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Abstract

In this paper we provide a construction of multiscale systems on a bounded domain
Ω ⊂ R2 coined boundary shearlet systems, which satisfy several properties advantageous
for applications to imaging science and numerical analysis of partial differential equations.
More precisely, we construct boundary shearlet systems that form frames for L2(Ω) with
controllable frame bounds and admit optimally sparse approximations for functions, which
are smooth apart from a curve-like discontinuity. Indeed, the constructed systems allow for
boundary conditions, and characterize Sobolev spaces over Ω by their analysis coefficients.
Finally, we demonstrate numerically that these systems also constitute a Gelfand frame for
(Hs(Ω), L2(Ω), H−s(Ω)) for s ∈ N.

1 Introduction

In the past two decades there has been a flurry of work related to the design of novel representa-
tion systems for functions with the intent to build systems which are optimally suited for sparse
approximation of various signal classes. The first breakthrough was the introduction of the mul-
tiscale system of wavelets [18] providing optimally sparse approximations of functions governed
by point singularities while allowing a unified concept of the continuum and digital realm to
enable faithful implementations. And indeed wavelets have nowadays become a standard tool
for, in particular, imaging science and numerical analysis of partial differential equations.

However, as it is typical for multivariate functions, images as well as the solutions of various
types of partial differential equations are in fact governed by singularities along hypersurfaces.
Recently, significant progress has been achieved by the introduction of ridgelet systems [1], then
curvelet systems [3], and shearlet systems [37], which are capable of optimally approximating
certain classes of multivariate functions with singularities along hypersurfaces. One main draw-
back so far is the fact that all these systems are designed for L2(R2), whereas applications, in
particular, adaptive schemes for partial differential equations, typically require systems defined
on a bounded domain.

In this paper, we will introduce the first class of anisotropic multiscale systems, which can
be adapted to very general domains in R2 while still exhibiting optimally sparse approximation
properties as well as further properties specifically necessary for their application in numerical
approximation of PDEs. These systems are constructed as hybrid systems combining wavelets
and shearlets.

1.1 Anisotropic multiscale systems

The first anisotropic multiscale systems achieving optimally sparse approximations of the model
class of so-called cartoon-like functions [20], which are roughly speaking compactly supported
piecewise C2-functions defined on R2 with a C2 discontinuity curve, were curvelets. In fact,
curvelets are capable of approximating such functions with a decay rate of the L2-error of the
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best N -term approximation rate by N−1 up to logarithmic terms, whereas wavelets can only
achieve a rate of N−1/2. This result from 2002 [3] can be considered a milestone in the area of
applied harmonic analysis.

However, curvelets had the drawback of being based on rotations to provide directional
sensitivity, which prevents a unified treatment of the continuum and digital world. Hence
faithful implementations are not available. Shearlets were introduced in 2006 to resolve this
problem, leading to a class of systems which also provide optimally sparse approximations of
so-called cartoon-like functions [32] – even for higher order derivatives [41] – while allowing
faithful implementations [35]. Moreover, this concept allows a shearlet frame for L2(R2) with
controllable frame bounds, consisting of compactly supported elements [31]. Let us stress that
the notion of a frame allows for stable decomposition and reconstruction formulas, see [4].

1.2 The problem of bounded domains

Anisotropic multiscale systems are today extensively used in imaging science for tasks such as
feature extraction or inpainting, see, e.g., [23, 21, 25]. Despite these successes, the use of these
novel representation systems for the numerical approximation of PDEs is however still at its
infancy – even though the solutions of a large class of PDEs do admit hypersurface singularities.
As examples, we mention elliptic PDEs with discontinuous (or distributional) source terms or
coefficients, boundary value problems on polygonal domains, or transport equations.

The main bottleneck in developing PDE solvers based on anisotropic multiscale systems
is the fact that originally these systems are constructed as representation systems, or frames,
for functions defined on Rd, while most PDEs are defined on a finite domain Ω ⊂ Rd. Thus
the development of effective PDE solvers crucially depends on the construction of anisotropic
systems on finite domains, satisfying various boundary conditions. The attentive reader will
have realized that in fact also images are defined on bounded domains. The fact that this
issue did not cause a significant problem so far indicates that the handling of the boundary for
imaging tasks is not that sensitive. However, certainly, also in this range of applications the
fact that the data lives on a bounded domain must not be disregarded, also in the theoretical
(continuum) analysis.

Even for wavelet systems, the adaption to general bounded domains is a challenging problem
which is by now, after decades of research, quite well understood (see, for instance, [30],[6]),
albeit still with several open questions remaining. The construction of anisotropic multiscale
systems on bounded domains is even much more challenging. While the MRA structure of
wavelet systems [18] yields a powerful tool for the construction of boundary wavelet frames,
no such structure seems to be available for more general multiscale systems. In fact, one can
imagine that the anisotropically shaped support can intersect the boundary to various degrees
and at various angles requiring a careful adaption of each single element while the numerical
complexity of associated transform algorithms has to remain at about the same level.

Concerning the construction of shearlet systems on bounded domains, a first attempt has
been made in [33]. While the constructed system forms an L2–frame for arbitrary domains and
yields optimally sparse approximations for cartoon-like functions, its elements are not boundary
adapted, destroying vanishing moment and smoothness properties. Thus no characterization
of smoothness spaces or faithful treatment of boundary data is possible. Another approach
was undertaken in [12, 13], which however does not form a frame nor is this system able to
characterize Sobolev spaces.
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1.3 Adaptive schemes and frames

Several important steps have already been made in the direction of utilizing representation
systems from applied harmonic analysis for adaptive solvers for different types of partial differ-
ential equations. A breakthrough was achieved by Cohen, Dahmen, and DeVore in the seminal
paper [7] by introducing a provably optimal adaptive wavelet based solver for elliptic PDEs
whose solutions exhibit only point singularities. Several further steps could be achieved in the
realm of elliptic PDEs, in particular, extending this concept to more flexible frames instead of
orthonormal bases, see, e.g., [9, 43, 10].

The exploitation of anisotropic frame systems for the numerical solution of PDEs is a rather
new topic of research, presumably due to the significantly more involved structure of those
systems; and we already discussed the delicacy of adapting those to a bounded domain. Let
us also briefly recall the key properties required from such a system to be suitable for this task
using the example of elliptic PDEs. First, the system should allow boundary conditions to be
imposed. Second, its transform coefficients should characterize Sobolev spaces and moreover
even form a Gelfand frame for Sobolev spaces, since the discretization of an elliptic PDE using
a Gelfand frame in a Sobolev space yields, after a simple diagonal preconditioning, a uniformly
well-conditioned linear system which can then be solved numerically by iterative methods such
as damped Richardson iteration or conjugate gradients [9]. Third, optimal sparse approximation
properties of the solutions is crucial to ensure that those can be approximated at an optimal
asymptotic ratio between computational work and accuracy. In order for this approximation
rate to be realized by a numerical solver it is, fourth, furthermore needed that the resulting
Galerkin matrix is compressible in the sense of [7].

However, some notable first steps towards anisotropic frame systems for the numerical solu-
tion of PDEs have already been taken in [24, 28], where optimal adaptive ridgelet-based solvers
are constructed for linear advection equations and [12, 13], where a shearlet-based construction
is used to solve general advection equations. Also related is the work [19, 2], where frames of
wave atoms, respectively curvelets, are used for the efficient representation and computation of
wave propagators. Despite these successes, none of the aforementioned work successfully ad-
dressed the essential issue of problem formulations on finite domains with non-periodic boundary
conditions.

1.4 Our contribution

In this paper we present a significant first step in the construction of an anisotropic multiscale
frame system on bounded domains Ω ⊂ R2, which is able to optimally resolve curvilinear sin-
gularities. The novel system coined boundary shearlet system is a hybrid system, consisting
of shearlet elements to provide the optimal approximation rate for anisotropic structures and
wavelet elements for handling the boundary. More precisely, we start with a compactly sup-
ported shearlet frame for L2(R2) as constructed, for instance, in [31]. From this frame we only
choose those elements whose support is fully contained in Ω. Since this is by far not a complete
system for L2(R2) – and certainly cannot handle boundary conditions –, we augment it by
boundary adapted wavelets as constructed, for instance, in [8]. This augmentation procedure
has to be done very carefully, but if it is carried out correctly we wind up with a frame system
which satisfies the aforementioned desirable properties:

• Spatially highly localized elements.

• Boundary conditions can be imposed.

• Frame for L2(Ω) with controlled frame bounds.
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• Characterization of Sobelev spaces with numerical verification of the Gelfand frame prop-
erty.

• Optimally sparse approximation of an even extended class of cartoon-like functions, which
also include singularity curves traversing the boundary.

In fact, we first carry out this construction on the unit square Ω = [0, 1]2. Then, in a further
step, we lift it by a patchwise construction similar to [43] to more arbitrary domains with smooth
boundary.

1.5 Expected impact

We anticipate our results to have the following impacts:

• Numerical solution of partial differential equations. Our work represents a step in a larger
research program, namely designing and applying specifically designed frames for the
numerical solution of partial differential equations. Specifically, we envisage the system
constructed in this paper to lead to the first optimally convergent adaptive algorithms for
elliptic PDEs whose solutions possess singularities along hypersurfaces, and eventually also
for linear transport equations. At the same time it is important to emphasize that, while
we feel that the results concerning the construction of directional frames presented in this
paper represent a significant advance, let us mention a few of the open problems already
in this realm that need to be addressed in the future. First, the compressibility in the
sense of [7] of the matrix representation of elliptic PDEs in our constructed system needs
to be studied. Second, our results only show that Sobolev norms can be characterized by
weighted ℓ2 norms on the transform coefficients. The construction of optimal adaptive
PDE solvers in the spirit of [7, 9, 43] requires slightly more, namely that the representation
system constitutes a Gelfand frame [9] or at least a Sobolev frame [43]. In Section 7 we
are so far only able to verify these properties numerically. Third, also on the practical
side several issues remain such as the development of efficient quadrature rules for the
representation of elliptic operators, say, in our representation system.

• Imaging sciences. Images are naturally supported on a rectangular domain. A common
approach so far was to theoretically analyze algorithmic procedures from applied harmonic
analysis for, for instance, denoising, inpainting or feature extraction, see [23, 21, 25], in
L2(R2) disregarding any boundary issues. And, consequently, also their digitization was
not particularly designed to handle a bounded domain. Thus, with the construction of
multiscale systems on bounded domains, we now open the door, first, to a unified concept
of the continuum and digital realm for data on bounded domains, and, second, to the
design of novel directional systems for images adapted to the bounded domain they live
on.

• Hybrid systems and sparse approximation. While there already exist some work on hy-
brid constructions using systems from applied harmonic analysis [21, 22], approximation
properties of hybrid systems, or more precisely, the design of hybrid systems aiming at
prescribed approximation properties has not been studied before. Thus, one might also
see our construction as one first step in a line of research introducing more flexible sys-
tems – in this case sparse approximation properties combined with boundary adaption –
by combining already well-studied systems in a careful way, so that they inherit parts of
their behavior.
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1.6 Outline

The paper is organized as follows. Section 2 is devoted to reviewing the main definitions and
results for boundary adapted wavelet systems and shearlet systems. In the same section, we
also already set the stage by fixing the notion of admissible boundary wavelet and shearlet
systems, which will play a crucial role later. The precise definition of our multiscale anisotropic
directional systems on bounded domains, coined boundary shearlet systems, and the analysis
of their frame properties can be found in Section 3. In Section 4, we show how to construct
shearlet systems that characterize Hs(R2) by their analysis coefficients and how this gives rise to
shearlet systems on bounded domains that characterize Hs([0, 1]2). In the next section, which
is Section 5, it is shown that the newly constructed systems provide optimal approximation
rates for a more general class of cartoon-like functions than in previous literature considered.
The extension of the previous definitions and results to more general domains is discussed in
Section 6. Finally, in Section 7 we demonstrate the Gelfand frame property of boundary shearlet
systems and also show stability and compressibility properties numerically.

