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Abstract

In this work we shall review the (phased) inverse scattering problem and then pursue the phaseless
reconstruction from far-field data with the help of the concept of scattering coefficients. We perform
sensitivity, resolution and stability analysis of both phased and phaseless problems and compare the
degree of ill-posedness of the phased and phaseless reconstructions. The phaseless reconstruction is
highly nonlinear and much more severely ill-posed. Algorithms are provided to solve both the phased
and phaseless reconstructions in the linearized case. Stability is studied by estimating the condition
number of the inversion process for both the phased and phaseless cases. An optimal strategy is sug-
gested to attain the infimum of the condition numbers of the phaseless reconstruction, which may
provide an important guidance for efficient phaseless measurements in practical applications. To the
best of our knowledge, the stability analysis in terms of condition numbers are new for the phased
and phaseless inverse scattering problems, and are very important to help us understand the degree
of ill-posedness of these inverse problems. Numerical experiments are provided to illustrate the theo-
retical asymptotic behavior, as well as the effectiveness and robustness of the phaseless reconstruction
algorithm.

Mathematics Subject Classification (MSC2000): 35R30, 35B30
Keywords: phaseless reconstruction, inverse medium scattering, scattering coefficients, far-field measure-
ments, condition numbers, reconstruction algorithm

1 Introduction

The inverse scattering problems are well known to be severely ill-posed. It has widespread applications
in, e.g., oil/crack detection, target identification, geophysical prospection, non-destructive testing, medical
imaging, physiological measurement [3, 4, 19, 33, 34, 35, 41, 42, 44, 45, 46, 50, 51]. Due to their applications,
inverse scattering problems have attracted much attention, and many numerical algorithms have been
developed over the recent decades for phased reconstruction problems, e.g., time-reversal multiple signal
classification methods [25, 39], the contrast source inversion methods [2, 3, 4, 44, 45, 46, 47], the continuation
method [10], the subspace-based optimization method [15, 16], the linear sampling or probing methods
[17, 31, 40], the parallel radial bisection method [36], direct sampling methods [23], multi-level sampling
methods [31, 37], etc.

However, in many areas of applied sciences it is very difficult and expensive to obtain the phased data
of the scattered field, while the phaseless data is much easier to acquire. In addition, the phase of the
field is more easily polluted by the noise than the amplitude in many practical situations. For instance,
the measurement of the phase is extremely difficult when the working frequency is beyond tens of giga-
hertz, and one can not expect a good accuracy of the phase measurement [34, 35, 41]. This motivates
the phaseless reconstructions, and attracts huge attention from both the physics and mathematics com-
munities. Nonetheless, the phaseless reconstruction is yet much more severely ill-posed than the phased
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reconstruction, in particular, it appears to be impossible to recover the location of an obstacle only from
the modulus of the far-field pattern owing to the fact that it is invariant under translations [30]. In spite
of this drastic difficulty, several approaches have been proposed in literature for the phaseless medium
reconstruction in optics, acoustic and electromagnetics, e.g., the phaseless data multiplicative regularized
contrast sources inversion method [33, 52], and several other methods [14, 18, 22, 34, 35, 41, 53]. Also,
the phaseless acoustic (sound-soft) obstacle reconstruction was studied in [24], where the reconstruction
is split into two parts: the shape reconstruction from the phaseless data and the location of the obstacle
from a few phased measurements. Theoretically, the uniqueness of a phaseless scattering reconstruction
was established in [26, 27], while the phaseless measurements were connected to the Radon transform of
the potential under the Born approximation [29], and a new numerical method was proposed in [28] for
the phaseless problem using this connection to Radon transform. There are also other works which address
both the theoretical and algorithmic aspects of problems related to phaseless reconstruction of a function
or vector, where the phase of a function or vector is recovered from the modulus of its evaluation of a
special family of functionals [13, 21, 38], e.g., the coefficients of a Cauchy wavelet transform.

In this work, we shall study both the phased and phaseless shape reconstructions from the far-field
data of an acoustic medium scattering problem, so the governing equation of our interest is the following
Helmholtz system:

∆u+ k2(1 + q(x))u = 0 in R
2 (1.1)

where u is the total field, q(x) ≥ 0 is the contrast of the medium and k is the wave number.
Suppose that D is an inclusion contained inside a homogeneous background medium, and it is an open

bounded connected domain with a C1,α-boundary for 0 < α < 1. We consider the contrast q of the form

q(x) = ε∗χD(x), (1.2)

where χD is the characteristic function of D and ε∗ > 0 is a constant. The Helmholtz system (1.1) is often
complemented by the physical outgoing Sommerfeld radiation condition:

∣∣ ∂

∂|x|u
s − ikus

∣∣ = O(|x|− 3
2 ) as |x| → ∞ , (1.3)

where us := u− ui is the scattered field and ui is the incident wave. Now we can see that the solution u to
the system (1.1)-(1.3) represents the total field due to the scattering from the inclusion D corresponding to
the incident ui. Then the phased reconstruction is to recover the shape of D from the phased measurements
of either the scattered field or the far-field, while the phaseless reconstruction is to recover the shape of D
from only the magnitude of the scattered field or the far-field.

We shall analyse the sensitivity, resolution and stability of both phased and phaseless reconstructions in
the linearized cases under certain measurement strategies, and compare the major differences between these
two reconstructions. With the help of these analyses, we will propose an efficient measurement method
which leads to a well-posed inversion process of the phaseless reconstruction. As demonstrated by our early
works [6, 8, 9], the scattering coefficients provide a powerful and efficient tool for shape classification of
a target domain, and this concept will also persist in this work to help us establish stable reconstruction
algorithms and their analysis.

We start by recalling the phased reconstruction in the linearized case so as to provide important insight
into the highly nonlinear phaseless reconstruction problems. Within this framework, we shall provide a
resolution analysis on numerical reconstruction with phased data in terms of SNR, then propose algorithms
for shape reconstructions with the phased measurement. Another major focus of this work is the stability
of the phaseless reconstruction, for which we will provide an efficient algorithm, and estimate the condition
number of the phaseless inversion process. We are able to establish a sharp upper bound for the infimum of
the condition numbers of the inversion process over all phaseless measurement strategies for a given target
resolution, hence propose an optimal modulus measurement method. A similar analysis is carried out for
the phased reconstruction to allow a clear comparison between the phased and phaseless reconstructions.
To the best of our knowledge, our stability estimates in terms of condition numbers are completely new to
inverse medium scattering problems and appear to be a very important and effective novel tool to help us
better understand the degree of ill-posedness and stability of both the phased and phaseless reconstructions.
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The remaining part of the work is organized as follows. In section 2, we review the concept of scat-
tering coefficients and obtain several important results, which will be of crucial importance to connect
the scattering coefficients to both the phased and phaseless reconstructions, and help us develop efficient
algorithms and their analysis. Then we move on to the sensitivity analysis of the phased measurement data
in section 3, which will also give a link-up between the phaseless data and information about the shape of
the domain. An important comparison is provided in section 3 for the similarities and differences between
the phased and phaseless reconstructions. A phased reconstruction algorithm in the linearized case is then
proposed in section 4, also with a clear resolution analysis of the algorithm. This resolution analysis is very
helpful for us to understand the corresponding resolution constraint in the phaseless reconstruction. Next,
we introduce our phaseless recovery problem in section 5, and provide a phaseless shape reconstruction
algorithm in section 6. A stability analysis is performed for our new phaseless reconstruction algorithm in
section 7, optimal strategies for minimizing the condition number of the inversion process and analysis of
the differences between the ill-posed natures of the phased and phaseless reconstruction are also given. Nu-
merical experiments are presented in section 8 to confirm the theoretical estimates of the condition number
of our inversion process, and illustrate the effectiveness and robustness of our newly-proposed phaseless
recovery algorithm. We emphasize that, although our analyses are performed only for two dimensions,
similar results and analysis can be extended to higher dimensions as well.

2 Revisit to the concept of scattering coefficients and its sensi-

tivity analysis

In this section, we recall the definition of the scattering coefficient [5, 6, 8] and provide some useful
results about sensitivity analysis for our subsequent shape reconstruction. To do so, we first introduce
some useful notation [6, 8]. Let Φk be the fundamental solution to the Helmholtz equation:

(∆ + k2)Φk(x) = δ0(x), (2.1)

where δ0 is the Dirac mass at 0, with the outgoing Sommerfeld radiation condition:

∣∣ ∂

∂|x|Φk − ikΦk

∣∣ = O(|x|− 3
2 ) as |x| → ∞ .

