . Let us formally deine the coeicient
transformations matrices TP→H, TH→P used to transform dolar-Laguerre to Hermite coeicients and
vice versa:

cH = TP→Hc
P

cP = TH→Pc
H,

ƉƉ



where TP→H,TH→P ∈ R
N×N . Because of their block-diagonal structure with dense blocks of size

k + 1, k=0, . . . ,K − 1, the cost to transform the coeicients from the dolar-Laguerre to the Hermite
basis is O(K3). he derivation of the dolar-Laguerre to Hermite transformation matrices can be found
in oƉƉ, Sec. Ƌ.Ɗ].

Let ck denote the coeicients of a 1-dimensional Hermite expansion g with maximal polynomial de-
greeK and momentum x̄. We are looking for the Hermite expansion of ḡ(x) = g(x+ x̄).

ḡ(x) = g(x+ x̄) =
K−1∑

k=0

ckhk(x+ x̄)e−
(x+x̄)2

2 ≈
K−1∑

k=0

c̄khk(x)e
− x2

2 (ƌƋ)

bote that ḡ(x) has zero momentum. he coeicients c̄i are computed by forming L2-inner products.

c̄i =
1

si

∫

R

K−1∑

k=0

ckhk(x+ x̄)e−
(x+x̄)2

2 hi(x)e
− x2

2 dx

=

K−1∑

k=0

ck
1

si

∫

R

hk(x+ x̄)hi(x)e
−

(x+x̄)2

2 e−
x2

2 dx =:

K−1∑

k=0

(Sx̄)i,k ck, (ƌƌ)

where si =
∫

R
hi(x)hi(x)e

−x2

dx. he above can be written as a matrix-vector-product c̄ = Sx̄c, where
Sx̄ ∈ R

K,K . To further simplify the expression for the matrix entries (Sx̄)i,j , we substitute x = x− x̄
2

(Sx̄)i,j =
1

si

∫

R

hj(x+ x̄
2 )hi(x− x̄

2 )e
−x2

e−
x̄2

4 dx (ƌƍ)

and use the identity

hn(x+ x̄) =
n∑

k=0

(
n

k

)

(2x̄)
n−k

hk(x), (ƌƎ)

to expand hk(x+ x̄
2 ), hi(x− x̄

2 ) and ind

(Sx̄)i,j =
1

si

i∑

s=0

j
∑

t=0

(
i

s

)(
j

t

)

(−x̄)i−s
(x̄)

j−t
e−

x̄2

4 δt,s
√
π2tt!

=

√
π

si
e−

x̄2

4

min(i,j)
∑

t=0

(
i

t

)(
j

t

)

(−x̄)i−t
(x̄)

j−t
2tt! ,

(ƌƏ)

where we have used the orthogonality of the Hermite polynomials.
To carry out the shiting in 2D, we rearrange the Hermite coeicient vectors c, c̄ into lower triangular

matricesC, C̄ ∈ R
K,K :

fH(x, y) =

K∑

i=1

K∑

j=1

[C]i,jhi(x)e
− x2

2 hj(y)e
− y2

2 , (ƌƐ)
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he matrix Sx̄ applied along the columns of C performs the shit in x-direction, subsequent row-wise
application of Sȳ shits in y-direction:

C̄T = Sȳ(Sx̄C)
T

⇔ C̄ = Sx̄ CSȳ,T .
(ƌƑ)

We use orthonormal Hermite polynomials in the implementation to avoid numerical overlow. he pro-
cedure described above is summarized in Algorithm Ɖ, whose total cost without evaluating the collision
operator isO(K3).

Algorithm Ɖ
Collision operator in re-centered basis via Hermite representation. (SuperscriptsP,H denote coeicients
in dolar-Laguerre / Hermite basis.)
Ɖ: procedure AĽĽĹyQ iĻ ĿĲ-İĲĻŁĲĿĲı įĮŀiŀ(cP)
Ɗ: cH ← TP→Hc

P ▷ Transform to Hermite basis
Ƌ: c̄H ← Sx̄cH ▷ Transform to zero momentum
ƌ: c̄P ← TH→Pc̄

H ▷ Go back to dolar-Laguerre basis
ƍ: c̄P ← update withQ in truncated basis
Ǝ: c̄H ← TP→Hc̄

P ▷ Transform to Hermite basis
Ə: cH ← S−x̄c̄H ▷ Shit back
Ɛ: cP ← TH→Pc

H ▷ Transform to dolar-Laguerre basis
Ƒ: end procedure
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K tshit[ms] tcollision op.[ms]

10 0.08 0.04
12 0.13 0.04
16 0.3 0.15
20 0.55 0.42
26 1.12 1.51
30 1.61 2.99
36 2.52 7.08
40 3.25 11.4
50 6.04 33.6
80 18.2 337

(b)

Figure ƌ: CdU-time: Intel Core iƏ ƌƏƑƈK (4GHz, single threaded), Linux ƌ.Ɗ.Ƌ, GCC ƍ.Ɗ.ƈ, relevant com-
piler lags: -O3 -msse2 -mavx2. tshit is the time for the execution of Algorithm Ɖ except the application
of the collision operator.