2 Review of wavelet and shearlet systems

Since wavelets on bounded domains and shearlets will be the key ingredient in the construction
of our anisotropic multiscale system on bounded domains – coined boundary shearlets –, this
section shall serve as a review of their main definitions and properties. ¿From Section 3 on,
we will then first present the construction of boundary shearlets on the product domain [0, 1]2,
and defer the definition on arbitrary domains to Section 6, utilizing the previous construction.
Thus, in this review, we similarly also first focus on function systems defined on [0, 1]2.

2.1 Boundary adapted wavelet systems

We start by briefly recalling the definition and main structural properties of wavelets on R and
continue by giving a construction on a bounded domain [0, 1].

Letting ψ1 ∈ L2(R) (the upper index 1 indicating that it is a function on R1), a wavelet
system is constructed from all translates and dyadically rescaled versions of ψ1, i.e.,

{ψ1
j,m := 2j/2ψ1(2j · −m) : j ∈ Z,m ∈ Z}.

In order to construct wavelet systems that yield orthonormal bases for L2(R) the method of
multiresolution analysis (MRA) was introduced in [38] and [40]. An MRA is a sequence of
closed subspaces (Vj)j∈Z of R satisfying the following conditions:

(I) Vj ⊆ Vj+1 for all j ∈ Z.

(II)
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = L2(R).

(III) f ∈ Vj if and only if f(2·) ∈ Vj+1 for all j ∈ Z.

(IV) There exists some φ1 ∈ V0 such that {φ10,m = φ1(· −m), m ∈ Z} is an orthonormal basis
for V0.

The function φ1 of (IV) is called scaling function. The spaces Vj are customarily called scaling
spaces, and the spaces Wj := Vj+1 ⊖ Vj are referred to as wavelet spaces. A direct consequence
of this construction and (II) is that

⊕
j∈ZWj is dense in L2(R). Thus, if ψ1 ∈ W0 is chosen

such that {ψ1
0,m : m ∈ Z} constitutes an orthonormal basis for W0, then, by (III), the wavelet
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system corresponding to ψ1 is an orthonormal basis of L2(R). In this case, the function ψ1 is
called wavelet associated with φ1 and vice versa.

An important breakthrough was achieved by the introduction of compactly supported wave-
lets with arbitrarily many vanishing moments, which were first constructed in [17], see also
[18]. The resulting scaling functions and wavelets are called Daubechies scaling functions and
Daubechies wavelets. Daubechies wavelets can be used to derive boundary adapted wavelet
systems on [0, 1]. The aim of the upcoming subsection is to recall the construction by Cohen,
Daubechies, and Vial [8] of a boundary adapted wavelet system.

2.1.1 Orthonormal basis of wavelets on the interval

In our work, we will use the construction by Cohen, Daubechies, and Vial [8], which was the
first construction of such a wavelet orthonormal basis – and is maybe today also the most widely
used – to fulfill certain desired properties simultaneously such as inheriting a multiresolution
analysis structure, possessing a sufficient number of vanishing moments, and exhibiting a certain
degree of smoothness. One main guiding principle in the construction is to consider ‘interior’
and ‘boundary’ or ‘edge’ type scaling functions and define two corresponding classes of wavelets
as linear combinations from those.

To review the construction from [8] (for more details we refer to this paper and to the book
[39]), let φ1 ∈ L2(R) be a compactly supported Daubechies scaling function associated with a
wavelet ψ1 ∈ L2(R) having p ∈ N vanishing moments, i.e.,

∫

R

xlψ1(x) dx = 0, for all l ∈ {1, . . . , p− 1}.

It is known, [8], that the associated scaling function φ1 has support length 2p− 1, thus, we can
assume supp φ1 = [−p+ 1, p]. In order to have wavelets whose supports are fully contained in
[0, 1] the scale has to be chosen sufficiently large. More precisely, for j ∈ N such that j > log2 p
we define interior scaling functions, i.e., scaling functions which have support inside [0, 1], by

φbj,m := φ1j,m := 2j/2φ1(2j · −m), for p ≤ m < 2j − p.

Moreover, there exist boundary functions (φleftm )m=0,...,p−1 and (φrightm )n=0,...,p−1 [8], [39], such
that using the p left boundary scaling functions, defined as

φbj,m := 2j/2φleftm (2j ·), for 0 ≤ m < p,

and the p right boundary scaling functions defined by

φbj,m := 2j/2φright
2j−1−m

(2j(· − 1)), for 2j − p ≤ m < 2j ,

one can construct a multiresolution analysis, see Theorem 2.1 below. For the statement of the
theorem, we set

V b
j := span (φbj,n)n=0,...,2j−1

.

We also remark that this construction of boundary adapted scaling functions leads to 2j scaling
functions in total, which is the number of original scaling functions (φj,m)m, i.e., not boundary
corrected, that intersect [0, 1].

Theorem 2.1 ([8]). Retaining the notations from this subsection, the sequence of spaces (V b
j )j∈N0

is nested, i.e.,
V b
0 ⊂ . . . ⊂ V b

j ⊂ V b
j+1 ⊂ . . .
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Moreover, for all j ∈ N such that 2j ≥ 2p, the system (φbj,m)m=0,...,2j−1 constitutes an orthonor-

mal basis for V b
j and the respective sequence of spaces V b

j is complete, i.e.

⋃

j>log2 p

V b
j = L2([0, 1]).

Let now W b
j denote the wavelet space at level j, i.e., the orthogonal complement of V b

j in

V b
j+1. Then an orthonormal basis of wavelets for each space W b

j can be constructed as follows.

Let φ1 be a compactly supported scaling function with supp ψ1 = [−p + 1, p], and let ψ1 be
the corresponding wavelet possessing p vanishing moments. Similar to the construction of the
boundary scaling functions previously discussed, we can construct wavelets, which are fully
supported in [0, 1]. Again, there exist boundary adapted wavelets (ψleft

n )n and (ψright
n )n [8, 39],

leading to 2j − 2p interior wavelets

ψb
j,m := ψ1

j,m := 2j/2ψ1(2j · −m), for p ≤ m < 2j − p,

p left boundary wavelets

ψb
j,m := 2j/2ψleft

m (2j ·), for 0 ≤ m < p,

and p right boundary wavelets

ψb
j,m := 2j/2ψright

2j−1−m
(2j(· − 1)), for 2j − p ≤ m < 2j .

This set of wavelets satisfies the following properties.

Theorem 2.2 ([8]). Retaining the notations from this subsection, for J ∈ N with 2J ≥ 2p, the
following properties hold:
i) (ψb

J,m)m=0,...,2J−1 is an orthonormal basis for W b
J .

ii) L2([0, 1]) can be decomposed as

L2([0, 1]) = V b
J ⊕W b

J ⊕W b
J+1 ⊕W b

J+2 ⊕ . . . = V b
J ⊕

∞⊕

j=J

W b
j .

iii)
{
(φbJ,m)m=0,...,2J−1, (ψ

b
j,m)j≥J,m=0,...,2j−1

}
is an orthonormal basis for L2([0, 1]).

iv) If φ1, ψ1 ∈ Cr([0, 1]), then
{
(φbj,m)m=0,...,2J−1, (ψ

b
j,m)j≥J,m=0,...,2j−1

}
is an unconditional

basis for Cs([0, 1]) for all s < r.

A two dimensional (2D) boundary adapted wavelet system can be obtained by tensor prod-
ucts of 1D boundary adapted wavelets, as we will see in the next subsection.

2.1.2 Orthonormal basis of wavelets on [0, 1]2

We briefly comment on the construction of 2D boundary adapted wavelets by tensor products
of 1D boundary adapted wavelets. For this, let φ1 be a 1D compactly supported Daubechies
scaling function. Further, let ψ1 be the corresponding wavelet to φ1 with p vanishing moments,
and let (φbj,m)j,m and (ψb

j,m)j,m be the scaling functions and wavelets as described in Subsection
2.1.1, respectively.

If J ∈ N denotes the smallest number such that 2J ≥ 2p, then the 2D scaling functions can
be obtained by

ωJ,(m1,m2),0 := φbJ,m1
⊗ φbJ,m2

, (m1,m2) ∈ Z
2, 0 ≤ m1,m2 ≤ 2J − 1.
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The corresponding 2D wavelet functions are defined by the tensor products given by

ωj,(m1,m2),υ :=





φbj,m1
⊗ ψb

j,m2
, j ≥ J, υ = 1,

ψb
j,m1

⊗ ψb
j,m2

, j ≥ J, υ = 2,

ψb
j,m1

⊗ φbj,m2
, j ≥ J, υ = 3,

for 0 ≤ m1,m2 ≤ 2j − 1 with j ≥ J . This gives rise to the notion of boundary wavelet system
defined as follows.

Definition 2.3. Let φ1 be a 1D compactly supported Daubechies scaling function, and let ψ1 be
the corresponding wavelet to φ1. Then

W(φ1) := {ωj,m,υ : (j,m, υ) ∈ ∆}

is called boundary wavelet system associated with φ1, with indexing set given by

∆ :=
{
(J, (m1,m2), 0) : 0 ≤ m1,m2 ≤ 2J − 1

}

∪
{
(j,m, υ) : j ≥ J, 0 ≤ m1,m2 ≤ 2j − 1, υ ∈ {1, 2, 3}

}
.

Similar as before, we define scaling spaces V b
J and wavelet spaces W b

j , j ≥ J , yielding the
following result.

Theorem 2.4 ([39]). Retaining the notations from this subsection, for each j ≥ J , the system
(ωj,(m1,m2),υ)(m1,m2),υ forms an orthonormal basis for W b

j , and L
2([0, 1]2) can be decomposed as

L2([0, 1]2) = V b
J ⊕W b

J ⊕W b
J+1 ⊕W b

J+2 ⊕ . . . = V b
J ⊕

∞⊕

j=J

W b
j .

2.1.3 Characterization of Hs([0, 1]2) using boundary wavelets

One key property of wavelets is the fact that they are able to characterize Sobolev spaces
Hs([0, 1]2). The system presented in the previous subsection can possess this property, in fact,
the existence of a scaling function φ1 such that the associated boundary wavelet system yields
such a characterization was proved in [5, Cor. 29.2]. More precisely, for any s > 0 there exist
0 < Cs ≤ Ds < ∞ and p ∈ N such that with the boundary wavelet system W(φ1) constructed
from the Daubechies scaling function Φ1 and Daubechies wavelet ψ1 with p vanishing moments,
for all s′ ≤ s, we have

Cs‖f‖
2
Hs′ ([0,1]2)

≤
∑

(j,m,υ)∈∆

22js
′

| 〈f, ωj,m,υ〉 |
2 ≤ Ds‖f‖

2
Hs′ ([0,1]2)

,

for all f ∈ Hs′([0, 1]2).

2.1.4 Admissible boundary wavelets

The system of boundary wavelets constructed in Subsection 2.1.2 on Ω = [0, 1]2 exhibits certain
properties, which will be crucial for our later construction of boundary shearlets. Therefore, we
will call a system with those properties an admissible boundary wavelet system.

More precisely, we are interested in the following list of desiderata, a boundary wavelet
system W(φ1) as defined in Definition 2.3 can satisfy on Ω := [0, 1]2:

(W1) W(φ1) constitutes an orthonormal basis for L2(Ω).
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(W2) The interior wavelets ω1 = ψ1 ⊗ φ1, ω2 = ψ1 ⊗ ψ1, and ω3 = φ1 ⊗ ψ1 obey a moment
condition of the form

|ω̂υ(ξ)| .
min{1, |ξi|

α}

max{1, |ξ1|β}max{1, |ξ2|β}
,

for at least one i ∈ {1, 2} and α, β > 0.

(W3) For s ∈ N, the wavelet system W(φ1) characterizes Hs(Ω), i.e., there exists 0 < Cs ≤
Ds <∞ such that, for all s′ ≤ s and f ∈ Hs′(Ω),

Cs‖f‖
2
Hs′ (Ω)

≤
∑

(j,m,υ)∈Λ

22js
′

| 〈f, ωj,m,υ〉 |
2 ≤ Ds‖f‖

2
Hs′ (Ω)

.