Then Φk can be written in terms of the Hankel function H
(1)
0 of the first kind of order zero:

Φk(x) = − i

4
H

(1)
0 (k|x|) . (2.2)

Given an incident field ui satisfying the homogeneous Helmholtz equation:

∆ui + k2ui = 0 , (2.3)

then the solution u to (1.1) and (1.3) can be represented by the Lippmann-Schwinger equation as

u(x) = ui(x) − ε∗k2
∫

D

Φk(x− y)u(y)dy , x ∈ R
2 , (2.4)

and the scattered field is given by

us(x) = −ε∗k2
∫

D

Φk(x − y)u(y)dy , x ∈ R
2 . (2.5)

In what follows, we shall often use the following single-layer potential:

Sk
∂D[φ](x) =

∫

∂D

Φk(x− y)φ(y) ds(y) , φ ∈ L2(∂D), (2.6)

then the scattering coefficients are defined as follows [6, 8]:
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Definition 2.1. For n,m ∈ Z, we define the scattering coefficient Wnm(D, ε∗, k) as

Wnm(D, ε∗, k) =

∫

∂Ω

Jn(krx) e
−inθxφm(x) ds(x) , (2.7)

where x = rx(cos θx, sin θx) is in polar coordinates and the weight function φm ∈ L2(∂D) is such that the
pair (φm, ψm) ∈ L2(∂D)× L2(∂D) satisfies the following system of integral equations:

{
Sk

√
ε∗+1

∂D [φm](x)− Sk
∂D[ψm](x) = Jm(krx)e

imθx ,
∂
∂νS

k
√
ε∗+1

∂D [φm](x) |− − ∂
∂νS

k
∂D[ψm](x) |+= ∂

∂ν (Jm(krx)e
imθx).

(2.8)

Here + and − in the subscripts indicate respectively the limits from outside D and inside D to ∂D along
the normal direction, and ∂/∂ν denotes the outward normal derivative.

The scattering coefficients Wnm(D, ε∗, k) are basically the Fourier coefficients of the far-field pattern
(a.k.a. the scattering amplitude), which is a 2π-periodic function in two dimensions [5, 6, 8]. For the

incident field eikd̂·x with a unit vector d̂, we have

(u− ui)(x) = ie−πi/4 eik|x|√
8πk|x|

A∞(d̂, x̂, k) +O(|x|− 3
2 ) as |x| → ∞,

where x̂ = x/|x| = (cos θx, sin θx) and d̂ = (cos θd, sin θd) are in polar coordinates, and A(θd, θx, k) :=

A∞(d̂, x̂, k) is the so-called far-field pattern. The following results can be found in [5, 6, 8].

Theorem 2.2. Let Fθd,θx [A(θd, θx, k)](m,n) be the (m,n)-th Fourier coefficient of the far-field pattern
A(θd, θx, k) with the background wave-number k, then it holds that

Wnm(D, ε∗, k) = i(n−m)Fθd,θx [A(θd, θx, k)](−m,n), (2.9)

or equivalently,

A(θd, θx, k) =
∑

m,n∈Z

i(m−n)e−imθdeinθxWnm(D, ε∗, k) . (2.10)

The following result is a direct consequence of Corollary 7.1 in [6].

Theorem 2.3. When the contrast ε∗ is small, it holds that

Wnm(D, ε∗, k) = ε∗k2
∫

D

Jn(kr)Jm(kr)ei(n−m)θ dx+O(ε∗2), (2.11)

which can be simplified for the special case of domain D being the circular shape D = BR(0):

Wnm(B, ε∗, k) = 2πε∗δnmk
2

∫ R

0

[Jn(kr)]
2rdr +O(ε∗2). (2.12)

We remark that the integral appearing in (2.12) can be calculated explicitly as a Lommel’s integral,
and this fact will become very helpful in section 3.

Before going to the discussion about the phased and phaseless reconstructions, we shall first provide an
estimate of the scattering coefficient under a perturbation of an open ball BR(0), which is important for
our subsequent analysis about the resolution of both the phased and phaseless reconstructions.

Let ν(x) be the outward unit normal to ∂B, and D := Bδ a δ-perturbation of B := BR(0) along the
variational direction h ∈ C1(∂D) with ||h|| = 1:

∂Bδ := {x̃ = x+ δh(x)ν(x) : x ∈ ∂B} , (2.13)

then we can write the difference between the integrals over the domains B and Bδ for an L1 function f :
∫

Bδ

f(x)dx −
∫

B

f(x)dx = δ

∫

∂B

f(x)h(x) ds(x) +O(δ2) .
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Now it follows from this and (2.11) that

Wnm(Bδ, ε∗, k)−Wnm(B, ε∗, k)

= ε∗k2
∫

Bδ
⋃

B\Bδ
⋂

B

sgn(h)Jn(kr)Jm(kr)ei(n−m)θ dx +O
(
ε∗δ2 + ε∗2

)

= ε∗δk2
∫

∂B

h(x)Jn(kr)Jm(kr)ei(n−m)θ dx+O
(
ε∗δ2 + ε∗2

)

= ε∗Rδk2Jn(kR)Jm(kR)

∫ 2π

0

h(θ)ei(n−m)θ dθ +O
(
ε∗δ2 + ε∗2

)

= 2πRk2ε∗δJn(kR)Jm(kR)F[h](n−m) + +O
(
ε∗δ2 + ε∗2

)
,

where F[h](n−m) stands for the (n−m)-th Fourier coefficient of the perturbation h in the argument θ.
If we further requires that the magnitude of δ is larger than ε∗ in a way such that δ = (ε∗)α for some

0 < α < 1, then we arrive at the following result by some similar argument to the one in [5].

Theorem 2.4. Let D := Bδ be a δ-perturbation of B := BR(0) as defined in (2.13), then it holds for
δ = (ε∗)α with 0 < α < 1 that

Wnm(Bδ, ε∗, k)−Wnm(B, ε∗, k) = 2πRk2(ε∗)1+αJn(kR)Jm(kR)F[h](n−m) +O(ε∗)2. (2.14)

3 Sensitivity analysis of the phased measurement data

In this section, we shall develop a sensitivity analysis of the phased measurement of the far-field data
based on the result for the scattering coefficients in Theorem2.4. This shall help us provide a crucial
expression between the phaseless measurement of the far-field data (i.e., only its magnitude) and the shape
D.

Suppose that D := Bδ is a δ-perturbation of B := BR(0) along the variational direction h ∈ C1(∂D)
with ||h|| = 1 as described earlier. Then it follows from (2.10), (2.12) and (2.14) that

A∞(θ, θ̃, k)

=
∑

n,m∈Z

in−meinθe−imθ̃Wnm(Bδ, ε∗, k)

= 2πε∗k2
∑

l∈Z

eil(θ−θ̃)

∫ R

0

[Jl(kr)]
2rdr + 2πR (ε∗)1+αk2

∑

n,l∈Z

ileilθ̃ein(θ−θ̃)Jn(kR)Jn−l(kR)F[h](l) +O(ε∗)2 .

Although the above expression looks quite complicated, it can be greatly simplified by some well-known
properties of the Bessel functions. In fact, using the following form of the Graf’s addition formula [48]:

∞∑

n=−∞
Jn(x)Jn−l(y)e

inθ = (−1)l
(
x− y exp(−iθ)
x− y exp(iθ)

)l/2

Jl

(√
x2 + y2 − 2xy cos(θ)

)
(3.1)

for x, y > 0 and x 6= y, and the well-known property for the second Lommel’s integral:
∫ R

0

[Jl(kr)]
2rdr =

R2

2
[Jl(kR)

2 − Jl−1(kR)Jl+1(kR)] , (3.2)

we can significantly simplify the above expression of the far-field pattern as

A∞(θ, θ̃, k) = πR2ε∗ k2
∑

l∈Z

eil(θ−θ̃)[Jl(kR)
2 − Jl−1(kR)Jl+1(kR)]

+2πR (ε∗)1+α k2
∑

n,l∈Z

ileilθ̃ein(θ−θ̃)Jn(kR)Jn−l(kR)F[h](l) +O(ε∗)2

= πR2ε∗k2[J0(2kR sin((θ̃ − θ)/2))− J2(2kR sin((θ̃ − θ)/2))]

+2πR (ε∗)1+αk2
∑

l∈Z

(−i)leil(θ̃+θ)/2Jl(2kR sin((θ̃ − θ)/2))F[h](l) +O(ε∗)2 . (3.3)
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An interesting point to note is that the constants πR2 and 2πR in front of the two terms ε∗ and (ε∗)1+α

are respectively the volume and surface area of the open ball of radius R.
Summarizing the above discussions, we come directly to the following theorem.