Fig. ƌ displays timings for the shiting procedure and the application of the collision operator for
varying polynomial degreeK . ForK < 40 the shiting does not pay of, because we have observed that
it is slower than the application of the collision operator.
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Ƌ.ƌ.Ɖ Example: Decay of coeicients

he following example is to demonstrate that the dolar-Laguerre coeicients decay fastest if the approxi-
mand is centered such that it has zero momentum.

f(v) = exp(−vTMv) + exp(−∥v−vc∥
2

2 ), (ƍƈ)

where

M =
1

8

[
7
√
3√

3 5

]

, vc = [ 15 , 0] . (ƍƉ)

he decay of the absolute values of the dolar-Laguerre coeicients |c| with respect to angular index
l := 2j + k mod 2 and radial index k is shown in Fig. ƍ.
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(c) vc = [3, 0]
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(d) vc = [4, 0]

Figure ƍ: Decay of dolar-Laguerre coeicients for f(v − vc), deined in (ƍƈ), with respect to angular
index l and radial index k.
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ƌ Discretization in Physical Space
In this section we present the spatial discretization in D ⊂ R

2. It is well known that the advection part
in (Ɖ) requires stabilization. We use a least squares formulation, which has the advantage that, ater partial
integration, the term ⟨v · nΦ, f⟩Γ appears in the variational formulation, which comes handy to include
inlow-type boundary conditions. he advection part of (Ɖ) reads

∂tf + v · ∇xf = 0. (ƍƊ)

We replace ∂tf in (ƍƊ) by a backwards diference quotient and write down the least squares functional
J(f (n); f (n−1)) for the pure transport problem oƉƐ, Ch. Ɖƈ.Ƌ.Ɖ]:

J(f (n); f (n−1)) :=

∥
∥
∥
∥

1

∆t

(

f (n) − f (n−1)
)

+ v · ∇xf
(n)

∥
∥
∥
∥

2

L2(Ω)

(ƍƋ)

he bilinear form a and right hand side linear form b of the associated variational problem are given by

a(Φ, f (n)) =
1

∆t2

⟨

Φ, f (n)
⟩

Ω
+

1

∆t

⟨

v · nΦ, f (n)
⟩

Γ
+
⟨

v · ∇xΦ,v · ∇xf
(n)
⟩

Ω
, (ƍƌ)

where have used partial integration in x to obtain the boundary term, and

b(Φ, f (n−1)) :=
1

∆t2

⟨

Φ, f (n−1)
⟩

Ω
+

1

∆t

⟨

v · ∇xΦ, f
(n−1)

⟩

Ω
, (ƍƍ)

where n is the unit outward normal vector on ∂D and Γ := ∂D × R
2. In the following we use ⟨·, ·⟩ to

denote the L2-inner product. V L
D is the space of linear, piecewise continuous inite elements on quadri-

lateral triangulations of D ⊂ R
2. he VDF on phase space Ω = D × R

2 is approximated in the tensor
product space V L,N = V L

D ⊗ V N
V . he test functions Φ are also taken from V L,N . he superscript L

will denote the number of degrees of freedom in physical space. he inclusion of boundary conditions is
done in a weak sense, details will be discussed in the next section. When inlow boundary conditions are
present, the corresponding parts of ⟨v · nΦ, f⟩Γ enter the right hand side.

For integration in time we separate (Ɖ) into advection and collision part and use a irst order split
time-stepping.

Ɖ. Advection: ∂tf + v · ∇xf = 0 (implicit Euler):

1

∆t2k

⟨

Φ, f (n+1/2)
⟩

Ω
+

1

∆tk

⟨

v · nΦ, f (n+1/2)
⟩

Γ
+
⟨

v · ∇xΦ,v · ∇xf
(n+1/2)

⟩

Ω

=
1

∆t2k

⟨

Φ, f (n)
⟩

Ω
+

1

∆tk

⟨

v · ∇xΦ, f
(n)
⟩

Ω
(ƍƎ)

Ɗ. Collision operator (explicit Euler):

f (n+1) = f (n+1/2) +
∆tk
kn

Q(f (n+1/2), f (n+1/2)) (ƍƏ)
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ƍ Treatment of Boundary Conditions
We discuss inlow, specular relective and difusive relective boundary conditions, which were deined
in (Ƌ), (ƌ) and (ƍ). hese are the simplest with physical signiicance. here exist other models, a detailed
discussion can be found in oƉƑ, Ch. Ɖ.ƉƉ] and the references therein.