Note that (W2) is always satisfied as soon as the generating wavelet is sufficiently smooth and
possesses sufficiently many vanishing moments, which can always be achieved by the construc-
tion of Subsection 2.1 when we choose p large enough. This gives rise to the following definition
of admissible wavelet systems which will then be one key ingredient in our construction of
anisotropic multiscale systems on bounded domains.

Definition 2.5. A boundary wavelet system W(φ1) that admits properties (W1), (W2), and
(W3) with s ∈ N and α, β > 0 is called an (s, α, β)-admissible boundary wavelet system.

2.2 Shearlets

Shearlet systems are designed to provide optimally sparse approximations of a model class of
functions which are governed by curvilinear singularities while allowing a faithful implementa-
tion with their construction being based on the framework of affine systems. They were first
introduced by Guo, Labate, Lim, Weiss, and one of the authors in [29, 37]. Since we aim to
use shearlets as interior elements for the construction of our anisotropic multiscale systems on
bounded domains, in the sequel we present the definition and properties of (cone-adapted) shear-
let systems. In fact, as already discussed in the introduction, only very preliminary attempts
have been made yet to define a shearlet system for bounded domains.

2.2.1 Construction of (cone-adapted) shearlet systems

The construction of shearlet systems is based on anisotropic scaling and shearing. To state the
precise definition, for j ∈ N, k ∈ Z, we denote the anisotropic scaling matrices Aj and the shear
matrices Sk by

Aj := diag(2j , 2
j
2 ) =

(
2j 0

0 2
j
2

)
, Sk :=

(
1 k
0 1

)
.

Then a (cone-adapted) shearlet system is defined as follows:

Definition 2.6 ([31]). Let φ, ψ, ψ̃ ∈ L2(R2), c = [c1, c2]
T ∈ R2 with c1, c2 > 0. Then the

(cone-adapted) shearlet system is defined by

SH(φ, ψ, ψ̃, c) = Φ(φ, c1) ∪Ψ(ψ, c) ∪ Ψ̃(ψ̃, c),

where

Φ(φ, c1) =
{
φ(· − c1m) : m ∈ Z

2
}
,
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Ψ(ψ, c) =
{
ψj,k,m = 2

3j
4 ψ(SkAj · −Mcm) : j ∈ N, |k| ≤

⌈
2

j
2

⌉
,m ∈ Z

2
}
,

Ψ̃(ψ̃, c) =
{
ψ̃j,k,m = 2

3j
4 ψ̃(STk Ãj · −Mc̃m) : j ∈ N, |k| ≤

⌈
2

j
2

⌉
,m ∈ Z

2
}
,

with Mc := diag(c1, c2), Mc̃ = diag(c2, c1), and Ã2j = diag(2
j
2 , 2j).

We shorten the notation by defining

ψj,k,m,ι :=





ψj,k,m if ι = 1,
φ(· − c1m) if ι = 0,

ψ̃j,k,m if ι = −1,

and denote the index set for the full shearlet system by

Λ :=
{
(j, k,m, ι) : ι ∈ {−1, 0, 1} : |ι|j = j ≥ 0, |k| ≤ |ι|

⌈
2

j
2

⌉
, m ∈ Z

2
}
.

2.2.2 Frames of shearlet systems

Cone-adapted shearlet systems are redundant systems, hence cannot form an orthonormal basis.
Nonetheless they still exhibit stability properties in the sense of constituting a frame for L2(R2)
with controllable frame bounds. Recall that a family of elements (ϕn)n∈N in a Hilbert space H
forms a frame for H, if there exist 0 < A ≤ B <∞ such that

A‖f‖2H ≤
∑

n∈N

|〈ϕn, f〉H|
2 ≤ B‖f‖2H, for all f ∈ H.

If only the second inequality holds, then the system (ϕn)n∈N is called a Bessel sequence. Asso-
ciated to every Bessel sequence (ϕn)n∈N is the analysis operator T given by

T : H → ℓ2(N), f 7→ (〈f, ϕn〉)n∈N.

The inner products 〈f, ϕn〉, n ∈ N are sometimes also termed analysis coefficients; in contrast
to the coefficients of an expansion of f in the system (ϕn)n∈N being referred to as synthesis
coefficients. If (ϕn)n∈N constitutes even a frame for H, it can be shown that the frame operator
S := T ∗T is a bounded invertible operator with bounded inverse [4]. Aiming to reconstruct
any f from Tf , one defines yet another frame (ϕdn)n∈N, the so-called canonical dual frame of
(ϕn)n∈N, by

ϕdn := S−1ϕn.

This leads to the formulae

f =
∑

n∈N

〈f, ϕn〉ϕ
d
n =

∑

n∈N

〈f, ϕdn〉ϕn, for all f ∈ H,

of which the first part is the desired reconstruction formula, and the second can be regarded as
an expansion of f in terms of the frame (ϕn)n∈N.

By imposing some weak conditions on the generators φ, ψ, and ψ̃, the system SH(φ, ψ, ψ̃, c)
forms a frame for L2(R2). In fact, the following result has been proved in [31].

Theorem 2.7 ([31]). Let φ, ψ ∈ L2(R2) such that

|φ̂(ξ1, ξ2)| ≤ C1min{1, |ξ1|
−β}min{1, |ξ2|

−β}
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and

|ψ̂(ξ1, ξ2)| ≤ C2min{1, |ξ1|
α}min{1, |ξ1|

−β}min{1, |ξ2|
−β},

for some constants C1, C2 > 0, α > β > 3 and almost every (ξ1, ξ2) ∈ R2. Then for any
c = (c1, c2) ∈ R+ ×R+ the cone-adapted shearlet system SH(φ, ψ, ψ̃, c) forms a Bessel sequence
for L2(R2). Further, let ψ̃(x1, x2) = ψ(x2, x1) and assume there exists a positive constant A > 0
such that

|φ̂(ξ)|2 +
∑

j∈N

∑

|k|≤⌈2j/2⌉

|ψ̂(STk (Aj)
−1ξ)|2 +

∑

j∈N

∑

|k|≤⌈2j/2⌉

|
̂̃
ψ(Sk(Ãj)

−1ξ)|2 > A

holds almost everywhere. Then there exists c = (c1, c2) ∈ R+ × R+ such that the cone-adapted
shearlet system SH(φ, ψ, ψ̃, c) forms a frame for L2(R2).

In view of the results for boundary wavelets in the preceding Subsection 2.1 one can pose
the question, whether a characterization of Sobolev spaces is also possible with shearlet frames.
While there are some embedding results of Besov spaces into shearlet spaces and vice versa, see
[36], [11], we are unaware of a precise characterization of Sobolev spaces Hs(R2) by compactly
supported shearlets. In Subsection 4.1 we outline how such a construction can be achieved.

2.2.3 Admissible shearlet systems

Similarly to the wavelet construction, shearlet systems satisfying the following properties will
play a crucial role in the construction of boundary shearlet systems.

(S1) The functions φ, ψ, ψ̃ ∈ L2(R2) are compactly supported functions and the corresponding
shearlet system SH(φ, ψ, ψ̃, c) of Definition 2.6 constitutes a frame for L2(R2).

(S2) The decay conditions

|ψ̂(ξ1, ξ2)| .
min{1, |ξ1|

α}

max{1, |ξ1|β}max{1, |ξ2|β}

and

|
̂̃
ψ(ξ1, ξ2)| .

min{1, |ξ2|
α}

max{1, |ξ1|β}max{1, |ξ2|β}

are obeyed for all (ξ1, ξ2) ∈ R2, for some α, β > 0.

(S3) The shearlet system SH(φ, ψ, ψ̃, c) characterizes Sobolev spaces up to order s ∈ N, i.e.,
there exist 0 < As, Bs <∞ such that

As‖f‖
2
Hs′ (R2)

≤
∑

(j,k,m,ι)∈Λ

22js
′

| 〈f, ψj,k,m,ι〉 |
2 ≤ Bs‖f‖

2
Hs′ (R2)

,

for all f ∈ Hs′(R2), s′ ≤ s.

This gives rise to the following class of shearlet systems.

Definition 2.8. A shearlet system that admits properties (S1), (S2), and (S3) with s ∈ N and
α, β > 0 is called (s, α, β)-admissible shearlet system. If the parameters (s, α, β) do not play
any role, we simply write admissible shearlet system.

Let us emphasize that by the results in this subsection, an abundance of (0, α, β)-admissible
shearlet systems do exist. And in fact, this will be a common requirement in later results. Let
us also remind the reader again that the existence of shearlet systems admitting properties (S1),
(S2) in combination with (S3) will be outlined in Subsection 4.1. Nevertheless we stress that
the focus of this paper is not the construction of admissible shearlet systems but the (much
more challenging) problem of obtaining an adaption of such a system to a finite domain.

11



2.2.4 Approximation properties

The target property shearlet systems were designed to satisfy is optimal approximation of
cartoon-like functions. This class of functions was first introduced by Donoho in [20] as a
suitable model for natural images, and consists – roughly speaking – of compactly supported
functions which are C2 apart from a C2-discontinuity curve.

One key ingredient in the definition of cartoon-like functions is the class of sets STAR2(ν),
which are star-shaped sets with C2 boundary and curvature bounded by ν > 0. Then the
definition of cartoon-like functions reads as follows.

Definition 2.9. For ν > 0, let E2(ν) denote the set of functions f ∈ L2(R2), for which there
exist some D ∈ STAR2(ν) and fi ∈ C2(R2) with compact support in [0, 1]2 as well as ‖fi‖C2 ≤ 1
for i = 1, 2, such that

f = f1 + χDf2.

The elements f ∈ E2(ν) are called cartoon-like functions.

In the same paper [20], Donoho presented the first optimality result concerning the approx-
imation rate for this class of functions by more or less arbitrary representation systems. In
fact, in [20] it was shown that for any representation system (ϕn)n∈N ⊂ L2(R2), the minimally
achievable asymptotic approximation error for f ∈ E2(ν) is

‖f − fN‖
2
2 = O(N−2) as N → ∞,

where fN denotes the non-linear best N -term approximation of f obtained by choosing the
N largest coefficients through polynomial depth search. The term polynomial depth search
means that the i-th term in the expansion can only be chosen in accordance with a selection
rule σ(i, f), which obeys σ(i, f) ≤ π(i) for a fixed polynomial π(i), see [20]; thereby avoiding
artificial representation systems such as those being dense in L2(R2).

In [32], one of the authors together with Lim proved that there do indeed exist shearlet
systems that can achieve this optimal rate up to a log factor. More precisely, the following
theorem was shown.

Theorem 2.10 ([32]). Let c > 0, and let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported. Suppose
that, in addition, for all ξ = (ξ1, ξ2) ∈ R2 the shearlet ψ satisfies
(i) |ψ̂(ξ)|2 ≤ C1 ·min(1, |ξ1|

α) ·min(1, |ξ1|
−β) ·min(1, |ξ2|

−β) and

(ii) | ∂
∂x2

ψ̂(ξ)| ≤ |h(ξ1)| ·
(
1 + |ξ2|

|ξ1|

)−β
,

where α > 5, β ≥ 4, h ∈ L1(R), and C1 > 0, and suppose that ψ̃ satisfies (i) and (ii) with ξ1
and ξ2 interchanged. Further suppose that SH(φ, ψ, ψ̃, c) forms a frame for L2(R2). Then for
any ν > 0, the shearlet frame SH(φ, ψ, ψ̃, c) provides (almost) optimally sparse approximations
of functions f ∈ E2(ν), i.e.

∑

n≥N

θn(f) . N−2 log(N)3, as N → ∞,

where θn(f) denotes the n-th entry of the non-increasing rearrangement of the coefficient se-
quence (|〈f, ψj,k,m,ι〉|

2)(j,k,m,ι)∈Λ.