Theorem 3.1. If δ = (ε∗)α for 0 < α < 1, then

A∞(θ, θ̃, k) = πR2ε∗k2PR(θ, θ̃, k) + 2πR (ε∗)1+αk2〈F[h], SR(θ, θ̃, k)〉l2(C) +O(ε∗)2, (3.4)

where PR(θ, θ̃, k) represents the quantity

PR(θ, θ̃, k) := J0(2kR sin((θ̃ − θ)/2))− J2(2kR sin((θ̃ − θ)/2)) (3.5)

and SR(θ, θ̃, k) ∈ l2(C) is a vector given by

SR(θ, θ̃, k)l := ile−il(θ̃+θ)/2Jl(2kR sin((θ̃ − θ)/2)) . (3.6)

With the above estimate of the far-field pattern, we can calculate the expression of the magnitude of
the far-field pattern, namely |A∞(θ, θ̃, k)|, by

|A∞(θi, θ̃i, ki)|2 − π2R4(ε∗)2k4
(
PR(θi, θ̃i, ki)

)2

4π2R3(ε∗)2+αk4PR(θi, θ̃i, ki)
= Re〈F[h], SR(θi, θ̃i, ki)〉l2(C) +O(ε∗)1−α

= 〈F[h], SR(θi, θ̃i, ki)〉l2(R2) +O(ε∗)1−α . (3.7)

Due to its great importance for both the subsequent phased and phaseless reconstructions, we state it in
the following corollary.

Corollary 3.2. For δ = (ε∗)α for 0 < α < 1 it holds that

〈F[h], SR(θi, θ̃i, ki)〉l2(R2) =
|A∞(θi, θ̃i, ki)|2 − π2R4(ε∗)2k4

(
PR(θi, θ̃i, ki)

)2

4π2R3(ε∗)2+αk4PR(θi, θ̃i, ki)
+O(ε∗)1−α . (3.8)

One interesting observation is that PR(θ, θ̃, k) and SR(θ, θ̃, k) become very simple for θ = θ̃:

PR(θ, θ, k) = 1 , SR(θ, θ̃, k)l = δl0 . (3.9)

And the expression for the far-field pattern is simplified to

A∞(θ, θ, k) = πR2ε∗k2 + 2πR (ε∗)1+αk2F[h](0) +O(ε∗)2, (3.10)

which illustrates that the direct backscattering data A∞(θ, θ, k) may only provide the information about
the area and volume of the inclusions but not the first order perturbation.

We end this section with an important remark about some similarities and differences between the
phased and phaseless reconstructions in the linearized case. As we see from (3.4) that

〈F[h], SR(θ, θ̃, k)〉l2(C) =
A∞(θi, θ̃i, ki)− πR2ε∗k2PR(θi, θ̃i, ki)

2πR2(ε∗)1+αk2
+O(ε∗)1−α , (3.11)

which might be comparable to Corollary 3.2 above. However, we do see several differences here. First, we
obtain an approximate value of 〈F[h], SR(θi, θ̃i, ki)〉l2(C) with the phased measurements in the linearized

case, while an approximate value of 〈F[h], SR(θi, θ̃i, ki)〉l2(R2) with the phaseless measurements, which is the
projection of the original complex inner product to the real part. Therefore, we can regard the linearized
phaseless reconstruction as an ”half-dimension” analogy of the linearized phased reconstruction. Second,
in the phased reconstruction, the denominator of the right hand side of the equation (3.11) does not involve

the division of the term PR(θi, θ̃i, ki), whereas in the phaseless reconstruction the division of the term is
involved (cf. (3.8)). Both differences make the phaseless reconstruction more ill-posed than the phased
one. These differences will be clearly elaborated in section 7.3. As the last point, it is well-known that
the phaseless reconstruction is not unique in a sense that any translation of the inclusion yields the same
phaseless measurement. But this is not reflected from the above equation, as we have assumed the inclusion
is in the center for the sake of exposition.
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4 A phased reconstruction algorithm in the linearized case

In this section, we provide a reconstruction algorithm for the phased measurement in the linearized case
using the concept of the scattering coefficients, and then a resolution analysis of this algorithm.

4.1 An algorithm for phased reconstruction

We recall that ε∗ is the contrast of the inclusion D (cf. (1.2)) and the perturbation parameter δ of D is
of the order δ = (ε∗)α for 0 < α < 1. Then motivated by the results in Theorems 2.2 and 2.4, we come to
the following reconstruction algorithm in the linearized case.

Algorithm 1. Given the measurement Ameas
∞ (θ, θ̃, k).

1. Compute Wmeas
nm from the Fourier transform as in (2.9) for −N < n,m < N .

2. Find R, ε∗ from the following minimization problem

min
R, ε∗

∑

−N<n<N

∣∣Wmeas
nn − πR2ε∗k2[Jl(kR)

2 − Jl−1(kR)Jl+1(kR)]
∣∣2 . (4.1)

3. Compute from (2.14) the estimator (δ F[h])est of the product of magnitude δ and Fourier coefficients
F[h] of the perturbation h for l 6= 0:

(δ F[h])est :=
1

2N − l

∑

m−n=l,−N<n,m<N

Wmeas
nm −Wnm(B, ε∗, k)

2πRε∗k2Jn(kR)Jm(kR)
. (4.2)

We remark that the reconstruction formula (4.2) is similar to the one (5.3) in [5]. Indeed, considering
equations (3.26) in [5], with any contrast ε∗, the Fourier coefficients of any perturbation h of B = BR(0)
can always be recovered by an inversion of the operator A(ε∗) as defined in (4.62) in [5] (after a normal-
ization of its wave number k to k = 1). However, the coefficients of the matrix A(ε∗), i.e. C(ε∗, n,m)
defined in (3.27) in [5], is only given by an expression of resolvent operators, and therefore their explicit
expressions are unknown. The inversion formula (5.3) in [5] is hence inconvenient to be used. Nonethe-
less, for a small contrast ε∗, we know now from Theorem 2.4 an explicit approximation of coefficients
C(ε∗, n,m) as C(ε∗, n,m) ≈ 2πRk2(ε∗)1+αJn(kR)Jm(kR). Therefore (4.2) can be regarded as an easy-to-
use approximation of the inversion formula (5.3) of the operator A(ε∗) described in [5] when the contrast
ε∗ is small.

4.2 Resolution analysis with respect to signal-to-noise ratio

In this subsection, we perform a resolution analysis of Algorithm 1 in the previous section, which
applies also to other reconstruction process derived from (3.11), since the above algorithm is just a Fourier-
transformed version of (3.11). Resolution analysis of the above reconstruction with respect to the signal-
to-noise ration (SNR) can be conducted following the spirit of the work [7].

In what follows, we assume the following noise model for the far-field pattern:

Ameas
∞ (θi, θ̃j , k) := A∞(θi, θ̃j , k) +N(θi, θ̃j , k) (4.3)

where the pairs {(θi, θ̃i)}Mi,j=1 represent the M incident and receiving angles of the measurement evenly

distributed on the circle (where M is very large) and (N(θi, θ̃j , k))
M
i,j=1 is modeled as, for any fixed value

of k, a complex circular symmetric Gaussian white noise vector with variance:

E[|N(θi, θ̃j , k)|2] = σ2k4 . (4.4)

Here σ represents the noise magnitude and the noise term is assumed to have a variance of quadratic growth
with respect to k, as it is direct from (2.10) and (2.11) to see that the magnitude of Ameas

∞ (θi, θ̃j, k) grows
in the order of k2 as k grows.
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From the well-known fact that any orthogonal transformation of a Gaussian white random vector will
result in another Gaussian white random vector, we arrive at, after taking the discrete Fourier transform
in the variables θ and θ̃, that the following model for the scattering coefficient should be in force:

Wmeas
nm (Bδ, ε∗, k) =Wnm(Bδ, ε∗, k) + N̂n,m,ε∗ , (4.5)

where the noise term N̂n,m,ε∗ is another complex circular symmetric Gaussian random variable such that

its variance E[|N̂n,m,ε∗ |2] (i.e. the power spectrum of the original random variable N(θi, θ̃j , k)) behaves like

E[|N̂n,m,ε∗ |2] = σ2k4 . (4.6)

Assume a pair of generic (k,R) such that kR is not a zero of Jn for all n. Then for l 6= 0, we obtain
from a direct subtraction of (2.14) from (4.2), together with (4.5), that

F[h](l) = (F[h])est(l) +
σ

(ε∗)1+α
Nl + (ε∗)1−αVl ,

where Vl represents the approximation error and Nl a noise term satisfying the following estimate for its
variance for a small R < 1 and large N < M using (4.6):

E[|Nl|2] = C
1

(2N − l)2

∑

m−n=l,−N<n,m<N

R−2[Jn(kR)Jm(kR)]−2

≤ C
1

(2N − l)2R2

∑

m−n=l,−N<n,m<N

mmnn

R2(m+n)

≤ C
N4N

R2+4N
. (4.7)

The last second inequality above comes from the asymptotic behavior of the Bessel function [1]:

Jn(t)

/
1√
2π|n|

(
et

2|n|

)|n|
→ 1 (4.8)

as |n| → ∞. Now assume further that ε∗ <<
√
σ and

SNR :=

(
ε∗

σ

)2

,

then we get

E[|(F[h])est(l)|] = F[h](l) , E[|(F[h])est(l)− F[h](l)|2] ≤ C
N4N

R2+4N
(SNR)

−(1+α/2)
, (4.9)

which enables us to conclude the following result.