We split the second term of a(Φ, f), cf. (ƍƌ), into in- and outlow part:

1

∆t

⟨

v · nΦ, f (n)
⟩

Γ
=

1

∆t

(⟨

v · nΦ, f (n)
⟩

Γ−
+
⟨

v · nΦ, f (n)
⟩

Γ+

)

, (ƍƐ)

where Γ = ∂D × R
2. he function f (n) in ⟨v · n, f (n)⟩Γ− can be replaced by the conditions for spec-

ular relective, difusive relective or inlow boundary conditions. In the following we will discuss the
conservation of moments for specular relective and difusive relective boundary conditions.

heorem ƍ.Ɖ. Specular relective boundary conditions (ƌ) conserve mass and energy in the continuous for-
mulation.

Proof. aultiply (Ɖ) by
(

1,v, ∥v∥2
)T

and integrate over Ω to obtain:

∂t

∫

D

∫

R2

f(t,x,v)





1
v

∥v∥2



 dv dx ≡ ∂t





ρ
ρu
ρE



 = −
∫

D

∫

R2





1
v

∥v∥2



v · ∇xf(t,x,v) dv dx

(ƍƑ)

⇔ ∂t





ρ
ρu
ρE



 = −
∫

Γ+

n(x) · v





1
v

∥v∥2



 f(t,x,v) dv dx−
∫

Γ−

n(x) · v





1
v

∥v∥2



 f(t,x,v) dv dx .

(Ǝƈ)

bextwe insert the specular relective boundary condition on the inlowboundaryΓ−which is f(t,x,v) =
f(t,x,v − 2nn · v), (x,v) ∈ Γ− and obtain

∫

Γ−

n · v





1
v

∥v∥2



 f(t,x,v − 2nn · v) dv dx dv = −
∫

Γ+

n · v





1
v − 2nn · v
∥v∥2



 f(t,x,v) dx dv,

(ƎƉ)
the right hand side follows ater making the substitution v → v − 2nn · v. Inserting back into (Ǝƈ)
reveals that ∂tρ ≡ 0 and ∂t(ρE) ≡ 0, which inishes the proof.

heoremƍ.Ɗ. Specular relective boundary conditions conservemass and energy in the discrete formulation.

Proof. he discretized solution with coeicients c(n)k,j,ix
at time tn can be written as:

f (n) =
∑

ix,j,k

c
(n)
k,j,ix

Ψk,j(v)ϕix(x),

where ϕix are the basis functions spanning V L
D . Insert a test function Φ which is constant in x into the

variational formulation a(Φ, f (n)) = b(Φ, f (n−1)):

1

∆t

(⟨

Φ, f (n)
⟩

Ω
−
⟨

Φ, f (n−1)
⟩

Ω

)

+
⟨

v · nΦ, f (n)
⟩

Γ
+∆t

⟨

v · ∇xΦ,v · ∇xf
(n)
⟩

Ω
= 0. (ƎƊ)
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bote that
⟨

v · nΦ, f (n)
⟩

Ω
=

∫

Γ

∫

R2

v · nΦ(v)f (n)(x,v) dx dv . (ƎƋ)

All terms in (ƎƊ) involving∇xΦ evaluate to zero and we obtain
(⟨

Φ, f (n)
⟩

Ω
−
⟨

Φ, f (n−1)
⟩

Ω

)

= −∆t
⟨

v · nΦ, f (n)
⟩

Γ
, (Ǝƌ)

since, on Γ, f (n) satisies (ƌ), we see that the right hand side of (Ǝƌ) vanishes whenever Φ ∈ V L,N is
chosen to be rotationally symmetric in the velocity coordinate, thus let Φ(x,v) = Ψcos

k′,0(v), k′ even,
recall Def. Ɗ.Ɖ for the deintion ofΨk,j(v):

⟨

Ψcos
k′,0(v),

∑

k,ix

(

c
(n)
k,0,ix

− c
(n−1)
k,0,ix

)

︸ ︷︷ ︸

:=∆ck,0,ix

Ψk,j(v)ϕix(x)
⟩

Ω
= 0 (Ǝƍ)

⇒
∑

ix

∆ck,0,ix
∫

D
ϕix = 0, ∀k even (ƎƎ)

where we have used theL2-orthogonality of the spectral basis in the last line. he change inmass between
times tn−1, tn is given by:

∫

D

ρ(n)(x)− ρ(n−1)(x) dx =
∑

k,j

∑

ix

∆ck,j,ix

∫

R2

Ψj,k,ix(v) dv

︸ ︷︷ ︸

=0 if k odd or j ̸=0

∫

D

ϕix(x) dx (ƎƏ)

= π
∑

k even

∑

ix

∆ck,0,ix
∫

D
ϕix

︸ ︷︷ ︸
=0

. (ƎƐ)

In the last line we have used (ƎƎ). Conservation of energy can be shown in the same way, except that one
has an additional ∥v∥2 in the integral overR2 in (ƎƏ) which also evaluates to zero for k odd or j ̸= 0.

heoremƍ.Ƌ. In the presence of difusive relective boundary conditions mass is conserved in the continuous
formulation.