We wish to emphasize that all presented results of shearlet systems in this section only
hold for R2. The main objective of this paper is to introduce a suitable multiscale anisotropic
directional system which allows to transfer these results to preferably any bounded (polygonal
shaped) domain Ω ⊆ R2.
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3 Domain adapted multiscale anisotropic directional systems

The key idea for the construction of domain-adapted multiscale anisotropic directional systems
on a domain Ω = [0, 1]2 which we will coin boundary shearlet systems consists in combining two
different frames, i.e., to employ hybrid systems. To be more precise, we will on the one hand
use boundary wavelet elements to handle the boundary ∂Ω, since these systems are already
adapted to such a boundary. On the other hand, compactly supported shearlet elements will
be used for the interior of Ω to achieve the desired optimal approximation rates of cartoon-like
functions. To this end we fix an admissible boundary wavelet system W(φ1) for Ω = [0, 1]2 and
an admissible shearlet system SH(φ, ψ, ψ̃, c).

Certainly, those elements of each system used for the hybrid construction have to be carefully
selected. This will be done by defining a tubular region Γγ(j) around the boundary with γ(j)
depending on the scales j and selecting those wavelet elements non-trivially intersecting these
regions for each scale. As for the selection of the elements from a compactly supported shearlet
system, we choose all those whose support is completely contained inside Ω. It is conceivable
that the tubular region Γγ(j) needs to be defined depending on properties of the shearlets, since
the frame property of the hybrid systems requires a small cross-localization of elements from
both systems.

To define the tubular regions, let q be chosen such that supp ψj,k,0,ι ⊆ B q
2
2−j/2(0) for all

(j, k, 0, ι) ∈ Λ, where Br(0) := {x ∈ R2 : |x1|, |x2| ≤ r}. For r ∈ R, we now define the tubular
region Γr by

Γr := {x ∈ Ω : d(x, ∂Ω) < q2−r}, (1)

i.e., as the part of Ω that has distance less than q2−r from ∂Ω. This gives rise to the following
definition.

Definition 3.1. Let SH(φ, ψ, ψ̃, c) = (ψj,k,m,ι)(j,k,m,ι)∈Λ be an admissible shearlet system, let
τ > 0 and t > 0. Further, let W(φ1) be an admissible boundary wavelet system, and set

Wt,τ (φ
1) : = {ωj,m,υ ∈ W(φ1) : (j,m, υ) ∈ ∆t,τ},

where

∆t,τ : = {(j,m, υ) ∈ ∆ : supp ωj,m,υ ∩ Γτ(j−t) 6= ∅}.

Further, let
Λ0 := {(j, k,m, ι) ∈ Λ : supp ψj,k,m,ι ⊆ Ω}.

Then, the boundary shearlet system with offsets t and τ is defined as

BSHt,τ (φ
1;φ, ψ, ψ̃, c) := {ψj,k,m,ι : (j, k,m, ι) ∈ Λ0} ∪Wt,τ (φ

1).

This definition of a boundary shearlet system mimics precisely the program we just intu-
itively described before. The reader should notice that as j → ∞, the size of the tubular region
shrinks accordingly. Concerning the two offsets, the parameter t acts as a shift for the depen-
dence on the scale, whereas the parameter τ is merely an overall factor controlling the speed of
decay.

Indeed this choice of wavelets versus shearlets provides us with a cross localization property,
which will be crucial for, for instance, the proofs of Theorems 3.3 and 4.4. Since the proof
is quite lengthy and technical, we defer it to Subsection 3.2. We denote Λc0 := Λ \ Λ0 and
∆c
τ,t := ∆ \∆t,τ .
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Proposition 3.2. Let α > 1, β > α+1, τ > 0 and ǫ > 0 such that ((1−ǫ)/τ−2)α > 5
2 . Further,

assume that W(φ1) is a (0, α, β)-admissible boundary wavelet system on Ω and SH(φ, ψ, ψ̃, c) is
a (0, 0, β′)-admissible shearlet system with β′−α > 1. Then there exists a constant C (dependent
on φ1, φ, ψ, ψ̃, c, τ, ǫ) such that, for all t > 0,

∑

(js,k,ms,ι)∈Λc
0

∑

(jw,mw)∈∆c
τ,t

|〈ωjw,mw,υ, ψjs,k,ms,ι〉L2(Ω)|
2 ≤ C · 2−2(1−ǫ)αt.

3.1 Frame property of boundary shearlet systems

We now turn to analyzing the frame properties of boundary shearlet systems. The following
result provides weak sufficient conditions for these systems to form a frame for L2(Ω).

Theorem 3.3. Let W(φ1) be a (0, α, β)-admissible wavelet system, let SH(φ, ψ, ψ̃, c) be a
(0, 0, β′)-admissible shearlet system and let α, β, β′, τ and ǫ be as in Proposition 3.2. Let t > 0
be such that

A′ :=
A− C2−2(1−ǫ)αt+1

2B
> 0, (2)

where A and B are the frame bounds of the full shearlet system restricted to L2(Ω) and C the
constant from Proposition 3.2. Then the boundary shearlet system BSHt,τ (φ

1;φ, ψ, ψ̃, c) yields
a frame for L2(Ω). Furthermore, a lower and an upper frame bound are given by A′ and B+1,
respectively.

Proof. We first observe that

L2(Ω) = span (W(φ1) \Wt,τ (φ
1))⊕ span (Wt,τ (φ

1)) =: Ξ1 ⊕ Ξ2.

Now let f1 := PΞ1f and f2 := PΞ2f , where PΞi denotes the orthogonal projection onto the
spaces Ξi, i = 1, 2.

We first focus on proving the existence of a lower frame bound. For every f ∈ L2(Ω), the
frame property of the full shearlet system restricted to L2(Ω), see [33], implies that

‖f‖2L2(Ω) ≤
1

A

∑

(j,k,m,ι)∈Λ

|〈f, ψj,k,m,ι〉L2(Ω)|
2,

where A is the lower frame bound of the shearlet frame. Splitting the right hand side appropri-
ately, yields

‖f‖2L2(Ω) ≤
1

A

( ∑

(j,k,m,ι)∈Λ0

|〈f, ψj,k,m,ι〉L2(Ω)|
2 + 2

∑

(j,k,m,ι)∈Λc
0

|〈f1, ψj,k,m,ι〉L2(Ω)|
2

+ 2
∑

(j,k,m,ι)∈Λc
0

|〈f2, ψj,k,m,ι〉L2(Ω)|
2

)
=: T1 + T2 + T3. (3)

According to the construction of the boundary shearlet system, we only need to further study
T2 and T3.

We start by estimating term T2. Employing the Parseval identity and then the Cauchy
Schwarz inequality yields

∑

(j,k,m,ι)∈Λc
0

|〈f1, ψj,k,m,ι〉L2(Ω)|
2
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=
∑

(j,k,m,ι)∈Λc
0

∣∣∣∣∣∣
∑

(j′,m′,υ)∈∆c
t,τ

〈f1, ωj′,m′,υ〉〈ωj′,m′,υ, ψj,k,m,ι〉L2(Ω)

∣∣∣∣∣∣

2

≤
∑

(j,k,m,ι)∈Λc
0


 ∑

(j′,m′,υ)∈∆c
τ,t

|〈f1, ωj′,m′,υ〉|
2

∑

(j′,m′,υ)∈∆c
τ,t

|〈ωj′,m′,υψj,k,m,ι〉L2(Ω)|
2




≤ ‖f1‖
2
L2(Ω)

∑

(j,k,m,ι)∈Λc
0

∑

(j′,m′,υ)∈∆c
τ,t

|〈ωj′,m′,υ, ψj,k,m,ι〉L2(Ω)|
2.

Hence, by Proposition 3.2,

∑

(j,k,m,ι)∈Λc
0

|〈f1, ψj,k,m,ι〉L2(Ω)|
2 ≤ C‖f1‖

2
L2(Ω)2

−(2α(1−ǫ))t (4)

for some constant C > 0.
With B being the upper frame bound of the shearlet frame, term T3 can be estimated as

∑

(j,k,m,ι)∈Λc
0

|〈f2, ψj,k,m,ι〉L2(Ω)|
2 ≤ B‖f2‖

2
L2(Ω).

Further, since f2 ∈ Ξ2,

‖f2‖
2
L2(Ω) =

∑

(j,m,υ)∈∆τ,t

|〈f2, ωj,m,υ〉L2(Ω)|
2 =

∑

(j,m,υ)∈∆τ,t

|〈f, ωj,m,υ〉L2(Ω)|
2. (5)

Applying (4) and (5) to (3) yields that A′ is a lower frame bound for the boundary shearlet
system, and t was chosen such that A′ > 0.

Now, applying the upper frame inequality for the shearlet frame and Parseval’s equality for
the wavelet orthonormal basis on the respective terms yields an upper frame bound of B + 1
for the boundary shearlet system BSHt,τ (φ

1;φ, ψ, ψ̃, c).

3.2 Localization of shearlet and wavelet frames

We now turn to the proof of Proposition 3.2. For this, we will require the following technical
lemma.

Lemma 3.4. Let ψ ∈ L(R2) be such that there exists C > 0 with

|ψ̂(ξ1, ξ2)| ≤ C
min{1, |ξ1|

α}

max{1, |ξ1|β}max{1, |ξ2|β}
, for a.e. (ξ1, ξ2) ∈ R

2,

where β/2 > α > 1. Then, for ι = −1, 1,

∑

|k|≤2j/2

|(ψj,k,m,ι)
∧(ξ1, ξ2)| ≤ 2−3/4jC ′ 1

max{1, |2−jξ1|β/2}

1

max{1, |2−jξ2|β/2}
,

for a.e. (ξ1, ξ2) ∈ R2 and a constant C ′.

Proof. We only present the proof for the case ι = −1. The other case can be shown analogously.
We first develop simple estimates in two different cases. If on the one hand |ξ1| ≥ |ξ2|/2, then
we have

max{1, |ξ1|
β}max{1, |ξ2|

β} ≥max{1, |ξ1|
β
2 }max{1, |ξ1|

β
2 } (6)
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≥2−
β
2 max{1, |ξ1|

β
2 }max{1, |ξ2|

β
2 }.

If on the other hand |ξ1| ≤ |ξ2|/2, then

max{1, |k2−jξ1 + 2−j/2ξ2|
β} ≥ max{1, (|2−j/2ξ2| − |k2−jξ1|)

β}

≥ max{1, (|2−j/2ξ2| − |2−j/2ξ1|)
β}

≥ max{1, (|2−j/2ξ2/2|)
β}

≥ 2−β max{1, (|2−j/2ξ2|)
β}, (7)

where we have used that |k2−j/2| ≤ 1 in the second inequality. Using the estimates (6) and (7)
the claim follows by the following computation. First we notice that

∑

|k|≤2j/2

min{1, |2−jξ1|
α}

max{1, |k2−jξ1 + 2−j/2ξ2|β}
≤ sup

(ξ1,ξ2)∈R2

∑

k∈Z

min{1, |ξ1|
α}

max{1, |kξ1 + ξ2|β}
< C ′,

for some constant C ′. For |ξ1| ≥ |ξ2|/2, we conclude that

∑

|k|≤2j/2

|(ψj,k,m,ι)
∧(ξ1, ξ2)|

≤ C2−3/4j 1

max{1, |2−jξ1|β}
sup

(ξ1,ξ2)∈R2

∑

|k|≤2j/2

min{1, |2−jξ1|
α}

max{1, |k2−jξ1 + 2−j/2ξ2|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β/2}max{1, |2−jξ2|β/2}
,

where we used (6) in the last estimate. For 0 < |ξ1| ≤ |ξ2|/2, we derive by employing (7)

∑

|k|≤2j/2

|(ψj,k,m,ι)
∧(ξ1, ξ2)|

≤ C2−3/4j 1

max{1, |2−jξ1|β}

∑

|k|≤2j/2

|2−jξ1|
α

max{1, |k2−jξ1 + 2−j/2ξ2|β}

≤ C ′2−3/4j 1

max{1, |2−jξ1|β}

∑

|k|≤2j/2

|2−jξ1|
α

max{1, |2−j/2ξ2|β}

≤ C ′2−3/4j 1

max{1, |2−jξ1|β}

|2−j/2ξ1|
α

max{1, |2−j/2ξ2|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β}

|2−j/2ξ2|
α

max{1, |2−j/2ξ2|β}

≤ C ′′2−3/4j 1

max{1, |2−jξ1|β}

1

max{1, |2−j/2ξ2|β−α}
.