Theorem 4.1. Suppose that δ = (ε∗)α for 0 < α < 1, and M >> 1 is the number of measurement points.
If N < M is selected such that

C
N4N

R2+4N
< (SNR)

1+α/2
(4.10)

and that F[h](l) (|l| ≤ N) are of order 1, then the l-th mode of h can be resolved for |l| ≤ N , i.e.
E[|(F[h])est(l)− F[h](l)|2] < 1.

5 Introduction to phaseless reconstruction

Phaseless reconstruction originates from the physical background that we can usually only measure
the magnitude of some data, for example, the magnitude of the far-field pattern. As briefly explained in
section 1, it is quite difficult and expensive to obtain the phased data in many physical and engineering
applications, and the phase of a measurement is easily contaminated by noise. On the other hand, the
phaseless data is much easier to obtain and less contaminated in many practical situations. Due to these
facts, the phaseless reconstruction has attracted wide attention.
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5.1 Brief history of a general phaseless reconstruction problem

Let us first give a brief introduction and history of a general phaseless reconstruction. As in [12], for
a given set of m sampling vectors, z1, · · · , zm, we intend to recover a vector x from some phaseless data.
This may be formulated as

Find x such that A(x) = b (5.1)

where A : CN → Rm is given by A(x)i = |〈x, zi〉|2. One may consider a convexification of the problem
(5.1) [12]:

Find X ≥ 0 such that A(X) = b , (5.2)

where A : HN×N → Rm is given by A(X) = z∗iXzi, which helps reduce the complexity of solving the
problem, as well as provide uniqueness results under some practical conditions. For instance, this problem
is proven to have a high probability that it is uniquely solvable up to a unit complex number stably from
O(N logN) random measurements [21]. We remark that a stablized version of convexification is given by

Find X ≥ 0 such that ||A(X)− b|| ≤ ǫ||X0||2 . (5.3)

Another more general form of phaseless reconstruction (which generalizes the above) comes from re-
covering the phase of a function/vector from the modulus of its evaluation by a family of functionals. In
a more precise way, let E be a complex vector space and {Li}i∈I be a family of functionals. Then this
phaseless reconstruction reads:

Find f ∈ E such that |Li(f)| = b . (5.4)

In the case where {Li}i∈I represents the wavelet transform by the Cauchy wavelets, it was shown in [38]
that the modulus of the wavelet transform uniquely determines the function up to a global phase, and the
reconstruction operator is continuous but not uniformly continuous.

5.2 Introduction to our phaseless reconstruction problem

The convexification discussed in section 5.1 is a very interesting approach, but the purpose, framework
and analysis of our phaseless reconstruction here are very different. We aim to achieve numerical recon-
structions of inhomogeneous domains in the linearized case. We will provide an algorithm for the domain
reconstruction from some phaseless far-field data, and estimate the condition number of this reconstruction
process, and establish an upper bound of its infimum over all phaseless measurement strategies. This casts
light on how we can obtain an optimal strategy to perform effective phaseless measurements such that the
phaseless inversion process shall be well-posed. For comparison purpose, a similar analysis technique is also
performed on its phased counterpart, and a comparison between the phased and phaseless reconstructions
shall be made.

6 Phaseless domain reconstruction algorithm in linearized cases

In this section, we provide a new method for the domain reconstruction from the phaseless far-field data
based on our analyses and results in sections 2 and 3. We first recall from Theorem 3.2 the relation

|A∞(θi, θ̃i, ki)|2 − π2R4(ε∗)2k4
(
PR(θi, θ̃i, ki)

)2

4π2R3(ε∗)2+αk4PR(θi, θ̃i, ki)
= 〈F[h], SR(θi, θ̃i, ki)〉l2(R2) +O(ε∗)1−α , (6.1)

where PR(θi, θ̃i, ki) ∈ R and SR(θi, θ̃i, ki) ∈ l2(C) are given in (3.5) and (3.6). Therefore, from a finite

number of M measurements |A∞(θi, θ̃i, ki)| (1 ≤ i ≤ M), we obtain the following linear approximation of

〈F[h], SR(θi, θ̃i, ki)〉 as the measurement quantities from the phaseless measurements:

〈F[h], SR(θi, θ̃i, ki)〉l2(R2) ≈
|A∞(θi, θ̃i, ki)|2 − π2R4(ε∗)2k4|PR(θi, θ̃i, ki)|2

4π2R3(ε∗)2+αk4PR(θi, θ̃i, ki)
. (6.2)

This is of crucial importance for us to derive an algorithm for the domain reconstruction from the phaseless
far-field measurements.

9



6.1 Phaseless reconstruction algorithm

We are now ready to introduce our phaseless reconstruction algorithm. Following Theorem 4.1 from the
resolution analysis for the phased reconstruction in section 3, we can directly infer that the resolution with
respect to SNR in the phaseless reconstruction should not surpass the N -th Fourier mode, where N satisfies

the inequality C N4N

R2+4N < (SNR)
1+α/2

for some C and α. Hence in our reconstruction algorithm, we may
always assume that F[h](l) = 0 for |l| > N for some N and consider only the inversion of finite dimensional
operators, and the contribution of F[h](l) for |l| > N to the measurement data can be regarded as noise.
Now since h(θ) ∈ R for all θ, we have the following additional constraints on the Fourier coefficients:

F[h](−l) = F[h](l) . (6.3)

This set of constraints is very important in our subsequent analysis. We assume again that the magnitude
of the perturbation δ is of the form δ = (ε∗)α for 0 < α < 1, where ε∗ is the contrast of the inclusion. From
Theorem 3.2, we can now suggest the following phaseless reconstruction algorithm.

Algorithm 2. Given a positive integer N and M measurements of the magnitude |Ameas
∞ (θi, θ̃i, ki)|

(1 ≤ i ≤M) of the far-field.

1. Find the pair (R, ε∗) that minimizes the following functional:

∑

1≤i≤M

∣∣∣∣|A
meas
∞ (θi, θ̃i, ki)|2 − π2R4k4ε∗2

(
PR(θi, θ̃i, ki)

)2∣∣∣∣
2

, (6.4)

where the values PR(θi, θ̃i, ki) are computed from (3.5).

2. Compute the following quantities for 1 ≤ i ≤M :

|Ameas
∞ (θi, θ̃i, ki)|2 − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2

4π2R3ε∗2k4PR(θi, θ̃i, ki)
. (6.5)

3. Calculate the estimator (δ F[h])est(l) of the product of magnitude δ and Fourier coefficient F[h] of the
perturbation h for |l| ≤ N by the inversion of the following system of linear equations:

〈(δ F[h])est, SR(θi, θ̃i, ki)〉l2(R2) =
|Ameas

∞ (θi, θ̃i, ki)|2 − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2

4π2R3ε∗2k4PR(θi, θ̃i, ki)
, (6.6)

under the constraints

(F[h])est(−l) = (F[h])est(l) . (6.7)

We should be reminded that the above algorithm can only provide stable inversion and reasonable
resolution of the perturbation h up to at most the N -th Fourier mode, where N shall satisfy the inequality

C N4N

R2+4N < (SNR)1+α/2 for some C and α, as shown in Theorem 4.1 in section 3.

7 Stability of the phaseless domain reconstruction

We are now ready to discuss the stability of the phaseless reconstruction by estimating the condition
number of this inversion process. Before going into detailed estimates, we shall state our inversion problem
in a more concise manner, which will provide a clear framework for our subsequent analysis. For this
purpose, we first define three operators for a given pair (N,M) ∈ N, where two of them are linear in nature
while the other one is nonlinear:

1. the component-wise squaring of a vector followed by a subtraction of another known vector, i.e. the
action vi 7→ v2i − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2, which appears in Step 2 of Algorithm 2; and we write
this nonlinear operator as F : RM → RM ;
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2. the component-wise multiplication of a vector vi 7→ 4π2R3ε∗2k4PR(θi, θ̃i, ki) vi, which appears in Step
2 of Algorithm 2; and we will write this linear operator as L : RM → RM ;

3. the linear operator v 7→
(
〈 v , SR(θi, θ̃i, ki)〉l2(R2)

)M
i=1

, which appears in Step 3 of Algorithm 2. We

shall write this linear operator as T : C2N ⊕ {0} ∼= R4N → RM .

Without loss of generality, we may always choose a radius R such that the zeroth Fourier coefficient F[h](0)
is zero. With these preparations, we can write (6.6) as

(L ◦ T )
[
(δ F[h])est

]
= F (|Ameas

∞ (θi, θ̃i, ki)|) . (7.1)

Then our phaseless inversion problem can be precisely stated as follows: given a value of SNR, with a

number N such that CN4N/R2+4N < (SNR)
1+α/2

for some C and α, we recover the Fourier coefficients

δ (F[h]est(l))
N
l=−N ∈ C2N ⊕ {0} ∼= R4N from (7.1) with M measurements:

(bi)
M
i=1 := F (|Ameas

∞ (θi, θ̃i, ki)|) =
(
|Ameas

∞ (θi, θ̃i, ki)|2 − π2R4ε∗2k4|PR(θi, θ̃i, ki)|2
)M
i=1

∈ R
M

subjected to the following extra set of constraints in R4N as

Re(F[h])est(−l)− Re(F[h])est(l) = 0 , Im(F[h])est(−l) + Im(F[h])est(l) = 0 .