Proof. It must hold that
∫

x∈∂D

∫

v·n(x)>0

n(x) · vf(t,x,v) dv dx = −
∫

x∈∂D

∫

v·n(x)<0

n(x) · vf(t,x,v) dv dx

= +

∫

x∈∂D

ρ+(f)

∫

v·n(x)>0

n(x) · vMw(∥v∥) dv
︸ ︷︷ ︸

≡1

dx, (ƎƑ)

where we have made the changes of variables v → v − 2nn · v in the third line. By deinition, the let
hand side of (ƎƑ) is

∫

x∈∂D
ρ+(f) dx, which inishes the proof.

Remark ƍ.ƌ. he discrete formulation does not conserve mass for difusive relective boundary condi-
tions, because in general, the velocity distribution function will have jumps across the line v · n ≡ 0.
Discontinuous functions cannot be represented exactly in the dolar-Laguerre basis and therefore mass is
not conserved.

ƉƐ



Ǝ Numerical Experiments
We have implemented all the techniques discussed in C++. he inite element part is taken from the
deal.II v8.3 oƊƈ] library. he collision operator is independent of x and it is thus natural to parallelize
via domain decomposition in the physical domain. he systemmatrix arising from the advection problem
is assembled once and reused in every time-step. We use a block-diagonal, incomplete LU-factorization as
preconditioner. cten it is observed that the ILU-preconditioned 1 GaRES solver converges in less than
5 iterations. We use the distributed vector, sparse matrix, iterative solvers and preconditioners ofered by
Trilinos v12.2.1 oƊƉ].

he numerical experiments in this section are carried out foraaxwellianmolecules. he entries of the
collision tensor were computed with 81, 131 quadrature points in radial direction and angular direction.
For the inner integral (ƊƐ) 131 quadrature points were used. hus it can be assumed that the quadrature
error is negligible.

Ǝ.Ɖ Homogeneous case
In order to validate the implementation of the collision operator and to study the approximation properties
of the dolar-Laguerre basis, we consider the homogeneous Boltzmann equation

∂tf = Q(f, f), (ƊƊ)

for which a non-stationary, analytical solution is available. his is the so-called BKW solution:

f(t,v) = e−
∥v∥2

2s
∥v∥2 − (2 + ∥v∥2)s+ 4s2

4πs3
, t > 0 (Əƈ)

where s = 1 − exp(− 1
8 (t + 8 log 2)). It is valid for aaxwellian molecules. Taking the limit t → ∞

of (Əƈ) shows that the equilibrium solution agrees with a single nonzero coeicient in the dolar-Laguerre
basis:

lim
t→∞

f(t,v) =
1

2π
e−∥v∥2/2

heBKW solution (Əƈ) has temperature T=1, and thus we call it to be a temperature-normalized solution
in the dolar-Laguerre basis.

heorem Ǝ.Ɖ. Let f(t,v) be a solution to (ƊƊ) with a collision kernel of the form (ƉƉ). Let α, γ > 0 be
given, and deine η = α/γλ+2. hen

h(t,v) = αf(ηt, γv)

is also a solution to (ƊƊ).

he proof can be found in oƐ]. aaking use of heorem Ǝ.Ɖ and rescaling f(t,v) accordingly, we can
construct analytical solutions with diferent temperatures. bumerical results for the BKW solution are
reported in Fig. Ǝ. In order to demonstrate the approximation properties of the dolar-Laguerre basis, the
simulations were carried out for temperature-normalized initial distributions with T=0.5, 1 centered at
vc=[0, 0] and vc=[1, 1]. Also, we compare the two diferent methods to conserve mass, momentum and

1Block-diagonal ILU preconditioner with zero ill-in from Trilinos IFdACK.
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energy described in Sec. Ƌ.Ɖ. We used RKƌ with step size ∆t=10−3 for T=1 and∆t=2 × 10−3 for the
T=0.5-normalized initial distribution. he equilibrium state was reached ater 15k time-steps. Relative
L2-errors are reported in Fig. Ǝ. As expected we observe the fastest decay in the L2-errors wrt. time for
the normalized temperature, i.e. T=1, BKW initial distribution with zero momentum, cf. Fig. Ǝb. For
t > 10 and for suiciently high polynomial degreeK , the errors are of the size of the machine precision.
he numerical results reveal that the Galerkin discretization of the collision operator in conjunction with
the Lagrange multipliers yields considerably smaller errors than the detrov-Galerkin approach.
Remark Ǝ.Ɗ. he authors in oƐ] consider the homogeneous Boltzmann equation. Initial conditions are
always rescaled such that they are temperature-normalized, which allows to obtain best possible approx-
imation properties. When working with continuous inite elements, a per element rescaled basis in the
velocity coordinate would create dense sub-blocks of sizeN ×N in the systemmatrix associated with the
advection problem, and furthermore make it necessary to reassemble the system matrix in every time-
step. he costs in regards to memory requirements and computational efort would be prohibitively high.
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(a) T=0.5-normalized BKW solution.
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(b) T=1-normalized BKW solution.
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(c) T=0.5-normalized BKW solution
centered at vc = [1, 1].
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(d) T=1-normalized BKW solution
centered at vc = [1, 1].