The lemma is proven.

Now we are ready to prove Proposition 3.2.
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Proof of Proposition 3.2. We start with the observation that for a fixed scale js and fixed shear-
ing parameter k the number of shearlet translates (ψjs,k,m,ι)m that have nontrivial intersection
with the support of one fixed ωjw,mw,υ is bounded by a constant independent of jw,mw, js and
k. Second, we notice that the support of an arbitrary ωjw,mw,υ ∈ W(φ1) has at least a distance
of q2τ(t−jw) to the boundary. Further, the support of a shearlet ψjs,k,ms,ι with (js, k,ms, ι) ∈ Λc0
is not fully contained in Ω and has at most length q2js/2. Hence, for all (js, k,ms, ι) ∈ Λc0 and
jw > 1/(2τ)js+t, each ωjw,mw,υ ∈ W(φ1)\Wt,τ (φ

1) satisfies supp ωjw,mw,υ∩supp ψ(js,k,ms,ι) = ∅.
We now assume w.l.o.g. that υ = 1. For υ = 2, 3, the following computations can be made

in a similar manner with ξ1 and ξ2 interchanged. Also note that, by the same argument as
above, for υ = 0 we have 〈ωJ0,m′,0, ψj,k,m,ι〉 = 0.

Note that the total number of wavelet translates for a fixed level jw is of order 22jw . Thus,
using the previous observations and Parseval’s identity, we obtain

∑

(j′,m′)∈∆c
τ,t

∑

(j,k,m,ι)∈Λc
0

|〈ωj′,m′,1, ψj,k,m,ι〉L2(Ω)|
2

.

∞∑

jw=0

(2τ)(jw−t)∑

js=0

∑

|k|≤2js/2

22jw max
ms,mw

|〈ω̂jw,m,1, ̂ψjs,k,ms,ι〉L2(Ω)|
2. (8)

Exploiting next the frequency decay of the corresponding shearlet atoms and applying Lemma
3.4, using (W2) of the admissible wavelet system as well as applying the substitution ξ 7→ 2jsξ
yields

(2τ)(jw−t)∑

js=0

∑

|k|≤2js/2

22jw max
mw,ms

|〈ω̂jw,m,1, ̂ψjs,k,ms,ι〉L2(Ω)|
2

.

(2τ)(jw−t)∑

js=0

2−3/2js

(∫

R2

min{1, |2−jwξ1|
α}

max{1, |2−jwξ1|β}max{1, |2−jwξ2|β}

·
1

max{1, |2−jsξ1|β
′}max{1, |2−jsξ2|β

′}
dξ

)2

.

(2τ)(jw−t)∑

js=0

25/2js
(∫

R2

min{1, |2js−jwξ1|
α}

max{1, |2js−jwξ1|β}max{1, |2js−jwξ2|β}

·
1

max{1, |ξ1|β
′}max{1, |ξ2|β

′}
dξ

)2

.

.

∞∑

js=0

25/2js
(∫

R2

min{1, |2js−jwξ1|
α}

max{1, |ξ1|β
′}max{1, |ξ2|β

′}
dξ

)2

.

∞∑

js=0

25/2js+2α(js−jw)

(∫

R2

|ξ1|
α

max{1, |ξ1|β
′}max{1, |ξ2|β

′}
dξ

)2

.

Since β′ − α > 1 we obtain that the integral above is finite and hence we obtain

(2τ)(jw−t)∑

js=0

∑

|k|≤2js/2

22jw max
mw,ms

|〈ω̂jw,m,1, ̂ψjs,k,ms,ι〉L2(Ω)|
2 .

(2τ)(jw−t)∑

js=0

25/2js+2α(js−jw). (9)

We rewrite the last sum above as
(2τ)(jw−t)∑

js=0

25/2js+2α(js−jw) = 2−2αǫjw

(2τ)(jw−t)∑

js=0

25/2js+2α(js−(1−ǫ)jw). (10)
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Since jw > 1/(2τ)js + t, we can now estimate

∞∑

js=0

25/2js+2α(js−(1−ǫ)jw) . 2−2α(1−ǫ)t
∞∑

js

25/2js+2α(js−(1−ǫ)(1/(2τ)js).

Since α((1− ε)/τ − 2) > 5/2 by assumption, the latter sum is finite. This leads to the estimate

∞∑

js=0

25/2js+2α(js−(1−ǫ)jw) . 2−2α(1−ǫ)t. (11)

Now (11) in combination with (10) and (9) implies together with (8) that

∑

(j,k,m,ι)∈Λc
0

∑

(j′,m′)∈∆c
τ,t

|〈ωj′,m′,υ, ψj,k,m,ι〉L2(Ω)|
2 .

∞∑

jw=0

2−2αǫjw2−2α(1−ǫ)t . 2−2α(1−ǫ)t.

The proof is complete.

4 Characterization of Sobolev spaces

It is well known, that wavelets can characterize Sobolev spaces [39]. In this section, we will
show that similar results hold for shearlets. We will start by proving the latter result on R2

first.

4.1 Characterization of Hs(R2)

As already previously announced, we will provide a construction of (s, α, β)-admissible shearlet
systems for arbitrary s ∈ N, thereby showing that indeed also condition (S3) can be simultane-
ously fulfilled. For the convenience of the reader, let us state that we use the Bessel potential
characterization

Hs(R2) = {f ∈ S ′(R2) : (1 + | · |2)
s
2 f̂ ∈ L2(R2)}, s ∈ N,

of the classical Sobolev spaces.
For the construction, we first require two lemmata. We start with a lemma showing one

side of the required inclusion.

Lemma 4.1. Let s ∈ N, and SH(φ, ψ, ψ̃, c) be (0, α, β)-admissible with β > 3 and α > β + s.
Then ∥∥∥

(
2js〈f, ψj,k,m,ι〉

)
(j,k,m,ι)∈Λ

∥∥∥
ℓ2(Λ)

. ‖f‖Hs(R2), for all f ∈ Hs(R2).

Proof. Since ψ obeys (S2) and has α > β + s vanishing moments, there exists some function
θ ∈ L2(R2) such that

ψ =
∂s

∂x1
θ

with θ obeying (S2) for all α > β > 3. Then Theorem 2.7 implies that SH(φ, θ, θ̃, c) is a Bessel
sequence for L2(R2).

Now let f ∈ Hs(R2), and let Λ(i) := {(j, k,m, ι) ∈ Λ : ι = i} for i = −1, 0, 1. Then, invoking
the Plancherel identity, we have

‖(2js〈f, ψj,k,m,ι〉)(j,k,m,ι)∈Λ‖
2
ℓ2(Λ)
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= ‖(〈f̂ , 2jsψ̂j,k,m,ι〉)(j,k,m,ι)∈Λ‖
2
ℓ2(Λ)

= ‖(〈f̂ , 2jsψ̂j,k,m,−1〉)(j,k,m,ι)∈Λ(−1)‖2ℓ2(Λ(−1))
+ ‖(〈f̂ , ψ̂j,k,m,0〉)(j,k,m,ι)∈Λ(0)‖2ℓ2(Λ(0))

+

+ ‖(〈f̂ , 2jsψ̂j,k,m,1〉)(j,k,m,ι)∈Λ(1)‖2ℓ2(Λ(1))
.

The relations 2jsψ̂j,k,m,1(ξ) = ξs1θ̂j,k,m(ξ) and 2jsψ̂j,k,m,−1(ξ) = ξs2
ˆ̃
θj,k,m(ξ) now lead to

‖(2js〈f, ψj,k,m,ι〉)(j,k,m,ι)∈Λ‖
2
ℓ2(Λ)

= ‖(〈ξs1f̂ ,
ˆ̃
θj,k,m〉)(j,k,m,−1)∈Λ‖

2
ℓ2(Λ(−1))

+ ‖(〈f̂ , ψ̂j,k,m,0〉)(j,k,m,0)∈Λ(0)‖2ℓ2(Λ(0))
+

+ ‖(〈ξs2f̂ , θ̂j,k,m(ξ)〉)(j,k,m,1)∈Λ(1)‖2ℓ2(Λ(1))
.

Further, f ∈ Hs(R2) implies that ξsi f̂ ∈ L2(R2) for i = 1, 2. Noting that for ι = 0 the
functions ψj,k,m,0 are not affected by weights and thus can directly be bounded by B‖f‖L2(R2) ≤
B‖f‖Hs(R2) due to the frame property. Using the simple fact that subsets of Bessel sequences
are again Bessel sequences, we can conclude that

‖(2js〈f, ψj,k,m,ι〉))(j,k,m,ι)∈Λ‖
2
ℓ2(Λ) ≤ B‖f‖2Hs(R2)

for some positive constant B.

Lemma 4.1 yields the upper bound in (S3). Proving the lower bound in (S3) requires
a bit more work. Therefore we start with the following lemma, which provides us with a
characterization of Hs(R2) via the dual of a shearlet frame.

Lemma 4.2. Let φ, ψ, ψ̃ ∈ L2(R2) such that for s ∈ N and all 0 ≤ |α| ≤ s the shearlet system
SH(φ, ψ, ψ̃, c) obeys

∥∥∥∥∥∥
∑

(j,k,m,ι)∈Λ

cj,k,m,ι(D
αψ)j,k,m,ι

∥∥∥∥∥∥

2

2

. ‖c‖2ℓ2 for all c ∈ ℓ2(Λ). (12)

Then, for all f ∈ Hs(R2),

∑

(j,k,m,ι)∈Λ

22js
∣∣∣
〈
f, ψdj,k,m,ι

〉∣∣∣
2
& ‖f‖2Hs(R2).

Proof. Denoting by (ψdj,k,m,ι)(j,k,m,ι)∈Λ the dual elements of (ψj,k,m,ι)(j,k,m,ι)∈Λ, we have

‖f‖Hs(R2) ≤

∥∥∥∥∥∥
∑

(j,k,m,−1)∈Λ

〈
f, ψdj,k,m,−1

〉
ψj,k,m,−1

∥∥∥∥∥∥
Hs(R2)

+

∥∥∥∥∥∥
∑

(j,k,m,0)∈Λ

〈
f, ψdj,k,m,0

〉
ψj,k,m,0

∥∥∥∥∥∥
Hs(R2)

+

∥∥∥∥∥∥
∑

(j,k,m,1)∈Λ

〈
f, ψdj,k,m,1

〉
ψj,k,m,1

∥∥∥∥∥∥
Hs(R2)

. (13)

We only estimate the term ‖
∑

(j,k,m,1)∈Λ〈f, ψ
d
j,k,m,1〉ψj,k,m,1‖, since the other terms can be

estimated similarly. By definition of the Sobolev norm,
∥∥∥∥∥∥

∑

(j,k,m,1)∈Λ

〈
f, ψdj,k,m,1

〉
ψj,k,m,1

∥∥∥∥∥∥
Hs(R2)

.
∑

|α|≤s

∥∥∥∥∥∥
∑

(j,k,m,1)∈Λ

〈
f, ψdj,k,m,1

〉
ξαψ̂j,k,m,1

∥∥∥∥∥∥
L2(R2)

.
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Hence, for any fixed |α| ≤ s, it follows that
∥∥∥∥∥∥

∑

(j,k,m,1)∈Λ

〈
f, ψdj,k,m,1

〉
ψj,k,m,1

∥∥∥∥∥∥
Hs(R2)

.

∥∥∥∥∥∥
∑

(j,k,m,1)∈Λ

〈
f, ψdj,k,m,1

〉
2j|α|(̂Dαψ)j,k,m,1

∥∥∥∥∥∥
L2(R2)

.

Inserting this estimate as well as similar ones for the other terms into (13) and using (12),
proves the claim.