From now on, we shall denote this set of linear constraints as

C
[
(δ F[h])est

]
= 0 . (7.2)

After this restatement of the phaseless reconstruction problem, we can directly infer that the stability of
the inversion lies in the stability of inversion of the linear operators L and T in the subspace ker(C) under a
certain noise level. Therefore, the aim of this section is to estimate the condition numbers of the operators
T and L in this subspace. To the best of our knowledge, the stability estimates on condition numbers
are novel for inverse problems, and are very important for us to understand the degree of ill-posedness
and stability of the reconstruction problem, as well as to provide optimal methods to minimize these two
condition numbers by making wise measurements or regularizations.

7.1 Estimation of the condition number of T

We come now to the estimate of the condition number of operator T . For notational sake, we first
introduce two more operators, ι0 : C → R2 , z 7→ (Re(z), Im(z)) and their liftings on the linear operators

over the corresponding spaces ι : L(C) ∼= C → L(R2) ∼= M2×2 , z 7→
(

Re(z) Im(z)
−Im(z) Re(z)

)
. And we shall also

use the projection map πRe :M2×2 →M1×2 ,

(
a b
c d

)
7→
(
a b

)
. It is easy to check

[πRe ◦ ι(z̄)] (ι0(w)) = 〈ι0(z), ι0(w)〉R2 = Re(z̄w) . (7.3)

Before we go on to study the stability of the reconstruction problem, we shall also provide a clear
concept and define the condition number of T subjected to the constraint Cx = 0, denoted as κ(T, ker(C)),
where C : RP → RQ for Q ≤ P is another linear operator. First, for the sake of exposition, we shall
denote C⊥ as the set of all matrices E such that its column vectors are linearly independent and span the
orthogonal complement of the row space of C = (C1, C2, . . . , Cn)

T , i.e.

C⊥ := {(E1, E2, . . . , En) : 〈E1, ..., En, C1, ..., Cn〉 = R
P , 〈E1, ..., Ej−1, Ej+1, ..., En, C1, ..., Cn〉 6= R

P ∀j} .

Now, if we solve the following constraint problem for a given triple (T, b, C):

Find x ∈ R
P such that Tx = b and Cx = 0 ,
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or its least-squares formulation:

min
x∈RP

s.t. Cx=0

||Tx− b||22 ,

we are actually parameterizing the kernel ker(C) by an orthogonal complement of the row space of C, and
then solve the equation Tx = b under this parametrization (either in the strict sense, or the least-squares
sense), i.e., solve for y the equation (with E ∈ C⊥):

(T ◦ E) y = b ,

or the least-squares minimization (with E ∈ C⊥):

min
y∈RQ

||(T ◦ E) y − b||22 .

From this definition, one can easily get that the operator T is invertible with its solution in the subspace
Cx = 0 if and only if T ◦ E is invertible. One can also directly get that if Tx = b and T x̃ = b̃ where
x, x̃ ∈ kerC, then we have the following estimate

||y − ỹ||
||y|| ≤ κ(T ◦ E)

||b − b̃||
||b|| ,

for any E ∈ C⊥, where y, ỹ are defined such that Ey = x,Eỹ = x̃. Hence, in order to study the stability
of the inversion process of T in the subspace, we are motivated to define the condition number of T under
the constraint Cx = 0 as

κ(T, ker(C)) := inf{κ(T ◦ E) : E ∈ C⊥} . (7.4)

7.1.1 A measurement strategy for phaseless reconstruction

In this subsection, we proceed to develop a good measurement strategy which can minimize the condition
number of T and ensure the well-posedness of the inversion concerned.

Indeed, we shall intuitively expect to have a good strategy in choosing the measurement set (θ, θ̃, k)

by gazing at the vector SR in (3.6): for a given target resolution N , one may choose 2kiR sin((θ̃i − θi)/2)
such that they attain the m0-th local extremum of Jl for 1 < l < N , i.e., the values of bl,m0

where

J ′
l (bl,m0

) = 0 for a given m0. With this particular choice of M sets of measurement data {(θi, θ̃i, ki)}Mi=1

such that 2kiR sin((θ̃i− θi)/2) ∈ {b1,m0
, b2,m0

, ..., bN,m0
}, the operator T is expected to be well-conditioned

and therefore provide a good set of information for the geometry of the inclusion. This shall be indeed
verified in this subsection.

In what follows, we aim to estimate, for a given resolution N , the infimum over the condition numbers
of all the operators T : R4N → RM subjected to the constraint Cx = 0, i.e.,

κinf,N := inf

{
κ(T, ker(C)) : {(θi, θ̃i, ki)}Mi=1 ∈ [0.2π]2 × (0,∞) , M ∈ Z

}

by appropriately choosing the vectors {(θi, θ̃i, ki)}Mi=1. Indeed, from the following well-known asymptotic
of Jl [1] for all l:

Jl (z) =

√
2

πz
cos

(
z − 2l+ 1

4
π

)
+O(z−3/2) , (7.5)

we directly have for a fixed l that

bl,m0

/
(4m0 + 2l + 1)π

4
→ 1 (7.6)
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as m0 goes to infinity. Therefore, for a given large m0, if we choose (θi, θ̃i, ki) as the form (θi, θi +
π, 4m0+2Ji+1

8R ), where (Ji)
M
i=1 ∈ Z are some integral indices to be specified later, then we have directly from

(7.5) and (7.6) that

SR(θi, θ̃i, ki)l = eilθi

√
16R

π(4m0 + 2Ji + 1)
cos

((
m0 +

Ji − l

2

)
π

)
+O(m

−3/2
0 ) . (7.7)

Let Tm0
be the linear operator T with this specific arrangement of measurements for a given m0. If we

further denote L := T T
m0
Tm0

in the form of a block matrix (Llm)−N≤l,m≤N, l,m 6=0, then from (7.3), each of
the block Llm will be the following 2× 2 matrix:

Llm = ι0

[
SR(θi, θ̃i, ki)l

]T
ι0

[
SR(θi, θ̃i, ki)m

]

=
16R

π
ι

[
M∑

i=1

Ll,m,θi

1

4m0 + 2Ji + 1
cos

((
m0 +

Ji −m

2

)
π

)
cos

((
m0 +

Ji − l

2

)
π

)]
+O(m−2

0 ) ,

where the matrix Ll,m,θ has the form

Ll,m,θ =

(
cos (mθ) cos (lθ) cos (mθ) sin (lθ)
cos (mθ) sin (lθ) sin (mθ) sin (lθ)

)
.

For the sake of exposition, we further denote θi = 2πIi/N where (Ii)
M
i=1 ∈ Z are some indices to be chosen

later.
We are now ready to specify our choice of indices {(Ii, Ji)}Mi=1. In particular we let the array {(Ii, Ji)}Mi=1

be such that it enumerate the index set {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N}, i.e., we have M = N2. With the
above definition, we readily see

Llm

=
16R

π

N∑

J=1

[
N∑

I=1

Ll,m, 2πI
N

]
1

4m0 + 2J + 1
cos

((
m0 +

J −m

2

)
π

)
cos

((
m0 +

J − l

2

)
π

)
+O(m−2

0 )

=
16RN

π
δ|l|,|m|

(
1 0
0 sgn(l) sgn(m)

) N∑

J=1

1

4m0 + 2J + 1
cos2

(
(J −m)π

2

)
+O(m−2

0 ) ,

where δa,b is the kronecker delta for any a, b ∈ N.
From the above summation, we can directly infer that

Llm =
16RN

π
δ|l|,|m|

(
1 0
0 sgn(l) sgn(m)

) [N−1

2
]∑

J=0

1

4m0 + 4J + 2 mod2(m) + 1
+O(m−2

0 ) , (7.8)

where mod2 is the standard mod-2 function and [·] is the floor function. Now, for the sake of exposition, we

denote for given C,m0, M̃ a coefficient KC,m0,M̃
as

KC,m0,M̃
:=

M̃∑

J=1

1

4m0 + 1 + 4J + 2C
. (7.9)

With this definition, we now hope to approximate KC,m0,M̃
. In fact, from the comparison test, we directly

arrive at, for any fixed m0, M̃ and any C = 0, 1, that the following holds:

1

4
log

(
1 +

M̃

m0 + 2

)
≤ KC,m0,M̃

≤ 1

4
log

(
1 +

M̃

m0 + 1

)
. (7.10)