Figure Ǝ: Relative L2-errors for the BKW solution versus time t. Solid lines: detrov-Galerkin scheme,
dashed lines: Galerkin schemewith Lagrangemultipliers. he errorsweremeasured against an expansion
of the exact solution in the spectral basis with degree K = 60, the coeicients were modiied by the
method described in Sec. Ƌ.Ɖ in order to yield the samemass, momentum and energy as the exact solution
does.
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Ǝ.Ɗ Mach 3 low in a wind tunnel
Weshownumerical results for thewell knownaach 3wind tunnel experiment, whichwas irst introduced
in oƊƊ]. he computational domain describes a wind tunnel with a forward facing step at position x =
0.6 with height 0.2. he gas is initially at equilibrium with temperature T0=1,v=[3, 0], ρ = 1.4. At
x≡0 inlow boundary conditions with T=1, v=[3, 0], ρ=1.4 are imposed and outlow (zero inlow)
boundary conditions at x≡3, the other walls are specularly relective. he Knudsen number was kn =
2.5×10−3 for aaaxwellian gas. In Fig. Ɛ the pressure is shown at diferent times t ∈ [0, 1]. We have used
a time-step of length∆t=2.5 × 10−5. he solution shown in Fig. Ɛ qualitatively agrees with simulation
results obtained from the compressible Euler equations, which can be found, for example in oƊƋ]. We have
observed that on coarse meshes, the distribution function can become negative at the re-entrant corner.
For small Knudsen numbers, for example kn=2.5 × 10−3, this may cause the solution to diverge when
the collision operator is applied. A possible remedy is to project onto positive distribution values in v, see
discussion below. he projection step was not required for the results reported here.
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Figure Ə: Rel.L2-errors vs. polynomial degreeK for two physical grids with diferent numbers of vertices.
he solution on the inest grid with highest polynomial degree K=40 was used as reference. Errors are
shown for the velocity distribution function f and the macroscopic observables: mass ρ, momentum u

and energy E. he errors are dominated by the polynomial degreeK .

Ensuring positivity We have observed that in the vicinity of singularities, for example near re-entrant
corners, the distribution function might locally become negative. In combination with a low Knudsen
number this can cause numerical blow-up of the solution by the collision operator. A possible remedy is
to evaluate the distribution function ater each time-step at the quadrature nodes, set negative values to
zero and project back onto the dolar-Laguerre basis. A naive implementation requires the evaluation of
f(v) at O(K2) quadrature nodes, where the evaluation requires O(K2) operations per node and thus
has a total cost ofO(K4). hemachinery developed in oƉƈ] provides an elegant solution by transforming
irst to the Hermite and then to the nodal basis. As already noted in Sec. Ƌ.ƌ, the transformation between
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Figure Ɛ: aach 3 wind tunnel: polynomial degreeK = 40, 35k vertices, aaxwellian molecules, 28.9M
total DoFs. Coloring: pressure, contour lines: density. Computations were carried out on the Euler cluster
of ETH nurich (leon Eƍ-ƊƎƑƏ vƊ) using 360 cores.

the dolar-Laguerre and the Hermite basis can be done with efort O(K3). he transformation between
the Hermite and nodal basis again costs O(K3), this time because it can be performed separately along
each coordinate axis and therefore the transformation matrices are of sizeK ×K only. he entries of the
Hermite to nodal transformation matrixTH→N ∈ R

K,K are given by:

(TH→N)i,j =

∫

R

hj(x)e
−

x2

2 ℓi(x)e
−

x2

2 dx =
K∑

k=0

hj(xk)ℓi(xk)wk =
K∑

k=0

hj(xk)
δi,k√
wk

wk = hj(xi)
√
wi,

(ƏƉ)

wherexi, wi, i = 0, . . . ,K are theGauss-Hermite quadrature nodes andweights. Wehave that (TN→H)
−1

:=
TT

H→N, sinceTH→N is an orthonormal matrix:

(TH→N)
T
TH→N =

K∑

k=0

(hi(xk)
√
wk) (hj(xk)

√
wk) =

K∑

k=0

hi(xk)hj(xk)wk

=

∫

R2

hi(x)hj(x)e
−x2

dx = δi,j (ƏƊ)
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Figure Ƒ: aach 3 wind tunnel. Relative L2-errors for K=36, L=35k on the physical grid (reference
solution withK = 40).