Remark 4.1. We assumed with (12) that ‖
∑

(j,k,m,ι)∈Λ cj,k,m,ι(D
αψ)j,k,m,ι‖

2
2 . ‖c‖2ℓ2 for a

shearlet system (ψj,k,m,ι)(j,k,m,ι)∈Λ. It is certainly not obvious that there exist many shearlet
systems satisfying this condition. But we will argue in the sequel that this estimate will indeed
hold under very weak conditions on the shearlet system. One instance of this is are shearlet
systems, for which (Dαψ)(j,k,m,ι)∈Λ satisfies

| 〈(Dαψ)µ, (D
αψ)η〉 | ≤ w(µ, η)−N (14)

for some appropriate distance function w on Λ and some N ∈ N. Then we have

∥∥∥∥∥∥
∑

(j,k,m,ι)∈Λ

cj,k,m,ι(D
αψ)j,k,m,ι

∥∥∥∥∥∥

2

2

=

∫ ∑

µ∈Λ

∑

η∈Λ

cµcη(D
αψ)µ(ξ)(Dαψ)η(ξ)dξ

=
∑

µ∈Λ

∑

η∈Λ

cµcη 〈(D
αψ)µ, (D

αψ)η〉

.
∑

µ∈Λ

∑

η∈Λ

|cµ||cη|w(µ, η)
−N = 〈|c|, T |c|〉 , (15)

where (Tc)µ :=
∑

λw(µ, λ)
−Ncλ. Since 〈|c|, T |c|〉〉 ≤ ‖c‖‖T (|c|)‖, boundedness of T would imply

〈|c|, T |c|〉 . ‖c‖22.

Combining this estimate with (15) proves the desired estimate.
It remains to discuss condition (14) as well as boundedness of T . In fact, [27, Lem. 4.4] im-

plies that, provided (ψj,k,m,ι)(j,k,m,ι)∈Λ forms a system of parabolic molecules of sufficiently high

order, there exists a distance function w such that (14) holds and such that T = (w(µ, λ)−N )µ,λ
is a bounded operator from ℓ2 → ℓ2 for all N > 1. The notion of a system of parabolic molecules,
introduced in [27], can be regarded as a general framework including various anisotropic sys-
tems such as curvelets and shearlets. Since this framework is very involved and technical and
since also our main goal in this subsection is just to show the existence of shearlet systems
characterizing Hs(R2), we decided not to include the precise, but lengthy definition.

If the shearlet frame has the additional property that

∥∥∥
(
〈ψj,k,m,ι, f)j,k,m,ι∈Λ

〉∥∥∥
ℓw,p

∼

∥∥∥∥
(〈
ψdj,k,m,ι, f

〉)
j,k,m,ι∈Λ

∥∥∥∥
ℓw,p

, (16)

for the weight w(j, k,m, ι) = 2js, then we are able to connect the two Lemmata 4.1 and 4.2 to
obtain a characterization of Hs(R2) by the primal frame.

In particular, if (ψj,k,m,ι)(j,k,m,ι)∈Λ is intrinsically localized - a property studied extensively
in [26] - the results of [26, Sec. 3.2], in particular, [26, Prop. 3.5] applied to [26, Eq. 49],
describe when (16) holds.

With Lemmata 4.1 and 4.2 we now obtain the following theorem on existence and construc-
tion of shearlet systems satisfying (S3).
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Theorem 4.3. Let s ∈ N, and SH(φ, ψ, ψ̃, c) be (0, α, β)-admissible with β > 3 and α > β + s,
which obeys (12) and (16). Then

‖f‖2Hs(R2) ∼
∑

(j,k,m,ι)∈Λ

22js |〈f, ψj,k,m,ι〉|
2 ∼

∑

(j,k,m,ι)∈Λ

22js
∣∣∣
〈
f, ψdj,k,m,ι

〉∣∣∣
2
. (17)

Proof. Lemmata 4.1 and 4.2 imply the upper bound for
∑

(j,k,m,ι)∈Λ 22js |〈f, ψj,k,m,ι〉|
2 and the

lower bound for
∑

(j,k,m,ι)∈Λ 22js
∣∣∣
〈
f, ψdj,k,m,ι

〉∣∣∣
2
. The result then follows from (16).

4.2 Characterization of Hs(Ω)

We now use the results on R2 to obtain a characterization of Hs(Ω) by the analysis coefficients
with respect to a shearlet system on Ω. At the end of this section, we briefly remark on a
characterization of Hs(Ω) by dual frame coefficients, with a bit more elaborate discussion in
Subsection 7.3.

The following theorem states the main result of this subsection. Notice that it uses the
existence of an (s, α′, β′)-admissible shearlet system for s ∈ N as a hypothesis, which is now
guaranteed by Theorem 4.3.

Theorem 4.4. Let α, β, α′, β′, τ, ǫ obey the assumptions of Proposition 3.2. Let further s ∈
N\{0}, SH(φ, ψ, ψ̃, c) be an (s, α′, β′)-admissible shearlet system, and W(φ1) be an (s, α, β)-
admissible boundary wavelet system. Then there exists some T > 0 such that, for any t ≥ T ,
the boundary shearlet system BSHt,τ (φ

1;φ, ψ, ψ̃, c) obeys (S3).

Proof. We start by proving the upper bound in (S3). First, by the admissibility assumption on
the shearlet system, there exist constants 0 < As ≤ Bs <∞ such that

As‖f‖
2
Hs(Ω) ≤

∑

(j,k,m,ι)∈Λ

22js| 〈f, ψj,k,m,ι〉 |
2 ≤ Bs‖f‖

2
Hs(Ω).

Moreover, the wavelet system W(φ1) obeys

Cs‖f‖
2
Hs(Ω) ≤

∑

(j,m,υ)∈∆

22js| 〈f, ωj,m,υ〉 |
2 ≤ Ds‖f‖

2
Hs(Ω)

for some 0 < Cs ≤ Ds <∞. Thus setting (ϕn)n∈N := BSHt,τ (φ
1;φ, ψ, ψ̃, c)

∑

n∈N

22js| 〈f, ϕn〉 |
2

=
∑

(j,k,m,ι)∈Λ0

22js| 〈f, ψj,k,m,ι〉 |
2 +

∑

(j,m,υ)∈∆t,τ

22js| 〈f, ωj,m,υ〉 |
2

≤ (Bs +Ds)‖f‖
2
Hs(Ω),

which shows the existence of an upper bound.
Now we turn to lower bound in (S3). To this end, we set

Ξ1 ⊕ Ξ2 := span (W(φ1) \Wt,τ (φ
1))⊕ span (Wt,τ (φ

1)) = L2(Ω),

and for f ∈ L2(Ω) we define f1 := PΞ1f and f2 := PΞ2f , where PΞi denotes the orthogonal
projection onto the space Ξi, i = 1, 2. Due to the characterization of Sobolev spaces by the
wavelet systems we have that ‖f‖Hs(Ω) ∼ ‖f1‖Hs(Ω) + ‖f2‖Hs(Ω) for all f ∈ Hs(Ω).
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One main step will be to extend results from Hs(R2) to Hs(Ω). For this, we recall that since
Ω is a Lipschitz domain, there exists a bounded linear extension operator E : Hs(Ω) → Hs(R2)
such that E(f)|Ω = f for all f ∈ Hs(Ω) and ‖E‖Hs(Ω)→Hs(R2) ≤ Mext for some Mext > 0 (cf.
[42]).

Based on this, we define the following modified extension operator

Ẽ : Hs(Ω) → Hs(R2), f 7→

{
E(f2) + f1 on Ω,
E(f2) on R2 \ Ω.

We first notice that Ẽ(f)|Ω = f . To obtain well definedness of Ẽ we next prove the boundedness

of Ẽ. By interpreting the interior wavelets of W(φ1)\Wt,τ (φ
1) as part of a wavelet orthonormal

basis on L2(R2) and employing the characterization of Hs(R2) (see [5, Cor. 29.2]), we obtain
that indeed ‖Ẽ(f1)‖Hs(R2) . ‖f1‖Hs(Ω) for all f ∈ Hs(Ω). The boundedness of the operator
now follows from the fact that

‖Ẽ(f)‖Hs(R2) . ‖E(f2)‖Hs(R2) + ‖f1‖Hs(Ω)

. ‖f2‖Hs(Ω) + ‖f1‖Hs(Ω) . ‖f‖Hs(Ω),

where we have used the boundedness of E in the second inequality.
Using the operator Ẽ(f), we obtain that

As‖f‖
2
Hs(Ω) ≤ As‖Ẽ(f)‖2Hs(R2)

≤
∑

(j,k,m,ι)∈Λ

22js|〈Ẽ(f), ψj,k,m,ι〉|
2

=
∑

(j,k,m,ι)∈Λ0

22js| 〈f, ψj,k,m,ι〉 |
2 +

∑

(j,k,m,ι)∈Λc
0

22js|〈Ẽ(f), ψj,k,m,ι〉|
2

≤
∑

(j,k,m,ι)∈Λ0

22js| 〈f, ψj,k,m,ι〉 |
2+

+2

( ∑

(j,k,m,ι)∈Λc
0

22js|〈Ẽ(f)− Ẽ(f2), ψj,k,m,ι〉|
2 +

∑

(j,k,m,ι)∈Λc
0

22js|〈Ẽ(f2), ψj,k,m,ι〉|
2

)

=
∑

(j,k,m,ι)∈Λ0

22js| 〈f, ψj,k,m,ι〉 |
2 + 2 (I + II) . (18)

We next estimate I and II, starting with II. By using hypothesis (S3), we immediately obtain
the required estimate

II ≤ Bs‖Ẽ(f2)‖
2
Hs(R2) ≤MextBs‖f2‖

2
Hs(Ω) ≤

MextBs

Cs

∑

(j,m,υ)∈∆τ,t

22js| 〈f, ωj,m,υ〉 |
2.

The existence of a positive lower bound follows by subtracting 2I on both sides of the inequality
(18), provided that we can show

I ≤ As/2‖f‖
2
Hs(Ω). (19)

The lower frame bound is then given by

(As − 2I)Cs/(2MextBs). (20)
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Since by construction, Ẽ(f)− Ẽ(f2) = Ẽ(f − f2) = Ẽ(f1), we can compute

I =
∑

(j,k,m,ι)∈Λc
0

22js
∣∣∣
〈
Ẽ(f)− Ẽ(f2), ψj,k,m,ι

〉∣∣∣
2

=
∑

(j,k,m,ι)∈Λc
0

22js
∣∣∣
〈
Ẽ(f1), ψj,k,m,ι

〉∣∣∣
2

=
∑

(j,k,m,ι)∈Λc
0

22js

∣∣∣∣∣∣
∑

(j′,m′,υ)∈∆c
t,τ

〈
f1, ωj′,m′,υ

〉 〈
ωj′,m′,υ, ψj,k,m,ι

〉
∣∣∣∣∣∣

2

=
∑

(j,k,m,ι)∈Λc
0

∣∣∣∣∣∣
∑

(j′,m′,υ)∈∆c
t,τ

2j
′s
〈
f1, ωj′,m′,υ

〉
2(j−j

′)s
〈
ωj′,m′,υ, ψj,k,m,ι

〉
∣∣∣∣∣∣

2

.

Applying the Cauchy-Schwarz inequality then yields

I ≤
∑

(j,k,m,ι)∈Λc
0


 ∑

(j′,m′,υ)∈∆c
t,τ

22sj
′

∣∣∣
〈
Ẽ(f1), ωj′,m′,υ

〉∣∣∣
2


 ·

·


 ∑

(j′,m′,υ)∈∆c
t,τ

22(j−j
′)s
∣∣〈ωj′,m′,υ, ψj,k,m,ι

〉∣∣2



≤Ds‖Ẽ(f1)‖
2
Hs(R2)

∑

(j,k,m,ι)∈Λc
0

∑

(j′,m′,υ)∈∆c
t,τ

22(j−j
′)s
∣∣〈ωj′,m′,υ, ψj,k,m,ι

〉∣∣2 . (21)

The first term in (21) can be estimated using

‖Ẽ(f1)‖Hs(R2) = ‖f1‖Hs(Ω) ≤
Ds

Cs
‖f‖Hs(Ω). (22)

Then notice that, by the construction of the boundary shearlet system, for (j′,m′, υ) ∈ ∆c
t,τ

and (j, k,m, ι) ∈ Λc0 the inner products
〈
ωj′,m′,υ, ψj,k,m,ι

〉
equal 0 for all j′ < j. Thus we can

assume 22(j−j
′)s ≤ 1. By Proposition 3.2, there exists a sufficiently large offset t such that

∑

(j,k,m,ι)∈Λc
0

∑

(j′,m′,υ)∈∆c
t,τ

22(j−j
′)s
∣∣〈ωj′,m′,υ, ψj,k,m,ι

〉∣∣2 < AsCs

2D2
s

. (23)

Applying (22) and (23) to (21) proves (19), thereby completing the proof.