Then we can write

Llm =
16RN

π
δ|l|,|m|Kmod2(m),m0,[

N−1

2
]

(
1 0
0 sgn(l) sgn(m)

)
+O(m−2

0 ) , (7.11)
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with K
mod2(m),m0,[

N−1
2

] satisfying estimate (7.10). We may now observe a seemingly pathological situation:

the matrix L is actually not invertible in R4N . However, this is actually not as pathological as we think
it is, because the constraint Cx = 0 shall come in to play a fundamental role. To proceed, we can take a
matrix E ∈ C⊥ in the block form (Elm)−N≤l≤N,l 6=0,1≤m≤N, as follows:

Elm = δ|l|,m

(
1 0
0 sgn(l)

)
. (7.12)

One easily check that the above block matrix E is indeed in C⊥. Then one directly calculate that, for all
1 ≤ l,m ≤ N ,

(
ET ◦ L ◦ E

)
lm

=
64RN

π
δl,mKmod2(m),m0,[

N−1

2
]

(
1 0
0 1

)
+O(m−2

0 ) , (7.13)

which is now invertible. Hence for a fixed N and the choice (θi, θ̃i, ki) of the form (2πIi/N, 2πIi/N +
π, 4m0+2Ji+1

8R ), where {(Ii, Ji)}Mi=1 enumerates through {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N}, we can directly
derive the following estimate for the singular values of Tm0

:

4
√
RN√
π

√√√√log

(
1 +

[N−1
2

]

m0 + 2

)
− CN

m2
0

≤ smin(Tm0 ◦ E) ≤ smax(Tm0 ◦E) ≤ 4
√
RN√
π

√√√√log

(
1 +

[N−1
2

]

m0 + 1

)
+

CN

m2
0

where CN is a constant only depending on N . Therefore, if we write smax and smin respectively as the
largest and smallest singular values, then it follows that

κ(Tm0
◦ E) =

smax(Tm0
◦ E)

smin(Tm0
◦ E)

≤

√√√√log

(
1 +

[N−1
2 ]

m0 + 1

)/
log

(
1 +

[N−1
2 ]

m0 + 2

)
+O(m0

−2). (7.14)

The Taylor series of log(1 + x) and
√
a+ x then give rise to the following estimate for large m0 that

κinf,N ≤ κ(Tm0
, ker(C)) ≤ κ(Tm0

◦ E) ≤
√
m0 + 2

m0 + 1
+O(m−2

0 ) ≤ 1 +O(m−1
0 ) , (7.15)

where we should remind ourselves that the big-O terms are bounded by a constant only depending on N .
Since m0 is arbitrary, we get for any given N that the infimum of the condition number κ(T, ker(C)) is
given by κinf,N = 1 , and a minimizing sequence to attain this infimum can be actualized by measurements

(θi, θ̃i, ki) as previously specified asm0 goes to infinity. This implies that we can always make an appropriate
choice of the target resolution N such that the inversion process of T is well-posed. The above analysis can
be summarized into the following theorem.

Theorem 7.1. For a given target resolution N , the infimum κinf,N of the condition number κ(T, ker(C))
defined as in (7.5) over the set of linear operators T is given by

κinf,N = 1. (7.16)

A minimizing sequence κ(Tm0
, ker(C)),m0 ∈ Z of this infimum acquires the following bound

κ(Tm0
, ker(C)) ≤ 1 +O(m−1

0 ) (7.17)

if we make the arrangement of phaseless measurements in the way that the following equality holds:

(θi, θ̃i, ki) =

(
2πIi/N, 2πIi/N + π,

4m0 + 2Ji + 1

8R

)
, (7.18)

where {(Ii, Ji)}Mi=1 enumerates through {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N} and m0 is large, hence N2

phaseless measurements shall be made.

This theorem gives us a very effective strategy of data measurement such that the phaseless recon-
struction process shall be well-posed. In particular, an increase of m0 in the aforementioned measurement
method reduces the condition number of the inversion process with an order of O(m−1

0 ) according to (7.17).
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7.2 Estimation of the condition number of L

From the previous analysis, we can see that the inversion process of T can be made impressively
stable and one can suppress its condition number appropriately. However this does not ensure a very
stable phaseless inversion process, owing to the fact from (7.1) that the total inversion process is given by
T−1 ◦ L−1.

Although the action of L is simple and explicit, the inversion process may not be as simple as one might
think. The condition number of L can be directly calculated as maxi |PR(θi, θ̃i, ki)|/mini |PR(θi, θ̃i, ki)|.
Therefore the inversion process becomes severely ill-posed when some measurement data has a very small
value |PR(θi, θ̃i, ki)|, which in turn pushes up the condition number to an arbitrary magnitude. This causes
the reconstruction process to be very unstable in practice.

However, a very simple regularization technique can get rid of this instability. Thanks to the fact

that PR(θ, θ̃, k) is analytic, its value cannot be zero on an open neighborhood, and therefore a simple
regularization can be performed on the inversion of L by the operator L−1

α defined as follows:

L
−1
α = diag

(
χx>α(|PR(θi, θ̃i, ki)|)[PR(θi, θ̃i, ki)]

−1 + α
−1

χ
x≤α

(|PR(θi, θ̃i, ki)|) lim
(θ,θ̃,k)→(θi,θ̃i,ki)

PR(θ, θ̃, k)

|PR(θ, θ̃, k)|

)
(7.19)

where χ
x>α

and χ
x≤α

are the respective characteristic functions on the intervals {x > α} and {x ≤ α}.
With this definition, we come readily to the following simple but important lemma.

Lemma 7.2. Let L−1
α be defined as in (7.19), then we have

κ(L−1) =
maxi |PR(θi, θ̃i, ki)|
mini |PR(θi, θ̃i, ki)|

, κ(L−1
α ) ≤ 2

α
. (7.20)

We can see from above that κ(L−1) cannot be controlled but κ(L−1
α ) has an upper bound, therefore it

provides a stable inversion process if α is appropriately chosen.
From (7.1), a stable shape reconstruction process is therefore provided by T−1 ◦ L−1

α . Indeed, the
stability estimates (7.17) and (7.20) for the condition numbers of T−1 and L−1

α subjected to Cx = 0 ensure
us the stability of this reconstruction method and provide us optimal strategies to lower the degree of
ill-posedness for the phaseless reconstruction problem under the corresponding measurement cases. The
stability of our proposed method will be verified in the numerical experiments. To the best of our knowledge,
these estimates of condition numbers are completely new to our inverse problems.

7.3 A comparison with the phased reconstruction

As we have remarked in section 3, together with the fact that any translation of the inclusion yields the
same phaseless measurement, the phaseless reconstruction is not unique in this sense. And the linearized
phased and phaseless reconstructions share some fundamental differences. From (3.11) or its Fourier-
transformed version (Algorithm 1), we see that any algorithm derived from (3.11) for the phased recon-

struction is equivalent to solving δ (F[h]est(l))
N
l=−N ∈ C

2N ⊕ {0} ∼= R
4N such that

T̃
[
(δ F[h])est

]
= G(Ameas

∞ (θi, θ̃i, ki)) , (7.21)

where N satisfies

C
N4N

R2+4N
< (SNR)

1+α/2

for some C and α, and (F[h])est is again subjected to the constraints

Re(F[h])est(−l)− Re(F[h])est(l) = 0 , Im(F[h])est(−l) + Im(F[h])est(l) = 0 .

The operators G and T̃ above are respectively given by

1. G : CM → CM , the component-wise affine map of a vector, i.e. the action vi 7→ vi−πR2ε∗k2PR(θi,θ̃i,ki)
2πR2ε∗k2 .
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2. T̃ : C2N → CM , the linear operator v 7→
(
〈 v , SR(θi, θ̃i, ki)〉l2(C)

)M
i=1

.

A similar stability analysis for the operator T̃ induced by the phased measurements can be performed to
the one for the operator T̃ corresponding to the phaseless reconstruction as in section 7.1.1. Since most of
the steps are similar to the previous analysis for the phaseless reconstruction, we only provide a sketch of the
argument. Again we choose (θi, θ̃i, ki) of the form (2πIi/N, 2πIi/N +π, 4m0+2Ji+1

8R ) where {(Ii, Ji)}Mi=1 ∈ Z

are some integral indices to be specified and let T̃m0
be the linear operator T̃ with this specific arrangement

of measurement with a given m0. Denoting L̃ := ι[T̃ ∗
m0

]ι[T̃m0
], then a similar argument, along with the fact

that ι is an algebra homomorphism, shows for −N ≤ l,m ≤ N that

L̃lm =
16R

π
ι

[
M∑

i=1

L̃l,m,θi

1

4m0 + 2Ji + 1
cos

((
m0 +

Ji −m

2

)
π

)
cos

((
m0 +

Ji − l

2

)
π

)]
+O(m−2

0 ) ,

where each L̃l,m,θi := ei(l−m)θi is invertible. Again, letting the array {(Ii, Ji)}Mi=1 enumerate the index set
{(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N}, i.e., M = N2 complex (phased) measurements, we have

L̃lm

=
16R

π

N∑

J=1

ι

[
N∑

I=1

e2πi(l−m)I/N

]
cos
((
m0 +

J−m
2

)
π
)
cos
((
m0 +

J−l
2

)
π
)

4m0 + 2J + 1
+O(m−2

0 )

=
16RN

π
δl,m

(
1 0
0 1

) N∑

J=1

cos2
(

(J−m)π
2

)

4m0 + 2J + 1
+O(m−2

0 ) .