Algorithm Ɗ droject to positive velocity distribution values

Ɖ: procedure AĽĽĹy ŁhĲ İļĹĹiŀiļĻ ļĽ. iĻ ĿĲ-İĲĻŁĲĿĲı įĮŀiŀ(cP)
Ɗ: cH ← TP→Hc

P ▷ Transform to Hermite basis
Ƌ: cN ← TH→N ▷ Transform to bodal basis
ƌ: for all

(
cN
)

i
< 0 do

ƍ:
(
cN
)

i
← 0 ▷ Set negative coeicients to zero

Ǝ: end for
Ə: cH ← TN→Hc

N ▷ Transform to Hermite basis
Ɛ: cP ← TH→Pc

H ▷ Transform to dolar-Laguerre basis
Ƒ: end procedure

Ǝ.Ƌ Nozzle low
We consider the low of a rareied gas with kn = 0.1 in a nozzle, see Fig. Ɖƈ. Inlow boundary conditions
are placed at the let boundary with T = 1, v0 = [2.5, 0], ρ0 = 1.4, and outlow b.c. at x = 4, the other
walls are specularly relecting. he initial distribution was

f(t = 0,x,v) =
ρ0
2πT

exp

(

−∥v − v0∥2
2

)

.

Convergence plots for the L2-errors are reported in Fig. ƉƉ, the reference solution was computed on
a mesh with 18 500 vertices and for polynomial degree K=40. For the lowest resolution in space, i.e.
L=1200 and forK > 26, we ind that the error is dominated by the mesh size, whereas for L=4700 the
errors mainly depend onK . Compared to the aach Ƌ wind tunnel experiment, we obtain smaller errors
and faster convergence wrt.K , which is attributed to the absence of shocks.
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Figure Ɖƈ: bozzle low: L=18 529,K=36,N=666, velocity in x-direction. dressure as contour lines.
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Figure ƉƉ: bozzle low: relativeL2-errors at time t = 3.75. Reference solutionwithK = 40, L = 18 529,
∆t = 2.5× 10−4. he collision operator was discretized with the detrov-Galerkin scheme.

Figure ƉƊ

Ǝ.ƌ Shock tube
A gas is placed in a tube of unit length. Initially the gas is at equilibrium in the let and right half with
densities ρl, ρr and temperatures Tl, Tr :

fl(t=0,x,v) =
ρl

2πTl
exp

(

−∥v∥
2

2Tl

)

, x < 0.5 (ƏƋ)

fr(t=0,x,v) =
ρr

2πTr
exp

(

−∥v∥
2

2Tr

)

, x ≥ 0.5, (Əƌ)

where ρl=1, ρr=1 and Tl=1.25, Tr=1. Specular relective boundary conditions are imposed on the top
and bottom wall, at x≡0, x≡1 we use inlow boundary conditions with densities ρl, ρr and tempera-
tures Tl, Tr . he calculations were carried out on a structured grid with element size hx=1.48 × 10−3

in x-direction for diferent kn=0.01, 0.1, 1, and with polynomial degrees K=16, 20, 26, 30, 36, 40.
he calculation with K=40 is used as reference to compute L2-errors in the VDF f(v,x) and for the
macroscopic quantities ρ, |u| and E. L2-errors are shown in Fig. ƉƋ, the errors for kn=0.01 are an or-
der of magnitude smaller compared to the calculations with kn=0.1. his is because for kn=0.01, the
smoothing by the collision operator is stronger and therefore better approximation in the velocity do-
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main is obtained. In Fig. Ɖƌ, the density and momentum ux are compared for K=30, 40 at diferent
times along the line x(s)=s, s ∈ [0, 1].
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Figure ƉƋ: Relative L2-errors for the shock tube with varying polynomial degreeK . Reference compu-
tation withK=40 at time t=0.1.
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Figure Ɖƌ: Shock tube: aacroscopic density and momentum in x-direction plotted along the line x =
[0, 1]. Solid line: dolynomial degreeK = 40,Dashed line: K = 30

Ǝ.ƍ Sudden change in wall temperature
We consider a gas initially at rest with temperature T=1 conined between to parallel plates at y≡0, 1 and
with periodic b.c. in x-direction. For t>0 difusive relective boundary conditions with temperature Tw

are imposed on the walls. Computations were performed for two diferent temperatures Tw=1.3, 1.7. As
it has been discussed in Sec. ƍ, mass is not conserved exactly for difusive boundary conditions. Table (Ɖ)
shows that if the polynomial degreeK is chosen suiciently large, mass is preserved up to≈ 0.01%. he
time evolution for temperature and mass in y-direction is shown in Fig. (Ɖƍ) and (ƉƎ). he results agree
qualitatively, but the luctuations are too large to compute convergence rates. he inaccuracy originates
from the temperature shock present at time t=0 at the walls. In order to satisfy the boundary condition,
the velocity distribution function is required to be discontinuous perpendicular to the normal vector, what
is not approximated well by the dolar-Laguerre basis.
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Tw KƊƈ KƊƎ KƋƈ KƋƎ Kƌƈ Kƍƈ