In addition to the characterization by analysis coefficients in Theorem 4.4 one might also be
interested in the synthesis coefficients. However, this then turns into a statement that concerns
the dual frame, which is not available in our setting. A concrete construction of the dual is
not even available for the standard shearlet systems from Subsection 2.2. The only known first
construction can be found in [34]. However the resulting system has a different structure than
a standard shearlet system and is, in particular, highly redundant. Hence it is not clear how
to even obtain characterizations of Sobolev spaces with the primal frame of the system of [34].
Therefore presenting such a characterization with dual frame coefficients is beyond the scope of
this paper. We do, however, include a numerical analysis on this property in Subsection 7.3.
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5 Approximation properties

Finally, we discuss approximation properties of the boundary shearlet systems. In Subsection
2.2.4 it was discussed that shearlet systems on R2 yield optimally sparse approximations of
cartoon-like functions. To obtain a similar result for the newly introduced boundary shearlet
systems, we first need to specify what we actually mean by cartoon-like functions on bounded
domains. Since in Section 6, we require this definition for general domains, we immediately
define it for the general situation.

The attentive reader will have noticed that in this case the definition of cartoon-like func-
tions, i.e., functions in E2(ν), already focuses on functions with compact support in [0, 1]2. For
our purposes and according to anticipated applications in imaging science and numerical anal-
ysis of partial differential equations, this definition is too restrictive. In fact, it does not include
discontinuity curves, which not only touch the boundary of the domain, but actually intersect
it, in particular, producing a point singularity on the boundary. This situation shall now be
included.

The following definition makes these thoughts precise – now for general Ω –, and generalizes
the previous notion of cartoon-like function from Definition 2.9 even for the special case Ω =
[0, 1]2, see also Figure 1 for an illustration.

Definition 5.1. Let ν > 0, Ω ⊂ R2, D ⊂ R2, and f = f1 + χDf2 with fi ∈ C2(R2) and
supp fi ⊂ [−csupp, csupp]

2 for some csupp > 0 and i = 1, 2 such that f(2csupp · −(1/2, 1/2)) ∈
E2(2csupp · ν). Further, let |∂D ∩ ∂Ω| ≤ M for some M ∈ N. Then we call PΩf a cartoon-like
function on Ω, and denote the set of cartoon-like functions on Ω by E2(ν,Ω).

Figure 1: Cartoon-like functions in E2(ν, [0, 1]2) for some ν > 0.

As announced, let us first restrict to Ω = [0, 1]2. To estimate the error of the best N -
term approximation, we use the following well known approach. Let BSHt,τ (φ

1;φ, ψ, ψ̃, c) =:
(ϕn)n be a boundary shearlet system which forms a frame for L2(Ω), let f ∈ E2(ν,Ω), and
let (θn(f))n∈N be the non-increasing rearrangement of (| 〈ϕn, f〉 |

2)n∈N. Then, by the frame
inequality, we have

‖f − fN‖
2
2 .

∑

n≥N

θn(f) for all N ∈ N.

Hence to obtain the optimal best N -term approximation rate of Theorem 2.10, we require the
estimate ∑

n≥N

θn(f) . N−2 log(N)3 as N → ∞.
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The reader will certainly have noticed that it is not initially clear that this is also the optimally
possible rate for the extended class of cartoon-like functions on Ω from Definition 5.1. But it
is easy to see that a best N−term approximation rate faster than N−2 violates the optimality
result of [20] for functions in E2(ν), since each system on [0, 1]2 can be extended by 0 to yield a
system on R2. Recall that functions in E2(ν) vanish outside [0, 1]2, hence the extended system
would imply a faster than optimal approximation rate for functions in E2(ν), a contradiction.
Thus, the rate cannot be faster, but it is not clear whether the rate of N−2 (up to a log-factor)
can actually be achieved. Theorem 5.2 shows that this is indeed the case.

To proceed we need to first assemble some results for the approximation rates of wavelets
and shearlets. The optimal approximation rate of shearlets is guaranteed by Theorem 2.10. For
s ∈ N, an (s, α, β)-admissible boundary wavelet system (ωj,m,υ)j,m,υ admits

‖f‖2Hs(Ω) ∼
∑

j,m

22js| 〈f, ωj,m,υ〉 |
2.

The result [5, Thm. 39.2] then implies that, for any f ∈ H2(Ω) and (θω(f)n)n∈N denoting the
non-increasing rearrangement of |〈f, ωj,m,υ〉|

2,
∑

n≥N

θωn(f) . N−2. (24)

Based on these approximation results, we obtain the following theorem for the approximation
rate of cartoon-like functions on Ω by the hybrid system of boundary shearlets.

Theorem 5.2. Let Ω = [0, 1]2. Further, let φ, ψ, ψ̃ fulfill the assumptions of Theorem 2.10, and
let W(φ1) be an (s, 0, 0)-admissible boundary wavelet system. Further let t > 0, τ > 1/3, and
let BSHt,τ (φ

1;φ, ψ, ψ̃, c) =: (ϕn)n∈N be a boundary shearlet system, which forms a frame for

L2(Ω). Then BSHt,τ (φ
1;φ, ψ, ψ̃, c) yields almost optimally sparse approximation for cartoon-

like functions on Ω, i.e., for all f ∈ E2(ν,Ω),

‖f − fN‖
2
L2(Ω) . N−2 log(N)3 for N → ∞,

where fN =
∑

n∈In
〈f, ϕn〉ϕ

d
n with In containing the N largest coefficients 〈f, ϕn〉 in modulus

and (ϕdn)n∈N is the canonical dual frame of (ϕn)n∈N.

Proof. Let f = PΩ(f1 + χDf2) ∈ E2(ν,Ω) and consider

‖f − f∗N‖
2
2 ≤

∑

n≥N

θn(f) ≤
∑

n≥ 2N
3

θωn(f) +
∑

n≥N
3

θψn (f) =: T1 + T2, (25)

where θωn(f) is the non-increasing rearrangement of | 〈f, ϕn〉 |
2
ϕn∈Wt,τ (φ1)

and θψn (f) the non-

increasing rearrangement of | 〈f, ϕn〉 |
2
ϕn∈S0

, where S0 = {ψj,k,m,ι, (j, k,m, ι) ∈ Λ0}.
We now estimate T1 and T2. By Theorem 2.10,

T2 . N−2 log(N)3. (26)

The sum T1 corresponding to the wavelet part can be split into two parts again. First, we
denote by θωn(f)

(s) the part of (θωn)n∈N such that | 〈ϕm, f〉 |
2 = θωn and supp ϕm∩∂D 6= ∅. These

are the wavelet elements corresponding to the smooth part of the function f . Second, we label
the remaining elements by θωn(f)

(ns) for n ∈ N. Using similar arguments about the set of largest
coefficients as before, we obtain that

T1 ≤
∑

n≥N
3

θωn(f)
(s) +

∑

n≥N
3

θωn(f)
(ns). (27)
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By (24), ∑

n≥N
3

θωn(f)
(s) . N−2 as N → ∞. (28)

The wavelet coefficients corresponding to the non-smooth part of f can be estimated by ob-
serving that, since the boundary curve of D intersects ∂Ω only finitely often, due to the con-
struction of the wavelet system Wt,τ (φ

1) for a small enough resolution we obtain that only
∼ 2(1−τ)j < 2(2/3−ǫ)j wavelets intersect the boundary of D where 0 < ε < τ − 1/3.

Furthermore, due to the boundedness of f , we have | 〈ωj,m,υ, f 〉|2 . 2−2j . Hence, we obtain
∑

n

(θωn(f)
(ns))

1
3 .

∑

j∈N

2(2/3−ǫ)j(2−2j)
1
3 <∞.

Consequently, (θωn(f)
(ns))n∈N ∈ ℓ

1
3 which, by the Stechkin Lemma, yields

∑

n≥N

(θωn(f)
(ns)) . N−2 for N → ∞. (29)

Applying (26)–(29) to (25) proves the claim.

6 Arbitrary domains

The preceding sections were devoted to the introduction and analysis of a directional anisotropic
frame, coined boundary shearlet system, on the domain Ω = [0, 1]2. However, in many applica-
tions, in particular, for the adaptive solution of partial differential equations more complicated
domains are of interest.

A common approach to construct systems for more general domains is to lift the construction
from [0, 1]2 to 2-manifolds by using smooth charts κi : [0, 1]

2 → Ωi, i ≤ M ∈ N. In this way
domains of the form

Ω =
⋃

i≤M

Ωi, where Ωi = κi([0, 1]
2) (30)

can be handled. The constructions fall into two categories, namely overlapping and non-over-
lapping constructions. Non-overlapping constructions, i.e., where the sets Ωi are assumed to
be disjoint, were introduced in [16] and further developed in [14] with an analysis of the char-
acterization of smoothness spaces presented in [15] and [30]. In these cases it is possible to
construct biorthogonal bases on L2(Ω). If one is though not necessarily interested in a basis,
but a frame on L2(Ω) is sufficient, constructions with presumably overlapping smooth images
Ωi = κi([0, 1]

d) can be used. This approach has been introduced in [43] and further developed
in [9].

Returning to boundary shearlet systems on arbitrary domains, we aim to use a construction
similar to those wavelet constructions. Is is evident that overlapping constructions are sufficient
in our case, since we can not hope to obtain a basis. In the sequel we follow the construction
of [9] adapted to the shearlet system case, and discuss some of its properties. Since many
arguments are quite straightforward, we settle for describing the main construction steps and
argumentation steps.

We start by assuming we are given Ck-diffeomorphisms κi : [0, 1]
2 → Ωi, k ∈ N, i ≤M ∈ N,

as in (30), where
0 < c1 ≤ | det (Dκi)| ≤ c2 <∞, for all i ≤M.

To obtain a frame on Ω for L2(Ω), we require in addition a smooth partition of unity (σi)i≤M
on Ω subordinate to the patches (Ωi)i≤M such that, for all i ∈M ,
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(P1) supp σi ⊂ Ωi and

(P2)
∑

i≤M ‖σif‖Hs(Ωi) ∼ ‖f‖Hs(Ω) for all f ∈ Hs(Ω).

Certainly, these requirements restrict the set of possible domains Ω. However, it has been noted
in [9], that the class of polyhedral domains is still covered.

Given a boundary shearlet system (ϕ�
n )n∈N = BSHt,τ (φ

1;φ, ψ, ψ̃, c), say, on the unit square
[0, 1]2 as constructed in Definition 3.1, its elements can be lifted to Ω by

ϕi,n(x) :=

{
σi(x)

ϕ�
n (κ−1

i (x))

| det (Dκi)(κ
−1
i (x))|1/2

, for x ∈ Ωi,

0 , else,

i.e., (ϕi,n)i≤M,n∈N is the constructed boundary shearlet system on Ω.
Using the fact that each κi is a diffeomorphism, for all 0 ≤ r ≤ s and f ∈ Hr(Ωi), we obtain

‖f‖2Hr(Ωi)
∼ ‖σi(κi(x))f(κi(x))‖

2
Hr([0,1]2).

By Theorems 3.3 and 4.4, we can find conditions such that, for all 0 ≤ r ≤ s,

‖σi(κi(x))f(κi(x))‖
2
Hr([0,1]2) ∼

∑

n∈N

22rjn |〈σi(κi(x))f(κi(x)), ϕ
�
n (x)〉|

2 ∼
∑

n∈N

22rjn |〈f, ϕi,n〉L2(Ω)|
2.