From here onward, the analysis is the same as in section 7.1.1 to get the same block matrix E such that
for all 1 ≤ l,m ≤ N ,

(
ET ◦ L̃ ◦ E

)
lm

=
32RN

π
δl,mKmod2(m),m0,[

N−1

2
]

(
1 0
0 1

)
+O(m−2

0 ) . (7.22)

Now a similar argument as in section 7.1.1 applied to get an identical result for the phased reconstruction:

κ(T̃m0
, ker(C)) ≤

√
m0 + 2

m0 + 1
+O(m−2

0 ) ≤ 1 +O(m−1
0 ) , (7.23)

and by tracing all the constants, we can see the constants represented by big-O’s is of the same magnitude
as in the phaseless reconstruction. Therefore the ill-posedness in inverting T and T̃ are actually of the same
order of magnitude using a same set of measurement angles, and the following result holds.

Theorem 7.3. For a given target resolution N , the condition number κ(T̃m0
, ker(C)) of the operator T̃m0

for m0 ∈ Z can be controlled by

κ(T̃m0
, ker(C)) ≤ 1 +O(m−1

0 ) (7.24)

if we make an N2 complex (phased) measurement arrangement:

(θi, θ̃i, ki) =

(
2πIi/N, 2πIi/N + π,

4m0 + 2Ji + 1

8R

)
, (7.25)

where {(Ii, Ji)}Mi=1 enumerates through {(I, J) : 1 ≤ I ≤ N, 1 ≤ J ≤ N}.

Nonetheless, we notice a fundamental difference here between the phased and phaseless reconstructions.
For the phased reconstruction, the matrix L̃ is invertible itself, therefore the constraint Cx = 0 is redundant.
However, in the phaseless reconstruction, this set of constraints is necessary for us to get to a solution in
the inversion process. Therefore, to fully exploit the constraints Cx = 0, it shall be possible to obtain the
same stability estimate for T̃ even if the number of equations represented by the matrix are cut off by half.
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There are different ways to realize this, and we suggest one of them below. We shall not repeat all the
details in the argument again but give only a sketch.

Suppose we choose the set of measurement points (θi, θ̃i, ki) as
(
2πIi/N, 2πIi/N + π, 4m0+2Ji+1

8R

)
where

{(Ii, Ji)}Mi=1 enumerate the index set {(I, J) : 1 ≤ I ≤ N/2, 1 ≤ J ≤ N}, but we only measure the real part

of the far-field pattern Ameas
∞ (θi, θ̃i, ki). Clearly, we have N2 real (phased) measurements. From the fact

that PR(θi, θ̃i, ki) is real, we have

Re
(
T̃
[
(δ F[h])est

])
= Re

(
G(Ameas

∞ (θi, θ̃i, ki))
)
= G

(
Re(Ameas

∞ (θi, θ̃i, ki))
)
. (7.26)

Therefore, by taking only N2 real (phased) measurements, we are actually dropping half of the equations
representing measurements from the imaginary part. Now, in order to distinguish from the previous

measurement setting, we denote the operator with these new measurement events as ˜̃Tm0
for a given m0.

With this very particular choice of real (phased) measurements, we know from (7.3) that the matrix
˜̃Tm0

is coincidentally the same as Tm0
. Hence, if we write ˜̃L := ˜̃T T

m0

˜̃Tm0
, then ˜̃L = L. Therefore, with the

same E as previously chosen, the same argument applies for us to get for all 1 ≤ l,m ≤ N that

(
ET ◦ ˜̃L ◦ E

)
lm

=
64RN

π
δl,mKmod2(m),m0,[

N−1
2

] +O(m−2
0 ) . (7.27)

This gives the following result.

Theorem 7.4. An effective choice of only N2 real phased measurement ensures the following bound for
the condition number:

κ( ˜̃Tm0
, ker(C)) ≤ 1 +O(m−1

0 ) . (7.28)

Other ways to fully exploit the constraints Cx = 0 by dropping at most half of the equations represented
by T̃ , such as measuring the projection of complex number by another phase angle other than taking the
real part, or taking only a special set of undersampling measurements, shall be possible, but for the sake
of simplicity, we shall not proceed further.

From the above analysis, we can see that although the structures of T and T̃ are fundamentally different,
they have similar behavior on their condition numbers. Yet the phaseless reconstruction is still much more
ill-posed than the phased counterpart, owing to the following very simple yet important point. In the
phaseless reconstruction, we shall also need to invert L by a regularized inversion process L−1

α ; however, in
a phased reconstruction, such an inversion of L is unnecessary. Therefore, instability imposed by L exists
only in the phaseless reconstruction. Considering this fact, the total regularized inversion of the phaseless
reconstruction is still much more ill-posed than the phased counterpart, having its condition number being
1/α times of the phased reconstruction.

8 Numerical experiments

In this section, we will first present numerical results illustrating some behaviors of the condition
number κ(Tm0

, ker(C)) using our measurement strategy described in the section 7.1, then focus on the
inverse problem of shape reconstruction from the observed magnitude of far-field data.

8.1 Condition number of T subjected to Cx = 0

In what follows, we shall observe the behaviors of the condition number κ(Tm0
, ker(C)) using our

measurement strategy given in Theorem 7.3 and check the asymptotic estimate of κ(T ) in the theorem
as m0 grows. With a given m0, we now fix the resolution N = 51 and choose the wave-numbers k such
that k = 4m0+2J+1

8R with R = 0.2 and J = 5, ..., 10. The measurement points are the same as stated in
Theorem 7.3. We compute the condition number of the operator T with m0 = 1, ..., 20. The values of the
corresponding condition numbers are plot in Figure 1.
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Figure 1: Decay of κ(T, ker(C)) with respect to m0.
We see clearly the drastic decay of the condition number as m0 grows, showing the effectiveness of

increasing stability by the increment of m0. This agrees with the result we obtained in Theorem 7.3.

8.2 Phaseless reconstruction

We shall now proceed to present several numerical examples to show the performance of the newly
proposed reconstruction algorithm, i.e., Algorithm 2 in Section 6.1, from phaseless far-field data. In order
to attain robustness and stability of our algorithm, we approximate the inversion of L in Step 2 by Lα as
in section 7.2 for some regularization α described below.

In the following 3 examples, we consider an infinite homogeneous background medium with its material
coefficient being 1. In each example, an inhomogeneous inclusion D = Bδ is then introduced as a perturba-
tion of a circular domain B = B(0, R) for some δ > 0 and its radius R = 0.2 sitting inside the homogeneous
background medium, with its contrast always set to be ε∗ = 0.05.

Given a domain Bδ, we first obtain the observed data of the forward problem, namely the magnitude of
far-field data. In order to generate the far-field data for the forward problem and the observed scattering
coefficients, we use the SIES-master package developed by H. Wang [54]. For a fixed wave-number k, we
first solve for the solutions (φm, ψm) of (2.8) for |m| ≤ 50 using the rectangular quadrature rule with
mesh-size s/1024 along the boundary of the target, where s denotes the length of the inclusion boundary.
The scattering coefficients of Bδ of orders (n,m) for |n|, |m| ≤ 50 are then calculated, and the far-field
data A(θd, θx, k) is evaluated using (2.10) with θd, θx ∈ (0, 2π] on a uniform mesh of size N = 50. Then
the magnitude of the far-field pattern |A(θd, θx, k)| is taken for our reconstruction process. In order to test
the robustness of our reconstruction algorithm against the noise, we introduce some multiplicative random
noise in the magnitude of far-field pattern |A(θd, θx, k)| point-wisely in the form:

|Ameas(θd, θx, k)|σ = |Ameas(θd, θx, k)|(1 + σ ξ) (8.1)

where ξ is uniformly distributed between [−1, 1] and σ refers to the relative noise level. In the following 4
examples, we always set the noise level to be σ = 5%.