Ɖ.Ƌ 0.15 −6.59 · 10−2 −6.08 · 10−2 6.18 · 10−2 5.75 · 10−2 −4.50 · 10−2

Ɖ.Ə 0.15 −0.11 −0.1 0.11 9.85 · 10−2 −7.58 · 10−2

Table Ɖ: Deviation in mass oin percent] for diferent polynomial degreesK at time t = 0.25,∆t = 10−4,
mesh width: h = 512−1.
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Figure Ɖƍ: Sudden change in wall temperatureTw=1.3: Evolution of the temperatureT (x, t) andmass ρ
for x ∈ [0, 0.5], t ∈ [0, 0.23]. he time evolution is encoded in the color map.
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Figure ƉƎ: Sudden change in wall temperature Tw=1.7: Evolution of T (x, t) and mass ρ for
x ∈ [0, 0.5], t ∈ [0, 0.23]. he time evolution is encoded in the color map.
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Ǝ.Ǝ Flow generated by a temperature gradient
We consider the same geometry as in the previous example. Difusive relective boundary conditions are
imposed with Tl=1, Tu=1.44 at the lower and upper wall. We choose the initial distribution

f(t = 0, y,v) =
1

2πT (y)
e−

∥v∥2

2T (y) ,

T (y) = 1 + 1.44y.

he simulations were carried out for Knudsen numbers kn=0.025, 0.1, 1, until a stationary state was
reachedwith time-step∆t = 10−3. Weobserve good agreement in the temperature proiles forK=20, . . . , 40.

0.0 0.2 0.4 0.6 0.8 1.0

x

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

T

K=20

K=26

K=30

K=36

K=40

0.00 0.02 0.04

1.140

1.145

1.150

1.155

1.160

(a) kn = 1

0.0 0.2 0.4 0.6 0.8 1.0

x

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

T
K=20

K=26

K=30

K=36

K=40

0.00 0.05 0.10

1.07

1.08

1.09

1.10

1.11

1.12

(b) kn = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

x

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

T

K=20

K=26

K=30

K=36

K=40
0.00 0.04 0.08

1.03

1.04

1.05

1.06

1.07

1.08

1.09

(c) kn = 0.025

Figure ƉƏ: Temperature proiles for the stationary states at time t = 6, 25, 75 for kn = 1, 0.1, 0.025.
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Figure ƉƐ: aass distribution function at the upper wall: f(t=tend, y=1,v)
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Ə Conclusion
We have presented a combined spectral polynomial and inite element method for the spatially inhomo-
geneous Boltzmann equation. It can be extended to conserve the lowest moments and include all relevant
boundary conditions. We have elaborated it for elastic collisions in the variable hard spheres model. he
simulations were carried out for aaxwellian molecules, but in general, any separable collision kernel of
the form C(cos θ) ∥v − v⋆∥ can be tackled by our scheme. Conservation of mass, momentum and en-
ergy can be achieved either by the detrov-Galerkin approach or the Lagrange multiplier method. he
latter ways seems to ofer better accuracy. Further investigations of this diference in performance will be
conducted.

For numerical testing we have implemented an extensive simulation framework in C++ which can
deal with diferent types of boundary conditions on realistic geometries in 2D. he code has been paral-
lelized using adI, and provided that the spatial mesh is suiciently ine, scales well up to a few hundred
processors. Details of this implementation will be published separately. We have reported numerical re-
sults for low and high-speed lows from the hydrodynamic to the rareied regime. he polar spectral basis
ofers fast convergence for smooth solutions. For initial distributions with discontinuities we observe
a degradation in convergence with respect to the velocity degrees of freedom. he same holds true for
discontinuities in the velocity distribution function imposed by hot or cold walls.
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Appendix
Ə.Ɖ Location of the nonzero entries in the collision tensor
We compute the locations of the nonzero entries for the discretized collision operator

⟨Q(ϕτ1,l1 , ϕτ2,l2), ϕτ,l⟩L2(R2) (Əƍ)

with trial functions ϕτ1,l1 , ϕτ2,l2 ∈ V N
V and a test function ϕτ,l ∈ V̂ N

V . he rotation invariance (ƉƊ)
and the bilinearity of the collision operator will be used. Since in general, we do not obtain sparsity with
respect to the radial part of the ansatz function we drop the index k of the Ψsin,cos

k,j and denote them
instead by ϕτ,l:

ϕτi,li(φ, r) := Ψsin,cos
·,j (φ, r),

where l1 is the angular frequency. E.g. ϕτi,li = τi(liφ)fr(r) for τi = sin, cos, i = 1, 2 and analogously
for the test function ϕτ,l. In the following we will use the rotation operator ρω deined as ρωh(φ, r) =
h(φ + ω, r). he rotation invariance applied to the four possible combinations of inputs in τ1, τ2 gives
the following equations:

Q(ρωϕc,l1 , ρωϕc,l2) = ρωQ(ϕc,l1 , ϕc,l2)

Q(ρωϕc,l1 , ρωϕs,l2) = ρωQ(ϕc,l1 , ϕs,l2)

Q(ρωϕs,l1 , ρωϕc,l2) = ρωQ(ϕs,l1 , ϕc,l2)

Q(ρωϕs,l1 , ρωϕs,l2) = ρωQ(ϕs,l1 , ϕs,l2)

(ƏƎ)