Consequently, the conditions on the partition of unity imply

‖f‖2Hr(Ω) ∼
∑

n∈N,i≤M

22tjn |〈f, ϕi,n〉L2(Ω)|
2.

This yields the frame property and the characterization of Sobolev spaces by analysis coefficients
for the boundary shearlet systems on Ω.

The second – maybe even first – important feature that the boundary shearlet systems
should have is optimally sparse approximation of cartoon-like functions on Ω. Notice that the
general definition for cartoon-like functions on Ω was already stated in Definition 5.1.

For this we require an additional property of the partition of unity (σi)i≤M , which states
that each maps σi should vanish on a neighborhood of the boundary of Ωi, but not necessarily
near the boundary of the entire domain Ω. More precisely, we require the following condition:

(P3) There exists δ > 0 such that σi = 0 on (∂Ωi +Bδ(0)) \ (∂Ω+Bδ(0)) for all i ≤M .

Given a cartoon-like function f on Ω, by definition the singularity curve of f touches the
boundary curve of Ω at most finitely many times. By assuming condition (P3), this implies
that the singularity curve of σif touches the boundary curve of Ωi only finitely many times.
Since in addition the charts κi are smooth, we can conclude that σif ◦ κi is a cartoon-like
function on [0, 1]2 as in Definition 5.1. Hence we can use the techniques of the proof of Theorem
5.2 to obtain the desired decay of the coefficients (〈f, ϕi,n〉)n for increasing resolution. Finally,
since there are only finitely many Ωi’s, with the same arguments as in Theorem 5.2 this yields
the approximation rate of O(N−2 log(N)3) for any f ∈ E2(ν,Ω).

7 Numerical experiments

We now numerically analyze some of the properties of boundary shearlet systems. Since es-
timates for frame bounds as derived in Theorem 3.3 are typically far from being tight, in
Subsection 7.1 we numerically compute the frame bounds. In Subsections 7.2 and 7.3 we then
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analyze the localization properties of the Gramian and the Gelfand frame property, which are
features of boundary shearlet systems whose theoretical analysis was far beyond the scope of
this paper.

For all numerical experiments, we choose a digitized version Ω of the domain Ω = [0, 1]2

as an n × n pixel image. We will specify the number n at the relevant points later. Our im-
plementation of boundary shearlet systems then uses the MATLAB toolboxes WaveLab from
http://statweb.stanford.edu/~wavelab/ and ShearLab from http://www.shearlab.org

for the implementation of the analysis and synthesis operator of boundary shearlet systems.
In WaveLab and ShearLab, the wavelet and shearlet elements are not normalized. Since this is
crucial for the setting of bounded domains, we normalize all these functions. For later use, let
TΦw

and TΦs
denote the implementation of the analysis operators of the wavelet and shearlet

systems after normalization.
The definition of boundary shearlet systems requires a hybrid system consisting of a subset

of the wavelet system and a subset of the shearlet system. Concerning the wavelet elements,
we only choose those which are close to the boundary. Depending on the offset of the boundary
shearlet system, we construct a mask, Mw, for the wavelet system that restricts the analysis
operator to a subset of the full wavelet system. In the sequel we will always choose τ = 1/3
and only vary the offset t. Similarly, we need to subsample the shearlet system provided by
ShearLab. In fact, ShearLab provides a non-subsampled shearlet transform, i.e., it computes
the shearlet coefficients using the full system

{
ψj,k,(SkAjm),ι : j ≤ J, ι ∈ {−1, 0, 1}, |k| ≤ |ι|2⌊j/2⌋, m ∈ cZ2,

}
.

On the other hand the theory requires us to restrict to the shearlet system
{
ψj,k,m,ι : j ≤ J, ι ∈ {−1, 0, 1}, |k| ≤ |ι|2⌊j/2⌋, m ∈ cZ2,

}
.

Furthermore, we exclude shearlets from our system that intersect the boundary of Ω. We
incorporate all of these requirements in a mask Ms.

The analysis operator of the combined system is now given by

TΦ :=

(
MwTΦw

MsTΦs

)
. (31)

Using these operators, we derive an implementation of the synthesis operator of boundary
shearlet systems by using

T∗
Φ = MwT

∗
Φw

+MsT
∗
Φs

.

The implementation of the frame operator is given by

S := T∗
Φw

MwTΦw
+T∗

Φs

MsTΦs
.

To apply inverse frame operator S−1, we use MATLAB’s build-in conjugate gradients method,
pcg.

7.1 Frame properties

We now compute the frame bounds of a boundary shearlet system for various offsets of the
wavelet part. We pick an 256 × 256 pixel domain as a digitization of Ω. The wavelet and
shearlet systems are computed using 3 scales. Since the optimal frame bounds A and B are the
extremal points of the spectrum of the frame operator of the system, we numerically compute
them for this boundary shearlet system by computing the smallest and largest eigenvalues of S.
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Figure 2: Quotient of the frame bounds for varying offset. One observes that for high offset the
quotient becomes stable and explodes for decreasing offset.

For this task we used MATLAB’s build-in method eigs. In Figure 2, we depict the quotient
B/A for varying offset.

We observe that for larger offset the ratio of the frame bounds is somehow not too far from
1, which provides us with reasonably good condition numbers for the computation of S−1. In
fact, the values of these quotients are comparable with those of the full shearlet system used
in ShearLab, [35]. As expected, the frame property breaks down, when the offset becomes too
small. This is in accordance with Theorem 3.3.

7.2 Localization of the Gramian

Using the analysis operator as defined in (31), the Gramian of the boundary shearlet system is
given by

G := TΦT
∗
Φ.

The linear operators TΦ and T∗
Φ

are implemented using the Spot Toolbox, which is avail-
able at http://www.cs.ubc.ca/labs/scl/spot/index.html. The matrix representation of
the Gramian is shown in Figure 3. It is clearly visible, that the Gramian of the boundary
shearlet system has diagonal structure.

The figures were produced for a 256×256 digitization of Ω, 4 scales in the boundary shearlet
system with number of directions being [1 1 2 2].

7.3 Gelfand property

As we already mentioned in the introduction, the Gelfand frame property is of particular interest
for the solvability of elliptic PDE’s. Thus, we now aim to check whether, for a fixed s > 0,
the boundary shearlet system (ϕn)n∈N := BSHt,1/3(φ

1;φ, ψ, ψ̃, c) yields a Gelfand frame for the

Gelfand triple (Hs(Ω), L2(Ω), H−s(Ω)). Recall that this means that for (ϕdn)n∈N denoting the
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Figure 3: Gramian of the boundary shearlet system. The part zoomed region is shown with
changed contrast for better visualization of the different sparsity patterns of shear-shear, shear-
wave and wave-wave.

canonical dual of (ϕn)n∈N, we require

∥∥∥∥∥
∑

n∈N

cnϕn

∥∥∥∥∥

2

Hs(Ω)

.
∥∥(2jnscn)n∈N

∥∥2
ℓ2
, for all c ∈ ℓ2 (GFA1)

and

∥∥∥(2jns〈f, ϕdn)〉n∈N
∥∥∥
2

ℓ2
. ‖f‖2Hs(Ω), for all f ∈ Hs(Ω). (GFA2)

Intuitively, a Gelfand frame seeks to describe the mapping properties of the synthesis operator.
In fact, the property (GFA1) can be easily proved for a boundary shearlet system (ϕn)n∈N

satisfying (17). Equation (17) implies that

∥∥∥∥∥∥
∑

(j,k,m,ι)∈Λ

cj,k,m,ιψj,k,m,ι

∥∥∥∥∥∥
Hs(Ω)

.

∥∥∥∥∥∥∥


〈

∑

(j,k,m,ι)∈Λ

cj,k,m,ιψj,k,m,ι, ψ
d
j′,k′,m′,ι′〉




(j′,k′,m′,ι′)∈Λ

∥∥∥∥∥∥∥
ℓ2,w(Λ)

.

Defining (Gc)j′,k′,m′,ι′ :=
∑

(j,k,m,ι)∈Λ cj,k,m,ι〈ψj,k,m,ι, ψ
d
j′,k′,m′,ι′〉 we get

‖Gc‖ℓ2,w(Λ) ≤ ‖G‖ℓ2,w(Λ)→ℓ2,w(Λ)‖c‖ℓ2,w(Λ),
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and ‖G‖ℓ2,w(Λ)→ℓ2,w(Λ) is bounded if G has sufficient localization by [26, Sec. 3.2]. This yields

∥∥∥∥∥∥
∑

(j,k,m,ι)∈Λ

cj,k,m,ιψj,k,m,ι

∥∥∥∥∥∥

2

Hs(Ω)

.
∥∥(2jscj,k,m,ι)(j,k,m,ι)∈Λ

∥∥2
ℓ2(Λ)

,

which is (GFA1). As already discussed at the end of Subsection 4.2, a theoretical analysis of
property (GFA2) is to date out of reach due to the non-availability of a concrete construction
of a dual shearlet system. Therefore we now numerically analyze and in fact show that the
constructed boundary shearlet systems also satisfy property (GFA2).

We first require a numerically computable discretization of property (GFA2). For this, notice
that employing the characterization of Hs(Ω) by a wavelet orthonormal basis (see Subsection
2.1.3) and an appropriate weight in the sense that

‖TΦwc‖
2
Hs(Ω) ∼ ‖c‖2ℓ2,w ,

we can obtain the following property which is equivalent to (GFA2):

‖〈TΦwc, ϕ
d
n〉‖

2
ℓ2,w . ‖c‖2ℓ2,w , for all c ∈ ℓ2,w. (32)

This property, however, involves the dual frame, whose analysis is – as just mentioned – in-
tractable. To derive a discrete analogue of (32), we first let

W : ℓ2,w → ℓ2, (xk)k 7→ (wk · xk)k

be the canonicial isometry. Furthermore, since ϕdn = S−1ϕn, it follows that

〈TΦwc, ϕ
d
n〉 = 〈S−1TΦwc, ϕn〉.

Using the canonical discretization of W as a diagonal matrix, we obtain two matrices W and
Ww adapted to the indexing of the boundary shearlet system and the full wavelet system,
respectively. The discrete analogue of (32) now takes the form

‖WTΦ(S
−1TΦwc)‖

2 . ‖Wwc‖
2, for all c ∈ R

n2
.

In order to examine this bound and check its validity for our boundary shearlet system in the
discrete setting, we estimate

max
‖c‖=1

‖WTΦS
−1TΦwWw

−1c‖22

by computing the square-root of the largest eigenvalue of

Ww
−1TΦwS

−1T∗
ΦW

2TΦS
−1TΦwWw

−1. (33)

In Figure 4, we depict the square-root of the largest eigenvalue of the operator (33) with
different weights W,Ww and different offset for n = 512. The precise values can be found in
Table 1. In this numerical experiment, the weights are chosen as 2js, where j describes the
scale of the frame element, both of wavelet and shearlet, and s is a parameter that takes values
between 0 and 1.5. The shearlet and wavelet systems were constructed with 4 scales.

In Figure 4 as well as Table 1, one can observe that, although the largest eigenvalues of (33)
increase with growing Sobolev parameter, they do so remarkably slow if the offset is sufficiently
high. Thus we conclude that our experiments demonstrate the proper mapping properties of
the dual frame.
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Figure 4: Largest singular value of WTΦS
−1TΦwWw

−1 with varying weights W,Ww and
varying offset.

Offset s = 0 s = 0.5 s= 1 s= 1.5

8.72 5.47 5.47 5.46 5.62
8.10 5.48 5.48 5.47 5.76
7.37 5.48 5.48 5.50 9.42
6.50 5.49 5.48 5.50 9.43
5.42 5.49 5.48 6.55 17.81
4.75 5.49 5.49 6.62 18.27

Table 1: Largest eigenvalues of (33) for varying offset and Sobolev parameter s.
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