Then we apply our reconstruction algorithm for shape reconstruction with the noisy phaseless data as
T−1 ◦L−1

α ◦F following the notation introduced in section 7, where the regularization parameter is chosen
as α = 10−3. In view of (7.18), we make the choice of measurements such that the measured wave-numbers
k satisfy k = 4m0+2J+1

8R with m0 = 10 in all the examples, and J = 5, ..., 5 + C̃ for some C̃ to be chosen in
each of the example. The relative error of the reconstruction is defined by

Relative Error :=
Area ((Dapprox

⋃
D)\(Dapprox

⋂
D))

Area(D)
, (8.2)

where Dapprox is the reconstructed domain of the exact one D. To demonstrate the effectiveness of our
algorithm and illustrates the necessity of a certain number of measurements angles in the phaseless recon-
struction (i.e. to test its resolution limit), we shall try 3 different sets of measurements angles:

Set 1 Full measurement angles (over-abundant number of measurements):

((θd)i, (θx)i) = (2πIi/N0, 2πKi/N0) , 1 ≤ Ii,Ki ≤ N0 , (8.3)

when N0 is always chosen as 50 in all the examples;
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Set 2 Transmission measurement angles (critical number of measurements):

((θd)i, (θx)i) = (2πIi/N, 2πIi/N + π + U) , 1 ≤ Ii ≤ N , (8.4)

where N := min {N : [F(h)](k) = 0 , |k| > N} and h is the perturbation in the corresponding ex-
ample and U = (−π

5 ,
π
5 );

Set 3 Half of transmission measurement angles (insufficient number of measurements):

((θd)i, (θx)i) = (2πIi/[[N/2]], 2πIi/[[N/2]] + π + U) , 1 ≤ Ii ≤ [[N/2]] , (8.5)

which consists of [[N/2]] measurement angles, where N is the same as previously mentioned and [[·]]
is the ceiling function.

The purpose of introducing an interval U instead of one single point is to increase numerical stability in re-
construction. We emphasize that Sets 2 and 3 are set up only to test the resolution limit of our phaseless re-
construction algorithm. We are not suggesting the necessity to determine min {N : [F(h)](k) = 0 , |k| > N}
from h before utilizing our algorithm. Such information is unnecessary and unavailable in a practical
phaseless reconstruction.

In order to further increase numerical stability using a critical number of measurements (Set 2) and an
insufficient number of measurement (Set 3), we further regularize our inversion process by a L1 regularizer
to enforce sparsity in the Fourier modes of our reconstructed perturbation, i.e., we solve

min
CX=0

||(Lα ◦ T )X− F (|Ameas
∞ (θ, θ̃, k)|)||22 + β||X||1 (8.6)

where β is a regularization parameter that is always chosen as β = 0.05. We perform the L1 minimization
by a standard Bregman iteration [20].

Example 1. In this example, we consider an inhomogeneous domain of a flori-form shape D = Bδ

described by the following parametric form (with δ = 0.1 and n = 3 ):

r = 0.2(1 + δ cos(nθ)) , θ ∈ (0, 2π] , (8.7)

which is a perturbation of the domain B = B(0, 0.2); see Figure 2 (left) and (right) respectively for the
shape of the domain and the contrast of the inhomogeneous medium.
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Figure 2: Exact inhomogeneous domain (left) and the contrast of the inclusion (right) in Example 1.
The magnitude of the far-field pattern for 6 wave-numbers are used for shape reconstruction, i.e. C̃ = 5,

and the Fourier coefficients of the reconstructed perturbations using the respective measurement sets are
shown in Figure 3.
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Figure 3: Fourier coefficients of reconstructed perturbations in Example 1; Set 1 to Set 3 from left to
right; blue: real part; black: imaginary part.

Although there are some deficiencies in the reconstruction of Fourier modes, we can see from these
figures the Fourier coefficients reconstructed from Set 1 is largest at |n| = 3 with its magnitude almost
between 0.04 and 0.05, which clearly indicates a strong dominance of δ cos(3θ) with magnitude δ between
0.08 and 0.1 and corresponds to the signal from the exact inclusion. The reconstruction from Set 2 has more
deficiency, that the Fourier mode is somehow shifted to δ(cos(3θ)+sin(3θ)) with magnitude δ between 0.02
and 0.025. However, the location of the peak Fourier mode is still correct. Nonetheless, the reconstruction
from Set 3 deviates totally from the exact solution, indicating its insufficiency in number of measurements
to reconstruct the perturbation. This goes with the theoretical analysis in section 7.1.1.

Now we show in Figure 4 (top) the shapes of reconstructed domains, Figure 4 (middle) the contrast
of the reconstructed media and Figure 4 (right) a comparison between the reconstructed domains Dapprox

and exact domain D using the values of a sum of characteristic functions χD + χDapprox . The relative L2

errors of the reconstructions for Set 1 to Set 3 are respectively 3.29%, 6.34% and 11.72%. In view of
the severe ill-posedness of the phaseless reconstruction problem and 5% percent of measurement noise, the
reconstructions from Set 1 and Set 2 measurements are quite reasonable
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Figure 4: Reconstructed domain and medium in Example 1 and comparison between the exact and recon-
structed domains; Set 1 to Set 3 from left to right; from top to bottom: reconstructed shape, reconstructed
inclusion, and comparison between reconstructed and exact domains.

Example 2. We test another domain of the flori-form shape described by (8.7) with δ = 0.1 and n = 5.
Figure 5 (left) and (right) show the shape of the domain and the contrast of the inhomogeneous medium
respectively.

20



−0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 

 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 5: Exact inhomogeneous domain (left) and the contrast of the inclusion in Example 2.
In this example, the magnitude of the far-field pattern for 16 wave-numbers are used for shape recon-

struction, i.e. C̃ = 15. The Fourier coefficients of the reconstructed perturbations using the respective
measurement sets are shown in Figure 6.
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Figure 6: Fourier coefficients of reconstructed perturbations in Example 2; Set 1 to Set 3 from left to
right; blue: real part; black: imaginary part.

We can now see that both the reconstructions from Set 1 and Set 2 are reasonable and indicate the
correct peak Fourier modes and its magnitude. It is no surprise to see the reconstruction for Set 2 is
worse than that for Set 1. However we can see that in this particular case, the reconstruction for Set 3

coincidentally collides with the exact solution after regularization.
In Figure 7 (top), (middle) and (right), the shapes of reconstructed domains, the contrast of the re-

constructed media and the comparison between the reconstructed domains Dapprox and exact domain D
(by showing a sum of characteristic functions χD + χDapprox) are presented respectively. The relative L2

errors of the reconstructions for Set 1 to Set 3 are respectively 4.91%, 6.94% and 0.57%. As we mentioned
above, quite surprisingly, the L1 regularizer coincidentally provides a very good estimate for Set 3.
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Figure 7: Reconstructed domain and medium in Example 2 and comparison between the exact and re-
constructed domains. Set 1 to Set 3 from left to right; reconstructed shape, reconstructed inclusion and
comparison between reconstructed and exact domains from top to bottom.

Example 3. In this last example, we test a domain of more complicated flori-form shape D = Bδ

described by the following parametric form (with δ = 0.1 and n = 3 ):

r = 0.2(1 + δ cos(nθ) + 2δ cos(2nθ)) , θ ∈ (0, 2π] , (8.8)

The shape of the domain is given in Figure 8 (left) and the contrast of the inhomogeneous medium in
Figure 8 (right).
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Figure 8: Exact inhomogeneous domain (left) and contrast of the inclusion (right) in Example 3.
The magnitude of far-field pattern for 6 wave-numbers are used for shape reconstruction, i.e. C̃ = 5,

and the Fourier coefficients of the reconstructed perturbations using the respective measurement sets are
shown in Figure 9.
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Figure 9: Fourier coefficients of reconstructed perturbations in Example 3; Set 1 to Set 3 from left to
right; blue: real part; black: imaginary part.

In this example, as we can see, the reconstructions from Set 1 is the best, with both the peak Fourier
modes and their magnitudes quite close to the exact one, although with some phase shifts. Reconstruction
from Set 2 is still reasonable. The magnitude of the 6-th Fourier modes is closer to the exact one,
however that of the 3-th mode deviates further from the exact one, and they have more phase shifts.
Reconstruction from Set 3 is the worst, with great deficiency from the exact perturbation, considering the
fact this reconstruction gives us many modes that do not exist in the exact perturbation.

In Figure 10 (top), (middle) and (right), the shapes of reconstructed domains, the contrast of the
reconstructed media and a comparison between the reconstructed domains Dapprox and exact domain D
are presented respectively The relative L2 errors of the reconstructions for Set 1 to Set 3 are respectively
11.61%, 13.48% and 14.84%. This indicates that the reconstruction for Set 1 is the best, that for Set 2 is
still good, and that for Set 3 is the worst. This goes with the theory we discussed in section 7.1.1.
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Figure 10: Reconstructed domain and medium in Example 3 and comparison between the exact and
reconstructed domains; Set 1 to Set 3 from left to right; reconstructed shape, reconstructed inclusion and
comparison between reconstructed and exact domains from top to bottom.

The reconstructions for Set 1 (over-abundant number of measurements) and Set 2 (critical number
of measurements) are quite reasonable, considering the severe ill-posedness of the phaseless reconstruction
problem and a 5% percent measurement noise.
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