Using the trigonometric identities

ρω sin(lφ) = cos(lφ) sin(lω) + sin(lφ) cos(lω)

ρω cos(lφ) = cos(lφ) cos(lω)− sin(lφ) sin(lω)
(ƏƏ)

and the bilinearity of Q,(ƏƎ) is transformed into a 4 × 4 system of linear equations in the unknowns
Q(ϕc,l1 , ϕc,l2), Q(ϕc,l1 , ϕs,l2), Q(ϕs,l1 , ϕc,l2), Q(ϕs,l1 , ϕs,l2):

A(ω)q(φ) = q0(ω), (ƏƐ)

where

A(ω) :=







cos(l2w) cos(l1w) − cos(l1w) sin(l2w) − cos(l2w) sin(l1w) sin(l2w) sin(l1w)
cos(l1w) sin(l2w) cos(l2w) cos(l1w) − sin(l2w) sin(l1w) − cos(l2w) sin(l1w)
cos(l2w) sin(l1w) − sin(l2w) sin(l1w) cos(l2w) cos(l1w) − cos(l1w) sin(l2w)
sin(l2w) sin(l1w) cos(l2w) sin(l1w) cos(l1w) sin(l2w) cos(l2w) cos(l1w)







q(φ) :=







Q(ϕc,l1 , ϕc,l2)(φ, r)
Q(ϕc,l1 , ϕs,l2)(φ, r)
Q(ϕs,l1 , ϕc,l2)(φ, r)
Q(ϕs,l1 , ϕs,l2)(φ, r)







(ƏƑ)
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and

q0(ω) :=







Q(ϕc,l1 , ϕc,l2)(φ+ ω, r)
Q(ϕc,l1 , ϕs,l2)(φ+ ω, r)
Q(ϕs,l1 , ϕc,l2)(φ+ ω, r)
Q(ϕs,l1 , ϕs,l2)(φ+ ω, r)







. (Ɛƈ)

setting ω = −φ gives q0(φ) = [Q(ϕc,l1 , ϕc,l2)(φ ≡ 0, r), 0, 0, 0]
T . Explicit computation of the inverse

of A(−φ) gives:

A(−φ)−1
=







cos(l2φ) cos(l1φ) − cos(l1φ) sin(l2φ) − cos(l2φ) sin(l1φ) sin(l2φ) sin(l1φ)
cos(l1φ) sin(l2φ) cos(l2φ) cos(l1φ) − sin(l2φ) sin(l1φ) − cos(l2φ) sin(l1φ)
cos(l2φ) sin(l1φ) − sin(l2φ) sin(l1φ) cos(l2φ) cos(l1φ) − cos(l1φ) sin(l2φ)
sin(l2φ) sin(l1φ) cos(l2φ) sin(l1φ) cos(l1φ) sin(l2φ) cos(l2φ) cos(l1φ)







,

(ƐƉ)

thus we have simpliied (ƏƎ) to

Q(ϕc,l1 , ϕc,l2) = cos(l2φ) cos(l1φ) Q(ϕc,l1 , ϕc,l2)(0, r)
Q(ϕc,l1 , ϕs,l2) = cos(l1φ) sin(l2φ) Q(ϕc,l1 , ϕc,l2)(0, r)
Q(ϕs,l1 , ϕc,l2) = cos(l2φ) sin(l1φ) Q(ϕc,l1 , ϕc,l2)(0, r)
Q(ϕs,l1 , ϕs,l2) = sin(l2φ) sin(l1φ) Q(ϕc,l1 , ϕc,l2)(0, r)

(ƐƊ)

We multiply (ƐƊ) with the test function ϕτ,l and integrate over φ.

∫ 2π

0







Q(ϕc,l1 , ϕc,l2)
Q(ϕc,l1 , ϕs,l2)
Q(ϕs,l1 , ϕc,l2)
Q(ϕs,l1 , ϕs,l2)







ϕτ,l dφ = Q(ϕc,l1 , ϕc,l2)(0, r)

∫ 2π

0







cos(l2φ) cos(l1φ)
cos(l1φ) sin(l2φ)
cos(l2φ) sin(l1φ)
sin(l2φ) sin(l1φ)







ϕτ,l dφ (ƐƋ)

From (ƐƋ) we obtain the locations of the nonzero entries depending on τ1, τ2, τ and l1, l2, l:

• Test function ϕτ,l with τ = cos.

⟨Q(ϕτ1,l1 , ϕτ2,l2)(v), ϕτ,l(v)⟩L2(R2) =

{

̸= 0 ((l1 + l2) = l ∨ |l1 − l2| = l)
∧

τ1 ̸= τ2

0 otherwise
(Ɛƌ)

• Test function ϕτ,l with τ = sin.

⟨Q(ϕτ1,l1 , ϕτ2,l2)(v), ϕτ,l(v)⟩L2(R2) =

{

̸= 0 ((l1 + l2) = l ∨ |l1 − l2| = l)
∧

τ1 = τ2

0 otherwise
(Ɛƍ)
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